Sample records for average high temperature

  1. Seasonal Average Temperature - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook TwitterSearch-Comments Sign In About | CareersAverage Temperature

  2. High-Average Power Facilities

    SciTech Connect (OSTI)

    Dowell, David H.; /SLAC; Power, John G.; /Argonne

    2012-09-05T23:59:59.000Z

    There has been significant progress in the development of high-power facilities in recent years yet major challenges remain. The task of WG4 was to identify which facilities were capable of addressing the outstanding R&D issues presently preventing high-power operation. To this end, information from each of the facilities represented at the workshop was tabulated and the results are presented herein. A brief description of the major challenges is given, but the detailed elaboration can be found in the other three working group summaries.

  3. High Temperatures & Electricity Demand

    E-Print Network [OSTI]

    High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

  4. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect (OSTI)

    Messerly, M J

    2007-11-13T23:59:59.000Z

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  5. Sequential high temperature reduction, low temperature hydrolysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high temperature reduction, low temperature hydrolysis for the regeneration of sulfated NOx trap catalysts. Sequential high temperature reduction, low temperature hydrolysis for...

  6. LOW-HIGH VALUES FOR PETROLEUM AVERAGE INVENTORY RANGES (MILLION...

    Gasoline and Diesel Fuel Update (EIA)

    ENERGY INFORMATION ADMINISTRATION LOW-HIGH VALUES FOR PETROLEUM AVERAGE INVENTORY RANGES (MILLION BARRELS) FILE UPDATED April 2004 Line Month Low High Number Product Name Geography...

  7. High-Temperature Superconductivity

    ScienceCinema (OSTI)

    Peter Johnson

    2010-01-08T23:59:59.000Z

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  8. High temperature pressure gauge

    DOE Patents [OSTI]

    Echtler, J. Paul (Pittsburgh, PA); Scandrol, Roy O. (Library, PA)

    1981-01-01T23:59:59.000Z

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  9. High Temperature Capacitor Development

    SciTech Connect (OSTI)

    John Kosek

    2009-06-30T23:59:59.000Z

    The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a unique high-temperature electrolyte developed during the course of the program. During this program the feasibility of operating a high voltage hybridized capacitor at 230oC was demonstrated. Capacitor specifications were established in conjunction with potential capacitor users. A method to allow for capacitor operation at both ambient and elevated temperatures was demonstrated. The program was terminated prior to moving into Phase II due to a lack of cost-sharing funds.

  10. E-Print Network 3.0 - area average temperature Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Fisheries Sciences Collection: Environmental Sciences and Ecology 24 The Greenhouse Effect Temperature Equilibrium Summary: - it is neither heating nor cooling on average....

  11. High-temperature Pump Monitoring - High-temperature ESP Monitoring...

    Broader source: Energy.gov (indexed) [DOE]

    7 4.4.4 High-temperature Pump Monitoring - High-temperature ESP Monitoring Presentation Number: 018 Investigator: Dhruva, Brindesh (Schlumberger Technology Corp.) Objectives: To...

  12. High temperature storage battery

    SciTech Connect (OSTI)

    Sammells, A.F.

    1988-06-07T23:59:59.000Z

    A high temperature electrochemical cell is described comprising: a solid-state divalent cation conducting electrolyte; a positive electrode in contact with the electrolyte; a solid-state negative electrode contacting a divalent cation conducting molten salt mediating agent providing ionic mediation between the solid-state negative electrode and the solid-state electrolyte.

  13. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

    1999-03-23T23:59:59.000Z

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  14. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23T23:59:59.000Z

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  15. High temperature adsorption measurements

    SciTech Connect (OSTI)

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24T23:59:59.000Z

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  16. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  17. RECHARGEABLE HIGH-TEMPERATURE BATTERIES

    E-Print Network [OSTI]

    Cairns, Elton J.

    2014-01-01T23:59:59.000Z

    F. Eshman, High-Performance Batteries for Electric-VehicleS. Sudar, High Performance Batteries for Electric-VehicleHIGH-TEMPERATURE BATTERIES Elton J. Cairns January 1981 TWO-

  18. High temperature interfacial superconductivity

    DOE Patents [OSTI]

    Bozovic, Ivan (Mount Sinai, NY); Logvenov, Gennady (Port Jefferson Station, NY); Gozar, Adrian Mihai (Port Jefferson, NY)

    2012-06-19T23:59:59.000Z

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  19. High average power magnetic modulator for copper lasers

    SciTech Connect (OSTI)

    Cook, E.G.; Ball, D.G.; Birx, D.L.; Branum, J.D.; Peluso, S.E.; Langford, M.D.; Speer, R.D.; Sullivan, J.R.; Woods, P.G.

    1991-06-14T23:59:59.000Z

    Magnetic compression circuits show the promise of long life for operation at high average powers and high repetition rates. When the Atomic Vapor Laser Isotope Separation (AVLIS) Program at Lawrence Livermore National Laboratory needed new modulators to drive their higher power copper lasers in the Laser Demonstration Facility (LDF), existing technology using thyratron switched capacitor inversion circuits did not meet the goal for long lifetimes at the required power levels. We have demonstrated that magnetic compression circuits can achieve this goal. Improving thyratron lifetime is achieved by increasing the thyratron conduction time, thereby reducing the effect of cathode depletion. This paper describes a three stage magnetic modulator designed to provide a 60 kV pulse to a copper laser at a 4. 5 kHz repetition rate. This modulator operates at 34 kW input power and has exhibited MTBF of {approx}1000 hours when using thyratrons and even longer MTBFs with a series of stack of SCRs for the main switch. Within this paper, the electrical and mechanical designs for the magnetic compression circuits are discussed as are the important performance parameters of lifetime and jitter. Ancillary circuits such as the charge circuit and reset circuit are shown. 8 refs., 5 figs., 1 tab.

  20. average high energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    averaged null (ANEC) energy conditions, and quantum inequality restrictions on negative energy for free massless scalar fields. In a two-dimensional compactified Minkowski...

  1. average power high: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simultaneous Power Fluctuation and Average Power Minimization during Nano-CMOS Behavioral Synthesis Computer Technologies and Information Sciences Websites Summary: conversion 6....

  2. High-Temperature-High-Volume Lifting for Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems High-Temperature-High-Volume Lifting for...

  3. Philosophy 26 High Temperature Superconductivity

    E-Print Network [OSTI]

    Callender, Craig

    Philosophy 26 High Temperature Superconductivity By Ohm's Law, resistance will dim. Low temperature superconductivity was discovered in 1911 by Heike was explained by BCS theory. BCS theory explains superconductivity microscopically

  4. High Temperature, High Pressure Devices for Zonal Isolation in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature,...

  5. HIGH AVERAGE POWER UV FREE ELECTRON LASER EXPERIMENTS AT JLAB

    SciTech Connect (OSTI)

    Douglas, David; Evtushenko, Pavel; Gubeli, Joseph; Hernandez-Garcia, Carlos; Legg, Robert; Neil, George; Powers, Thomas; Shinn, Michelle D; Tennant, Christopher

    2012-07-01T23:59:59.000Z

    Having produced 14 kW of average power at {approx}2 microns, JLAB has shifted its focus to the ultraviolet portion of the spectrum. This presentation will describe the JLab UV Demo FEL, present specifics of its driver ERL, and discuss the latest experimental results from FEL experiments and machine operations.

  6. Hotline IV ?High Temperature ESP

    Broader source: Energy.gov (indexed) [DOE]

    Hotline IV - High Temperature ESP Brindesh Dhruva (principal Inv.) Michael Dowling (presenter) Schlumberger Track Name May 18, 2010 This presentation does not contain any...

  7. High-temperature ceramic receivers

    SciTech Connect (OSTI)

    Jarvinen, P. O.

    1980-01-01T23:59:59.000Z

    An advanced ceramic dome cavity receiver is discussed which heats pressurized gas to temperatures above 1800/sup 0/F (1000/sup 0/C) for use in solar Brayton power systems of the dispersed receiver/dish or central receiver type. Optical, heat transfer, structural, and ceramic material design aspects of the receiver are reported and the development and experimental demonstration of a high-temperature seal between the pressurized gas and the high-temperature silicon carbide dome material is described.

  8. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, W.Y.

    1984-07-27T23:59:59.000Z

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  9. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, Wayne Y. (Munster, IN)

    1987-01-01T23:59:59.000Z

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  10. High average power magnetic modulator for metal vapor lasers

    DOE Patents [OSTI]

    Ball, Don G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Cook, Edward G. (Livermore, CA); Miller, John L. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.

  11. Temperature controlled high voltage regulator

    DOE Patents [OSTI]

    Chiaro, Jr., Peter J. (Clinton, TN); Schulze, Gerald K. (Knoxville, TN)

    2004-04-20T23:59:59.000Z

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  12. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi (Mastic Beach, NY)

    1989-01-01T23:59:59.000Z

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  13. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi.

    1989-10-03T23:59:59.000Z

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  14. High temperature Seebeck coefficient metrology

    SciTech Connect (OSTI)

    Martin, J. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Tritt, T. [Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634 (United States); Uher, C. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2010-12-15T23:59:59.000Z

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectric measurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  15. High temperature Seebeck coefficient metrology

    SciTech Connect (OSTI)

    Martin, J.; Tritt, T.; Uher, Ctirad

    2010-01-01T23:59:59.000Z

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential propertymeasurement for evaluating the potential performance of novel thermoelectricmaterials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectricmeasurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  16. High-average-power, diode-pumped solid state lasers for energy and industrial applications

    SciTech Connect (OSTI)

    Krupke, W.F.

    1994-03-02T23:59:59.000Z

    Progress at LLNL in the development high-average-power diode-pumped solid state lasers is summarized, including the development of enabling technologies.

  17. High temperature superconductor current leads

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL)

    1995-01-01T23:59:59.000Z

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  18. High temperature superconductor current leads

    DOE Patents [OSTI]

    Hull, J.R.; Poeppel, R.B.

    1995-06-20T23:59:59.000Z

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  19. HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Schroeder, R.C.

    2009-01-01T23:59:59.000Z

    on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

  20. Geothermal high temperature instrumentation applications

    SciTech Connect (OSTI)

    Normann, R.A. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants (United States)

    1998-06-11T23:59:59.000Z

    A quick look at the geothermal industry shows a small industry producing about $1 billion in electric sales annually. The industry is becoming older and in need of new innovative solutions to instrumentation problems. A quick look at problem areas is given along with basic instrumentation requirements. The focus of instrumentation is on high temperature electronics.

  1. Acid Doped Membranes for High Temperature PEMFC

    Broader source: Energy.gov [DOE]

    Presentation on Acid Doped Membranes for High Temperature PEMFC to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

  2. High-Temperature Thermoelectric Materials Characterization for...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  3. High Temperature Thermoelectric Materials Characterization for...

    Broader source: Energy.gov (indexed) [DOE]

    High Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  4. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste...

  5. Manufacturing Barriers to High Temperature PEM Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D...

  6. NSTX High Temperature Sensor Systems

    SciTech Connect (OSTI)

    B.McCormack; H.W. Kugel; P. Goranson; R. Kaita; et al

    1999-11-01T23:59:59.000Z

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed.

  7. High Temperature Heat Exchanger Project

    SciTech Connect (OSTI)

    Anthony E. Hechanova, Ph.D.

    2008-09-30T23:59:59.000Z

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  8. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1994-01-01T23:59:59.000Z

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  9. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1993-01-01T23:59:59.000Z

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  10. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1992-01-01T23:59:59.000Z

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  11. Pulsed laser deposition with a high average power free electron laser: Benefits of subpicosecond pulses with high repetition rate

    E-Print Network [OSTI]

    Reilly, Anne

    Pulsed laser deposition with a high average power free electron laser: Benefits of subpicosecond average power Thomas Jefferson National Accelerator Facility Free Electron Laser. The combination of the free electron laser leads to very different plasma emission and produces films with high quality

  12. Improved performance of high average power semiconductor arrays for applications in diode pumped solid state lasers

    SciTech Connect (OSTI)

    Beach, R.; Emanuel, M.; Benett, W.; Freitas, B.; Ciarlo, D.; Carlson, N.; Sutton, S.; Skidmore, J.; Solarz, R.

    1994-01-01T23:59:59.000Z

    The average power performance capability of semiconductor diode laser arrays has improved dramatically over the past several years. These performance improvements, combined with cost reductions pursued by LLNL and others in the fabrication and packaging of diode lasers, have continued to reduce the price per average watt of laser diode radiation. Presently, we are at the point where the manufacturers of commercial high average power solid state laser systems used in material processing applications can now seriously consider the replacement of their flashlamp pumps with laser diode pump sources. Additionally, a low cost technique developed and demonstrated at LLNL for optically conditioning the output radiation of diode laser arrays has enabled a new and scalable average power diode-end-pumping architecture that can be simply implemented in diode pumped solid state laser systems (DPSSL`s). This development allows the high average power DPSSL designer to look beyond the Nd ion for the first time. Along with high average power DPSSL`s which are appropriate for material processing applications, low and intermediate average power DPSSL`s are now realizable at low enough costs to be attractive for use in many medical, electronic, and lithographic applications.

  13. Thermal disconnect for high-temperature batteries

    DOE Patents [OSTI]

    Jungst, Rudolph George (Albuquerque, NM); Armijo, James Rudolph (Albuquerque, NM); Frear, Darrel Richard (Austin, TX)

    2000-01-01T23:59:59.000Z

    A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

  14. Faraday imaging at high temperatures

    DOE Patents [OSTI]

    Hackel, L.A.; Reichert, P.

    1997-03-18T23:59:59.000Z

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

  15. Faraday imaging at high temperatures

    DOE Patents [OSTI]

    Hackel, Lloyd A. (Livermore, CA); Reichert, Patrick (Hayward, CA)

    1997-01-01T23:59:59.000Z

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  16. High-temperature thermocouples and related methods

    DOE Patents [OSTI]

    Rempe, Joy L. (Idaho Falls, ID); Knudson, Darrell L. (Firth, ID); Condie, Keith G. (Idaho Falls, ID); Wilkins, S. Curt (Idaho Falls, ID)

    2011-01-18T23:59:59.000Z

    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

  17. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweighting Materials Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus Lightweighting Materials 2011 DOE Hydrogen and Fuel Cells...

  18. Agenda: High Temperature Membrane Working Group Meeting

    Broader source: Energy.gov [DOE]

    Agenda for the High Temperature Membrane Working Group (HTMWG) meeting on May 18, 2009, in Arlington, Virginia

  19. Development of a high average current polarized electron source with long cathode operational lifetime

    SciTech Connect (OSTI)

    C. K. Sinclair; P. A. Adderley; B. M. Dunham; J. C. Hansknecht; P. Hartmann; M. Poelker; J. S. Price; P. M. Rutt; W. J. Schneider; M. Steigerwald

    2007-02-01T23:59:59.000Z

    Substantially more than half of the electromagnetic nuclear physics experiments conducted at the Continuous Electron Beam Accelerator Facility of the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) require highly polarized electron beams, often at high average current. Spin-polarized electrons are produced by photoemission from various GaAs-based semiconductor photocathodes, using circularly polarized laser light with photon energy slightly larger than the semiconductor band gap. The photocathodes are prepared by activation of the clean semiconductor surface to negative electron affinity using cesium and oxidation. Historically, in many laboratories worldwide, these photocathodes have had short operational lifetimes at high average current, and have often deteriorated fairly quickly in ultrahigh vacuum even without electron beam delivery. At Jefferson Lab, we have developed a polarized electron source in which the photocathodes degrade exceptionally slowly without electron emission, and in which ion back bombardment is the predominant mechanism limiting the operational lifetime of the cathodes during electron emission. We have reproducibly obtained cathode 1/e dark lifetimes over two years, and 1/e charge density and charge lifetimes during electron beam delivery of over 2?105???C/cm2 and 200 C, respectively. This source is able to support uninterrupted high average current polarized beam delivery to three experimental halls simultaneously for many months at a time. Many of the techniques we report here are directly applicable to the development of GaAs photoemission electron guns to deliver high average current, high brightness unpolarized beams.

  20. Temperature-averaged and total free-free Gaunt factors for $\\kappa$ and Maxwellian distributions of electrons

    E-Print Network [OSTI]

    de Avillez, Miguel A

    2015-01-01T23:59:59.000Z

    Aims. Optically thin plasmas may deviate from thermal equilibrium and thus, electrons (and ions) are no longer described by the Maxwellian distribution. Instead they can be described by $\\kappa$-distributions. The free-free spectrum and radiative losses depend on the temperature-averaged (over the electrons distribution) and total Gaunt factors, respectively. Thus, there is a need to calculate and make available these factors to be used by any software that deals with plasma emission. Methods. We recalculated the free-free Gaunt factor for a wide range of energies and frequencies using hypergeometric functions of complex arguments and the Clenshaw recurrence formula technique combined with approximations whenever the difference between the initial and final electron energies is smaller than $10^{-10}$ in units of $z^2Ry$. We used double and quadruple precisions. The temperature- averaged and total Gaunt factors calculations make use of the Gauss-Laguerre integration with 128 nodes. Results. The temperature-av...

  1. High Temperature Superconducting Underground Cable

    SciTech Connect (OSTI)

    Farrell, Roger, A.

    2010-02-28T23:59:59.000Z

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  2. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    Micro-engineered first wall tungsten armor for high average power laser fusion energy systems is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first is a coordinated effort to develop laser inertial fusion energy [1]. The first stage of the HAPL program

  3. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, J.R.

    1997-02-04T23:59:59.000Z

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  4. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL)

    1997-01-01T23:59:59.000Z

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  5. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect (OSTI)

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I. [All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI), 46 Ozernaya St., Moscow 119361 (Russian Federation)] [All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI), 46 Ozernaya St., Moscow 119361 (Russian Federation)

    2013-09-11T23:59:59.000Z

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  6. Deep Trek High Temperature Electronics Project

    SciTech Connect (OSTI)

    Bruce Ohme

    2007-07-31T23:59:59.000Z

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  7. TECATE - a code for anisotropic thermoelasticity in high-average-power laser technology. Phase 1 final report

    SciTech Connect (OSTI)

    Gelinas, R.J.; Doss, S.K.; Carlson, N.N.

    1985-01-01T23:59:59.000Z

    This report describes a totally Eulerian code for anisotropic thermoelasticity (code name TECATE) which may be used in evaluations of prospective crystal media for high-average-power lasers. The present TECATE code version computes steady-state distributions of material temperatures, stresses, strains, and displacement fields in 2-D slab geometry. Numerous heat source and coolant boundary condition options are available in the TECATE code for laser design considerations. Anisotropic analogues of plane stress and plane strain evaluations can be executed for any and all crystal symmetry classes. As with all new and/or large physics codes, it is likely that some code imperfections will emerge at some point in time.

  8. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 -- Washington D.C. lm028laracurzio2010o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

  9. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation lm028laracurzio2011o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

  10. Materials Characterization Capabilities at the High Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    and Peer Evaluation Meeting lm028laracurzio2012o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

  11. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 18-22, 2009 -- Washington D.C. lm01laracurzio.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

  12. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory: Focus on Carbon Fiber and Composites Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus on Carbon Fiber and Composites 2011 DOE...

  13. Materials Characterization Capabilities at the High Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    Characterization Capabilities at the High Temperature Materials Laboratory: Focus on Carbon Fiber and Composites Project ID: LM027 DOE 2011 Vehicle Technologies Annual Merit...

  14. Intertwined Orders in High Temperature Superconductors

    E-Print Network [OSTI]

    Ostoja-Starzewski, Martin

    Intertwined Orders in High Temperature Superconductors ! Eduardo Fradkin University of Illinois · Electronic liquid crystal phases have also been seen heavy fermions and iron superconductors 7 #12

  15. Polyelectrolyte Materials for High Temperature Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    High 3M (3M) Temperature Fuel Cells John B. Kerr Lawrence Berkeley National Laboratory (LBNL) Collaborators: Los Alamos National Laboratory (LANL). February 13, 2007 This...

  16. Quantitative Modeling of High Temperature Magnetization Dynamics

    SciTech Connect (OSTI)

    Zhang, Shufeng

    2009-03-01T23:59:59.000Z

    Final Technical Report Project title: Quantitative Modeling of High Temperature Magnetization Dynamics DOE/Office of Science Program Manager Contact: Dr. James Davenport

  17. Photonic crystals for high temperature applications

    E-Print Network [OSTI]

    Yeng, Yi Xiang

    2014-01-01T23:59:59.000Z

    This thesis focuses on the design, optimization, fabrication, and experimental realization of metallic photonic crystals (MPhCs) for high temperature applications, for instance thermophotovoltaic (TPV) energy conversion ...

  18. High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths

    SciTech Connect (OSTI)

    Reagan, Brendon [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Berrill, Mark A [ORNL] [ORNL; Wernsing, Keith [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Baumgarten, Cory [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Woolston, Mark [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Rocca, Jorge [Colorado State University, Fort Collins] [Colorado State University, Fort Collins

    2014-01-01T23:59:59.000Z

    Efficient excitation of dense plasma columns at 100-Hz repetition rate using a tailored pump pulse profile produced a tabletop soft-x-ray laser average power of 0.1 mW at = 13.9 nm and 20 W at = 11.9 nm from transitions of Ni-like Ag and Ni-like Sn, respectively. Lasing on several other transitions with wavelengths between 10.9 and 14.7 nm was also obtained using 0.9-J pump pulses of 5-ps duration from a compact diode-pumped chirped pulse amplification Yb:YAG laser. Hydrodynamic and atomic plasma simulations show that the pump pulse profile, consisting of a nanosecond ramp followed by two peaks of picosecond duration, creates a plasma with an increased density of Ni-like ions at the time of peak temperature that results in a larger gain coefficient over a temporally and spatially enlarged space leading to a threefold increase in the soft-x-ray laser output pulse energy. The high average power of these compact soft-x-ray lasers will enable applications requiring high photon flux. These results open the path to milliwatt-average-power tabletop soft-x-ray lasers.

  19. High temperature synthetic cement retarder

    SciTech Connect (OSTI)

    Eoff, L.S.; Buster, D.

    1995-11-01T23:59:59.000Z

    A synthetic cement retarder which provides excellent retardation and compressive strength development has been synthesized. The response properties and temperature ranges of the synthetic retarder far exceed those of commonly used retarders such as lignosulfonates. The chemical nature of the new retarder is discussed and compared to another synthetic retarder.

  20. Investigations into High Temperature Components and Packaging

    SciTech Connect (OSTI)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31T23:59:59.000Z

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the temperature increase inside the device due the internal heat that is generated due to conduction and switching losses. Capacitors and high current switches that are reliable and meet performance specifications over an increased temperature range are necessary to realize electronics needed for hybrid-electric vehicles (HEVs), fuel cell (FC) and plug-in HEVs (PHEVs). In addition to individual component level testing, it is necessary to evaluate and perform long term module level testing to ascertain the effects of high temperature operation on power electronics.

  1. Nuclear fuels for very high temperature applications

    SciTech Connect (OSTI)

    Lundberg, L.B.; Hobbins, R.R.

    1992-08-01T23:59:59.000Z

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO{sub 2} or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  2. Nuclear fuels for very high temperature applications

    SciTech Connect (OSTI)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01T23:59:59.000Z

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO{sub 2} or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  3. Corrosion Resistant Coatings for High Temperature Applications

    SciTech Connect (OSTI)

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01T23:59:59.000Z

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  4. High Temperature Gas Reactors The Next Generation ?

    E-Print Network [OSTI]

    -Proof Advanced Reactor and Gas Turbine #12;Flow through Power Conversion Vessel 8 #12;9 TRISO Fuel Particle1 High Temperature Gas Reactors The Next Generation ? Professor Andrew C Kadak Massachusetts of Brayton vs. Rankine Cycle · High Temperature Helium Gas (900 C) · Direct or Indirect Cycle · Originally

  5. High energy, high average power solid state green or UV laser

    DOE Patents [OSTI]

    Hackel, Lloyd A.; Norton, Mary; Dane, C. Brent

    2004-03-02T23:59:59.000Z

    A system for producing a green or UV output beam for illuminating a large area with relatively high beam fluence. A Nd:glass laser produces a near-infrared output by means of an oscillator that generates a high quality but low power output and then multi-pass through and amplification in a zig-zag slab amplifier and wavefront correction in a phase conjugator at the midway point of the multi-pass amplification. The green or UV output is generated by means of conversion crystals that follow final propagation through the zig-zag slab amplifier.

  6. Recrystallization of high temperature superconductors

    SciTech Connect (OSTI)

    Kouzoudis, D.

    1996-05-09T23:59:59.000Z

    Currently one of the most widely used high {Tc} superconductors is the Bi-based compounds Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub z} and Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub z} (known as BSCCO 2212 and 2223 compounds) with {Tc} values of about 85 K and 110 K respectively. Lengths of high performance conductors ranging from 100 to 1000 m long are routinely fabricated and some test magnets have been wound. An additional difficulty here is that although Bi-2212 and Bi-2223 phases exist over a wide range of stoichiometries, neither has been prepared in phase-pure form. So far the most successful method of constructing reliable and robust wires or tapes is the so called powder-in-tube (PIT) technique [1, 2, 3, 4, 5, 6, 7] in which oxide powder of the appropriate stoichiometry and phase content is placed inside a metal tube, deformed into the desired geometry (round wire or flat tape), and annealed to produce the desired superconducting properties. Intermediate anneals are often incorporated between successive deformation steps. Silver is the metal used in this process because it is the most compatible with the reacting phase. In all of the commercial processes for BSCCO, Ag seems to play a special catalytic role promoting the growth of high performance aligned grains that grow in the first few micrometers near the Ag/BSCCO interface. Adjacent to the Ag, the grain alignment is more perfect and the current density is higher than in the center of the tape. It is known that Ag lowers the melting point of several of the phases but the detailed mechanism for growth of these high performance grains is not clearly understood. The purpose of this work is to study the nucleation and growth of the high performance material at this interface.

  7. Method and system for modulation of gain suppression in high average power laser systems

    DOE Patents [OSTI]

    Bayramian, Andrew James (Manteca, CA)

    2012-07-31T23:59:59.000Z

    A high average power laser system with modulated gain suppression includes an input aperture associated with a first laser beam extraction path and an output aperture associated with the first laser beam extraction path. The system also includes a pinhole creation laser having an optical output directed along a pinhole creation path and an absorbing material positioned along both the first laser beam extraction path and the pinhole creation path. The system further includes a mechanism operable to translate the absorbing material in a direction crossing the first laser beam extraction laser path and a controller operable to modulate the second laser beam.

  8. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Ault, Earl R. (Livermore, CA); Kuklo, Thomas C. (Oakdale, CA)

    2005-07-05T23:59:59.000Z

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  9. High-Temperature-High-Volume Lifting for Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Turnquist GE Global Research High Temperature Tools and Sensors, Down-hole Pumps and Drilling May 19, 2010 This presentation does not contain any proprietary confidential, or...

  10. High-Temperature-High-Volume Lifting For Enhanced Geothermal...

    Open Energy Info (EERE)

    include high-temperature drive system materials, journal and thrust bearings, and corrosion and erosion-resistant lifting pump components. Finally, in Phase 3, the overall...

  11. High temperature solar selective coatings

    DOE Patents [OSTI]

    Kennedy, Cheryl E

    2014-11-25T23:59:59.000Z

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  12. High temperature hot water systems: A primer

    SciTech Connect (OSTI)

    Govan, F.A. [NMD and Associates, Cincinnati, OH (United States)

    1998-01-01T23:59:59.000Z

    The fundamental principles of high temperature water (HTW) system technology and its advantages for thermal energy distribution are presented. Misconceptions of this technology are also addressed. The paper describes design principles, applications, HTW properties, HTW system advantages, selecting the engineer, load diversification, design temperatures, system pressurization, pump considerations, constant vs. VS pumps, HTW generator types, and burners and controls.

  13. High-Temperature Water Splitting | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Temperature Water Splitting High-Temperature Water Splitting High-temperature water splitting (a "thermochemical" process) is a long-term technology in the early stages of...

  14. SUSY and symmetry nonrestoration at high temperature

    SciTech Connect (OSTI)

    Bajc, Borut [J. Stefan Institute, 1001 Ljubljana (Slovenia)

    1999-07-15T23:59:59.000Z

    The status of internal symmetry breaking at high temperature in super-symmetric models is shortly reviewed. This possibility could solve some well known cosmological problems, such as the domain wall, monopole and false vacuum problems.

  15. Design of high temperature high speed electromagnetic axial thrust bearing

    E-Print Network [OSTI]

    Mohiuddin, Mohammad Waqar

    2002-01-01T23:59:59.000Z

    DESIGN OF HIGH TEMPERATURE HIGH SPEED ELECTROMAGNETIC AXIAL THRUST BEARING A Thesis by MOHAMMAD WAQAR MOHIUDDIN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 2002 Major Subject: Mechanical Engineering DESIGN OF HIGH TEMPERATURE HIGH SPEED ELECTROMAGNETIC AXIAL THRUST BEARING A Thesis by MOHAMMAD WAQAR MOHIUDDIN Submitted to Texas A&M University in partial fulfillment...

  16. High temperature thermometric phosphors for use in a temperature sensor

    DOE Patents [OSTI]

    Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

    1998-01-01T23:59:59.000Z

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  17. High temperature thermometric phosphors for use in a temperature sensor

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1998-03-24T23:59:59.000Z

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  18. High temperature crystalline superconductors from crystallized glasses

    DOE Patents [OSTI]

    Shi, Donglu (Downers Grove, IL)

    1992-01-01T23:59:59.000Z

    A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

  19. Apparatus and method for high temperature viscosity and temperature measurements

    DOE Patents [OSTI]

    Balasubramaniam, Krishnan (Mississippi State, MS); Shah, Vimal (Houston, TX); Costley, R. Daniel (Mississippi State, MS); Singh, Jagdish P. (Mississippi State, MS)

    2001-01-01T23:59:59.000Z

    A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

  20. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    SciTech Connect (OSTI)

    Vinayak N. Kabadi

    1999-02-20T23:59:59.000Z

    It is well known that the fluid phase equilibria can be represented by a number of {gamma}-models , but unfortunately most of them do not function well under high temperature. In this calculation, we mainly investigate the performance of UNIQUAC and NRTL models under high temperature, using temperature dependent parameters rather than using the original formulas. the other feature of this calculation is that we try to relate the excess Gibbs energy G{sup E}and enthalpy of mixing H{sup E}simultaneously. In other words, we will use the high temperature and pressure G{sup E} and H{sup E}data to regress the temperature dependant parameters to find out which model and what kind of temperature dependant parameters should be used.

  1. Average Neutron Total Cross Sections in the Unresolved Energy Range From ORELA High Resolutio Transmission Measurements

    SciTech Connect (OSTI)

    Derrien, H

    2004-05-27T23:59:59.000Z

    Average values of the neutron total cross sections of {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu have been obtained in the unresolved resonance energy range from high-resolution transmission measurements performed at ORELA in the past two decades. The cross sections were generated by correcting the effective total cross sections for the self-shielding effects due to the resonance structure of the data. The self-shielding factors were found by calculating the effective and true cross sections with the computer code SAMMY for the same Doppler and resolution conditions as for the transmission measurements, using an appropriate set of resonance parameters. Our results are compared to results of previous measurements and to the current ENDF/B-VI data.

  2. QED3 Theory of High Temperature Superconductors

    E-Print Network [OSTI]

    Tesanovic, Zlatko

    QED3 Theory of High Temperature Superconductors Zlatko Tesanovi´c The Johns Hopkins University-wave Superconductor to Antiferromagnet via Strange Metal #12;This talk is based on: M. Franz and ZT, Phys. Rev. Lett is The Problem in high Tc superconductors? · Superconducting state appears dx2-y2 "BCS-like". Low energy

  3. Development of a 500 Watt High Temperature Thermoelectric Generator

    Broader source: Energy.gov (indexed) [DOE]

    * TEG thermal and electrical interfaces modified to withstand high temperature environment 8 5 August, 2009 Deer 2009 9 100 Watt High Temperature TEG 100 Watt High...

  4. Design and component specifications for high average power laser optical systems

    SciTech Connect (OSTI)

    O'Neil, R.W.; Sawicki, R.H.; Johnson, S.A.; Sweatt, W.C.

    1987-01-01T23:59:59.000Z

    Laser imaging and transport systems are considered in the regime where laser-induced damage and/or thermal distortion have significant design implications. System design and component specifications are discussed and quantified in terms of the net system transport efficiency and phase budget. Optical substrate materials, figure, surface roughness, coatings, and sizing are considered in the context of visible and near-ir optical systems that have been developed at Lawrence Livermore National Laboratory for laser isotope separation applications. In specific examples of general applicability, details of the bulk and/or surface absorption, peak and/or average power damage threshold, coating characteristics and function, substrate properties, or environmental factors will be shown to drive the component size, placement, and shape in high-power systems. To avoid overstressing commercial fabrication capabilities or component design specifications, procedures will be discussed for compensating for aberration buildup, using a few carefully placed adjustable mirrors. By coupling an aggressive measurements program on substrates and coatings to the design effort, an effective technique has been established to project high-power system performance realistically and, in the process, drive technology developments to improve performance or lower cost in large-scale laser optical systems. 13 refs.

  5. High temperature storage loop : final design report.

    SciTech Connect (OSTI)

    Gill, David Dennis; Kolb, William J.

    2013-07-01T23:59:59.000Z

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650%C2%B0C) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOE's SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  6. Insolation data manual: long-term monthly averages of solar radiation, temperature, degree-days and global anti K/sub T/ for 248 national weather service stations

    SciTech Connect (OSTI)

    Knapp, C L; Stoffel, T L; Whitaker, S D

    1980-10-01T23:59:59.000Z

    Monthly averaged data is presented which describes the availability of solar radiation at 248 National Weather Service stations. Monthly and annual average daily insolation and temperature values have been computed from a base of 24 to 25 years of data. Average daily maximum, minimum, and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3/sup 0/C (65/sup 0/F). For each station, global anti K/sub T/ (cloudiness index) were calculated on a monthly and annual basis. (MHR)

  7. S79JUNE 2006STATE OFTHE CLIMATE IN 2005 | FIG. 6.28. European average temperature anomalies

    E-Print Network [OSTI]

    ­90 average. Romania and Bulgaria received significant rainfall excesses during the year, with August totals above average in Romania (Fig. 6.29). A warm January, with areas of eastern Ukraine more than 5°C above

  8. High Temperature Materials Interim Data Qualification Report

    SciTech Connect (OSTI)

    Nancy Lybeck

    2010-08-01T23:59:59.000Z

    ABSTRACT Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: 1. Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing – 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. 2. Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram – 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

  9. HYDROGEN SULFIDE -HIGH TEMPERATURE DRILLING CONTINGENCY PLAN

    E-Print Network [OSTI]

    HYDROGEN SULFIDE - HIGH TEMPERATURE DRILLING CONTINGENCY PLAN OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY Technical Note 16 Steven P. Howard Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX 77845-9547 Daniel H. Reudelhuber Ocean Drilling Program Texas A&M University

  10. High Temperature Gas Reactors Briefing to

    E-Print Network [OSTI]

    Meltdown-Proof Advanced Reactor and Gas Turbine #12;TRISO Fuel Particle -- "Microsphere" · 0.9mm diameter · Utilizes gas turbine technology · Lower Power Density · Less Complicated Design (No ECCS) #12;AdvantagesHigh Temperature Gas Reactors Briefing to by Andrew C. Kadak, Ph.D. Professor of the Practice

  11. Advanced Converter Systems for High Temperature Environments

    Broader source: Energy.gov (indexed) [DOE]

    500 1000 1500 2000 2500 Voltage (Volts) Current (nA) . 4.0 Resistance (mOhms) 3.5 3.0 2.5 2.0 1.5 0 20 40 60 80 100 Current (Amps) High temperature package voltage breakdown and...

