Sample records for average heating values

  1. LOW-HIGH VALUES FOR PETROLEUM AVERAGE INVENTORY RANGES (MILLION...

    Gasoline and Diesel Fuel Update (EIA)

    ENERGY INFORMATION ADMINISTRATION LOW-HIGH VALUES FOR PETROLEUM AVERAGE INVENTORY RANGES (MILLION BARRELS) FILE UPDATED April 2004 Line Month Low High Number Product Name Geography...

  2. Microfabricated fuel heating value monitoring device

    DOE Patents [OSTI]

    Robinson, Alex L. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM); Moorman, Matthew W. (Albuquerque, NM)

    2010-05-04T23:59:59.000Z

    A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

  3. Value of solar thermal industrial process heat

    SciTech Connect (OSTI)

    Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

    1986-03-01T23:59:59.000Z

    This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

  4. areally averaged heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chulwoo Jung; Christoph Lehner 2014-02-18 56 The Fallacy of Averages University of Kansas - KU ScholarWorks Summary: of component variables as well, we found that ignoring...

  5. Seminario de Estadstica e Investigacin Operativa "Tree, web and average web value for

    E-Print Network [OSTI]

    Tradacete, Pedro

    Seminario de Estadística e Investigación Operativa "Tree, web and average web value for cycle solution concepts, called web values, are introduced axiomatically, each one with respect to some specific recursive algorithms to calculate them. Additionally the efficiency and stability of web values are studied

  6. Value of electrical heat boilers and heat pumps for wind power integration

    E-Print Network [OSTI]

    Value of electrical heat boilers and heat pumps for wind power integration Peter Meibom Juha of using electrical heat boilers and heat pumps as wind power integration measures relieving the link\\ZRUGV wind power, integration, heat pumps, electric heat boilers ,QWURGXFWLRQ 3UREOHP RYHUYLHZ The Danish

  7. Average and recommended half-life values for two neutrino double beta decay: Upgrade-2013

    SciTech Connect (OSTI)

    Barabash, A. S. [Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation)

    2013-12-30T23:59:59.000Z

    All existing positive results on two neutrino double beta decay in different nuclei were analyzed. Using the procedure recommended by the Particle Data Group, weighted average values for half-lives of {sup 48}Ca, {sup 76}Ge, {sup 82}Se, {sup 96}Zr, {sup 100}Mo, {sup 100}Mo?{sup 100}Ru (0{sub 1}{sup +}), {sup 116}Cd, {sup 130}Te, {sup 136}Xe, {sup 150}Nd, {sup 150}Nd?{sup 150}Sm (0{sub 1}{sup +}) and {sup 238}U were obtained. Existing geochemical data were analyzed and recommended values for half-lives of {sup 128}Te and {sup 130}Ba are proposed. I recommend the use of these results as the most currently reliable values for half-lives.

  8. Calculation of Heating Values for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Peterson, Joshua L [ORNL] [ORNL; Ilas, Germina [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Calculating the amount of energy released by a fission reaction (fission Q value) and the heating rate distribution in a nuclear reactor is an important part of the safety analysis. However, these calculations can become very complex. One of the codes that can be used for this type of analyses is the Monte Carlo transport code MCNP5. Currently it is impossible to calculate the Q value and heating rate disposition for delayed beta and delayed gamma particles directly from MCNP5. The purpose of this paper is to outline a rigorous method for indirectly calculating the Q values and heating rates in the High Flux Isotope Reactor (HFIR), based on previous similar studies carried out for very high-temperature reactor configurations. This method has been applied in this study to calculate heating rates for the beginning of cycle (BOC) and end-of-cycle (EOC) states of HFIR. In addition, the BOC results obtained for HFIR are compared with corresponding results for the Advanced Test Reactor. The fission Q value for HFIR was calculated as 200.2 MeV for the BOC and 201.3 MeV for the EOC. It was also determined that 95.1% and 95.4% of the heat was deposited within the HFIR fuel plates for the BOC and EOC models, respectively. This methodology can also be used for heating rate calculations for HFIR experiments.

  9. Method of absorbance correction in a spectroscopic heating value sensor

    DOE Patents [OSTI]

    Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

    2013-09-17T23:59:59.000Z

    A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

  10. The composition, heating value and renewable share of the energy content of mixed municipal solid waste in Finland

    SciTech Connect (OSTI)

    Horttanainen, M., E-mail: mika.horttanainen@lut.fi; Teirasvuo, N.; Kapustina, V.; Hupponen, M.; Luoranen, M.

    2013-12-15T23:59:59.000Z

    Highlights: • New experimental data of mixed MSW properties in a Finnish case region. • The share of renewable energy of mixed MSW. • The results were compared with earlier international studies. • The average share of renewable energy was 30% and the average LHVar 19 MJ/kg. • Well operating source separation decreases the renewable energy content of MSW. - Abstract: For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energy share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (50–60%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose.

  11. Value pricing of surface coatings for mitigating heat exchanger fouling

    E-Print Network [OSTI]

    Wilson, D.I.; Gomes da Cruz, L.; Ishiyama, E.M.; Boxler, C.; Augustin, W.; Scholl, S.

    2014-05-19T23:59:59.000Z

    crystallisation fouling; (b) fluorocarbon-based coatings which offer antifouling performance but can reduce heat transfer, for crystallisation fouling; and (c) fluorocarbon-based coatings in a dairy pasteuriser application. A novel strategy, of replacing stainless...

  12. How to Put the Dollar Value on Waste Heat Recovery in the Process Industry 

    E-Print Network [OSTI]

    Campagne, W. V. L.

    1982-01-01T23:59:59.000Z

    Waste heat recovery projects should be evaluated on their actual fuel savings and not on Btu recovery. By equating waste heat recovery with potential steam savings, the fuel (or dollar) values of the waste heat as function of its temperature can...

  13. How to Put the Dollar Value on Waste Heat Recovery in the Process Industry

    E-Print Network [OSTI]

    Campagne, W. V. L.

    1982-01-01T23:59:59.000Z

    Waste heat recovery projects should be evaluated on their actual fuel savings and not on Btu recovery. By equating waste heat recovery with potential steam savings, the fuel (or dollar) values of the waste heat as function of its temperature can...

  14. The effect of drying on the heating value of biomass fuels

    E-Print Network [OSTI]

    Rodriguez, Pablo Gregorio

    1994-01-01T23:59:59.000Z

    There has been some speculation as to whether or not biomass fuels (such as feedlot manure) may lose volatile matter during the drying process. Since current standards state that heating value analysis may be performed before or after drying...

  15. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power

    E-Print Network [OSTI]

    Marnay, Chris

    2010-01-01T23:59:59.000Z

    Environmental Value of Solar Thermal Systems in MicrogridsEnvironmental Value of Solar Thermal Systems in Microgridsa) ABSTRACT The addition of solar thermal and heat storage

  16. Tellus, January 21, 1999 (revised) The Response of Atmospheric Heat Transport to ZonallyAveraged SST Trends

    E-Print Network [OSTI]

    Magnusdottir, Gudrun

    '' that transports heat from the warm equator to the cold poles. The two fluid components of the climate systemTellus, January 21, 1999 (revised) The Response of Atmospheric Heat Transport to Zonally the atmospheric heat transport in a realistic atmospheric general circulation model under five different

  17. Modeling Granular Materials as Compressible Non-Linear Fluids: Heat Transfer Boundary Value Problems

    SciTech Connect (OSTI)

    Massoudi, M.C.; Tran, P.X.

    2006-01-01T23:59:59.000Z

    We discuss three boundary value problems in the flow and heat transfer analysis in flowing granular materials: (i) the flow down an inclined plane with radiation effects at the free surface; (ii) the natural convection flow between two heated vertical walls; (iii) the shearing motion between two horizontal flat plates with heat conduction. It is assumed that the material behaves like a continuum, similar to a compressible nonlinear fluid where the effects of density gradients are incorporated in the stress tensor. For a fully developed flow the equations are simplified to a system of three nonlinear ordinary differential equations. The equations are made dimensionless and a parametric study is performed where the effects of various dimensionless numbers representing the effects of heat conduction, viscous dissipation, radiation, and so forth are presented.

  18. NATCOR -Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average

    E-Print Network [OSTI]

    Hall, Julian

    NATCOR - Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel.5 for heating oil. To produce these products, Margaret can purchase two types of crude oil: crude 1 (at £12 per Jet fuel Heating oil Minimum octane 8.5 7 4.5 Price (£) 18 16 14 Minimum production 2500 3000 3500

  19. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power

    E-Print Network [OSTI]

    Marnay, Chris

    2010-01-01T23:59:59.000Z

    Economic and Environmental Value of Solar Thermal Systems inEconomic and Environmental Value of Solar Thermal Systems insolar thermal and heat storage systems can improve the economic, as well as environmental

  20. NATCOR -Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average

    E-Print Network [OSTI]

    Hall, Julian

    NATCOR - Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. To produce these products, Margaret purchases crude oil at a price of £11 per barrel. Each day to produce gasoline or jet fuel. Distilled oil can be used to produce all three products. The octane level

  1. Physics 1114: Unit 7 Homework Use the table in your text for specific heat capacity values.

    E-Print Network [OSTI]

    Mansell, Edward "Ted"

    at 20 C? [Specific heat capacity of air = 703 J/(kg C ) at constant volume.] 7. What is the specific of a heat engine and a heat pump. Include QH, QC, TH, TC, and W. What is the major difference in your two not the same? 6. Determine the maximum coefficient of performance of a heat pump used to heat the inside

  2. Record Q0 value in a heat treated large-grain superconducting radio-frequency niobium cavity

    E-Print Network [OSTI]

    Dhakal, P; Myneni, G R; Gray, K E; Groll, N; Maheshwari, P; McRae, D M; Pike, R; Proslier, T; Stevie, F; Walsh, R P; Yang, Q; Zasadzinzki, J

    2012-01-01T23:59:59.000Z

    Large-grain Nb has become a viable alternative to fine-grain Nb for the fabrication of superconducting radio-frequency cavities. In this contribution we report the results from a heat treatment study of a large-grain 1.5 GHz single-cell cavity made of "medium purity" Nb. The baseline surface preparation prior to heat treatment consisted of standard buffered chemical polishing. The heat treatment in the range 800 - 1400 \\degree C was done in a newly designed vacuum induction furnace. $Q_0$ values of the order of $2\\times10^{10}$ at 2.0 K and peak surface magnetic field ($B_p$) of 90 mT were achieved reproducibly. A record $Q_0$-value of $4.67\\times10^{10}$ at 2.0 K and $B_p$ = 90 mT was obtained after heat treatment at 1400 \\degree C. Samples heat treated with the cavity at 1400 \\degree C were analyzed by secondary ion mass spectrometry, secondary electron microscopy, energy dispersive X-ray, point contact tunneling and X-ray diffraction and revealed a complex surface composition which includes titanium oxide,...

  3. Determination of the Number of Tube Rows to Obtain Closure for Volume Averaging Theory Based Model of Fin-and-Tube Heat Exchangers

    E-Print Network [OSTI]

    Zhou, Feng; Hansen, Nicholas E; Geb, David J; Catton, Ivan

    2011-01-01T23:59:59.000Z

    can be evaluated for a representative elementary volume (and-tube heat exchanger, representative elementary volumeand (2) on a selected representative elementary volume (REV)

  4. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power

    E-Print Network [OSTI]

    Marnay, Chris

    2010-01-01T23:59:59.000Z

    chiller is supplied by waste heat from CHP units as well aswith HX can utilize waste heat for heating or cooling

  5. The Earth Institute, Columbia University14 Annual Donor Report 2009 15 Heat waves are on the rise as the climate changes and average temperatures increase.

    E-Print Network [OSTI]

    The Earth Institute, Columbia University14 Annual Donor Report 2009 15 Heat waves are on the rise University and Barnard College. Known as the Columbia Green Roof Consortium, it is led by a team of two Earth solutions in a responsible and scientific way--and Columbia had plenty of roof space to work with. "They

  6. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power

    E-Print Network [OSTI]

    Marnay, Chris

    2010-01-01T23:59:59.000Z

    solar thermal and heat storage on CO 2 emissions and annual energyenergy costs, heat storage does not directly support solar thermal /energy costs. This paper focuses on analysis of the optimal interaction of solar thermal

  7. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with CombinedHeat and Power

    SciTech Connect (OSTI)

    Marnay, Chris; Stadler, Michael; Cardoso, Goncalo; Megel, Olivier; Lai, Judy; Siddiqui, Afzal

    2009-08-15T23:59:59.000Z

    The addition of solar thermal and heat storage systems can improve the economic, as well as environmental attraction of micro-generation systems, e.g. fuel cells with or without combined heat and power (CHP) and contribute to enhanced CO2 reduction. However, the interactions between solar thermal collection and storage systems and CHP systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of solar thermal and heat storage on CO2 emissions and annual energy costs, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program. The objective is minimization of annual energy costs. This paper focuses on analysis of the optimal interaction of solar thermal systems, which can be used for domestic hot water, space heating and/or cooling, and micro-CHP systems in the California service territory of San Diego Gas and Electric (SDG&E). Contrary to typical expectations, our results indicate that despite the high solar radiation in southern California, fossil based CHP units are dominant, even with forecast 2020 technology and costs. A CO2 pricing scheme would be needed to incent installation of combined solar thermal absorption chiller systems, and no heat storage systems are adopted. This research also shows that photovoltaic (PV) arrays are favored by CO2 pricing more than solar thermal adoption.

  8. Heat-flow reconnaissance of the Gulf Coastal Plain

    SciTech Connect (OSTI)

    Smith, D.L.; Shannon, S.S. Jr.

    1982-04-01T23:59:59.000Z

    Most of the 46 new values of heat flow determined for the Gulf Coastal Plain are in the low to normal range, but heat-flow values averaging 1.8 heat-flow unit (HFU) were obtained in Claiborne, Ouachita, and Union parishes, Louisiana. Moreover, a zone of relatively high heat-flow values and steep thermal gradients (35 to 46/sup 0/C/km) extends from northern Louisiana into southwestern Mississippi. Also near Pensacola, Florida, temperatures of 50/sup 0/C at 1-km depth have been extrapolated from thermal gradients. Future development of low-grade geothermal resources may be warranted in these areas.

  9. Value impact analysis of Generic Issue 143, Availability of Heating, Ventilation, Air Conditioning (HVAC) and Chilled Water Systems

    SciTech Connect (OSTI)

    Daling, P.M.; Marler, J.E.; Vo, T.V.; Phan, H.; Friley, J.R. [Pacific Northwest Lab., Richland, WA (United States)

    1993-11-01T23:59:59.000Z

    This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ``Availability of HVAC and Chilled Water Systems.`` The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plant from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ``generic`` insights on potential design-related and configuration-related vulnerabilities and potential high-frequency ({approximately}1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations.

  10. Combustion: What is the Lower Heating Value (LHV) of Propane? Before we start: how reasonable is the use of the LHV? What is the dewpoint of the reaction products?

    E-Print Network [OSTI]

    Combustion: What is the Lower Heating Value (LHV) of Propane? Before we start: how reasonable temperature we can achieve with a propane-and-air blowtorch? We repeat this calculation for several different

  11. MESOSCALE AVERAGING OF NUCLEATION AND GROWTH MODELS

    E-Print Network [OSTI]

    Burger, Martin

    MESOSCALE AVERAGING OF NUCLEATION AND GROWTH MODELS MARTIN BURGER , VINCENZO CAPASSO , AND LIVIO-Kolmogorov relations for the degree of crystallinity. By relating the computation of expected values to mesoscale averaging, we obtain a suitable description of the process at the mesoscale. We show how the variance

  12. Policies supporting Heat Pump Technologies

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995 kilowatt-hours per annum. #12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat

  13. Sustainable value analysis tool for value creation

    E-Print Network [OSTI]

    Yang, Miying; Vladimirova, Doroteya; Rana, Padmakshi; Evans, Steve

    2014-01-01T23:59:59.000Z

    opportunities in the company. For example, the waste of low-grade heat and water was identified to be a major value uncaptured in the MOL, and the value opportunity is that it can be used to produce electricity or drive the compressor, or vaporize the liquid O2... to environment and society. However, the concept of value missed needs further clarity – value currently squandered, wasted or inadequately captured by a current business model. Besides, selling service is intangible, flexible and unpredictable, therefore...

  14. Heating system

    SciTech Connect (OSTI)

    Nishman, P.J.

    1983-03-08T23:59:59.000Z

    A heating system utilizing solar panels and buried ground conduits to collect and store heat which is delivered to a heatpump heat exchanger. A heat-distribution fluid continuously circulates through a ground circuit to transfer heat from the ground to the heat exchanger. The ground circuit includes a length of buried ground conduit, a pump, a check valve and the heat exchanger. A solar circuit, including a solar panel and a second pump, is connected in parallel with the check valve so that the distribution fluid transfers solar heat to the heat exchanger for utilization and to the ground conduit for storage when the second pump is energized. A thermostatically instrumented control system energizes the second pump only when the temperature differential between the solar panel inlet and outlet temperatures exceeds a predetermined value and the ground temperature is less than a predetermined value. Consequently, the distribution fluid flows through the solar panel only when the panel is capable of supplying significant heat to the remainder of the system without causing excessive drying of the ground.

  15. Self-averaging characteristics of spectral fluctuations

    E-Print Network [OSTI]

    Petr Braun; Fritz Haake

    2014-10-20T23:59:59.000Z

    The spectral form factor as well as the two-point correlator of the density of (quasi-)energy levels of individual quantum dynamics are not self-averaging. Only suitable smoothing turns them into useful characteristics of spectra. We present numerical data for a fully chaotic kicked top, employing two types of smoothing: one involves primitives of the spectral correlator, the second a small imaginary part of the quasi-energy. Self-averaging universal (like the CUE average) behavior is found for the smoothed correlator, apart from noise which shrinks like $1\\over\\sqrt N$ as the dimension $N$ of the quantum Hilbert space grows. There are periodically repeated quasi-energy windows of correlation decay and revival wherein the smoothed correlation remains finite as $N\\to\\infty$ such that the noise is negligible. In between those windows (where the CUE averaged correlator takes on values of the order ${1\\over N^2}$) the noise becomes dominant and self-averaging is lost. We conclude that the noise forbids distinction of CUE and GUE type behavior. Surprisingly, the underlying smoothed generating function does not enjoy any self-averaging outside the range of its variables relevant for determining the two-point correlator (and certain higher-order ones). --- We corroborate our numerical findings for the noise by analytically determining the CUE variance of the smoothed single-matrix correlator.

  16. Insolation data manual: long-term monthly averages of solar radiation, temperature, degree-days and global anti K/sub T/ for 248 national weather service stations

    SciTech Connect (OSTI)

    Knapp, C L; Stoffel, T L; Whitaker, S D

    1980-10-01T23:59:59.000Z

    Monthly averaged data is presented which describes the availability of solar radiation at 248 National Weather Service stations. Monthly and annual average daily insolation and temperature values have been computed from a base of 24 to 25 years of data. Average daily maximum, minimum, and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3/sup 0/C (65/sup 0/F). For each station, global anti K/sub T/ (cloudiness index) were calculated on a monthly and annual basis. (MHR)

  17. Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal...

    Open Energy Info (EERE)

    heat flow values as high as several watts per meter squared can be found. Systematic interpretation of heat flow patterns sheds light on heat transfer mechanisms at depth on...

  18. Effects of heat and mass transport on the hydrodynamics and stability of liquid desiccant films

    E-Print Network [OSTI]

    Pineda Vargas, Sergio Manuel

    2013-01-01T23:59:59.000Z

    5.8 Average liquid properties heat capacity, thermal5.9 Average liquid properties heat capacity, thermalFigure 5.8: Average liquid properties heat capacity, thermal

  19. E-Print Network 3.0 - area average temperature Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Fisheries Sciences Collection: Environmental Sciences and Ecology 24 The Greenhouse Effect Temperature Equilibrium Summary: - it is neither heating nor cooling on average....

  20. Averaging Hypotheses in Newtonian Cosmology

    E-Print Network [OSTI]

    T. Buchert

    1995-12-20T23:59:59.000Z

    Average properties of general inhomogeneous cosmological models are discussed in the Newtonian framework. It is shown under which circumstances the average flow reduces to a member of the standard Friedmann--Lema\\^\\i tre cosmologies. Possible choices of global boundary conditions of inhomogeneous cosmologies as well as consequences for the interpretation of cosmological parameters are put into perspective.

  1. Air Conditioning Cold/Heat Source Analysis of the Inclusion of the Monetary Values of Environmental Damage Based on the LCA Theory

    E-Print Network [OSTI]

    Li, Z.; Duanmu, L.; Shu, H.; Zhu, Y.

    2006-01-01T23:59:59.000Z

    , generally measured by standard coal and electricity. The LCA of standard coal and electricity production and heating with standard coal-burning have been finished in our country. The emission inventories are shown in table1-2[5-6]. 2.2 Categories... of different gases to climate change are commonly compared in terms of carbon dioxide equivalents us- ing Global Warming Potentials (GW). Table3 pro- vides the equivalent factors for common impact categories in this LCA studies. 2.3 Monetary Evaluation...

  2. Thermoelectric heat exchange element

    DOE Patents [OSTI]

    Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

    2007-08-14T23:59:59.000Z

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  3. Value Engineering

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-30T23:59:59.000Z

    To establish Department of Energy (DOE) value engineering policy that establishs and maintains cost-effective value procedures and processes.

  4. Air Conditioning Cold/Heat Source Analysis of the Inclusion of the Monetary Values of Environmental Damage Based on the LCA Theory 

    E-Print Network [OSTI]

    Li, Z.; Duanmu, L.; Shu, H.; Zhu, Y.

    2006-01-01T23:59:59.000Z

    , the cost of reduc- ing the emission of CO2 will be $80 per ton [9]. Ac- cording to Clean Development Mechanism in China, the price of CO2 is about 33-50yuan/ton. Recently the study on how carbon tax influences China?s Economic Growth has been done..., the weight- ing factor of solid waste is 0.25yuan/kg. 3.6 Monetary Values of Coal and Electricity?s Envi- ronment Impact The functional units of standard coal and elec- tricity are per ton and per MWh. According to ta- ble3-7, table8 illustrates monetary...

  5. Evaluations of average level spacings

    SciTech Connect (OSTI)

    Liou, H.I.

    1980-01-01T23:59:59.000Z

    The average level spacing for highly excited nuclei is a key parameter in cross section formulas based on statistical nuclear models, and also plays an important role in determining many physics quantities. Various methods to evaluate average level spacings are reviewed. Because of the finite experimental resolution, to detect a complete sequence of levels without mixing other parities is extremely difficult, if not totally impossible. Most methods derive the average level spacings by applying a fit, with different degrees of generality, to the truncated Porter-Thomas distribution for reduced neutron widths. A method that tests both distributions of level widths and positions is discussed extensivey with an example of /sup 168/Er data. 19 figures, 2 tables.

  6. The Frame Potential, on Average

    E-Print Network [OSTI]

    Ingemar Bengtsson; Helena Granstrom

    2008-10-24T23:59:59.000Z

    A SIC consists of N^2 equiangular unit vectors in an N dimensional Hilbert space. The frame potential is a function of N^2 unit vectors. It has a unique global minimum if the vectors form a SIC, and this property has been made use of in numerical searches for SICs. When the vectors form an orbit of the Heisenberg group the frame potential becomes a function of a single fiducial vector. We analytically compute the average of this function over Hilbert space. We also compute averages when the fiducial vector is placed in certain special subspaces defined by the Clifford group.

  7. 4, 22832300, 2004 Hemispheric average

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 4, 2283­2300, 2004 Hemispheric average Cl atom concentration U. Platt et al. Title Page U. Platt1 , W. Allen2 , and D. Lowe2 1 Institut f¨ur Umweltphysik, University of Heidelberg, INF 229 February 2004 ­ Accepted: 9 March 2004 ­ Published: 4 May 2004 Correspondence to: U. Platt (ulrich.platt

  8. Investigating AGN Heating in a Sample of Nearby Clusters

    E-Print Network [OSTI]

    Dunn, R J H

    2006-01-01T23:59:59.000Z

    We analyse those objects in the Brightest 55 sample of clusters of galaxies which have a short central cooling time and a central temperature drop. Such clusters are likely to require some form of heating. Where clear radio bubbles are observed in these clusters, their energy injection is compared to the X-ray cooling rate. Of the 20 clusters requiring heating, at least 14 have clear bubbles, implying a duty cycle for the bubbling activity of at least 70 per cent. The average distance out to which the bubbles can offset the X-ray cooling, r_heat is given by r_heat/r_cool=0.86+/-0.11 where r_cool is defined as the radius as which the radiative cooling time is 3 Gyr. 10 out of 16 clusters have r_heat/r_cool>1, but there is a large range in values. The clusters which require heating but show no clear bubbles were combined with those clusters which have a radio core to form a second sub-sample. Using r_heat=0.86 r_cool we calculate the size of an average bubble expected in these clusters. In five cases (3C129.1, ...

  9. Seasonal Average Temperature - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook TwitterSearch-Comments Sign In About | CareersAverage Temperature

  10. Heat transfer and pressure drop for air flow through enhanced passages

    SciTech Connect (OSTI)

    Obot, N.T.; Esen, E.B.

    1992-06-01T23:59:59.000Z

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  11. Heat transfer and pressure drop for air flow through enhanced passages. Final report

    SciTech Connect (OSTI)

    Obot, N.T.; Esen, E.B.

    1992-06-01T23:59:59.000Z

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  12. A simple quantum heat engine

    E-Print Network [OSTI]

    Jacques Arnaud; Laurent Chusseau; Fabrice Philippe

    2003-06-02T23:59:59.000Z

    Quantum heat engines employ as working agents multi-level systems instead of gas-filled cylinders. We consider particularly two-level agents such as electrons immersed in a magnetic field. Work is produced in that case when the electrons are being carried from a high-magnetic-field region into a low-magnetic-field region. In watermills, work is produced instead when some amount of fluid drops from a high-altitude reservoir to a low-altitude reservoir. We show that this purely mechanical engine may in fact be considered as a two-level quantum heat engine, provided the fluid is viewed as consisting of n molecules of weight one and N-n molecules of weight zero. Weight-one molecules are analogous to electrons in their higher energy state, while weight-zero molecules are analogous to electrons in their lower energy state. More generally, fluids consist of non-interacting molecules of various weights. It is shown that, not only the average value of the work produced per cycle, but also its fluctuations, are the same for mechanical engines and quantum (Otto) heat engines. The reversible Carnot cycles are approached through the consideration of multiple sub-reservoirs.

  13. advanced heat recovery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling,000 tons (Standby) (average) Heat Recovery 13.5 MW 5.6MW 1 MW...

  14. Measuring Value in Healthcare

    E-Print Network [OSTI]

    Gardner, Christopher

    2008-01-01T23:59:59.000Z

    A statistical description and model of individual healthcare expenditures in the US has been developed for measuring value in healthcare. We find evidence that healthcare expenditures are quantifiable as an infusion-diffusion process, which can be thought of intuitively as a steady change in the intensity of treatment superimposed on a random process reflecting variations in the efficiency and effectiveness of treatment. The arithmetic mean represents the net average annual cost of healthcare; and when multiplied by the arithmetic standard deviation, which represents the effective risk, the result is a measure of healthcare cost control. Policymakers, providers, payors, or patients that decrease these parameters are generating value in healthcare. The model has an average absolute prediction error of approximately 10-12% across the range of expenditures which spans 6 orders of magnitude over a nearly 10-year period. For the top 1% of the population with the largest expenditures, representing 20%-30% of total ...

