National Library of Energy BETA

Sample records for average generating capacity

  1. EIA - Electricity Generating Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010...

  2. INVESTING IN NEW BASE LOAD GENERATING CAPACITY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INVESTING IN NEW BASE LOAD GENERATING CAPACITY Paul L. Joskow April 8, 2008 The views expressed here are my own. They do not reflect the views of the Alfred P. Sloan Foundation, MIT or any other organization with which I am affiliated. THE 25-YEAR VIEW * Significant investment in base-load generating capacity is required over the next 25 years to balance supply and demand efficiently - ~ 200 to 250 Gw (Gross) - Depends on retirements of older steam and peaking units - Depends on demand growth *

  3. Doubling Geothermal Generation Capacity by 2020: A Strategic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Sources: Energy Information Association (2015) Nameplate Capacity: Form 860 Generator Data, State Electricity Profiles (July 2015). Summer Capacity: Annual Energy Review (2015). ...

  4. *NEW!* Doubling Geothermal Generation Capacity by 2020: A Strategic

    Office of Environmental Management (EM)

    Analysis | Department of Energy *NEW!* Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis *NEW!* Doubling Geothermal Generation Capacity by 2020: A Strategic Analysis PDF icon NREL Doubling Geothermal Capacity.pdf More Documents & Publications Geothermal Exploration Policy Mechanisms Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios track 1: systems analysis | geothermal 2015 peer review

  5. Economic Dispatch of Electric Generation Capacity | Department of Energy

    Energy Savers [EERE]

    Dispatch of Electric Generation Capacity Economic Dispatch of Electric Generation Capacity A report to congress and the states pursuant to sections 1234 and 1832 of the Energy Polict Act of 2005. PDF icon Economic Dispatch of Electric Generation Capacity More Documents & Publications THE VALUE OF ECONOMIC DISPATCH A REPORT TO CONGRESS PURSUANT TO SECTION 1234 OF THE ENERGY POLICY ACT OF 2005 Transmission Constraints and Congestion in the Western and Eastern Interconnections, 2009-2012

  6. PUCT Substantive Rule 25.91 Generating Capacity Reports | Open...

    Open Energy Info (EERE)

    PUCT Substantive Rule 25.91 Generating Capacity Reports Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: PUCT Substantive...

  7. Biomass Power Generation Market Capacity is Estimated to Reach...

    Open Energy Info (EERE)

    Biomass Power Generation Market Capacity is Estimated to Reach 122,331.6 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...

  8. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Braidwood Generation Station","Nuclear","Exelon Nuclear",2330 2,"Byron Generating Station","Nuclear","Exelon Nuclear",2300 3,"LaSalle Generating Station","Nuclear","Exelon Nuclear",2277 4,"Quad Cities Generating Station","Nuclear","Exelon

  9. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"PSEG Salem Generating Station","Nuclear","PSEG Nuclear LLC",2370.4 2,"PSEG Linden Generating Station","Natural gas","PSEG Fossil LLC",1572 3,"Bergen Generating Station","Natural gas","PSEG Fossil LLC",1208 4,"PSEG Hope Creek Generating

  10. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Hay Road","Natural gas","Calpine Mid-Atlantic Generation LLC",1136 2,"Edge Moor","Natural gas","Calpine Mid-Atlantic Generation LLC",725 3,"Indian River Generating Station","Coal","Indian River Operations Inc",591.4 4,"Delaware City Plant","Other

  11. Methodologies for estimating one-time hazardous waste generation for capacity generation for capacity assurance planning

    SciTech Connect (OSTI)

    Tonn, B.; Hwang, Ho-Ling; Elliot, S.; Peretz, J.; Bohm, R.; Hendrucko, B.

    1994-04-01

    This report contains descriptions of methodologies to be used to estimate the one-time generation of hazardous waste associated with five different types of remediation programs: Superfund sites, RCRA Corrective Actions, Federal Facilities, Underground Storage Tanks, and State and Private Programs. Estimates of the amount of hazardous wastes generated from these sources to be shipped off-site to commercial hazardous waste treatment and disposal facilities will be made on a state by state basis for the years 1993, 1999, and 2013. In most cases, estimates will be made for the intervening years, also.