  12. High temperature intermetallic binders for HVOF carbides

    SciTech Connect (OSTI)

    Shaw, K.G. [Xform, Inc., Cohoes, NY (United States); Gruninger, M.F.; Jarosinski, W.J. [Praxair Specialty Powders, Indianapolis, IN (United States)

    1994-12-31T23:59:59.000Z

    Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr{sub 3}C{sub 2}-NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr{sub 3}C{sub 2} cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr{sub 3}C{sub 2}-NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders.

  13. High Temperature Fuel Cells in the European Union

    Broader source: Energy.gov [DOE]

    Presentation on High Temperature Fuel Cells in the European Union to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

  14. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Energy Savers [EERE]

    Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Presentation from the U.S....

  15. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Applied low temperature combustion to the Navistar...

  16. Low-Temperature Combustion Demonstrator for High-Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion 2010 DOE Vehicle...

  17. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion 2009 DOE Hydrogen Program...

  18. Cedarville Elementary & High School Space Heating Low Temperature...

    Open Energy Info (EERE)

    Elementary & High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cedarville Elementary & High School Space Heating Low Temperature...

  19. Possible Origin of Improved High Temperature Performance of Hydrotherm...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Origin of Improved High Temperature Performance of Hydrothermally Aged CuBeta Zeolite Catalysts. Possible Origin of Improved High Temperature Performance of Hydrothermally Aged...

  20. Institute of Chemical Engineering and High Temperature Chemical...

    Open Energy Info (EERE)

    Institute of Chemical Engineering and High Temperature Chemical Processes ICEHT Jump to: navigation, search Name: Institute of Chemical Engineering and High Temperature Chemical...

  1. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission Measurements. A High Temperature Direct Vehicle Exhaust Flowmeter for Heavy Duty Diesel Emission...

  2. High-Temperature, Air-Cooled Traction Drive Inverter Packaging...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature, Air-Cooled Traction Drive Inverter Packaging High-Temperature, Air-Cooled Traction Drive Inverter Packaging 2010 DOE Vehicle Technologies and Hydrogen Programs...

  3. Vehicle Technologies Office Merit Review 2014: High-Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature Air-Cooled Power Electronics Thermal Design Vehicle Technologies Office Merit Review 2014: High-Temperature Air-Cooled Power Electronics Thermal Design...

  4. High Resolution and Low-Temperature Photoelectron Spectroscopy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Resolution and Low-Temperature Photoelectron Spectroscopy of an Oxygen-Linked Fullerene Dimer Dianion: C120O2-. High Resolution and Low-Temperature Photoelectron Spectroscopy...

  5. Development of a 100-Watt High Temperature Thermoelectric Generator

    Broader source: Energy.gov (indexed) [DOE]

    performance TEG thermal and electrical interfaces modified to withstand high temperature environment Development of a 100 watt High Temperature TE Generator DEER 2008 11 Prototype...

  6. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for...

  7. Low and high Temperature Dual Thermoelectric Generation Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery...

  8. Rotational Rehybridization and the High Temperature Phase of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotational Rehybridization and the High Temperature Phase of UC2. Rotational Rehybridization and the High Temperature Phase of UC2. Abstract: The screened hybrid approximation...

  9. High Temperature Thin Film Polymer Dielectric Based Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thin Film Polymer Dielectric Based Capacitors for HEV Power Electronic Systems High Temperature Thin Film Polymer Dielectric Based Capacitors for HEV Power...

  10. Development of Advanced High Temperature Fuel Cell Membranes

    Broader source: Energy.gov [DOE]

    Presentation on Development of Advanced High Temperature Fuel Cell Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  11. Syngas Enhanced High Efficiency Low Temperature Combustion for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant...

  12. High Temperature Polymer Membrane Development at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Summary of ANL’s high temperature polymer membrane work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003

  13. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This...

  14. Charge and fluence lifetime measurements of a dc high voltage GaAs photogun at high average current

    SciTech Connect (OSTI)

    J. Grames, R. Suleiman, P.A. Adderley, J. Clark, J. Hansknecht, D. Machie, M. Poelker, M.L. Stutzman

    2011-04-01T23:59:59.000Z

    GaAs-based dc high voltage photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed high average current facilities that must operate at tens of milliamperes or more. This paper describes techniques to maintain good vacuum while delivering beam, and techniques that minimize the ill effects of ion bombardment, the dominant mechanism that reduces photocathode yield of a GaAs-based dc high voltage photogun. Experimental results presented here demonstrate enhanced lifetime at high beam currents by: (a) operating with the drive laser beam positioned away from the electrostatic center of the photocathode, (b) limiting the photocathode active area to eliminate photoemission from regions of the photocathode that do not support efficient beam delivery, (c) using a large drive laser beam to distribute ion damage over a larger area, and (d) by applying a relatively low bias voltage to the anode to repel ions created within the downstream beam line. A combination of these techniques provided the best total charge extracted lifetimes in excess of 1000 C at dc beam currents up to 9.5 mA, using green light illumination of bulk GaAs inside a 100 kV photogun.

  15. High-temperature directional drilling turbodrill

    SciTech Connect (OSTI)

    Neudecker, J.W.; Rowley, J.C.

    1982-02-01T23:59:59.000Z

    The development of a high-temperature turbodrill for directional drilling of geothermal wells in hard formations is summarized. The turbodrill may be used for straight-hole drilling but was especially designed for directional drilling. The turbodrill was tested on a dynamometer stand, evaluated in laboratory drilling into ambient temperature granite blocks, and used in the field to directionally drill a 12-1/4-in.-diam geothermal well in hot 200/sup 0/C (400/sup 0/F) granite at depths to 10,5000 ft.

  16. Thermochemistry of high-temperature corrosion

    SciTech Connect (OSTI)

    Natesan, K.

    1980-01-01T23:59:59.000Z

    Multicomponent gas environments are prevalent in a number of energy systems, especially in those that utilize fossil fuels. The gas environments in these processes contain sulfur-bearing components in addition to oxidants. These complex environments, coupled with the elevated temperatures present in these systems, generally cause significant corrosion of engineering materials. Thermodynamic aspects of high-temperature corrosion processes occuring in complex gas mixtures are discussed, with emphasis on the role of thermochemical diagrams. The interrelationships between the corrosion behavior of materials and gas composition, alloy chemistry, and temperatures are examined. A number of examples from studies on materials behavior in coal-gasification environments are used to elucidate the role of thermochemistry in the understanding of corrosion processes that occur in complex gas mixtures. 11 figures.

  17. Thermal fuse for high-temperature batteries

    DOE Patents [OSTI]

    Jungst, Rudolph G. (Albuquerque, NM); Armijo, James R. (Albuquerque, NM); Frear, Darrel R. (Austin, TX)

    2000-01-01T23:59:59.000Z

    A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately 400.degree. C. and 500.degree. C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

  18. Spatial distribution of average charge state and deposition rate in high power impulse magnetron sputtering of copper

    SciTech Connect (OSTI)

    Anders, Andre; Horwat, David; Anders, Andre

    2008-05-10T23:59:59.000Z

    The spatial distribution of copper ions and atoms in high power impulse magnetron sputtering (HIPIMS) discharges was determined by (i) measuring the ion current to electrostatic probes and (ii) measuring the film thickness by profilometry. A set of electrostatic and collection probes were placed at different angular positions and distances from the target surface. The angular distribution of the deposition rate and the average charge state of the copper species (including ions and neutrals) were deduced.The discharge showed a distinct transition to a high current mode dominated by copper self-sputtering when the applied voltage exceeded the threshold of 535 V. For a lower voltage, the deposition rate was very low and the average charge state was found to be less than 0.4. For higher voltage (and average power), the absolute deposition rates were much higher, but they were smaller than the corresponding direct current (DC) rates if normalized to the same average power. At the high voltage level, the spatial distribution of the average charge state showed some similarities with the distribution of the magnetic field, suggesting that the generation and motion of copper ions is affected by magnetized electrons. At higher voltage, the average charge state increases with the distance from the target and locally may exceed unity, indicating the presence of significant amounts of doubly charged copper ions.

  19. High temperature hot water distribution system study

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The existing High Temperature Hot Water (HTHW) Distribution System has been plagued with design and construction deficiencies since startup of the HTHW system, in October 1988. In October 1989, after one year of service, these deficiencies were outlined in a technical evaluation. The deficiencies included flooded manholes, sump pumps not hooked up, leaking valves, contaminated HTHW water, and no cathodic protection system. This feasibility study of the High Temperature Hot Water (HTHW) Distribution System was performed under Contract No. DACA0l-94-D-0033, Delivery Order 0013, Modification 1, issued to EMC Engineers, Inc. (EMC), by the Norfolk District Corps of Engineers, on 25 April 1996. The purpose of this study was to determine the existing conditions of the High Temperature Hot Water Distribution System, manholes, and areas of containment system degradation. The study focused on two areas of concern, as follows: * Determine existing conditions and areas of containment system degradation (leaks) in the underground carrier pipes and protective conduit. * Document the condition of underground steel and concrete manholes. To document the leaks, a site survey was performed, using state-of-the-art infrared leak detection equipment and tracer gas leak detection equipment. To document the condition of the manholes, color photographs were taken of the insides of 125 manholes, and notes were made on the condition of these manholes.

  20. A HIGH TEMPERATURE GAS RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon

    2012-01-01T23:59:59.000Z

    field of high temperature solar process heat. The ultimateof solar applications including industrial process heat and

  1. High Temperature Battery for Drilling Applications

    SciTech Connect (OSTI)

    Josip Caja

    2009-12-31T23:59:59.000Z

    In this project rechargeable cells based on the high temperature electrochemical system Na/beta''-alumina/S(IV) in AlCl3/NaCl were developed for application as an autonomous power source in oil/gas deep drilling wells. The cells operate in the temperature range from 150 C to 250 C. A prototype DD size cell was designed and built based on the results of finite element analysis and vibration testing. The cell consisted of stainless steel case serving as anode compartment with cathode compartment installed in it and a seal closing the cell. Critical element in cell design and fabrication was hermetically sealing the cell. The seal had to be leak tight, thermally and vibration stable and compatible with electrode materials. Cathode compartment was built of beta''-alumina tube which served as an electrolyte, separator and cathode compartment.

  2. High temperature regenerable hydrogen sulfide removal agents

    DOE Patents [OSTI]

    Copeland, Robert J. (Wheat Ridge, CO)

    1993-01-01T23:59:59.000Z

    A system for high temperature desulfurization of coal-derived gases using regenerable sorbents. One sorbent is stannic oxide (tin oxide, SnO.sub.2), the other sorbent is a metal oxide or mixed metal oxide such as zinc ferrite (ZnFe.sub.2 O.sub.4). Certain otherwise undesirable by-products, including hydrogen sulfide (H.sub.2 S) and sulfur dioxide (SO.sub.2) are reused by the system, and elemental sulfur is produced in the regeneration reaction. A system for refabricating the sorbent pellets is also described.

  3. High Temperature Materials Laboratory third annual report

    SciTech Connect (OSTI)

    Tennery, V.J.; Foust, F.M.

    1990-12-01T23:59:59.000Z

    The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

  4. Modeling forces in high-temperature superconductors

    SciTech Connect (OSTI)

    Turner, L. R.; Foster, M. W.

    1997-11-18T23:59:59.000Z

    We have developed a simple model that uses computed shielding currents to determine the forces acting on a high-temperature superconductor (HTS). The model has been applied to measurements of the force between HTS and permanent magnets (PM). Results show the expected hysteretic variation of force as the HTS moves first toward and then away from a permanent magnet, including the reversal of the sign of the force. Optimization of the shielding currents is carried out through a simulated annealing algorithm in a C++ program that repeatedly calls a commercial electromagnetic software code. Agreement with measured forces is encouraging.

  5. Enabling High Efficiency Low Temperature Combustion by Adaptive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion by Adaptive In-Situ Jet Cooling Enabling High Efficiency Low Temperature Combustion by Adaptive In-Situ Jet Cooling A new approach, called...

  6. High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model

    E-Print Network [OSTI]

    Adler, Joan

    High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model Zaher Abstract We have analysed low and high temperature series expansions for the three­dimensional Ising model on the simple cubic lattice. Our analysis of Butera and Comi's new 32 term high temperature series yields K c

  7. High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model

    E-Print Network [OSTI]

    Adler, Joan

    High and Low Temperature Series Estimates for the Critical Temperature Abstract We have analysed low and high temperature series expansions for the three high temperature series yields Kc = 0.221659 +0.000002-0.000005and from the 32 term low

  8. High temperature insulation for ceramic matrix composites

    SciTech Connect (OSTI)

    Merrill, Gary B. (Monroeville, PA); Morrison, Jay Alan (Orlando, FL)

    2000-01-01T23:59:59.000Z

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composite comprises a plurality of hollow oxide-based spheres of varios dimentions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substates are also provided.

  9. High temperature insulation for ceramic matrix composites

    DOE Patents [OSTI]

    Merrill, Gary B.; Morrison, Jay Alan

    2004-01-13T23:59:59.000Z

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  10. High temperature insulation for ceramic matrix composites

    SciTech Connect (OSTI)

    Merrill, Gary B. (Monroeville, PA); Morrison, Jay Alan (Orlando, FL)

    2001-01-01T23:59:59.000Z

    A ceramic composition is provided to insulate ceramic matrix composites under high temperature, high heat flux environments. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere. The spheres may be any combination of Mullite spheres, Alumina spheres, or stabilized Zirconia spheres. The filler powder may be any combination of Alumina, Mullite, Ceria, or Hafnia. Preferably, the phosphate binder is Aluminum Ortho-Phosphate. A method of manufacturing the ceramic insulating composition and its application to CMC substrates are also provided.

  11. What Global Warming Looks Like The July 2010 global map of surface temperature anomalies (Figure 1), relative to the average

    E-Print Network [OSTI]

    What Global Warming Looks Like The July 2010 global map of surface temperature anomalies (Figure 1 anomalies an example of what we can expect global warming to look like? Maps of temperature anomalies, such as Figure 1, are useful for helping people understand the role of global warming in extreme events

  12. Preliminary Study of Bypass Flow in Prismatic Core of Very High Temperature Reactor Using Small-Scale Model

    E-Print Network [OSTI]

    Kanjanakijkasem, Worasit 1975-

    2012-11-29T23:59:59.000Z

    Very high temperature reactor (VHTR) is one of the candidates for Generation IV reactor. It can be continuously operated with average core outlet temperature between 900°C and 950°C, so the core temperature is one of the key features in the design...

  13. High temperature coatings for gas turbines

    DOE Patents [OSTI]

    Zheng, Xiaoci Maggie

    2003-10-21T23:59:59.000Z

    Coating for high temperature gas turbine components that include a MCrAlX phase, and an aluminum-rich phase, significantly increase oxidation and cracking resistance of the components, thereby increasing their useful life and reducing operating costs. The aluminum-rich phase includes aluminum at a higher concentration than aluminum concentration in the MCrAlX alloy, and an aluminum diffusion-retarding composition, which may include cobalt, nickel, yttrium, zirconium, niobium, molybdenum, rhodium, cadmium, indium, cerium, iron, chromium, tantalum, silicon, boron, carbon, titanium, tungsten, rhenium, platinum, and combinations thereof, and particularly nickel and/or rhenium. The aluminum-rich phase may be derived from a particulate aluminum composite that has a core comprising aluminum and a shell comprising the aluminum diffusion-retarding composition.

  14. Turbine vane with high temperature capable skins

    DOE Patents [OSTI]

    Morrison, Jay A. (Oviedo, FL)

    2012-07-10T23:59:59.000Z

    A turbine vane assembly includes an airfoil extending between an inner shroud and an outer shroud. The airfoil can include a substructure having an outer peripheral surface. At least a portion of the outer peripheral surface is covered by an external skin. The external skin can be made of a high temperature capable material, such as oxide dispersion strengthened alloys, intermetallic alloys, ceramic matrix composites or refractory alloys. The external skin can be formed, and the airfoil can be subsequently bi-cast around or onto the skin. The skin and the substructure can be attached by a plurality of attachment members extending between the skin and the substructure. The skin can be spaced from the outer peripheral surface of the substructure such that a cavity is formed therebetween. Coolant can be supplied to the cavity. Skins can also be applied to the gas path faces of the inner and outer shrouds.

  15. High temperature low friction surface coating

    DOE Patents [OSTI]

    Bhushan, Bharat (Watervliet, NY)

    1980-01-01T23:59:59.000Z

    A high temperature, low friction, flexible coating for metal surfaces which are subject to rubbing contact includes a mixture of three parts graphite and one part cadmium oxide, ball milled in water for four hours, then mixed with thirty percent by weight of sodium silicate in water solution and a few drops of wetting agent. The mixture is sprayed 12-15 microns thick onto an electro-etched metal surface and air dried for thirty minutes, then baked for two hours at 65.degree. C. to remove the water and wetting agent, and baked for an additional eight hours at about 150.degree. C. to produce the optimum bond with the metal surface. The coating is afterwards burnished to a thickness of about 7-10 microns.

  16. Multilayer ultra-high-temperature ceramic coatings

    DOE Patents [OSTI]

    Loehman, Ronald E. (Albuquerque, NM); Corral, Erica L. (Tucson, AZ)

    2012-03-20T23:59:59.000Z

    A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

  17. Assessment of microelectronics packaging for high temperature, high reliability applications

    SciTech Connect (OSTI)

    Uribe, F.

    1997-04-01T23:59:59.000Z

    This report details characterization and development activities in electronic packaging for high temperature applications. This project was conducted through a Department of Energy sponsored Cooperative Research and Development Agreement between Sandia National Laboratories and General Motors. Even though the target application of this collaborative effort is an automotive electronic throttle control system which would be located in the engine compartment, results of this work are directly applicable to Sandia`s national security mission. The component count associated with the throttle control dictates the use of high density packaging not offered by conventional surface mount. An enabling packaging technology was selected and thermal models defined which characterized the thermal and mechanical response of the throttle control module. These models were used to optimize thick film multichip module design, characterize the thermal signatures of the electronic components inside the module, and to determine the temperature field and resulting thermal stresses under conditions that may be encountered during the operational life of the throttle control module. Because the need to use unpackaged devices limits the level of testing that can be performed either at the wafer level or as individual dice, an approach to assure a high level of reliability of the unpackaged components was formulated. Component assembly and interconnect technologies were also evaluated and characterized for high temperature applications. Electrical, mechanical and chemical characterizations of enabling die and component attach technologies were performed. Additionally, studies were conducted to assess the performance and reliability of gold and aluminum wire bonding to thick film conductor inks. Kinetic models were developed and validated to estimate wire bond reliability.

  18. High-Temperature Solar Selective Coating Development for Power...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q1 High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q1...

  19. High-Temperature Solar Selective Coating Development for Power...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2 High-Temperature Solar Selective Coating Development for Power Tower Receivers - FY13 Q2...

  20. Development of a High-Temperature Diagnostics-While-Drilling...

    Energy Savers [EERE]

    Development of a High-Temperature Diagnostics-While-Drilling Tool Development of a High-Temperature Diagnostics-While-Drilling Tool This report documents work performed in the...

  1. Corrosion Studies in High-Temperature Molten Salt Systems for...

    Broader source: Energy.gov (indexed) [DOE]

    Corrosion Studies in High-Temperature Molten Salt Systems for CSP Applications - FY13 Q1 Corrosion Studies in High-Temperature Molten Salt Systems for CSP Applications - FY13 Q1...

  2. Fundamental Corrosion Studies in High-Temperature Molten Salt...

    Broader source: Energy.gov (indexed) [DOE]

    Fundamental Corrosion Studies in High-Temperature Molten Salt Systems for Next-Generation CSP Systems - FY13 Q2 Fundamental Corrosion Studies in High-Temperature Molten Salt...

  3. High Temperature High Pressure Thermodynamic Measurements for Coal Model Compounds

    SciTech Connect (OSTI)

    John C. Chen; Vinayak N. Kabadi

    1998-11-12T23:59:59.000Z

    The overall objective of this project is to develop a better thermodynamic model for predicting properties of high-boiling coal derived liquids, especially the phase equilibria of different fractions at elevated temperatures and pressures. The development of such a model requires data on vapor-liquid equilibria (VLE), enthalpy, and heat capacity which would be experimentally determined for binary systems of coal model compounds and compiled into a database. The data will be used to refine existing models such as UNIQUAC and UNIFAC. The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for thk project. The modifications include better and more accurate sampling technique and addition of a digital recorder to monitor temperature, pressure and liquid level inside the VLE cell. VLE data measurements for system benzene-ethylbenzene have been completed. The vapor and liquid samples were analysed using the Perkin-Elmer Autosystem gas chromatography.

  4. High Temperature Integrated Thermoelectric Ststem and Materials

    SciTech Connect (OSTI)

    Mike S. H. Chu

    2011-06-06T23:59:59.000Z

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits. Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

  5. Non-Invasive Beam Detection in a High-Average Power Electron Accelerator

    SciTech Connect (OSTI)

    Williams, J. [Colorado State U.; Biedron, S. [Colorado State U.; Harris, J. [Colorado State U.; Martinez, J. [Colorado State U.; Milton, S. V. [Colorado State U.; Van Keuren, J. [Colorado State U.; Benson, Steve V. [JLAB; Evtushenko, Pavel [JLAB; Neil, George R. [JLAB; Zhang, Shukui [JLAB

    2013-12-01T23:59:59.000Z

    For a free-electron laser (FEL) to work effectively the electron beam quality must meet exceptional standards. In the case of an FEL operating at infrared wavelengths in an amplifier configuration the critical phase space tends to be in the longitudinal direction. Achieving high enough longitudinal phase space density directly from the electron injector system of such an FEL is difficult due to space charge effects, thus one needs to manipulate the longitudinal phase space once the beam energy reaches a sufficiently high value. However, this is fraught with problems. Longitudinal space charge and coherent synchrotron radiation can both disrupt the overall phase space, furthermore, the phase space disruption is exacerbated by the longitudinal phase space manipulation process required to achieve high peak current. To achieve and maintain good FEL performance one needs to investigate the longitudinal emittance and be able to measure it during operation preferably in a non-invasive manner. Using the electro-optical sampling (EOS) method, we plan to measure the bunch longitudinal profile of a high-energy (~120-MeV), high-power (~10kW or more FEL output power) beam.

  6. High Temperature Membrane Working Group Meeting, May 14, 2007

    Broader source: Energy.gov [DOE]

    This agenda provides information about the High Temperature Membrane Working Group Meeting on May 14, 2007 in Arlington, Va.

  7. Agenda for the High Temperature Membrane Working Group Meeting

    Broader source: Energy.gov [DOE]

    This agenda provides information about the Agenda for the High Temperature Membrane Working Group Meeting on September 14, 2006.

  8. High Temperature Interactions of Antimony with Nickel

    SciTech Connect (OSTI)

    Marina, Olga A.; Pederson, Larry R.

    2012-07-01T23:59:59.000Z

    In this chapter, the surface and bulk interactions of antimony with the Ni-based anodes in solid oxide fuel cells (SOFC) will be discussed. High fuel flexibility is a significant advantage of SOFCs, allowing the direct use of fossil and bio fuels without a hydrogen separation unit. Synthesis gas derived from coal and biomass consists of a mixture of hydrogen, carbon monoxide, carbon dioxide, and steam, but finite amounts of tars and trace impurities such as S, Se, P, As, Sb, Cd, Pb, Cl, etc, are also always present. While synthesis gas is commonly treated with a series of chemical processes and scrubbers to remove the impurities, complete purification is not economical. Antimony is widely distributed in coals. During coal gasification antimony is volatilized, such that contact with the SOFC anodes and other SOFC parts, e.g., interconnect, current collecting wires, fuel gas supplying tubing, is most likely. This chapter addresses the following topics: high temperature Ni - Sb interactions; alteration phase, Ni3Sb, Ni5Sb2, NiSb, formation; thermochemical modeling; impact of Sb on the electrocatalytic activity of Ni toward the fuel oxidation and the presence of other impurities (sulfur, in particular); converted anode structural instability during long-term SOFC operation; comparison with nickel heterogeneous catalysts.

  9. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting ace026peden2012o.pdf More Documents & Publications Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials Enhanced High and Low...

  10. Geochemistry of Aluminum in High Temperature Brines

    SciTech Connect (OSTI)

    Benezeth, P.; Palmer, D.A.; Wesolowski, D.J.

    1999-05-18T23:59:59.000Z

    The objective ofthis research is to provide quantitative data on the equilibrium and thermodynamic properties of aluminum minerals required to model changes in permeability and brine chemistry associated with fluid/rock interactions in the recharge, reservoir, and discharge zones of active geothermal systems. This requires a precise knowledge of the thermodynamics and speciation of aluminum in aqueous brines, spanning the temperature and fluid composition rangesencountered in active systems. The empirical and semi-empirical treatments of the solubility/hydrolysis experimental results on single aluminum mineral phases form the basis for the ultimate investigation of the behavior of complex aluminosilicate minerals. The principal objective in FY 1998 was to complete the solubility measurements on boehmite (AIOOH) inNaC1 media( 1 .O and 5.0 molal ionic strength, IOO-250°C). However, additional measurements were also made on boehmite solubility in pure NaOH solutions in order to bolster the database for fitting in-house isopiestic data on this system. Preliminary kinetic Measurements of the dissolution/precipitation of boehmite was also carried out, although these were also not planned in the earlier objective. The 1999 objectives are to incorporate these treatments into existing codes used by the geothermal industry to predict the chemistry ofthe reservoirs; these calculations will be tested for reliability against our laboratory results and field observations. Moreover, based on the success of the experimental methods developed in this program, we intend to use our unique high temperature pH easurement capabilities to make kinetic and equilibrium studies of pH-dependent aluminosilicate transformation reactions and other pH-dependent heterogeneous reactions.

  11. A temperature compensated pressure transducer for high temperature, high pressure applications

    E-Print Network [OSTI]

    Lippka, Sandra Margaret

    1991-01-01T23:59:59.000Z

    and content by: 2/J David G. ansson (Chair ol' Committee) c. Y~ Christian P Burger (i&Iember) Randall Getger ( Member) 5wc Fr~. Walter F. Bradley (Head of Department) May 1991 ABSTRACT A Temperature Compensated Pressure Transducer for High... of the light beam. A compensation schenle is provided through the use of thermally arljusting reflecting surfaces These surfaces can adjust for temperatures up to 1000'F with less than a. I, c error. The final light beam movenlent across the photodiode face...

  12. High performance internal reforming unit for high temperature fuel cells

    DOE Patents [OSTI]

    Ma, Zhiwen (Sandy Hook, CT); Venkataraman, Ramakrishnan (New Milford, CT); Novacco, Lawrence J. (Brookfield, CT)

    2008-10-07T23:59:59.000Z

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  13. Sliding Mode Pulsed Averaging IC Drivers for High Brightness Light Emitting Diodes

    SciTech Connect (OSTI)

    Dr. Anatoly Shteynberg, PhD

    2006-08-17T23:59:59.000Z

    This project developed new Light Emitting Diode (LED) driver ICs associated with specific (uniquely operated) switching power supplies that optimize performance for High Brightness LEDs (HB-LEDs). The drivers utilize a digital control core with a newly developed nonlinear, hysteretic/sliding mode controller with mixed-signal processing. The drivers are flexible enough to allow both traditional microprocessor interface as well as other options such as “on the fly” adjustment of color and brightness. Some other unique features of the newly developed drivers include • AC Power Factor Correction; • High power efficiency; • Substantially fewer external components should be required, leading to substantial reduction of Bill of Materials (BOM). Thus, the LED drivers developed in this research : optimize LED performance by increasing power efficiency and power factor. Perhaps more remarkably, the LED drivers provide this improved performance at substantially reduced costs compared to the present LED power electronic driver circuits. Since one of the barriers to market penetration for HB-LEDs (in particular “white” light LEDs) is cost/lumen, this research makes important contributions in helping the advancement of SSL consumer acceptance and usage.

  14. Crevice corrosion repassivation temperatures of highly alloyed stainless steels

    SciTech Connect (OSTI)

    Valen, S.; Gartland, P.O. [SINTEF Corrosion Center, Trondheim (Norway)

    1995-10-01T23:59:59.000Z

    An investigation was conducted to study the repassivation temperature of a highly alloyed austenitic (UNS S31254) and of a highly alloyed duplex (UNS S32750) stainless steel (SS). When initiated at a high temperature, repassivation occurred at a temperature level significantly lower than normally associated with initiation of crevice corrosion. Experimental results combined with computer modeling of crevice corrosion explored the mechanistic aspects. In this respect, the similarity between the hysteresis observed by cyclic polarization and cyclic temperature tests was emphasized.

  15. Method for optical pumping of thin laser media at high average power

    DOE Patents [OSTI]

    Zapata, Luis E. (Livermore, CA); Beach, Raymond J. (Livermore, CA); Honea, Eric C. (Sunol, CA); Payne, Stephen A. (Castro Valley, CA)

    2004-07-13T23:59:59.000Z

    A thin, planar laser material is bonded to a light guide of an index-matched material forming a composite disk. Diode array or other pump light is introduced into the composite disk through the edges of the disk. Pump light trapped within the composite disk depletes as it multi-passes the laser medium before reaching an opposing edge of the disk. The resulting compound optical structure efficiently delivers concentrated pump light and to a laser medium of minimum thickness. The external face of the laser medium is used for cooling. A high performance cooler attached to the external face of the laser medium rejects heat. Laser beam extraction is parallel to the heat flux to minimize optical distortions.

  16. Secondary calcium solid electrolyte high temperature battery

    SciTech Connect (OSTI)

    Sammells, A.F.; Schumacher, B.

    1986-01-01T23:59:59.000Z

    The authors report on recent work directed towards determining the viability of polycrystalline Ca/sup 2 +/ conducting ..beta..''-alumina solid electrolytes as the basis for a new type of high temperature battery. In this battery system the negative electrode consisted of a calcium-silicon alloy whose redox electro-chemistry was mediated to the calcium conducting solid electrolyte via the use of the molten salt eutectic CaCl/sub 2/ (51.4/sup M//0), CaI/sub 2/ (mp 550/sup 0/C). Both the molten salt and the calcium-alloy negative active material were separated from the positive active material via the Ca/sup 2 +/ conducting polycrystalline solid electrolyte. The positive electrode consisted of a solid-state matrix having a somewhat related crystallographic structure to Ca/sup 2 +/ ..beta..''-alumina, but where a significant fraction of the A1/sup 3 +/ sites located within this solid electrolyte's spinel block were replaced by immobile transition metal species. These species were available for participating in solid-state redox electrochemistry upon electrochemical cell cycling.

  17. Development of Strengthened Bundle High Temperature Superconductors

    SciTech Connect (OSTI)

    Lue, J.W.; Lubell, M.S. [Oak Ridge National Lab., TN (United States); Demko, J.A. [Oak Ridge Inst. for Science and Education, TN (United States); Tomsic, M. [Plastronic, Inc., Troy, OH (United States); Sinha, U. [Southwire Company, Carollton, GA (United States)

    1997-12-31T23:59:59.000Z

    In the process of developing high temperature superconducting (HTS) transmission cables, it was found that mechanical strength of the superconducting tape is the most crucial property that needs to be improved. It is also desirable to increase the current carrying capacity of the conductor so that fewer layers are needed to make the kilo-amp class cables required for electric utility usage. A process has been developed by encapsulating a stack of Bi-2223/Ag tapes with a silver or non-silver sheath to form a strengthened bundle superconductor. This process was applied to HTS tapes made by the Continuous Tube Forming and Filling (CTFF) technique pursued by Plastronic Inc. and HTS tapes obtained from other manufacturers. Conductors with a bundle of 2 to 6 HTS tapes have been made. The bundled conductor is greatly strengthened by the non-silver sheath. No superconductor degradation as compared to the sum of the original critical currents of the individual tapes was seen on the finished conductors.

  18. Electronic high voltage generator with a high temperature superconducting coil

    SciTech Connect (OSTI)

    Jin, J.X.; Liu, H.K.; Dou, S.X. [Univ. of Wollongong (Australia)] [and others

    1996-12-31T23:59:59.000Z

    A novel method for generating high voltages from a low voltage DC source, by using a capacitor and inductor in a R, L, C resonant circuit has been developed with the consideration of using a high temperature superconducting (HTS) coil. To generate high voltages the polarity of a low voltage battery source is reversed each half resonant cycle, the control being achieved by an electronic switch. Resistance in the circuit limits the voltages that can be built up. By replacing a copper winding inductor with another inductor which has a HTS winding, the magnitude of achievable voltages is substantially increased. A (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+x} multifilament HTS wire is considered in this work to make the superconducting inductor. The high voltages generated are not capable of supplying low impedance loads, however, possible applications of the generator include electrical partial discharge testing and insulation resistance testing. It could also be used as a testing method for the HTS itself with respect to the critical current and AC loss measurement.

  19. High-flux magnetorheology at elevated temperatures

    E-Print Network [OSTI]

    Ocalan, Murat

    Commercial applications of magnetorheological (MR) fluids often require operation at elevated temperatures as a result of surrounding environmental conditions or intense localized viscous heating. Previous experimental ...

  20. High Temperature 300°C Directional Drilling System

    Broader source: Energy.gov [DOE]

    Project objective: provide a directional drilling system that can be used at environmental temperatures of up to 300°C; and at depths of 10; 000 meters.

  1. High-Temperature Falling-Particle Receiver

    Broader source: Energy.gov (indexed) [DOE]

    temperatures, nitrate salt fluids become chemically unstable. In contrast, direct absorption receivers using solid particles that fall through a beam of concentrated solar...

  2. NOvel Refractory Materials for High Alkali, High Temperature Environments

    SciTech Connect (OSTI)

    Hemrick, J.G.; Griffin, R. (MINTEQ International, Inc.)

    2011-08-30T23:59:59.000Z

    Refractory materials can be limited in their application by many factors including chemical reactions between the service environment and the refractory material, mechanical degradation of the refractory material by the service environment, temperature limitations on the use of a particular refractory material, and the inability to install or repair the refractory material in a cost effective manner or while the vessel was in service. The objective of this project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al2O3 spinel or other similar magnesia/alumina containing unshaped refractory composition (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, highalkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. A research team was formed to carry out the proposed work led by Oak Ridge National Laboratory (ORNL) and was comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The two goals of this project were to produce novel refractory compositions which will allow for improved energy efficiency and to develop new refractory application techniques which would improve the speed of installation. Also methods of hot installation were sought which would allow for hot repairs and on-line maintenance leading to reduced process downtimes and eliminating the need to cool and reheat process vessels.

  3. Calcite Mineral Scaling Potentials of High-Temperature Geothermal Wells

    E-Print Network [OSTI]

    Karlsson, Brynjar

    #12;i Calcite Mineral Scaling Potentials of High-Temperature Geothermal Wells Alvin I. Remoroza-Temperature Geothermal Wells Alvin I. Remoroza 60 ECTS thesis submitted in partial fulfillment of a Magister Scientiarum #12;iv Calcite Mineral Scaling Potentials of High-Temperature Geothermal Wells 60 ECTS thesis

  4. Vibrational Raman Spectroscopy of High-temperature Superconductors

    E-Print Network [OSTI]

    Nabben, Reinhard

    Vibrational Raman Spectroscopy of High-temperature Superconductors C. Thomsen and G. Kaczmarczyk-temperature Superconductors C. Thomsen and G. Kaczmarczyk Technical University of Berlin, Berlin, Germany 1 INTRODUCTION Raman after the discovery of high- critical-temperature Tc superconductors:2 while reports on Raman scattering

  5. High-temperature piezoresponse force microscopy B. Bhatia,1

    E-Print Network [OSTI]

    King, William P.