  15. Optimization of Heat Exchangers

    SciTech Connect (OSTI)

    Ivan Catton

    2010-10-01T23:59:59.000Z

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  16. Temporal Specifications with Accumulative Values

    E-Print Network [OSTI]

    Boker, Udi

    Temporal Specifications with Accumulative Values Udi Boker, Krishnendu Chatterjee, Thomas A the accumulation of values along a computation. It is either the accumulated summation, as with the energy objectives, or the accumulated average, as with the mean-payoff objectives. We investigate the extension

  17. Paleosecular variation and the average geomagnetic field at 20 latitude

    E-Print Network [OSTI]

    Johnson, Catherine Louise

    -averaged field (TAF) for a two-parameter longitudinally symmetric (zonal) model. Values for our model parameters rocks, and oceanic sediments, but consistent with that from reversed polarity continental and igneous to paleosecular variation (PSV). We examine PSV at ±20° using virtual geomagnetic pole (VGP) dispersion

  18. Average Soil Water Retention Curves Measured by Neutron Radiography

    SciTech Connect (OSTI)

    Cheng, Chu-Lin [ORNL; Perfect, Edmund [University of Tennessee, Knoxville (UTK); Kang, Misun [ORNL; Voisin, Sophie [ORNL; Bilheux, Hassina Z [ORNL; Horita, Juske [Texas Tech University (TTU); Hussey, Dan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD

    2011-01-01T23:59:59.000Z

    Water retention curves are essential for understanding the hydrologic behavior of partially-saturated porous media and modeling flow transport processes within the vadose zone. In this paper we report direct measurements of the main drying and wetting branches of the average water retention function obtained using 2-dimensional neutron radiography. Flint sand columns were saturated with water and then drained under quasi-equilibrium conditions using a hanging water column setup. Digital images (2048 x 2048 pixels) of the transmitted flux of neutrons were acquired at each imposed matric potential (~10-15 matric potential values per experiment) at the NCNR BT-2 neutron imaging beam line. Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert s law after taking into account beam hardening and geometric corrections. To remove scattering effects at high water contents the volumetric water contents were normalized (to give relative saturations) by dividing the drying and wetting sequences of images by the images obtained at saturation and satiation, respectively. The resulting pixel values were then averaged and combined with information on the imposed basal matric potentials to give average water retention curves. The average relative saturations obtained by neutron radiography showed an approximate one-to-one relationship with the average values measured volumetrically using the hanging water column setup. There were no significant differences (at p < 0.05) between the parameters of the van Genuchten equation fitted to the average neutron radiography data and those estimated from replicated hanging water column data. Our results indicate that neutron imaging is a very effective tool for quantifying the average water retention curve.

  19. Value Engineering

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-01-07T23:59:59.000Z

    To establish Department of Energy (DOE) value engineering policy that meets the requirements of Public Law 104-106, Section 4306 as codified by 41 United States Code 432. Canceled by DOE N 251.94. Does not cancel other directives.

  20. Yearly average performance of the principal solar collector types

    SciTech Connect (OSTI)

    Rabl, A.

    1981-01-01T23:59:59.000Z

    The results of hour-by-hour simulations for 26 meteorological stations are used to derive universal correlations for the yearly total energy that can be delivered by the principal solar collector types: flat plate, evacuated tubes, CPC, single- and dual-axis tracking collectors, and central receiver. The correlations are first- and second-order polynomials in yearly average insolation, latitude, and threshold (= heat loss/optical efficiency). With these correlations, the yearly collectible energy can be found by multiplying the coordinates of a single graph by the collector parameters, which reproduces the results of hour-by-hour simulations with an accuracy (rms error) of 2% for flat plates and 2% to 4% for concentrators. This method can be applied to collectors that operate year-around in such a way that no collected energy is discarded, including photovoltaic systems, solar-augmented industrial process heat systems, and solar thermal power systems. The method is also recommended for rating collectors of different type or manufacturer by yearly average performance, evaluating the effects of collector degradation, the benefits of collector cleaning, and the gains from collector improvements (due to enhanced optical efficiency or decreased heat loss per absorber surface). For most of these applications, the method is accurate enough to replace a system simulation.

  1. Heat Transfer Operators Associated with Quantum Operations

    E-Print Network [OSTI]

    Ç. Aksak; S. Turgut

    2011-04-14T23:59:59.000Z

    Any quantum operation applied on a physical system is performed as a unitary transformation on a larger extended system. If the extension used is a heat bath in thermal equilibrium, the concomitant change in the state of the bath necessarily implies a heat exchange with it. The dependence of the average heat transferred to the bath on the initial state of the system can then be found from the expectation value of a hermitian operator, which is named as the heat transfer operator (HTO). The purpose of this article is the investigation of the relation between the HTOs and the associated quantum operations. Since, any given quantum operation on a system can be realized by different baths and unitaries, many different HTOs are possible for each quantum operation. On the other hand, there are also strong restrictions on the HTOs which arise from the unitarity of the transformations. The most important of these is the Landauer erasure principle. This article is concerned with the question of finding a complete set of restrictions on the HTOs that are associated with a given quantum operation. An answer to this question has been found only for a subset of quantum operations. For erasure operations, these characterizations are equivalent to the generalized Landauer erasure principle. For the case of generic quantum operations however, it appears that the HTOs obey further restrictions which cannot be obtained from the entropic restrictions of the generalized Landauer erasure principle.

  2. Optimization Online - Dual Averaging Methods for Regularized ...

    E-Print Network [OSTI]

    Lin Xiao

    2010-04-15T23:59:59.000Z

    Apr 15, 2010 ... ... simple minimization problem that involves the running average of all past subgradients of the loss function and the whole regularization term, ...

  3. Table 17. Average Price of U.S. Coke Exports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910. Average3.5.6.7.

  4. Table 19. Average Price of U.S. Coal Imports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910.9. Average Price

  5. Table 22. Average Price of U.S. Coke Imports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910.9. Average1.2.

  6. Averages in vector spaces over finite fields 

    E-Print Network [OSTI]

    Wright J.; Carbery A.; Stones B.

    2008-01-01T23:59:59.000Z

    We study the analogues of the problems of averages and maximal averages over a surface in R-n when the euclidean structure is replaced by that of a vector space over a finite field, and obtain optimal results in a number ...

  7. Estimate of average freeze-out volume in multifragmentation events

    E-Print Network [OSTI]

    Piantelli, S; Borderie, B; Bougault, R; Chbihi, A; Dayras, R; Durand, D; Frankland, J D; Galíchet, E; Guinet, D; Lanzalone, G; Lautesse, P; Le Neindre, N; López, O; Pârlog, M; Rivet, M F; Rosato, E; Tamain, B; Vient, E; Vigilante, M; Volant, C; Wieleczko, J P

    2005-01-01T23:59:59.000Z

    An estimate of the average freeze-out volume for multifragmentation events is presented. Values of volumes are obtained by means of a simulation using the experimental charged product partitions measured by the 4pi multidetector INDRA for 129Xe central collisions on Sn at 32 AMeV incident energy. The input parameters of the simulation are tuned by means of the comparison between the experimental and simulated velocity (or energy) spectra of particles and fragments.

  8. Heat flow and thermotectonic problems of the central Ventura Basin, southern California

    SciTech Connect (OSTI)

    De Rito, R.F.; Lachenbruch, A.H.; Moses, T.H. Jr.; Munroe, R.J. (Geological Survey, Menlo Park, CA (USA))

    1989-01-10T23:59:59.000Z

    The Ventura Basin, southern Califronia, is located near the Big Bend area of the San Andreas fault system, within the Transverse Ranges physiographic province. Continuous equilibrium temperature logs were measured in 12 idle oil wells located within the onshore Ventura Avenue, San Miguelito, Filmore, Oxnard, and West Montalvo fields to an average depth of about 3100 m (10,200 feet). Thermal conductivities were measured on all available samples. Heat flows were calculated with the aid of a thermostratigraphic scheme based on correlative gradient intervals and average thermal conductivity for the appropriate units. Negative curvature of the Ventura Avenue temperature profiles may be explained by an increase in thermal conductivity associated with tectonic compaction of the underlying Pliocene clastic sequence. Temperature profiles at Fillmore are enigmatic but suggest highly unusual geotectonic conditions. Basinwide, heat flow averages about 48 mW/m{sup 2}, a value which is low relative to most of southern California. As heat flow does not vary systematically to the maximum measured depth of about 4 km, this anomaly is not easily explained in terms of hydrologic effect or recent uplift and erosion. However, a diminution of heat flow is an expectable consequence of the accumulation of cold sediments (up to 12 km) since Eocene time. If 70 mW/m{sub 2} is accepted as the background heat flow, then the sedimentation effect is probably sufficient to explain the anomaly.

  9. Thermal ghost imaging with averaged speckle patterns

    E-Print Network [OSTI]

    Shapiro, Jeffrey H.

    We present theoretical and experimental results showing that a thermal ghost imaging system can produce images of high quality even when it uses detectors so slow that they respond only to intensity-averaged (that is, ...

  10. STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES 2005 TO 2018 Mignon Marks Principal Author Mignon Marks Project Manager David Ashuckian Manager ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY DIVISION B.B. Blevins Executive Director

  11. Selling Geothermal Systems The "Average" Contractor

    E-Print Network [OSTI]

    Selling Geothermal Systems #12;The "Average" Contractor · History of sales procedures · Manufacturer Driven Procedures · What makes geothermal technology any harder to sell? #12;"It's difficult to sell a geothermal system." · It should

  12. Distributed Averaging Via Lifted Markov Chains

    E-Print Network [OSTI]

    Jung, Kyomin

    Motivated by applications of distributed linear estimation, distributed control, and distributed optimization, we consider the question of designing linear iterative algorithms for computing the average of numbers in a ...

  13. Heat and mass transfer in the gas tungsten and gas metal arc welding processes

    SciTech Connect (OSTI)

    Watkins, A.D; Smartt, H.B.; Einerson, C.J.; Watkins, J.A.

    1990-01-01T23:59:59.000Z

    The heat transferred from an electrode negative, argon gas tungsten arc to an anode was measured for a wide range of conditions suitable for mechanized welding. The results are given as (1) the arc efficiency and (2) the anode heat and current input distributions for various anode materials over a range of current and voltage. The nominal arc is Gaussian, {approximately}4 mm in diameter, with {approximately}75{percent}heat transfer efficiency. Variations from these values are discussed in terms of the electrical and thermal energy transport mechanisms. Heat transferred to the workpiece (cathode) during direct current, electrode positive gas metal arc welding (GMAW) was measured for various parameters applicable to machine welding. The results are presented as a function of electrode speed for changing voltages and contact tip to workpiece distances. The total heat transfer efficiency was nominally 85{percent} for a 0.89 mm diameter steel electrode using an argon-2{percent} oxygen shielding gas; the nominal heat transfer efficiency of the droplet component was 40{percent}. The average droplet temperatures ranged from 2400 to 3100 K, depending on the process parameters. A new method of measuring the heat transferred from the arc to the workpiece, using a boiling liquid nitrogen calorimeter, has been developed that gives rapid, accurate values. 20 refs., 8 figs., 2 tabs.

  14. adsorption heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995...

  15. adsorption heat pumps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995...

  16. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  17. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  18. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  19. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  20. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  1. Heat pump assisted geothermal heating system for Felix Spa, Romania

    SciTech Connect (OSTI)

    Rosca, Marcel; Maghiar, Teodor

    1996-01-24T23:59:59.000Z

    The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

  2. Integrating preconcentrator heat controller

    DOE Patents [OSTI]

    Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

    2007-10-16T23:59:59.000Z

    A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

  3. Polarized electron beams at milliampere average current

    SciTech Connect (OSTI)

    Poelker, Matthew [JLAB

    2013-11-01T23:59:59.000Z

    This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today's CEBAF polarized source operating at ~ 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

  4. LOW-HIGH VALUES FOR PETROLEUM AVERAGE INVENTORY RANGES (MILLION BARRELS)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 156 57 61 76 673 12 12 9 19

  5. Extracting gluon condensate from the average plaquette

    E-Print Network [OSTI]

    Lee, Taekoon

    2015-01-01T23:59:59.000Z

    The perturbative contribution in the average plaquette is subtracted using Borel summation and the remnant of the plaquette is shown to scale as a dim-4 condensate. A critical review is presented of the renormalon subtraction scheme that claimed a dim-2 condensate. The extracted gluon condensate is compared with the latest result employing high order (35-loop) calculation in the stochastic perturbation theory.

  6. PreHeat: Controlling Home Heating Using Occupancy Prediction

    E-Print Network [OSTI]

    Krumm, John

    with a static program over an average 61 days per house, alternating days between these conditions time that the house was occupied but not warm). In US homes, PreHeat decreased MissTime by a factor goal for saving money and reducing our ecological footprint. Although programmable thermostats provide

  7. Polarized electron beams at milliampere average current

    SciTech Connect (OSTI)

    Poelker, M. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States)

    2013-11-07T23:59:59.000Z

    This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today’s CEBAF polarized source operating at ? 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

  8. Average Consensus in the Presence of Delays in Directed Graph Topologies

    E-Print Network [OSTI]

    Hadjicostis, Christoforos

    @kth.se. #12;directed interconnection topology (digraph). The objective of a consensus problem is to have all values that the nodes initially posses (initial values). When the agents (asymptotically) reach agreement shown in [4] that, under a fixed interconnection topology, average consensus can be reached

  9. AVERAGE TECHNIQUE AND ITS ALGEBRAIC GEOMETRIC ...

    E-Print Network [OSTI]

    2014-10-19T23:59:59.000Z

    concrete setting. ...... For all smooth testing (n, 1) form v and (1, 0) form ? we have q(. ? ..... Let v = ?j,k vj¯k ej ? d¯zk be a smooth E-valued (0, 1) testing form.

  10. Effervescent heating: constraints from nearby cooling flow clusters observed with XMM-Newton

    E-Print Network [OSTI]

    Rocco Piffaretti; Jelle Kaastra

    2006-05-15T23:59:59.000Z

    We have used deprojected radial density and temperature profiles of a sample of 16 nearby CF clusters observed with XMM-Newton to test whether the effervescent heating model can satisfactorily explain the dynamics of CF clusters. For each cluster we derived the required extra heating as a function of cluster-centric distance for various values of the unknown parameters $\\dot M$ (mass deposition rate) and $f_c$ (conduction efficiency). We fitted the extra heating curve using the AGN effervescent heating function and derived the AGN parameters $L$ (the time-averaged luminosity) and $r_0$ (the scale radius where the bubbles start rising in the ICM). While we do not find any solution with the effervescent heating model for only one object, we do show that AGN and conduction heating are not cooperating effectively for half of the objects in our sample. For most of the clusters we find that, when a comparison is possible, the derived AGN scale radius $r_0$ and the observed AGN jet extension have the same order of magnitude. The AGN luminosities required to balance radiative losses are substantially lowered if the fact that the AGN deposits energy within a finite volume is taken into account. For the Virgo cluster, we find that the AGN power derived from the effervescent heating model is in good agreement with the observed jet power.

  11. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L. (Annandale, VA)

    1989-01-01T23:59:59.000Z

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  12. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A. (Santa Cruz, NM)

    1984-01-01T23:59:59.000Z

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  13. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29T23:59:59.000Z

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  14. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1992-01-01T23:59:59.000Z

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  15. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-09-01T23:59:59.000Z

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  16. Is dark energy an effect of averaging?

    E-Print Network [OSTI]

    Nan Li; Marina Seikel; Dominik J. Schwarz

    2008-01-22T23:59:59.000Z

    The present standard model of cosmology states that the known particles carry only a tiny fraction of total mass and energy of the Universe. Rather, unknown dark matter and dark energy are the dominant contributions to the cosmic energy budget. We review the logic that leads to the postulated dark energy and present an alternative point of view, in which the puzzle may be solved by properly taking into account the influence of cosmic structures on global observables. We illustrate the effect of averaging on the measurement of the Hubble constant.

  17. A parametric study of heat transfer within a planar thermosyphon

    SciTech Connect (OSTI)

    Clarksean, R.; Phillips, G.

    1993-08-01T23:59:59.000Z

    The results of a parametric study for a planar thermosyphon are presented. The thermosyphon consists of a ``U-shaped`` geometry, with the center portion of the ``U`` being a solid. The outer legs of the ``U`` are the flow channels. One of the outer surfaces of a channel was held at a constant temperature. The remaining outer surfaces were considered adiabatic. The configuration described is characteristic of passive systems for radioactive waste storage and reactor safety systems. Parameters which were varied included the channel geometry, the thermal conductivity of the solid, and the Ra number. The average Nu number for the constant temperature surface decreased as the inlet channel width decreased, and as the thermal conductivity of the solid increased. A modified Ra number, defined as the Ra number divided by the length to gap ratio for the outer channel, is used in the paper. At low values of the modified Ra number, there is over an order of magnitude decrease in the average Vu number for a change in the inlet channel width from 1.0 to 0.25. But as the value of the modified Ra number increases for any inlet channel width, the average Vu number results approached those of vertical parallel plates, independent of the inlet channel width and the thermal conductivity of the solid. The vertical parallel plate data is approached because the boundary layer flow near the heated plate is unaffected by the surface of the intervening solid.

  18. Heating System Specification Specification of Heating System

    E-Print Network [OSTI]

    Day, Nancy

    Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

  19. Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress...

    Office of Environmental Management (EM)

    Fact 870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 Fact 870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 The Corporate Average Fuel...

  20. Average transverse momentum quantities approaching the lightfront

    E-Print Network [OSTI]

    Daniel Boer

    2014-09-29T23:59:59.000Z

    In this contribution to Light Cone 2014, three average transverse momentum quantities are discussed: the Sivers shift, the dijet imbalance, and the $p_T$ broadening. The definitions of these quantities involve integrals over all transverse momenta that are overly sensitive to the region of large transverse momenta, which conveys little information about the transverse momentum distributions of quarks and gluons inside hadrons. TMD factorization naturally suggests alternative definitions of such integrated quantities, using Bessel-weighting and rapidity cut-offs, with the conventional definitions as limiting cases. The regularized quantities are given in terms of integrals over the TMDs of interest that are well-defined and moreover have the advantage of being amenable to lattice evaluations.

  1. Average over energy effect of parity nonconservation in neutron scattering on heavy nuclei

    E-Print Network [OSTI]

    O. P. Sushkov

    1996-03-05T23:59:59.000Z

    Using semiclassical approximation we consider parity nonconservation (PNC) averaged over compound resonances. We demonstrate that the result of the averaging crucially depends on the properties of residual strong nucleon-nucleon interaction. Natural way to elucidate this problem is to investigate experimentally PNC spin rotation with nonmonachromatic neutron beam: $E \\sim \\Delta E \\sim 1MeV$. Value of the effect can reach $\\psi \\sim 10^{-5}-10^{-4}$ per mean free path.

  2. Fact #693: September 19, 2011 Average Vehicle Footprint for Cars...

    Energy Savers [EERE]

    and the average track width of the vehicle. The upcoming Corporate Average Fuel Economy (CAFE) Standards have fuel economy targets based on the vehicle footprint. The...

  3. average atom model: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (chemical potential, average ionic charge, free electron density, bound and continuum wave-functions and occupation numbers) are obtained from the average-atom model. The...

  4. Optimization of Heat Exchanger Cleaning

    E-Print Network [OSTI]

    Siegell, J. H.

    yiven in equations (7) and (8) results in the TFRE curves shown in Figure 6. In performing the calculations to compare chemical and mechanical cleaning, it is important to remember to include the value of the 20 MBtu/Hr heat lost between... MBtu/hr/day 20 Data From Operating Unit 10 20 30 40 50 60 70 ...., ........ ...................... ~.... ---- Time (Days) Figure 4. Comparison of Models for Heat Recovery ~ecay to Simulated Operating Data. MECHANICAL CLEANING W 100 MBtu...

  5. State heating oil and propane program, 1994--1995 heating season. Final technical report

    SciTech Connect (OSTI)

    NONE

    1995-05-09T23:59:59.000Z

    Propane prices and No. 2 fuel prices during the 1994-1995 heating season are tabulated for the state of Ohio. Nineteen companies were included in the telephone survey of propane prices, and twenty two companies for the fuel oil prices. A bar graph is also presented for average residential prices of No. 2 heating oil.

  6. Effectiveness of heating patterns for electrical resistance heating

    E-Print Network [OSTI]

    Maggard, James Bryan

    1990-01-01T23:59:59.000Z

    power, P, to make it dimensionless and scaled from zero to 1. 0. Power dissipation profiles for the radial power model and r-z power model are compared in Fig 6. For the r-z power model, the value of P(r)/P does not reach a value of 1. 0 because some... due to conduction, convection and ERH heating are accounted for. Heat flow in the overburden and underburden assumes no convection (Qs = 0. ) A a?d T - ? 6 [ p r Cz] + 0 + Q? At t z e (6) Mass Balances: The final equations solved by the r-z ERH...

  7. Energy Consumption and Demand as Affected by Heat Pumps that Cool, Heat and Heat Domestic Water

    E-Print Network [OSTI]

    Cawley, R.

    heaters. The methods presented demonstrate how integrated systems can be of value in reducing daily summertime peaks. INTRODUCTION A need for descriptors to evaluate systems that condition space and heat domestic water has been recognized for several... added to and used by the water from the desuperheated refrigerant - heat normally provided by the electric water heater's resistance elements. DESCRIPTION OF EQUIPMENT The system considered for this study is best described by U.S. Patent No. 4...

  8. APPENDIX A: MONTHLY AVERAGED DATA In many instances monthly averaged data are

    E-Print Network [OSTI]

    Oregon, University of

    for solar energy and climatic applications. Click on the buttons on the left to find out more about the lab for preliminary estimates of solar system performance. This section provides a summary of monthly averaged data for all sites in watt hours/meter2 per hour or day. For each site and each solar measurement the data

  9. Irregular spacing of heat sources for treating hydrocarbon containing formations

    DOE Patents [OSTI]

    Miller, David Scott (Katy, TX); Uwechue, Uzo Philip (Houston, TX)

    2012-06-12T23:59:59.000Z

    A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

  10. Development of Closure for Heat Exchangers Based on Volume Averaging Theory

    E-Print Network [OSTI]

    Zhou, Feng

    2014-01-01T23:59:59.000Z

    factors type of factorial design, and a grey-based fuzzyis called 2 n full factorial design. If each variable ismidpoint, then a 3 n full factorial design is created, see

  11. Superradiant Quantum Heat Engine

    E-Print Network [OSTI]

    Ali Ü. C. Hardal; Özgür E. Müstecapl?oglu

    2015-04-22T23:59:59.000Z

    Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart.

  12. Effect of combined nanoparticle and polymeric dispersions on critical heat flux, nucleate boiling heat transfer coefficient, and coating adhesion

    E-Print Network [OSTI]

    Edwards, Bronwyn K

    2009-01-01T23:59:59.000Z

    An experimental study was performed to determine thermal performance and adhesion effects of a combined nanoparticle and polymeric dispersion coating. The critical heat flux (CHF) values and nucleate boiling heat transfer ...

  13. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  14. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    solar energy to provide the heat input to a Rankine cycle tosystem. This value, the heat input to the solar collector,generated. The heat and work inputs and outputs to the

  15. Geothermal heating

    SciTech Connect (OSTI)

    Aureille, M.

    1982-01-01T23:59:59.000Z

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  16. Water and Space Heating Heat Pumps 

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  17. Water and Space Heating Heat Pumps

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  18. Industrial Waste Heat Recovery Using Heat Pipes 

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  19. Geothermal heating for Caliente, Nevada

    SciTech Connect (OSTI)

    Wallis, F.; Schaper, J.

    1981-02-01T23:59:59.000Z

    Utilization of geothermal resources in the town of Caliente, Nevada (population 600) has been the objective of two grants. The first grant was awarded to Ferg Wallis, part-owner and operator of the Agua Caliente Trailer Park, to assess the potential of hot geothermal water for heating the 53 trailers in his park. The results from test wells indicate sustainable temperatures of 140/sup 0/ to 160/sup 0/F. Three wells were drilled to supply all 53 trailers with domestic hot water heating, 11 trailers with space heating and hot water for the laundry from the geothermal resource. System payback in terms of energy cost-savings is estimated at less than two years. The second grant was awarded to Grover C. Dils Medical Center in Caliente to drill a geothermal well and pipe the hot water through a heat exchanger to preheat air for space heating. This geothermal preheater served to convert the existing forced air electric furnace to a booster system. It is estimated that the hospital will save an average of $5300 in electric bills per year, at the current rate of $.0275/KWH. This represents a payback of approximately two years. Subsequent studies on the geothermal resource base in Caliente and on the economics of district heating indicate that geothermal may represent the most effective supply of energy for Caliente. Two of these studies are included as appendices.

  20. Evaporation and Condensation Heat Transfer Performance of Flammable Refrigerants in a

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Evaporation and Condensation Heat Transfer Performance of Flammable Refrigerants in a Brazed Plate and Condensation Heat Transfer Performance of Flammable Refrigerants in a Brazed Plate Heat Exchanger Sheila C ........................................................... 8 3. Average relative difference (%) in calculated heat transfer rates for refrigerants and HTF

  1. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26T23:59:59.000Z

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  2. Heat Transfer between Graphene and Amorphous SiO2

    E-Print Network [OSTI]

    B. N. J. Persson; H. Ueba

    2010-07-22T23:59:59.000Z

    We study the heat transfer between graphene and amorphous SiO2. We include both the heat transfer from the area of real contact, and between the surfaces in the non-contact region. We consider the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies, and the heat transfer by the gas in the non-contact region. We find that the dominant contribution to the heat transfer result from the area of real contact, and the calculated value of the heat transfer coefficient is in good agreement with the value deduced from experimental data.

  3. Chaotic motion at the emergence of the time averaged energy decay

    E-Print Network [OSTI]

    Cesar Manchein; Jane Rosa; Marcus W. Beims

    2009-05-29T23:59:59.000Z

    A system plus environment conservative model is used to characterize the nonlinear dynamics when the time averaged energy for the system particle starts to decay. The system particle dynamics is regular for low values of the $N$ environment oscillators and becomes chaotic in the interval $13\\le N\\le15$, where the system time averaged energy starts to decay. To characterize the nonlinear motion we estimate the Lyapunov exponent (LE), determine the power spectrum and the Kaplan-Yorke dimension. For much larger values of $N$ the energy of the system particle is completely transferred to the environment and the corresponding LEs decrease. Numerical evidences show the connection between the variations of the {\\it amplitude} of the particles energy time oscillation with the time averaged energy decay and trapped trajectories.

  4. Stress Testing Projected Capitalized Farmland Values 

    E-Print Network [OSTI]

    Gao, Bo 1988-

    2012-11-12T23:59:59.000Z

    values in each state as well as regional averages over the 2012-2015 period. These projections reflect alternative assumptions regarding future trends in real net farm income at the state level as well as the rate on 10-year constant maturity U...