  12. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"W A Parish","Coal","NRG Texas Power LLC",3675 2,"South Texas Project","Nuclear","STP Nuclear Operating Co",2560 3,"Martin Lake","Coal","Luminant Generation Company LLC",2410 4,"Comanche Peak","Nuclear","Luminant Generation Company LLC",2400

  13. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Millstone","Nuclear","Dominion Nuclear Conn Inc",2102.5 2,"Middletown","Petroleum","Middletown Power LLC",770.2 3,"Lake Road Generating Plant","Natural gas","Lake Road Generating Co LP",757.3 4,"Kleen Energy Systems Project","Natural

  14. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Chalk Point LLC","Petroleum","NRG Chalk Point LLC",2248 2,"Calvert Cliffs Nuclear Power Plant","Nuclear","Calvert Cliffs Nuclear PP LLC",1716 3,"Morgantown Generating Plant","Coal","GenOn Mid-Atlantic LLC",1423 4,"Brandon Shores","Coal","Raven

  15. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"San Juan","Coal","Public Service Co of NM",1684 2,"Four Corners","Coal","Arizona Public Service Co",1540 3,"Luna Energy Facility","Natural gas","Public Service Co of NM",559 4,"Hobbs Generating Station","Natural gas","CAMS NM LLC",530.4

  16. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"PPL Susquehanna","Nuclear","PPL Susquehanna LLC",2520 2,"FirstEnergy Bruce Mansfield","Coal","FirstEnergy Generation Corp",2510 3,"Limerick","Nuclear","Exelon Nuclear",2296 4,"Peach Bottom","Nuclear","Exelon Nuclear",2250.8 5,"Homer

  17. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 2,"Chief Joseph","Hydroelectric","USACE Northwestern Division",2456.2 3,"Transalta Centralia Generation","Coal","TransAlta Centralia Gen LLC",1340 4,"Rocky

  18. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Beluga","Natural gas","Chugach Electric Assn Inc",344.4 2,"George M Sullivan Generation Plant 2","Natural gas","Anchorage Municipal Light and Power",248.1 3,"Southcentral Power Project","Natural gas","Chugach Electric Assn Inc",169.7 4,"North

  19. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Jeffrey Energy Center","Coal","Westar Energy Inc",2155 2,"La Cygne","Coal","Kansas City Power & Light Co",1415.3 3,"Wolf Creek Generating Station","Nuclear","Wolf Creek Nuclear Optg Corp",1175 4,"Gordon Evans Energy Center","Natural gas","Kansas

  20. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Big Cajun 2","Coal","Louisiana Generating LLC",1756 2,"Willow Glen","Natural gas","Entergy Gulf States - LA LLC",1748.8 3,"Brame Energy Center","Petroleum","Cleco Power LLC",1543 4,"Nine Mile Point","Natural gas","Entergy Louisiana

  1. Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cents per kWh - Without New Dams | Department of Energy Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4 cents per kWh - Without New Dams Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4 cents per kWh - Without New Dams November 4, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Energy Secretary Steven Chu today announced up to $30.6 million in Recovery Act funding for the selection of seven hydropower projects that modernize hydropower

  2. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    SciTech Connect (OSTI)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan

    2014-09-12

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  3. Table 2. Ten largest plants by generation capacity, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Intermountain Power Project","Coal","Los Angeles Department of Water & Power",1800 ...

  4. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Bath County","Pumped storage","Virginia Electric & Power Co",3003 2,"North ...

  5. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"US GSA Heating and Transmission","Natural gas","US GSA Heating and Transmission",9

  6. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    California" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Dynegy Moss Landing Power Plant","Natural gas","Dynegy -Moss Landing LLC",2529 2,"Diablo Canyon","Nuclear","Pacific Gas & Electric Co",2240 3,"AES Alamitos LLC","Natural gas","AES Alamitos LLC",1997 4,"Castaic","Pumped Storage","Los Angeles

  7. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"William F Wyman","Petroleum","FPL Energy Wyman LLC",821.6 2,"Westbrook Energy Center Power Plant","Natural gas","Westbrook Energy Center",506 3,"Maine Independence Station","Natural gas","Casco Bay Energy Co LLC",490 4,"Verso Paper","Natural

  8. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Monroe (MI)","Coal","DTE Electric Company",2944 2,"Donald C Cook","Nuclear","Indiana Michigan Power Co",2069 3,"Ludington","Pumped storage","Consumers Energy Co",1872 4,"Midland Cogeneration Venture","Natural gas","Midland Cogeneration