    High-temperature piezoresponse force microscopy B. Bhatia,1 J. Karthik,2 D. G. Cahill,1,2 L. W September 2011; published online 24 October 2011) We report high temperature piezoresponse force microscopy resistive heater allows local temperature control up to 1000 C with minimal electrostatic interactions

  6. Quark number susceptibility of high temperature and finite density QCD

    E-Print Network [OSTI]

    Ari Hietanen; Kari Rummukainen

    2007-10-26T23:59:59.000Z

    We utilize lattice simulations of the dimensionally reduced effective field theory (EQCD) to determine the quark number susceptibility of QCD at high temperature ($T>2T_c$). We also use analytic continuation to obtain results at finite density. The results extrapolate well from known perturbative expansion (accurate in extremely high temperatures) to 4d lower temperature lattice data

  7. High temperature pressurized high frequency testing rig and test method

    DOE Patents [OSTI]

    De La Cruz, Jose; Lacey, Paul

    2003-04-15T23:59:59.000Z

    An apparatus is described which permits the lubricity of fuel compositions at or near temperatures and pressures experienced by compression ignition fuel injector components during operation in a running engine. The apparatus consists of means to apply a measured force between two surfaces and oscillate them at high frequency while wetted with a sample of the fuel composition heated to an operator selected temperature. Provision is made to permit operation at or near the flash point of the fuel compositions. Additionally a method of using the subject apparatus to simulate ASTM Testing Method D6079 is disclosed, said method involving using the disclosed apparatus to contact the faces of prepared workpieces under a measured load, sealing the workface contact point into the disclosed apparatus while immersing said contact point between said workfaces in a lubricating media to be tested, pressurizing and heating the chamber and thereby the fluid and workfaces therewithin, using the disclosed apparatus to impart a differential linear motion between the workpieces at their contact point until a measurable scar is imparted to at least one workpiece workface, and then evaluating the workface scar.

  8. Design of High Field Solenoids made of High Temperature Superconductors

    SciTech Connect (OSTI)

    Bartalesi, Antonio; /Pisa U.

    2010-12-01T23:59:59.000Z

    This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductor (HTS). Finally, a technological winding process was proposed and the required tooling is designed.

  9. Expansion Joint Concepts for High Temperature Insulation Systems

    E-Print Network [OSTI]

    Harrison, M. R.

    1980-01-01T23:59:59.000Z

    As high temperature steam and process piping expands with heat, joints begin to open between the insulation sections, resulting in increased energy loss and possible unsafe surface temperatures. Many different expansion joint designs are presently...

  10. Ultra-High Temperature Distributed Wireless Sensors

    SciTech Connect (OSTI)

    May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O'Donnell, Alan; Bresnahan, Peter

    2013-03-31T23:59:59.000Z

    Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.

  11. High temperature, minimally invasive optical sensing modules

    DOE Patents [OSTI]

    Riza, Nabeel Agha (Oviedo, FL); Perez, Frank (Tujunga, CA)

    2008-02-05T23:59:59.000Z

    A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector to calculate a temperature of the device.

  12. A summary of high-temperature electronics research and development

    SciTech Connect (OSTI)

    Thome, F.V.; King, D.B.

    1991-10-18T23:59:59.000Z

    Current and future needs in automative, aircraft, space, military, and well logging industries require operation of electronics at higher temperatures than today's accepted limit of 395 K. Without the availability of high-temperature electronics, many systems must operate under derated conditions or must accept severe mass penalties required by coolant systems to maintain electronic temperatures below critical levels. This paper presents ongoing research and development in the electronics community to bring high-temperature electronics to commercial realization. Much of this work was recently reviewed at the First International High-Temperature Electronics Conference held 16--20 June 1991 in Albuquerque, New Mexico. 4 refs., 1 tab.

  13. High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Design, demonstrate, and qualify high-temperature high pressure zonal isolation devices compatible with the high temperature downhole Enhanced Geothermal Systems (EGS) environment.

  14. First high-temperature electronics products survey 2005.

    SciTech Connect (OSTI)

    Normann, Randy Allen

    2006-04-01T23:59:59.000Z

    On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

  15. Overview of Fraunhofer IPM Activities in High Temperature Bulk...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop including an overview about Fraunhofer IPM, new funding situation in Germany, high temperature material and modules, energy-autarkic sensors, and thermoelectric...

  16. Detecting Fractures Using Technology at High Temperatures and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Detecting...

  17. Microchannel High-Temperature Recuperator for Fuel Cell Systems...

    Broader source: Energy.gov (indexed) [DOE]

    developed an efficient, microchannel-based waste heat recuperator for a high-temperature fuel cell system. This technology increases the efficiency of fuel cells and improves...

  18. Detecting Fractures Using Technology at High Temperatures and...

    Broader source: Energy.gov (indexed) [DOE]

    7 4.4.1 Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI) Presentation Number: 015 Investigator: Patterson, Doug...

  19. advanced high temperature: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John 3 Lake surface water temperature retrieval using advanced very high resolution radiometer and Geosciences Websites Summary: and Moderate Resolution Imaging Spectroradiometer...

  20. Project Profile: Fundamental Corrosion Studies in High-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies in High-Temperature Molten Salt Systems for Next-Generation CSP Systems Savannah River National Laboratory logo The Savannah River National Laboratory (SRNL), under the...

  1. Enhanced High and Low Temperature Performance of NOx Reduction...

    Energy Savers [EERE]

    High and Low Temperature Performance of NOx Reduction Materials 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  2. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Broader source: Energy.gov (indexed) [DOE]

    Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Vehicle Technologies Office Merit Review 2014: Nanostructured...

  3. Feasibility and Design Studies for a High Temperature Downhole Tool

    Broader source: Energy.gov [DOE]

    Project objective: Perform feasibility and design studies for a high temperature downhole tool; which uses nuclear techniques for characterization purposes; using measurements and modeling/simulation.

  4. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Annual Merit Review and Peer Evaluation ace026peden2011o.pdf More Documents & Publications Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials...

  5. Combining Raman Microprobe and XPS to Study High Temperature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectroscopy. Citation: Windisch CF, Jr, CH Henager, MH Engelhard, and WD Bennett.2011."Combining Raman Microprobe and XPS to Study High Temperature Oxidation of...

  6. Development of a 500 Watt High Temperature Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Development of a 100-Watt High Temperature Thermoelectric Generator Automotive Waste Heat Conversion to Power Program Automotive Waste Heat Conversion to Power Program...

  7. Metallic substrates for high temperature superconductors

    DOE Patents [OSTI]

    Truchan, Thomas G. (Chicago, IL); Miller, Dean J. (Darien, IL); Goretta, Kenneth C. (Downers Grove, IL); Balachandran, Uthamalingam (Hinsdale, IL); Foley, Robert (Chicago, IL)

    2002-01-01T23:59:59.000Z

    A biaxially textured face-centered cubic metal article having grain boundaries with misorientation angles greater than about 8.degree. limited to less than about 1%. A laminate article is also disclosed having a metal substrate first rolled to at least about 95% thickness reduction followed by a first annealing at a temperature less than about 375.degree. C. Then a second rolling operation of not greater than about 6% thickness reduction is provided, followed by a second annealing at a temperature greater than about 400.degree. C. A method of forming the metal and laminate articles is also disclosed.

  8. Effective theory of high-temperature superconductors

    E-Print Network [OSTI]

    Igor F. Herbut

    2005-06-16T23:59:59.000Z

    General field theory of a fluctuating d-wave superconductor is constructed and proposed as an effective description of superconducting cuprates at low energies. The theory is used to resolve a puzzle posed by recent experiments on superfluid density in severely underdoped YBCO. In particular, the overall temperature dependence of the superfluid density at low dopings is argued to be described well by the strongly anisotropic weakly interacting three-dimensional Bose gas, and thus approximately linear in temperature with an almost doping-independent slope.

  9. Quantum gravitational proton decay at high temperature

    E-Print Network [OSTI]

    Ulf H. Danielsson

    2005-12-29T23:59:59.000Z

    One of the most important challenges of contemporary physics is to find experimental signatures of quantum gravity. It is expected that quantum gravitational effects lead to proton decay but on time scales way beyond what is of any relevance to experiments. At non-zero temperatures there are reasons to believe that the situation is much more favourable. We will argue that at the temperatures and densities reached at present and future fusion facilities there is a realistic possibility that proton decay could be detectable.

  10. High temperature ceramic composition for hydrogen retention

    DOE Patents [OSTI]

    Webb, R.W.

    1974-01-01T23:59:59.000Z

    A ceramic coating for H retention in fuel elements is described. The coating has relatively low thermal neutron cross section, is not readily reduced by H at 1500 deg F, is adherent to the fuel element base metal, and is stable at reactor operating temperatures. (JRD)

  11. High-Temperature Viscosity of Commercial Glasses

    SciTech Connect (OSTI)

    Hrma, Pavel R.

    2006-08-31T23:59:59.000Z

    Arrhenius models were developed for glass viscosity within the processing temperature of six types of commercial glasses: low-expansion-borosilicate glasses, E glasses, fiberglass wool glasses, TV panel glasses, container glasses, and float glasses. Both local models (for each of the six glass types) and a global model (for the composition region of commercial glasses, i.e., the six glass types taken together) are presented. The models are based on viscosity data previously obtained with rotating spindle viscometers within the temperature range between 900 C and 1550 C; the viscosity varied from 1 Pa?s to 750 Pa?s. First-order models were applied to relate Arrhenius coefficients to the mass fractions of 15 components: SiO2, TiO2, ZrO2, Al2O3, Fe2O3, B2O3, MgO, CaO, SrO, BaO, PbO, ZnO, Li2O, Na2O, K2O. The R2 is 0.98 for the global model and ranges from .097 to 0.99 for the six local models. The models are recommended for glasses containing 42 to 84 mass% SiO2 to estimate viscosities or temperatures at a constant viscosity for melts within both the temperature range from 1100 C to 1550 C and viscosity range from 5 to 400 Pa?s.

  12. ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT

    SciTech Connect (OSTI)

    M. G. McKellar; E. A. Harvego; A. M. Gandrik

    2010-11-01T23:59:59.000Z

    An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

  13. Rotational viscometer for high-pressure high-temperature fluids

    DOE Patents [OSTI]

    Carr, Kenneth R. (Knoxville, TN)

    1985-01-01T23:59:59.000Z

    The invention is a novel rotational viscometer which is well adapted for use with fluids at high temperatures and/or pressures. In one embodiment, the viscometer includes a substantially non-magnetic tube having a closed end and having an open end in communication with a fluid whose viscosity is to be determined. An annular drive magnet is mounted for rotation about the tube. The tube encompasses and supports a rotatable shaft assembly which carries a rotor, or bob, for insertion in the fluid. Affixed to the shaft are (a) a second magnet which is magnetically coupled to the drive magnet and (b) a third magnet. In a typical operation, the drive magnet is rotated to turn the shaft assembly while the shaft rotor is immersed in the fluid. The viscous drag on the rotor causes the shaft assembly to lag the rotation of the drive magnet by an amount which is a function of the amount of viscous drag. A first magnetic pickup generates a waveform whose phase is a function of the angular position of the drive magnet. A second magnetic pickup generates a waveform whose phase is a function of the angular position of the third magnet. An output is generated indicative of the phase difference between the two waveforms.

  14. Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor

    SciTech Connect (OSTI)

    Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

    2012-02-01T23:59:59.000Z

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

  15. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objective: Advance the technology for well fluids lifting systems to meet the foreseeable pressure; temperature; and longevity needs of the Enhanced Geothermal Systems (EGS) industry.

  16. High temperature expanding cement composition and use

    DOE Patents [OSTI]

    Nelson, Erik B. (Tulsa County, OK); Eilers, Louis H. (Rogers County, OK)

    1982-01-01T23:59:59.000Z

    A hydratable cement composition useful for preparing a pectolite-containing expanding cement at temperatures above about 150.degree. C. comprising a water soluble sodium salt of a weak acid, a 0.1 molar aqueous solution of which salt has a pH of between about 7.5 and about 11.5, a calcium source, and a silicon source, where the atomic ratio of sodium to calcium to silicon ranges from about 0.3:0.6:1 to about 0.03:1:1; aqueous slurries prepared therefrom and the use of such slurries for plugging subterranean cavities at a temperature of at least about 150.degree. C. The invention composition is useful for preparing a pectolite-containing expansive cement having about 0.2 to about 2 percent expansion, by volume, when cured at at least 150.degree. C.

  17. High Temperature Materials for Aerospace Applications

    E-Print Network [OSTI]

    Adamczak, Andrea Diane

    2011-08-08T23:59:59.000Z

    Chair of Advisory Committee: Dr. Jaime C. Grunlan Further crosslinking of the fluorinated polyimide was examined to separate the cure reactions from degradation and to determine the optimum post curing conditions. Glass transition... ranging from 225 ? 362 ?C, with 1.7 - 3.0 wt% absorbed moisture, and the polyimide composite had blister temperatures from 246 ? 294 ?C with 0.5 - 1.5 wt% moisture. iv Weight loss of the fluorinated polyimide and its corresponding polyimide carbon...

  18. Development of a 33 kV, 20 A long pulse converter modulator for high average power klystron

    SciTech Connect (OSTI)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam [Pulsed High Power Microwave Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, M.P. (India)] [Pulsed High Power Microwave Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, M.P. (India)

    2014-05-15T23:59:59.000Z

    Research, design, and development of high average power, long pulse modulators for the proposed Indian Spallation Neutron Source are underway at Raja Ramanna Centre for Advanced Technology. With this objective, a prototype of long pulse modulator capable of delivering 33 kV, 20 A at 5 Hz repetition rate has been designed and developed. Three Insulated Gate Bipolar Transistors (IGBT) based switching modules driving high frequency, high voltage transformers have been used to generate high voltage output. The IGBT based switching modules are shifted in phase by 120° with respect to each other. The switching frequency is 25 kHz. Pulses of 1.6 ms pulse width, 80 ?s rise time, and 70 ?s fall time have been achieved at the modulator output. A droop of ±0.6% is achieved using a simple segmented digital droop correction technique. The total fault energy transferred to the load during fault has been measured by conducting wire burn tests and is found to be within 3.5 J.

  19. High-Temperature Viscosity Of Commercial Glasses

    SciTech Connect (OSTI)

    Hrma, Pavel R.; See, Clem A.; Lam, Oanh P.; Minister, Kevin B.

    2005-01-01T23:59:59.000Z

    Viscosity was measured for six types of commercial glasses: low-expansion-borosilicate glasses, E glasses, fiberglass wool glasses, TV panel glasses, container glasses, and float glasses. Viscosity data were obtained with rotating spindle viscometers within the temperature range between 900°C and 1550°C; the viscosity varied from 1 Pa?s to 750 Pa?s. Arrhenius coefficients were calculated for individual glasses and linear models were applied to relate them to the mass fractions of 11 major components (SiO2, CaO, Na2O, Al2O3, B2O3, BaO, SrO, K2O, MgO, PbO, and ZrO2) and 12 minor components (Fe2O3, ZnO, Li2O, TiO2, CeO2, F, Sb2O3, Cr2O3, As2O3, MnO2, SO3, and Co3O4). The models are recommended for glasses containing 42 to 84 mass% SiO2 to estimate viscosities or temperatures at a constant viscosity for melts within both the temperature range from 1100°C to 1550°C and viscosity range from 10 to 400 Pa?s.

  20. To Crack or Not to Crack: Strain in High Temperature Superconductors

    E-Print Network [OSTI]

    Godeke, Arno

    2008-01-01T23:59:59.000Z

    in High Temperature Superconductors Arno Godeke August 22,in High Temperature Superconductors Motivation Magneticin High Temperature Superconductors How do Nb 3 Sn magnets

  1. Irradiation performance of AGR-1 high temperature reactor fuel

    SciTech Connect (OSTI)

    Paul A. Demkowicz; John D. Hunn; Robert N. Morris; Charles A. Baldwin; Philip L. Winston; Jason M. Harp; Scott A. Ploger; Tyler Gerczak; Isabella J. van Rooyen; Fred C. Montgomery; Chinthaka M. Silva

    2014-10-01T23:59:59.000Z

    The AGR-1 experiment contained 72 low-enriched uranium oxide/uranium carbide TRISO-coated particle fuel compacts in six capsules irradiated to burnups of 11.2 to 19.5% FIMA, with zero TRISO coating failures detected during the irradiation. The irradiation performance of the fuel–including the extent of fission product release and the evolution of kernel and coating microstructures–was evaluated based on detailed examination of the irradiation capsules, the fuel compacts, and individual particles. Fractional release of 110mAg from the fuel compacts was often significant, with capsule-average values ranging from 0.01 to 0.38. Analysis of silver release from individual compacts indicated that it was primarily dependent on fuel temperature history. Europium and strontium were released in small amounts through intact coatings, but were found to be significantly retained in the outer pyrocrabon and compact matrix. The capsule-average fractional release from the compacts was 1×10 4 to 5×10 4 for 154Eu and 8×10 7 to 3×10 5 for 90Sr. The average 134Cs release from compacts was <3×10 6 when all particles maintained intact SiC. An estimated four particles out of 2.98×105 experienced partial cesium release due to SiC failure during the irradiation, driving 134Cs release in two capsules to approximately 10 5. Identification and characterization of these particles has provided unprecedented insight into the nature and causes of SiC coating failure in high-quality TRISO fuel. In general, changes in coating morphology were found to be dominated by the behavior of the buffer and inner pyrolytic carbon (IPyC), and infrequently observed SiC layer damage was usually related to cracks in the IPyC. Palladium attack of the SiC layer was relatively minor, except for the particles that released cesium during irradiation, where SiC corrosion was found adjacent to IPyC cracks. Palladium, silver, and uranium were found in the SiC layer of irradiated particles, and characterization of these elements within the SiC microstructure is the subject of ongoing focused study.

  2. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect (OSTI)

    Michael Swanson; Daniel Laudal

    2008-03-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher-reactivity (low-rank) coals appear to perform better in a transport reactor than the less reactive bituminous coals. Factors that affect TRDU product gas quality appear to be coal type, temperature, and air/coal ratios. Testing with a higher-ash, high-moisture, low-rank coal from the Red Hills Mine of the Mississippi Lignite Mining Company has recently been completed. Testing with the lignite coal generated a fuel gas with acceptable heating value and a high carbon conversion, although some drying of the high-moisture lignite was required before coal-feeding problems were resolved. No ash deposition or bed material agglomeration issues were encountered with this fuel. In order to better understand the coal devolatilization and cracking chemistry occurring in the riser of the transport reactor, gas and solid sampling directly from the riser and the filter outlet has been accomplished. This was done using a baseline Powder River Basin subbituminous coal from the Peabody Energy North Antelope Rochelle Mine near Gillette, Wyoming.

  3. High Temperature Evaluation of Tantalum Capacitors - Test 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cieslewski, Grzegorz

    Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.

  4. High Temperature Evaluation of Tantalum Capacitors - Test 1

    SciTech Connect (OSTI)

    Cieslewski, Grzegorz

    2014-09-28T23:59:59.000Z

    Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.

  5. ANALYSIS OF FUTURE PRICES AND MARKETS FOR HIGH TEMPERATURE SUPERCONDUCTORS

    E-Print Network [OSTI]

    1 ANALYSIS OF FUTURE PRICES AND MARKETS FOR HIGH TEMPERATURE SUPERCONDUCTORS BY JOSEPH MULHOLLAND temperature superconductors (HTS) may impact the national electrical system over the next 25 years dollars. However, the savings from superconductivity are offset somewhat by the high cost of manufacturing

  6. Calculated Phonon Spectra of Plutonium at High Temperatures

    E-Print Network [OSTI]

    Savrasov, Sergej Y.

    Calculated Phonon Spectra of Plutonium at High Temperatures X. Dai,1 S. Y. Savrasov,2 * G. Kotliar dynamical proper- ties of plutonium using an electronic structure method, which incorporates correlation anharmonic and can be stabilized at high temperatures by its phonon entropy. Plutonium (Pu) is a material

  7. High Temperature Electrolysis of Steam and Carbon Dioxide

    E-Print Network [OSTI]

    High Temperature Electrolysis of Steam and Carbon Dioxide Søren Højgaard Jensen+,#, Jens V. T. Høgh + O2 #12;Electrolysis of steam at high temperature Interesting because · Improved thermodynamic of electrolysis of steam Picture taken from E. Erdle, J. Gross, V. Meyringer, "Solar thermal central receiver

  8. Apparatus for monitoring high temperature ultrasonic characterization

    DOE Patents [OSTI]

    Lanagan, M.T.; Kupperman, D.S.; Yaconi, G.A.

    1998-03-24T23:59:59.000Z

    A method and an apparatus for nondestructive detecting and evaluating changes in the microstructural properties of a material by employing one or more magnetostrictive transducers linked to the material by means of one or more sonic signal conductors. The magnetostrictive transducer or transducers are connected to a pulser/receiver which in turn is connected to an oscilloscope. The oscilloscope is connected to a computer which employs an algorithm to evaluate changes in the velocity of a signal transmitted to the material sample as function of time and temperature. 6 figs.

  9. Apparatus for monitoring high temperature ultrasonic characterization

    DOE Patents [OSTI]

    Lanagan, Michael T. (Woodridge, IL); Kupperman, David S. (Oak Park, IL); Yaconi, George A. (Berwyn, IL)

    1998-01-01T23:59:59.000Z

    A method and an apparatus for nondestructive detecting and evaluating chas in the microstructural properties of a material by employing one or more magnetostrictive transducers linked to the material by means of one or more sonic signal conductors. The magnetostrictive transducer or transducers are connected to a pulser/receiver which in turn is connected to an oscilloscope. The oscilloscope is connected to a computer which employs an algorithm to evaluate changes in the velocity of a signal transmitted to the material sample as function of time and temperature.

  10. High Temperature Oxidation Resistance and Surface Electrical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Filtered Arc Cr-Al-N Abstract: The requirements for low cost and high-tempurater corrosion resistance for bipolar interconnect plates in solid oxide fuel cell (SOFC) stacks...

  11. An experimental investigation of high temperature, high pressure paper drying

    E-Print Network [OSTI]

    Patel, Kamal Raoji

    1994-01-01T23:59:59.000Z

    % moisture removed oven dried mass of handsheet, g mass of handsheet after drying test, g mass of handsheet before drying test, g relative moisture removed from handsheet moisture removed by drying, % initial moisture (im) initial handsheet sample mass..., and the effects on the paper sheet and drying felt can be detrimental. Elevated temperatures reduce water viscosity which permits reduced resistance to water flow in the sheet. Pressing with a drying temperature of 95 C gives increased drying capacity, reduced...

  12. High Temperature Interfacial Superconductivity - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High School football Fancy footwork by C. Kim

  13. High Temperature PEM - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football High School football Fancy footwork by C.

  14. HIGH TEMPERATURE ELECTROLYZER MATERIALS PROJECT GOAL

    E-Print Network [OSTI]

    Mease, Kenneth D.

    a fuel for the SOFC itself, as a fuel for other devices (e.g., fuel cell vehicles), or as a raw material with compatible electrodes to develop reversible solid oxide fuel cells for low-cost, high efficient power fuel cell concept has been proven, no complete reversible fuel cell materials set has yet been

  15. Thermocouples For High Temperature In-Pile Testing

    SciTech Connect (OSTI)

    J. L. Rempe

    2005-11-01T23:59:59.000Z

    Many advanced nuclear reactor designs require new fuel, cladding and structural materials. Data are needed to characeterize the performance of these new materials in high temperature, oxidizing and radiation conditions. To obtain this data, robust instrumentation is needed htat can survive proposed test conditions. Traditional methods for measuring temperature in-pile degrade at temperatures above 1080 degrees C. Hence, a project was intiated to develop specialized thermocouples for high temperature in-pile applications (see Rempe and Wilkins, 2005). This paper summarizes efforts to develop, fabricate and evaluate these specialized thermocouples.

  16. Method And Apparatus For Evaluatin Of High Temperature Superconductors

    DOE Patents [OSTI]

    Fishman, Ilya M. (Palo Alto, CA); Kino, Gordon S. (Stanford, CA)

    1996-11-12T23:59:59.000Z

    A technique for evaluation of high-T.sub.c superconducting films and single crystals is based on measurement of temperature dependence of differential optical reflectivity of high-T.sub.c materials. In the claimed method, specific parameters of the superconducting transition such as the critical temperature, anisotropy of the differential optical reflectivity response, and the part of the optical losses related to sample quality are measured. The apparatus for performing this technique includes pump and probe sources, cooling means for sweeping sample temperature across the critical temperature and polarization controller for controlling a state of polarization of a probe light beam.

  17. Advanced High Temperature Reactor Neutronic Core Design

    SciTech Connect (OSTI)

    Ilas, Dan [ORNL] [ORNL; Holcomb, David Eugene [ORNL] [ORNL; Varma, Venugopal Koikal [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    The AHTR is a 3400 MW(t) FHR class reactor design concept intended to serve as a central generating station type power plant. While significant technology development and demonstration remains, the basic design concept appears sound and tolerant of much of the remaining performance uncertainty. No fundamental impediments have been identified that would prevent widespread deployment of the concept. This paper focuses on the preliminary neutronic design studies performed at ORNL during the fiscal year 2011. After a brief presentation of the AHTR design concept, the paper summarizes several neutronic studies performed at ORNL during 2011. An optimization study for the AHTR core is first presented. The temperature and void coefficients of reactivity are then analyzed for a few configurations of interest. A discussion of the limiting factors due to the fast neutron fluence follows. The neutronic studies conclude with a discussion of the control and shutdown options. The studies presented confirm that sound neutronic alternatives exist for the design of the AHTR to maintain full passive safety features and reasonable operation conditions.

  18. High Temperature Superconductivity in Cuprates: a model

    E-Print Network [OSTI]

    P. R. Silva

    2010-07-16T23:59:59.000Z

    A model is proposed such that quasi-particles (electrons or holes) residing in the CuO2 planes of cuprates may interact leading to metallic or superconducting behaviors. The metallic phase is obtained when the quasi-particles are treated as having classical kinetic energies and the superconducting phase occurs when the quasi-particles are taken as extremely relativistic objects. The interaction between both kinds of particles is provided by a force dependent-on-velocity. In the case of the superconducting behavior, the motion of apical oxygen ions provides the glue to establish the Cooper pair. The model furnishes explicit relations for the Fermi velocity, the perpendicular and the in-plane coherence lengths, the zero-temperature energy gap, the critical current density, the critical parallel and perpendicular magnetic fields. All these mentioned quantities are expressed in terms of fundamental physical constants as: charge and mass of the electron, light velocity in vacuum, Planck constant, electric permittivity of the vacuum. Numerical evaluation of these quantities show that their values are close those found for the superconducting YBaCuO, leading to think the model as being a possible scenario to explain superconductivity in cuprates.

  19. ECUT energy data reference series: high-temperature materials for advanced heat engines

    SciTech Connect (OSTI)

    Abarcar, R.B.; Hane, G.J.; Johnson, D.R.

    1984-07-01T23:59:59.000Z

    Information that describes the use of high-temperature materials in advanced heat engines for ground transportation applications is summarized. Applications discussed are: automobiles, light trucks, and medium and heavy trucks. The information provided on each of these modes includes descriptions of the average conversion efficiency of the engine, the capital stock, the amount of energy used, and the activity level as measured in ton-miles.

  20. Method for synthesizing extremely high-temperature melting materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise (Chicago, IL); Glorieux, Benoit (Perpignan, FR)

    2007-11-06T23:59:59.000Z

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  1. Method For Synthesizing Extremely High-Temperature Melting Materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise (Chicago, IL); Glorieux, Benoit (Perpignan, FR)

    2005-11-22T23:59:59.000Z

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  2. Method for Synthesizing Extremeley High Temperature Melting Materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise and Glorieux, Benoit

    2005-11-22T23:59:59.000Z

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  3. Recent Developments in High Temperature Superconductivity

    E-Print Network [OSTI]

    Hor, P. H.

    -Ca-Ba-Cu-O (TCBCO) [5] have been found to be superconducting at as high at 125K in TCBCO. Superconductivity up to - 30K has also been found in the Ba-K-Bi-O type perovskite system [6,7]. Without a copper-oxygen planar structure involved, this system offers a...Can-1 Cu n 04+2n where A =Bi or Tl and B =Ba or Sr and n is the number of CU-O layers stacked consecutively in the unit cell. For the BCSCO and TCBCO compound series, they all have layers of perovskite-like structures (with n =1, 2, or 3...

  4. High Temperature Cements | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation, search Name:Hidralia EnergiaFalls,High

  5. High Temperature Materials Laboratory (HTML) - PSD Directorate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here ‹FIRST CenterAboutHigh Flux

  6. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01T23:59:59.000Z

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  7. High Temperature Irradiation Resistant Thermocouple (HTIR-TC)

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    INL researchers have created a new thermocouple that can resist high temperature and radiation. This device will improve safety and reduce costs associated with unit failures. Learn more about INL research at http://www.facebook.com/idahonationallaboratory

  8. Enabling high-temperature nanophotonics for energy applications

    E-Print Network [OSTI]

    Yeng, YiXiang

    The nascent field of high-temperature nanophotonics could potentially enable many important solid-state energy conversion applications, such as thermophotovoltaic energy generation, selective solar absorption, and selective ...

  9. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion DE-FC26-05NT42413 William de Ojeda International Truck and Engine Company 26 Feb 2008 This...

  10. Electronic properties of doped Mott insulators and high temperature superconductors

    E-Print Network [OSTI]

    Ribeiro, Tiago Castro

    2005-01-01T23:59:59.000Z

    High-temperature superconducting cuprates, which are the quintessential example of a strongly correlated system and the most extensively studied materials after semiconductors, spurred the development in the fields of ...

  11. Copper Aluminate as a potential material for high temperature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Copper Aluminate as a potential material for high temperature thermoelectric power generation Home Author: D. T. Morelli, E. D. Case, B. D. Hall, S. Wang Year: 2008 Abstract: URL:...

  12. High-Temperature Thermal Array for Next Generation Solar Thermal...

    Broader source: Energy.gov (indexed) [DOE]

    3 Q1 High-Temperature Thermal Array for Next Generation Solar Thermal Power Production - FY13 Q1 This document summarizes the progress of this Los Alamos National Laboratory...

  13. Project Profile: High Operating Temperature Liquid Metal Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A freezing point below 100C Stable at temperatures greater than 800C Low corrosion of stainless steel and high-nickel content alloys A heat capacity greater than 2...

  14. Fabrication and Characterization of Uranium-based High Temperature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabrication and Characterization of Uranium-based High Temperature Reactor Fuel June 01, 2013 The Uranium Fuel Development Laboratory is a modern R&D scale lab for the fabrication...

  15. Stability and quench protection of high-temperature superconductors

    E-Print Network [OSTI]

    Ang, Ing Chea

    2006-01-01T23:59:59.000Z

    In the design and operation of a superconducting magnet, stability and protection are two key issues that determine the magnet's reliability and safe operation. Although the high-temperature superconductor (HTS) is considered ...

  16. High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell (Phosphoric Acid) Manufacturing R&D High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R&D Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop...

  17. Assessment of Moderate- and High-Temperature Geothermal Resources...

    Open Energy Info (EERE)

    Moderate- and High-Temperature Geothermal Resources of the United States Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Assessment of Moderate- and...

  18. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory Department of Energy Project ID ace37deojeda 2 Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion DE-FC26-05NT42413 Project Overview...

  19. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOE Patents [OSTI]

    Westerfield, C.L.; Morris, J.S.; Agnew, S.F.

    1997-01-14T23:59:59.000Z

    Diamond anvil cell is described for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear. 4 figs.

  20. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOE Patents [OSTI]

    Westerfield, Curtis L. (Espanola, NM); Morris, John S. (Los Alamos, NM); Agnew, Stephen F. (Los Alamos, NM)

    1997-01-01T23:59:59.000Z

    Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear.

  1. Low GWP Working Fluid for High Temperature Heat Pumps

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Low GWP Working Fluid for High Temperature Heat Pumps: DR-2 Chemical Stability at High Temperatures Temp Heat Pumps: DR-2 Very Low GWP AND Non-Flammable HFC-245fa DR-2 Chemical Formula CF3CH2CHF2 HFO 171.3 Pcr [MPa] 3.65 2.9 Kontomaris-DuPont; European Heat Pump Summit, Nuremberg, October 15th, 2013

  2. Microwave characterization of high-temperature superconductors

    SciTech Connect (OSTI)

    Cooke, D.W.; Gray, E.R.; Arendt, P.N.; Beery, J.G.; Bennett, B.L.; Brown, D.R.; Houlton, R.J.; Jahan, M.S.; Klapetzky, A.J.; Maez, M.A.; Raistrick, I.D.; Reeves, G.A.; Rusnak, B.

    1989-01-01T23:59:59.000Z

    Thick (10-15 {mu}m) Tl-Ba-Ca-Cu-O films have been deposited onto yttria-stabilized zirconia and Ag substrates by d.c. magnetron sputtering techniques. Direct deposition onto 1'' diameter yttria-stabilized zirconia yields films with typical 22 GHz surface resistance (R{sub s}) values of 5.2 {plus minus} 2 m{Omega} and 52 {plus minus} 2 m{Omega} at 10 K and 77 K, respectively. For comparison, R{sub s} of Cu at this same frequency is 10 m{Omega} at 4 K and 22 m{Omega} at 77 K. Tl-Ba-Ca-Cu-O films have also been deposited onto 1'' diameter Ag substrates using Au/Cu, Cu, and BaF{sub 2} buffer layers. The lowest R{sub s} values were obtained on films with a BaF{sub 2} buffer layer, typical values being 7.8 {plus minus} 2 m{Omega} and 30.6 {plus minus} 2 m{Omega} (measured at 22 GHz) at 10 K and 77 K, respectively. Larger films (1.5'' diameter) with similar R{sub s} values were prepared using this same technique, demonstrating that the fabrication process can be scaled to larger surface areas. These films are promising for radiofrequency cavity applications because they are thick (50-75 times the London penetration depth), have relatively large surface areas, are fabricated on metallic substrates, and have R{sub s} values that are competitive with Cu at 77 K and are lower than Cu at 4 K. Because they are polycrystalline and unoriented, it is anticipated that their R{sub s} values can be lowered by improving the processing technique. High-quality films of YBa{sub 2}Cu{sub 3}O{sub 7} have been electron-beam deposited onto 1'' LaGaO{sub 3} and 1.5'' LaAlO{sub 3} substrates. The 1'' sample is characterized by R{sub s} values of 0.2 {plus minus} 0.1 m{Omega} at 4 K and 18.6 {plus minus} 2 m{Omega} at 77 K. The 4-K value is only 2-4 times higher than Nb. The 1.5'' sample has R{sub s} values (measured at 18 GHz) of 0.93 {plus minus} 2 m{Omega} and 71 {plus minus} 3 m{Omega} at 10 K and 77 K, respectively. 18 refs., 8 figs.

  3. Viscosities of natural gases at high pressures and high temperatures

    E-Print Network [OSTI]

    Viswanathan, Anup

    2007-09-17T23:59:59.000Z

    Estimation of viscosities of naturally occurring petroleum gases provides the information needed to accurately work out reservoir-engineering problems. Existing models for viscosity prediction are limited by data, especially at high pressures...