  5. The averaging process in permeability estimation from well-test data

    SciTech Connect (OSTI)

    Oliver, D.S. (Saudi Aramco (SA))

    1990-09-01T23:59:59.000Z

    Permeability estimates from the pressure derivative or the slope of the semilog plot usually are considered to be averages of some large ill-defined reservoir volume. This paper presents results of a study of the averaging process, including identification of the region of the reservoir that influences permeability estimates, and a specification of the relative contribution of the permeability of various regions to the estimate of average permeability. The diffusion equation for the pressure response of a well situated in an infinite reservoir where permeability is an arbitrary function of position was solved for the case of small variations from a mean value. Permeability estimates from the slope of the plot of pressure vs. the logarithm of drawdown time are shown to be weighted averages of the permeabilities within an inner and outer radius of investigation.

  6. Grid-Interactive Renewable Water Heating Economic and Environmental Value

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment of aLoggingsubscriber toSenate1 Grid-Interactive

  7. Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards...

    Energy Savers [EERE]

    4: May 24, 2010 Corporate Average Fuel Economy Standards, Model Years 2012-2016 Fact 624: May 24, 2010 Corporate Average Fuel Economy Standards, Model Years 2012-2016 The final...

  8. Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress...

    Energy Savers [EERE]

    70: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 - Dataset Fact 870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 - Dataset Excel file...

  9. Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51%...

    Broader source: Energy.gov (indexed) [DOE]

    For the 2014 model year, midsize hybrid cars averaged 43.4 miles per gallon (mpg) while midsize non-hybrid cars averaged 28.7 mpg; the difference between the two has narrowed due...

  10. Dead heat

    SciTech Connect (OSTI)

    Oppenheimer, M.; Boyle, R.H.

    1990-01-01T23:59:59.000Z

    This paper reports on the prospect of global warming. This paper proposes a workable solution, and a road map for getting there. The author explains how we became addicted to fossil fuels and evokes a bleak picture should this dependence continue. But the book also explores how industry can become a vehicle for solving, instead of precipitating, the global environmental crisis. The decoupling of energy from pollution can be accomplished without sacrificing prosperity by powering the economy with solar energy. Dead Heat takes us step by step to a greenhouse-friendly world fueled only by the sun.

  11. Grid-Interactive Renewable Water Heating Economic and Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    1 Grid-Interactive Renewable Water Heating Economic and Environmental Value Grid-interactive renewable water heaters have smart controls that quickly change their charge rate and...

  12. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

    1982-01-01T23:59:59.000Z

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  13. Segmented heat exchanger

    DOE Patents [OSTI]

    Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

    2010-12-14T23:59:59.000Z

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  14. FRAGMENTATION AND EVOLUTION OF MOLECULAR CLOUDS. II. THE EFFECT OF DUST HEATING

    SciTech Connect (OSTI)

    Urban, Andrea; Evans, Neal J. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Martel, Hugo [Departement de Physique, genie physique et optique, Universite Laval, Quebec, QC G1K 7P4 (Canada)

    2010-02-20T23:59:59.000Z

    We investigate the effect of heating by luminosity sources in a simulation of clustered star formation. Our heating method involves a simplified continuum radiative transfer method that calculates the dust temperature. The gas temperature is set by the dust temperature. We present the results of four simulations; two simulations assume an isothermal equation of state and the two other simulations include dust heating. We investigate two mass regimes, i.e., 84 M{sub sun} and 671 M{sub sun}, using these two different energetics algorithms. The mass functions for the isothermal simulations and simulations that include dust heating are drastically different. In the isothermal simulation, we do not form any objects with masses above 1 M{sub sun}. However, the simulation with dust heating, while missing some of the low-mass objects, forms high-mass objects ({approx}20 M{sub sun}) which have a distribution similar to the Salpeter initial mass function. The envelope density profiles around the stars formed in our simulation match observed values around isolated, low-mass star-forming cores. We find the accretion rates to be highly variable and, on average, increasing with final stellar mass. By including radiative feedback from stars in a cluster-scale simulation, we have determined that it is a very important effect which drastically affects the mass function and yields important insights into the formation of massive stars.

  15. Averages of B-Hadron, C-Hadron, and tau-lepton properties as of early 2012

    SciTech Connect (OSTI)

    Amhis, Y.; et al.

    2012-07-01T23:59:59.000Z

    This article reports world averages of measurements of b-hadron, c-hadron, and tau-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through the end of 2011. In some cases results available in the early part of 2012 are included. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, CP violation parameters, parameters of semileptonic decays and CKM matrix elements.

  16. Dosimetry in Mammography: Average Glandular Dose Based on Homogeneous Phantom

    SciTech Connect (OSTI)

    Benevides, Luis A. [Naval Sea Systems Command,1333 Isaac Hull Avenue, Washington Navy Yard, DC 20376 (United States); Hintenlang, David E. [University of Florida, 202 Nuclear Sciences Center, P.O. Box 1183, Gainesville Florida 32611 (United States)

    2011-05-05T23:59:59.000Z

    The objective of this study was to demonstrate that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 and 46 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. The clinical dosimetry protocol developed in this study can reliably predict the AGD imparted to an individual patient during a routine screening mammogram.

  17. Geothermal heat pumps for heating and cooling

    SciTech Connect (OSTI)

    Garg, S.C.

    1994-03-01T23:59:59.000Z

    Naval Facilities Engineering Service Center (NFESC) has been tasked by Naval Shore Facilities Energy Office to evaluate the NAS Patuxent River ground-source heat pump (GHP) installation. A large part of a building`s energy consumption consists of heating and air conditioning for occupant comfort. The space heating requirements are normally met by fossil-fuel-fired equipment or electric resistance heating. Cooling is provided by either air conditioners or heat pumps, both using electricity as an energy source.

  18. Demagnetized Electron Heating at Collisionless Shocks

    E-Print Network [OSTI]

    Sundkvist, David

    2013-01-01T23:59:59.000Z

    Seventy measurements of electron heating at the Earth's quasi-perpendicular bow shock are analyzed in terms of Maxwellian-temperatures obtained from fits to the core electrons that separate thermal heating from supra-thermal acceleration. The perpendicular temperatures are both greater and lesser than expected for adiabatic compression. The average parallel and perpendicular heating is the same. These results are explained because, over the electron gyroradius, $\\delta B/B\\sim 1$ and $e\\delta \\phi/T_e\\sim 1$, so electron trajectories are more random and chaotic than adiabatic. Because density fluctuations are also large, trapping and wave growth in density holes may be important.

  19. Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures

    SciTech Connect (OSTI)

    Tomlinson, John J [ORNL; Christian, Jeff [Oak Ridge National Laboratory (ORNL); Gehl, Anthony C [ORNL

    2012-09-01T23:59:59.000Z

    Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In other applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the dump valve on these two appliances would have eliminated uncertainty in knowing when waste water was flowing and the recovery system operated. The study also suggested that capture of dryer exhaust heat to heat incoming air to the dryer should be examined as an alternative to using drying exhaust energy for water heating. The study found that over a 6-week test period, the system in each house was able to recover on average approximately 3000 W-h of waste heat daily from these appliance and showers with slightly less on simulated weekdays and slightly more on simulated weekends which were heavy wash/dry days. Most of these energy savings were due to the shower/GFX operation, and the least savings were for the dishwasher/GFX operation. Overall, the value of the 3000 W-h of displaced energy would have been $0.27/day based on an electricity price of $.09/kWh. Although small for today s convention house, these savings are significant for a home designed to approach maximum affordable efficiency where daily operating costs for the whole house are less than a dollar per day. In 2010 the actual measured cost of energy in one of the simulated occupancy houses which waste heat recovery testing was undertaken was $0.77/day.

  20. Modelling Heat Transfer of Carbon Nanotubes

    E-Print Network [OSTI]

    Yang, Xin-She

    2010-01-01T23:59:59.000Z

    Modelling heat transfer of carbon nanotubes is important for the thermal management of nanotube-based composites and nanoelectronic device. By using a finite element method for three-dimensional anisotropic heat transfer, we have simulated the heat conduction and temperature variations of a single nanotube, a nanotube array and a part of nanotube-based composite surface with heat generation. The thermal conductivity used is obtained from the upscaled value from the molecular simulations or experiments. Simulations show that nanotube arrays have unique cooling characteristics due to its anisotropic thermal conductivity.

  1. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations 

    E-Print Network [OSTI]

    Kirol, L. D.

    1986-01-01T23:59:59.000Z

    Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, heat driven heat pumps in which either heat engine or heat pump working fluid is reactive...

  2. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  3. Lecture Ch. 2a Energy and heat capacity

    E-Print Network [OSTI]

    Russell, Lynn

    machine! Conservation of energy! Definition of energy! Uniqueness of work values! Q = 0,W = 0 ! "E = 0 ! E1 Lecture Ch. 2a · Energy and heat capacity ­ State functions or exact differentials ­ Internal energy vs. enthalpy · 1st Law of thermodynamics ­ Relate heat, work, energy · Heat/work cycles (and path

  4. Lecture Ch. 2a Energy and heat capacity

    E-Print Network [OSTI]

    Russell, Lynn

    of energy Definition of energy Uniqueness of work values Q = 0,W = 0 E = 0 E2 = E1 Q = 0 E = W Wrev1 Lecture Ch. 2a · Energy and heat capacity ­ State functions or exact differentials ­ Internal energy vs. enthalpy · 1st Law of thermodynamics ­ Relate heat, work, energy · Heat/work cycles (and path

  5. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

  6. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  7. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

  8. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  9. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

  10. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  11. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  12. average power femtosecond: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stirling refrigerator1 that abrupt changes in geometry are ubiquitous in Stirling engines, thermoacoustics, and res- piratory flows Smith, Barton L. 52 On the Peak-to-Average...

  13. average power ratio: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stirling refrigerator1 that abrupt changes in geometry are ubiquitous in Stirling engines, thermoacoustics, and res- piratory flows Smith, Barton L. 60 High average power,...

  14. average power semiconductor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stirling refrigerator1 that abrupt changes in geometry are ubiquitous in Stirling engines, thermoacoustics, and res- piratory flows Smith, Barton L. 56 High average power,...

  15. average resonance neutron: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nader Haghighipour 1999-02-03 4 Average over energy effect of parity nonconservation in neutron scattering on heavy nuclei Nuclear Theory (arXiv) Summary: Using semiclassical...

  16. average daily traffic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Page Last Page Topic Index 1 April 2014 Annual Average DailyTraffic (AADT) is a key input in operations and transportation planning Environmental Sciences and Ecology...

  17. average wind shear: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by uncompensated voids. Maria Mattsson; Teppo Mattsson 2010-07-17 7 Probabilistic Wind Speed Forecasting using Ensembles and Bayesian Model Averaging Mathematics Websites Summary:...

  18. average state iq: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 STATE OF CALIFORNIA AREA WEIGHTED AVERAGE CALCULATION WORKSHEET: RESIDENTIAL Energy Storage, Conversion and Utilization Websites Summary: STATE OF CALIFORNIA AREA...

  19. average high energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    averaged null (ANEC) energy conditions, and quantum inequality restrictions on negative energy for free massless scalar fields. In a two-dimensional compactified Minkowski...

  20. average kinetic energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy by kinetic averaging Pierre-Emmanuel Jabin Ecole Normale Sup-Landau energy for two dimensional divergence free fields ap- pearing in the gradient theory of...

  1. average beta energy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    averaged null (ANEC) energy conditions, and quantum inequality restrictions on negative energy for free massless scalar fields. In a two-dimensional compactified Minkowski...

  2. average power high: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simultaneous Power Fluctuation and Average Power Minimization during Nano-CMOS Behavioral Synthesis Computer Technologies and Information Sciences Websites Summary: conversion 6....

  3. High Average Power Laser Gain Medium With Low Optical Distortion Using A Transverse Flowing Liquid Host

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Ault, Earl R. (Livermore, CA); Kuklo, Thomas C. (Oakdale, CA)

    2005-07-05T23:59:59.000Z

    A high average power, low optical distortion laser gain media is based on a flowing liquid media. A diode laser pumping device with tailored irradiance excites the laser active atom, ion or molecule within the liquid media. A laser active component of the liquid media exhibits energy storage times longer than or comparable to the thermal optical response time of the liquid. A circulation system that provides a closed loop for mixing and circulating the lasing liquid into and out of the optical cavity includes a pump, a diffuser, and a heat exchanger. A liquid flow gain cell includes flow straighteners and flow channel compression.

  4. Table 10. Average Price of U.S. Steam Coal Exports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910. Average Price

  5. Table 12. Average Price of U.S. Metallurgical Coal Exports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910. Average

  6. High coking value pitch

    SciTech Connect (OSTI)

    Miller, Douglas J.; Chang, Ching-Feng; Lewis, Irwin C.; Lewis, Richard T.

    2014-06-10T23:59:59.000Z

    A high coking value pitch prepared from coal tar distillate and has a low softening point and a high carbon value while containing substantially no quinoline insolubles is disclosed. The pitch can be used as an impregnant or binder for producing carbon and graphite articles.

  7. Heat Pump for High School Heat Recovery 

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01T23:59:59.000Z

    The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

  8. Industrial Waste Heat Recovery Using Heat Pipes

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    -expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat...

  9. Nonlocal effective-average-action approach to crystalline phantom membranes

    SciTech Connect (OSTI)

    Hasselmann, N. [Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Braghin, F. L. [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Instituto de Fisica, Universidade Federal de Goias, P. B. 131, Campus II, 74001-970, Goiania, GO (Brazil)

    2011-03-15T23:59:59.000Z

    We investigate the properties of crystalline phantom membranes, at the crumpling transition and in the flat phase, using a nonperturbative renormalization group approach. We avoid a derivative expansion of the effective average action and instead analyze the full momentum dependence of the elastic coupling functions. This leads to a more accurate determination of the critical exponents and further yields the full momentum dependence of the correlation functions of the in-plane and out-of-plane fluctuation. The flow equations are solved numerically for D=2 dimensional membranes embedded in a d=3 dimensional space. Within our approach we find a crumpling transition of second order which is characterized by an anomalous exponent {eta}{sub c}{approx_equal}0.63(8) and the thermal exponent {nu}{approx_equal}0.69. Near the crumpling transition the order parameter of the flat phase vanishes with a critical exponent {beta}{approx_equal}0.22. The flat phase anomalous dimension is {eta}{sub f}{approx_equal}0.85 and the Poisson's ratio inside the flat phase is found to be {sigma}{sub f}{approx_equal}-1/3. At the crumpling transition we find a much larger negative value of the Poisson's ratio {sigma}{sub c}{approx_equal}-0.71(5). We discuss further in detail the different regimes of the momentum dependent fluctuations, both in the flat phase and in the vicinity of the crumpling transition, and extract the crossover momentum scales which separate them.

  10. Using Exergy Analysis Methodology to Assess the Heating Efficiency of an Electric Heat Pump

    E-Print Network [OSTI]

    Ao, Y.; Duanmu, L.; Shen, S.

    2006-01-01T23:59:59.000Z

    The authors, using exergy analysis methodology, propose that it should consider not only the COP (coefficient of Performance) value of the electric power heat pump set (EPHPS/or HP set), but also the exergy loss at the heating exchanger of the HP...

  11. Using Exergy Analysis Methodology to Assess the Heating Efficiency of an Electric Heat Pump 

    E-Print Network [OSTI]

    Ao, Y.; Duanmu, L.; Shen, S.

    2006-01-01T23:59:59.000Z

    The authors, using exergy analysis methodology, propose that it should consider not only the COP (coefficient of Performance) value of the electric power heat pump set (EPHPS/or HP set), but also the exergy loss at the heating exchanger of the HP...

  12. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  13. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  14. Locating Heat Recovery Opportunities 

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  15. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  16. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    transient the heat transfer model. T h i s required the roofto develop and calibrate heat transfer models to be able toE S station, the heat transfer models described i n sections

  17. HEATING AND COOLING PROTOSTELLAR DISKS

    SciTech Connect (OSTI)

    Hirose, S. [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Turner, N. J., E-mail: shirose@jamstec.go.jp, E-mail: neal.turner@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2011-05-10T23:59:59.000Z

    We examine heating and cooling in protostellar disks using three-dimensional radiation-MHD calculations of a patch of the Solar nebula at 1 AU, employing the shearing-box and flux-limited radiation diffusion approximations. The disk atmosphere is ionized by stellar X-rays, well coupled to magnetic fields, and sustains a turbulent accretion flow driven by magnetorotational instability, while the interior is resistive and magnetically dead. The turbulent layers are heated by absorbing the light from the central star and by dissipating the magnetic fields. They are optically thin to their own radiation and cool inefficiently. The optically thick interior in contrast is heated only weakly, by re-emission from the atmosphere. The interior is colder than a classical viscous model and isothermal. The magnetic fields support an extended atmosphere that absorbs the starlight 1.5 times higher than the hydrostatic viscous model. The disk thickness thus measures not the internal temperature, but the magnetic field strength. Fluctuations in the fields move the starlight-absorbing surface up and down. The height ranges between 13% and 24% of the radius over timescales of several orbits, with implications for infrared variability. The fields are buoyant, so the accretion heating occurs higher in the atmosphere than the stresses. The heating is localized around current sheets, caused by magnetorotational instability at lower elevations and by Parker instability at higher elevations. Gas in the sheets is heated above the stellar irradiation temperature, even though accretion is much less than irradiation power when volume averaged. The hot optically thin current sheets might be detectable through their line emission.

  18. Design optimization of conventional heat pumps: application to steady-state heating efficiency

    SciTech Connect (OSTI)

    Rice, C.K.; Fischer, S.K.; Ellison, R.D.; Jackson, W.L.

    1981-01-01T23:59:59.000Z

    A physically-based heat pump model was connected to an optimiztion program to form a computer code for use in the design of high-efficiency heat pumps. The method used allows for the simultaneous optimization of selected design variables, taking proper account of their interactions, while constraining other parameters to chosen limits or fixed values. For optimiztion of the steady-state heating efficiency of conventional heat pumps, ten variables were optimized while heating capacity was fixed; the results may, however, be scaled to other capacities. Calculations were made for a range of component efficiencies and heat exchanger sizes. The results predict substantial improvement in heating performance due to both optimal system configurations and the use of improved components. Sensitivity analyses show that there is considerable latitude for deviating from the optimum design to make use of available component sizes and for accomodating the compromises needed for good cooling performance.

  19. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, R.R.

    1984-07-16T23:59:59.000Z

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  20. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases The average retail price

  1. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases The average retail

  2. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases The average retailheating

  3. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil price decreases The average

  4. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  5. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  6. On average sampling restoration of Piranashvilitype harmonizable processes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ; time shifted sam- pling; Piranashvili­, Lo`eve­, Karhunen­ harmonizable stochastic process; weakly.olenko@latrobe.edu.au, poganj@pfri.hr Abstract: The harmonizable Piranashvili ­ type stochastic pro- cesses are approximated stationary stochastic process; local averages; average sampling reconstruction. 1. Introduction

  7. averaged energy minimization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    averaged energy minimization First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Averaged Energy...

  8. THE AVERAGED CONTROL SYSTEM OF FAST OSCILLATING CONTROL SYSTEMS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , control systems, small control, optimal control, Finsler geometry. AMS subject classifications. 34C29, 34H used for design. The use of averaging in optimal control of oscillating systems [10, 13, 14, 7THE AVERAGED CONTROL SYSTEM OF FAST OSCILLATING CONTROL SYSTEMS ALEX BOMBRUN AND JEAN

  9. Distributed Average Consensus in Sensor Networks with Random Link Failures

    E-Print Network [OSTI]

    Moura, José

    Distributed Average Consensus in Sensor Networks with Random Link Failures Soummya Kar Department: soummyakgandrew.cmu.edu Abstract We study the impact of the topology of a sensor network on distributed average in terms of a moment of the distribution of the norm of a function of the network graph Laplacian matrix L

  10. The global warming signal is the average of

    E-Print Network [OSTI]

    Jones, Peter JS

    , uncertainty in the isopycnal diffusivity causes uncertainty of up to 50% in the global warming signalThe global warming signal is the average of years 70-80 in the increasing CO2 run minus the average represent significant uncertainty in the global warming signal (Fig. 5). The differences at high latitudes

  11. Heat Engine of black holes

    E-Print Network [OSTI]

    Sadeghi, J

    2015-01-01T23:59:59.000Z

    As we know, the cosmological constant in different theories of gravity acts as a thermodynamics variable. The cosmological constant exists in different actions of gravity and also appears in the solution of such theories. These lead to use the black hole as a heat engines. Also, there are two values for the cosmological constant as positive and negative values. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. In this paper, we are going to define heat engines for two different black holes as Dyonic BH and Kerr BH. And also, we calculate maximum efficiency for two black holes.

  12. Heat Engine of black holes

    E-Print Network [OSTI]

    J. Sadeghi; Kh. Jafarzade

    2015-04-29T23:59:59.000Z

    As we know, the cosmological constant in different theories of gravity acts as a thermodynamics variable. The cosmological constant exists in different actions of gravity and also appears in the solution of such theories. These lead to use the black hole as a heat engines. Also, there are two values for the cosmological constant as positive and negative values. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. In this paper, we are going to define heat engines for two different black holes as Dyonic BH and Kerr BH. And also, we calculate maximum efficiency for two black holes.

  13. Value of the energy data base

    SciTech Connect (OSTI)

    King, D.W.; Griffiths, J.M.; Roderer, N.K.; Wiederkehr, R.R.V.

    1982-03-31T23:59:59.000Z

    An assessment was made of the Energy Data Base (EDB) of the Department of Energy's Technical Information Center (TIC). As the major resource containing access information to the world's energy literature, EDB products and services are used extensively by energy researchers to identify journal articles, technical reports and other items of potential utility in their work. The approach taken to assessing value begins with the measurement of extent of use of the EDB. Apparent value is measured in terms of willingness to pay. Consequential value is measured in terms of effect - for searching, the cost of reading which results; and for reading, the savings which result from the application of the information obtained in reading. Resulting estimates of value reflect value to the searchers, the reader, and the reader's organization or funding source. A survey of the 60,000 scientists and eingineers funded by the DOE shows that annually they read about 7.1 million journal articles and 6.6 million technical reports. A wide range of savings values were reported for one-fourth of all article readings and three-fourths of all report readings. There was an average savings of $590 per reading of all articles; there was an average savings of $1280 for technical reports. The total annual savings attributable to reading by DOE-funded scientists and engineers is estimated to be about $13 billion. An investment of $5.3 billion in the generation of information and about $500 million in processing and using information yields a partial return of about $13 billion. Overall, this partial return on investment is about 2.2 to 1. In determining the value of EDB only those searches and readings directly attributable to it are included in the analysis. The values are $20 million to the searchers, $117 million to the readers and $3.6 billion to DOE.

  14. Superradiant Quantum Heat Engine

    E-Print Network [OSTI]

    Ali Ü. C. Hardal; Özgür E. Müstecapl?oglu

    2015-03-12T23:59:59.000Z

    Quantum physics has revolutionized the classical disciplines of mechanics, statistical physics, and electrodynamics. It modernized our society with many advances such as lasers and transistors. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to the quantum regimes. Inevitably, development of quantum heat engines (QHEs) requires investigations of thermodynamical principles from quantum mechanical perspective, and motivates the emerging field of quantum thermodynamics. Studies of QHEs debate on whether quantum coherence can be used as a resource. We explore an alternative that quantum coherence can be a catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work capability of the QHE becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up a QHE, our results reveal a fundamental difference of a quantum fuel from its classical counterpart.

  15. Economic Value of Agricultural

    E-Print Network [OSTI]

    Economic Value of Agricultural Research Public Investment in Texas Agricultural Research Yields Significant Economic Returns #12;Texas agricultural producers and especially consumers benefit directly from public investment in agricultural research. According to a 2006 study (Huffman and Evenson), the overall

  16. Photovoltaics Value Analysis

    SciTech Connect (OSTI)

    Contreras, J.L.; Frantzis, L.; Blazewicz, S.; Pinault, D.; Sawyer, H.

    2008-02-01T23:59:59.000Z

    The goals of this report are to identify best practices in methodologies for estimating the value of distributed PV technologies, identify gaps in existing knowledge, and outline R&D opportunities.

  17. Value of Information References

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Morency, Christina

    This file contains a list of relevant references on value of information (VOI) in RIS format. VOI provides a quantitative analysis to evaluate the outcome of the combined technologies (seismology, hydrology, geodesy) used to monitor Brady's Geothermal Field.

  18. Value of Information References

    SciTech Connect (OSTI)

    Morency, Christina

    2014-12-12T23:59:59.000Z

    This file contains a list of relevant references on value of information (VOI) in RIS format. VOI provides a quantitative analysis to evaluate the outcome of the combined technologies (seismology, hydrology, geodesy) used to monitor Brady's Geothermal Field.

  19. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, Lance D. (Shelly, ID)

    1988-01-01T23:59:59.000Z

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  20. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, L.D.

    1987-02-11T23:59:59.000Z

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  1. Mass and Heat Recovery 

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01T23:59:59.000Z

    In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

  2. Heat Transfer Enhancement for Finned-Tube Heat Exchangers with Vortex Generators: Experimental and Numerical Results

    SciTech Connect (OSTI)

    O'Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert

    2002-08-01T23:59:59.000Z

    A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numerical modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.

  3. Heat transfer in gas tungsten arc welding

    SciTech Connect (OSTI)

    Smartt, H.B.; Stewart, J.A.; Einerson, C.J.

    1986-05-01T23:59:59.000Z

    The heat transferred from an electrode negative, argon gas tungsten arc to an anode has been measured for a wide range of conditions suitable for mechanized welding applications. The results are given as (1) the arc efficiency; and (2) the anode heat and current input distribution functional shapes and radii for various anode materials and groove shapes over a wide range of current and voltage, using different electrode geometries, as well as both He and Ar-He shielding gases. The nominal arc is Gaussian with a diameter of about 4 mm and a heat transfer efficiency to the anode of about 75%. Variations from these values are discussed in terms of current knowledge of the electrical and thermal energy transport mechanisms. A new method of measuring the heat transferred from the arc to the anode, using a boiling liquid nitrogen calorimeter, has been developed which gives rapid, accurate values.

  4. Thulium-170 heat source

    DOE Patents [OSTI]

    Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

    1992-01-01T23:59:59.000Z

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  5. Passive solar heating and natural cooling of an earth-integrated design

    SciTech Connect (OSTI)

    Barnes, P.R.; Shapira, H.B.

    1980-01-01T23:59:59.000Z

    The Joint Institute for Heavy Ion Research is being designed with innovative features that will greatly reduce its energy consumption for heating, cooling, and lighting. A reference design has been studied and the effects of extending the overhang during summer and fall, varying glazing area, employing RIB, and reducing internal heat by natural lighting have been considered. The use of RIB and the extendable overhang increases the optimum window glazing area and the solar heating fraction. A mass-storage wall which will likely be included in the final design has also been considered. A figure of merit for commercial buildings is the total annual energy consumption per unit area of floor space. A highly efficient office building in the Oak Ridge area typically uses 120 to 160 kWhr/m/sup 2/. The Joint Institute reference design with natural lighting, an annual average heat pump coefficient of performance (COP) equal to 1.8, RIB, and the extendable overhang uses 71 kWhr/m/sup 2/. This figure was determined from NBSLD simulations corrected for the saving from RIB. The internal heat energy from lighting and equipment used in the simulation was 1653 kWhrs/month (high natural lighting case) which is much lower than conventional office buildings. This value was adopted because only a portion of the building will be used as office space and efforts will be made to keep internal heat generation low. The mass-storage wall and ambient air cooling will reduce energy consumption still further. The combined savings of the innovative features in the Joint Institute building are expected to result in a very energy efficient design. The building will be instrumented to monitor its performance and the measured data will provide a means of evaluating the energy-saving features. The efficiency of the design will be experimentally verified over the next several years.