  9. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Labadie","Coal","Union Electric Co - (MO)",2374 2,"Iatan","Coal","Kansas City Power & Light Co",1593.8 3,"Callaway","Nuclear","Union Electric Co - (MO)",1194 4,"Rush Island","Coal","Union Electric Co - (MO)",1182 5,"New

  10. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Colstrip","Coal","PPL Montana LLC",2094 2,"Noxon Rapids","Hydroelectric","Avista Corp",580.5 3,"Libby","Hydroelectric","USACE Northwestern Division",525 4,"Hungry Horse","Hydroelectric","U S Bureau of Reclamation",428

  11. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Gerald Gentleman","Coal","Nebraska Public Power District",1365 2,"Nebraska City","Coal","Omaha Public Power District",1339.3 3,"Cooper Nuclear Station","Nuclear","Nebraska Public Power District",766 4,"North Omaha","Coal","Omaha Public Power

  12. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Coal Creek","Coal","Great River Energy",1141.9 2,"Antelope Valley","Coal","Basin Electric Power Coop",900 3,"Milton R Young","Coal","Minnkota Power Coop, Inc",684 4,"Leland Olds","Coal","Basin Electric Power Coop",667

  13. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Northeastern","Coal","Public Service Co of Oklahoma",1815 2,"Redbud Power Plant","Natural gas","Oklahoma Gas & Electric Co",1752.4 3,"Muskogee","Coal","Oklahoma Gas & Electric Co",1505.5 4,"Seminole (OK)","Natural gas","Oklahoma Gas &

  14. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"John Day","Hydroelectric","USACE Northwestern Division",2160 2,"The Dalles","Hydroelectric","USACE Northwestern Division",1822.7 3,"Bonneville","Hydroelectric","USACE Northwestern Division",1153.9 4,"McNary","Hydroelectric","USACE Northwestern

  15. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Entergy Rhode Island State Energy LP","Natural gas","Entergy RISE",538 2,"Manchester Street","Natural gas","Dominion Energy New England, LLC",447 3,"Tiverton Power Plant","Natural gas","Tiverton Power LLC",250 4,"Ocean State Power","Natural

  16. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Oconee","Nuclear","Duke Energy Carolinas, LLC",2554 2,"Cross","Coal","South Carolina Public Service Authority",2350 3,"Catawba","Nuclear","Duke Energy Carolinas, LLC",2290.2 4,"Bad Creek","Pumped Storage","Duke Energy Carolinas, LLC",1360

  17. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Vermont Yankee","Nuclear","Entergy Nuclear Vermont Yankee",619.4 2,"Kingdom Community Wind","Wind","Green Mountain Power Corp",65 3,"J C McNeil","Wood","City of Burlington Electric - (VT)",52 4,"Bellows Falls","Hydroelectric","TransCanada Hydro

  18. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"John E Amos","Coal","Appalachian Power Co",2900 2,"FirstEnergy Harrison Power Station","Coal","Allegheny Energy Supply Co LLC",1954 3,"Mt Storm","Coal","Virginia Electric & Power Co",1640 4,"Mitchell (WV)","Coal","Kentucky Power

  19. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Jim Bridger","Coal","PacifiCorp",2111 2,"Laramie River Station","Coal","Basin Electric Power Coop",1710 3,"Dave Johnston","Coal","PacifiCorp",760 4,"Naughton","Coal","PacifiCorp",687 5,"Dry Fork Station","Coal","Basin

  20. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 2,"Palo Verde","Nuclear","Arizona Public Service Co",3937 3,"Martin","Natural gas","Florida Power & Light Co",3695 4,"W A Parish","Coal","NRG Texas Power LLC",3675

  1. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Palo Verde","Nuclear","Arizona Public Service Co",3937 2,"Navajo","Coal","Salt River Project",2250 3,"Springerville","Coal","Tucson Electric Power Co",1614.1 4,"Glen Canyon Dam","Hydroelectric","U S Bureau of Reclamation",1312

  2. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Comanche (CO)","Coal","Public Service Co of Colorado",1410 2,"Craig (CO)","Coal","Tri-State G & T Assn, Inc",1304 3,"Fort St Vrain","Natural gas","Public Service Co of Colorado",969 4,"Rawhide","Natural gas","Platte River Power

  3. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Martin","Natural gas","Florida Power & Light Co",3695 2,"West County Energy Center","Natural gas","Florida Power & Light Co",3669 3,"Turkey Point","Nuclear","Florida Power & Light Co",3552 4,"Manatee","Petroleum","Florida Power &