  4. NGNP/HTE full-power operation at reduced high-temperature heat exchanger temperatures.

    SciTech Connect (OSTI)

    VIlim, R.; Nuclear Engineering Division

    2009-03-12T23:59:59.000Z

    Operation of the Next Generation Nuclear Plant (NGNP) with reduced reactor outlet temperature at full power was investigated for the High Temperature Electrolysis (HTE) hydrogen-production application. The foremost challenge for operation at design temperature is achieving an acceptably long service life for heat exchangers. In both the Intermediate Heat Exchanger (IHX) and the Process Heat Exchanger (PHX) (referred to collectively as high temperature heat exchangers) a pressure differential of several MPa exists with temperatures at or above 850 C. Thermal creep of the heat exchanger channel wall may severely limit heat exchanger life depending on the alloy selected. This report investigates plant performance with IHX temperatures reduced by lowering reactor outlet temperature. The objective is to lower the temperature in heat transfer channels to the point where existing materials can meet the 40 year lifetime needed for this component. A conservative estimate for this temperature is believed to be about 700 C. The reactor outlet temperature was reduced from 850 C to 700 C while maintaining reactor power at 600 MWt and high pressure compressor outlet at 7 MPa. We included a previously reported design option for reducing temperature at the PHX. Heat exchanger lengths were adjusted to reflect the change in performance resulting from coolant property changes and from resizing related to operating-point change. Turbomachine parameters were also optimized for the new operating condition. An integrated optimization of the complete system including heat transfer equipment was not performed. It is estimated, however, that by performing a pinch analysis the combined plant efficiency can be increased from 35.5 percent obtained in this report to a value between 38.5 and 40.1 percent. Then after normalizing for a more than three percent decrease in commodities inventory compared to the reference plant, the commodities-normalized efficiency lies between 40.0 and 41.3. This compares with a value of 43.9 for the reference plant. This latter plant has a reactor outlet temperature of 850 C and the two high temperature heat exchangers. The reduction in reactor outlet temperature from 850 C to 700 C reduces the tritium permeability rate in the IHX metal by a factor of three and thermal creep by five orders of magnitude. The design option for reducing PHX temperature from 800 C to 200 C reduces the permeability there by three orders of magnitude. In that design option this heat exchanger is the single 'choke-point' for tritium migration from the nuclear to the chemical plant.

  5. Development of High Temperature Capacitor Technology and Manufacturing Capability

    SciTech Connect (OSTI)

    None

    2011-05-15T23:59:59.000Z

    The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250°C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: ? Deeper oil exploration in higher temperature and pressure environments ? Enabling power electronic and control equipment to operate in higher temperature environments ? Enabling reduced cooling requirements of electronics ? Increasing reliability and life of capacitors operating below rated temperature ? Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: ? FPE Film is difficult to handle and wind, resulting in poor yields ? Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) ? Encapsulation technologies must be improved to enable higher temperature operation ? Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/?m. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200°C and non-hermetic packages at 250°C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

  6. High-temperature, structural disorder, phase transitions, and piezoelectric properties of GaPO{sub 4}

    SciTech Connect (OSTI)

    Haines, J.; Cambon, O.; Prudhomme, N.; Fraysse, G.; Keen, D. A.; Chapon, L. C.; Tucker, M. G. [Laboratoire de Physico-Chimie de la Matiere Condensee, UMR CNRS 5617, Universite Montpellier II, Place Eugene Bataillon, cc003, 34095 Montpellier cedex 5 (France); Department of Physics, Oxford University, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom); and ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom)

    2006-01-01T23:59:59.000Z

    Gallium orthophosphate was studied at high temperature up to 1303 K by total neutron scattering and 1173 K by piezoelectric measurements. Rietveld refinements at 1223 K confirm the stability of the structural distortion in the {alpha}-quartz-type phase with an average tilt angle {delta}=18.8 deg. at this temperature. In contrast, reverse Monte Carlo (RMC) refinements of total neutron scattering data indicate that, whereas the degree of structural disorder initially slowly varies over a very large temperature interval in the {alpha}-quartz-type phase, an increase in disorder is observed beginning above 1023 K. Piezoelectric measurements indicate that the quality factor (Q) of GaPO{sub 4} resonators remains stable up to this temperature above which the piezoelectric properties of the material degrade. This degradation can be correlated to the increase in structural disorder. RMC refinements indicate that the high-temperature {beta}-cristobalite-type phase at 1303 K is characterized by significant thermally induced disorder with oxygen atom density forming a continuous ring around the vector joining neighboring gallium and phosphorous atoms. Gallium phosphate may be expected to retain its piezoelectric properties up to within 200 K of the phase transition temperature and as a consequence be used in applications at temperatures slightly above 1000 K.

  7. Electrostatic Interchange Instabilities of a Rotating, High-Temperature Plasma

    E-Print Network [OSTI]

    Mauel, Michael E.

    Electrostatic Interchange Instabilities of a Rotating, High-Temperature Plasma Confined by a Dipole #2 Mach Probe #1 Mach Probe #2 High-field, 0.2 MA-turn Water-cooled Magnet #12;Interchange Modes-sized/global... Fast hot electron interchange instability: drift-resonant transport; Gryokinetics; phase-space holes

  8. Synthesis of Aliphatic-Aromatic Copolyesters by a High Temperature

    E-Print Network [OSTI]

    Khan, Saad A.

    -aromatic polyesters. #12;Full Paper: Reverse-selective polymer membranes exhibiting high CO2 affinity can be used for purification of H2 in industrial gasification processes. In this work, the phy- sical properties of CO2Synthesis of Aliphatic-Aromatic Copolyesters by a High Temperature Bulk Reaction Between Poly

  9. Method for high temperature mercury capture from gas streams

    DOE Patents [OSTI]

    Granite, E.J.; Pennline, H.W.

    2006-04-25T23:59:59.000Z

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  10. Evolution of sputtered tungsten coatings at high temperature

    SciTech Connect (OSTI)

    Stelmakh, Veronika; Rinnerbauer, Veronika; Joannopoulos, John D.; Solja?i?, Marin; Celanovic, Ivan; Senkevich, Jay J. [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Tucker, Charles; Ives, Thomas; Shrader, Ronney [Materion Corporation, Buellton, California 93427 (United States)] [Materion Corporation, Buellton, California 93427 (United States)

    2013-11-15T23:59:59.000Z

    Sputtered tungsten (W) coatings were investigated as potential high temperature nanophotonic material to replace bulk refractory metal substrates. Of particular interest are materials and coatings for thermophotovoltaic high-temperature energy conversion applications. For such applications, high reflectance of the substrate in the infrared wavelength range is critical in order to reduce losses due to waste heat. Therefore, the reflectance of the sputtered W coatings was characterized and compared at different temperatures. In addition, the microstructural evolution of sputtered W coatings (1 and 5 ?m thick) was investigated as a function of anneal temperature from room temperature to 1000 °C. Using in situ x-ray diffraction analysis, the microstrain in the two samples was quantified, ranging from 0.33% to 0.18% for the 1 ?m sample and 0.26% to 0.20% for the 5 ?m sample, decreasing as the temperature increased. The grain growth could not be as clearly quantified due to the dominating presence of microstrain in both samples but was in the order of 20 to 80 nm for the 1 ?m sample and 50 to 100 nm for the 5 ?m sample, as deposited. Finally, the 5 ?m thick layer was found to be rougher than the 1 ?m thick layer, with a lower reflectance at all wavelengths. However, after annealing the 5 ?m sample at 900 °C for 1 h, its reflectance exceeded that of the 1 ?m sample and approached that of bulk W found in literature. Overall, the results of this study suggest that thick coatings are a promising alternative to bulk substrates as a low cost, easily integrated platform for nanostructured devices for high-temperature applications, if the problem of delamination at high temperature can be overcome.

  11. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    SciTech Connect (OSTI)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14T23:59:59.000Z

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 ?m) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  12. Application of Gamma code coupled with turbomachinery models for high temperature gas-cooled reactors

    SciTech Connect (OSTI)

    Chang Oh

    2008-02-01T23:59:59.000Z

    The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR’s higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-ofcoolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of a toxic gas, CO, and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. GAMMA code is being developed to implement turbomachinery models in the power conversion unit (PCU) and ultimately models associated with the hydrogen plant. Some preliminary results will be described in this paper.

  13. Accelerating Monte Carlo molecular simulations by reweighting and reconstructing Markov chains: Extrapolation of canonical ensemble averages and second derivatives to different temperature and density conditions

    SciTech Connect (OSTI)

    Kadoura, Ahmad; Sun, Shuyu, E-mail: shuyu.sun@kaust.edu.sa; Salama, Amgad

    2014-08-01T23:59:59.000Z

    Accurate determination of thermodynamic properties of petroleum reservoir fluids is of great interest to many applications, especially in petroleum engineering and chemical engineering. Molecular simulation has many appealing features, especially its requirement of fewer tuned parameters but yet better predicting capability; however it is well known that molecular simulation is very CPU expensive, as compared to equation of state approaches. We have recently introduced an efficient thermodynamically consistent technique to regenerate rapidly Monte Carlo Markov Chains (MCMCs) at different thermodynamic conditions from the existing data points that have been pre-computed with expensive classical simulation. This technique can speed up the simulation more than a million times, making the regenerated molecular simulation almost as fast as equation of state approaches. In this paper, this technique is first briefly reviewed and then numerically investigated in its capability of predicting ensemble averages of primary quantities at different neighboring thermodynamic conditions to the original simulated MCMCs. Moreover, this extrapolation technique is extended to predict second derivative properties (e.g. heat capacity and fluid compressibility). The method works by reweighting and reconstructing generated MCMCs in canonical ensemble for Lennard-Jones particles. In this paper, system's potential energy, pressure, isochoric heat capacity and isothermal compressibility along isochors, isotherms and paths of changing temperature and density from the original simulated points were extrapolated. Finally, an optimized set of Lennard-Jones parameters (?, ?) for single site models were proposed for methane, nitrogen and carbon monoxide.

  14. Nanofluid-based receivers for high-temperature, high-flux direct solar collectors

    E-Print Network [OSTI]

    Lenert, Andrej

    2010-01-01T23:59:59.000Z

    Solar power plants with surface receivers have low overall energy conversion efficiencies due to large emissive losses at high temperatures. Alternatively, volumetric receivers promise increased performance because solar ...

  15. High Temperature Thermocouples For In-pile Applications

    SciTech Connect (OSTI)

    J. L. Rempe; S. C. Wilkins

    2005-10-01T23:59:59.000Z

    Traditional methods for measuring temperature in-pile degrade at temperatures above 1080 degrees C. Hence, a project has been initiated to explore the use of specialized thermocouples that are composed of materials that are able to withstand higher temperature, in-pile test conditions. Results from efforts to develop, fabricate and evaluate the performance of these specialized thermocouples are reported in this paper. Candidate materials were evaluated for their ability to withstand irradiation, to resit material interactions and to remain ductile at high temperatures. In addition, candidate thermocouples were evaluated based on their resolution over the temperature ranges of interest. Results from these evaluations are reported, and additional on-going development activities are summarized.

  16. High Reliability, High TemperatureThermoelectric Power Generation Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TOTechnologyHighLouisianaDepartmentHighand

  17. Sealed glass coating of high temperature ceramic superconductors

    DOE Patents [OSTI]

    Wu, Weite (Tainan, TW); Chu, Cha Y. (Garnerville, NY); Goretta, Kenneth C. (Downers Grove, IL); Routbort, Jules L. (Darien, IL)

    1995-01-01T23:59:59.000Z

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  18. Design of a high temperature hot water central heating system

    SciTech Connect (OSTI)

    Beaumont, E.L.; Johnson, R.C.; Weaver, J.M.

    1981-11-01T23:59:59.000Z

    The paper reviews the conceptual design of a central heating system at Los Alamos Scientific Laboratory. The resource considered for this heating system design was hot dry rock geothermal energy. Design criteria were developed to ensure reliability of energy supply, to provide flexibility for adaptation to multiple energy resources, to make optimum use of existing equipment and to minimize reinvestment cost. A variable temperature peaking high temperature water system was selected for this purpose.

  19. Furnace Controls Using High Temperature Preheated Combustion Air

    E-Print Network [OSTI]

    Gonzales, J. M.; Rebello, W. J.

    1981-01-01T23:59:59.000Z

    FURNACE CONTROLS USING HIGH TEMPERATURE PREHEATED COMBUSTION AIR Jeffrey M. Gonzalez Wilfred J. Rebello GTE Products Corporation PAR Enterprises, Inc. Towanda, Pennsylvania Fairfax, Virginia ABSTRACT GTE Products Corporation (Towanda... available ratio control apparatus. Various control sys (I) was the development of a different way of looking at combustion. As preheated combustion air temperatures increase, excess air Industrial furnaces generally utilize air as the basic source...

  20. Cryocooler applications for high-temperature superconductor magnetic bearings.

    SciTech Connect (OSTI)

    Niemann, R. C.

    1998-05-22T23:59:59.000Z

    The efficiency and stability of rotational magnetic suspension systems are enhanced by the use of high-temperature superconductor (HTS) magnetic bearings. Fundamental aspects of the HTS magnetic bearings and rotational magnetic suspension are presented. HTS cooling can be by liquid cryogen bath immersion or by direct conduction, and thus there are various applications and integration issues for cryocoolers. Among the numerous cryocooler aspects to be considered are installation; operating temperature; losses; and vacuum pumping.

  1. Deposition method for producing silicon carbide high-temperature semiconductors

    DOE Patents [OSTI]

    Hsu, George C. (La Crescenta, CA); Rohatgi, Naresh K. (W. Corine, CA)

    1987-01-01T23:59:59.000Z

    An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.

  2. Nearly Perfect Fluidity in a High Temperature Superconductor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rameau, J. D. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Reber, T. J. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Yang, H. -B. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Akhanjee, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Gu, G. D. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Johnson, P. D. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Campbell, S. [Iowa State University, Ames, IA (United States)

    2014-10-01T23:59:59.000Z

    Perfect fluids are characterized as having the smallest ratio of shear viscosity to entropy density, ?/s, consistent with quantum uncertainty and causality. So far, nearly perfect fluids have only been observed in the quark-gluon plasma and in unitary atomic Fermi gases, exotic systems that are amongst the hottest and coldest objects in the known universe, respectively. We use angle resolved photoemission spectroscopy to measure the temperature dependence of an electronic analog of ?/s in an optimally doped cuprate high-temperature superconductor, finding it too is a nearly perfect fluid around, and above, its superconducting transition temperature Tc.

  3. High- and low-temperature-stable thermite composition for producing high-pressure, high-velocity gases

    DOE Patents [OSTI]

    Halcomb, Danny L. (Camden, OH); Mohler, Jonathan H. (Spring Valley, OH)

    1990-10-16T23:59:59.000Z

    A high- and low-temperature-stable thermite composition for producing high-pressure and high-velocity gases comprises an oxidizable metal, an oxidizing reagent, and a high-temperature-stable gas-producing additive selected from the group consisting of metal carbides and metal nitrides.

  4. Visbreaking-enhanced thermal recovery method utilizing high temperature steam

    SciTech Connect (OSTI)

    Shu, W.R.

    1984-06-26T23:59:59.000Z

    The displacement efficiency of a steam drive process is improved and steam override reduced by rapidly injecting a predetermined amount of high temperature steam via an injection well into the formation to visbreak a portion of the oil in the formation prior to a steam drive wherein steam is injected into the formation via the injection well to displace oil to a spaced-apart production well through which oil is recovered. The visbroken oil provides a more favorable transition of mobility ratio between the phases in the formation thereby reducing viscous fingering and increasing the displacement efficiency of the steam drive. In addition, after a predetermined amount of high temperature steam has been injected into the formation, the formation may be allowed to undergo a soak period prior to the steam drive. The high temperature steam injection and soaking steps may be sequentially repeated for a plurality of cycles.

  5. High-temperature corrosion control of lagged piping system components

    SciTech Connect (OSTI)

    Parks, R. (Dept. of the Navy, Naval Sea Systems Command, Code 05M11, Washington, DC (US)); Kogler, R.A. (Advanced Technology Inc., Arlington, VA (US))

    1990-07-01T23:59:59.000Z

    Over the past several years, the U.S. Navy has stepped up efforts to eliminate corrosion aboard its ships. One of the most effective techniques the Navy has employed is the application of sprayed aluminum for high-temperature corrosion protection. This sacrificial coating has performed well in the corrosion protection of high-temperature lagged steam valves and associated piping systems. Because of the superiority of the sprayed aluminum system over the conventional methods of protection for these piping systems, the Navy has realized considerable cost savings. These savings are the direct result of major reductions in routine maintenance associated with the application of sprayed aluminum coatings for corrosion protection purposes. This article discusses specific U.S. Navy experience with the use of sprayed aluminum coatings for high-temperature applications as well as current Navy practice regarding the use of this corrosion control coating.

  6. A new approach to oxygen enriched high temperature blast generation

    SciTech Connect (OSTI)

    Queille, P.H.; Macauley, D.

    1996-12-31T23:59:59.000Z

    When increasing fuel injection in a blast furnace in order to reduce coke consumption and/or to increase production, the blast furnace operator tries to keep similar raceway conditions, for instance, an equivalent flame temperature. To compensate for the cooling effect due to the higher injection rate, two solutions can be selected or combined: to raise the temperature of the blast and/or to increase the level of oxygen in the blast. Whatever the choice, the Blast Furnace manager will certainly try to reduce the resulting investment and operating costs to a minimum. Air Liquide and Kvaerner Davy are trying to provide a new way to address these needs by offering a new technology for blast heating. A higher blast temperature will not only allow a higher fuel injection at tuyere level, a lower coke consumption, but also a lower oxygen consumption. Air Liquide and Kvaerner Davy are now able to offer a new heat regenerator with major advantages over conventional stoves. This new device can be used as a permanent substitute for a stove, or as a temporary one during repair, or stove improvement. It can also be added to an existing set of stoves to increase the average blast temperature.

  7. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect (OSTI)

    Michael L. Swanson

    2005-08-30T23:59:59.000Z

    The transport reactor development unit (TRDU) was modified to accommodate oxygen-blown operation in support of a Vision 21-type energy plex that could produce power, chemicals, and fuel. These modifications consisted of changing the loop seal design from a J-leg to an L-valve configuration, thereby increasing the mixing zone length and residence time. In addition, the standpipe, dipleg, and L-valve diameters were increased to reduce slugging caused by bubble formation in the lightly fluidized sections of the solid return legs. A seal pot was added to the bottom of the dipleg so that the level of solids in the standpipe could be operated independently of the dipleg return leg. A separate coal feed nozzle was added that could inject the coal upward into the outlet of the mixing zone, thereby precluding any chance of the fresh coal feed back-mixing into the oxidizing zone of the mixing zone; however, difficulties with this coal feed configuration led to a switch back to the original downward configuration. Instrumentation to measure and control the flow of oxygen and steam to the burner and mix zone ports was added to allow the TRDU to be operated under full oxygen-blown conditions. In total, ten test campaigns have been conducted under enriched-air or full oxygen-blown conditions. During these tests, 1515 hours of coal feed with 660 hours of air-blown gasification and 720 hours of enriched-air or oxygen-blown coal gasification were completed under this particular contract. During these tests, approximately 366 hours of operation with Wyodak, 123 hours with Navajo sub-bituminous coal, 143 hours with Illinois No. 6, 106 hours with SUFCo, 110 hours with Prater Creek, 48 hours with Calumet, and 134 hours with a Pittsburgh No. 8 bituminous coal were completed. In addition, 331 hours of operation on low-rank coals such as North Dakota lignite, Australian brown coal, and a 90:10 wt% mixture of lignite and wood waste were completed. Also included in these test campaigns was 50 hours of gasification on a petroleum coke from the Hunt Oil Refinery and an additional 73 hours of operation on a high-ash coal from India. Data from these tests indicate that while acceptable fuel gas heating value was achieved with these fuels, the transport gasifier performs better on the lower-rank feedstocks because of their higher char reactivity. Comparable carbon conversions have been achieved at similar oxygen/coal ratios for both air-blown and oxygen-blown operation for each fuel; however, carbon conversion was lower for the less reactive feedstocks. While separation of fines from the feed coals is not needed with this technology, some testing has suggested that feedstocks with higher levels of fines have resulted in reduced carbon conversion, presumably due to the inability of the finer carbon particles to be captured by the cyclones. These data show that these low-rank feedstocks provided similar fuel gas heating values; however, even among the high-reactivity low-rank coals, the carbon conversion did appear to be lower for the fuels (brown coal in particular) that contained a significant amount of fines. The fuel gas under oxygen-blown operation has been higher in hydrogen and carbon dioxide concentration since the higher steam injection rate promotes the water-gas shift reaction to produce more CO{sub 2} and H{sub 2} at the expense of the CO and water vapor. However, the high water and CO{sub 2} partial pressures have also significantly reduced the reaction of (Abstract truncated)

  8. Dual Phase Membrane for High temperature CO2 Separation

    SciTech Connect (OSTI)

    Jerry Y.S. Lin; Matthew Anderson

    2005-12-01T23:59:59.000Z

    Research in the previous years in this project found that stainless steel supports are oxidized during high temperature, dual phase membrane separation of carbon dioxide (with oxygen). Consequently, a new material has been sought to alleviate the problems with oxidation. Lanthanum cobaltite oxide is a suitable candidate for the support material in the dual phase membrane due to its oxidation resistance and electronic conductivity. Porous lanthanum cobaltite membranes were prepared via the citrate method, using nitrate metal precursors as the source of La, Sr, Co and Fe. The material was prepared and ground into a powder, which was subsequently pressed into disks for sintering at 900 C. Conductivity measurements were evaluated using the four-probe DC method. Support pore size was determined by helium permeation. Conductivity of the lanthanum cobaltite material was found to be at a maximum of 0.1856 S/cm at 550 C. The helium permeance of the lanthanum cobaltite membranes for this research was on the order of 10{sup -6} moles/m{sup 2} {center_dot} Pa {center_dot} s, proving that the membranes are porous after sintering at 900 C. The average pore size based on steady state helium permeance measurements was found to be between 0.37 and 0.57 {micro}m. The lanthanum cobaltite membranes have shown to have desired porosity, pore size and electric conductivity as the support for the dual-phase membranes. Molten carbonate was infiltrated to the pores of lanthanum cobaltite membranes support. After infiltration with molten carbonate, the helium permeance of the membranes decreased by three orders of magnitude to 10{sup -9} moles/m{sup 2} {center_dot} Pa {center_dot} s. This number, however, is one order of magnitude larger than the room temperate permeance of the stainless steel supports after infiltration with molten carbonate. Optimization of the dip coating process with molten carbonate will be evaluated to determine if lower permeance values can be obtained with the lanthanum cobaltite membrane supports.

  9. Thermal Hydraulic Analysis of a Reduced Scale High Temperature Gas-Cooled Reactor Test Facility and its Prototype with MELCOR 

    E-Print Network [OSTI]

    Beeny, Bradley Aaron 1988-

    2012-11-12T23:59:59.000Z

    ................ 86 6.4 Area-averaged outer RPV wall temperature during PCC .............................. 88 6.5 Mass-averaged (by ring) core graphite temperatures during DCC ................ 89 6.6 Mass-averaged (by level) core... graphite temperatures during DCC ............... 91 6.7 Area-averaged outer RPV wall temperature during DCC .............................. 92 6.8 Steady-state core structural temperature distribution...

  10. Which Chiral Symmetry is Restored in High Temperature QCD?

    E-Print Network [OSTI]

    Claude Bernard; Tom Blum; Carleton DeTar; Steven Gottlieb; Urs M. Heller; James E. Hetrick; K. Rummukainen; R. Sugar; D. Toussaint; Matthew Wingate

    1996-11-27T23:59:59.000Z

    Sigma models for the high temperature phase transition in quantum chromodynamics (QCD) suggest that at high temperature the SU(N_f) x SU(N_f) chiral symmetry becomes exact, but the anomalous axial U(1) symmetry need not be restored. In numerical lattice simulations, traditional methods for detecting symmetry restoration have sought multiplets in the screening mass spectrum. However, these methods were imprecise and the results, so far, incomplete. With improved statistics and methodology, we are now able to offer evidence for a restoration of the SU(2) x SU(2) chiral symmetry just above the crossover, but not of the axial U(1) chiral symmetry.

  11. Margins in high temperature leak-before-break assessments

    SciTech Connect (OSTI)

    Budden, P.J.; Hooton, D.G.

    1997-04-01T23:59:59.000Z

    Developments in the defect assessment procedure R6 to include high-temperature mechanisms in Leak-before-Break arguments are described. In particular, the effect of creep on the time available to detect a leak and on the crack opening area, and hence leak rate, is discussed. The competing influence of these two effects is emphasized by an example. The application to Leak-before-Break of the time-dependent failure assessment diagram approach for high temperature defect assessment is then outlined. The approach is shown to be of use in assessing the erosion of margins by creep.

  12. Optimum high temperature strength of two-dimensional nanocomposites

    SciTech Connect (OSTI)

    Monclús, M. A.; Molina-Aldareguía, J. M., E-mail: jon.molina@imdea.org [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Zheng, S. J.; Mayeur, J. R.; Beyerlein, I. J.; Mara, N. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Polcar, T. [Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Llorca, J. [IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Madrid (Spain); Department of Materials Science, Polytechnic University of Madrid, E. T. S. de Ingenieros de Caminos, 28040 Madrid (Spain)

    2013-11-01T23:59:59.000Z

    High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glide within the layers to dislocation transmission across the layers. We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.

  13. Enhanced Oil Recovery in High Salinity High Temperature Reservoir by Chemical Flooding 

    E-Print Network [OSTI]

    Bataweel, Mohammed Abdullah

    2012-02-14T23:59:59.000Z

    Studying chemical enhanced oil recovery (EOR) in a high-temperature/high-salinity (HT/HS) reservoir will help expand the application of chemical EOR to more challenging environments. Until recently, chemical EOR was not recommended at reservoirs...

  14. Experimental Investigation on High-pressure, High-temperature Viscosity of Gas Mixtures

    E-Print Network [OSTI]

    Davani, Ehsan

    2012-02-14T23:59:59.000Z

    Modeling the performance of high-pressure, high-temperature (HPHT) natural gas reservoirs requires the understanding of gas behavior at such conditions. In particular, gas viscosity is an important fluid property that directly affects fluid flow...

  15. Enhanced Oil Recovery in High Salinity High Temperature Reservoir by Chemical Flooding

    E-Print Network [OSTI]

    Bataweel, Mohammed Abdullah

    2012-02-14T23:59:59.000Z

    Studying chemical enhanced oil recovery (EOR) in a high-temperature/high-salinity (HT/HS) reservoir will help expand the application of chemical EOR to more challenging environments. Until recently, chemical EOR was not recommended at reservoirs...

  16. Numerical Modeling of Cased-hole Instability in High Pressure and High Temperature Wells 

    E-Print Network [OSTI]

    Shen, Zheng 1983-

    2012-11-12T23:59:59.000Z

    of cemented sections in High Pressure High Temperature (HPHT) wells. The existing analysis shows that, in the perforation zones, casing/cement is subject to instability, particularly in the presence of cavities. This dissertation focuses on the instability...

  17. Application of neutron diffraction to measure residual strains in high temperature composites

    SciTech Connect (OSTI)

    Saigal, A. (Tufts Univ., Medford, MA (USA). Dept. of Mechanical Engineering); Kupperman, D.S. (Argonne National Lab., IL (USA))

    1991-01-01T23:59:59.000Z

    An experimental neutron diffraction technique was used to measure residual thermal strains developed in high temperature composites during postfabrication cooling. Silicon carbide fiber-reinforced titanium aluminide (over the temperature range 20--950{degree}C) and tungsten and saphikon fiber-reinforced nickel aluminide composites (at room temperature) were investigated. As a result of thermal expansion mismatch, compressive residual strains and stresses were generated in the silicon carbide fibers during cooldown. The axial residual strains were tensile in the matrix and were lower in nickel aluminide matrix as compared to those in titanium aluminide matrix. The average transverse residual strains in the matrix were compressive. Liquid-nitrogen dipping and thermal-cycling tend to reduce the fabrication-induced residual strains in silicon carbide fiber-reinforced titanium aluminide matrix composite. However, matrix cracking can occur as a result of these processes. 10 refs., 5 figs., 2 tabs.

  18. Computational and Experimental Development of Novel High Temperature Alloys

    SciTech Connect (OSTI)

    Kramer, M.J.; Ray, P.K.; and Akinc, M.

    2010-06-29T23:59:59.000Z

    The work done in this paper is based on our earlier work on developing an extended Miedema model and then using it to downselect potential alloy systems. Our approach is to closely couple the semi-empirical methodologies to more accurate ab initio methods to dentify the best candidates for ternary alloying additions. The architectural framework for our material's design is a refractory base metal with a high temperature intermetallic which provides both high temperature creep strength and a source of oxidatively stable elements. Potential refractory base metals are groups IIIA, IVA and VA. For Fossil applications, Ni-Al appears to be the best choice to provide the source of oxidatively stable elements but this system requires a 'boost' in melting temperatures to be a viable candidate in the ultra-high temperature regime (> 1200C). Some late transition metals and noble elements are known to increase the melting temperature of Ni-Al phases. Such an approach suggested that a Mo-Ni-Al system would be a good base alloy system that could be further improved upon by dding Platinum group metals (PGMs). In this paper, we demonstrate the variety of microstructures that can be synthesized for the base alloy system, its oxidation behavior as well as the oxidation behavior of the PGM substituted oxidation resistant B2 NiAl phase.

  19. High-Temperature Quantum Coherence from Dissipative Environments

    E-Print Network [OSTI]

    George E. Cragg

    2014-11-14T23:59:59.000Z

    The Feynman-Vernon path integral formalism is used to derive the density matrix of a quantum oscillator that is linearly coupled to an environmental reservoir. Although low-temperature reservoirs thermalize the oscillator to the usual Boltzmann distribution, reservoirs at intermediate temperatures reduce this distribution to a single, coherent ground state. Associated with this state is an imaginary frequency indicating an environment which absorbs energy from the oscillator through the suppression of all excited modes. Further increase of the environmental temperature results again in the thermalization of the quantum oscillator to the expected Boltzmann distribution. Qualitatively, this result could account for high-temperature quantum effects including the superconducting properties of graphite grains as well as the quantum coherence observed in photosynthetic systems.

  20. High Temperature Materials Interim Data Qualification Report FY 2011

    SciTech Connect (OSTI)

    Nancy Lybeck

    2011-08-01T23:59:59.000Z

    Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the Next Generation Nuclear Plant (NGNP) Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim fiscal year (FY) 2011 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under the Nuclear Quality Assurance (NQA)-1 guidelines and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from seven test series within the High Temperature Materials data stream have been entered into the NDMAS vault, including tensile tests, creep tests, and cyclic tests. Of the 5,603,682 records currently in the vault, 4,480,444 have been capture passed, and capture testing is in process for the remaining 1,123,238.

  1. Materials for the scavanging of hydrogen at high temperatures

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA); Phillip, Bradley L. (Shaker Heights, OH)

    1997-01-01T23:59:59.000Z

    A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compositions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100.degree. C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

  2. Materials for the scavanging of hydrogen at high temperatures

    DOE Patents [OSTI]

    Shepodd, Timothy J. (330 Thrasher Ave., Livermore, Alameda County, CA 94550); Phillip, Bradley L. (20976 Fairmount Blvd., Shaker Heights, Cuyahoga County, OH 44120)

    1997-01-01T23:59:59.000Z

    A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compostions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

  3. PSO project: 4760 High Temperature PEM Fuel Cell

    E-Print Network [OSTI]

    PSO project: 4760 High Temperature PEM Fuel Cell Final report - Public part - #12;Project, Technical University of Denmark Partners: IRD Fuel Cells A/S Danish Power Systems Aps DONG Energy Authors, and a steady reduction of production cost is also desired (as in general for fuel cells). However, during

  4. High-temperature pressure-coupled ultrasonic waveguide

    DOE Patents [OSTI]

    Caines, M.J.

    1981-02-11T23:59:59.000Z

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  5. A high temperature furnace The Sample Environment Group

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ). It is designed to accommodate large samples, and use low quality cooling water. The furnace uses a tantalum heat also minimizing mass at the furnace centre. Tantalum and alumina were specified for these items723 A high temperature furnace The Sample Environment Group Neutron Division, Rutherford Appleton

  6. High Temperature Gas Reactors Andrew C. Kadak, Ph.D.

    E-Print Network [OSTI]

    ­ fewer problems in accident · Utilizes gas turbine technology · Lower Power Density ­ no meltdownHigh Temperature Gas Reactors Andrew C. Kadak, Ph.D. Professor of the Practice Massachusetts Institute of Technology #12;#12;#12;#12;Presentation Overview · Introduction to Gas Reactors · Pebble Bed

  7. Free energy of Lorentz-violating QED at high temperature

    E-Print Network [OSTI]

    M. Gomes; T. Mariz; J. R. Nascimento; A. Yu. Petrov; A. F. Santos; A. J. da Silva

    2010-02-25T23:59:59.000Z

    In this paper we study the one- and two-loop contribution to the free energy in QED with the Lorentz symmetry breaking introduced via constant CPT-even Lorentz-breaking parameters at the high temperature limit. We find the impact of the Lorentz-violating term for the free energy and carry out a numerical estimation for the Lorentz-breaking parameter.

  8. Electronically conductive ceramics for high temperature oxidizing environments

    DOE Patents [OSTI]

    Kucera, G.H.; Smith, J.L.; Sim, J.W.

    1983-11-10T23:59:59.000Z

    This invention pertains to a high temperature, ceramic composition having electronic conductivity as measured by resistivity below about 500 ohm-cm, chemical stability particularly with respect to cathode conditions in a molten carbonate fuel cell, and composed of an alkali metal, transition metal oxide containing a dopant metal in the crystalline structure to replace a portion of the alkali metal or transition metal.

  9. High Operating Temperature Liquid Metal Heat Transfer Fluids (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01T23:59:59.000Z

    The University of California, Los Angeles, the University of California, Berkeley, and Yale University is one of the 2012 SunShot CSP R&D awardees for their Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids. This fact sheet explains the motivation, description, and impact of the project.

  10. Reducing PM Concentrations in Simulated High Temperature Gas Streams

    E-Print Network [OSTI]

    Luehrs, Daniel R

    2014-08-07T23:59:59.000Z

    the reaction temperatures and capture the energy in the biomass. CGT has an approximant 16,300 kJ/kg (7,000 Btu/lb) of energy. The resulting synthetic gas (syngas) can have an energy content as high as 7,450 kJ/m^(3) (200 Btu/dscf) and can be fed directly...

  11. High-temperature quenching of electrical resistance in graphene interconnects

    E-Print Network [OSTI]

    assuming a current density j=3.9 MA/cm2 and a resistivity =2.2 cm. The self- heating problem is aggravated scale structures.3,4 One of the approaches to mitigate the self-heating prob- lem is to incorporateHigh-temperature quenching of electrical resistance in graphene interconnects Q. Shao, G. Liu, D

  12. POWER-TO-GAS PROCESS WITH HIGH TEMPERATURE ELECTROLYSIS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    · Transportation of energy from production areas to consumption areas Substitute Natural Gas (methane) Myriam DeP · Use of existing natural gas network · Mid or long term storage · Transportation · Production. Energy background 2. Power-to-Substitute Natural Gas process with high temperature steam electrolysis

  13. High Temperature coatings based on {beta}-NiAI

    SciTech Connect (OSTI)

    Severs, Kevin

    2012-07-10T23:59:59.000Z

    High temperature alloys are reviewed, focusing on current superalloys and their coatings. The synthesis, characerization, and oxidation performance of a NiAl–TiB{sub 2} composite are explained. A novel coating process for Mo–Ni–Al alloys for improved oxidation performance is examined. The cyclic oxidation performance of coated and uncoated Mo–Ni–Al alloys is discussed.