  6. Mass and Heat Recovery

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01T23:59:59.000Z

    - 1 - MASS AND HEAT RECOVERY SYSTEM SALAH MAHMOUD HINDAWI DIRECTOR HINDAWI FOR ENGINEERING SERVICES & CONTRACTING NEW DAMIETTA , EGYPT ABSTRACT : In the last few years heat recovery was under spot . and in air conditioning fields... ) as a heat recovery . and I use the water as a mass recovery . The source of mass and heat recovery is the condensate water which we were dispose and connect it to the drain lines . THE BENEFIT OF THIS SYSTEM ARE : 1) Using the heat energy from...

  7. average glandular dose: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    doses and cancer rates to the workers m the first Soviet atom-bomb facility, near 2 Chelyabinsk and 4,600 at the plutonium sep- aration plant. If we allow for an average work...

  8. INDIVIDUAL REFORM ELEMENTS .63Average course exam score

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    INDIVIDUAL REFORM ELEMENTS .63Average course exam score .11In class clicker score .02Lecture: · Correlations with effort/curricular elements are positive but not high, indicating no individual course reform

  9. STATE OF CALIFORNIA AREA WEIGHTED AVERAGE CALCULATION WORKSHEET: RESIDENTIAL

    E-Print Network [OSTI]

    of a building feature, material, or construction assembly occur in a building, a weighted average there is more than one level of floor, wall, or ceiling insulation in a building, or more than one type

  10. Does anyone have access to 2012 average residential rates by...

    Open Energy Info (EERE)

    Does anyone have access to 2012 average residential rates by utility company? I'm seeing an inconsistency between the OpenEI website and EIA 861 data set. Home > Groups > Utility...

  11. From average case complexity to improper learning [Extended Abstract

    E-Print Network [OSTI]

    Linial, Nathan "Nati"

    is that the standard reduc- tions from NP-hard problems do not seem to apply in this context. There is essentially only.1145/2591796.2591820. Keywords Hardness of improper learning, DNFs, Halfspaces, Average Case complexity, CSP problems, Resolution

  12. average neutronic properties: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M. H. van Kerkwijk 2004-03-20 2 Average over energy effect of parity nonconservation in neutron scattering on heavy nuclei Nuclear Theory (arXiv) Summary: Using semiclassical...

  13. average power optical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems, Multiple Subcarrier Strohmer, Thomas 3 June 1, 2000 Vol. 25, No. 11 OPTICS LETTERS 859 16.2-W average power from a diode-pumped Materials Science Websites...

  14. Fact #835: August 25, 2014 Average Annual Gasoline Pump Price...

    Broader source: Energy.gov (indexed) [DOE]

    35: Average Annual Gasoline Pump Price, 1929-2013 fotw835web.xlsx More Documents & Publications Offshore Wind Market and Economic Analysis Report 2013 Response to several FOIA...

  15. THE UNIVERSITY OF RHODE ISLAND FRINGE BENEFIT AVERAGE RATE

    E-Print Network [OSTI]

    Rhode Island, University of

    THE UNIVERSITY OF RHODE ISLAND FRINGE BENEFIT AVERAGE RATE FY 2015 Allocation Cost or Classified.2% URI Budget & Financial Planning Office 9.17.14 Office:fringebenefits:office of sponsored projects: FY2015 Allocation #12;

  16. On the Choice of Average Solar Zenith Angle

    E-Print Network [OSTI]

    Cronin, Timothy W.

    Idealized climate modeling studies often choose to neglect spatiotemporal variations in solar radiation, but doing so comes with an important decision about how to average solar radiation in space and time. Since both ...

  17. average neck flexion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    profiles including the singular isothermal sphere, the Navarro-Frenk-White... Retana-Montenegro, E; Baes, M 2012-01-01 13 Fast Averaging MIT - DSpace Summary: We are interested in...

  18. averaged cross sections: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Relations between fusion cross sections and average angular momenta Nuclear Theory (arXiv) Summary: We study...

  19. averaged cross section: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Relations between fusion cross sections and average angular momenta Nuclear Theory (arXiv) Summary: We study...

  20. average cross sections: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Relations between fusion cross sections and average angular momenta Nuclear Theory (arXiv) Summary: We study...

  1. average effective dose: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    field theory, Chern-Simons theory is discussed in detail. M. Reuter 1996-02-04 2 Is dark energy an effect of averaging? CERN Preprints Summary: The present standard model of...

  2. Earned Value Management

    E-Print Network [OSTI]

    Ferguson, J

    2002-01-01T23:59:59.000Z

    Earned Value Management is a methodology used to measure and communicate the real physical progress of a project and show its true cost situation. This tool was developed by the US Department of Defense in 1967 and later used successfully for monitoring DOE projects, in particular the US LHC accelerator project. A clear distinction must be made between an earned value management system and other tools under consideration or already existing at CERN which permit accurate predictions of the amount and date of future payments or a detailed follow up of contracts.

  3. Value of Information spreadsheet

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Trainor-Guitton, Whitney

    This spreadsheet represents the information posteriors derived from synthetic data of magnetotellurics (MT). These were used to calculate value of information of MT for geothermal exploration. Information posteriors describe how well MT was able to locate the "throat" of clay caps, which are indicative of hidden geothermal resources. This data is full explained in the peer-reviewed publication: Trainor-Guitton, W., Hoversten, G. M., Ramirez, A., Roberts, J., Júlíusson, E., Key, K., Mellors, R. (Sept-Oct. 2014) The value of spatial information for determining well placement: a geothermal example, Geophysics.

  4. Value of Information spreadsheet

    SciTech Connect (OSTI)

    Trainor-Guitton, Whitney

    2014-05-12T23:59:59.000Z

    This spreadsheet represents the information posteriors derived from synthetic data of magnetotellurics (MT). These were used to calculate value of information of MT for geothermal exploration. Information posteriors describe how well MT was able to locate the "throat" of clay caps, which are indicative of hidden geothermal resources. This data is full explained in the peer-reviewed publication: Trainor-Guitton, W., Hoversten, G. M., Ramirez, A., Roberts, J., Júlíusson, E., Key, K., Mellors, R. (Sept-Oct. 2014) The value of spatial information for determining well placement: a geothermal example, Geophysics.

  5. Flavor Physics Data from the Heavy Flavor Averaging Group (HFAG)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Heavy Flavor Averaging Group (HFAG) was established at the May 2002 Flavor Physics and CP Violation Conference in Philadelphia, and continues the LEP Heavy Flavor Steering Group's tradition of providing regular updates to the world averages of heavy flavor quantities. Data are provided by six subgroups that each focus on a different set of heavy flavor measurements: B lifetimes and oscillation parameters, Semi-leptonic B decays, Rare B decays, Unitarity triangle parameters, B decays to charm final states, and Charm Physics.

  6. Partial Averaging Near a Resonance in Planetary Dynamics

    E-Print Network [OSTI]

    Nader Haghighipour

    1999-02-03T23:59:59.000Z

    Following the general numerical analysis of Melita and Woolfson (1996), I showed in a recent paper that a restricted, planar, circular planetary system consisting of Sun, Jupiter and Saturn would be captured in a near (2:1) resonance when one would allow for frictional dissipation due to interplanetary medium (Haghighipour, 1998). In order to analytically explain this resonance phenomenon, the method of partial averaging near a resonance was utilized and the dynamics of the first-order partially averaged system at resonance was studied. Although in this manner, the finding that resonance lock occurs for all initial relative positions of Jupiter and Saturn was confirmed, the first-order partially averaged system at resonance did not provide a complete picture of the evolutionary dynamics of the system and the similarity between the dynamical behavior of the averaged system and the main planetary system held only for short time intervals. To overcome these limitations, the method of partial averaging near a resonance is extended to the second order of perturbation in this paper and a complete picture of dynamical behavior of the system at resonance is presented. I show in this study that the dynamics of the second-order partially averaged system at resonance resembles the dynamical evolution of the main system during the resonance lock in general, and I present analytical explanations for the evolution of the orbital elements of the main system while captured in resonance.

  7. Heat Integrate Heat Engines in Process Plants

    E-Print Network [OSTI]

    Hindmarsh, E.; Boland, D.; Townsend, D. W.

    ~C. T min Table 3. Problem Table Algorithm Applied to Petrochemicals Process Interval GJ ltiour 'Temperatures ! C! 2 ) ? ~ Cold. Hot Aecumulated Heat Heat FJ.owa Interval Streams StrePlS Deficit. Input OUtput -OUtt!utInput. 20 30 -2... of heat which can be passed on in this manner is performed in column 2 and column 3 of Table 3. It is initially assumed that the heat input from external utilities is zero. This is represented in Table 3 by a zero input to the top interval. Having...

  8. Experimental Research on Solar Assisted Heat Pump Heating System with Latent Heat Storage 

    E-Print Network [OSTI]

    Han, Z.; Zheng, M.; Liu, W.; Wang, F.

    2006-01-01T23:59:59.000Z

    Assisted Heat Pump Heating System with Latent Heat Storage. In this system, solar energy is the major heat source for a heat pump, and the supplementary heat source is soil. The disagreement in time between the space heat load and heat collected by solar...

  9. Heating tar sands formations to visbreaking temperatures

    DOE Patents [OSTI]

    Karanikas, John Michael (Houston, TX); Colmenares, Tulio Rafael (Houston, TX); Zhang, Etuan (Houston, TX); Marino, Marian (Houston, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX); Ryan, Robert Charles (Houston, TX); Beer, Gary Lee (Houston, TX); Dombrowski, Robert James (Houston, TX); Jaiswal, Namit (Houston, TX)

    2009-12-22T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat may be controlled so that at least a majority of the section reaches an average temperature of between 200.degree. C. and 240.degree. C., which results in visbreaking of at least some hydrocarbons in the section. At least some visbroken hydrocarbon fluids may be produced from the formation.

  10. A validated methodology for the prediction of heating and cooling energy demand for buildings within the Urban Heat Island: Case-study of London

    SciTech Connect (OSTI)

    Kolokotroni, Maria; Bhuiyan, Saiful [Mechanical Engineering, School of Engineering and Design, Brunel University, Uxbridge (United Kingdom); Davies, Michael; Croxford, Ben; Mavrogianni, Anna [The Bartlett School of Graduate Studies, University College London (United Kingdom)

    2010-12-15T23:59:59.000Z

    This paper describes a method for predicting air temperatures within the Urban Heat Island at discreet locations based on input data from one meteorological station for the time the prediction is required and historic measured air temperatures within the city. It uses London as a case-study to describe the method and its applications. The prediction model is based on Artificial Neural Network (ANN) modelling and it is termed the London Site Specific Air Temperature (LSSAT) predictor. The temporal and spatial validity of the model was tested using data measured 8 years later from the original dataset; it was found that site specific hourly air temperature prediction provides acceptable accuracy and improves considerably for average monthly values. It thus is a very reliable tool for use as part of the process of predicting heating and cooling loads for urban buildings. This is illustrated by the computation of Heating Degree Days (HDD) and Cooling Degree Hours (CDH) for a West-East Transect within London. The described method could be used for any city for which historic hourly air temperatures are available for a number of locations; for example air pollution measuring sites, common in many cities, typically measure air temperature on an hourly basis. (author)

  11. HEATING6 verification

    SciTech Connect (OSTI)

    Bryan, C.B.; Childs, K.W.; Giles, G.E.

    1986-12-01T23:59:59.000Z

    The HEATING series of general purpose, finite-difference, conduction heat transfer codes have been in use for many years. During this time the codes have been used extensively, and a general confidence has been developed in regard to their accuracy. However, there has never been a formal verification in a published, citable document. This report documents just such a verification study for the latest code in the HEATING series, HEATING6. This study confirms that HEATING6 is capable of producing accurate results for a large class of heat transfer problems. 11 refs., 170 figs., 82 tabs.

  12. Heat Pump for High School Heat Recovery

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01T23:59:59.000Z

    ) [3] Yayun FAN. Experimental study on a heat pump technology in solar thermal utilization[J]. Acta Energiae Solaris Sinica, Oct.,2002; Vol.23,No.5 ? 581-585.(In Chinese) [4] Nengxi JIANG. Air-conditioning Heat Pump Technology and Its Applications...

  13. Colorado Heat Flow Data from IHFC

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: The International Heat Flow Commission (IHFC) Publication Date: 2012 Title: Colorado IHFC Data Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: Abstract: This layer contains the heat flow sites and data of the State of Colorado compiled from the International Heat Flow Commission (IHFC) of the International Association of Seismology and Physics of the Earth's Interior (IASPEI) global heat flow database (www.heatflow.und.edu/index2.html). The data include different items: Item number, descriptive code, name of site, latitude and longitude, elevation, depth interval, number of temperature data, temperature gradient, number of conductivity measurement, average conductivity, number of heat generation measurements, average heat production, heat flow, number of individual sites, references, and date of publication. Spatial Domain: Extent: Top: 4522121.800672 m Left: 165356.134075 m Right: 621836.776246 m Bottom: 4097833.419676 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude Of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  14. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Broader source: Energy.gov [DOE]

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  15. On the design of heat-transfer probes

    SciTech Connect (OSTI)

    Brich, M.A.; Ganzha, V.L.; Saxena, S.C. [Univ. of Illinois, Chicago, IL (United States)] [Univ. of Illinois, Chicago, IL (United States)

    1997-03-01T23:59:59.000Z

    Saxena and coworkers have reported heat-transfer coefficient values for magnetofluidized beds using electrically heated heat-transfer probes. Here, a two-dimensional heat-transfer model is employed to investigate the influence of significant design features on measured parameters. Numerical calculations reveal that the thermal conductivity of the probe material has an insignificant contribution but the material of end caps and relative sizes and locations of the probe and heater appreciably influence the heat-transfer rates through end-conduction.

  16. Monitored energy use of homes with geothermal heat pumps: A compilation and analysis of performance. Final report

    SciTech Connect (OSTI)

    Stein, J.R.; Meier, A.

    1997-12-01T23:59:59.000Z

    The performance of residential geothermal heat pumps (GHPs) was assessed by comparing heating, ventilation, and air conditioning (HVAC) system and whole house energy use of GHP houses and control houses. Actual energy savings were calculated and compared to expected savings (based on ARI ratings and literature) and predicted savings (based on coefficient of performance - COP - measurements). Differences between GHP and control houses were normalized for heating degree days and floor area or total insulation value. Predicted savings were consistently slightly below expected savings but within the range of performance cited by the industry. Average rated COP was 3.4. Average measured COP was 3.1. Actual savings were inconsistent and sometimes significantly below predicted savings. No correlation was found between actual savings and actual energy use. This suggests that factors such as insulation and occupant behavior probably have greater impact on energy use than type of HVAC equipment. There was also no clear correlation between climate and actual savings or between climate and actual energy use. There was a trend between GHP installation date and savings. Newer units appear to have lower savings than some of the older units which is opposite of what one would expect given the increase in rated efficiencies of GHPs. There are a number of explanations for why actual savings are repeatedly below rated savings or predicted savings. Poor ground loop sizing or installation procedures could be an issue. Given that performance is good compared to ASHPs but poor compared to electric resistance homes, the shortfall in savings could be due to duct leakage. The takeback effect could also be a reason for lower than expected savings. Occupants of heat pump homes are likely to heat more rooms and to use more air-conditioning than occupants of electric resistance homes. 10 refs., 17 figs., 10 tabs.

  17. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

  18. DistrictHeating Nuevasaladecalderasydistribucin

    E-Print Network [OSTI]

    Fraguela, Basilio B.

    DistrictHeating Nuevasaladecalderasydistribución decaloreneláreauniversitariade AZapateira Jesús, difusión. DISTRICT HEATING O CALEFACCIÓN DE BARRIO #12;MATERIALIZACIÓN INTEGRACIÓN VISUAL DE ELEMENTOS rendimiento global de la instalación. - Contabilización de pérdidas en tuberías de distribución. #12;DISTRICT

  19. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01T23:59:59.000Z

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  20. MA HEAT Loan Overview

    Broader source: Energy.gov [DOE]

    Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

  1. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA)

    1984-10-23T23:59:59.000Z

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  2. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA); Hansen, Leif J. (Berkeley, CA); Evans, David B. (Orinda, CA)

    1985-01-01T23:59:59.000Z

    A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  3. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29T23:59:59.000Z

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  4. Industrial Waste Heat Recovery

    E-Print Network [OSTI]

    Ward, M. E.; Solomon, N. G.; Tabb, E. S.

    1980-01-01T23:59:59.000Z

    INDUSTRIAL WASTE HEAT RECOVREY M. E. Ward and N. G. Solomon E. S. Tabb Solar Turbines International and Gas Research Institute San Diego, California Chicago, Illinois ABSTRACT i I One hundred fifty reports were reviewed along with interviews... tests, promising low temperature heat exchanger tube alloys and coated surfaces were identified. 1INTROUCTION of advanced technology heat recovery techniques 1_ Recovering waste heat from the flue gases of the pr~ary objective. Specific objectives...

  5. A corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, S.L.

    1987-08-10T23:59:59.000Z

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  6. Hanford Advisory Board Values

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonic EngineHIV andApril 8-9, Advisory BoardPageValues

  7. Acoustic Heating Peter Ulmschneider

    E-Print Network [OSTI]

    Ulmschneider, Peter

    mechanisms. 1. The acoustic heating theory Only a few years after Edlen's (1941) discovery that the solar acoustic wave radiation- · b. field acoustic wave Figure 1. Panel a: Acoustic heating in late-type stars: effective temperature TeJ f, gravity g and mixing length parameter fr. Panel b: Acoustic heating in early

  8. Heat Transfer Guest Editorial

    E-Print Network [OSTI]

    Kandlikar, Satish

    Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

  9. Pioneering Heat Pump Project

    Broader source: Energy.gov [DOE]

    Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

  10. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01T23:59:59.000Z

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  11. High average power laser using a transverse flowing liquid host

    DOE Patents [OSTI]

    Ault, Earl R.; Comaskey, Brian J.; Kuklo, Thomas C.

    2003-07-29T23:59:59.000Z

    A laser includes an optical cavity. A diode laser pumping device is located within the optical cavity. An aprotic lasing liquid containing neodymium rare earth ions fills the optical cavity. A circulation system that provides a closed loop for circulating the aprotic lasing liquid into and out of the optical cavity includes a pump and a heat exchanger.

  12. averaged lorentz dynamics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    averaged lorentz dynamics First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Dynamics on Lorentz manifolds...

  13. average energy losses: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    average energy losses First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Comparing energy loss...

  14. HIGH AVERAGE POWER UV FREE ELECTRON LASER EXPERIMENTS AT JLAB

    SciTech Connect (OSTI)

    Douglas, David; Evtushenko, Pavel; Gubeli, Joseph; Hernandez-Garcia, Carlos; Legg, Robert; Neil, George; Powers, Thomas; Shinn, Michelle D; Tennant, Christopher

    2012-07-01T23:59:59.000Z

    Having produced 14 kW of average power at {approx}2 microns, JLAB has shifted its focus to the ultraviolet portion of the spectrum. This presentation will describe the JLab UV Demo FEL, present specifics of its driver ERL, and discuss the latest experimental results from FEL experiments and machine operations.

  15. Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging

    E-Print Network [OSTI]

    Raftery, Adrian

    the chance of winds high enough to pose dangers for boats or aircraft. In situations calling for a cost/loss analysis, the probabilities of different outcomes need to be known. For wind speed, this issue often arisesProbabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging J. Mc

  16. The Scientist : Surpassing the Law of Averages The Scientist

    E-Print Network [OSTI]

    Heller, Eric

    /8/2009 7:02:24 PM] #12;The Scientist : Surpassing the Law of Averages "Single-cell genomics appears to be the most straightforward, and at the moment the only way we can assemble the genomes of the uncultured and pushing technological limitations to bring their studies of genomics, genetics, RNA transcription

  17. Optimal Control with Weighted Average Costs and Temporal Logic Specifications

    E-Print Network [OSTI]

    Murray, Richard M.

    Optimal Control with Weighted Average Costs and Temporal Logic Specifications Eric M. Wolff Control and Dynamical Systems California Institute of Technology Pasadena, California 91125 Email: ewolff@caltech.edu Ufuk Topcu Control and Dynamical Systems California Institute of Technology Pasadena, California 91125

  18. Navy Estimated Average Hourly Load Profile by Month (in MW)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Navy Estimated Average Hourly Load Profile by Month (in MW) MONTH HE1 HE2 HE3 HE4 HE5 HE6 HE7 HE8 HE9 HE10 HE11 HE12 HE13 HE14 HE15 HE16 HE17 HE18 HE19 HE20 HE21 HE22 HE23 HE24...

  19. Probabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging

    E-Print Network [OSTI]

    Washington at Seattle, University of

    February 24, 2006 1J. McLean Sloughter is Graduate Research Assistant, Adrian E. Raftery is BlumsteinProbabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging J. McLean Sloughter, Adrian E. Raftery and Tilmann Gneiting 1 Department of Statistics, University of Washington

  20. Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging

    E-Print Network [OSTI]

    Raftery, Adrian

    : J. McLean Sloughter, Department of Mathematics, Seattle University, 901 12th Ave., P.O. Box 222000Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging J. MCLEAN SLOUGHTER Seattle University, Seattle, Washington TILMANN GNEITING Heidelberg University, Heidelberg

  1. average specific absorption: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    average specific absorption First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Original Research Specific...

  2. Method for the evaluation of a average glandular dose in mammography

    SciTech Connect (OSTI)

    Okunade, Akintunde Akangbe [Obafemi Awolowo University, Ile-Ife, Osun State (Nigeria)

    2006-04-15T23:59:59.000Z

    This paper concerns a method for accurate evaluation of average glandular dose (AGD) in mammography. At different energies, the interactions of photons with tissue are not uniform. Thus, optimal accuracy in the estimation of AGD is achievable when the evaluation is carried out using the normalized glandular dose values, g(x,E), that are determined for each (monoenergetic) x-ray photon energy, E, compressed breast thickness (CBT), x, breast glandular composition, and data on photon energy distribution of the exact x-ray beam used in breast imaging. A generalized model for the values of g(x,E) that is for any arbitrary CBT ranging from 2 to 9 cm (with values that are not whole numbers inclusive, say, 4.2 cm) was developed. Along with other dosimetry formulations, this was integrated into a computer software program, GDOSE.FOR, that was developed for the evaluation of AGD received from any x-ray tube/equipment (irrespective of target-filter combination) of up to 50 kVp. Results are presented which show that the implementation of GDOSE.FOR yields values of normalized glandular dose that are in good agreement with values obtained from methodologies reported earlier in the literature. With the availability of a portable device for real-time acquisition of spectra, the model and computer software reported in this work provide for the routine evaluation of AGD received by a specific woman of known age and CBT.

  3. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

    1980-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  4. Heat Transfer -1 You are given the following information for a fluid with thermal conductivity of k = 0.0284 W/m-K that

    E-Print Network [OSTI]

    Virginia Tech

    Heat Transfer - 1 You are given the following information for a fluid with thermal conductivity the flow is laminar near the wall. a) (30 points) Determine the corresponding heat transfer coefficient the heat transfer coefficient as a function of x. c) (25 points) Determine the average heat transfer

  5. Electron Heating in Quasi-Perpendicular Shocks

    E-Print Network [OSTI]

    Mozer, F S

    2013-01-01T23:59:59.000Z

    Seventy crossings of the Earths bow shock by the THEMIS satellites have been used to study thermal electron heating in collisionless, quasi-perpendicular shocks. It was found that the temperature increase of thermal electrons differed from the magnetic field increase by factors as great as three, that the parallel electron temperature increase was not produced by parallel electric fields, and that the parallel and perpendicular electron temperature increases were the same on the average. It was also found that the perpendicular and parallel electron heating occurred simultaneously so that the isotropization time is the same as the heating time. These results cannot be explained by energy transfer from waves to electrons or by the motion of magnetized electrons through the shock. Electric field fluctuations on the scale of the electron gyro-diameter were found to be of finite amplitude in the shock ramp, which requires that the electron trajectories be more random and chaotic than orderly and adiabatic. The da...

  6. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

    1984-01-01T23:59:59.000Z

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  7. Applied heat transfer

    SciTech Connect (OSTI)

    Ganapathy, V.

    1982-01-01T23:59:59.000Z

    Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)

  8. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    SciTech Connect (OSTI)

    Mittereder, N.; Poerschke, A.

    2013-11-01T23:59:59.000Z

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

  9. Electron Boltzmann kinetic equation averaged over fast electron bouncing and pitch-angle scattering for fast modeling of electron cyclotron resonance discharge

    E-Print Network [OSTI]

    Kaganovich, Igor

    cyclotron resonance ECR heating. Typically, the operating gas pressures in ECR reactors range from 10 5Electron Boltzmann kinetic equation averaged over fast electron bouncing and pitch-angle scattering for fast modeling of electron cyclotron resonance discharge I. Kaganovich,1,* M. Misina,2, S. V. Berezhnoi

  10. Heat pump apparatus

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  11. Climate change and health: Indoor heat exposure in vulnerable populations

    SciTech Connect (OSTI)

    White-Newsome, Jalonne L., E-mail: jalonne@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 109 S. Observatory, SPH II, Rm. M6314, Ann Arbor, MI 48109 (United States); Sanchez, Brisa N., E-mail: brisa@umich.edu [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Jolliet, Olivier, E-mail: ojolliet@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 6622 SPH tower, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States)] [University of Michigan School of Public Health, Environmental Health Sciences Department, 6622 SPH tower, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Zhang, Zhenzhen, E-mail: zhzh@umich.edu [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States)] [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Parker, Edith A., E-mail: Edith-Parker@uiowa.edu [University of Michigan School of Public Health, Health Behavior and Health Education Department, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Timothy Dvonch, J., E-mail: dvonch@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 1415 Washington Heights, 6642 SPH Tower, Ann Arbor, MI 48109 (United States); O'Neill, Marie S., E-mail: marieo@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 6631 SPH Tower, 1415 Washington Heights, Ann Arbor, MI 48109 (United States)

    2012-01-15T23:59:59.000Z

    Introduction: Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods: We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 in Detroit, MI. We used mixed linear regression to model indoor temperatures' responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results: Average maximum indoor temperature for all locations was 34.85 Degree-Sign C, 13.8 Degree-Sign C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions: Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings to improve heat exposure assessment for epidemiological investigations. Weatherizing homes and modifying home surroundings could mitigate indoor heat exposure among the elderly.

  12. Core Values | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Core Values Core Values People - People are our most important resource. We respect and use our experience and skills and appreciate our diversity. Business Excellence - We are...