  4. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Scherer","Coal","Georgia Power Co",3406.7 2,"Bowen","Coal","Georgia Power Co",3202 3,"Jack McDonough","Natural gas","Georgia Power Co",2578 4,"Vogtle","Nuclear","Georgia Power Co",2302 5,"Wansley","Coal","Georgia Power

  5. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Brownlee","Hydroelectric","Idaho Power Co",744 2,"Dworshak","Hydroelectric","USACE Northwestern Division",400 3,"Langley Gulch Power Plant","Natural gas","Idaho Power Co",298.7 4,"Cabinet Gorge","Hydroelectric","Avista Corp",254.6

  6. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Gibson","Coal","Duke Energy Indiana Inc",3132 2,"Rockport","Coal","Indiana Michigan Power Co",2600 3,"R M Schahfer","Coal","Northern Indiana Pub Serv Co",1780 4,"AES Petersburg","Coal","Indianapolis Power & Light Co",1709.5 5,"Clifty

  7. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Walter Scott Jr Energy Center","Coal","MidAmerican Energy Co",1635.5 2,"George Neal North","Coal","MidAmerican Energy Co",909.9 3,"Louisa","Coal","MidAmerican Energy Co",746.2 4,"Ottumwa","Coal","Interstate Power and Light Co",718.4

  8. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Paradise","Coal","Tennessee Valley Authority",2201 2,"Trimble County","Coal","Louisville Gas & Electric Co",2185 3,"Ghent","Coal","Kentucky Utilities Co",1932 4,"E W Brown","Natural gas","Kentucky Utilities Co",1496 5,"Mill Creek

  9. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Sherburne County","Coal","Northern States Power Co - Minnesota",2242.8 2,"Clay Boswell","Coal","Minnesota Power Inc",1082.4 3,"Prairie Island","Nuclear","Northern States Power Co - Minnesota",1040 4,"Monticello Nuclear

  10. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    York" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Robert Moses Niagara","Hydroelectric","New York Power Authority",2353.2 2,"Ravenswood","Natural gas","TC Ravenswood LLC",2207.6 3,"Nine Mile Point Nuclear Station","Nuclear","Nine Mile Point Nuclear Sta LLC",1924.1 4,"Northport","Natural

  11. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Roxboro","Coal","Duke Energy Progress - (NC)",2433 2,"McGuire","Nuclear","Duke Energy Carolinas, LLC",2278.1 3,"Belews Creek","Coal","Duke Energy Carolinas, LLC",2220 4,"Marshall (NC)","Coal","Duke Energy Carolinas, LLC",2078 5,"Sherwood

  12. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Oahe","Hydroelectric","USCE-Missouri River District",714 2,"Big Bend Dam","Hydroelectric","USCE-Missouri River District",520 3,"Big Stone","Coal","Otter Tail Power Co",475.6 4,"Fort Randall","Hydroelectric","USCE-Missouri River District",360

  13. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Cumberland (TN)","Coal","Tennessee Valley Authority",2470 2,"Sequoyah","Nuclear","Tennessee Valley Authority",2277.7 3,"Johnsonville","Coal","Tennessee Valley Authority",2250.8 4,"Raccoon Mountain","Pumped storage","Tennessee Valley

  14. Capacity Value of PV and Wind Generation in the NV Energy System

    SciTech Connect (OSTI)

    Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

    2014-03-21

    Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

  15. Optimizing Geographic Allotment of Photovoltaic Capacity in a Distributed Generation Setting: Preprint

    SciTech Connect (OSTI)

    Urquhart, B.; Sengupta, M.; Keller, J.

    2012-09-01

    A multi-objective optimization was performed to allocate 2MW of PV among four candidate sites on the island of Lanai such that energy was maximized and variability in the form of ramp rates was minimized. This resulted in an optimal solution set which provides a range of geographic allotment alternatives for the fixed PV capacity. Within the optimal set, a tradeoff between energy produced and variability experienced was found, whereby a decrease in variability always necessitates a simultaneous decrease in energy. A design point within the optimal set was selected for study which decreased extreme ramp rates by over 50% while only decreasing annual energy generation by 3% over the maximum generation allocation. To quantify the allotment mix selected, a metric was developed, called the ramp ratio, which compares ramping magnitude when all capacity is allotted to a single location to the aggregate ramping magnitude in a distributed scenario. The ramp ratio quantifies simultaneously how much smoothing a distributed scenario would experience over single site allotment and how much a single site is being under-utilized for its ability to reduce aggregate variability. This paper creates a framework for use by cities and municipal utilities to reduce variability impacts while planning for high penetration of PV on the distribution grid.