  14. Author's Accepted Manuscript High-temperature-oxidation-induced ordered struc-

    E-Print Network [OSTI]

    Laughlin, David E.

    and turbine power generation system, turbine alloys are exposed to high temperature and an atmosphere comprised of steam, CO2 and O2. While surface and internal oxidation of the alloy takes place-fuel combustion turbine power generation systems are being developed, materials performance of candidate

  15. Initial Operation of the High Temperature Electrolysis Integrated Laboratory Scale Experiment at INL

    SciTech Connect (OSTI)

    C. M. Stoots; J. E. O'Brien; K. G. Condie; J. S. Herring; J. J. Hartvigsen

    2008-06-01T23:59:59.000Z

    An integrated laboratory scale, 15 kW high-temperature electrolysis facility has been developed at the Idaho National Laboratory under the U.S. Department of Energy Nuclear Hydrogen Initiative. Initial operation of this facility resulted in over 400 hours of operation with an average hydrogen production rate of approximately 0.9 Nm3/hr. The integrated laboratory scale facility is designed to address larger-scale issues such as thermal management (feed-stock heating, high-temperature gas handling), multiple-stack hot-zone design, multiple-stack electrical configurations, and other “integral” issues. This paper documents the initial operation of the ILS, with experimental details about heat-up, initial stack performance, as well as long-term operation and stack degradation.

  16. Enhancements to High Temperature In-Pile Thermocouple Performance

    SciTech Connect (OSTI)

    J.C. Crepeau; J.L. Rempe; J.E. Daw; D.L. Knudson: K.G. Condie; S.C. Wilkins

    2008-03-31T23:59:59.000Z

    A joint University of Idaho (UI) and Idaho National Laboratory (INL) University Nuclear Research Initiative (UNERI) was to initiated to extend initial INL efforts to develop doped molybdenum/niobium alloy High Temperature Irradiation Resistant Thermocouples (HTIR-TCs). The overall objective of this UNERI was to develop recommendations for an optimized thermocouple design for high temperature, long duration, in-pile testing by expanding upon results from initial INL efforts. Tasks to quantify the impact of candidate enhancements, such as alternate alloys, alternate geometries, and alternate thermocouple fabrication techniques, on thermocouple performance were completed at INL's High Temperature Test Laboratory (HTTL), a state of the art facility equipped with specialized equipment and trained staff in the area of high temperature instrumentation development and evaluation. Key results of these evaluations, which are documented in this report, are as follows. The doped molybdenum and Nb-1%Zr, which were proposed in the initial INL HTIR-TC design, were found to retain ductility better than the developmental molybdenum-low niobium alloys and the niobium-low molybdenum alloys evaluated. Hence, the performance and lower cost of the commercially available KW-Mo makes a thermocouple containing KW-Mo and Nb-1%Zr the best option at this time. HTIR-TCs containing larger diameter wires offer the potential to increase HTIR-TC stability and reliability at higher temperatures. HTIR-TC heat treatment temperatures and times should be limited to not more than 100 C above the proposed operating temperatures and to durations of at least 4 to 5 hours. Preliminary investigations suggest that the performance of swaged and loose assembly HTIR-TC designs is similar. However, the swaged designs are less expensive and easier to construct. In addition to optimizing HTIR-TC performance, This UNERI project provided unique opportunities to several University of Idaho students, allowing them to become familiar with the techniques and equipment used for specialized high temperature instrumentation fabrication and evaluation and to author/coauthor several key conference papers and journal articles.

  17. Enhancements to High Temperature In-Pile Thermocouple Performance

    SciTech Connect (OSTI)

    J. C. Crepeau; J. L. Rempe; J. E. Daw; D. L. Knudson; K. G. Condie; S. C. Wilkins

    2008-03-01T23:59:59.000Z

    A joint University of Idaho (UI) and Idaho National Laboratory (INL) University Nuclear Research Initiative (UNERI) was to initiated to extend initial INL efforts to develop doped lybdenum/niobium alloy High Temperature Irradiation Resistant Thermocouples (HTIR-TCs). The overall objective of this UNERI was to develop recommendations for an optimized thermocouple design for high temperature, long duration, in-pile testing by expanding upon results from initial INL efforts. Tasks to quantify the impact of candidate enhancements, such as alternate alloys, alternate geometries, and alternate thermocouple fabrication techniques, on thermocouple performance were completed at INL's High Temperature Test Laboratory (HTTL), a state of the art facility equipped with specialized equipment and trained staff in the area of high temperature instrumentation development and evaluation. Key results of these evaluations, which are documented in this report, are as follows. The doped molybdenum and Nb-1%Zr, which were proposed in the initial INL HTIR-TC design, were found to retain ductility better than the developmental molybdenum-low niobium alloys and the niobium-low molybdenum alloys evaluated. Hence, the performance and lower cost of the commercially available KW-Mo makes a thermocouple containing KW-Mo and Nb-1%Zr the best option at this time. HTIR-TCs containing larger diameter wires offer the potential to increase HTIR-TC stability and reliability at higher temperatures. HTIR-TC heat treatment temperatures and times should be limited to not more than 100 °C above the proposed operating temperatures and to durations of at least 4 to 5 hours. Preliminary investigations suggest that the performance of swaged and loose assembly HTIR-TC designs is similar. However, the swaged designs are less expensive and easier to construct. In addition to optimizing HTIR-TC performance, This UNERI project provided unique opportunities to several University of Idaho students, allowing them to become familiar with the techniques and equipment used for specialized high temperature instrumentation fabrication and evaluation and to author/coauthor several key conference papers and journal articles.

  18. Baseline Concept Description of a Small Modular High Temperature Reactor

    SciTech Connect (OSTI)

    Hans Gougar

    2014-05-01T23:59:59.000Z

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.

  19. Universal Membrane Classification Scheme: Maximizing the Return on High Temperature PEM Membrane Research

    Broader source: Energy.gov [DOE]

    This presentation on maximizing the return of high temperature PEM membrane research was given at the High Temperature Membrane Working Group Meeting in May 2007.

  20. CARISMA: A Networking Project for High Temperature PEMFC MEA Activities in Europe

    Broader source: Energy.gov [DOE]

    This presentation on high temperature proton exchange membrane fuel cells was given at the High Temperature Membrane Working Group Meeting in May 2007.

  1. High-Temperature Thermoelectric Characterization of III–V Semiconductor Thin Films by Oxide Bonding

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    High-Temperature Thermoelectric Characterization of III–Vfor high-temperature thermoelectric charac- terization ofdiffusion barrier. A thermoelectric material, thin-?lm ErAs:

  2. High-Temperature Zirconia Oxygen Sensor with Sealed Metal/Metal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference High-Temperature Zirconia Oxygen Sensor with Sealed MetalMetal Oxide Internal Reference...

  3. High-Temperature Components for Rankine-Cycle-Based Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery Systems on Combustion Engines High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery...

  4. A Discussion of Conductivity Testing in High Temperature Membranes (lessons learned in assessing transport)

    Broader source: Energy.gov [DOE]

    Presentation on conductivity testing in high temperature membranes given by Jim Boncella of Los Alamos National Laboratory at the High Temperature Membrane Working Group meeting in October 2005.

  5. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    that can operate with Stirling engines at 42% efficiency andfor high temperature Stirling engines which operates at 42%turbines such as Stirling engines, while high-temperature (>

  6. Shock-induced synthesis of high temperature superconducting materials

    DOE Patents [OSTI]

    Ginley, D.S.; Graham, R.A.; Morosin, B.; Venturini, E.L.

    1987-06-18T23:59:59.000Z

    It has now been determined that the unique features of the high pressure shock method, especially the shock-induced chemical synthesis technique, are fully applicable to high temperature superconducting materials. Extraordinarily high yields are achievable in accordance with this invention, e.g., generally in the range from about 20% to about 99%, often in the range from about 50% to about 90%, lower and higher yields, of course, also being possible. The method of this invention involves the application of a controlled high pressure shock compression pulse which can be produced in any conventional manner, e.g., by detonation of a high explosive material, the impact of a high speed projectile or the effect of intense pulsed radiation sources such as lasers or electron beams. Examples and a discussion are presented.

  7. Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes

    SciTech Connect (OSTI)

    Lee O. Nelson

    2011-04-01T23:59:59.000Z

    This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

  8. High Temperature Mechanical Properties of Molybdenum Solid Solution Alloys

    SciTech Connect (OSTI)

    Charit, I.; Murty, K.L. [College of Engineering, North Carolina State University, Raleigh, NC 27695, (United States)

    2006-07-01T23:59:59.000Z

    Demanding material requirements for space nuclear power systems have called for the use of refractory alloys. Molybdenum alloys are such candidate materials because of their good mechanical properties at fairly high temperatures, low neutron capture cross-section, and superior resistance to the attack of liquid metals. However, conventional Mo alloys have low ductility at lower temperatures. Hence, there have been several attempts to improve their viability. One of those approaches has been to alloy Mo with various alloying additions in solid solution, most notably with rhenium (Re). In this study the high temperature deformation behavior of various Mo-X (X Re, W, Nb, Hf) alloys is reviewed. High temperature deformation data for these solid solution alloys are analyzed in the light of existing deformation theories. Alloys with both Class-M and -A type behavior are identified and thus, various mechanisms are found to operate. Sometimes data interpretation becomes difficult due to the presence of second phase particles. Results are compared with unalloyed Mo to bring out the importance of solid solution alloying. (authors)

  9. Polymer nanocomposites for high-temperature composite repair

    SciTech Connect (OSTI)

    Sheng, Xia

    2008-12-01T23:59:59.000Z

    A novel repair agent for resin-injection repair of advanced high temperature composites was developed and characterized. The repair agent was based on bisphenol E cyanate ester (BECy) and reinforced with alumina nanoparticles. To ensure good dispersion and compatibility with the BECy matrix in nanocomposites, the alumina nanoparticles were functionalized with silanes. The BECy nanocomposites, containing bare and functionalized alumina nanoparticles, were prepared and evaluated for their thermal, mechanical, rheological, and viscoelastic properties. The monomer of BECy has an extremely low viscosity at ambient temperature, which is good for processability. The cured BECy polymer is a highly cross-linked network with excellent thermal mechanical properties, with a high glass transition temperature (T{sub g}) of 270 C and decomposition temperature above 350 C. The incorporation of alumina nanoparticles enhances the mechanical and rheological properties of the BECy nanocomposites. Additionally, the alumina nanoparticles are shown to catalyze the cure of BECy. Characterization of the nanocomposites included dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy. The experimental results show that the BECy nanocomposite is a good candidate as repair agent for resin-injection repair applications.

  10. Note: Zeeman splitting measurements in a high-temperature plasma

    SciTech Connect (OSTI)

    Golingo, R. P.; Shumlak, U.; Den Hartog, D. J. [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington 98195-2250 (United States)

    2010-12-15T23:59:59.000Z

    The Zeeman effect has been used for measurement of magnetic fields in low-temperature plasma, but the diagnostic technique is difficult to implement in a high-temperature plasma. This paper describes new instrumentation and methodology for simultaneous measurement of the entire Doppler-broadened left and right circularly polarized Zeeman spectra in high-temperature plasmas. Measurements are made using spectra emitted parallel to the magnetic field by carbon impurities in high-temperature plasma. The Doppler-broadened width is much larger than the magnitude of the Zeeman splitting, thus simultaneous recording of the two circularly polarized Zeeman line profiles is key to accurate measurement of the magnetic field in the ZaP Z-pinch plasma device. Spectral data are collected along multiple chords on both sides of the symmetry axis of the plasma. This enables determination of the location of the current axis of the Z-pinch and of lower-bound estimates of the local magnetic field at specific radial locations in the plasma.

  11. Complete temperature profiles in ultra-high pressure liquid chromatography columns

    SciTech Connect (OSTI)

    Gritti, Fabrice [University of Tennessee, Knoxville (UTK); Guiochon, Georges A [ORNL

    2008-01-01T23:59:59.000Z

    The temperature profiles were calculated along and across seven packed columns (lengths 30, 50, 100, and 150 mm, i.d., 1 and 2.1 mm, all packed with Acquity UPLC, BEH-C{sub 18} particles, average d{sub p} {approx} 1.7 {micro}m) and their stainless steel tubes (o.d. 4.53 and 6.35 mm). These columns were kept horizontal and sheltered from forced air convection (i.e., under still air conditions), at room temperature. They were all percolated with pure acetonitrile, either under the maximum pressure drop (1034 bar) or at the maximum flow rate (2 mL/min) permitted by the chromatograph. The heat balance equation of chromatographic columns was discretized and solved numerically with minimum approximation. Both the compressibility and the thermal expansion of the eluent were taken into account. The boundary conditions were determined from the experimental measurements of the column inlet pressure and of the temperature profile along the column wall, which were made with a precision better than {+-}0.1 K. These calculation results provide the 3-D temperature profiles along and across the columns. The axial and radial temperature gradients are discussed in relationship with the experimental conditions used. The temperature map obtained permits a prediction of the chromatographic data obtained under a very high pressure gradient.

  12. Sealed glass coating of high temperature ceramic superconductors

    DOE Patents [OSTI]

    Wu, W.; Chu, C.Y.; Goretta, K.C.; Routbort, J.L.

    1995-05-02T23:59:59.000Z

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor is disclosed. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor. 8 figs.

  13. LX-17 Deflagration at High Pressures and Temperatures

    SciTech Connect (OSTI)

    Koerner, J; Maienschein, J; Black, K; DeHaven, M; Wardell, J

    2006-10-23T23:59:59.000Z

    We measure the laminar deflagration rate of LX-17 (92.5 wt% TATB, 7.5 wt% Kel-F 800) at high pressure and temperature in a strand burner, thereby obtaining reaction rate data for prediction of thermal explosion violence. Simultaneous measurements of flame front time-of-arrival and temporal pressure history allow for the direct calculation of deflagration rate as a function of pressure. Additionally, deflagrating surface areas are calculated in order to provide quantitative insight into the dynamic surface structure during deflagration and its relationship to explosion violence. Deflagration rate data show that LX-17 burns in a smooth fashion at ambient temperature and is represented by the burn rate equation B = 0.2P{sup 0.9}. At 225 C, deflagration is more rapid and erratic. Dynamic deflagrating surface area calculations show that ambient temperature LX-17 deflagrating surface areas remain near unity over the pressure range studied.

  14. 9 Cr-- 1 Mo steel material for high temperature application

    DOE Patents [OSTI]

    Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-11-27T23:59:59.000Z

    One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

  15. Dual Phase Membrane for High Temperature CO2 Separation

    SciTech Connect (OSTI)

    Jerry Y.S. Lin; Matthew Anderson

    2006-09-29T23:59:59.000Z

    Dual-phase membranes consisting of stainless steel supports infiltrated with molten carbonate have been shown to be selective to CO{sub 2} at high temperatures (400-650 C). However, over time at high temperatures, the formation of iron oxides on the surface of the stainless steel supports render the membranes ineffective. This report details synthesis and characteristics of dual-phase carbonate membrane with an oxidation resistant perovskite type ceramic (lanthanum-strontium-cobaltite-iron; LSCF) support. Porous LSCF supports were prepared from its powder synthesized by the citrate method. Both steady state permeation and mercury porosimetry confirmed that the LSCF membrane sintered at 900 C has pores large enough to absorb molten carbonate, yet small enough to retain the molten carbonate under high pressure conditions. Results of XRD analysis have shown that LSCF and the molten carbonate mixture do not react with each other at temperatures below 700 C. Four-point method conductivity tests indicate that the support material has sufficiently high electronic conductivity for this application. Li-Na-K carbonate was coated to the porous LSCF support by a liquid infiltration method. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. Preliminary high temperature permeation experiments indicate that the membrane does separate CO{sub 2} in the presence of O{sub 2}, with a maximum flux of 0.623 ml/cm{sup 2} {center_dot} min obtained at 850 C.

  16. High Temperature Irradiation-Resistant Thermocouple Performance Improvements

    SciTech Connect (OSTI)

    Joshua Daw; Joy Rempe; Darrell Knudson; John Crepeau; S. Curtis Wilkins

    2009-04-01T23:59:59.000Z

    Traditional methods for measuring temperature in-pile degrade at temperatures above 1100 ºC. To address this instrumentation need, the Idaho National Laboratory (INL) developed and evaluated the performance of a high temperature irradiation-resistant thermocouple (HTIR-TC) that contains alloys of molybdenum and niobium. Data from high temperature (up to 1500 ºC) long duration (up to 4000 hours) tests and on-going irradiations at INL’s Advanced Test Reactor demonstrate the superiority of these sensors to commercially-available thermocouples. However, several options have been identified that could further enhance their reliability, reduce their production costs, and allow their use in a wider range of operating conditions. This paper presents results from on-going Idaho National Laboratory (INL)/University of Idaho (UI) efforts to investigate options to improve HTIR-TC ductility, reliability, and resolution by investigating specially-formulated alloys of molybdenum and niobium and alternate diameter thermoelements (wires). In addition, on-going efforts to evaluate alternate fabrication approaches, such as drawn and loose assembly techniques will be discussed. Efforts to reduce HTIR-TC fabrication costs, such as the use of less expensive extension cable will also be presented. Finally, customized HTIR-TC designs developed for specific customer needs will be summarized to emphasize the varied conditions under which these sensors may be used.

  17. Simulations of magnetic hysteresis loops at high temperatures

    SciTech Connect (OSTI)

    Plumer, M. L.; Whitehead, J. P.; Fal, T. J. [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X7 (Canada); Ek, J. van [Western Digital Corporation, San Jose, California 94588 (United States); Mercer, J. I. [Department of Computer Science, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X7 (Canada)

    2014-09-28T23:59:59.000Z

    The kinetic Monte-Carlo algorithm as well as standard micromagnetics are used to simulate MH loops of high anisotropy magnetic recording media at both short and long time scales over a wide range of temperatures relevant to heat-assisted magnetic recording. Microscopic parameters, common to both methods, were determined by fitting to experimental data on single-layer FePt-based media that uses the Magneto-Optic Kerr effect with a slow sweep rate of 700 Oe/s. Saturation moment, uniaxial anisotropy, and exchange constants are given an intrinsic temperature dependence based on published atomistic simulations of FePt grains with an effective Curie temperature of 680 K. Our results show good agreement between micromagnetics and kinetic Monte Carlo results over a wide range of sweep rates. Loops at the slow experimental sweep rates are found to become more square-shaped, with an increasing slope, as temperature increases from 300 K. These effects also occur at higher sweep rates, typical of recording speeds, but are much less pronounced. These results demonstrate the need for accurate determination of intrinsic thermal properties of future recording media as input to micromagnetic models as well as the sensitivity of the switching behavior of thin magnetic films to applied field sweep rates at higher temperatures.

  18. Suppressed gross erosion of high-temperature lithium films under high-flux deuterium bombardment

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    P1-030 Suppressed gross erosion of high-temperature lithium films under high-flux deuterium) and thick (~500 m) lithium films under high-flux deuterium and neon plasma bombardment were studied. For Ne plasmas, Li erosion rates inferred from measurements of Li-I radiation are consistent

  19. Theory of intertwined orders in high temperature superconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fradkin, Eduardo; Tranquada, John M.; Kivelson, Steven A.

    2015-05-01T23:59:59.000Z

    The electronic phase diagrams of many highly correlated systems, and in particular the cuprate high temperature superconductors, are complex, with many different phases appearing with similar—sometimes identical—ordering temperatures even as material properties, such as a dopant concentration, are varied over wide ranges. This complexity is sometimes referred to as “competing orders.” However, since the relation is intimate, and can even lead to the existence of new phases of matter such as the putative “pair-density-wave,” the general relation is better thought of in terms of “intertwined orders.” We selectively analyze some of the experiments in the cuprates which suggest that essentialmore »aspects of the physics are reflected in the intertwining of multiple orders—not just in the nature of each order by itself. We also summarize and critique several theoretical ideas concerning the origin and implications of this complexity.« less

  20. Theory of intertwined orders in high temperature superconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fradkin, Eduardo [Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States); Tranquada, John M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kivelson, Steven A. [Stanford Univ., Stanford, CA (United States)

    2015-05-01T23:59:59.000Z

    The electronic phase diagrams of many highly correlated systems, and in particular the cuprate high temperature superconductors, are complex, with many different phases appearing with similar—sometimes identical—ordering temperatures even as material properties, such as a dopant concentration, are varied over wide ranges. This complexity is sometimes referred to as “competing orders.” However, since the relation is intimate, and can even lead to the existence of new phases of matter such as the putative “pair-density-wave,” the general relation is better thought of in terms of “intertwined orders.” We selectively analyze some of the experiments in the cuprates which suggest that essential aspects of the physics are reflected in the intertwining of multiple orders—not just in the nature of each order by itself. We also summarize and critique several theoretical ideas concerning the origin and implications of this complexity.

  1. Iron aluminide alloys with improved properties for high temperature applications

    DOE Patents [OSTI]

    McKamey, Claudette G. (Knoxville, TN); Liu, Chain T. (Oak Ridge, TN)

    1990-01-01T23:59:59.000Z

    An improved iron aluminide alloy of the DO.sub.3 type that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy corrosion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26-30 at. % aluminum, 0.5-10 at. % chromium, 0.02-0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron.

  2. Iron aluminide alloys with improved properties for high temperature applications

    DOE Patents [OSTI]

    McKamey, C.G.; Liu, C.T.

    1990-10-09T23:59:59.000Z

    An improved iron aluminide alloy of the DO[sub 3] type is described that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy conversion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26--30 at. % aluminum, 0.5--10 at. % chromium, 0.02--0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron. 3 figs.

  3. High temperature solar thermal technology: The North Africa Market

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  4. RF properties of high temperature superconductors: Cavity methods

    SciTech Connect (OSTI)

    Portis, A.M. (California Univ., Berkeley, CA (USA)); Cooke, D.W.; Gray, E.R. (Los Alamos National Lab., NM (USA))

    1990-01-01T23:59:59.000Z

    A description of cavities used in the study of the microwave properties of the high-temperature superconductors is followed by a lumped-circuit analysis of the coupling of transmission lines and resonators. The frequency dependence of the reflected and transmitted microwave power and the character of transient cavity response are analyzed. Techniques are discussed for the introduction of samples of the high-temperature superconductors into microwave cavities. Following a discussion of sample surface impedance and sample geometry factor, the connection between surface resistance and cavity Q is examined as well as the connection between cavity frequency shift and surface reactance. Measurement techniques that utilize reflected or transmitted power or transient response are described. 35 refs., 1 fig.

  5. Design manual for high temperature hot water and steam systems

    SciTech Connect (OSTI)

    Cofield, R.E. Jr.

    1984-01-01T23:59:59.000Z

    The author presents aspects of high temperature hot water and steam generating systems. It covers all the calculations that must be made for sizing and then selecting the equipment that will make up an energy system. The author provides essential information on loan analysis, types of fuel, storage requirements, handling facilities, waste disposal, HVAC needs, and back-up systems. Also included are the calculations needed for determining the size of compressors, air pollution devices, fans, filters, and other supplementary equipment.

  6. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA)

    1986-01-01T23:59:59.000Z

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  7. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA); Zymboly, Gregory E. (Penn Hills Township, Allegheny County, PA)

    1985-01-01T23:59:59.000Z

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  8. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA)

    1987-01-01T23:59:59.000Z

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  9. High temperature superconductivity in metallic region near Mott transition

    E-Print Network [OSTI]

    Tian De Cao

    2009-09-11T23:59:59.000Z

    The spin-singlet superconductivity without phonons is examined in consideration of correlations on an extended Hubbard model. It is shown that the superconductivity requires not only the total correlation should be strong enough but also the density of state around Fermi energy should be large enough, which shows that the high temperature superconductivity could only be found in the metallic region near the Mott metal insulator transition (MIT). Other properties of superconductors are also discussed on these conclusions.

  10. High Temperature Heat Recovery Systems Using Ceramic Recuperators

    E-Print Network [OSTI]

    Young, S. B.; Bjerklie, J. W.; York, W. A.

    1980-01-01T23:59:59.000Z

    HIGH TEMPERATURE HEAT RECOVERY SYSTEMS USING CERAMIC RECUPERATORS S. B. Young, J. W. Bjerklie, W. A. York Hague International South Portland, Maine ABSTRACT i Ceramic shell and tube recuperators capable of providing up to 1800 0 F (980... !HAGUE INTERNATIONAL ? 3 ADAMS STREET , SOUTH PORTLAND, MAINE 04106 2011111-1510 2011199-1341 FIGURE 1 ..__ .._.~_._---_._~ -- _._.- ._-----_._--_._-----_.__.._--- _._--~~~-~~~-~--_._._---~---~-~ .".;,,":;' ESL-IE-80-04-50 Proceedings from...

  11. High Temperature Fuel Cell Performance High Temperature Fuel Cell Performance of of Sulfonated Sulfonated Poly(phenylene Poly(phenylene) Proton) Proton Conducting Conducting Polymers

    Broader source: Energy.gov [DOE]

    Presentation by Sandia National Laboratories to the High Temperature Membrane Working Group Meeting held in Honolulu, Hawaii October 8, 2004.

  12. High Temperature, High Frequency Micro-Inductors for Low Power DC-DC Converters

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    due to self-heating or higher ambient temperature represents a risk for system operation components size depends on the switching frequency of the electrical waveforms. Sufficiently high switching

  13. Corrosion of ceramics in high temperature steam environments

    SciTech Connect (OSTI)

    Keiser, J.R.; Howell, M. [Oak Ridge National Lab., TN (United States); Gondolfe, J.M.; Arnold, D.T. [Stone & Webster Engineering Corp., Houston, TX (United States)

    1997-02-01T23:59:59.000Z

    Ethylene is one of the principal building blocks in the petrochemical industry, and world-wide production and consumption have been steadily increasing. Production of ethylene is accomplished primarily by the pyrolytic stripping of hydrogen from ethane or a higher molecular weight hydrocarbon. This cracking process, sometimes referred to as steam cracking, is currently accomplished in metallic tubes in high temperature furnaces with a conversion efficiency, for ethane of 60-65%. Operation at significantly higher temperature could increase the efficiency as much as 20%, but materials with better high temperature strength would be required. To help identify suitable materials, tests have been conducted to determine the behavior of selected ceramic materials in environments similar to those anticipated for a high-efficiency, advanced steam cracking system. The effects of exposure on weight change, mechanical strength, and microstructure have been determined in a series of 100 hour tests. In addition, 500 hour tests have been conducted to determine the effect of time on material behavior. From these tests, several strong candidates have been identified.

  14. High temperature gas-cooled reactor: gas turbine application study

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

  15. Sourcebook on high-temperature electronics and instrumentation

    SciTech Connect (OSTI)

    Veneruso, A.F. (ed.)

    1981-10-01T23:59:59.000Z

    This sourcebook summarizes the high-temperature characteristics of a number of commercially available electronic components and materials required in geothermal well-logging instruments that must operate to 275/sup 0/C. The sourcebook is written to provide a starting place for instrument designers, who need to know the high-temperature electronic products that are available and the design and performance limitations of these products. The electronic component information given includes the standard repertoire of passive devices such as resistors, capacitors, and magnetics; the active devices and integrated circuits sections emphasize silicon semiconductor JFETs and CMOS circuits; and, to complete the electronics, interconnections and packaging of hybrid microelectronics are described. Thermal insulation and refrigeration alternatives are also presented in the sourcebook. Finally, instrument housing materials and high-temperature cables and cablehead connectors are listed. This information was compiled as part of the Geothermal Logging Instrumentation Development Program that Sandia National Laboratories conducted for the US Department of Energy's Divison of Geothermal Energy from 1976 to 1981.

  16. Microstructure, Processing, Performance Relationships for High Temperature Coatings

    SciTech Connect (OSTI)

    Thomas M. Lillo

    2011-04-01T23:59:59.000Z

    This work evaluates the suitability of iron aluminide coatings for use in high temperature fossil fuel combustion environments, such as boiler applications. The coatings are applied using High Velocity Oxy-Fuel (HVOF) thermal spray techniques. Iron aluminide coatings, with the nominal composition of Fe3Al, were applied to various high temperature structural materials (316 Stainless Steel, 9Cr-1Mo steel and Inconel 600) that typically lack inherent resistance to environmental degradation found in fossil fuel combustion atmospheres. Coating/substrate combinations were subjected to thermal cycling to evaluate the effect of HVOF parameters, coating thickness, substrate material and substrate surface roughness on the resistance to coating delamination and cracking. It was found that substrate surface roughness had a profound influence on the performance of a given substrate/coating system and that surface preparation techniques will need to be tailored to the specific substrate material. Also, higher particle velocity during HVOF thermal spray deposition of the iron aluminide coatings tended to result in better-performing coating/substrate systems with less delamination at the coating/substrate interface. Some combinations of HVOF parameters, coating thickness and substrate materials were found to perform extremely well even at temperatures up to 900oC. However, in some cases, substantial reactions at the interface were observed.

  17. A High Temperature Liquid Plasma Model of the Sun

    E-Print Network [OSTI]

    Pierre-Marie Robitaille

    2004-10-04T23:59:59.000Z

    In this work, a liquid model of the Sun is presented wherein the entire solar mass is viewed as a high density/high energy plasma. This model challenges our current understanding of the densities associated with the internal layers of the Sun, advocating a relatively constant density, almost independent of radial position. The incompressible nature of liquids is advanced to prevent solar collapse from gravitational forces. The liquid plasma model of the Sun is a non-equilibrium approach, where nuclear reactions are free to occur throughout the solar mass. The primary means of addressing internal heat transfer are convection and conduction. As a result of the convective processes on the solar surface, the liquid model brings into question the established temperature of the solar photosphere by highlighting a violation of Kirchhoff's law of thermal emission. Along these lines, the model emphasizes that radiative emission is a surface phenomenon. Strong evidence is provided that the Sun is a high density/high energy liquid plasma. This evidence is based on our knowledge of Planckian thermal emission and condensed matter, including the existence of pressure ionization and liquid metallic hydrogen at high temperatures and pressures. The equations of magnetohydrodynamics are invoked as the proper vehicle for the understanding od stellar convection and structure. Prior to introducing the liquid plasma model, the historic and scientific justifications for the gaseous model of the Sun are reviewed and the gaseous equations of state are also discussed.

  18. NREL Particle Receiver Will Enable High-Temperature CSP (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01T23:59:59.000Z

    Near-blackbody enclosed particle receiver can support high-temperature thermal energy storage and high-efficiency power cycles.

  19. High-temperature corrosion in advanced combustion systems

    SciTech Connect (OSTI)

    Natesan, K.; Yanez-Herrero, M.; Fornasieri, C.

    1993-11-01T23:59:59.000Z

    Conceptual designs of advanced combustion systems that utilize coal as a feedstock require high temperature furnaces and heat transfer surfaces capable of operation at much elevated temperatures than those prevalent in current coal-fired power plants. The combination of elevated temperatures and hostile combustion environments necessitate development/application of advanced ceramic materials in these designs. The present paper characterizes the chemistry of coal-fired combustion environments over a wide temperature range of interest in these systems and discusses preliminary experimental results on several materials with potential for application in these systems. An experimental program has been initiated to evaluate materials for advanced combustion systems. Several candidate materials have been identified for evaluation. The candidates included advanced metallic alloys, monolithic ceramics, ceramic particulate/ceramic matrix composites, ceramic fiber/ceramic matrix composites, and ceramic whisker/ceramic matrix composites. The materials examined so far included nickel-base superalloys, alumina, stabilized zirconia, different types of silicon carbide, and silicon nitride. Coupon specimens of several of the materials have been tested in an air environment at 1000, 1200, and 1400{degree}C for 168 h. In addition, specimens were exposed to sodium-sulfate-containing salts at temperatures of 1000 and 1200{degree}C for 168 h. Extensive microstructural analyses were conducted on the exposed specimens to evaluate the corrosion performance of the materials for service in air and fireside environments of advanced coal-fired boilers. Additional tests are underway with several of the materials to evaluate their corrosion performance as a function of salt chemistry, alkali vapor concentration, gas chemistry, exposure temperature, and exposure time.

  20. Plasma etching of cavities into diamond anvils for experiments at high pressures and high temperatures

    SciTech Connect (OSTI)

    Weir, S.T.; Cynn, H.; Falabella, S.; Evans, W.J.; Aracne-Ruddle, C.; Farber, D.; Vohra, Y.K. (LLNL); (UAB)

    2012-10-23T23:59:59.000Z

    We describe a method for precisely etching small cavities into the culets of diamond anvils for the purpose of providing thermal insulation for samples in experiments at high pressures and high temperatures. The cavities were fabricated using highly directional oxygen plasma to reactively etch into the diamond surface. The lateral extent of the etch was precisely controlled to micron accuracy by etching the diamond through a lithographically fabricated tungsten mask. The performance of the etched cavities in high-temperature experiments in which the samples were either laser heated or electrically heated is discussed.

  1. Minutes of the October 2008 Meeting of the High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    Meeting minutes of the High Temperature Membrane Working Group from October 16, 2008, in Honolulu, Hawaii.

  2. 11th Topical conference high-temperature plasma diagnostics. Book of abstracts

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    This report contains abstracts from the 11th topical conference on high-temperature plasma diagnostics.

  3. Numerical Analysis of Non-Uniformities and Anisotropy in High-Temperature Superconducting Coils

    E-Print Network [OSTI]

    Hu, Di; Ainslie, Mark D.; Zou, Jin; Cardwell, David A.

    2014-12-12T23:59:59.000Z

    , critical current density (superconductivity), high-temperature superconductors, numerical analysis, superconducting coils, transport ac loss....

  4. Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor

    SciTech Connect (OSTI)

    Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

    2009-10-01T23:59:59.000Z

    The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

  5. High temperature measurement using very high shutter speed to avoid image saturation

    SciTech Connect (OSTI)

    Ma, Zhen; Zhang, Yang [Department of Mechanical Engineering, Sir Frederick Mappin Building, University of Sheffield, Sheffield, S1 3JD (United Kingdom)

    2014-04-11T23:59:59.000Z

    This paper explores the adaptation of the two-colour principle to develop a high-speed colour temperature correlation system, which is able to cover a range of temperature that is challenging to achieve before. A colour digital camera has built in RGB filters. It is possible to measure the temperature from the ratio of intensity of the green and red pixels using the two-colour principle based on the expansion of the Plank’s radiation law. In this study, experiments were carried out using a temperature calibrated tungsten ribbon lamp which can be tuned to vary from 1300 to 2200°C. Using very high shutter speed and small aperture, the high-speed camera successfully captured the tungsten ribbon without image saturation at the full temperature scale. Tests have been carried out at different temperature and camera settings. The sensitivity and errors have been analysed, and experiment results demonstrate the potential of using very high shutter speed is available for measuring the temperature even beyond 2200°C.

  6. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    SciTech Connect (OSTI)

    Seong W. Lee

    2004-10-01T23:59:59.000Z

    The systematic tests of the gasifier simulator on the clean thermocouple were completed in this reporting period. Within the systematic tests on the clean thermocouple, five (5) factors were considered as the experimental parameters including air flow rate, water flow rate, fine dust particle amount, ammonia addition and high/low frequency device (electric motor). The fractional factorial design method was used in the experiment design with sixteen (16) data sets of readings. Analysis of Variances (ANOVA) was applied to the results from systematic tests. The ANOVA results show that the un-balanced motor vibration frequency did not have the significant impact on the temperature changes in the gasifier simulator. For the fine dust particles testing, the amount of fine dust particles has significant impact to the temperature measurements in the gasifier simulator. The effects of the air and water on the temperature measurements show the same results as reported in the previous report. The ammonia concentration was included as an experimental parameter for the reducing environment in this reporting period. The ammonia concentration does not seem to be a significant factor on the temperature changes. The linear regression analysis was applied to the temperature reading with five (5) factors. The accuracy of the linear regression is relatively low, which is less than 10% accuracy. Nonlinear regression was also conducted to the temperature reading with the same factors. Since the experiments were designed in two (2) levels, the nonlinear regression is not very effective with the dataset (16 readings). An extra central point test was conducted. With the data of the center point testing, the accuracy of the nonlinear regression is much better than the linear regression.