  13. Active microchannel heat exchanger

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

    2001-01-01T23:59:59.000Z

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  14. Initial Value Predictability of Intrinsic Oceanic Modes and Implications for Decadal Prediction over North America

    SciTech Connect (OSTI)

    Branstator, Grant

    2014-12-09T23:59:59.000Z

    The overall aim of our project was to quantify and characterize predictability of the climate as it pertains to decadal time scale predictions. By predictability we mean the degree to which a climate forecast can be distinguished from the climate that exists at initial forecast time, taking into consideration the growth of uncertainty that occurs as a result of the climate system being chaotic. In our project we were especially interested in predictability that arises from initializing forecasts from some specific state though we also contrast this predictability with predictability arising from forecasting the reaction of the system to external forcing – for example changes in greenhouse gas concentration. Also, we put special emphasis on the predictability of prominent intrinsic patterns of the system because they often dominate system behavior. Highlights from this work include: • Development of novel methods for estimating the predictability of climate forecast models. • Quantification of the initial value predictability limits of ocean heat content and the overturning circulation in the Atlantic as they are represented in various state of the artclimate models. These limits varied substantially from model to model but on average were about a decade with North Atlantic heat content tending to be more predictable than North Pacific heat content. • Comparison of predictability resulting from knowledge of the current state of the climate system with predictability resulting from estimates of how the climate system will react to changes in greenhouse gas concentrations. It turned out that knowledge of the initial state produces a larger impact on forecasts for the first 5 to 10 years of projections. • Estimation of tbe predictability of dominant patterns of ocean variability including well-known patterns of variability in the North Pacific and North Atlantic. For the most part these patterns were predictable for 5 to 10 years. • Determination of especially predictable patterns in the North Atlantic. The most predictable of these retain predictability substantially longer than generic patterns, with some being predictable for two decades.

  15. Convective heat transfer in rotating, circular channels

    E-Print Network [OSTI]

    Hogan, Brenna Elizabeth

    2012-01-01T23:59:59.000Z

    Nusselt number values for flow in a rotating reference frame are obtained through computational fluid dynamic (CFD) analysis for Rossby numbers Ro ~1-4 and Reynolds numbers Re ~1,000-2,000. The heat-transfer model is first ...

  16. Dealing with Uncertainties During Heat Exchanger Design

    E-Print Network [OSTI]

    Polley, G. T.; Pugh, S. J.

    heat capacity flow rate of 30 kW/K. The cold stream flowing through E I bas a heat capacity flow rate of 55 kW/K and that flowing through E2 a value of 35 kW/K. 123 ESL-IE-01-05-20 Proceedings from the Twenty-third National Industrial Energy... Technology Conference, Houston, TX, May 1-4, 2001 E2 Area = 100 m 2 cp= 35 kW/K El Area = 300 m 2 Figure 1. Simple Heat Exchanger Network CP = 30 kW/K CP= 55 kWIK Assume that exchangers EI (of heat transfer area 100 m 2 ) and E2 (of 300 m 2...

  17. Heating Cooling Flows with Weak Shock Waves

    E-Print Network [OSTI]

    W. G. Mathews; A. Faltenbacher; F. Brighenti

    2005-11-05T23:59:59.000Z

    The discovery of extended, approximately spherical weak shock waves in the hot intercluster gas in Perseus and Virgo has precipitated the notion that these waves may be the primary heating process that explains why so little gas cools to low temperatures. This type of heating has received additional support from recent gasdynamical models. We show here that outward propagating, dissipating waves deposit most of their energy near the center of the cluster atmosphere. Consequently, if the gas is heated by (intermittent) weak shocks for several Gyrs, the gas within 30-50 kpc is heated to temperatures that far exceed observed values. This heating can be avoided if dissipating shocks are sufficiently infrequent or weak so as not to be the primary source of global heating. Local PV and viscous heating associated with newly formed X-ray cavities are likely to be small, which is consistent with the low gas temperatures generally observed near the centers of groups and clusters where the cavities are located.

  18. Statistical Model Analysis of (n,p) Cross Sections and Average Energy For Fission Neutron Spectrum

    SciTech Connect (OSTI)

    Odsuren, M.; Khuukhenkhuu, G. [Nuclear Research Center, National University of Mongolia, Ulaanbaatar (Mongolia)

    2011-06-28T23:59:59.000Z

    Investigation of charged particle emission reaction cross sections for fast neutrons is important to both nuclear reactor technology and the understanding of nuclear reaction mechanisms. In particular, the study of (n,p) cross sections is necessary to estimate radiation damage due to hydrogen production, nuclear heating and transmutations in the structural materials of fission and fusion reactors. On the other hand, it is often necessary in practice to evaluate the neutron cross sections of the nuclides for which no experimental data are available.Because of this, we carried out the systematical analysis of known experimental (n,p) and (n,a) cross sections for fast neutrons and observed a systematical regularity in the wide energy interval of 6-20 MeV and for broad mass range of target nuclei. To explain this effect using the compound, pre-equilibrium and direct reaction mechanisms some formulae were deduced. In this paper, in the framework of the statistical model known experimental (n,p) cross sections averaged over the thermal fission neutron spectrum of U-235 are analyzed. It was shown that the experimental data are satisfactorily described by the statistical model. Also, in the case of (n,p) cross sections the effective average neutron energy for fission spectrum of U-235 was found to be around 3 MeV.

  19. Average balance equations, scale dependence, and energy cascade for granular materials

    E-Print Network [OSTI]

    Riccardo Artoni; Patrick Richard

    2015-03-09T23:59:59.000Z

    A new averaging method linking discrete to continuum variables of granular materials is developed and used to derive average balance equations. Its novelty lies in the choice of the decomposition between mean values and fluctuations of properties which takes into account the effect of gradients. Thanks to a local homogeneity hypothesis, whose validity is discussed, simplified balance equations are obtained. This original approach solves the problem of dependence of some variables on the size of the averaging domain obtained in previous approaches which can lead to huge relative errors (several hundred percentages). It also clearly separates affine and nonaffine fields in the balance equations. The resulting energy cascade picture is discussed, with a particular focus on unidirectional steady and fully developed flows for which it appears that the contact terms are dissipated locally unlike the kinetic terms which contribute to a nonlocal balance. Application of the method is demonstrated in the determination of the macroscopic properties such as volume fraction, velocity, stress, and energy of a simple shear flow, where the discrete results are generated by means of discrete particle simulation.

  20. Better than Average? - Green Building Certification in International Projects

    E-Print Network [OSTI]

    Baumann, O.

    2008-01-01T23:59:59.000Z

    . An Enterprise of the Ebert-Consulting Group 1004 Pennsylvania Avenue, SE Washington, D.C. 20003, USA 00 12 02/ 6 08 - 13 34 o.baumann@eb-engineers.com Better than Average? - Green Building Certification in International Projects Green Building..., green building rating systems focus on sustainability for the entire life-cycle of buildings and therefore offer great opportunities for enhancing building operation, when applied and used appropriately. This presentation gives an overview...

  1. Averaging cross section data so we can fit it

    SciTech Connect (OSTI)

    Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). NNDC

    2014-10-23T23:59:59.000Z

    The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).

  2. Impulsive Spot Heating and Thermal Explosion of Interstellar Grains Revisited

    E-Print Network [OSTI]

    Ivlev, A V; Vasyunin, A; Caselli, P

    2015-01-01T23:59:59.000Z

    The problem of impulsive heating of dust grains in cold, dense interstellar clouds is revisited theoretically, with the aim to better understand leading mechanisms of the explosive desorption of icy mantles. It is rigorously shown that if the heating of a reactive medium occurs within a sufficiently localized spot (e.g., heating of mantles by cosmic rays), then the subsequent thermal evolution is characterized by a single dimensionless number $\\lambda$. This number identifies a bifurcation between two distinct regimes: When $\\lambda$ exceeds a critical value (threshold), the heat equation exhibits the explosive solution, i.e., the thermal (chemical) explosion is triggered. Otherwise, thermal diffusion causes the deposited heat to spread over the entire grain -- this regime is commonly known as the whole-grain heating. The theory allows us to find a critical combination of the physical parameters that govern the explosion of icy mantles due to impulsive spot heating. In particular, the calculations suggest tha...

  3. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  4. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

    1983-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  5. PTG exam 9 April 2014 short answers 123. Heat given off = surface * heat transfer coefficient * temperature = A * h * T

    E-Print Network [OSTI]

    Zevenhoven, Ron

    depends on Grnumber Gr = gL3 T/2 = 1,09109 , with given (~ 1/T), and L = 0.75 m. GrPr = 0,78109 > 108 . Nu (average for surface) = 0,13(GrPr)1/3 = 119 gives h (average for surface) = 4,14 W/m2 K Finally this gives with A = 2,25 m2 , heat given off = 186,3 W. 124. Using the steam tables

  6. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect (OSTI)

    Messerly, M J

    2007-11-13T23:59:59.000Z

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  7. Determination of the uncertainty in assembly average burnup

    SciTech Connect (OSTI)

    Cacciapouti, R.J.; Lam, G.M.; Theriault, P.A.; Delmolino, P.M.

    1998-12-31T23:59:59.000Z

    Pressurized water reactors maintain records of the assembly average burnup for each fuel assembly at the plant. The reactor records are currently used by commercial reactor operators and vendors for (a) special nuclear accountability, (b) placement of spent fuel in storage pools, and (c) dry storage cask design and analysis. A burnup credit methodology has been submitted to the US Nuclear Regulatory Commission (NRC) by the US Department of Energy. In order to support this application, utilities are requested to provide burnup uncertainty as part of their reactor records. The collected burnup data are used for the development of a plant correction to the cask vendor supplied burnup credit loading curve. The objective of this work is to identify a feasible methodology for determining the 95/95 uncertainty in the assembly average burnup. Reactor records are based on the core neutronic analysis coupled with measured in-core detector data. The uncertainty of particular burnup records depends mainly on the uncertainty associated with the methods used to develop the records. The methodology adopted for this analysis utilizes current neutronic codes for the determination of the uncertainty in assembly average burnup.

  8. average mass approach: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    strange and charm quark masses performed with Nf2 twisted mass Wilson fermions. The analysis includes data at four values of the lattice spacing and pion masses as low as...

  9. Fluidized bed heat treating system

    DOE Patents [OSTI]

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06T23:59:59.000Z

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  10. Summer HeatSummer Heat Heat stress solutions

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    occur (then drink a lightly salted beverage like a sports drink). The water's temperature should be cool How should gardeners avoid becoming a safety threat to themselves and others when it's hot? Start to the heat. Become a weather watcher. Set up a small weather station (with a high/low thermom eter, rain

  11. Fig. 3. Averaged PSF of a whole eye without immersion (a), compared to average eye with corneal immersion (b). The degradation using immersion is mostly caused by

    E-Print Network [OSTI]

    Ribak, Erez

    Fig. 3. Averaged PSF of a whole eye without immersion (a), compared to average eye with corneal of the complete eye was calculated by the averaged Zernike coefficients measured on 532 eyes. All PSFs were). The PSFs were calculated by averaging Zernike coefficients measured from 228 eyes. Both PSFs were

  12. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J. (Knoxville, TN)

    2006-04-18T23:59:59.000Z

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  13. WEST HAWAI` "When it comes to overall value,

    E-Print Network [OSTI]

    Wiegner, Tracy N.

    WEST HAWAI` I "When it comes to overall value, business administration finishes first in our book for its impressive combo of career prospects and average earning potential..." ­ Yahoo BUSINESS ELECTIVE BUSINESS ELECTIVE QBA 300 Operations Management Pre-requisite: QBA 260 BUS 290 Critical

  14. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01T23:59:59.000Z

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  15. Development of a Low Cost Heat Pump Water Heater - Second Prototype

    SciTech Connect (OSTI)

    Mei, V. C. [Oak Ridge National Laboratory (Retired); Craddick, William G [ORNL

    2007-09-01T23:59:59.000Z

    Since the 1980s various attempts have been made to apply the efficiency of heat pumps to water heating. The products generated in the 80s and 90s were not successful, due in part to a lack of reliability and difficulties with installation and servicing. At the turn of the century, EnvironMaster International (EMI) produced a heat pump water heater (HPWH) based on a design developed by Arthur D. Little (ADL), with subsequent developmental assistance from Oak Ridge National Laboratory (ORNL) and ADL. This design was a drop-in replacement for conventional electric water heaters. In field and durability testing conducted by ORNL, it proved to be reliable and saved on average more than 50% of the energy used by the best conventional electric water heater. However, the retail price set by EMI was very high, and it failed in the market. ORNL was tasked to examine commercially available HPWH product technology and manufacturing processes for cost saving opportunities. Several cost saving opportunities were found. To verify the feasibility of these cost saving measures, ORNL completed a conceptual design for an HPWH based on an immersed condenser coil that could be directly inserted into a standard water tank through a sleeve affixed to one of the standard penetrations at the top of the tank. After some experimentation, a prototype unit was built with a double-wall coil inserted into the tank. When tested it achieved an energy factor (EF) of 2.12 to 2.2 using DOE-specified test procedures. A.O. Smith contacted ORNL in May 2006 expressing their interest in the ORNL design. The prototype unit was shipped to A.O. Smith to be tested in their laboratory. After they completed their test, ORNL analyzed the raw test data provided by A.O. Smith and calculated the EF to be approximately 1.92. The electric resistance heating elements of a conventional electric water heater are typically retained in a heat pump water heater to provide auxiliary heating capacity in periods of high demand. A.O. Smith informed us that when they applied electric resistance backup heating, using the criterion that resistance heat would be applied whenever the upper thermostat saw water temperatures below the heater s nominal setpoint of 135oF, they found that the EF dropped to approximately 1.5. This is an extremely conservative criterion for backup resistance heating. In a field test of the previously mentioned EMI heat pump water heater, residential consumers found satisfactory performance when the criterion for use of electric resistance backup heating was the upper temperature dropping below the set point minus 27 degrees. Applying this less conservative criterion to the raw data from the original A.O. Smith EF tests indicates that electric resistance heating would never have come on during the test, and thus the EF would have remained in the vicinity of 1.9. A.O. Smith expressed concern about having an EF below 2, as that value triggers certain tax advantages and would assist in their marketing of the product. We believe that insertion of additional length of tubing plus a less conservative set point for electric resistance backup heating would remedy this concern. However, as of this writing, A.O. Smith has not decided to proceed with a commercial product.

  16. Compositions produced using an in situ heat treatment process

    DOE Patents [OSTI]

    Roes, Augustinus Wilhelmus Maria (Houston, TX); Nair, Vijay (Katy, TX); Munsterman, Erwin Henh (Amsterdam, NL); Van Bergen, Petrus Franciscus (Amsterdam, NL); Van Den Berg, Franciscus Gondulfus Antonius (Amsterdam, NL)

    2009-10-20T23:59:59.000Z

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.

  17. Compositions produced using an in situ heat treatment process

    DOE Patents [OSTI]

    Roes, Augustinus Wilhelmus Maria; Nair, Vijay; Munsterman, Erwin Hunh; Van Bergen, Petrus Franciscus; Van Den Berg, Franciscus Gondulfus Antonius

    2013-05-28T23:59:59.000Z

    Methods for treating a subsurface formation and compositions produced therefrom are described herein. At least one method for producing hydrocarbons from a subsurface formation includes providing heat to the subsurface formation using an in situ heat treatment process. One or more formation particles may be formed during heating of the subsurface formation. Fluid that includes hydrocarbons and the formation particles may be produced from the subsurface formation. The formation particles in the produced fluid may include cenospheres and have an average particle size of at least 0.5 micrometers.

  18. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  19. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2007-09-18T23:59:59.000Z

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  20. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2011-06-28T23:59:59.000Z

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  1. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

  2. Passive solar space heating

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1980-01-01T23:59:59.000Z

    An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

  3. Heat rejection system

    DOE Patents [OSTI]

    Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

    1980-01-01T23:59:59.000Z

    A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

  4. Table 8. Average Price of U.S. Coal Exports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910.9.

  5. Profiles of heating in turbulent coronal magnetic loops

    E-Print Network [OSTI]

    E. Buchlin; P. J. Cargill; S. J. Bradshaw; M. Velli

    2007-02-28T23:59:59.000Z

    Context: The location of coronal heating in magnetic loops has been the subject of a long-lasting controversy: does it occur mostly at the loop footpoints, at the top, is it random, or is the average profile uniform? Aims: We try to address this question in model loops with MHD turbulence and a profile of density and/or magnetic field along the loop. Methods: We use the ShellAtm MHD turbulent heating model described in Buchlin & Velli (2006), with a static mass density stratification obtained by the HydRad model (Bradshaw & Mason 2003). This assumes the absence of any flow or heat conduction subsequent to the dynamic heating. Results: The average profile of heating is quasi-uniform, unless there is an expansion of the flux tube (non-uniform axial magnetic field) or the variation of the kinetic and magnetic diffusion coefficients with temperature is taken into account: in the first case the heating is enhanced at footpoints, whereas in the second case it is enhanced where the dominant diffusion coefficient is enhanced. Conclusions: These simulations shed light on the consequences on heating profiles of the complex interactions between physical effects involved in a non-uniform turbulent coronal loop.

  6. Average Fe K-alpha emission from distant AGN

    E-Print Network [OSTI]

    A. Corral; M. J. Page; F. J. Carrera; X. Barcons; S. Mateos; J. Ebrero; M. Krumpe; A. Schwope; J. A. Tedds; M. G. Watson

    2008-10-02T23:59:59.000Z

    One of the most important parameters in the XRB (X-ray background) synthesis models is the average efficiency of accretion onto SMBH (super-massive black holes). This can be inferred from the shape of broad relativistic Fe lines seen in X-ray spectra of AGN (active galactic nuclei). Several studies have tried to measure the mean Fe emission properties of AGN at different depths with very different results. We compute the mean Fe emission from a large and representative sample of AGN X-ray spectra up to redshift ~ 3.5. We developed a method of computing the rest-frame X-ray average spectrum and applied it to a large sample (more than 600 objects) of type 1 AGN from two complementary medium sensitivity surveys based on XMM-Newton data, the AXIS and XWAS samples. This method makes use of medium-to-low quality spectra without needing to fit complex models to the individual spectra but with computing a mean spectrum for the whole sample. Extensive quality tests were performed by comparing real to simulated data, and a significance for the detection of any feature over an underlying continuum was derived. We detect with a 99.9% significance an unresolved Fe K-alpha emission line around 6.4 keV with an EW ~ 90 eV, but we find no compelling evidence of any significant broad relativistic emission line in the final average spectrum. Deviations from a power law around the narrow line are best represented by a reflection component arising from cold or low-ionization material. We estimate an upper limit for the EW of any relativistic line of 400 eV at a 3 sigma confidence level. We also marginally detect the so-called Iwasawa-Taniguchi effect on the EW for the unresolved emission line, which appears weaker for higher luminosity AGN.

  7. Table 14a. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled:a. Average Electricity

  8. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled:a. Average Electricityb.

  9. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConferenceInstalled:a. Average

  10. Polymer Effects on Heat Transport in Laminar Boundary Layer Flow

    E-Print Network [OSTI]

    Roberto Benzi; Emily S. C. Ching; Vivien W. S. Chu

    2011-04-27T23:59:59.000Z

    We consider a laminar Blasius boundary-layer flow above a slightly heated horizontal plate and study the effect of polymer additives on the heat transport. We show that the action of the polymers can be understood as a space-dependent effective viscosity that first increases from the zero-shear value then decreases exponentially back to the zero-shear value as one moves away from the boundary. We find that with such an effective viscosity, both the horizontal and vertical velocities near the plate are decreased thus leading to an increase in the friction drag and a decrease in the heat transport in the flow.

  11. IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER

    E-Print Network [OSTI]

    IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS #12;ii IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS............................................................... 2 1.3. Overview of the Parameter Estimation Water-to-Water Heat Pump Model ........... 5 1

  12. Heat pipes and use of heat pipes in furnace exhaust

    DOE Patents [OSTI]

    Polcyn, Adam D. (Pittsburgh, PA)

    2010-12-28T23:59:59.000Z

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  13. First university owned district heating system using biomass heat

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Highlights · First university owned district heating system using biomass heat · Capacity: 15 MMBtu Main Campus District Heating Performance · Avoided: 3500 tonnes of CO2 · Particulate: less than 10 mg District Heating Goals To displace 85% of natural gas used for core campus heating. Fuel Bunker Sawmill

  14. TECATE - a code for anisotropic thermoelasticity in high-average-power laser technology. Phase 1 final report

    SciTech Connect (OSTI)

    Gelinas, R.J.; Doss, S.K.; Carlson, N.N.

    1985-01-01T23:59:59.000Z

    This report describes a totally Eulerian code for anisotropic thermoelasticity (code name TECATE) which may be used in evaluations of prospective crystal media for high-average-power lasers. The present TECATE code version computes steady-state distributions of material temperatures, stresses, strains, and displacement fields in 2-D slab geometry. Numerous heat source and coolant boundary condition options are available in the TECATE code for laser design considerations. Anisotropic analogues of plane stress and plane strain evaluations can be executed for any and all crystal symmetry classes. As with all new and/or large physics codes, it is likely that some code imperfections will emerge at some point in time.

  15. Plasma dynamics and a significant error of macroscopic averaging

    E-Print Network [OSTI]

    Marek A. Szalek

    2005-05-22T23:59:59.000Z

    The methods of macroscopic averaging used to derive the macroscopic Maxwell equations from electron theory are methodologically incorrect and lead in some cases to a substantial error. For instance, these methods do not take into account the existence of a macroscopic electromagnetic field EB, HB generated by carriers of electric charge moving in a thin layer adjacent to the boundary of the physical region containing these carriers. If this boundary is impenetrable for charged particles, then in its immediate vicinity all carriers are accelerated towards the inside of the region. The existence of the privileged direction of acceleration results in the generation of the macroscopic field EB, HB. The contributions to this field from individual accelerated particles are described with a sufficient accuracy by the Lienard-Wiechert formulas. In some cases the intensity of the field EB, HB is significant not only for deuteron plasma prepared for a controlled thermonuclear fusion reaction but also for electron plasma in conductors at room temperatures. The corrected procedures of macroscopic averaging will induce some changes in the present form of plasma dynamics equations. The modified equations will help to design improved systems of plasma confinement.

  16. Average Fe K-alpha emission from distant AGN

    E-Print Network [OSTI]

    Corral, A; Carrera, F J; Barcons, X; Mateos, S; Ebrero, J; Krumpe, M; Schwope, A; Tedds, J A; Watson, M G

    2008-01-01T23:59:59.000Z

    One of the most important parameters in the XRB (X-ray background) synthesis models is the average efficiency of accretion onto SMBH (super-massive black holes). This can be inferred from the shape of broad relativistic Fe lines seen in X-ray spectra of AGN (active galactic nuclei). Several studies have tried to measure the mean Fe emission properties of AGN at different depths with very different results. We compute the mean Fe emission from a large and representative sample of AGN X-ray spectra up to redshift ~ 3.5. We developed a method of computing the rest-frame X-ray average spectrum and applied it to a large sample (more than 600 objects) of type 1 AGN from two complementary medium sensitivity surveys based on XMM-Newton data, the AXIS and XWAS samples. This method makes use of medium-to-low quality spectra without needing to fit complex models to the individual spectra but with computing a mean spectrum for the whole sample. Extensive quality tests were performed by comparing real to simulated data, a...

  17. Testing the heating method with perturbation theory

    E-Print Network [OSTI]

    B. Alles; M. Beccaria; F. Farchioni

    1995-12-07T23:59:59.000Z

    The renormalization constants present in the lattice evaluation of the topological susceptibility can be non-perturbatively calculated by using the so-called heating method. We test this method for the $O(3)$ non-linear $\\sigma$-model in two dimensions. We work in a regime where perturbative calculations are exact and useful to check the values obtained from the heating method. The result of the test is positive and it clarifies some features concerning the method. Our procedure also allows a rather accurate determination of the first perturbative coefficients.

  18. Plasma heating in a variable magnetic field

    SciTech Connect (OSTI)

    Kichigin, G. N., E-mail: king@iszf.irk.ru [Russian Academy of Sciences, Institute of Solar-Terrestrial Physics (Russian Federation)

    2013-05-15T23:59:59.000Z

    The problem of particle acceleration in a periodically variable magnetic field that either takes a zero value or passes through zero is considered. It is shown that, each time the field [0]passes through zero, the particle energy increases abruptly. This process can be regarded as heating in the course of which plasma particles acquire significant energy within one field period. This mechanism of plasma heating takes place in the absence of collisions between plasma particles and is analogous to the mechanism of magnetic pumping in collisional plasma considered by Alfven.

  19. All-glass vacuum tube collector heat transfer model used in forced-circulation solar water heating system

    SciTech Connect (OSTI)

    Li, Zhiyong; Chen, Chao; Luo, Hailiang; Zhang, Ye; Xue, Yaning [College of Architecture and Civil Engineering, Beijing University of Technology, Beijing (China)

    2010-08-15T23:59:59.000Z

    The aim of this paper is to establish the heat transfer model of all-glass vacuum tube collector used in forced-circulation solar water heating system. In this model, the simplified heat transfer of collector is composed of the natural convection in single glass tube and forced flow in manifold header. Thus the heat balance equation of water in single tube and the heat balance equation of water in manifold header have been established. The flow equation is also built by analyzing the friction and buoyancy in tube. Through solved these equations the relationship between the collector average temperature, the outlet temperature and natural convection flow rate have been obtained. From this relationship and energy balance equation of collector, the collector outlet temperature can be calculated. The validated experiments of this model were carried out in winter of Beijing. (author)

  20. Sandia National Laboratories: PV Value®

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and PV industry sales staff. For appraisers, the inputs specific to PV in the Residential Green and Energy Efficient Addendum can be used as inputs to PV Value. Valuing a PV...

  1. The Value of Emissions Trading

    E-Print Network [OSTI]

    Webster, Mort David.

    This paper estimates the value of international emissions trading, focusing attention on a here-to-fore neglected component: its value as a hedge against uncertainty. Much analysis has been done of the Kyoto Protocol and ...

  2. Microchannel heat sink assembly

    DOE Patents [OSTI]

    Bonde, W.L.; Contolini, R.J.

    1992-03-24T23:59:59.000Z

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

  3. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  4. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  5. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  6. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1981-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  7. Experiments utilizing ICRF heating on TFTR

    SciTech Connect (OSTI)

    Wilson, J.R.; Hosea, J.C.; Bell, M.G.; Bitter, M.; Boivin, R.; Fredrickson, E.D.; Greene, G.J.; Hammett, G.W.; Hill, K.W.; Hsuan, H.; Janos, A.C.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Phillips, C.K.; Mansfield, D.K.; McGuire, K.M.; Medley, S.S.; Mueller, D.; Ono, M.; Owens, D.K.; Park, H.K.; Ramsey, A.T.; Schmidt, G.L.; Scott, S.D.; Stevens, J.E.; Stratton, B.C.; Synakowski, E.; Taylor, G.; Ulrickson, M.; Wong, K.L.; Zarns

    1990-01-01T23:59:59.000Z

    A variety of experiments have been performed on the TFTR tokamak utilizing ICFR heating. Of special interest has been the insight into plasma performance gained by utilizing a different heating scheme other than the usual NBI. Utilizing ICRF heating allows control over the power deposition profile independent of the plasma fueling profile. In addition, by varying the minority concentration the power split between ion and electron heating can be varied. Confinement has been examined in high recycling gas fueled discharges, low recycling supershot plasmas, and peaked density pellet fueled discharges. Global confinement is found not to be affected by the method or localization of plasma heating, but the calculated local diffusivities vary with the power deposition profile to yield similar local values. In addition, sawtooth stabilization observed with ICRF heating has been investigated and found to occur in qualitative agreement with theory. ICRF sawtooth stabilized discharges exhibit peaked temperature and density profiles and have a safety factor q which appears to fall well below unity on axis. 11 refs., 10 figs.