  16. How and why Tampa Electric Company selected IGCC for its next generating capacity addition

    SciTech Connect (OSTI)

    Pless, D.E. )

    1992-01-01

    As the title indicates, the purpose of this paper is to relate how and why Tampa Electric Company decided to select the Integrated Gasification Combined Cycle (IGCC) for their next capacity addition at Polk Power Station, Polk Unit No. 1. For a complete understanding of this process, it is necessary to review the history related to the initial formulation of the IGCC concept as it was proposed to the Department of Energy (DOE) Clean Coal Initiative Round Three. Further, it is important to understand the relationship between Tampa Electric Company and TECO Pay Services Corporation (TPS). TECO Energy, Inc. is an energy related holding company with headquarters in Tampa, Florida. Tampa Electric Company is the principal, wholly-owned subsidiary of TECO Energy, Inc. Tampa Electric Company is an investor-owned electric utility with about 3200 MW of generation capacity of which 97% is coal fired. Tampa Electric Company serves about 2,000 square miles and approximately 470,000 customers, in west central Florida, primarily in and around Hillsborough County and Tampa, Florida. Tampa Electric Company generating units consist of coal fired units ranging in size from a 110 MW coal fired cyclone unit installed in 1957 to a 450 MW pulverized coal unit with wet limestone flue gas desulfurization installed in 1985. In addition, Tampa Electric Company has six (6) No. 6 oil fired steam units totaling approximately 220 MW. Five (5) of these units, located at the Hookers Point Station, were installed in the late 1940's and early 1950's. Tampa Electric also has about 150 MW of No. 2 oil fired start-up and peaking combustion turbines. The company also owns a 1966 vintage 12 MW natural gas fired steam plant (Dinner Lake) and two nO. 6 oil fired diesel units with heat recovery equipment built in 1983 (Phillips Plant).

  17. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues

    SciTech Connect (OSTI)

    Kollikkathara, Naushad; Feng Huan; Yu Danlin

    2010-11-15

    As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to form a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process.

  18. Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2"

  19. Neutron resonance averaging

    SciTech Connect (OSTI)

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs.

  20. Proposed changes to generating capacity 1980-1989 for the contiguous United States: as projected by the Regional Electric Reliability Councils in their April 1, 1980 long-range coordinated planning reports to the Department of Energy

    SciTech Connect (OSTI)

    1980-12-01

    The changes in generating capacity projected for 1980 to 1989 are summarized. Tabulated data provide summaries to the information on projected generating unit construction, retirements, and changes, in several different categories and groupings. The new generating units to be completed by the end of 1989 total 699, representing 259,490 megawatts. This total includes 10 wind power and one fuel cell installations totaling 48.5 MW to be completed by the end of 1989. There are 321 units totaling 13,222 MW to be retired. There are capacity changes due to upratings and deratings. Summary data are presented for: total requirement for electric energy generation for 1985; hydroelectric energy production for 1985; nuclear energy production for 1985; geothermal and other energy production for 1985; approximate non-fossil generation for 1985; range of fossil energy requirements for 1985; actual fossil energy sources 1974 to 1979; estimated range of fossil fuel requirements for 1985; coal capacity available in 1985; and computation of fuel use in 1985. Power plant capacity factors are presented. Extensive data on proposed generating capacity changes by individual units in the 9 Regional Electric Reliability Councils are presented.

  1. Property:Capacity | Open Energy Information

    Open Energy Info (EERE)

    Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property...

  2. Average Commercial Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  3. Average Residential Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  4. Concentration Averaging | Department of Energy

    Office of Environmental Management (EM)

    Concentration Averaging Concentration Averaging Summary Notes from 3 October 2007 Generic Technical Issue Discussion on Concentration Averaging PDF icon Summary Notes from 3...