  7. Radial convection of finite ion temperature, high amplitude plasma blobs

    SciTech Connect (OSTI)

    Wiesenberger, M., E-mail: Matthias.Wiesenberger@uibk.ac.at; Kendl, A. [Institute for Ion Physics and Applied Physics, Association EURATOM-ÖAW, University of Innsbruck, A-6020 Innsbruck (Austria); Madsen, J. [Association EURATOM-DTU, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2014-09-15T23:59:59.000Z

    We present results from simulations of seeded blob convection in the scrape-off-layer of magnetically confined fusion plasmas. We consistently incorporate high fluctuation amplitude levels and finite Larmor radius (FLR) effects using a fully nonlinear global gyrofluid model. This is in line with conditions found in tokamak scrape-off-layers (SOL) regions. Varying the ion temperature, the initial blob width, and the initial amplitude, we found an FLR dominated regime where the blob behavior is significantly different from what is predicted by cold-ion models. The transition to this regime is very well described by the ratio of the ion gyroradius to the characteristic gradient scale length of the blob. We compare the global gyrofluid model with a partly linearized local model. For low ion temperatures, we find that simulations of the global model show more coherent blobs with an increased cross-field transport compared to blobs simulated with the local model. The maximal blob amplitude is significantly higher in the global simulations than in the local ones. When the ion temperature is comparable to the electron temperature, global blob simulations show a reduced blob coherence and a decreased cross-field transport in comparison with local blob simulations.

  8. Microstructure, Processing, Performance Relationships for High Temperature Coatings

    SciTech Connect (OSTI)

    Thomas M. Lillo; Richard N. Wright; W. David Swank; D.C Haggard; Dennis C. Kunerth; Denis E. Clark

    2008-07-01T23:59:59.000Z

    HVOF coating have shown high resistance to corrosion in fossil energy applications and it is generally accepted that mechanical failure, e.g. cracking or spalling, ultimately will determine coating lifetime. The high velocity oxygen-fuel method (HVOF) of applying coatings is one of the most commercially viable and allows the control of various parameters including powder particle velocity and temperature which influence coating properties, such as residual stress, bond coat strength and microstructure. Methods of assessing the mechanical durability of coatings are being developed in order to explore the relationship between HVOF spraying parameters and the mechanical properties of the coating and coating bond strength. The room temperature mechanical strength, as well as the resistance of the coating to cracking/spalling during thermal transients, is of considerable importance. Eddy current, acoustic emission and thermal imaging methods are being developed to detect coating failure during thermal cycling tests and room temperature tensile tests. Preliminary results on coating failure of HVOF FeAl coatings on carbon steel, as detected by eddy current measurements during thermal cycling, are presented. The influence of HVOF coating parameters of iron aluminides - applied to more relevant structural steels, like 316 SS and Grade 91 steel, - on coating durability will be explored once reliable methods for identification of coating failure have been developed.

  9. Materials for the scavenging of hydrogen at high temperatures

    DOE Patents [OSTI]

    Shepodd, T.J.; Phillip, B.L.

    1997-12-30T23:59:59.000Z

    A hydrogen getter composition is described comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compositions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100 C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluoropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases. 7 figs.

  10. Materials for the scavenging of hydrogen at high temperatures

    DOE Patents [OSTI]

    Shepodd, T.J.; Phillip, B.L.

    1997-04-29T23:59:59.000Z

    A hydrogen getter composition is described comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compositions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluoropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases. 7 figs.

  11. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    SciTech Connect (OSTI)

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01T23:59:59.000Z

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.

  12. High operating temperature interband cascade focal plane arrays

    SciTech Connect (OSTI)

    Tian, Z.-B.; Godoy, S. E.; Kim, H. S.; Schuler-Sandy, T.; Montoya, J. A.; Krishna, S. [Center for High Technology Materials, Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87106 (United States)

    2014-08-04T23:59:59.000Z

    In this paper, we report the initial demonstration of mid-infrared interband cascade (IC) photodetector focal plane arrays with multiple-stage/junction design. The merits of IC photodetectors include low noise and efficient photocarrier extraction, even for zero-bias operation. By adopting enhanced electron barrier design and a total absorber thickness of 0.7??m, the 5-stage IC detectors show very low dark current (1.10?×?10{sup ?7} A/cm{sup 2} at ?5?mV and 150?K). Even with un-optimized fabrication and standard commercial (mis-matched) read-out circuit technology, infrared images are obtained by the 320?×?256 IC focal plane array up to 180?K with f/2.3 optics. The minimum noise equivalent temperature difference of 28 mK is obtained at 120?K. These initial results indicate great potential of IC photodetectors, particularly for high operating temperature applications.

  13. Remote high-temperature insulatorless heat-flux gauge

    DOE Patents [OSTI]

    Noel, B.W.

    1993-12-28T23:59:59.000Z

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge. 3 figures.

  14. Remote high-temperature insulatorless heat-flux gauge

    DOE Patents [OSTI]

    Noel, Bruce W. (Espanola, NM)

    1993-01-01T23:59:59.000Z

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge.

  15. Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols

    SciTech Connect (OSTI)

    Bateman, Adam P.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey

    2012-07-02T23:59:59.000Z

    The applicability of high resolution electrospray ionization mass spectrometry (HR ESI-MS) to measurements of the average oxygen to carbon ratio (O/C) in organic aerosols was investigated. Solutions with known average O/C containing up to 10 standard compounds representative of secondary organic aerosol (SOA) were analyzed and corresponding electrospray ionization efficiencies were quantified. The assumption of equal ionization efficiency commonly used in estimating O/C ratios of organic aerosols was found to be reasonably accurate. We found that the accuracy of the measured O/C ratios increases by averaging the values obtained from both (+) and (-) modes. A correlation was found between the ratio of the ionization efficiencies in the positive and negative ESI modes with the octanol-water partition constant, and more importantly, with the compound's O/C. To demonstrate the utility of this correlation for estimating average O/C values of unknown mixtures, we analyzed the ESI (+) and ESI (-) data for SOA produced by oxidation of limonene and isoprene and compared to online O/C measurements using an aerosol mass spectrometer (AMS). This work demonstrates that the accuracy of the HR ESI-MS methods is comparable to that of the AMS, with the added benefit of molecular identification of the aerosol constituents.

  16. Comparison of diesel spray combustion in different high-temperature, high-pressure facilities.

    SciTech Connect (OSTI)

    Christiansen, Caspar (Technical University of Denmark); Hermant, Laurent (IFP); Malbec, Louis-Marie (IFP); Bruneaux, Gilles (IFP); Genzale, Caroline L.; Pickett, Lyle M.; Schramm, Jesper (Technical University of Denmark)

    2010-05-01T23:59:59.000Z

    Diesel spray experiments at controlled high-temperature and high-pressure conditions offer the potential for an improved understanding of diesel combustion, and for the development of more accurate CFD models that will ultimately be used to improve engine design. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but uncertainties about their operation exist because of the uniqueness of each facility. For the IMEM meeting, we describe results from comparative studies using constant-volume vessels at Sandia National Laboratories and IFP. Targeting the same ambient gas conditions (900 K, 60 bar, 22.8 kg/m{sup 3}, 15% oxygen) and sharing the same injector (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K), we describe detailed measurements of the temperature and pressure boundary conditions at each facility, followed by observations of spray penetration, ignition, and combustion using high-speed imaging. Performing experiments at the same high-temperature, high-pressure operating conditions is an objective of the Engine Combustion Network (http://www.ca.sandia.gov/ECN/), which seeks to leverage the research capabilities and advanced diagnostics of all participants in the ECN. We expect that this effort will generate a high-quality dataset to be used for advanced computational model development at engine conditions.

  17. Power efficiency for very high temperature solar thermal cavity receivers

    DOE Patents [OSTI]

    McDougal, Allan R. (LaCanada-Flintridge, CA); Hale, Robert R. (Upland, CA)

    1984-01-01T23:59:59.000Z

    This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.

  18. An In-Cylinder Imaging Survey of Low-Temperature, High-Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An In-Cylinder Imaging Survey of Low-Temperature, High-Efficiency Combustion Strategies An In-Cylinder Imaging Survey of Low-Temperature, High-Efficiency Combustion Strategies High...

  19. Conductor requirements for high-temperature superconducting utility power transformers

    SciTech Connect (OSTI)

    Pleva, E. F. [Waukesha Electric Systems, Waukesha, WI; Mehrotra, V. [Waukesha Electric Systems, Waukesha, WI; Schwenterly, S W [ORNL

    2010-01-01T23:59:59.000Z

    High-temperature superconducting (HTS) coated conductors in utility power transformers must satisfy a set of operating requirements that are driven by two major considerations-HTS transformers must be economically competitive with conventional units, and the conductor must be robust enough to be used in a commercial manufacturing environment. The transformer design and manufacturing process will be described in order to highlight the various requirements that it imposes on the HTS conductor. Spreadsheet estimates of HTS transformer costs allow estimates of the conductor cost required for an HTS transformer to be competitive with a similarly performing conventional unit.

  20. Langevin dynamics and decoherence of heavy quarks at high temperatures

    E-Print Network [OSTI]

    Akamatsu, Yukinao

    2015-01-01T23:59:59.000Z

    Langevin equation of heavy quarks in high-temperature quark-gluon plasma is derived. The dynamics of heavy quark color is coupled with the phase space dynamics and causes a macroscopic superposition state of heavy quark momentum. Decoherence of the superposition state allows us classical description. The time scale of decoherence gives an appropriate discretization time scale $\\Delta t \\sim \\sqrt{M/\\gamma}$ for the classical Langevin equation, where $M$ is heavy quark mass and $\\gamma$ is heavy quark momentum diffusion constant.

  1. Narrowband high temperature superconducting receiver for low frequency radio waves

    DOE Patents [OSTI]

    Reagor, David W. (Los Alamos, NM)

    2001-01-01T23:59:59.000Z

    An underground communicating device has a low-noise SQUID using high temperature superconductor components connected to detect a modulated external magnetic flux for outputting a voltage signal spectrum that is related to the varying magnetic flux. A narrow bandwidth filter may be used to select a portion of the voltage signal spectrum that is relatively free of power line noise to output a relatively low noise output signal when operating in a portion of the electromagnetic spectra where such power line noise exists. A demodulator outputs a communication signal, which may be an FM signal, indicative of a modulation on the modulated external magnetic flux.

  2. Spectroscopy and kinetics of combustion gases at high temperatures

    SciTech Connect (OSTI)

    Hanson, R.K.; Bowman, C.T. [Stanford Univ., CA (United States)

    1993-12-01T23:59:59.000Z

    This program involves two complementary activities: (1) development and application of cw ring dye laser absorption methods for sensitive detection of radical species and measurement of fundamental spectroscopic parameters at high temperatures; and (2) shock tube studies of reaction kinetics relevant to combustion. Species currently under investigation in the spectroscopic portion of the research include NO and CH{sub 3}; this has necessitated the continued operated at wavelengths in the range 210-230 nm. Shock tube studies of reaction kinetics currently are focussed on reactions involving CH{sub 3} radicals.

  3. Design manual. [High temperature heat pump for heat recovery system

    SciTech Connect (OSTI)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01T23:59:59.000Z

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  4. Development of twisted high-temperature superconductor composite conductors

    SciTech Connect (OSTI)

    Christopherson, C.J.; Riley, G.N. Jr. [American Superconductor Corporation, Westborough, Massachusetts 01581 (United States)] [American Superconductor Corporation, Westborough, Massachusetts 01581 (United States)

    1995-04-24T23:59:59.000Z

    Multifilamentary high-temperature superconductor (HTS) composite conductors have been developed for alternating current (ac) applications. A twisted HTS conductor containing the Bi-2223 phase fabricated using a modified powder-in-tube technique is reported. Transport critical current densities of 13 800 and 10 900 A/cm {sup 2} (77 K, self-field, 1 {mu}V/cm) have been achieved for twisted tape and wire conductors with twist pitches of 3.7 and 3.6 mm, respectively. These conductors are strongly linked and are thus suitable for use in ac applications.

  5. High temperature performance of scrap tire rubber modified asphalt concrete

    SciTech Connect (OSTI)

    Coomarasamy, A. [Ministry of Transportation, Downsview, Ontario (Canada); Manolis, S.; Hesp, S. [Queen`s Univ., Kingston, Ontario (Canada)

    1996-12-31T23:59:59.000Z

    Wheel track rutting tests on mixes modified with 30 mesh, 80 mesh, and very fine colloidal crumb rubber particles show that a very significant improvement in performance occurs with a reduction in the rubber particle size. The SHRP binder test for rutting, which was originally developed for homogeneous systems only, does not predict the performance improvement for smaller rubber particles. If these new scrap rubber binder systems are to be used in pavements then rutting tests on the asphalt-aggregate mixture should be conducted in order to accurately predict high temperature performance.

  6. Development of High Temperature/High Sensitivity Novel Chemical Resistive Sensor

    SciTech Connect (OSTI)

    Chen, Chonglin; Nash, Patrick; Ma, Chunrui; Enriquez, Erik; Wang, Haibing; Xu, Xing; Bao, Shangyong; Collins, Gregory

    2013-08-13T23:59:59.000Z

    The research has been focused to design, fabricate, and develop high temperature/high sensitivity novel multifunctional chemical sensors for the selective detection of fossil energy gases used in power and fuel systems. By systematically studying the physical properties of the LnBaCo{sub 2}O{sub 5+d} (LBCO) [Ln=Pr or La] thin?films, a new concept chemical sensor based high temperature chemical resistant change has been developed for the application for the next generation highly efficient and near zero emission power generation technologies. We also discovered that the superfast chemical dynamic behavior and an ultrafast surface exchange kinetics in the highly epitaxial LBCO thin films. Furthermore, our research indicates that hydrogen can superfast diffuse in the ordered oxygen vacancy structures in the highly epitaxial LBCO thin films, which suggest that the LBCO thin film not only can be an excellent candidate for the fabrication of high temperature ultra sensitive chemical sensors and control systems for power and fuel monitoring systems, but also can be an excellent candidate for the low temperature solid oxide fuel cell anode and cathode materials.

  7. Ultra high temperature diffusion apparatus and operating procedures

    SciTech Connect (OSTI)

    Wyrick, S.B.

    1985-11-15T23:59:59.000Z

    It is the purpose of this paper to present an experimental apparatus which is capable of measuring diffusion coefficients of interdiffusing gases in the temperature range 300K to 2500K. Because of the high temperatures which will be encountered, a special alloy of tantalum (T-111) is used to house the diffusion process. This T-111 diffusion cell is heated via radiation heat from a tungsten heating element powered by a Saban saturable reactor power supply. The diffusion cell heating element are encased in a nickel-plated copper cooling can. This entire assembly is enclosed in an Ultek vacuum chamber to prevent oxidation of the diffusion cell. This report covers the construction and calibration of the diffusion cell, details of the gas loading and sampling system, and complete information on the components required to operate the vacuum furnace. Thus far, several experiments have been run in the temperature range 600K to 800K and the resulting diffusion coefficients agree fairly well with previously published values. 21 refs., 9 figs., 4 tabs.

  8. Cryogenic System for a High Temperature Superconducting Power Transmission Cable

    SciTech Connect (OSTI)

    Demko, J.A.; Gouge, M.J.; Hughey, R.L.; Lue, J.W.; Martin, R.; Sinha, U.; Stovall, J.P.

    1999-07-12T23:59:59.000Z

    High-temperature superconducting (HTS) cable systems for power transmission are under development that will use pressurized liquid nitrogen to provide cooling of the cable and termination hardware. Southwire Company and Oak Ridge National Laboratory have been operating a prototype HTS cable system that contains many of the typical components needed for a commercial power transmission application. It is being used to conduct research in the development of components and systems for eventual commercial deployment. The cryogenic system was built by Air Products and Chemicals, Allentown, Pennsylvania, and can circulate up to 0.35 kg/s of liquid nitrogen at temperatures as low as 67 K at pressures of 1 to 10 bars. Sufficient cooling is provided for testing a 5-m-long HTS transmission cable system that includes the terminations required for room temperature electrical connections. Testing of the 5-m HTS transmission cable has been conducted at the design ac conditions of 1250 A and 7.5 kV line to ground. This paper contains a description of the essential features of the HTS cable cryogenic system and performance results obtained during operation of the system. The salient features of the operation that are important in large commercial HTS cable applications will be discussed.

  9. Gallium phosphide high-temperature bipolar junction transistor

    SciTech Connect (OSTI)

    Zipperian, T.E.; Dawson, L.R.; Caffin, R.J.

    1981-03-01T23:59:59.000Z

    Preliminary results are reported on the development of a high-temperature (> 350/sup 0/C) gallium phosphide bipolar junction transistor (BJT) for goethermal and other energy applications. This four-layer p/sup +/n/sup -/pp/sup +/ structure was fromed by liquid phase epitaxy using a supercooling technique to insure uniform nucleation of the thin layers. Magnesium was used as the p-type dopant to avoid excessive out-diffusion into the lightly doped base. By appropriate choice of electrodes, the device may also be driven as an n-channel junction field-effect transistor. The gallium phosphide BJT is observed to have a common-emitter current gain peaking in the range of 6 to 10 (for temperatures from 20/sup 0/C to 400/sup 0/C) and a room-temperature, punchthrough-limited, collector-emitter breakdown voltage of approximately -6V. Other parameters of interest include an f/sub/ = 400 KHz (at 20/sup 0/C) and a collector base leakage current = 200 ..mu..A (at 350/sup 0/C).

  10. HIGH TEMPERATURE IRRADIATION RESISTANT THERMOCOUPLES – A LOW COST SENSOR FOR IN-PILE TESTING AT HIGH TEMPERATURES

    SciTech Connect (OSTI)

    Joy L. Rempe; Darrell L. Knudson; Keith G. Condie; S. Curtis Wilkins; Joshua E. Daw

    2008-06-01T23:59:59.000Z

    Several options have been identified to improve recently-developed Idaho National Laboratory (INL) High Temperature Irradiation Resistant ThermoCouples (HTIR-TCs) for in-pile testing. These options have the potential to reduce fabrication costs and allow HTIR-TC use in higher temperature applications (up to at least 1800 °C). The INL and the University of Idaho (UI) investigated these options with the ultimate objective of providing recommendations for alternate thermocouple designs that are optimized for various applications. This paper summarizes results from these INL/UI investigations. Specifically, results are reported about several options found to enhance HTIR-TC performance, such as improved heat treatments, alternate geometries, alternate fabrication techniques, and the use of copper/nickel alloys as soft extension cable.

  11. Novel High Temperature Materials for In-Situ Sensing Devices

    SciTech Connect (OSTI)

    Florian Solzbacher; Anil Virkar; Loren Rieth; Srinivasan Kannan; Xiaoxin Chen; Hannwelm Steinebach

    2009-12-31T23:59:59.000Z

    The overriding goal of this project was to develop gas sensor materials and systems compatible with operation at temperatures from 500 to 700 C. Gas sensors operating at these temperatures would be compatible with placement in fossil-energy exhaust streams close to the combustion chamber, and therefore have advantages for process regulation, and feedback for emissions controls. The three thrusts of our work included investigating thin film gas sensor materials based on metal oxide materials and electroceramic materials, and also development of microhotplate devices to support the gas sensing films. The metal oxide materials NiO, In{sub 2}O{sub 3}, and Ga{sub 2}O{sub 3} were investigated for their sensitivity to H{sub 2}, NO{sub x}, and CO{sub 2}, respectively, at high temperatures (T > 500 C), where the sensing properties of these materials have received little attention. New ground was broken in achieving excellent gas sensor responses (>10) for temperatures up to 600 C for NiO and In{sub 2}O{sub 3} materials. The gas sensitivity of these materials was decreasing as temperatures increased above 500 C, which indicates that achieving strong sensitivities with these materials at very high temperatures (T {ge} 650 C) will be a further challenge. The sensitivity, selectivity, stability, and reliability of these materials were investigated across a wide range of deposition conditions, temperatures, film thickness, as using surface active promoter materials. We also proposed to study the electroceramic materials BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} and BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} for their ability to detect H{sub 2}O and H{sub 2}S, respectively. This report focuses on the properties and gas sensing characteristics of BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} (Y-doped BaZrO{sub 3}), as significant difficulties were encounter in generating BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} sensors. Significant new results were achieved for Y-doped BaZrO{sub 3}, including sensitivities of more than 60 atm{sup -1} for H{sub 2}O vapor at 400 C. These results were achieved despite significant difficulties with a strong Ba deficiency in the deposited films, and difficulties with stress in the targets and films. Ultimately, these films achieved good sensitivity, selectivity, and reliability in our gas sensing tests. The final thrust of our project was to develop microhotpates. We proposed the use of SiC thin films for the heater of the microhotplate, but despite extensive efforts we were not able to secure a reliable source of SiC. An alternative microhotplate architecture using SiO{sub 2} and Si{sub 3}N{sub 4} suspended membrane structures, and a polysilicon heater were developed, which could be fabricate at commercial MEMs foundries. These microhotplates were fabricated at Microtechnology Services Frankfurt (MSF) in Germany. The fabricated heaters were able to achieve temperatures > 600 C using {approx} 0.25 W, and when combined with In{sub 2}O{sub 3} films demonstrated sensor systems with sensor responses up to 50 for 25 ppm NO{sub x}, and time constants of less than 10 s.

  12. Medium-size high-temperature gas-cooled reactor

    SciTech Connect (OSTI)

    Peinado, C.O.; Koutz, S.L.

    1980-08-01T23:59:59.000Z

    This report summarizes high-temperature gas-cooled reactor (HTGR) experience for the 40-MW(e) Peach Bottom Nuclear Generating Station of Philadelphia Electric Company and the 330-MW(e) Fort St. Vrain Nuclear Generating Station of the Public Service Company of Colorado. Both reactors are graphite moderated and helium cooled, operating at approx. 760/sup 0/C (1400/sup 0/F) and using the uranium/thorium fuel cycle. The plants have demonstrated the inherent safety characteristics, the low activation of components, and the high efficiency associated with the HTGR concept. This experience has been translated into the conceptual design of a medium-sized 1170-MW(t) HTGR for generation of 450 MW of electric power. The concept incorporates inherent HTGR safety characteristics (a multiply redundant prestressed concrete reactor vessel (PCRV), a graphite core, and an inert single-phase coolant) and engineered safety features (core auxiliary cooling, relief valve, and steam generator dump systems).

  13. Damping in high-temperature superconducting levitation systems

    DOE Patents [OSTI]

    Hull, John R. (Sammamish, WA)

    2009-12-15T23:59:59.000Z

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  14. Studies of nonlinear electrodynamics of high-temperature superconductors

    SciTech Connect (OSTI)

    Lam, Quan-Chiu H.

    1991-08-01T23:59:59.000Z

    Nonlinear electrodynamics of high-{Tc} superconductors are studied both theoretically and experimentally. For powdered samples, a novel model is presented in which the metallographically observed superconducting grains in the powder are modeled as superconducting current loops of various areas with weak links. Surprising harmonic generation behavior in an arc field, H{sub 1} cos({omega}t), is predicted by the model; the power at high harmonics show sharp dips almost periodic in a superposing dc magnetic field, revealing flux quantization in the prototype loops in the model. Such oscillation of the harmonic power in dc magnetic field P{sub nf}(H{sub dc}), is indeed experimentally observed in powdered YBa{sub 2}Cu{sub 3}O{sub 7}. Other experimental aspects also agree with model predictions. For bulk sintered cylindrical samples, a generalized critical state model is presented. In this model, the nonlinear electrodynamics are due to flux-pinning, somewhat similar to low-temperature type-II superconductors, but with a more generalized critical current densities' dependence on magnetic field -- J{sub c}(H){approximately}H{sub local}{sup -{beta}}, with {beta} being an adjustable parameter. Experiments in ac and dc magnetic fields on a sintered cylindrical rod of YBa{sub 2}Cu{sub 3}O{sub 7} yield unambiguous evidence of independent inter- and intragranular contributions to the complex harmonic permeability {tilde {mu}}{sub n} = {mu}{prime}{sub n} -i{mu}{double prime}{sub n}. Temperature- dependence measurements reveal that, while the intragranular supercurrents disappear at {Tc}{ge}91.2 K, the intergranular supercurrents disappear at T{ge}86.6 K. This result is, to our knowledge, the first clear measurement of the phase-locking temperature of the 3-D matrix formed by YBa{sub 2}Cu{sub 3}O{sub 7} grains, which are in electrical contact with one another through weak links.

  15. Studies of nonlinear electrodynamics of high-temperature superconductors

    SciTech Connect (OSTI)

    Lam, Quan-Chiu H.

    1991-08-01T23:59:59.000Z

    Nonlinear electrodynamics of high-{Tc} superconductors are studied both theoretically and experimentally. For powdered samples, a novel model is presented in which the metallographically observed superconducting grains in the powder are modeled as superconducting current loops of various areas with weak links. Surprising harmonic generation behavior in an arc field, H{sub 1} cos({omega}t), is predicted by the model; the power at high harmonics show sharp dips almost periodic in a superposing dc magnetic field, revealing flux quantization in the prototype loops in the model. Such oscillation of the harmonic power in dc magnetic field P{sub nf}(H{sub dc}), is indeed experimentally observed in powdered YBa{sub 2}Cu{sub 3}O{sub 7}. Other experimental aspects also agree with model predictions. For bulk sintered cylindrical samples, a generalized critical state model is presented. In this model, the nonlinear electrodynamics are due to flux-pinning, somewhat similar to low-temperature type-II superconductors, but with a more generalized critical current densities` dependence on magnetic field -- J{sub c}(H){approximately}H{sub local}{sup -{beta}}, with {beta} being an adjustable parameter. Experiments in ac and dc magnetic fields on a sintered cylindrical rod of YBa{sub 2}Cu{sub 3}O{sub 7} yield unambiguous evidence of independent inter- and intragranular contributions to the complex harmonic permeability {tilde {mu}}{sub n} = {mu}{prime}{sub n} -i{mu}{double_prime}{sub n}. Temperature- dependence measurements reveal that, while the intragranular supercurrents disappear at {Tc}{ge}91.2 K, the intergranular supercurrents disappear at T{ge}86.6 K. This result is, to our knowledge, the first clear measurement of the phase-locking temperature of the 3-D matrix formed by YBa{sub 2}Cu{sub 3}O{sub 7} grains, which are in electrical contact with one another through weak links.

  16. Screening study on high temperature energy transport systems

    SciTech Connect (OSTI)

    Graves, R.L.

    1980-10-01T23:59:59.000Z

    The purpose of the study described in this document is to identify the options for transporting thermal energy over long distances. The study deals specifically and exclusively with high temperature (> 400/sup 0/C(752/sup 0/F)) energy for industrial use. Energy transport is seen as a potential solution to: high unit cost of small coal and nuclear steam generators, and opposition to siting of coal or nuclear plants near populated areas. The study is of a preliminary nature but covers many options including steam, molten salts, organics, and chemical heat pipes. The development status and potential problems of these and other energy transport methods are discussed. Energy transport concepts are compared on a fundamental level based on physical properties and also are subjected to an economic study. The economic study indicated that the chemical heat pipe, under a specific set of circumstances, appeared to be the least expensive for distances greater than about 32 km (20 miles). However, if the temperature of the energy was lowered, the heat transfer salt (sodium nitrate/nitrite) system would apparently be a better economic choice for less than about 80 km (50 miles). None of the options studied appear to be more attractive than small coal-fired boilers when the transport distance is over about 64 km (40 miles). Several recommendations are made for refining the analysis.

  17. GFOC Project results: High Temperature / High Pressure, Hydrogen Tolerant Optical Fiber

    SciTech Connect (OSTI)

    E. Burov; A. Pastouret; E. Aldea; B. Overton; F. Gooijer; A. Bergonzo

    2012-02-12T23:59:59.000Z

    Tests results are given for exposure of multimode optical fiber to high temperatures (300 deg. C) and high partial pressure (15 bar) hydrogen. These results demonstrate that fluorine down doped optical fibers are much more hydrogen tolerant than traditional germanium doped multimode optical fibers. Also demonstrated is the similar hydrogen tolerance of carbon coated and non-carbon coated fibers. Model for reversible H2 impact in fiber versus T{sup o}C and H2 pressure is given. These results have significant impact for the longevity of use for distributed temperature sensing applications in harsh environments such as geothermal wells.

  18. Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C

    SciTech Connect (OSTI)

    Ian Mckirdy

    2010-12-01T23:59:59.000Z

    This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750°C and provides electricity and/or process heat at 700°C to conventional process applications, including the production of hydrogen.

  19. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01T23:59:59.000Z

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.

  20. Dual Phase Membrane for High Temperature CO2 Separation

    SciTech Connect (OSTI)

    Jerry Lin

    2007-06-30T23:59:59.000Z

    This project aimed at synthesis of a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Metal-carbonate dual-phase membranes were prepared by the direct infiltration method and the synthesis conditions were optimized. Permeation tests for CO{sub 2} and N{sub 2} from 450-750 C showed very low permeances of those two gases through the dual-phase membrane, which was expected due to the lack of ionization of those two particular gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased rapidly, while predictions showed that permeance should have continued to increase with temperature. XRD data obtained from used membrane indicated that lithium iron oxides formed on the support surface. This lithium iron oxide layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture; thus limiting the formation of the ionic species required for transport through the membrane. These results indicated that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation created the need for an oxidation resistant support, which could be gained by the use of a ceramic-type membrane. Work was extended to synthesize a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. It was found that La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF) was a suitable candidate for the support material. This support material proved to separate CO{sub 2} when combined with O{sub 2} at a flux of 0.194 ml/min {center_dot} cm{sup 2} at 850 C. It was also observed that, because LSCF is a mixed conductor (conductor of both electrons and oxygen ions), the support was able to provide its own oxygen to facilitate separation of CO{sub 2}. Without feeding O{sub 2}, the LSCF dual phase membrane produced a maximum CO{sub 2} flux of 0.246 ml/min {center_dot} cm{sup 2} at 900 C.

  1. High sensitivity imaging Thomson scattering for low temperature plasma

    SciTech Connect (OSTI)

    Meiden, H. J. van der; Al, R. S.; Barth, C. J.; Donne, A. J. H.; Goedheer, W. J.; Groot, B. de; Koppers, W. R.; Pol, M. J. van de; Prins, P. R.; Shumack, A. E.; Smeets, P. H. M.; Vijvers, W. A. J.; Westerhout, J.; Wright, G. M.; Rooij, G. J. van [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Engeln, R. [Eindhoven University of Technology, 5612AZ Eindhoven (Netherlands); Kleyn, A. W. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Leiden Institute of Chemistry, Leiden University, Leiden (Netherlands); Lopes Cardozo, N. J.; Schram, D. C. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, partner in the Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, 5612AZ Eindhoven (Netherlands)

    2008-01-15T23:59:59.000Z

    A highly sensitive imaging Thomson scattering system was developed for low temperature (0.1-10 eV) plasma applications at the Pilot-PSI linear plasma generator. The essential parts of the diagnostic are a neodymium doped yttrium aluminum garnet laser operating at the second harmonic (532 nm), a laser beam line with a unique stray light suppression system and a detection branch consisting of a Littrow spectrometer equipped with an efficient detector based on a ''Generation III'' image intensifier combined with an intensified charged coupled device camera. The system is capable of measuring electron density and temperature profiles of a plasma column of 30 mm in diameter with a spatial resolution of 0.6 mm and an observational error of 3% in the electron density (n{sub e}) and 6% in the electron temperature (T{sub e}) at n{sub e}=4x10{sup 19} m{sup -3}. This is achievable at an accumulated laser input energy of 11 J (from 30 laser pulses at 10 Hz repetition frequency). The stray light contribution is below 9x10{sup 17} m{sup -3} in electron density equivalents by the application of a unique stray light suppression system. The amount of laser energy that is required for a n{sub e} and T{sub e} measurement is 7x10{sup 20}/n{sub e} J, which means that single shot measurements are possible for n{sub e}>2x10{sup 21} m{sup -3}.

  2. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect (OSTI)

    Waye, S.; Musselman, M.; King, C.

    2014-09-01T23:59:59.000Z

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  3. Are tropical forests near a high temperature threshold?

    E-Print Network [OSTI]

    Doughty, Christopher E.; Goulden, Michael L.

    2008-01-01T23:59:59.000Z

    occurs at a relatively modest temper- ature (many temperatestrongly sensitive to modest increases in bulk temperature.

  4. High-temperature zirconia insulation and method for making same

    DOE Patents [OSTI]

    Wrenn, Jr., George E. (Clinton, TN); Holcombe, Jr., Cressie E. (Knoxville, TN); Lewis, Jr., John (Oak Ridge, TN)

    1988-01-01T23:59:59.000Z

    The present invention is directed to a highly pure, partially stabilized, fibrous zirconia composite for use as thermal insulation in environments where temperatures up to about 2000.degree. C. are utilized. The composite of the present invention is fabricated into any suitable configuration such as a cone, cylinder, dome or the like by vacuum molding an aqueous slurry of partially stabilized zirconia fibers into a desired configuration on a suitably shaped mandrel. The molded fibers are infiltrated with zirconyl nitrate and the resulting structure is then dried to form a rigid structure which may be removed and placed in a furnace. The structure is then heated in air to a temperature of about 600.degree. C. for driving off the nitrate from the structure and for oxidizing the zirconyl ion to zirconia. Thereafter, the structure is heated to about 950.degree. to 1,250.degree. C. to fuse the zirconia fibers at their nexi in a matrix of zirconia. The composite produced by the present invention is self-supporting and can be readily machined to desired final dimensions. Additional heating to about 1800.degree. to 2000.degree. C. further improves structural rigidity.

  5. High-temperature zirconia insulation and method for making same

    DOE Patents [OSTI]

    Wrenn, G.E. Jr.; Holcombe, C.E. Jr.; Lewis, J. Jr.

    1988-05-10T23:59:59.000Z

    The present invention is directed to a highly pure, partially stabilized, fibrous zirconia composite for use as thermal insulation in environments where temperatures up to about 2,000 C are utilized. The composite of the present invention is fabricated into any suitable configuration such as a cone, cylinder, dome or the like by vacuum molding an aqueous slurry of partially stabilized zirconia fibers into a desired configuration on a suitably shaped mandrel. The molded fibers are infiltrated with zirconyl nitrate and the resulting structure is then dried to form a rigid structure which may be removed and placed in a furnace. The structure is then heated in air to a temperature of about 600 C for driving off the nitrate from the structure and for oxidizing the zirconyl ion to zirconia. Thereafter, the structure is heated to about 950 to 1,250 C to fuse the zirconia fibers at their nexi in a matrix of zirconia. The composite produced by the present invention is self-supporting and can be readily machined to desired final dimensions. Additional heating to about 1,800 to 2,000 C further improves structural rigidity.