  8. Heating Rate Profiles in Galaxy Clusters

    E-Print Network [OSTI]

    Edward C. D. Pope; Georgi Pavlovski; Christian R. Kaiser; Hans Fangohr

    2006-01-05T23:59:59.000Z

    In recent years evidence has accumulated suggesting that the gas in galaxy clusters is heated by non-gravitational processes. Here we calculate the heating rates required to maintain a physically motived mass flow rate, in a sample of seven galaxy clusters. We employ the spectroscopic mass deposition rates as an observational input along with temperature and density data for each cluster. On energetic grounds we find that thermal conduction could provide the necessary heating for A2199, Perseus, A1795 and A478. However, the suppression factor, of the clasical Spitzer value, is a different function of radius for each cluster. Based on the observations of plasma bubbles we also calculate the duty cycles for each AGN, in the absence of thermal conduction, which can provide the required energy input. With the exception of Hydra-A it appears that each of the other AGNs in our sample require duty cycles of roughly $10^{6}-10^{7}$ yrs to provide their steady-state heating requirements. If these duty cycles are unrealistic, this may imply that many galaxy clusters must be heated by very powerful Hydra-A type events interspersed between more frequent smaller-scale outbursts. The suppression factors for the thermal conductivity required for combined heating by AGN and thermal conduction are generally acceptable. However, these suppression factors still require `fine-tuning` of the thermal conductivity as a function of radius. As a consequence of this work we present the AGN duty cycle as a cooling flow diagnostic.

  9. Tushino - 3 district heating project/Moscow

    SciTech Connect (OSTI)

    Mayer, H.W.

    1995-09-01T23:59:59.000Z

    The contract for supply and installation of Honeywell control equipment at the district heating plant in Moscow suburb of Tushino was signed between the Mayor of Moscow and Honeywell in December 1991. Total contract value is US$3 million. The aim is to demonstrate on a pilot project the potential energy savings and improved pleat safety which can be achieved by means of electronic control of latest design. The Honeywell contract basically covers modernization of instrumentation and control of the gas fired heating plant, comprising water preparation and 4 boilers, of 100 Gcal/h each, i.e., 400 Gcal/h total. The plant is feeding the hot water network which has 60 heat exchanger stations connected. The heat exchangers (thermal rating between 2 to 10 Gcal/h each) supply hot water mainly to residential building blocks for apartment heating and domestic hot water. Honeywell`s responsibility covers engineering, supply of TDC 3000 micro-processor based control system for the boilers and DeltaNet Excel control for the Heat Exchangers. The contract also includes installation and start-up of the total control system.

  10. Atmosphere and Ocean: Earth's Heat Engine: GFD Lab notes

    E-Print Network [OSTI]

    Atmosphere and Ocean: Earth's Heat Engine: GFD Lab notes 18 May 2012 UW Hon220c Energy' of water vapor, CO2 and cloud, makes us much warmer than a Marsian (almost no atmosphere. -550C average 2002 clouds, snow, ice, deserts are bright absorbing areas are dark

  11. Average Consensus over Small World Networks: A Probabilistic Framework

    E-Print Network [OSTI]

    Gupta, Vijay

    Engineering, University of Notre Dame. Email: vgupta2@nd.edu Research supported by NASA cooperative agreements Research Laboratory under the Collaborative Technology Alliance Program, cooperative agreement DAAD19 obtained by stacking the values of all the nodes in a column vector. The interconnection topology

  12. Distributed Average Consensus with Time-Varying Metropolis Weights

    E-Print Network [OSTI]

    computing; Metropolis algorithm. 1 Introduction We consider a set of interconnected processes (nodes falls into a broader class of distributed con- sensus or agreement problems in multi-agent coordina,17,24,10,15,18]. In gen- eral consensus or agreement problems, the asymptotic values of xi(t) must be the same for all i

  13. Solar heating system

    DOE Patents [OSTI]

    Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

    1982-01-01T23:59:59.000Z

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  14. Knudsen heat capacity

    SciTech Connect (OSTI)

    Babac, Gulru, E-mail: babac@itu.edu.tr [Institute of Energy, Istanbul Technical University, Istanbul 34469 (Turkey)] [Institute of Energy, Istanbul Technical University, Istanbul 34469 (Turkey); Reese, Jason M. [School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)] [School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)

    2014-05-15T23:59:59.000Z

    We present a “Knudsen heat capacity” as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  15. Improved solar heating systems

    DOE Patents [OSTI]

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16T23:59:59.000Z

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  16. Faculty of Technology Heat Engineering Laboratory course 424512 E Ron Zevenhoven c.s.

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Faculty of Technology Heat Engineering Laboratory course 424512 E Ron Zevenhoven c.s. April 2009 of Technology Heat Engineering Laboratory course 424512 E Ron Zevenhoven c.s. April 2009 2/4 where Ti (n in the figure below, and the numerical values in the table: continues.... #12;Faculty of Technology Heat

  17. International Sorption Heat Pump Conference June 2224, 2005; Denver, CO, USA

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    .S. Department of Energy ABSTRACT The value of "waste heat" is demonstrated by a 2,500-ton absorption chiller in the nation to use the approach of recycling waste heat to drive an absorption chiller. Capital cost; waste heat; thermal energy MODULAR INTEGRATED ENERGY SYSTEM (IES) DESCRIPTION The modular integrated

  18. Prediction of average. beta. and. gamma. energies and probabilities of. beta. -delayed neutron emission in the region of fission products

    SciTech Connect (OSTI)

    Hirsch, M.; Staudt, A.; Klapdor-Kleingrothaus, H.V. (Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany))

    1992-07-01T23:59:59.000Z

    Mean {beta} and {gamma} energies and probabilities of {beta}-delayed neutron emission (P{sub n}) in the region of fission products are calculated using a proton-neutron quasiparticle random-phase approximation nuclear model. {beta}-decay properties of these nuclides are essential input parameters for decay heat calculations for nuclear reactors. The results are compared with recent measurements. Mean energies and the P{sub n} values of {approximately}150 experimentally unknown short-lived isotopes are predicted.

  19. Thermal plasma process for recovering monomers and high value carbons from polymeric materials

    DOE Patents [OSTI]

    Knight, Richard (Philadelphia, PA); Grossmann, Elihu D. (Narberth, PA); Guddeti, Ravikishan R. (Philadelphia, PA)

    2002-01-01T23:59:59.000Z

    The present invention relates to a method of recycling polymeric waste products into monomers and high value forms of carbon by pyrolytic conversion using an induction coupled RF plasma heated reactor.

  20. Three Dimensional Simulations of the Parker's Model of Solar Coronal Heating: Lundquist Number Scaling

    E-Print Network [OSTI]

    Ng, Chung-Sang

    Three Dimensional Simulations of the Parker's Model of Solar Coronal Heating: Lundquist Number analysis as well as 2D simulations. In the same limit the average magnetic energy built up by the random by NSF grant AST-0434322, NASA grant NNX08BA71G, and DOE. #12;Parker's model of coronal heating through

  1. OVONUTRIAL project: technologies impact on nutritional value and allergenicity of egg proteins

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , pasteurisation, spray-drying, dry-heating hal-00730037,version1-5Mar2013 Author manuscript, published in "XIIIth to evaluate the effects of some major industrial processing (pasteurisation, drying, dry-heating1 OVONUTRIAL project: technologies impact on nutritional value and allergenicity of egg proteins

  2. Economic Options for Upgrading Waste Heat 

    E-Print Network [OSTI]

    Erickson, D. C.

    1983-01-01T23:59:59.000Z

    There are at least six major types of equipment that upgrade waste heat: (1) thermocompressor; (2) electric drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat...

  3. Economic Options for Upgrading Waste Heat

    E-Print Network [OSTI]

    Erickson, D. C.

    1983-01-01T23:59:59.000Z

    There are at least six major types of equipment that upgrade waste heat: (1) thermocompressor; (2) electric drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat...

  4. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations

    E-Print Network [OSTI]

    Kirol, L. D.

    for water and gas connections, and temperature variations. Recent work on heat pump cycles using complex compound reactions includes development of energy storage systems at laboratories in Europe (11) and the United States (12), and residential...ABSTRACT Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, hl~a: driven heat pumps in which either heat engine or heat pump working fluid...

  5. Value stream mapping and earned value management : two perspectives on value in product development

    E-Print Network [OSTI]

    Whitaker, Ryan Brent

    2005-01-01T23:59:59.000Z

    The concepts of value and value stream are crucial to the philosophy of Lean, and a better understanding of how these concepts relate to product development (PD) is essential for the creation of a Lean PD strategy. This ...

  6. ELECTRIC CO-HEATING: A METHOD FOR EVALUATING SEASONAL HEATING EFFICIENCIES AND HEAT LOSS RATES IN DWELLINGS

    E-Print Network [OSTI]

    Modera, M.P.

    2012-01-01T23:59:59.000Z

    Effi~ ciency of Fossil~Fired Heating Systems for LabelingInfo. Division, Ext. 6782 Electric Co-heating: A Methodfor Evaluating Seasonal Heating Efficiencies and Heat Loss

  7. Fuel NOx pollution production during the combustion of a low caloric value fuel gas 

    E-Print Network [OSTI]

    Caraway, John Phillip

    1995-01-01T23:59:59.000Z

    The objective of this investigation is to identify and qualify physical mechanisms and parameters that affect the combustion of low caloric value fuel gases (LCVG) and the formation of NO, pollutants produced from fuel bound nitrogen. Average...

  8. REVISITING THE SOLAR TACHOCLINE: AVERAGE PROPERTIES AND TEMPORAL VARIATIONS

    SciTech Connect (OSTI)

    Antia, H. M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Basu, Sarbani, E-mail: antia@tifr.res.in, E-mail: sarbani.basu@yale.edu [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States)

    2011-07-10T23:59:59.000Z

    The tachocline is believed to be the region where the solar dynamo operates. With over a solar cycle's worth of data available from the Michelson Doppler Imager and Global Oscillation Network Group instruments, we are in a position to investigate not merely the average structure of the solar tachocline, but also its time variations. We determine the properties of the tachocline as a function of time by fitting a two-dimensional model that takes latitudinal variations of the tachocline properties into account. We confirm that if we consider the central position of the tachocline, it is prolate. Our results show that the tachocline is thicker at latitudes higher than the equator, making the overall shape of the tachocline more complex. Of the tachocline properties examined, the transition of the rotation rate across the tachocline, and to some extent the position of the tachocline, show some temporal variations.

  9. Measurement strategies for estimating long-term average wind speeds

    SciTech Connect (OSTI)

    Ramsdell, J.V.; Houston, S.; Wegley, H.L.

    1980-10-01T23:59:59.000Z

    The uncertainty and bias in estimates of long-term average wind speeds inherent in continuous and intermittent measurement strategies are examined by simulating the application of the strategies to 40 data sets. Continuous strategies have smaller uncertainties for fixed duration measurement programs, but intermittent strategies make more efficient use of instruments and have smaller uncertainties for a fixed amount of instrument use. Continuous strategies tend to give biased estimates of the long-term annual mean speed unless an integral number of years' data is collected or the measurement program exceeds 3 years in duration. Intermittent strategies with three or more month-long measurement periods per year do not show any tendency toward bias.

  10. Average System Cost Methodology : Administrator's Record of Decision.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1984-06-01T23:59:59.000Z

    Significant features of average system cost (ASC) methodology adopted are: retention of the jurisdictional approach where retail rate orders of regulartory agencies provide primary data for computing the ASC for utilities participating in the residential exchange; inclusion of transmission costs; exclusion of construction work in progress; use of a utility's weighted cost of debt securities; exclusion of income taxes; simplification of separation procedures for subsidized generation and transmission accounts from other accounts; clarification of ASC methodology rules; more generous review timetable for individual filings; phase-in of reformed methodology; and each exchanging utility must file under the new methodology within 20 days of implementation by the Federal Energy Regulatory Commission of the ten major participating utilities, the revised ASC will substantially only affect three. (PSB)

  11. New Concept for Industrial Energy/Utility Values

    E-Print Network [OSTI]

    O'Brien, W. J.

    -up for emergencies and waste heat ooiler outages. It is also inflated because all steam fran waste heat ooilers is credited at full offsite boiler steam cost. Detennining an equitable value for a utility, particularly steam, is a canp1ex problem involving many... with three 500 klb/hr offsite boilers i operating normally at 400 klb/hr total in at system that has 1150 klb/hr of CO and waste t boiler steam production. I lao PSIG o---%-.~7~::-----,-....L_----r-_--I.._+---o 1&0 PSIG o--'--:";-;:::--~':'::'-"T:"13...

  12. Some aspects of laser heating of engineering materials

    SciTech Connect (OSTI)

    Yilbas, B.S.; Al-Garni, A.Z. [KFUPM, Dhahran (Saudi Arabia). Mechanical Engineering Dept.

    1996-08-01T23:59:59.000Z

    Laser induced heating processes are important when a laser is used as a machine tool in industry, since the quality of the machining process strongly depends on the heating mechanism. The present study examines a heat transfer model that provides useful information on the laser induced interaction mechanism. Steady state and time dependent heating models are introduced and temperature profiles inside the materials are predicted. Using appropriate assumptions, the time for the surface temperature to reach 90% of its steady state value is estimated. To validate the theoretical predictions, experiments are performed to measure the surface temperature of the irradiated spot during the laser heating pulse. It is found that, during the use of a pulsed laser in the drilling process, as the heating progresses the drilling velocities rise while the liquid depth and time to reach steady state fall, in this case, the energy consumed for evaporation is higher than losses through conduction.

  13. Static Heat Loads in the LHC Arc Cryostats: Final Assessment

    E-Print Network [OSTI]

    Parma, V

    2010-01-01T23:59:59.000Z

    This note presents the final assessment of the static heat loads in the LHC arc cryostats, using different experimental methods during the first commissioning period in 2007. This assessment further develops and completes previous estimates made during the commissioning of sector 7_8 [1]. The estimate of the helium inventory, a prerequisite for the heat load calculation, is also presented. Heat loads to the cold mass are evaluated from the internal energy balance during natural as well as powered warm-ups of the helium baths in different subsector. The helium inventory is calculated from the internal energy balance during powered warm-ups and matched with previous assessments. Furthermore, heat loads to the thermal shield are estimated from the non-isothermal cooling of the supercritical helium in line E. The comparison of measured heat loads with previous estimates and with budgeted values is then presented, while their correlation with some important parameters like insulation vacuum pressure and some heat ...

  14. Specific-heat discontinuity in impure two-band superconductors

    E-Print Network [OSTI]

    Mishonov, TM; Penev, ES; Indekeu, JO; Pokrovsky, Valery L.

    2003-01-01T23:59:59.000Z

    at the critical temperature T-c decreases with increasing disorder, its ratio to the normal-state specific heat at T-c increases and slowly converges to the isotropic value. For strong disorder the deviation from the isotropic value is proportional to the elastic...

  15. Workshop on Condensing Heating and Water Heating Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop on Condensing Heating and Water Heating Equipment Thursday, October 9, 2014 List of Attendees OrganizationAttendees DOE - John Cymbalsky - Ashley Armstrong - Johanna...

  16. City of Klamath Falls District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath Falls...

  17. Condensing Heating and Water Heating Equipment Workshop Location...

    Energy Savers [EERE]

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

  18. Proceedings: Heat exchanger workshop

    SciTech Connect (OSTI)

    Not Available

    1987-07-01T23:59:59.000Z

    Heat transfer processes are of controlling importance in the operation of a thermal power plant. Heat exchangers are major cost items and are an important source of problems causing poor power plant availability and performance. A workshop to examine the improvements that can be made to heat exchangers was sponsored by the Electric Power Research Institute (EPRI) on June 10-11, 1986, in Palo Alto, California. This workshop was attended by 25 engineers and scientists representing EPRI-member utilities and EPRI consultants. A forum was provided for discussions related to the design, operation and maintenance of utility heat transfer equipment. The specific objectives were to identify research directions that could significantly improve heat exchanger performance, reliability and life cycle economics. Since there is a great diversity of utility heat transfer equipment in use, this workshop addressed two equipment categories: Boiler Feedwater Heaters (FWH) and Heat Recovery Steam Generators (HRSG). The workshop was divided into the following panel sessions: functional design, mechanical design, operation, suggested research topics, and prioritization. Each panel session began with short presentations by experts on the subject and followed by discussions by the attendees. This report documents the proceedings of the workshop and contains recommendations of potentially valuable areas of research and development. 4 figs.

  19. Micro heat barrier

    DOE Patents [OSTI]

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2003-08-12T23:59:59.000Z

    A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  20. Complex Compound Chemical Heat Pumps 

    E-Print Network [OSTI]

    Rockenfeller, U.; Langeliers, J.; Horn, G.

    1987-01-01T23:59:59.000Z

    Complex-compound solid-vapor fluid pairs can be used in heat of reaction heat pumps for temperature amplifier (TA) as well as heat amplifier (HA) cycle configurations. This report describes the conceptual hardware design for complex compound...

  1. Energy 101: Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe ...

  2. Complex Compound Chemical Heat Pumps

    E-Print Network [OSTI]

    Rockenfeller, U.; Langeliers, J.; Horn, G.

    Complex-compound solid-vapor fluid pairs can be used in heat of reaction heat pumps for temperature amplifier (TA) as well as heat amplifier (HA) cycle configurations. This report describes the conceptual hardware design for complex compound...

  3. Optimization of Heat Exchanger Cleaning 

    E-Print Network [OSTI]

    Siegell, J. H.

    1986-01-01T23:59:59.000Z

    The performance of heat integration systems is quantified in terms of the amount of heat that is recovered. This decreases with time due to increased fouling of the heat exchange surface. Using the "Total Fouling Related Expenses (TFRE)" approach...

  4. Measurement of the electronic thermal conductance channels and heat capacity of graphene at low temperature

    E-Print Network [OSTI]

    Measurement of the electronic thermal conductance channels and heat capacity of graphene at low, Gwf , test the Wiedemann-Franz (wf) law, and infer the electronic heat capacity, with a minimum value of a Coulomb-interacting electron-hole plasma may result in deviations from the Fermi-liquid values of the Mott

  5. Aerosol Best Estimate Value-Added Product

    SciTech Connect (OSTI)

    Flynn, C; Turner, D; Koontz, A; Chand, D; Sivaraman, C

    2012-07-19T23:59:59.000Z

    The objective of the Aerosol Best Estimate (AEROSOLBE) value-added product (VAP) is to provide vertical profiles of aerosol extinction, single scatter albedo, asymmetry parameter, and Angstroem exponents for the atmospheric column above the Central Facility at the ARM Southern Great Plains (SGP) site. We expect that AEROSOLBE will provide nearly continuous estimates of aerosol optical properties under a range of conditions (clear, broken clouds, overcast clouds, etc.). The primary requirement of this VAP was to provide an aerosol data set as continuous as possible in both time and height for the Broadband Heating Rate Profile (BBHRP) VAP in order to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Even though BBHRP has been completed, AEROSOLBE results are very valuable for environmental, atmospheric, and climate research.

  6. Heat treatment furnace

    DOE Patents [OSTI]

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21T23:59:59.000Z

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  7. Molecular heat pump

    E-Print Network [OSTI]

    Dvira Segal; Abraham Nitzan

    2005-10-11T23:59:59.000Z

    We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

  8. Specifying Waste Heat Boilers

    E-Print Network [OSTI]

    Ganapathy, V.

    or hydrochloric acid vapor should be mentioned upfront so the HRSG designer can take proper precauations while designing the unit.Material selection is also impacted by the presence of corrosive gases.If partial pressure of hydrogen is high in the gas stream...SPECIFYING WASTE HEAT BOILERS V.Ganapathy.ABCO Industries Abilene,Texas ABSTRACT Waste heat boilers or Heat Recovery Steam 'Generators(HRSGs) as they are often called are used to recover energy from waste gas streams in chemical plants...

  9. A stock water solar heating system

    SciTech Connect (OSTI)

    Nydahl, J.; Carlson, B.

    1999-07-01T23:59:59.000Z

    This paper reports on the progress in the development of an inexpensive but rugged solar system to heat stock water. Insulation encased in fiber reinforced concrete is the main structural component for the collector and the partition between the unheated stock tank and the heated section. A fully wetted, drain-back collector was designed to produce a high optical efficiency and to permit its water passage to be opened for cleaning. A unique double-glazed design is used in which the inner glazing is a film with a large thermal expansion coefficient. This causes a significant drop in the stagnation temperatures since a single glazed configuration is approached at high temperatures. The collector and the partially covered insulated tank prevented freezing, and held the average water temperature at 6.4 C (44 F) during the day while the mean daily ambient temperature was {minus}5.4 C (22 F) over a nine day test.

  10. Average Neutron Total Cross Sections in the Unresolved Energy Range From ORELA High Resolutio Transmission Measurements

    SciTech Connect (OSTI)

    Derrien, H

    2004-05-27T23:59:59.000Z

    Average values of the neutron total cross sections of {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu have been obtained in the unresolved resonance energy range from high-resolution transmission measurements performed at ORELA in the past two decades. The cross sections were generated by correcting the effective total cross sections for the self-shielding effects due to the resonance structure of the data. The self-shielding factors were found by calculating the effective and true cross sections with the computer code SAMMY for the same Doppler and resolution conditions as for the transmission measurements, using an appropriate set of resonance parameters. Our results are compared to results of previous measurements and to the current ENDF/B-VI data.

  11. A Multi-chain Measurements Averaging TDC Implemented in a 40 nm FPGA

    E-Print Network [OSTI]

    Qi Shen; Shubin Liu; Binxiang Qi; Qi An; Shengkai Liao; Chengzhi Peng; Weiyue Liu

    2014-06-15T23:59:59.000Z

    A high precision and high resolution time-to-digital converter (TDC) implemented in a 40 nm fabrication process Virtex-6 FPGA is presented in this paper. The multi-chain measurements averaging architecture is used to overcome the resolution limitation determined by intrinsic cell delay of the plain single tapped-delay chain. The resolution and precision are both improved with this architecture. In such a TDC, the input signal is connected to multiple tapped-delay chains simultaneously (the chain number is M), and there is a fixed delay cell between every two adjacent chains. Each tapped-delay chain is just a plain TDC and should generate a TDC time for a hit input signal, so totally M TDC time values should be got for a hit signal. After averaging, the final TDC time is obtained. A TDC with 3 ps resolution (i.e. bin size) and 6.5 ps precision (i.e. RMS) has been implemented using 8 parallel tapped-delay chains. Meanwhile the plain TDC with single tapped-delay chain yields 24 ps resolution and 18 ps precision.

  12. Wastewater heat recovery method and apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-01-01T23:59:59.000Z

    This invention is comprised of a heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  13. Heating tar sands formations while controlling pressure

    DOE Patents [OSTI]

    Stegemeier, George Leo (Houston, TX) [Houston, TX; Beer, Gary Lee (Houston, TX) [Houston, TX; Zhang, Etuan (Houston, TX) [Houston, TX

    2010-01-12T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. A pressure in the majority of the section may be maintained below a fracture pressure of the formation. The pressure in the majority of the section may be reduced to a selected pressure after the average temperature reaches a temperature that is above 240.degree. C. and is at or below pyrolysis temperatures of hydrocarbons in the section. At least some hydrocarbon fluids may be produced from the formation.

  14. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect (OSTI)

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01T23:59:59.000Z

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.

  15. Liquid Phase Heating Systems

    E-Print Network [OSTI]

    Mordt, E. H.

    1979-01-01T23:59:59.000Z

    Temperature Water (HTW) central district heating systems are far superior to steam systems in large, spread out installations such as airports, universities and office complexes. Water, pressurized to keep it in the liquid state, is distributed at 400o...

  16. Composite heat damage assessment

    SciTech Connect (OSTI)

    Janke, C.J.; Wachter, E.A. [Oak Ridge National Lab., TN (United States); Philpot, H.E. [Oak Ridge K-25 Site, TN (United States); Powell, G.L. [Oak Ridge Y-12 Plant, TN (United States)

    1993-12-31T23:59:59.000Z

    The effects of heat damage were determined on the residual mechanical, physical, and chemical properties of IM6/3501-6 laminates, and potential nondestructive techniques to detect and assess material heat damage were evaluated. About one thousand preconditioned specimens were exposed to elevated temperatures, then cooled to room temperature and tested in compression, flexure, interlaminar shear, shore-D hardness, weight loss, and change in thickness. Specimens experienced significant and irreversible reduction in their residual properties when exposed to temperatures exceeding the material upper service temperature of this material (350{degrees}F). The Diffuse Reflectance Infrared Fourier Transform and Laser-Pumped Fluorescence techniques were found to be capable of rapid, in-service, nondestructive detection and quantitation of heat damage in IM6/3501- 6. These techniques also have the potential applicability to detect and assess heat damage effects in other polymer matrix composites.

  17. Mechanical Compression Heat Pumps 

    E-Print Network [OSTI]

    Apaloo, T. L.; Kawamura, K.; Matsuda, J.

    1986-01-01T23:59:59.000Z

    to develop, design and test compressors built to meet the needs of the mechanically demanding industrial heat pump applications which often require high compression ratios and temperatures in excess of 200 degrees F. This paper will review the theoretical...

  18. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    e l Atmosphere ceiling, back panel roof, exposed roof insideSAN DIEGO Photovoltaic Roof Heat Flux A Thesis submitted i no n Convection Exposed Roof Temperature Seasonal Temperature

  19. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    under the offset unit's solar panel, the hf formula (16) wasdrop below the angle unit's solar panel at night time. D u rfor both the units, the solar panel covered roof was a heat

  20. Passive solar heating analysis

    SciTech Connect (OSTI)

    Balcomb, J.D.; Jones, R.W.; Mc Farland, R.D.; Wray, W.O.

    1984-01-01T23:59:59.000Z

    This book discusses about the design of solar heating systems. The terms and symbols are clearly defined. Step-by-step procedures are indicated. Worked examples are given with tables, graphs, appendixes.

  1. Mechanical Compression Heat Pumps

    E-Print Network [OSTI]

    Apaloo, T. L.; Kawamura, K.; Matsuda, J.

    dampened because there is a current abundance of the basic sources of industrial energy (namely oil and natural gas). Meanwhile, Mycom used the window of the current opportunities to develop, design and test compressors built to meet the needs... requirements of the compressors which constitute the heart and soul of the system. It will also provide a quick survey of the available types of compressors for heat pumping and some of the industrial processes where simultaneous heating and cooling...

  2. Earned Value Management System (EVMS)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-03-13T23:59:59.000Z

    This Guide provides approaches for implementing the Earned Value Management System (EVMS) requirements of DOE O 413.3B. Cancels DOE G 413.3-10.

  3. Cooling Flows or Heating Flows?

    E-Print Network [OSTI]

    James Binney

    2003-10-08T23:59:59.000Z

    It is now clear that AGN heat cooling flows, largely by driving winds. The winds may contain a relativistic component that generates powerful synchrotron radiation, but it is not clear that all winds do so. The spatial and temporal stability of the AGN/cooling flow interaction are discussed. Collimation of the winds probably provides spatial stability. Temporal stability may be possible only for black holes with masses above a critical value. Both the failure of cooling flows to have adiabatic cores and the existence of X-ray cavities confirm the importance of collimated outflows. I quantify the scale of the convective flow that the AGN Hydra would need to drive if it balanced radiative inward flow by outward flow parallel to the jets. At least in Virgo any such flow must be confined to r<~20 kpc. Hydrodynamical simulations suggest that AGN outbursts cannot last longer than ~25 Myr. Data for four clusters with well studied X-ray cavities suggests that heating associated with cavity formation approximately balances radiative cooling. The role of cosmic infall and the mechanism of filament formation are briefly touched on.