  5. Next-Generation Wind Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Next-Generation Wind Technology Next-Generation Wind Technology Next-Generation Wind Technology The Wind Program works with industry partners to increase the performance and reliability of next-generation wind technologies while lowering the cost of wind energy. The program's research efforts have helped to increase the average capacity factor (a measure of power plant productivity) from 22% for wind turbines installed before 1998 to an average of 33% today, up from

  6. DOE Transmission Capacity Report | Department of Energy

    Office of Environmental Management (EM)

    Transmission Capacity Report DOE Transmission Capacity Report DOE Transmission Capacity Report: Transmission lines, substations, circuit breakers, capacitors, and other equipment provide more than just a highway to deliver energy and power from generating units to distribution systems. Transmission systems both complement and substitute for generation. Transmission generally enhances reliability; lowers the cost of electricity delivered to consumers; limits the ability of generators to exercise

  7. Property:Cooling Capacity | Open Energy Information

    Open Energy Info (EERE)

    Pages using the property "Cooling Capacity" Showing 2 pages using this property. D Distributed Generation Study615 kW Waukesha Packaged System + 90 + Distributed Generation...

  8. CHP Installed Capacity Optimizer Software

    Energy Science and Technology Software Center (OSTI)

    2004-11-30

    The CHP Installed Capacity Optimizer is a Microsoft Excel spreadsheet application that determines the most economic amount of capacity of distributed generation and thermal utilization equipment (e.g., absorption chillers) to install for any user-defined set of load and cost data. Installing the optimum amount of capacity is critical to the life-cycle economic viability of a distributed generation/cooling heat and power (CHP) application. Using advanced optimization algorithms, the software accesses the loads, utility tariffs, equipment costs,more » etc., and provides to the user the most economic amount of system capacity to install.« less

  9. "2014 Average Monthly Bill- Commercial"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption (kWh)","Average Price (centskWh)","Average Monthly Bill (Dollar and cents)" "New England",862269,5132.4894,14.699138,754.43169 "Connecticut",155372,6915.4089,15.547557...

  10. Dynamic Multiscale Averaging (DMA) of Turbulent Flow

    SciTech Connect (OSTI)

    Richard W. Johnson

    2012-09-01

    A new approach called dynamic multiscale averaging (DMA) for computing the effects of turbulent flow is described. The new method encompasses multiple applications of temporal and spatial averaging, that is, multiscale operations. Initially, a direct numerical simulation (DNS) is performed for a relatively short time; it is envisioned that this short time should be long enough to capture several fluctuating time periods of the smallest scales. The flow field variables are subject to running time averaging during the DNS. After the relatively short time, the time-averaged variables are volume averaged onto a coarser grid. Both time and volume averaging of the describing equations generate correlations in the averaged equations. These correlations are computed from the flow field and added as source terms to the computation on the next coarser mesh. They represent coupling between the two adjacent scales. Since they are computed directly from first principles, there is no modeling involved. However, there is approximation involved in the coupling correlations as the flow field has been computed for only a relatively short time. After the time and spatial averaging operations are applied at a given stage, new computations are performed on the next coarser mesh using a larger time step. The process continues until the coarsest scale needed is reached. New correlations are created for each averaging procedure. The number of averaging operations needed is expected to be problem dependent. The new DMA approach is applied to a relatively low Reynolds number flow in a square duct segment. Time-averaged stream-wise velocity and vorticity contours from the DMA approach appear to be very similar to a full DNS for a similar flow reported in the literature. Expected symmetry for the final results is produced for the DMA method. The results obtained indicate that DMA holds significant potential in being able to accurately compute turbulent flow without modeling for practical engineering applications.

  11. Spacetime averaged null energy condition

    SciTech Connect (OSTI)

    Urban, Douglas; Olum, Ken D.

    2010-06-15

    The averaged null energy condition has known violations for quantum fields in curved space, even when one considers only achronal geodesics. Many such examples involve rapid variation in the stress-energy tensor in the vicinity of the geodesic under consideration, giving rise to the possibility that averaging in additional dimensions would yield a principle universally obeyed by quantum fields. However, after discussing various procedures for additional averaging, including integrating over all dimensions of the manifold, we give here a class of examples that violate any such averaged condition.

  12. 2014 Average Monthly Bill- Residential

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption (kWh) Average Price (centskWh) Average Monthly Bill (Dollar and cents) New England 6,243,013 630 17.82 112.31 Connecticut 1,459,239 730 19.75 144.10 Maine...

  13. 2014 Average Monthly Bill- Commercial

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption (kWh) Average Price (centskWh) Average Monthly Bill (Dollar and cents) New England 862,269 5,132 14.70 754.43 Connecticut 155,372 6,915 15.55 1,075.18 Maine...