  6. Segmented lasing tube for high temperature laser assembly

    DOE Patents [OSTI]

    Sawicki, Richard H. (Danville, CA); Alger, Terry W. (Tracy, CA); Finucane, Raymond G. (Pleasanton, CA); Hall, Jerome P. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    A high temperature laser assembly capable of withstanding operating temperatures in excess of 1500.degree. C. is described comprising a segmented cylindrical ceramic lasing tube having a plurality of cylindrical ceramic lasing tube segments of the same inner and outer diameters non-rigidly joined together in axial alignment; insulation of uniform thickness surround the walls of the ceramic lasing tube; a ceramic casing, preferably of quartz, surrounding the insulation; and a fluid cooled metal jacket surrounds the ceramic casing. In a preferred embodiment, the inner surface of each of the ceramic lasing tube segments are provided with a pair of oppositely spaced grooves in the wall thereof parallel to the center axis of the segmented cylindrical ceramic lasing tube, and both of the grooves and the center axis of the segmented cylindrical ceramic lasing tube lie in a common plane, with the grooves in each ceramic lasing tube segment in circumferential alignment with the grooves in the adjoining ceramic lasing tube segments; and one or more ceramic plates, all lying in a common plane to one another and with the central axis of the segmented ceramic lasing tube, are received in the grooves to provide additional wall area in the segmented ceramic lasing tube for collision and return to ground state of metastable metal atoms within the segmented ceramic lasing tube.

  7. High Temperature Tolerant Ceramic Composites Having Porous Interphases

    DOE Patents [OSTI]

    Kriven, Waltraud M. (Champaign, IL); Lee, Sang-Jin (Chonnam, KR)

    2005-05-03T23:59:59.000Z

    In general, this invention relates to a ceramic composite exhibiting enhanced toughness and decreased brittleness, and to a process of preparing the ceramic composite. The ceramic composite comprises a first matrix that includes a first ceramic material, preferably selected from the group including alumina (Al2O3), mullite (3Al2O3.2SiO2), yttrium aluminate garnet (YAG), yttria stabilized zirconia (YSZ), celsian (BaAl2Si2O8) and nickel aluminate (NiAl2O4). The ceramic composite also includes a porous interphase region that includes a substantially non-sinterable material. The non-sinterable material can be selected to include, for example, alumina platelets. The platelets lie in random 3-D orientation and provide a debonding mechanism, which is independent of temperature in chemically compatible matrices. The non-sinterable material induces constrained sintering of a ceramic powder resulting in permanent porosity in the interphase region. For high temperature properties, addition of a sinterable ceramic powder to the non-sinterable material provides sufficiently weak debonding interphases. The ceramic composite can be provided in a variety of forms including a laminate, a fibrous monolith, and a fiber-reinforced ceramic matrix. In the laminated systems, intimate mixing of strong versus tough microstructures were tailored by alternating various matrix-to-interphase thickness ratios to provide the bimodal laminate.

  8. Design and Development of a High Temperature Radiatively Cooled

    E-Print Network [OSTI]

    McDonald, Kirk

    obs true T C T C e e #12;Monochromatic Emissivity Measurement Results Little difference observed 6 Tp/sec Duration of Spill 54 msec Average Beam Power 7.7 kW Average Power in Production Target 0 operable locking mechanism (Fermilab concept) #12;Beam Power Distribution and resultant target heating 7.7k

  9. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.

    SciTech Connect (OSTI)

    Ehrhart, Brian David; Gill, David Dennis

    2013-07-01T23:59:59.000Z

    The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is a fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

  10. High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes

    SciTech Connect (OSTI)

    Morris, J. F.

    1985-03-19T23:59:59.000Z

    This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. The heat pipe is used to cool the nuclear reactor while the heat pipe is connected thermally and electrically to a thermionic converter. If the receiver requires greater thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparatively low thermal power densities through the electrically nonconducting gap between the two heat pipes.

  11. Flexible high-temperature pH probe

    DOE Patents [OSTI]

    Bielawski, John C. (Scotia, NY); Outwater, John O. (Cambridge, MA); Halbfinger, George P. (Schenectady, NY)

    2003-04-22T23:59:59.000Z

    A flexible pH probe device is provided for use in hot water and other high temperature environments up to about 590.degree. F. The pH probe includes a flexible, inert tubular probe member, an oxygen anion conducting, solid state electrolyte plug located at the distal end of the tubular member, oxide powder disposed at the distal end of the tubular member; a metal wire extending along the tubular member and having a distal end in contact with the oxide powder so as to form therewith an internal reference electrode; and a compression fitting forming a pressure boundary seal around a portion of the tubular member remote from the distal end thereof. Preferably, the tubular member is made of polytetrafluoroethylene, and the solid state electrolyte plug is made of stabilized zirconia. The flexibility of the probe member enables placement of the electrode into the area of interest, including around corners, into confined areas and the like.

  12. Overview of High-Temperature Electrolysis for Hydrogen Production

    SciTech Connect (OSTI)

    Herring, J. S.; O'Brien, J. E.; Stoots, C. M.; Hartvigsen, J. J.; Petri, M. C.; Carter, J. D.; Bischoff, B. L.

    2007-06-01T23:59:59.000Z

    Over the last five years there has been a growing interest in the use of hydrogen as an energy carrier, particularly to augment transportation fuels and thus reduce our dependence on imported petroleum. Hydrogen is now produced primarily via steam reforming of methane. However, in the long term, methane reforming is not a viable process for the large-scale hydrogen production since such fossil fuel conversion processes consume non-renewable resources and emit greenhouse gases. Nuclear energy can be used to produce hydrogen without consuming fossil fuels and without emitting greenhouse gases through the splitting of water into hydrogen and oxygen. The Nuclear Hydrogen Initiative of the DOE Office of Nuclear Energy is developing three general categories of high temperature processes for hydrogen production: thermochemical, electrolytic and hybrid thermo-electrolytic. This paper introduces the work being done in the development of high temperature electrolysis of steam. High Temperature Electrolysis (HTE) is built on the technology of solid oxide fuel cells (SOFCs), which were invented over a century ago, but which have been most vigorously developed during the last twenty years. SOFCs consume hydrogen and oxygen and produce steam and electricity. Solid Oxide Electrolytic Cells (SOECs) consume electricity and steam and produce hydrogen and oxygen. The purpose of the HTE research is to solve those problems unique to the electrolytic mode of operation, while building further on continuing fuel cell development. ORGANIZATION Experiments have been conducted for the last three years at the Idaho National Laboratory and at Ceramatec, Inc. on the operation of button cells and of progressively larger stacks of planar cells. In addition, the INL has been performing analyses of the cell-scale fluid dynamics and plant-scale flowsheets in order to determine optimum operating conditions and plant configurations. Argonne National Laboratory has been performing experiments for the development of new electrode materials, as well as modeling of the fluid dynamics and flowsheets for comparison with the work being done at the INL. ANL has also been performing diagnostic measures on components form long-duration tests at the INL and Ceramatec to determine the causes for the slow degradation in cell performance. Oak Ridge National Laboratory has been developing high temperature porous membranes for the separation of hydrogen from the residual steam, thus avoiding the need to condense and reheat the steam. The University of Nevada at Las Vegas has been collaborating with ANL on the development of electrode and electrolyte materials and will soon begin to investigate the causes of cell degradation. HTE research also includes NERI projects at the Virginia Polytechnic Institute on the development of toughened SOEC composite seals and at the Georgia Institute of Technology on the microstructural design of SOEC materials. EXPERIMENTAL RESULTS The most recent large-scale test of HTE was performed from June 28 through Sept 22, 2006 at the Ceramatec plant in Salt Lake City. The test apparatus consists of two stacks of 60 cells each in a configuration that will be used in the Integrated Laboratory Scale (ILS) experiment during FY-07. The ILS will contain three modules of four stacks each. The “Half-Module” initially produced 1.2 normal m3of H2/hour and 0.65 Nm3/hr at the end of the 2040-hour continuous test.

  13. High temperature concrete composites containing organosiloxane crosslinked copolymers

    DOE Patents [OSTI]

    Zeldin, Arkady (Rego Park, NY); Carciello, Neal (Patchogue, NY); Kukacka, Lawrence (Port Jefferson, NY); Fontana, Jack (Shoreham, NY)

    1980-01-01T23:59:59.000Z

    This invention relates to high temperature polymer concrete composites comprising about 10-30% by weight of a liquid monomer mixture consisting essentially of an organosiloxane polymer crosslinked with an olefinically unsaturated monomer selected from the group consisting of styrene, methyl methacrylate, trimethylolpropane trimethacrylate, triallyl cyanurate, n-phenylmalimide, divinyl benzene and mixtures theroef; and about 70-90% by weight of an inert inorganic filler system containing silica sand and preferably a member selected from the group consisting of portland cement, Fe.sub.2 O.sub.3, carbon black and mixtures thereof; and optionally a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide and other organic peroxides to initiate crosspolymerization of the monomer mixture in the presence of the inorganic filler.

  14. Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports

    SciTech Connect (OSTI)

    Sugime, Hisashi; Esconjauregui, Santiago; Yang, Junwei; D'Arsié, Lorenzo; Robertson, John [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom)] [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Oliver, Rachel A. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 0FS (United Kingdom)] [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 0FS (United Kingdom); Bhardwaj, Sunil [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy) [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy); Sincrotrone Trieste S.C.p.A., Strada Statale 14, Km 163.5, Trieste I-34149 (Italy); Cepek, Cinzia [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy)] [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy)

    2013-08-12T23:59:59.000Z

    We grow ultra-high mass density carbon nanotube forests at 450 °C on Ti-coated Cu supports using Co-Mo co-catalyst. X-ray photoelectron spectroscopy shows Mo strongly interacts with Ti and Co, suppressing both aggregation and lifting off of Co particles and, thus, promoting the root growth mechanism. The forests average a height of 0.38 ?m and a mass density of 1.6 g cm{sup ?3}. This mass density is the highest reported so far, even at higher temperatures or on insulators. The forests and Cu supports show ohmic conductivity (lowest resistance ?22 k?), suggesting Co-Mo is useful for applications requiring forest growth on conductors.

  15. Low-Temperature Combustion for High-Efficiency, Ultra-Low Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature Combustion for High-Efficiency, Ultra-Low Emission Engines Low-Temperature Combustion for High-Efficiency, Ultra-Low Emission Engines Presentation given at DEER...

  16. The Ultra-High Vacuum, Low-Temperature Scanning Probe Microscope...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Ultra-High Vacuum, Low-Temperature Scanning Probe Microscope in EMSL's Quiet Wing The Ultra-High Vacuum, Low-Temperature Scanning Probe Microscope in EMSL's Quiet Wing This is...

  17. Corrosion in Very High-Temperature Molten Salt for Next Generation...

    Broader source: Energy.gov (indexed) [DOE]

    Corrosion in Very High-Temperature Molten Salt for Next Generation CSP Systems Corrosion in Very High-Temperature Molten Salt for Next Generation CSP Systems This presentation was...

  18. Lithium Diffusion in Li4Ti5O12 at High Temperatures. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Diffusion in Li4Ti5O12 at High Temperatures. Lithium Diffusion in Li4Ti5O12 at High Temperatures. Abstract: Synthesis of the spinel lithium titanate Li4Ti5O12 by an...

  19. New Polymeric Proton Conductors for Water-free and High-temperature...

    Broader source: Energy.gov (indexed) [DOE]

    New Polymeric Proton Conductors for Water-free and High-temperature Fuel Cells New Polymeric Proton Conductors for Water-free and High-temperature Fuel Cells Presentation on New...

  20. Development of high-temperature ferromagnetism in SnO2 and paramagneti...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-temperature ferromagnetism in SnO2 and paramagnetism in SnO by Fe doping. Development of high-temperature ferromagnetism in SnO2 and paramagnetism in SnO by Fe doping....

  1. Enhanced high temperature performance of MgAl2O4-supported Pt...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high temperature performance of MgAl2O4-supported Pt-BaO lean NOx trap catalysts. Enhanced high temperature performance of MgAl2O4-supported Pt-BaO lean NOx trap catalysts....

  2. Development of High-Temperature Ferromagnetism in SnO and Paramagnetis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Temperature Ferromagnetism in SnO and Paramagnetism in SnO by Fe Doping. Development of High-Temperature Ferromagnetism in SnO and Paramagnetism in SnO by Fe Doping. Abstract:...

  3. CF8C PLus: A New Cast Stainless Steel for High-Temperature Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CF8C PLus: A New Cast Stainless Steel for High-Temperature Diesel Exhaust Components CF8C PLus: A New Cast Stainless Steel for High-Temperature Diesel Exhaust Components...

  4. High Temperature/Low Humidity Polymer Electrolytes Derived from Ionic Liquids

    Broader source: Energy.gov [DOE]

    Presentation on High Temperature/Low Humidity Polymer Electrolytes Derived from Ionic Liquids to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  5. SUPERCONDUCTIVITY PROGRAM RESEARCH AND DEVELOPMENT High Temperature Superconductivity (HTS) is a technology with the potential

    E-Print Network [OSTI]

    #12;SUPERCONDUCTIVITY PROGRAM RESEARCH AND DEVELOPMENT High Temperature Superconductivity (HTS-of-way. The Department of Energy's efforts to advance High Temperature Superconductivity combine major national strengths: the Superconductivity Partnership Initiative (SPI), the 2nd Generation Wire Initiative

  6. New Polymeric Proton Conductors for Water-free and High-temperature Fuel Cells

    Broader source: Energy.gov [DOE]

    Presentation on New Polymeric Proton Conductors for Water-free and High-temperature Fuel Cells to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  7. DUAL PHASE MEMBRANE FOR HIGH TEMPERATURE CO2 SEPARATION

    SciTech Connect (OSTI)

    Jerry Y.S. Lin; Seungjoon Chung; Matthew Anderson

    2005-12-01T23:59:59.000Z

    This project is intended to expand upon the previous year's research en route to the development of a sustainable dual phase membrane for CO{sub 2} separation. It was found that the pores within the supports had to be less than 9 {micro}m in order to maintain the stability of the dual phase membrane. Pores larger than 9 {micro}m would be unable to hold the molten carbonate phase in place, rendering the membrane ineffective. Calculations show that 80% of the pore volume of the 0.5 media grade metal support was filled with the molten carbonate. Information obtained from EDS and SEM confirmed that the molten carbonate completely infiltrated the pores on both the contact and non-contact size of the metal support. Permeation tests for CO{sub 2} and N{sub 2} at 450-750 C show very low permeance of those two gases through the dual phase membrane, which was expected due to the lack of ionization of those two gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased quite rapidly, while predictions showed that permeance should have continued to increase. XRD data obtained form the surface of the membrane indicated the formation of lithium iron oxides on the support. This layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture, limiting the formation of the ionic species. These results indicate that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation has created the need for an oxidation resistant support, which can be gained by the use of a ceramic-type membrane. Future research efforts will be directed towards preparation of a new ceramic-carbonate dual phase membrane. The membrane will based on an oxide ceramic support that has an oxidation resistance better than the metal support and high electronic conductivity (1200-1500 S/cm) in the interested temperature range (400-600 C).

  8. Nanocomposite thin films for high temperature optical gas sensing of hydrogen

    DOE Patents [OSTI]

    Ohodnicki, Jr., Paul R.; Brown, Thomas D.

    2013-04-02T23:59:59.000Z

    The disclosure relates to a plasmon resonance-based method for H.sub.2 sensing in a gas stream at temperatures greater than about 500.degree. C. utilizing a hydrogen sensing material. The hydrogen sensing material is comprised of gold nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10.sup.-7 S/cm at a temperature of 700.degree. C. Exemplary inert matrix materials include SiO.sub.2, Al.sub.2O.sub.3, and Si.sub.3N.sub.4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. At high temperatures, blue shift of the plasmon resonance optical absorption peak indicates the presence of H.sub.2. The method disclosed offers significant advantage over active and reducible matrix materials typically utilized, such as yttria-stabilized zirconia (YSZ) or TiO.sub.2.

  9. High-Temperature Circuit Boards for Use in Geothermal Well Monitoring Applications

    Broader source: Energy.gov [DOE]

    Project objective: Develop and demonstrate high-temperature; multilayer electronic circuits capable of sustained operation at 300? C.

  10. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2014-06-01T23:59:59.000Z

    This presentation reviews the status of the performance and reliability of bonded interfaces for high-temperature packaging.

  11. Membrane Development for Medium and High Temperature PEMFC in Europe (Presentation)

    Broader source: Energy.gov [DOE]

    Presented at the High Temperature Membrane Working Group Meeting (HTMWG) held October 10, 2007 in Washington, D.C.

  12. High-Temperature Air-Cooled Power Electronics Thermal Design (Presentation)

    SciTech Connect (OSTI)

    Waye, S.

    2014-06-01T23:59:59.000Z

    This presentation discusses the status of research at NREL on high temperature air-cooled power electronics thermal design.

  13. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    SciTech Connect (OSTI)

    Barlow, F.D.; Elshabini, A.

    2006-11-30T23:59:59.000Z

    A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products [1]. To date, many consumers find the adoption of these technologies problematic based on a financial analysis of the initial cost versus the savings available from reduced fuel consumption. Therefore, one of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Part of this cost reduction must come through optimization of the power electronics required by these vehicles. In addition, the efficiency of the systems must be optimized in order to provide the greatest range possible. For some drivers, any reduction in the range associated with a potential HEV or PHEV solution in comparison to a gasoline powered vehicle represents a significant barrier to adoption and the efficiency of the power electronics plays an important role in this range. Likewise, high efficiencies are also important since lost power further complicates the thermal management of these systems. Reliability is also an important concern since most drivers have a high level of comfort with gasoline powered vehicles and are somewhat reluctant to switch to a less proven technology. Reliability problems in the power electronics or associated components could not only cause a high warranty cost to the manufacturer, but may also taint these technologies in the consumer's eyes. A larger vehicle offering in HEVs is another important consideration from a power electronics point of view. A larger vehicle will need more horsepower, or a larger rated drive. In some ways this will be more difficult to implement from a cost and size point of view. Both the packaging of these modules and the thermal management of these systems at competitive price points create significant challenges. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE) [2]. This change would reduce the complexity of the cooling system which currently relies on two loops to a single loop [3]. However, the current nominal coolant temperature entering these inverters is 65 C [3], whereas a normal ICE coolant temperature would be much higher at approximately 100 C. This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. With this change in mind, significant progress has been made on the use of SiC devices for inverters that can withstand much higher junction temperatures than traditional Si based inverters [4,5,6]. However, a key problem which the single coolant loop and high temperature devices is the effective packaging of these devices and related components into a high temperature inverter. The elevated junction temperatures that exist in these modules are not compatible with reliable inverters based on existing packaging technology. This report seeks to provide a literature survey of high temperature packaging and to highlight the issues related to the implementation of high temperature power electronic modules for HEV and PHEV applications. For purposes of discussion, it will be assumed in this report that 200 C is the targeted maximum junction temperature.

  14. Split stream boilers for high-temperature/high-pressure topping steam turbine combined cycles

    SciTech Connect (OSTI)

    Rice, I.G. [Rice (I.G.), Spring, TX (United States)

    1997-04-01T23:59:59.000Z

    Research and development work on high-temperature and high-pressure (up to 1,500 F TIT and 4,500 psia) topping steam turbines and associated steam generators for steam power plants as well as combined cycle plants is being carried forward by DOE, EPRI, and independent companies. Aeroderivative gas turbines and heavy-duty gas turbines both will require exhaust gas supplementary firing to achieve high throttle temperatures. This paper presents an analysis and examples of a split stream boiler arrangement for high-temperature and high-pressure topping steam turbine combined cycles. A portion of the gas turbine exhaust flow is run in parallel with a conventional heat recovery steam generator (HRSG). This side stream is supplementary fired opposed to the current practice of full exhaust flow firing. Chemical fuel gas recuperation can be incorporated in the side stream as an option. A significant combined cycle efficiency gain of 2 to 4 percentage points can be realized using this split stream approach. Calculations and graphs show how the DOE goal of 60 percent combined cycle efficiency burning natural gas fuel can be exceeded. The boiler concept is equally applicable to the integrated coal gas fuel combined cycle (IGCC).

  15. Corrosion assessment of refractory materials for high temperature waste vitrification

    SciTech Connect (OSTI)

    Marra, J.C.; Congdon, J.W.; Kielpinski, A.L. [and others

    1995-11-01T23:59:59.000Z

    A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosion coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials.

  16. Systems Engineering Provides Successful High Temperature Steam Electrolysis Project

    SciTech Connect (OSTI)

    Charles V. Park; Emmanuel Ohene Opare, Jr.

    2011-06-01T23:59:59.000Z

    This paper describes two Systems Engineering Studies completed at the Idaho National Laboratory (INL) to support development of the High Temperature Stream Electrolysis (HTSE) process. HTSE produces hydrogen from water using nuclear power and was selected by the Department of Energy (DOE) for integration with the Next Generation Nuclear Plant (NGNP). The first study was a reliability, availability and maintainability (RAM) analysis to identify critical areas for technology development based on available information regarding expected component performance. An HTSE process baseline flowsheet at commercial scale was used as a basis. The NGNP project also established a process and capability to perform future RAM analyses. The analysis identified which components had the greatest impact on HTSE process availability and indicated that the HTSE process could achieve over 90% availability. The second study developed a series of life-cycle cost estimates for the various scale-ups required to demonstrate the HTSE process. Both studies were useful in identifying near- and long-term efforts necessary for successful HTSE process deployment. The size of demonstrations to support scale-up was refined, which is essential to estimate near- and long-term cost and schedule. The life-cycle funding profile, with high-level allocations, was identified as the program transitions from experiment scale R&D to engineering scale demonstration.

  17. Development of high temperature superconductors for magnetic field applications

    SciTech Connect (OSTI)

    Larbalestier, D.C.

    1991-12-31T23:59:59.000Z

    The key requirement for magnetic field applications of high temperature superconductor (HTS) materials is to have conductors with high transport critical current density available for magnet builders. After 3 or 4 years of being without any such object, conductor makers have had recent success in producing simple conductor prototypes. These have permitted the construction of simple HTS magnets having self fields exceeding 1 tesla at 4K. Thus the scientific feasibility of making powerful HTS magnets has been demonstrated. Attention to the technological aspects of making HTS conductors for magnets with strong flux pinning and reduced superconducting granularity is now sensible and attractive. However, extrinsic defects such as filament sausaging, cracking, misaligned grains and other perturbation to long range current flow must be controlled at a low level if the benefit of intrinsic improvements to the critical current density is to be maintained in the conductor form. Due to the great complexity of the HTS materials, there is sometimes confusion as to whether a given sample has an intrinsically or extrinsically limited critical current density. Systematic microstructure variation experiments and resistive transition analysis are shown to be particularly helpful in this phase of conductor development.

  18. Highly-Efficient Selective Metamaterial Absorber for High-Temperature Solar Thermal Energy Harvesting

    E-Print Network [OSTI]

    Wang, Hao; Mitchell, Arnan; Rosengarten, Gary; Phelan, Patrick; Wang, Liping

    2014-01-01T23:59:59.000Z

    In this work, a metamaterial selective solar absorber made of nanostructured titanium gratings deposited on an ultrathin MgF2 spacer and a tungsten ground film is proposed and experimentally demonstrated. Normal absorptance of the fabricated solar absorber is characterized to be higher than 90% in the UV, visible and, near infrared (IR) regime, while the mid-IR emittance is around 20%. The high broadband absorption in the solar spectrum is realized by the excitation of surface plasmon and magnetic polariton resonances, while the low mid-IR emittance is due to the highly reflective nature of the metallic components. Further directional and polarized reflectance measurements show wide-angle and polarization-insensitive high absorption within solar spectrum. Temperature-dependent spectroscopic characterization indicates that the optical properties barely change at elevated temperatures up to 350{\\deg}C. The solar-to-heat conversion efficiency with the fabricated metamaterial solar absorber is predicted to be 78%...

  19. DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect (OSTI)

    J. E. O'Brien; C. M. Stoots; V. I. Sharma; B. Yildiz; A. V. Virkar

    2010-06-01T23:59:59.000Z

    Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problems between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL’s test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte.

  20. High Temperature Calcination - MACT Upgrade Equipment Pilot Plant Test

    SciTech Connect (OSTI)

    Richard D. Boardman; B. H. O'Brien; N. R. Soelberg; S. O. Bates; R. A. Wood; C. St. Michel

    2004-02-01T23:59:59.000Z

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in the New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing indicate that sodium-bearing waste can be successfully calcined at 600 C with an AAR of 1.75. Unburned hydrocarbons are reduced to less than 10 ppm (7% O2, dry basis), with >90% reduction of NOx emissions. Mercury removal by the carbon bed reached 99.99%, surpassing the control efficiency needed to meet MACT emissions standards. No deleterious impacts on the carbon bed were observed during the tests. The test results imply that upgrading the NWCF calciner with a more efficient cyclone separator and the proposed MACT equipment can process the remaining tanks wastes in 3 years or less, and comply with the MACT standards.

  1. Characterization of Composite Cores for High Temperature-Low Sag (HTLS)

    E-Print Network [OSTI]

    Characterization of Composite Cores for High Temperature-Low Sag (HTLS) Conductors Final Project project T-33 titled "Characterization of Composite Cores for High Temperature-Low Sag (HTLS) Conductors/University Cooperative Research Center since 1996 PSERC #12;Characterization of Composite Cores for High Temperature-Low

  2. Infrared emission spectroscopy of CO2 at high temperature. Part I: Experimental setup and source

    E-Print Network [OSTI]

    Boyer, Edmond

    Infrared emission spectroscopy of CO2 at high temperature. Part I: Experimental setup and source measurement, tube effects, CO2 infrared radiation 1. Introduction The knowledge of very high temperature for instance that the IR emission of the CO2 molecule remains predominant at temperatures as high as 4000 K [1

  3. Method of manufacturing a high temperature superconductor with improved transport properties

    DOE Patents [OSTI]

    Balachandran, Uthamalingam (Hinsdale, IL); Siegel, Richard W. (Hinsdale, IL); Askew, Thomas R. (Kalamazoo, MI)

    2001-01-01T23:59:59.000Z

    A method of preparing a high temperature superconductor. A method of preparing a superconductor includes providing a powdered high temperature superconductor and a nanophase paramagnetic material. These components are combined to form a solid compacted mass with the paramagnetic material disposed on the grain boundaries of the polycrystaline high temperature superconductor.

  4. Burning Velocities in Catalytically Assisted Self-Propagating High-Temperature Combustion Synthesis Systems

    E-Print Network [OSTI]

    Wooldridge, Margaret S.

    Burning Velocities in Catalytically Assisted Self-Propagating High-Temperature Combustion Synthesis of catalytically assisted self-propagating high-temperature synthesis (SHS) of the tantalum/carbon material system. © 2001 by The Combustion Institute INTRODUCTION Self-propagating high-temperature combustion synthesis

  5. High-field magnets using high-critical-temperature superconducting thin films

    DOE Patents [OSTI]

    Mitlitsky, Fred (Livermore, CA); Hoard, Ronald W. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field.

  6. High-field magnets using high-critical-temperature superconducting thin films

    DOE Patents [OSTI]

    Mitlitsky, F.; Hoard, R.W.

    1994-05-10T23:59:59.000Z

    High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla are disclosed. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field. 4 figures.

  7. Improved high temperature refractory. [MgCr/sub 2/O/sub 4/ composite with ZrO/sub 2/

    DOE Patents [OSTI]

    Singh, J.P.; James, J.; Picciolo, J.J.

    1985-12-10T23:59:59.000Z

    A high chromia refractory composite has been developed with improved thermal shock resistance and containing about 5 to 30 wt % of unstabilized ZrO/sub 2/ having a temperature-dependent phase change resulting in large expansion mismatch between the ZrO/sub 2/ and the chromia matrix which causes microcracks to form during cooling in the high chromia matrix. The particle size preferably is primarily between about 0.6 to 5 microns and particularly below about 3 microns with an average size in the order of 1.2 to 1.8 microns.

  8. Amorphous Alloy Membranes for High Temperature Hydrogen Separation

    SciTech Connect (OSTI)

    Coulter, K

    2013-09-30T23:59:59.000Z

    At the beginning of this project, thin film amorphous alloy membranes were considered a nascent but promising new technology for industrial-scale hydrogen gas separations from coal- derived syngas. This project used a combination of theoretical modeling, advanced physical vapor deposition fabricating, and laboratory and gasifier testing to develop amorphous alloy membranes that had the potential to meet Department of Energy (DOE) targets in the testing strategies outlined in the NETL Membrane Test Protocol. The project is complete with Southwest Research Institute® (SwRI®), Georgia Institute of Technology (GT), and Western Research Institute (WRI) having all operated independently and concurrently. GT studied the hydrogen transport properties of several amorphous alloys and found that ZrCu and ZrCuTi were the most promising candidates. GT also evaluated the hydrogen transport properties of V, Nb and Ta membranes coated with different transition-metal carbides (TMCs) (TM = Ti, Hf, Zr) catalytic layers by employing first-principles calculations together with statistical mechanics methods and determined that TiC was the most promising material to provide catalytic hydrogen dissociation. SwRI developed magnetron coating techniques to deposit a range of amorphous alloys onto both porous discs and tubular substrates. Unfortunately none of the amorphous alloys could be deposited without pinhole defects that undermined the selectivity of the membranes. WRI tested the thermal properties of the ZrCu and ZrNi alloys and found that under reducing environments the upper temperature limit of operation without recrystallization is ~250 °C. There were four publications generated from this project with two additional manuscripts in progress and six presentations were made at national and international technical conferences. The combination of the pinhole defects and the lack of high temperature stability make the theoretically identified most promising candidate amorphous alloys unsuitable for application as hydrogen separation membranes in coal fire systems.

  9. Multiyear Program Plan for the High Temperature Materials Laboratory

    SciTech Connect (OSTI)

    Arvid E. Pasto

    2000-03-17T23:59:59.000Z

    Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly, the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO{sub x} and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required.

  10. Advancement of High Temperature Black Liquor Gasification Technology

    SciTech Connect (OSTI)

    Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

    2008-03-31T23:59:59.000Z

    Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the design, specification and procurement of facility upgrades. Chemrec AB is also operating a pressurized, O2-blown gasifier pilot facility in Piteaa, Sweden. There was an exchange of knowledge with the pressurized projects including utilization of the experimental results from facilities in Piteaa, Sweden. Resources at the Georgia Tech Research Corporation (GTRC, a.k.a., the Institute of Paper Science and Technology) were employed primarily to conduct the fundamental investigations on scaling and plugging mechanisms and characterization of green liquor dregs. The project also tapped GTRC expertise in the development of the critical underlying black liquor gasification rate subroutines employed in the CFD code. The actual CFD code development and application was undertaken by Process Simulation, Ltd (PSL) and Simulent, Ltd. PSL focused on the overall integrated gasifier CFD code, while Simulent focused on modeling the black liquor nozzle and description of the black liquor spray. For nozzle development and testing Chemrec collaborated with ETC (Energy Technology Centre) in Piteae utilizing their test facility for nozzle spray investigation. GTI (Gas Technology Institute), Des Plains, IL supported the team with advanced gas analysis equipment during the gasifier test period in June 2005.

  11. Characterization of high-current, high-temperature superconductor current lead elements

    SciTech Connect (OSTI)

    Niemann, R.C.; Evans, D.J.; Fisher, B.L. [Argonne National Lab., IL (United States); Brockenborough, W.E.; Roberts, P.R.; Rodenbush, A.J. [American Superconductor Corp., Westborough, MA (United States)

    1996-08-01T23:59:59.000Z

    The refrigeration loads of current leads for superconducting magnets can be significantly reduced by using high-temperature superconductor (HTS) leads. An HTS conductor type that is well suited for this application is a laminated sintered stack of HTS powder-in-tube (PIT) tapes. The superconducting elements are normally characterized by their manufacturer by measuring critical currents at 77 K in self field. Additional characterization, which correlates electrical performance at 77 K and at lower temperatures with applied magnetic fields, provides the current lead designer and conductor element manufacturer with critical information. For HTS conductor elements comprising a laminated and sintered stack of Bi-2223 PIT tapes having an alloyed Ag sheath, this characterization uses variable applied fields and operating temperatures.

  12. Equations of state of ice VI and ice VII at high pressure and high temperature

    SciTech Connect (OSTI)

    Bezacier, Lucile; Hanfland, Michael [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38000 Grenoble (France); Journaux, Baptiste; Perrillat, Jean-Philippe; Cardon, Hervé; Daniel, Isabelle [Laboratoire de Géologie de Lyon, UMR 5276 CNRS, Ecole Normale Supérieure de Lyon – Université Claude Bernard Lyon 1, 2 rue Raphael Dubois, 69622 Villeurbanne Cedex (France)

    2014-09-14T23:59:59.000Z

    High-pressure H{sub 2}O polymorphs among which ice VI and ice VII are abundant in the interiors of large icy satellites and exo-planets. Knowledge of the elastic properties of these pure H{sub 2}O ices at high-temperature and high-pressure is thus crucial to decipher the internal structure of icy bodies. In this study we assess for the first time the pressure-volume-temperature (PVT) relations of both polycrystalline pure ice VI and ice VII at high pressures and temperatures from 1 to 9 GPa and 300 to 450 K, respectively, by using in situ synchrotron X-ray diffraction. The PVT data are adjusted to a second-order Birch-Murnaghan equation of state and give V{sub 0} = 14.17(2) cm{sup 3}?mol{sup ?1}, K{sub 0} = 14.05(23) GPa, and ?{sub 0} = 14.6(14) × 10{sup ?5} K{sup ?1} for ice VI and V{sub 0} = 12.49(1) cm{sup 3}?mol{sup ?1}, K{sub 0} = 20.15(16) GPa, and ?{sub 0} = 11.6(5) × 10{sup ?5} K{sup ?1} for ice VII.

  13. The US market for high-temperature superconducting wire in transmission cable applications

    SciTech Connect (OSTI)

    Forbes, D.

    1996-04-01T23:59:59.000Z

    Telephone interviews were conducted with 23 utility engineers concerning the future prospects for high-temperature superconducting (HTS) transmission cables. All have direct responsibility for transmission in their utility, most of them in a management capacity. The engineers represented their utilities as members of the Electric Power Research Institute`s Underground Transmission Task Force (which has since been disbanded). In that capacity, they followed the superconducting transmission cable program and are aware of the cryogenic implications. Nineteen of the 23 engineers stated the market for underground transmission would grow during the next decade. Twelve of those specified an annual growth rate; the average of these responses was 5.6%. Adjusting that figure downward to incorporate the remaining responses, this study assumes an average growth rate of 3.4%. Factors driving the growth rate include the difficulty in securing rights-of-way for overhead lines, new construction techniques that reduce the costs of underground transmission, deregulation, and the possibility that public utility commissions will allow utilities to include overhead costs in their rate base. Utilities have few plans to replace existing cable as preventive maintenance, even though much of the existing cable has exceeded its 40-year lifetime. Ten of the respondents said the availability of a superconducting cable with the same life-cycle costs as a conventional cable and twice the ampacity would induce them to consider retrofits. The respondents said a cable with those characteristics would capture 73% of their cable retrofits.

  14. High temperature superconducting composite conductor and method for manufacturing the same

    DOE Patents [OSTI]

    Holesinger, Terry G. (Los Alamos, NM); Bingert, John F. (Jemez Springs, NM)

    2002-01-01T23:59:59.000Z

    A high temperature superconducting composite conductor is provided including a high temperature superconducting material surrounded by a noble metal layer, the high temperature superconducting composite conductor characterized as having a fill factor of greater than about 40. Additionally, the conductor can be further characterized as containing multiple cores of high temperature superconducting material surrounded by a noble metal layer, said multiple cores characterized as having substantially uniform geometry in the cross-sectional dimensions. Processes of forming such a high temperature superconducting composite conductor are also provided.