  4. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01T23:59:59.000Z

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  5. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25T23:59:59.000Z

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  6. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1984-01-01T23:59:59.000Z

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  7. Convective heat flow probe

    DOE Patents [OSTI]

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09T23:59:59.000Z

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  8. Radial flow heat exchanger

    DOE Patents [OSTI]

    Valenzuela, Javier (Hanover, NH)

    2001-01-01T23:59:59.000Z

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  9. Long-term average performance benefits of parabolic trough improvements

    SciTech Connect (OSTI)

    Gee, R.; Gaul, H.W.; Kearney, D.; Rabl, A.

    1980-03-01T23:59:59.000Z

    Improved parabolic trough concentrating collectors will result from better design, improved fabrication techniques, and the development and utilization of improved materials. The difficulty of achieving these improvements varies as does their potential for increasing parabolic trough performance. The purpose of this analysis is to quantify the relative merit of various technology advancements in improving the long-term average performance of parabolic trough concentrating collectors. The performance benefits of improvements are determined as a function of operating temperature for north-south, east-west, and polar mounted parabolic troughs. The results are presented graphically to allow a quick determination of the performance merits of particular improvements. Substantial annual energy gains are shown to be attainable. Of the improvements evaluated, the development of stable back-silvered glass reflective surfaces offers the largest performance gain for operating temperatures below 150/sup 0/C. Above 150/sup 0/C, the development of trough receivers that can maintain a vacuum is the most significant potential improvement. The reduction of concentrator slope errors also has a substantial performance benefit at high operating temperatures.

  10. High average power magnetic modulator for copper lasers

    SciTech Connect (OSTI)

    Cook, E.G.; Ball, D.G.; Birx, D.L.; Branum, J.D.; Peluso, S.E.; Langford, M.D.; Speer, R.D.; Sullivan, J.R.; Woods, P.G.

    1991-06-14T23:59:59.000Z

    Magnetic compression circuits show the promise of long life for operation at high average powers and high repetition rates. When the Atomic Vapor Laser Isotope Separation (AVLIS) Program at Lawrence Livermore National Laboratory needed new modulators to drive their higher power copper lasers in the Laser Demonstration Facility (LDF), existing technology using thyratron switched capacitor inversion circuits did not meet the goal for long lifetimes at the required power levels. We have demonstrated that magnetic compression circuits can achieve this goal. Improving thyratron lifetime is achieved by increasing the thyratron conduction time, thereby reducing the effect of cathode depletion. This paper describes a three stage magnetic modulator designed to provide a 60 kV pulse to a copper laser at a 4. 5 kHz repetition rate. This modulator operates at 34 kW input power and has exhibited MTBF of {approx}1000 hours when using thyratrons and even longer MTBFs with a series of stack of SCRs for the main switch. Within this paper, the electrical and mechanical designs for the magnetic compression circuits are discussed as are the important performance parameters of lifetime and jitter. Ancillary circuits such as the charge circuit and reset circuit are shown. 8 refs., 5 figs., 1 tab.

  11. Ensemble bayesian model averaging using markov chain Monte Carlo sampling

    SciTech Connect (OSTI)

    Vrugt, Jasper A [Los Alamos National Laboratory; Diks, Cees G H [NON LANL; Clark, Martyn P [NON LANL

    2008-01-01T23:59:59.000Z

    Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery etal. Mon Weather Rev 133: 1155-1174, 2(05)) has recommended the Expectation-Maximization (EM) algorithm for BMA model training, even though global convergence of this algorithm cannot be guaranteed. In this paper, we compare the performance of the EM algorithm and the recently developed Differential Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo (MCMC) algorithm for estimating the BMA weights and variances. Simulation experiments using 48-hour ensemble data of surface temperature and multi-model stream-flow forecasts show that both methods produce similar results, and that their performance is unaffected by the length of the training data set. However, MCMC simulation with DREAM is capable of efficiently handling a wide variety of BMA predictive distributions, and provides useful information about the uncertainty associated with the estimated BMA weights and variances.

  12. Heat exchanger device and method for heat removal or transfer

    DOE Patents [OSTI]

    Koplow, Jeffrey P

    2013-12-10T23:59:59.000Z

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  13. Solar air heating system for combined DHW and space heating

    E-Print Network [OSTI]

    Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren Østergaard Jensen

  14. Heat exchanger device and method for heat removal or transfer

    DOE Patents [OSTI]

    Koplow, Jeffrey P. (San Ramon, CA)

    2012-07-24T23:59:59.000Z

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  15. PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer) which employs a natural gas fired Stirling engine to drive a Rankine cycle vapor compressor is presently by the heat pump effect. The Stirling engine/Rankine cycle refrigeration loop heat pump being developed would

  16. Waste Heat Recovery Using a Circulating Heat Medium Loop

    E-Print Network [OSTI]

    Manning, E., Jr.

    1981-01-01T23:59:59.000Z

    by a circulating heat medium loop where waste heat is recovered for useful purposes. The heat medium chosen is turbine fuel. It is pumped around the refinery to pick up heat at the crude distilling unit, the hydrocracker, the catalytic cracker...

  17. Boiling heat transfer with three fluids in small circular and rectangular channels

    SciTech Connect (OSTI)

    Tran, T.N.; Wambsganss, M.W. [Argonne National Lab., IL (United States); France, D.M. [Illinois Univ., Chicago, IL (United States). Dept. of Mechanical Engineering

    1995-01-01T23:59:59.000Z

    Small circular and noncircular channels are representative of flow passages act evaporators and condensers. This report describes results of an ental study on heat transfer to the flow boiling of refrigerants (R-12) and refrigerant-134a (R-134a) in a small horizontal circular-cross-section tube. The tube diameter of 2.46 mm was chosen to approximate the hydraulic diameter of a 4.06 {times} 1.70 mm rectangular channel previously studied with R-12, and a 2.92-mm-diameter circular tube previously studied with R-113. The objective of this study was to assess the effects of channel geometry and fluid properties on the heat transfer coefficient and to obtain additional insights relative to the heat transfer mechanism(s). The current circular flow channel for the R-12 and R-134a tests was made of brass and had an overall length of 0.9 in. The channel wall was electrically heated, and thermocouples were installed on the channel wall and in the bulk fluid stream. Voltage taps were located at the same axial locations as the stream thermocouples to allow testing over an exit quality range to 0.94 and a large range of mass flux (58 to 832 kg/m{sup 2}s) and heat flux (3.6 to 59 kW/m{sup 2}). Saturation pressure was nearly constant, averaging 0.82 MPa for most of the testing, with some tests performed at a lower pressure of 0.4--0.5 MPa. Local heat transfer coefficients were determined experimentally as a function of quality along the length of the test section. Analysis of all data for three tubes and three fluids supported the conclusion that a nucleation mechanism dominates for flow boiling in small channels. Nevertheless, a convection-dominant region was obtained experimentally in this study at very low values of wall superheat (< {approx} 2.75{degrees}C). The circular and rectangular tube data for three fluids were successfully correlated in the nucleation-dominant region.

  18. Toolbox Safety Talk Heat Stress

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Heat Stress Environmental Health & Safety Facilities Safety & Health Section for inducing heat stress. When the body is unable to cool itself by sweating, several heat-induced illnesses Stress · Know signs/symptoms of heat-related illnesses; monitor yourself and coworkers. · Block out

  19. temperature heat pumps applied to

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    losses (waste heat) 250-300°C......1100°C ~ 100 TWh/year Low temperature thermal losses (waste heat) 25°C;Waste heat recovery (1) In a decreasing energetic interest order Achema 2012 Frankfurt June 21th 2012>>Twaste #12;Waste heat recovery (2) Achema 2012 Frankfurt June 21th 2012 There is no interesting thermal

  20. Analysis of value creation and value capture in microfluidics market

    E-Print Network [OSTI]

    Yadav, Shailendra

    2010-01-01T23:59:59.000Z

    Advances in microfluidics in the last two decade have created a tremendous technological value which is shaping genomics; drug discovery; proteomics; and point-of-care diagnostics. The positive impact has resulted in faster ...

  1. The values and practices associated with high moisture corn

    E-Print Network [OSTI]

    Finch, Charles B

    1993-01-01T23:59:59.000Z

    damage and a corresponding reduction in feeding value can occur. Kernel size will vary greatly depending on corn growing conditions, variety and 13 especially kernel location on the cob. Kernels which come from the upper end of the cob will be smaller... of the corn. Owens (1986) states that browning of HMC does not affect performance, but discoloration can be an indication of heating during feedout which in turn decreases feed intake. Possible chemical causes could be a reaction between reducing sugars...

  2. Heat distribution ceramic processing method

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN); Kiggans, Jr., James O. (Oak Ridge, TN)

    2001-01-01T23:59:59.000Z

    A multi-layered heat distributor system is provided for use in a microwave process. The multi-layered heat distributors includes a first inner layer of a high thermal conductivity heat distributor material, a middle insulating layer and an optional third insulating outer layer. The multi-layered heat distributor system is placed around the ceramic composition or article to be processed and located in a microwave heating system. Sufficient microwave energy is applied to provide a high density, unflawed ceramic product.

  3. Heat and Power Systems Design

    E-Print Network [OSTI]

    Spriggs, H. D.; Shah, J. V.

    HEAT AND POWER SYSTEMS DESIGN H. D. Spriggs and J. V. Shah, Leesburg. VA ABSTRACT The selection of heat and power systems usually does not include a thorough analysis of the process heating. cooling and power requirements. In most cases..., these process requirements are accepted as specifications before heat and power systems are selected and designed. In t~is article we describe how Process Integration using Pinch Technology can be used to understand and achieve the minimum process heating...

  4. The Role of the Consultant in Marketing Industrial Heat Pumps

    E-Print Network [OSTI]

    Gilbert, J. S.; Niess, R. C.

    (COP) in excess of 30. Engineers with only HVAC design experience often question these COPs, since they are so far removed from the less than three values typical of residential heat pump units. Others who have experience with only commercial HVAC... have looked to utilities to be the impetus in the marketplace. Their successful history of introducing the refri gerator (no longer an "icebox"), electric range, room air conditioner, and residential heat pump testifies to their marketing strengths...

  5. Overshooting by differential heating

    E-Print Network [OSTI]

    Andrássy, R

    2015-01-01T23:59:59.000Z

    On the long nuclear time scale of stellar main-sequence evolution, even weak mixing processes can become relevant for redistributing chemical species in a star. We investigate a process of "differential heating," which occurs when a temperature fluctuation propagates by radiative diffusion from the boundary of a convection zone into the adjacent radiative zone. The resulting perturbation of the hydrostatic equilibrium causes a flow that extends some distance from the convection zone. We study a simplified differential-heating problem with a static temperature fluctuation imposed on a solid boundary. The astrophysically relevant limit of a high Reynolds number and a low P\\'eclet number (high thermal diffusivity) turns out to be interestingly non-intuitive. We derive a set of scaling relations for the stationary differential heating flow. A numerical method adapted to a high dynamic range in flow amplitude needed to detect weak flows is presented. Our two-dimensional simulations show that the flow reaches a sta...

  6. Temporal Specifications with Accumulative Values UDI BOKER, The Interdisciplinary Center, Herzliya, Israel

    E-Print Network [OSTI]

    Boker, Udi

    A Temporal Specifications with Accumulative Values UDI BOKER, The Interdisciplinary Center objectives lies the accumulation of values along a computation. It is often the accumulated sum, as with energy objectives, or the accumulated average, as with mean-payoff objectives. We investigate

  7. Factors Affecting Option Premium Values

    E-Print Network [OSTI]

    Johnson, Jason; Smith, Jackie; Dhuyvetter, Kevin C.; Waller, Mark L.

    1999-06-23T23:59:59.000Z

    Factors Affecting Option Premium Values Jason Johnson, Jackie Smith, Kevin Dhuyvetter and Mark Waller* Put Options Hedging in the futures market with options is much like buying an insurance policy to protect commodity sellers against declining...

  8. Earned Value Management System (EVMS)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-05-06T23:59:59.000Z

    The Guide supports the Departments initiatives to improve program, project, and contract management through the implementation and surveillance of contractors earned value management systems. Canceled by DOE G 413.3-10A.

  9. On the Computational Power of Molecular Heat Engines

    E-Print Network [OSTI]

    Janzing, D

    2005-01-01T23:59:59.000Z

    A heat engine is a machine which uses the temperature difference between a hot and a cold reservoir to extract work. Here both reservoirs are quantum systems and a heat engine is described by a unitary transformation which decreases the average energy of the bipartite system. On the molecular scale, the ability of implementing such a unitary heat engine is closely connected to the ability of performing logical operations and classical computing. This is shown by several examples: (1) The most elementary heat engine is a SWAP-gate acting on 1 hot and 1 cold two-level systems with different energy gaps. (2) An optimal unitary heat engine on a pair of 3-level systems can directly implement OR and NOT gates, as well as copy operations. The ability to implement this heat engine on each pair of 3-level systems taken from the hot and the cold ensemble therefore allows universal classical computation. (3) Optimal heat engines operating on one hot and one cold oscillator mode with different frequencies are able to cal...

  10. The Evolution of the U.S. Heat Pump Market

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss [ORNL] [ORNL; Khowailed, Gannate [Sentech, Inc.] [Sentech, Inc.

    2011-01-01T23:59:59.000Z

    The heating and cooling equipment market in the United States (U.S.) evolved in the last two decades affected by the housing market and external market conditions. The average home size increased by 25% since 1999, contributing to increased average equipment size of heat pumps (HPs) and air conditioners (ACs). The home size increase did not correlate with higher residential energy used. The last decade is recognized for improved home insulation and equipment efficiency, which has made up for the larger home size and still yielded lower residential energy use. The lower energy use coincides with more homes using HPs. HP growth was supported by the price stability and affordability of electricity. The heating and cooling equipment market also seems to be rebounding faster than the housing market after the economic crises. In 2009 only 22% of HPs were sold to new homes, reflecting increased heat pump sales for add-on and replacement applications. HPs are growing in popularity and becoming an established economic technology. The increased usage of HPs will result in reduced residential heating energy use and carbon dioxide emissions.

  11. On the Computational Power of Molecular Heat Engines

    E-Print Network [OSTI]

    Dominik Janzing

    2005-02-02T23:59:59.000Z

    A heat engine is a machine which uses the temperature difference between a hot and a cold reservoir to extract work. Here both reservoirs are quantum systems and a heat engine is described by a unitary transformation which decreases the average energy of the bipartite system. On the molecular scale, the ability of implementing such a unitary heat engine is closely connected to the ability of performing logical operations and classical computing. This is shown by several examples: (1) The most elementary heat engine is a SWAP-gate acting on 1 hot and 1 cold two-level systems with different energy gaps. (2) An optimal unitary heat engine on a pair of 3-level systems can directly implement OR and NOT gates, as well as copy operations. The ability to implement this heat engine on each pair of 3-level systems taken from the hot and the cold ensemble therefore allows universal classical computation. (3) Optimal heat engines operating on one hot and one cold oscillator mode with different frequencies are able to calculate polynomials and roots approximately. (4) An optimal heat engine acting on 1 hot and n cold 2-level systems with different level spacings can even solve the NP-complete problem KNAPSACK. Whereas it is already known that the determination of ground states of interacting many-particle systems is NP-hard, the optimal heat engine is a thermodynamic problem which is NP-hard even for n non-interacting spin systems. This result suggest that there may be complexity-theoretic limitations on the efficiency of molecular heat engines.

  12. Air heating system

    DOE Patents [OSTI]

    Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

    1983-03-01T23:59:59.000Z

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  13. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1983-08-16T23:59:59.000Z

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  14. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16T23:59:59.000Z

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  15. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01T23:59:59.000Z

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  16. The second law, Maxwell's daemon and work derivable from quantum heat engines

    E-Print Network [OSTI]

    Tien D. Kieu

    2005-08-22T23:59:59.000Z

    With a class of quantum heat engines which consists of two-energy-eigenstate systems undergoing, respectively, quantum adiabatic processes and energy exchanges with heat baths at different stages of a cycle, we are able to clarify some important aspects of the second law of thermodynamics. The quantum heat engines also offer a practical way, as an alternative to Szilard's engine, to physically realise Maxwell's daemon. While respecting the second law on the average, they are also capable of extracting more work from the heat baths than is otherwise possible in thermal equilibrium.

  17. Heat-transfer coefficients in agitated vessels. Latent heat models

    SciTech Connect (OSTI)

    Kumpinsky, E. [Ashland Chemical Co., Columbus, OH (United States)] [Ashland Chemical Co., Columbus, OH (United States)

    1996-03-01T23:59:59.000Z

    Latent heat models were developed to calculate heat-transfer coefficients in agitated vessels for two cases: (1) heating with a condensable fluid flowing through coils and jackets; (2) vacuum reflux cooling with an overhead condenser. In either case the mathematical treatment, based on macroscopic balances, requires no iterative schemes. In addition to providing heat-transfer coefficients, the models predict flow rates of service fluid through the coils and jackets, estimate the percentage of heat transfer due to latent heat, and compute reflux rates.

  18. Recovering the Heat Dissipated by the Digital Switching Equipment

    E-Print Network [OSTI]

    Karasseferian, V. V.; Desjardins, R.

    1983-01-01T23:59:59.000Z

    irrespective of its usage capa city. For example, a digital switcher dissipa tes heat at a rate of 25 to 35 watts per sq. ft. as compared to 3 or 4 watts per sq. ft. for the electro mechanical switching equipment. This type of equipment is being installed... to the atrrosphere by the cool ing plant servicing the digital switcher, to heat other parts of the building. Energy prices have not, in the past, diffe red considerably from the average inflation rate of the economy as a whole. This situation crea ted little...

  19. Heat Recovery Considerations for Process Heaters and Boilers

    E-Print Network [OSTI]

    Kumar, A.

    I/ton of product; and the estimated average potential energy HVings falla in 20-30% range. ;0, .666 ESL-IE-86-06-108 Proceedings from the Eighth Annual Industrial Energy Technology Conference, Houston, TX, June 17-19, 1986 'i. Improving mainrenallce. tll... fuels . The unit consists 0i metallic oi:!lt:ments that are alternately heated ..lI1d ..:oolt:'d, Elements are contained in a subdivided cylinder that rotates illside a casing. Hot flue gas flows through one side of this cylinder and heats...

  20. Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor

    SciTech Connect (OSTI)

    Donna P. Guillen

    2012-07-01T23:59:59.000Z

    This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

  1. LTB universes as alternatives to dark energy: does positive averaged acceleration imply positive cosmic acceleration?

    E-Print Network [OSTI]

    Antonio Enea Romano

    2007-01-27T23:59:59.000Z

    We show that positive averaged acceleration obtained in LTB models through spatial averaging can require integration over a region beyond the event horizon of the central observer. We provide an example of a LTB model with positive averaged acceleration in which the luminosity distance does not contain information about the entire spatially averaged region, making the averaged acceleration unobservable. Since the cosmic acceleration is obtained from fitting the observed luminosity distance to a FRW model we conclude that in general a positive averaged acceleration in LTB models does not imply a positive FRW cosmic acceleration.

  2. LTB universes as alternatives to dark energy: does positive averaged acceleration imply positive cosmic acceleration?

    E-Print Network [OSTI]

    Romano, A E

    2006-01-01T23:59:59.000Z

    We show that positive averaged acceleration obtained in LTB models through spatial averaging can require integration over a region beyond the event horizon of the central observer. We provide an example of a LTB model with positive averaged acceleration in which the luminosity distance does not contain information about the entire spatially averaged region, making the averaged acceleration unobservable. Since the cosmic acceleration is obtained from fitting the observed luminosity distance to a FRW model we conclude that in general a positive averaged acceleration in LTB models does not imply a positive FRW cosmic acceleration.

  3. Enhanced boiling heat transfer in horizontal test bundles

    SciTech Connect (OSTI)

    Trewin, R.R.; Jensen, M.K.; Bergles, A.E.

    1994-08-01T23:59:59.000Z

    Two-phase flow boiling from bundles of horizontal tubes with smooth and enhanced surfaces has been investigated. Experiments were conducted in pure refrigerant R-113, pure R-11, and mixtures of R-11 and R-113 of approximately 25, 50, and 75% of R-113 by mass. Tests were conducted in two staggered tube bundles consisting of fifteen rows and five columns laid out in equilateral triangular arrays with pitch-to-diameter ratios of 1.17 and 1.5. The enhanced surfaces tested included a knurled surface (Wolverine`s Turbo-B) and a porous surface (Linde`s High Flux). Pool boiling tests were conducted for each surface so that reference values of the heat transfer coefficient could be obtained. Boiling heat transfer experiments in the tube bundles were conducted at pressures of 2 and 6 bar, heat flux values from 5 to 80 kW/m{sup 2}s, and qualities from 0% to 80%, Values of the heat transfer coefficients for the enhanced surfaces were significantly larger than for the smooth tubes and were comparable to the values obtained in pool boiling. It was found that the performance of the enhanced tubes could be predicted using the pool boiling results. The degradation in the smooth tube heat transfer coefficients obtained in fluid mixtures was found to depend on the difference between the molar concentration in the liquid and vapor.

  4. MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE

    SciTech Connect (OSTI)

    Harbour, J; Vickie Williams, V

    2008-09-29T23:59:59.000Z

    One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were {approx} 55% higher than the previous measurement of specific heat capacity on a reference Saltstone mix in 1997. Values of mixes prepared using Deliquification, Dissolution and Adjustment (DDA), Modular Caustic Side Solvent Extraction Unit (MCU) and Salt Waste Processing Facility (SWPF) simulants and premix at 0.60 w/cm ratio were {approx} 1.95 J/g/{sup o}C and were equivalent within experimental error. The simple law of mixtures was used to predict the heat capacities of the Saltstone and the results were in excellent agreement with experimental data. This simple law of mixtures can therefore be used to predict the heat capacities of Saltstone mixes in those cases where measurements have not been made. The time dependence of the heat capacity is important as an input to the modeling of temperature increase in Saltstone vaults. The heat capacity of a mix of MCU and premix at 0.60 w/cm ratio was measured immediately after initial mixing and then periodically up to times greater than 100 days. Within experimental error, the heat capacity did not change with time. Therefore, the modeling is not complicated by requiring a time dependent function for specific heat capacity. The water to cementitious material (w/cm) ratio plays a key role in determining the value of the heat capacity. Both experimental and predictive values for SWPF mixes as function of the w/cm ratio were obtained and presented in this report. Predictions of the maximum temperatures of the Saltstone mixes were made using the heat of hydration data from previous isothermal measurements and the newly measured heat capacities for DDA, MCU and SWPF mixes. The maximum temperature increase ranged from 37 to 48 C for these mixes. The presence of aluminate at 0.33 M produced a temperature increase of 68 C which is close to the adiabatic temperature rise of 74 C observed by Steimke and Fowler in 1997 for a mix containing 0.35 M aluminate. Aluminum dissolution of the sludge will increase the aluminate in the DSS which in turn will result in a larger temperature increase in the Saltstone vaults during the curing p

  5. Waste heat recovery steam curves with unfired HRSGs

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    A compilation of waste heat recovery steam curves for a sampling of gas turbines ranging in output from around 1 MW to more than 200 MW is presented. The gas turbine output data shown with each set of curves differs from the values given in the Performance Specifications section of the Handbook. That's because the values have been calculated to reflect the effects of a 4 inch inlet and 10 inch outlet pressure drop on power output (lower), heat rate (higher), mass flow (higher), and exhaust temperature (higher).

  6. Heat exchange assembly

    DOE Patents [OSTI]

    Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.

    2004-06-08T23:59:59.000Z

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  7. Low Level Heat Recovery Through Heat Pumps and Vapor Recompression 

    E-Print Network [OSTI]

    Gilbert, J.

    1980-01-01T23:59:59.000Z

    of each approach as a function of the source and sink temperatures and magnitude of heat flow. Generic heat pumps and vapor recompression designs are explained, costed, estimated in performance, and evaluated as a function of the economic parameters...

  8. Modeling of Heat Transfer in Geothermal Heat Exchangers 

    E-Print Network [OSTI]

    Cui, P.; Man, Y.; Fang, Z.

    2006-01-01T23:59:59.000Z

    Ground-coupled heat pump (GCHP) systems have been gaining increasing popularity for space conditioning in residential and commercial buildings. The geothermal heat exchanger (GHE) is devised for extraction or injection of thermal energy from...

  9. HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN

    E-Print Network [OSTI]

    Chan, T.

    2010-01-01T23:59:59.000Z

    Session on Heat Transfer in Nuclear Waste Disposal, C'.heat transfer processes associated with underground nuclear wasteheat transfer and related processes in an un­ derground environment similar to that expected in a mined nuclear waste

  10. TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS

    E-Print Network [OSTI]

    Selkowitz, S.

    2011-01-01T23:59:59.000Z

    heating purposes. BACKGROUND The reduction of heat transfer rates by the use of thermal infraredheating applications should become available on the marketplace. Due to their high reflectivity to thermal infrared

  11. Low Level Heat Recovery Through Heat Pumps and Vapor Recompression

    E-Print Network [OSTI]

    Gilbert, J.

    1980-01-01T23:59:59.000Z

    The intent of this paper is to examine the methods and economics of recovering low level heat through heat pumps and vapor recompression. Actual commercially available equipment is considered to determine the near-term and future economic viability...

  12. Microwave Tokamak Experiment (MTX) ohmic heating system

    SciTech Connect (OSTI)

    Jackson, M.C. (Lawrence Livermore National Lab., CA (USA))

    1989-09-13T23:59:59.000Z

    The ohmic heating system for the Microwave Tokamak Experiment (MTX) at Lawrence Livermore National Laboratory (LLNL) provides both the voltage for the initial breakdown phase and the energy to drive the plasma current to a value of 400 kA or greater. Providing this voltage and flux swing requires a one-turn loop voltage of about 25 volts (11 kV across the coil) and a magnetic flux swing of 2 volt- seconds. This voltage and flux swing are accomplished by charging the ohmic heating coils to 20 kA, at which point the current is commutated off into a resistor generating the 11 kV across the coil. When the current passes through zero, another power supply drives the current in the opposite polarity to 20 kA, thus completing the full 2 volt-second flux swing. This paper describes the design features and performance of the ohmic heating circuit, with emphasis on the commutation circuit. In addition, the paper describes the use of the ohmic heating system for discharge cleaning and the changeover procedure. 3 refs., 4 figs., 1 tab.

  13. Heat Transfer Derivation of differential equations for heat transfer conduction

    E-Print Network [OSTI]

    Veress, Alexander

    ) or kW *h or Btu. U is the change in stored energy, in units of kW *h (kWh) or Btu. qx is the heat conducted (heat flux) into the control volume at surface edge x, in units of kW/m2 or Btu/(h-ft2). qx volume is positive), in kW/m3 or Btu/(h-ft3) (a heat sink, heat drawn out of the volume, is negative

  14. Fact #638: August 30, 2010 Average Expenditure for a New Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: August 30, 2010 Average Expenditure for a New Car Declines in Relation to Family Earnings Fact 638: August 30, 2010 Average Expenditure for a New Car Declines in Relation to...