  14. High average power pockels cell

    DOE Patents [OSTI]

    Daly, Thomas P. (Pleasanton, CA)

    1991-01-01

    A high average power pockels cell is disclosed which reduces the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.

  15. Capacity Value of Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Madaeni, S. H.; Sioshansi, R.; Denholm, P.

    2011-06-01

    This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

  16. 2014 Average Monthly Bill- Industrial

    Gasoline and Diesel Fuel Update (EIA)

    Industrial (Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U) State Number of Customers Average Monthly Consumption (kWh) Average Price (cents/kWh) Average Monthly Bill (Dollar and cents) New England 28,017 56,833 11.84 6,730.30 Connecticut 4,648 63,016 12.92 8,138.94 Maine 3,023 92,554 8.95 8,281.27 Massachusetts 14,896 44,536 12.74 5,674.13 New Hampshire 3,342 49,099 11.93 5,857.27 Rhode Island 1,884 39,241 12.86 5,047.36 Vermont 224 527,528 10.23 53,984.67 Middle Atlantic 44,397

  17. Variable Average Absolute Percent Differences

    Gasoline and Diesel Fuel Update (EIA)

    Variable Average Absolute Percent Differences Percent of Projections Over- Estimated Gross Domestic Product Real Gross Domestic Product (Average Cumulative Growth)* (Table 2) 0.9 45.8 Petroleum Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a) 37.7 17.3 Imported Refiner Acquisition Cost of Crude Oil (Nominal $) (Table 3b) 36.6 18.7 Total Petroleum Consumption (Table 4) 7.9 70.7 Crude Oil Production (Table 5) 8.1 51.1 Petroleum Net Imports (Table 6) 24.7 73.8 Natural Gas

  18. FAQs about Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    about Storage Capacity How do I determine if my tanks are in operation or idle or ... Do I have to report storage capacity every month? No, only report storage capacity with ...

  19. Property:GeneratingCapacity | Open Energy Information

    Open Energy Info (EERE)

    1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWA...

  20. Hydropower Upgrades to Yield Added Generation at Average Costs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies such as high-efficiency, fish-friendly turbines, improved water intakes, ... In addition, the project will incorporate an upstream fish collection pool to enable ...

  1. Refinery Capacity Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 9 Shell Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 10...

  2. ORISE: Capacity Building

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity

  3. Table 16. Renewable energy generating capacity and generation

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 0.48 0.48 1.73 1.73 1.73 1.73 1.73 4.7% Solar photovoltaic 5 ... 1.05 2.49 7.90 7.96 8.62 10.33...

  4. Wind Gains ground, hitting 33 GW of installed capacity

    SciTech Connect (OSTI)

    2010-06-15

    The U.S. currently has 33 GW of installed wind capacity. Wind continues to gain ground, accounting for 42 percent of new capacity additions in the US in 2008.Globally, there are now 146 GW of wind capacity with an impressive and sustained growth trajectory that promises to dominate new generation capacities in many developing countries. The U.S., however, lags many European countries, with wind providing roughly 2 percent of electricity generation.

  5. Representation of the Solar Capacity Value in the ReEDS Capacity Expansion Model: Preprint

    SciTech Connect (OSTI)

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-08-01

    An important emerging issue is the estimation of renewables' contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to resource variability. Reliability-based methods, particularly, effective load-carrying capacity (ELCC), are considered to be the most robust techniques for addressing this resource variability. The Regional Energy Deployment System (ReEDS) capacity expansion model and other long-term electricity capacity planning models require an approach to estimating CV for generalized PV and system configurations with low computational and data requirements. In this paper we validate treatment of solar photovoltaic (PV) capacity value by ReEDS capacity expansion model by comparing model results to literature for a range of energy penetration levels. Results from the ReEDS model are found to compare well with both comparisons--despite not being resolved at an hourly scale.

  6. Market Designs for High Levels of Variable Generation: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Holttinen, H.; Kiviluoma, J.; Orths, A.; Lynch, M.; Soder, L.

    2014-10-01

    Variable renewable generation is increasing in penetration in modern power systems, leading to higher variability in the supply and price of electricity as well as lower average spot prices. This raises new challenges, particularly in ensuring sufficient capacity and flexibility from conventional technologies. Because the fixed costs and lifetimes of electricity generation investments are significant, designing markets and regulations that ensure the efficient integration of renewable generation is a significant challenge. This papers reviews the state of play of market designs for high levels of variable generation in the United States and Europe and considers new developments in both regions.