  15. Reproducibility of High-Q SRF Cavities by High Temperature Heat Treatment

    SciTech Connect (OSTI)

    Dhakal, Pashupati [JLAB; Ciovati, Gianluigi [JLAB; Kneisel, Peter [JLAB; Myneni, Ganapati Rao [JLAB

    2014-07-01T23:59:59.000Z

    Recent work on high-temperature (> 600 °C) heat treatment of ingot Nb cavities in a customized vacuum furnace for several hours showed the possibility of achieving Q0-values of up to ~5×1010 at 2.0 K, 1.5 GHz and accelerating gradients of ~20 MV/m. This contribution presents results on further studies of the heat treatment process to produce cavities with high Q0 values for continuous-wave accelerator application. Single-cell cavities of different Nb purity have been processed through few cycles of heat-treatments and chemical etching. Measurements of Q0 as a function of temperature at low RF field and of Q0 as a function of the RF field at or below 2.0 K have been made after each treatment. Measurements by TOF-SIMS of the impurities? depth profiles were made on samples heat treated with the cavities.

  16. High temperature QCD with three flavors of improved staggered quarks

    E-Print Network [OSTI]

    The MILC Collaboration; C. Bernard; T. Burch; C. E. DeTar; Steven Gottlieb; Eric Gregory; U. M. Heller; J. Osborn; R. L. Sugar; D. Toussaint

    2002-09-05T23:59:59.000Z

    We present an update of our study of high temperature QCD with three flavors of quarks, using a Symanzik improved gauge action and the Asqtad staggered quark action. Simulations are being carried out on lattices with Nt=4, 6 and 8 for the case of three degenerate quarks with masses less than or equal to the strange quark mass, $m_s$, and on lattices with Nt=6 and 8 for degenerate up and down quarks with masses in the range 0.2 m_s \\leq m_{u,d} \\leq 0.6 m_s, and the strange quark fixed near its physical value. We also report on first computations of quark number susceptibilities with the Asqtad action. These susceptibilities are of interest because they can be related to event-by-event fluctuations in heavy ion collision experiments. Use of the improved quark action leads to a substantial reduction in lattice artifacts. This can be seen already for free fermions and carries over into our results for QCD.

  17. High temperature QCD with three flavors of improved staggered quarks

    E-Print Network [OSTI]

    Bernard, C; DeTar, C E; Gottlieb, S; Gregory, E; Heller, U M; Osborn, J; Sugar, R L; Toussaint, D; Gottlieb, Steven; Gregory, Eric

    2002-01-01T23:59:59.000Z

    We present an update of our study of high temperature QCD with three flavors of quarks, using a Symanzik improved gauge action and the Asqtad staggered quark action. Simulations are being carried out on lattices with Nt=4, 6 and 8 for the case of three degenerate quarks with masses less than or equal to the strange quark mass, $m_s$, and on lattices with Nt=6 and 8 for degenerate up and down quarks with masses in the range 0.2 m_s \\leq m_{u,d} \\leq 0.6 m_s, and the strange quark fixed near its physical value. We also report on first computations of quark number susceptibilities with the Asqtad action. These susceptibilities are of interest because they can be related to event-by-event fluctuations in heavy ion collision experiments. Use of the improved quark action leads to a substantial reduction in lattice artifacts. This can be seen already for free fermions and carries over into our results for QCD.

  18. High-temperature superconducting transformer performance, cost, and market evaluation

    SciTech Connect (OSTI)

    Dirks, J.A.; Dagle, J.E.; DeSteese, J.G.; Huber, H.D.; Smith, S.A.; Currie, J.W. [Pacific Northwest Lab., Richland, WA (United States); Merrick, S.B. [Westinghouse Hanford Co., Richland, WA (United States); Williams, T.A. [National Renewable Energy Lab., Golden, CO (United States)

    1993-09-01T23:59:59.000Z

    Recent laboratory breakthroughs in high-temperature superconducting (HTS) materials have stimulated both the scientific community and general public with questions regarding how these materials can be used in practical applications. While there are obvious benefits from using HTS materials (most notably the potential for reduced energy losses in the conductors), a number of issues (such as overall system energy losses, cost, and reliability) may limit applications of HTS equipment, even if the well known materials problems are solved. This study examined the future application potential of HTS materials to power transformers. This study effort was part of a US Department of Energy (DOE) Office of Energy Storage and Distribution (OESD) research program, Superconductivity Technology for Electric Power Systems (STEPS). The study took a systems perspective to gain insights to help guide DOE in managing research designed to realize the vision of HTS applications. Specific objectives of the study were as follows: to develop an understanding of the fundamental HTS transformer design issues that can provide guidance for developing practical devices of interest to the electric utility industry; to identify electric utility requirements for HTS transformers and to evaluate the potential for developing a commercial market; to evaluate the market potential and national benefits for HTS transformers that could be achieved by a successful HTS development program; to develop an integrated systems analysis framework, which can be used to support R&D planning by DOE, by identifying how various HTS materials characteristics impact the performance, cost, and national benefits of the HTS application.

  19. Pressure Resistance Welding of High Temperature Metallic Materials

    SciTech Connect (OSTI)

    N. Jerred; L. Zirker; I. Charit; J. Cole; M. Frary; D. Butt; M. Meyer; K. L. Murty

    2010-10-01T23:59:59.000Z

    Pressure Resistance Welding (PRW) is a solid state joining process used for various high temperature metallic materials (Oxide dispersion strengthened alloys of MA957, MA754; martensitic alloy HT-9, tungsten etc.) for advanced nuclear reactor applications. A new PRW machine has been installed at the Center for Advanced Energy Studies (CAES) in Idaho Falls for conducting joining research for nuclear applications. The key emphasis has been on understanding processing-microstructure-property relationships. Initial studies have shown that sound joints can be made between dissimilar materials such as MA957 alloy cladding tubes and HT-9 end plugs, and MA754 and HT-9 coupons. Limited burst testing of MA957/HT-9 joints carried out at various pressures up to 400oC has shown encouraging results in that the joint regions do not develop any cracking. Similar joint strength observations have also been made by performing simple bend tests. Detailed microstructural studies using SEM/EBSD tools and fatigue crack growth studies of MA754/HT-9 joints are ongoing.

  20. High-temperature, high-pressure bonding of nested tubular metallic components

    DOE Patents [OSTI]

    Quinby, Thomas C. (Kingston, TN)

    1980-01-01T23:59:59.000Z

    This invention is a tool for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  1. Final Scientific Report - "Novel Steels for High Temperature Carburizing"

    SciTech Connect (OSTI)

    McKimpson, Marvin G.; Liu, Tianjun; Maniruzzaman, Md

    2012-07-27T23:59:59.000Z

    This program was undertaken to develop a microalloy-modified grade of standard carburizing steel that can successfully exploit the high temperature carburizing capabilities of current commercial low pressure (i.e. 'vacuum') carburizing systems. Such steels can lower the amount of energy required for commercial carburizing operations by reducing the time required for deep-case carburizing operations. The specific technical objective of the work was to demonstrate a carburizing steel composition capable of maintaining a prior austenite grain size no larger than ASTM grain size number 5 after exposure to simulated carburizing conditions of 1050 C for 8 hr. Such thermal exposure should be adequate for producing carburized case depths up to about 2 mm. Such carburizing steels are expected to be attractive for use across a wide range of industries, including the petroleum, chemical, forest products, automotive, mining and industrial equipment industries. They have potential for reducing energy usage during low pressure carburizing by more than 25%, as well as reducing cycle times and process costs substantially. They also have potential for reducing greenhouse gas emissions from existing low pressure carburizing furnaces by more than 25%. High temperature carburizing can be done in most modern low pressure carburizing systems with no additional capital investment. Accordingly, implementing this technology on carburizing furnaces will provide a return on investment significantly greater than 10%. If disseminated throughout the domestic carburizing community, the technology has potential for saving on the order of 23 to 34 trillion BTU/year in industrial energy usage. Under the program, two compositions of microalloyed, coarsening-resistant low alloy carburizing steels were developed, produced and evaluated. After vacuum annealing at 1050oC for 8 hrs and high pressure gas quenching, both steels exhibited a prior austenite ASTM grain size number of 5.0 or finer. For comparison, a control alloy of similar composition but without the microalloy additions exhibited a duplex prior austenite grain size with grains ranging from ASTM grain size 3 down to ASTM grain size 1 after similar processing and thermal exposure. These results confirm the potential for using microalloy additions of Ti, B, Nb, Al, rare earths and/or N for austenite grain size control in Cr-Mo (i.e. 4000-series) low alloy carburizing steels. They also demonstrate that these microalloy additions will not compromise the processability of the steel; all three materials produced under the program could be hot worked readily using normal steel processing protocols. To fully realize the technical and commercial potential of these steels, there is a need to continue development work using larger-scale heats. These larger-scale heats are needed to provide adequate material for fatigue testing of quenched and tempered alloys, to conduct more complete investigations of potential alloy chemistries and to provide additional material for processing studies. It will also be beneficial to carefully review intellectual property issues associated with this family of steels, since existing Japanese patent literature suggests that significant microstructural and/or process characterization work may be needed on new materials to confirm that these materials fall outside existing patent claims.

  2. ambient high temperature: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between 25C and 27C. The types of modules 3 Terminology Poikilotherms body temperature ambient Environmental Sciences and Ecology Websites Summary: heat production, Q ...

  3. Evaluation of High-Temperature Exposure of Photovoltaic Modules: Preprint

    SciTech Connect (OSTI)

    Kurtz, S.; Miller, D.; Kempe, M.; Bosco, N.; Whitefield, K.; Wohlgemuth, J.; Dhere, N.; Zgonena, T.

    2009-06-01T23:59:59.000Z

    This paper documents measured and modeled PV-module temperatures and evaluates these in the context of the requirements for accelerated testing.

  4. Low-Temperature Combustion Demonstrator for High-Efficiency Clean...

    Broader source: Energy.gov (indexed) [DOE]

    power density - Improved vehicle cooling system (low temperature radiator) - Two stage turbo system - Increased cylinder pressure capability Transient response - Two stage turbo -...

  5. Sandia National Laboratories: high-temperature materials and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    temperature materials and devices Joint Hire Increases Materials Science Collaboration for Sandia, UNM On September 16, 2014, in Advanced Materials Laboratory, Capabilities,...

  6. High resolution low-temperature superconductivity superconducting quantum interference device microscope for imaging magnetic fields

    E-Print Network [OSTI]

    Weiss, Benjamin P.

    -temperature superconducting niobium wire coupled to the input circuit of a superconducting quantum interference device SQUID-stated advantages of high-temperature superconductivity HTS over the more advanced low- temperature superconductivity LTS is that the higher oper- ating temperature, typically around 77 K, allows HTS SQUIDs

  7. Deterministic Modeling of the High Temperature Test Reactor

    SciTech Connect (OSTI)

    Ortensi, J.; Cogliati, J. J.; Pope, M. A.; Ferrer, R. M.; Ougouag, A. M.

    2010-06-01T23:59:59.000Z

    Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine INL’s current prismatic reactor deterministic analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 column thin annular core, and the fully loaded core critical condition with 30 columns. Special emphasis is devoted to the annular core modeling, which shares more characteristics with the NGNP base design. The DRAGON code is used in this study because it offers significant ease and versatility in modeling prismatic designs. Despite some geometric limitations, the code performs quite well compared to other lattice physics codes. DRAGON can generate transport solutions via collision probability (CP), method of characteristics (MOC), and discrete ordinates (Sn). A fine group cross section library based on the SHEM 281 energy structure is used in the DRAGON calculations. HEXPEDITE is the hexagonal z full core solver used in this study and is based on the Green’s Function solution of the transverse integrated equations. In addition, two Monte Carlo (MC) based codes, MCNP5 and PSG2/SERPENT, provide benchmarking capability for the DRAGON and the nodal diffusion solver codes. The results from this study show a consistent bias of 2–3% for the core multiplication factor. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement stems from the fact that during the experiments the control rods were adjusted to maintain criticality, whereas in the model, the rod positions were fixed. In addition, this work includes a brief study of a cross section generation approach that seeks to decouple the domain in order to account for neighbor effects. This spectral interpenetration is a dominant effect in annular HTR physics. This analysis methodology should be further explored in order to reduce the error that is systematically propagated in the traditional generation of cross sections.

  8. Development of high-waste loaded high-level nuclear waste glasses for high-temperature melter

    SciTech Connect (OSTI)

    Kim, D.S.; Hrma, P.; Lamar, D.A.; Elliott, M.L. [Pacific Northwest Lab., Richland, WA (United States)

    1994-12-31T23:59:59.000Z

    This paper describes the approach taken in formulating glasses that can be processed at 1150 to 1500{degrees}C by applying glass property/composition models developed at Pacific Northwest Laboratory. Compositions and melting temperatures for glasses with high waste loading that are acceptable and able to be processed were determined for two different Hanford waste types. The glasses meet high-level waste glass acceptability criteria and are suitable for processing in a continuous Joule-heated melter.

  9. Development of high-waste loaded high-level nuclear waste glasses for high-temperature melter

    SciTech Connect (OSTI)

    Kim, D.S.; Hrma, P.R.; Lamar, D.A.; Elliott, M.L.

    1994-04-01T23:59:59.000Z

    This paper describes the approach taken in formulating glasses that can be processed at 1150 to 1500{degrees}C by applying glass property/composition models developed at Pacific Northwest Laboratory. Compositions and melting temperatures for glasses with high waste loading that are acceptable and able to be processed were determined for two different Hanford waste types. The glasses meet high-level waste glass acceptability criteria and are suitable for processing in a continuous Joule-heated melter.

  10. Technique for the Estimation of Surface Temperatures from Embedded Temperature Sensing for Rapid, High Energy Surface Deposition

    SciTech Connect (OSTI)

    Watkins, Tyson R.; Schunk, Peter Randall; Roberts, Scott A.

    2014-07-01T23:59:59.000Z

    Temperature histories on the surface of a body that has been subjected to a rapid, high-energy surface deposition process can be di#14;fficult to determine, especially if it is impossible to directly observe the surface or attach a temperature sensor to it. In this report, we explore two methods for estimating the temperature history of the surface through the use of a sensor embedded within the body very near to the surface. First, the maximum sensor temperature is directly correlated with the peak surface temperature. However, it is observed that the sensor data is both delayed in time and greatly attenuated in magnitude, making this approach unfeasible. Secondly, we propose an algorithm that involves fitting the solution to a one-dimensional instantaneous energy solution problem to both the sensor data and to the results of a one-dimensional CVFEM code. This algorithm is shown to be able to estimate the surface temperature {+-}~20#14;{degrees}C.

  11. Short Channel Amorphous-Silicon TFT's on High-Temperature Clear Plastic Substrates

    E-Print Network [OSTI]

    Short Channel Amorphous-Silicon TFT's on High-Temperature Clear Plastic Substrates K. Long, H@princeton.edu To achieve light-weight flexible AMOLED displays on plastic substrates, the substratesmust be optically clear for plastic. High-temperature plastics such as polyimide (e.g. KaptonB E) have a glass transition temperature

  12. Hysteresis and Noise from Electronic Nematicity in High-Temperature Superconductors E. W. Carlson,1

    E-Print Network [OSTI]

    Carlson, Erica

    -temperature superconductors, in addition to superconductivity, there may exist various other types of order which breakHysteresis and Noise from Electronic Nematicity in High-Temperature Superconductors E. W. Carlson,1 reported in recent noise [8] and hysteresis [9,10] measure- ments on high-temperature superconductors

  13. Measuring transient high temperature thermal phenomena in hostile environment

    SciTech Connect (OSTI)

    Brenden, B.B.; Hartman, J.S.; Reich, F.R.

    1980-01-01T23:59:59.000Z

    The design of equipment for measuring temperature and strain in a rapidly heated and pressurized cylinder of stainless steel is discussed. Simultaneous cinematography of the full circumference of the cylinder without interference with temperature and strain measurements is also illustrated. The integrated system uses a reflective chamber for the sample and requires careful consideration of the spectral energy distribution utilized by each instrument.

  14. High Temperature Gas Reactors: Assessment of Applicable Codes and Standards

    SciTech Connect (OSTI)

    McDowell, Bruce K.; Nickolaus, James R.; Mitchell, Mark R.; Swearingen, Gary L.; Pugh, Ray

    2011-10-31T23:59:59.000Z

    Current interest expressed by industry in HTGR plants, particularly modular plants with power up to about 600 MW(e) per unit, has prompted NRC to task PNNL with assessing the currently available literature related to codes and standards applicable to HTGR plants, the operating history of past and present HTGR plants, and with evaluating the proposed designs of RPV and associated piping for future plants. Considering these topics in the order they are arranged in the text, first the operational histories of five shut-down and two currently operating HTGR plants are reviewed, leading the authors to conclude that while small, simple prototype HTGR plants operated reliably, some of the larger plants, particularly Fort St. Vrain, had poor availability. Safety and radiological performance of these plants has been considerably better than LWR plants. Petroleum processing plants provide some applicable experience with materials similar to those proposed for HTGR piping and vessels. At least one currently operating plant - HTR-10 - has performed and documented a leak before break analysis that appears to be applicable to proposed future US HTGR designs. Current codes and standards cover some HTGR materials, but not all materials are covered to the high temperatures envisioned for HTGR use. Codes and standards, particularly ASME Codes, are under development for proposed future US HTGR designs. A 'roadmap' document has been prepared for ASME Code development; a new subsection to section III of the ASME Code, ASME BPVC III-5, is scheduled to be published in October 2011. The question of terminology for the cross-duct structure between the RPV and power conversion vessel is discussed, considering the differences in regulatory requirements that apply depending on whether this structure is designated as a 'vessel' or as a 'pipe'. We conclude that designing this component as a 'pipe' is the more appropriate choice, but that the ASME BPVC allows the owner of the facility to select the preferred designation, and that either designation can be acceptable.

  15. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    SciTech Connect (OSTI)

    Ojeda, William de

    2010-07-31T23:59:59.000Z

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally, the transient demonstration was performed in Phase IV. The project demonstrated the achievement of meeting US10 emissions without NOx aftertreatment. The successful execution of the project has served to highlight the effectiveness of closely matched combustion predictive tools to engine testing. It has further served to highlight the importance of key technologies and future areas of research and development. In this regard, recommendations are made towards further improvements in the areas of engine hardware, fuel injection systems, controls and fuels.

  16. Improved Materials for High-Temperature Black Liquor Gasification

    SciTech Connect (OSTI)

    Keiser, J.R.; Hemrick, J.G.; Gorog, J.P.; Leary, R.

    2006-06-29T23:59:59.000Z

    The laboratory immersion test system built and operated at ORNL was found to successfully screen samples from numerous refractory suppliers, including both commercially available and experimental materials. This system was found to provide an accurate prediction of how these materials would perform in the actual gasifier environment. Test materials included mullites, alumino-silicate bricks, fusion-cast aluminas, alumina-based and chrome-containing mortars, phosphate-bonded mortars, coated samples provided under an MPLUS-funded project, bonded spinels, different fusion-cast magnesia-alumina spinels with magnesia content ranging from 2.5% to about 60%, high-MgO castable and brick materials, spinel castables, and alkali-aluminate materials. This testing identified several candidate material systems that perform well in the New Bern gasifier. Fusion-cast aluminas were found to survive for nearly one year, and magnesia-alumina spinels have operated successfully for 18 months and are expected to survive for two years. Alkali-aluminates and high-MgO-content materials have also been identified for backup lining applications. No other material with a similar structure and chemical composition to that of the fusion-cast magnesium-aluminum spinel brick currently being used for the hot-face lining is commercially available. Other materials used for this application have been found to have inferior service lives, as previously discussed. Further, over 100 laboratory immersion tests have been performed on other materials (both commercial and experimental), but none to date has performed as well as the material currently being used for the hot-face lining. Operating experience accumulated with the high-temperature gasifier at New Bern, North Carolina, has confirmed that the molten alkali salts degrade many types of refractories. Fusion-cast alumina materials were shown to provide a great improvement in lifetime over materials used previously. Further improvement was realized with fusion-cast magnesia-alumina spinel refractory, which appears to be the most resistant to degradation found to date, exhibiting over a year of service life and expected to be capable of over two years of service life. Regarding the use of refractory mortar, it was found that expansion of the current chrome-alumina mortar when subjected to black liquor smelt is likely contributing to the strains seen on the vessel shell. Additionally, the candidate high-alumina mortar that was originally proposed as a replacement for the current chrome-alumina mortar also showed a large amount of expansion when subjected to molten smelt. A UMR experimental mortar, composed of a phosphate bonded system specifically designed for use with fusion-cast magnesium-aluminum spinel, was found to perform well in the molten smelt environment. Strain gauges installed on the gasifier vessel shell provided valuable information about the expansion of the refractory, and a new set of strain gauges and thermocouples has been installed in order to monitor the loading caused by the currently installed spinel refractory. These results provide information for a direct comparison of the expansion of the two refractories. Measurements to date suggest that the fusion-cast magnesia-alumina spinel is expanding less than the fusion-cast {alpha}/{beta}-alumina used previously. A modified liquor nozzle was designed and constructed to test a number of materials that should be more resistant to erosion and corrosion than the material currently used. Inserts made of three erosion-resistant metallic materials were fabricated, along with inserts made of three ceramic materials. The assembled system was sent to the New Bern mill for installation in the gasifer in 2005. Following operation of the gasifier using the modified nozzle, inserts should be removed and analyzed for wear by erosion/corrosion. Although no materials have been directly identified for sensor/thermocouple protection tubes, several of the refractory material systems identified for lining material applications may be applicable for use in this

  17. Preventing fuel failure for a beyond design basis accident in a fluoride salt cooled high temperature reactor

    E-Print Network [OSTI]

    Minck, Matthew J. (Matthew Joseph)

    2013-01-01T23:59:59.000Z

    The fluoride salt-cooled high-temperature reactor (FHR) combines high-temperature coated-particle fuel with a high-temperature salt coolant for a reactor with unique market and safety characteristics. This combination can ...

  18. Hierarchy of multiple many-body interaction scales in high-temperature superconductors

    E-Print Network [OSTI]

    Meevasana, W.

    2008-01-01T23:59:59.000Z

    in high-temperature superconductors W. Meevasana,l,* X.J.four families of high-? : superconductors over a wide dopingactions in high-fl superconductors makes it difficult to

  19. High Temperature Deformation Behavior of in-situ Bulk Metallic Glass Matrix Composites

    E-Print Network [OSTI]

    Fu, X.L.

    Macroscopic ductility is promoted in bulk metallic glasses by both composite reinforcements (at low temperatures) and by the activation of viscous flow mechanisms (at high temperatures). It is of fundamental interest to ...

  20. High Temperature Fuel Cell Tri-Generation of Power, Heat & H2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas Success story about using waste water...

  1. Thermomechanical Cyclic Response of TiNiPd High-Temperature Shape Memory Alloys

    E-Print Network [OSTI]

    Atli, Kadri

    2012-10-19T23:59:59.000Z

    TiNiPd high-temperature shape memory alloys (HTSMAs) have attracted considerable attention as potential solid-state actuators capable of operating at temperatures up to 500 °C, exhibiting excellent corrosion resistance, adequate ductility levels...

  2. Recent developments in high-temperature photonic crystals for energy conversion

    E-Print Network [OSTI]

    Rinnerbauer, Veronika

    After decades of intense studies focused on cryogenic and room temperature nanophotonics, scientific interest is also growing in high-temperature nanophotonics aimed at solid-state energy conversion. These latest extensive ...

  3. Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators

    SciTech Connect (OSTI)

    Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2014-05-01T23:59:59.000Z

    he wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structure in the laser energy density produced by the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators and associated applications.

  4. High-temperature/high-pressure x-ray diffraction: Recent developments

    SciTech Connect (OSTI)

    Schiferl, D.; Johnson, S.W.; Zinn, A.S.

    1989-01-01T23:59:59.000Z

    We have developed two Merrill-Bassett diamond-anvil cells for specialized high-temperature uses. The first is constructed largely of rhenium to provide uniform, constant P and T on the order of 20 GPa at 1200 K for extended periods. The second is for single-crystal x-ray diffraction, but can be heated to 630 K at 20 GPa to grow single-crystal samples which cannot be produced at room temperature. With this cell, the crystal structure of /var epsilon/-O/sub 2/ was shown to be monoclinic with a = 3.649 A, b = 5.493 A, c = 7.701 A, and /Beta/ = 116.11/degree/ at 19.7 GPa. 15 refs.

  5. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, John E. (Woodridge, IL); Jalan, Vinod M. (Concord, MA)

    1984-01-01T23:59:59.000Z

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  6. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1984-06-19T23:59:59.000Z

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  7. High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1982-07-07T23:59:59.000Z

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  8. Method of and apparatus for removing silicon from a high temperature sodium coolant

    DOE Patents [OSTI]

    Yunker, W.H.; Christiansen, D.W.

    1983-11-25T23:59:59.000Z

    This patent discloses a method of and system for removing silicon from a high temperature liquid sodium coolant system for a nuclear reactor. The sodium is cooled to a temperature below the silicon saturation temperature and retained at such reduced temperature while inducing high turbulence into the sodium flow for promoting precipitation of silicon compounds and ultimate separation of silicon compound particles from the liquid sodium.

  9. Development of a High Pressure/High Temperature Down-hole Turbine Generator

    SciTech Connect (OSTI)

    Ben Plamp

    2008-06-30T23:59:59.000Z

    As oil & natural gas deposits become more difficult to obtain by conventional means, wells must extend to deeper more heat-intensive environments. The technology of the drilling equipment required to reach these depths has exceeded the availability of electrical power sources needed to operate these tools. Historically, logging while drilling (LWD) and measure while drilling (MWD) devices utilized a wireline to supply power and communication from the operator to the tool. Lithium ion batteries were used in scenarios where a wireline was not an option, as it complicated operations. In current downhole applications, lithium ion battery (LIB) packs are the primary source for electrical power. LIB technology has been proven to supply reliable downhole power at temperatures up to 175 °C. Many of the deeper well s reach ambient temperatures above 200 °C, creating an environment too harsh for current LIB technology. Other downfalls of LIB technology are cost, limitations on charge cycles, disposal issues and possible safety hazards including explosions and fires. Downhole power generation can also be achieved by utilizing drilling fluid flow and converting it to rotational motion. This rotational motion can be harnessed to spin magnets around a series of windings to produce power proportional to the rpm experienced by the driven assembly. These generators are, in most instances, driven by turbine blades or moyno-based drilling fluid pumps. To date, no commercially available downhole power generators are capable of operating at ambient temperatures of 250 °C. A downhole power g enerator capable of operation in a 250 °C and 20,000 psi ambient environment will be an absolute necessity in the future. Dexter Magnetic Technologies’ High-Pressure High-Temperature (HPHT) Downhole Turbine Generator is capable of operating at 250 °C and 20, 000 psi, but has not been tested in an actual drilling application. The technology exists, but to date no company has been willing to test the tool.

  10. Field Demonstration of High Efficiency Ultra-Low-Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    Ultra-low temperature laboratory freezers (ULTs) are some of the most energy-intensive pieces of equipment in a scientific research laboratory, yet there are several barriers to...

  11. High Temperature, Large Sample Volume, Constant Flow Magic Angle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sample spinning rate of 3.5 kHz, 1 H and 13 C 90-degree pulse width of 8 s, constant flow control at 1.0 atmospheric pressure, and temperature control up to 250 C. This...

  12. Direct Utilization of Coal Syngas in High Temperature Fuel Cells

    SciTech Connect (OSTI)

    Celik, Ismail B.

    2014-10-30T23:59:59.000Z

    This EPSCoR project had two primary goals: (i) to build infrastructure and work force at WVU to support long-term research in the area of fuel cells and related sciences; (ii) study effects of various impurities found in coal-syngas on performance of Solid Oxide Fuel Cells (SOFC). As detailed in this report the WVU research team has made significant accomplishments in both of these areas. What follows is a brief summary of these accomplishments: State-of-the-art test facilities and diagnostic tools have been built and put into use. These include cell manufacturing, half-cell and full-cell test benches, XPS, XRD, TEM, Raman, EDAX, SEM, EIS, and ESEM equipment, unique in-situ measurement techniques and test benches (Environmental EM, Transient Mass-Spectrometer-MS, and IR Optical Temperature measurements). In addition, computational capabilities have been developed culminating in a multi-scale multi-physics fuel cell simulation code, DREAM-SOFC, as well as a Beowulf cluster with 64 CPU units. We have trained 16 graduate students, 10 postdoctoral fellows, and recruited 4 new young faculty members who have actively participated in the EPSCoR project. All four of these faculty members have already been promoted to the tenured associate professor level. With the help of these faculty and students, we were able to secure 14 research awards/contracts amounting to a total of circa $5.0 Million external funding in closely related areas of research. Using the facilities mentioned above, the effects of PH3, HCl, Cl2, and H2S on cell performance have been studied in detail, mechanisms have been identified, and also remedies have been proposed and demonstrated in the laboratory. For example, it has been determined that PH3 reacts rapidly with Ni to from secondary compounds which may become softer or even melt at high temperature and then induce Ni migration to the surface of the cell changing the material and micro-structural properties of the cell drastically. It is found that the extent of steam and current load accelerate the degradation caused by PH3. A unique filtering technique has been proposed to reduce the effect of PH3. In addition, various cell materials have been proposed to reduce the rate of degradation caused by H2S. Furthermore, a three-dimensional, transient multi-physics model has been formulated to describe primary transport processes and electro-chemical reactions occurring within the cell. This model has been validated using data gathered from accelerated tests. The validated model then has been used to study the degradation rates under a range of operating conditions and impurity levels. This has resulted in a procedure that uses both experiments and simulations to predict the life-time of a cell operating with syngas with known concentration of trace impurities. Finally all the experience and knowledge gained has been disseminated via 39 journal papers and 43 presentations/posters/conference papers.

  13. An Innovative High-Temperature High-Pressure Measurement While Drilling (MWD) Tool

    SciTech Connect (OSTI)

    Brian Boling

    2007-06-01T23:59:59.000Z

    Measurement while drilling (MWD) tools specified to 150 C (302 F) that provide wellbore surveys, real-time inclination, and natural gamma ray detection are a commodity item in the oilfield services industry. MWD tools specified to 175 C (347 F) that routinely demonstrate highly reliable operation are available from only a few service companies. Commercial MWD tools that reliably operate to 200 C (392 F) for extended periods of time and offer features like real-time gamma ray, retrievability, and reseatability are nonexistent. Need for these higher temperature tools will increase as wells become hotter in the search for new oil and gas resources. The goal of this project was to design a retrievable and reseatable high-pressure/high-temperature MWD tool with real-time continuous inclination, vibration detection, annular pressure, and gamma ray detection. This report describes the development of such a tool from concept, through feasibility, and into field testing and preliminary development planning. It describes the challenges encountered in the design of the tool, along with testing results and decisions about the commercial viability of the tool in the configuration in which it was developed. The decision was made not to commercialize the tool developed under this project because of a combination of battery technology problems and modulation power consumption at the required depths.

  14. Ab-initio elastic and thermodynamic properties of high-temperature cubic intermetallics at finite temperatures 

    E-Print Network [OSTI]

    Williams, Michael Eric

    2009-05-15T23:59:59.000Z

    In thiswork we present the development of a method for the prediciton of finite temperature elastic and thermodynamic properties of cubic, non-magnetic unary and binary metals from first principles calculations. Vibrational, electronic...

  15. Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters

    E-Print Network [OSTI]

    Rinnerbauer, Veronika

    The authors present highly selective emitters based on two-dimensional tantalum (Ta) photonic crystals, fabricated on 2 in. polycrystalline Ta substrates, for high-temperature applications, e.g., thermophotovoltaic energy ...

  16. Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications, method of making and cell employing same

    DOE Patents [OSTI]

    Angell, C. Austen (Mesa, AZ); Xu, Wu (Broadview Heights, OH); Belieres, Jean-Philippe (Chandler, AZ); Yoshizawa, Masahiro (Tokyo, JP)

    2011-01-11T23:59:59.000Z

    Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H.sub.2(g) electrolyte/O.sub.2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200.degree. C. are achieved. Both neutral proton transfer salts and the acid salts with HSO.sup.-.sub.4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures. The performance of all electrolytes is improved by the addition of a small amount of involatile base of pK.sub.a value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogensulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.

  17. A Comparison of the Performance of Different PV Module Types in High Ambient Temperatures.

    E-Print Network [OSTI]

    Centre for Renewable Energy Murdoch University, Perth, WA, Australia E-mail: acarr and summer in the temperate climate of Perth, Western Australia. The Perth summer averages over 7 peak sun operation during spring and summer in Perth, Western Australia, at reasonably elevated module temperatures

  18. Numerical Study of Spatial Surface Temperature and Nucleation Site Density At High Heat Flux Pool Boiling

    E-Print Network [OSTI]

    Maruyama, Shigeo

    the problem domain comprised of the macrolayer and heater and associated with the individual behavior of nucleation sites on the heater surface. They revealed that surface-averaged temperatures had nonlinear period are assigned randomly by satisfying the conditions in step (2). The simulated cavities were assigned a

  19. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    SciTech Connect (OSTI)

    Elshabini, Aicha [University of Idaho; Barlow, Fred D. [University of Idaho

    2006-11-01T23:59:59.000Z

    A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products. One of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Today these systems, such as the Prius, utilize one coolant loop for the engine at approximately 100 C coolant temperatures, and a second coolant loop for the inverter at 65 C. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE). This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. Traditional power modules and the state-of-the-art inverters in the current HEV products, are based on chip and wire assembly and direct bond copper (DBC) on ceramic substrates. While a shift to silicon carbide (SiC) devices from silicon (Si) devices would allow the higher operating temperatures required for a single coolant loop, it also creates a number of challenges for the assembly of these devices into power inverters. While this traditional packaging technology can be extended to higher temperatures, the key issues are the substrate material and conductor stability, die bonding material, wire bonds, and bond metallurgy reliability as well as encapsulation materials that are stable at high operating temperatures. The larger temperature differential during power cycling, which would be created by higher coolant temperatures, places tremendous stress on traditional aluminum wire bonds that are used to interconnect power devices. Selection of the bond metallurgy and wire bond geometry can play a key role in mitigating this stress. An alternative solution would be to eliminate the wire bonds completely through a fundamentally different method of forming a reliable top side interconnect. Similarly, the solders used in most power modules exhibit too low of a liquidus to be viable solutions for maximum junction temperatures of 200 C. Commonly used encapsulation materials, such as silicone gels, also suffer from an inability to operate at 200 C for extended periods of time. Possible solutions to these problems exist in most cases but require changes to the traditional manufacturing process used in these modules. In addition, a number of emerging technologies such as Si nitride, flip-chip assembly methods, and the elimination of base-plates would allow reliable module development for operation of HEV and PHEV inverters at elevated junction temperatures.

  20. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    SciTech Connect (OSTI)

    Seong W. Lee

    2003-09-01T23:59:59.000Z

    During this reporting period, the literature survey including the gasifier temperature measurement literature, the ultrasonic application and its background study in cleaning application, and spray coating process are completed. The gasifier simulator (cold model) testing has been successfully conducted. Four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. The Analysis of Variance (ANOVA) was applied to analyze the test data. The analysis shows that all four factors are significant to the temperature measurements in the gasifier simulator (cold model). The regression analysis for the case with the normalized room temperature shows that linear model fits the temperature data with 82% accuracy (18% error). The regression analysis for the case without the normalized room temperature shows 72.5% accuracy (27.5% error). The nonlinear regression analysis indicates a better fit than that of the linear regression. The nonlinear regression model's accuracy is 88.7% (11.3% error) for normalized room temperature case, which is better than the linear regression analysis. The hot model thermocouple sleeve design and fabrication are completed. The gasifier simulator (hot model) design and the fabrication are completed. The system tests of the gasifier simulator (hot model) have been conducted and some modifications have been made. Based on the system tests and results analysis, the gasifier simulator (hot model) has met the proposed design requirement and the ready for system test. The ultrasonic cleaning method is under evaluation and will be further studied for the gasifier simulator (hot model) application. The progress of this project has been on schedule.