  15. PV Value | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired) | DepartmentINLDepartmentPV Value PV Value PV

  16. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, P.R.; McLennan, G.A.

    1984-08-30T23:59:59.000Z

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  17. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

    1985-01-01T23:59:59.000Z

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  18. Design of Heat Exchanger for Heat Recovery in CHP Systems

    E-Print Network [OSTI]

    Kozman, T. A.; Kaur, B.; Lee, J.

    with a heat exchanger to work as a Combined Heat and Power system for the University which will supplement the chilled water supply and electricity. The design constraints of the heat recovery unit are the specifications of the turbine and the chiller...

  19. Heat-transfer coefficients in agitated vessels. Sensible heat models

    SciTech Connect (OSTI)

    Kumpinsky, E. [Ashland Chemical Co., Columbus, OH (United States). Research and Development Dept.

    1995-12-01T23:59:59.000Z

    Transient models for sensible heat were developed to assess the thermal performance of agitated vessels with coils and jackets. Performance is quantified with the computation of heat-transfer coefficients by introducing vessel heating and cooling data into model equations. Of the two model categories studied, differential and macroscopic, the latter is preferred due to mathematical simplicity and lower sensitivity to experimental data variability.

  20. S86 JUNE 2006| above-average precipitation totals for the year, caus-

    E-Print Network [OSTI]

    in Croatia and Bosnia-Herzegovina, but below average for June in Bulgaria. Rainfall totals in April and June

  1. Heat Recovery from Coal Gasifiers

    E-Print Network [OSTI]

    Wen, H.; Lou, S. C.

    1981-01-01T23:59:59.000Z

    This paper deals with heat recovery from pressurized entrained and fixed bed coal gasifiers for steam generation. High temperature waste heat, from slagging entrained flow coal gasifier, can be recovered effectively in a series of radiant...

  2. Central Multifamily Water Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Building America Program is hosting a no-cost, webinar-based training on Central Multifamily Water Heating Systems. The webinar will focus the effective use of central heat pump water heaters...

  3. Heat Pumps - Theory and Applications

    E-Print Network [OSTI]

    Altin, M.

    1982-01-01T23:59:59.000Z

    compressors (heat pumps) with actual applications in Monsanto. Guidelines for possible application areas are drawn from the analysis, and conclusions are drawn both about the usefulness of exergy analysis and about the heat pump application areas....

  4. Residential Solar Water Heating Rebates

    Broader source: Energy.gov [DOE]

    New Hampshire offers a rebate for residential solar water-heating systems and solar space-heating systems. The rebate is equal to $1,500 for systems with an annual estimated output of 5.5 MMBTU to...

  5. Geothermal Heat Pump Grant Program

    Broader source: Energy.gov [DOE]

    The Maryland Energy Administration (MEA) offers rebates of $3,000 for residential geothermal heat pump systems and up to $4,500 for non-residential geothermal heat pump systems. The residential...

  6. Heat Pipes: An Industrial Application

    E-Print Network [OSTI]

    Murray, F.

    1984-01-01T23:59:59.000Z

    This paper reviews the basics of heat pipe exchangers. Included are how they are constructed, how they operate, where they have application, and various aspects of evaluating a potential application. After discussing the technical aspects of heat...

  7. Challenges in Industrial Heat Recovery

    E-Print Network [OSTI]

    Dafft, T.

    2007-01-01T23:59:59.000Z

    This presentation will address several completed and working projects involving waste heat recovery in a chemical plant. Specific examples will be shown and some of the challenges to successful implementation and operation of heat recovery projects...

  8. Faculty Positions Heat Transfer and

    E-Print Network [OSTI]

    Faculty Positions Heat Transfer and Thermal/Energy Sciences Naval Postgraduate School Monterey-track faculty position at the assistant professor level in the areas of Heat Transfer and Thermal/Fluid Sciences

  9. Heat Pipes: An Industrial Application 

    E-Print Network [OSTI]

    Murray, F.

    1984-01-01T23:59:59.000Z

    This paper reviews the basics of heat pipe exchangers. Included are how they are constructed, how they operate, where they have application, and various aspects of evaluating a potential application. After discussing the technical aspects of heat...

  10. Challenges in Industrial Heat Recovery 

    E-Print Network [OSTI]

    Dafft, T.

    2007-01-01T23:59:59.000Z

    This presentation will address several completed and working projects involving waste heat recovery in a chemical plant. Specific examples will be shown and some of the challenges to successful implementation and operation of heat recovery projects...

  11. Low Level Heat Recovery Technology

    E-Print Network [OSTI]

    O'Brien, W. J.

    1982-01-01T23:59:59.000Z

    level heat recovery technology. This paper discusses heat distribution systems, latest developments in absorption refrigeration and organic Rankine cycles, and pressure, minimization possibilities. The relative merits and economics of the various...

  12. Creating Value Wood Products Industry

    E-Print Network [OSTI]

    Louisiana Forest Products Development Center #12;2 Louisiana is blessed with quality timberland for the Wood Products Industry The forest industry contributes more than 50 percent of the total value of all for quality information, research and education in forest products in Louisiana, recognized regionally

  13. Weak Values and Relational Generalisations

    E-Print Network [OSTI]

    Thomas Marlow

    2006-04-20T23:59:59.000Z

    We justify generalisations of weak values from a tentatively relational perspective by deriving them from a generalisation of Bayes' rule. We also argue that these generalisations have implications of quantum nonlocality and may form a novel approach to quantum gravity and cosmology.

  14. Adding Value to Agricultural Products

    E-Print Network [OSTI]

    Anderson, David P.; Hanselka, Daniel

    2009-06-01T23:59:59.000Z

    and some of the viscera into menudo or tripas. Booker Packing Company, Caviness Packing Company and J&B Foods are some of the compa- nies adding value to meat successfully in spite of processing costs. A recent survey of such companies indicated...

  15. Tropical Cloud Properties and Radiative Heating Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mather, James

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  16. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    for the solar-heated hot water. This heater can be seen inwater (solar heated, boosted, or heated entirely in the auxiliary heater)

  17. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    solar heating and cooling systems covering a wide range ofpractical heating and cooling system configurations andexperimental heating and cooling system, the main purpose of

  18. Research & Development Roadmap: Emerging Water Heating Technologies...

    Energy Savers [EERE]

    Emerging Water Heating Technologies Research & Development Roadmap: Emerging Water Heating Technologies The Research and Development (R&D) Roadmap for Emerging Water Heating...

  19. HEAT AND MOISTURE TRANSFER THROUGH CLOTHING

    E-Print Network [OSTI]

    Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

    2009-01-01T23:59:59.000Z

    R. C. Eberhart (ed), Heat transfer in medicine and biology.between convective heat transfer and mass transferConvective and radiative heat transfer coefficients for

  20. Heat and moisture transfer through clothing

    E-Print Network [OSTI]

    Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

    2009-01-01T23:59:59.000Z

    R. C. Eberhart (ed), Heat transfer in medicine and biology.Convective and radiative heat transfer coefficients forbetween convective heat transfer and mass transfer

  1. Heat Waves, Global Warming, and Mitigation

    E-Print Network [OSTI]

    Carlson, Ann E.

    2008-01-01T23:59:59.000Z

    Heat Waves, Global Warming, and Mitigation Ann E. Carlson*2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 175 stroke2001). 2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 177

  2. Heat transfer probe

    DOE Patents [OSTI]

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10T23:59:59.000Z

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  3. Optical heat flux gauge

    DOE Patents [OSTI]

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09T23:59:59.000Z

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  4. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-08-01T23:59:59.000Z

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  5. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-01-01T23:59:59.000Z

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  6. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01T23:59:59.000Z

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  7. Heat Pump Strategies and Payoffs 

    E-Print Network [OSTI]

    Gilbert, J. S.

    1982-01-01T23:59:59.000Z

    After evaluating numerous waste heat sources and heat pump designs for energy recovery, we have become aware that a great deal of confusion exists about the economics of heat pumps. The purpose of this article is to present some simple formulas...

  8. Industrial Heat Pump Case Study

    E-Print Network [OSTI]

    Wagner, J. R.; Brush, F. C.

    with operating the evaporator. The open-cycle heat pump design uses an electrically driven centrifugal compressor to recover the latent heat of the water vapor generated by the evaporator. (Steam was the original heat source but is now only needed for start...

  9. Heat Pump Strategies and Payoffs

    E-Print Network [OSTI]

    Gilbert, J. S.

    1982-01-01T23:59:59.000Z

    After evaluating numerous waste heat sources and heat pump designs for energy recovery, we have become aware that a great deal of confusion exists about the economics of heat pumps. The purpose of this article is to present some simple formulas...

  10. Energy 101: Geothermal Heat Pumps

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  11. Energy 101: Geothermal Heat Pumps

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  12. Industrial Heat Recovery - 1982

    E-Print Network [OSTI]

    Csathy, D.

    1982-01-01T23:59:59.000Z

    like: "Vertical, natural circulation boilers are intrinsically mbre reliable than horizontal, forced circula tion boilers.",4 and " it will be seen that horizontal tubes have much lower heat fluxes at burnout than do vertical ones, though...-steam density difference dia gram (Figure 1) has been presented repeat edly in order to indicate a significant density difference between the two phases (even close to the critical pressure) which induces natural circulation. However, this diagra...

  13. New near-wall two-equation model for turbulent heat transport

    SciTech Connect (OSTI)

    Torii, Shuichi [Kagoshima Univ. (Japan). Dept. of Mechanical Engineering; Yang, W.J. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering and Applied Mechanics

    1996-03-01T23:59:59.000Z

    An anisotropic two-equation model is proposed to determine turbulent heat flux in a channel flow up to the wall. The turbulent heat fluxes are given in the form of an anisotropic eddy diffusivity representation in which both the isotropic and anisotropic eddy diffusivities of heat are expressed using the temperature variance {ovr t{sup 2}}, the dissipation rate of temperature fluctuations {var_epsilon}{sub t}, and the velocity gradient. The proposed model is tested through application to an incompressible, two-dimensional, turbulent channel flow with the neglect of buoyant heat transfer. Calculated results are compared with the direct numerical simulation data. It is disclosed from the study that the proposed anisotropic {ovr t{sup 2}}-{var_epsilon}{sub t} heat transfer model predicts reasonably well the distributions of the time-averaged temperature, normal and streamwise turbulent heat fluxes, temperature variance, dissipation rates, and these near-wall budgets.

  14. Optimal Heisenberg-style bounds for the average performance of arbitrary phase estimates

    E-Print Network [OSTI]

    Dominic W. Berry; Michael J. W. Hall; Marcin Zwierz; Howard M. Wiseman

    2012-11-19T23:59:59.000Z

    The ultimate bound to the accuracy of phase estimates is often assumed to be given by the Heisenberg limit. Recent work seemed to indicate that this bound can be violated, yielding measurements with much higher accuracy than was previously expected. The Heisenberg limit can be restored as a rigorous bound to the accuracy provided one considers the accuracy averaged over the possible values of the unknown phase, as we have recently shown [Phys. Rev. A 85, 041802(R) (2012)]. Here we present an expanded proof of this result together with a number of additional results, including the proof of a previously conjectured stronger bound in the asymptotic limit. Other measures of the accuracy are examined, as well as other restrictions on the generator of the phase shifts. We provide expanded numerical results for the minimum error and asymptotic expansions. The significance of the results claiming violation of the Heisenberg limit is assessed, followed by a detailed discussion of the limitations of the Cramer-Rao bound.

  15. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect (OSTI)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01T23:59:59.000Z

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  16. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect (OSTI)

    McDonald, R.

    2009-12-01T23:59:59.000Z

    This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

  17. Comparison of Average Transport and Dispersion Among a Gaussian Model, a Two-Dimensional Model and a Three-Dimensional Model

    SciTech Connect (OSTI)

    Mitchell, J A; Molenkamp, C R; Bixler, N E; Morrow, C W; Ramsdell, Jr., J V

    2004-05-10T23:59:59.000Z

    The Nuclear Regulatory Commission uses MACCS2 (MELCOR Accident Consequence Code System, Version 2) for regulatory purposes such as planning for emergencies and cost-benefit analyses. MACCS2 uses a straight-line Gaussian model for atmospheric transport and dispersion. This model has been criticized as being overly simplistic, although only expected values of metrics of interest are used in the regulatory arena. To test the assumption that averaging numerous weather results adequately compensates for the loss of structure in the meteorology that occurs away from the point of release, average MACCS2 results have been compared with average results from a state-of-the-art, 3-dimensional LODI (Lagrangian Operational Dispersion Integrator)/ADAPT (Atmospheric Data Assimilation and Parameterization Technique) and a Lagrangian trajectory, Gaussian puff transport and dispersion model from RASCAL (Radiological Assessment System for consequence Analysis). The weather sample included 610 weather trials representing conditions for a hypothetical release at the Central Facility of the Department of Energy's Atmospheric Radiation Measurement site. The values compared were average ground concentrations and average surface-level air concentrations at several distances out to 100 miles (160.9 km) from the assumed release site.

  18. Innovative Miniaturized Heat Pumps for Buildings: Modular Thermal Hub for Building Heating, Cooling and Water Heating

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    BEETIT Project: Georgia Tech is using innovative components and system design to develop a new type of absorption heat pump. Georgia Tech’s new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in microscale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of microscale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Tech’s design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time.

  19. Rehabilitation of Secondary Heating and Cooling Systems - Case Study 

    E-Print Network [OSTI]

    Chen, H.; Deng, S.; Hugghins, J.; Brundidge, T.; Claridge, D.; Turner, W. D.; Bruner, H., Jr.

    2002-01-01T23:59:59.000Z

    VAV boxes use hot water reheat coils and supply air dampers, which are pneumatically controlled. A schematic diagram of the chilled water system in the building is shown in Figure 2. A schematic diagram of the heating water system... than the dynamic or modulating rating. The close-off pressure value is proportional to the size of actuator and inverse to valve size. The close-off pressure for electronic actuator is 3 ~ 5 times the values for pneumatic actuator. The pressure...

  20. Joule Heating and Anomalous Resistivity in the Solar Corona

    E-Print Network [OSTI]

    Steven R. Spangler

    2008-12-22T23:59:59.000Z

    Recent radioastronomical observations of Faraday rotation in the solar corona can be interpreted as evidence for coronal currents, with values as large as $2.5 \\times 10^9$ Amperes (Spangler 2007). These estimates of currents are used to develop a model for Joule heating in the corona. It is assumed that the currents are concentrated in thin current sheets, as suggested by theories of two dimensional magnetohydrodynamic turbulence. The Spitzer result for the resistivity is adopted as a lower limit to the true resistivity. The calculated volumetric heating rate is compared with an independent theoretical estimate by Cranmer et al (2007). This latter estimate accounts for the dynamic and thermodynamic properties of the corona at a heliocentric distance of several solar radii. Our calculated Joule heating rate is less than the Cranmer et al estimate by at least a factor of $3 \\times 10^5$. The currents inferred from the observations of Spangler (2007) are not relevant to coronal heating unless the true resistivity is enormously increased relative to the Spitzer value. However, the same model for turbulent current sheets used to calculate the heating rate also gives an electron drift speed which can be comparable to the electron thermal speed, and larger than the ion acoustic speed. It is therefore possible that the coronal current sheets are unstable to current-driven instabilities which produce high levels of waves, enhance the resistivity and thus the heating rate.

  1. Experimental investigation of the latent heat of vaporization in aqueous nanofluids

    SciTech Connect (OSTI)

    Lee, Soochan; Phelan, Patrick E., E-mail: phelan@asu.edu; Dai, Lenore; Prasher, Ravi; Gunawan, Andrey [School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287-6106 (United States); Taylor, Robert A. [School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney 2052 (Australia)

    2014-04-14T23:59:59.000Z

    This paper reports an experimental investigation of the latent heat of vaporization (h{sub fg}) in nanofluids. Two different types of nanoparticles, graphite and silver, suspended in deionized water were exposed to a continuous laser beam (130 mW, 532?nm) to generate boiling. The latent heat of vaporization in the nanofluids was determined by the measured vapor mass generation and the heat input. To ensure that the measured h{sub fg} values are independent of heating method, the experiments were repeated with an electrically heated hot wire as a primary heat input. These experiments show considerable variation in the h{sub fg} of nanofluids. That is, graphite nanofluid exhibits an increased h{sub fg} and silver nanofluid shows a decrease in h{sub fg} compared to the value for pure water. As such, these results indicate that relatively low mass fractions of nanoparticles can apparently create large changes in h{sub fg}.

  2. Absorption-heat-pump system

    DOE Patents [OSTI]

    Grossman, G.; Perez-Blanco, H.

    1983-06-16T23:59:59.000Z

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  3. Loop-closure events during protein folding: Rationalizing the shape of Phi-value distributions

    E-Print Network [OSTI]

    Thomas R. Weikl

    2005-02-15T23:59:59.000Z

    In the past years, the folding kinetics of many small single-domain proteins has been characterized by mutational Phi-value analysis. In this article, a simple, essentially parameter-free model is introduced which derives folding routes from native structures by minimizing the entropic loop-closure cost during folding. The model predicts characteristic folding sequences of structural elements such as helices and beta-strand pairings. Based on few simple rules, the kinetic impact of these structural elements is estimated from the routes and compared to average experimental Phi-values for the helices and strands of 15 small, well-characterized proteins. The comparison leads on average to a correlation coefficient of 0.62 for all proteins with polarized Phi-value distributions, and 0.74 if distributions with negative average Phi-values are excluded. The diffuse Phi-value distributions of the remaining proteins are reproduced correctly. The model shows that Phi-value distributions, averaged over secondary structural elements, can often be traced back to entropic loop-closure events, but also indicates energetic preferences in the case of a few proteins governed by parallel folding processes.

  4. Outside heat transfer coefficients for atmospheric coolers

    E-Print Network [OSTI]

    George, David Mark

    1950-01-01T23:59:59.000Z

    for the same conditions of operation is given by Robinson ()i. 9). TABLE I Comparison of various authors' values of outside heat transfer coefficients Btugour x square foot x F ~ ) Adams (1 ) 1001 1041 915 74, 6 1021 981 910 Clarke 945 997 841... ozeventing any recycling of the wet air. "M~4~ 1 f jc, : 1 C. X L, w 38 Cooled water fro~ the tower is centrifugally pmnoed through a 2 inch pipe to a rotameter and a I and operated control valve, Figure 8, before entering a 1 1/g inch by 5 foot...

  5. Performance Optimization of an Irreversible Heat Pump with Variable-temperature Heat Reservoirs

    E-Print Network [OSTI]

    Huang, Y.; Sun, D.

    2006-01-01T23:59:59.000Z

    An irreversible cycle model of a heat pump operating between two variable-temperature heat reservoirs is established and used to analyze the performance of the heat pump affected by heat resistances, heat leakage and internal dissipation...

  6. Performance Optimization of an Irreversible Heat Pump with Variable-temperature Heat Reservoirs 

    E-Print Network [OSTI]

    Huang, Y.; Sun, D.

    2006-01-01T23:59:59.000Z

    An irreversible cycle model of a heat pump operating between two variable-temperature heat reservoirs is established and used to analyze the performance of the heat pump affected by heat resistances, heat leakage and internal dissipation...

  7. Development of a Heat Transfer Model for the Integrated Facade Heating

    E-Print Network [OSTI]

    Gong, X.; Archer, D. H.; Claridge, D. E.

    2007-01-01T23:59:59.000Z

    the heat transfer process of facade heating (mullion radiators) in a pilot research project in Pittsburgh, PA. The heat transfer model for facade heating is developed and verified by measured data. The comparison shows that the heat transfer model predicts...

  8. Development of a Heat Transfer Model for the Integrated Facade Heating 

    E-Print Network [OSTI]

    Gong, X.; Archer, D. H.; Claridge, D. E.

    2007-01-01T23:59:59.000Z

    the heat transfer process of facade heating (mullion radiators) in a pilot research project in Pittsburgh, PA. The heat transfer model for facade heating is developed and verified by measured data. The comparison shows that the heat transfer model predicts...

  9. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    solar heated, boosted, or heated entirely in the auxiliary heater)for the solar-heated hot water. This heater can be seen insolar heating and cooling system, showing plumbing runs containing solenoid valves, auxiliary heater (

  10. Visual Simulation of Heat Shimmering and Mirage

    E-Print Network [OSTI]

    Mueller, Klaus

    and the surrounding air. We introduce a heat transfer model between the heat source objects and the ambient flow the heat sources to the ambient flow. Although heat transfer modeling has been used before in computer

  11. Heat Supply Who What Where and -Why

    E-Print Network [OSTI]

    Columbia University

    ................................................. 6 District-heating (DH) supply: key figures .............................. 6 What is biomass Geothermics ..........................................................................11 Waste for heat supplyHeat Supply in Denmark Who What Where and - Why #12;Title: Heat Supply in Denmark - Who What Where

  12. absorption heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat... Erickson, D. C. 1983-01-01 26...

  13. apparent molal heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: efficient use of renewable energy in district heating individual heat pumps solar heating and wood pellets individual heat pumps, solar heating and...

  14. apparent molar heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: efficient use of renewable energy in district heating individual heat pumps solar heating and wood pellets individual heat pumps, solar heating and...

  15. Heat transport by laminar boundary layer flow with polymers

    E-Print Network [OSTI]

    Roberto Benzi; Emily S. C. Ching.; Vivien W. S. Chu

    2011-04-23T23:59:59.000Z

    Motivated by recent experimental observations, we consider a steady-state Prandtl-Blasius boundary layer flow with polymers above a slightly heated horizontal plate and study how the heat transport might be affected by the polymers. We discuss how a set of equations can be derived for the problem and how these equations can be solved numerically by an iterative scheme. By carrying out such a scheme, we find that the effect of the polymers is equivalent to producing a space-dependent effective viscosity that first increases from the zero-shear value at the plate then decreases rapidly back to the zero-shear value far from the plate. We further show that such an effective viscosity leads to an enhancement in the drag, which in turn leads to a reduction in heat transport.

  16. Investigating Ground Source Geothermal Heating for Garfield House

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    of historical significance associated with Garfield, as it dates back to 1885, serving as a fraternity house heating oil consumption from January 2004 through December 2009, or 72 monthly values. Formulas were set and revised consumption rates were then assigned a conservative cost estimate based on retail price data from

  17. Heating control methodology in coke oven battery at Rourkela Steel Plant

    SciTech Connect (OSTI)

    Bandyopadhyay, S.S.; Parthasarathy, L.; Gupta, A.; Bose, P.R.; Mishra, U.

    1996-12-31T23:59:59.000Z

    A methodology of heating control was evolved incorporating temperature data generated through infra-red sensor at quenching station and thermocouples specially installed in the gooseneck of coke oven battery No. 3 of RSP. Average temperature of the red-hot coke as pushed helps in diagnosis of the abnormal ovens and in setting the targeted battery temperature. A concept of coke readiness factor (Q) was introduced which on optimization resulted in lowering the specific heat consumption by 30 KCal/Kg.

  18. Horizontal Velocity and Variance Measurements in the Stable Boundary Layer Using Doppler Lidar: Sensitivity to Averaging Procedures

    SciTech Connect (OSTI)

    Pichugina, Y. L.; Banta, R. M.; Kelley, N. D.; Jonkman, B. J.; Tucker, S. C.; Newsom, R. K.; Brewer, W. A.

    2008-08-01T23:59:59.000Z

    Quantitative data on turbulence variables aloft--above the region of the atmosphere conveniently measured from towers--have been an important but difficult measurement need for advancing understanding and modeling of the stable boundary layer (SBL). Vertical profiles of streamwise velocity variances obtained from NOAA's high-resolution Doppler lidar (HRDL), which have been shown to be approximately equal to turbulence kinetic energy (TKE) for stable conditions, are a measure of the turbulence in the SBL. In the present study, the mean horizontal wind component U and variance {sigma}2u were computed from HRDL measurements of the line-of-sight (LOS) velocity using a method described by Banta et al., which uses an elevation (vertical slice) scanning technique. The method was tested on datasets obtained during the Lamar Low-Level Jet Project (LLLJP) carried out in early September 2003, near the town of Lamar in southeastern Colorado. This paper compares U with mean wind speed obtained from sodar and sonic anemometer measurements. The results for the mean U and mean wind speed measured by sodar and in situ instruments for all nights of LLLJP show high correlation (0.71-0.97), independent of sampling strategies and averaging procedures, and correlation coefficients consistently >0.9 for four high-wind nights, when the low-level jet speeds exceeded 15 m s{sup -1} at some time during the night. Comparison of estimates of variance, on the other hand, proved sensitive to both the spatial and temporal averaging parameters. Several series of averaging tests are described, to find the best correlation between TKE calculated from sonic anemometer data at several tower levels and lidar measurements of horizontal-velocity variance {sigma}{sup 2}{sub u}. Because of the nonstationarity of the SBL data, the best results were obtained when the velocity data were first averaged over intervals of 1 min, and then further averaged over 3-15 consecutive 1-min intervals, with best results for the 10- and 15-min averaging periods. For these cases, correlation coefficients exceeded 0.9. As a part of the analysis, Eulerian integral time scales ({tau}) were estimated for the four high-wind nights. Time series of {tau} through each night indicated erratic behavior consistent with the nonstationarity. Histograms of {tau} showed a mode at 4-5 s, but frequent occurrences of larger {tau} values, mostly between 10 and 100 s.

  19. Retrieval of Areal-averaged Spectral Surface Albedo from Transmission Data Alone: Computationally Simple and Fast Approach

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Michalsky, Joseph; Hodges, G. B.

    2014-10-25T23:59:59.000Z

    We introduce and evaluate a simple retrieval of areal-averaged surface albedo using ground-based measurements of atmospheric transmission alone at five wavelengths (415, 500, 615, 673 and 870nm), under fully overcast conditions. Our retrieval is based on a one-line semi-analytical equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties, such as cloud optical depth and asymmetry parameter, in the visible and near-infrared spectral range. To illustrate the performance of our retrieval, we use as input measurements of spectral atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR). These MFRSR data are collected at two well-established continental sites in the United States supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program and National Oceanic and Atmospheric Administration (NOAA). The areal-averaged albedos obtained from the MFRSR are compared with collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) white-sky albedo. In particular, these comparisons are made at four MFRSR wavelengths (500, 615, 673 and 870nm) and for four seasons (winter, spring, summer and fall) at the ARM site using multi-year (2008-2013) MFRSR and MODIS data. Good agreement, on average, for these wavelengths results in small values (?0.01) of the corresponding root mean square errors (RMSEs) for these two sites. The obtained RMSEs are comparable with those obtained previously for the shortwave albedos (MODIS-derived versus tower-measured) for these sites during growing seasons. We also demonstrate good agreement between tower-based daily-averaged surface albedos measured for “nearby” overcast and non-overcast days. Thus, our retrieval originally developed for overcast conditions likely can be extended for non-overcast days by interpolating between overcast retrievals.

  20. North Village Ground Source Heat Pumps

    Broader source: Energy.gov [DOE]

    Overview: Installation of Ground Source Heat Pumps. Replacement of Aging Heat Pumps. Alignment with Furmans Sustainability Goals.