  7. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  8. Variable capacity gasification burner

    SciTech Connect (OSTI)

    Saxon, D.I.

    1985-03-05

    A variable capacity burner that may be used in gasification processes, the burner being adjustable when operating in its intended operating environment to operate at two different flow capacities, with the adjustable parts being dynamically sealed within a statically sealed structural arrangement to prevent dangerous blow-outs of the reactants to the atmosphere.

  9. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    CORPORATION / Refiner / Location Table 5. Refiners' Total Operable Atmospheric Crude Oil Distillation Capacity as of January 1, 2015 Calendar Day Barrels per CORPORATION / Refiner / Location Calendar Day Barrels per Companies with Capacity Over 100,000 bbl/cd .............................................................................................................................. VALERO ENERGY CORP 1,964,300 Valero Refining Co Texas LP

  10. Knudsen heat capacity

    SciTech Connect (OSTI)

    Babac, Gulru; Reese, Jason M.

    2014-05-15

    We present a Knudsen heat capacity as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  11. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Cokers Catalytic Crackers Hydrocrackers Capacity Inputs Capacity Inputs Capacity Inputs Table 8. Capacity and Fresh Feed Input to Selected Downstream Units at U.S. Refineries, 2013 - 2015 (Barrels per Calendar Day) Reformers Capacity Inputs 2013 2,596,369 5,681,643 1,887,024 2,302,764 4,810,611 1,669,540 2,600,518 3,405,017 74,900 543,800 41,500 47,537 387,148 33,255 PADD I 162,249 240,550 450,093 1,196,952 303,000 414,732 1,028,003 263,238 PADD II 648,603 818,718 1,459,176 2,928,673 981,114

  12. STEO January 2013 - average gasoline prices

    U.S. Energy Information Administration (EIA) Indexed Site

    drivers to see lower average gasoline prices in 2013 and 2014 U.S. retail gasoline prices are expected to decline over the next two years. The average pump price for regular...

  13. ARM - Evaluation Product - Areal Average Albedo (AREALAVEALB)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsAreal Average Albedo (AREALAVEALB) ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Areal Average Albedo (AREALAVEALB) [ ARM research - evaluation data product ] The Areal Averaged Albedo VAP yields areal averaged surface spectral albedo estimates from MFRSR measurements collected under fully

  14. WINDExchange: Potential Wind Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Wind Capacity Potential wind capacity maps are provided for a 2014 industry standard wind turbine installed on a 110-m tower, which represents plausible current technology options, and a wind turbine on a 140-m tower, which represents near-future technology options. Enlarge image This map shows the wind potential at a 110-m height for the United States. Download a printable map. Click on a state to view the wind map for that state. * Grid Granularity = 400 sq km* 35% Gross Capacity

  15. Refinery Capacity Report

    Reports and Publications (EIA)

    2015-01-01

    Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 states, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions. The Refinery Capacity Report does not contain working and shell storage capacity data. This data is now being collected twice a year as of March 31 and September 30 on the Form EIA-810, "Monthly Refinery Report", and is now released as a separate report Working and Net Available Shell Storage Capacity.

  16. Average and effective Q-values for fission product average (n...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Average and effective Q-values for fission product average (n,2n) and (n,3n) reaction cross sections Citation Details In-Document Search Title: Average and...

  17. EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average

  18. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, R.W.

    1984-10-30

    A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

  19. Dual capacity reciprocating compressor

    DOE Patents [OSTI]

    Wolfe, Robert W. (Wilkinsburg, PA)

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  20. Geothermal Plant Capacity Factors

    SciTech Connect (OSTI)

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  1. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    District and State Production Capacity Alkylates Aromatics Asphalt and Road Oil Isomers Lubricants Marketable Petroleum Coke Sulfur (short tons/day) Hydrogen (MMcfd) Table 2. Production Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2015 (Barrels per Stream Day, Except Where Noted) a 83,429 10,111 26,500 87,665 21,045 21,120 69 1,159 PAD District I Delaware 11,729 5,191 0 6,000 0 13,620 40 596 New Jersey 29,200 0 65,000 4,000 12,000 7,500 26 280 Pennsylvania

  2. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillation Crude Oil Atmospheric Distillation Vacuum Cracking Thermal Catalytic Cracking Fresh Recycled Catalytic Hydro- Cracking Catalytic Reforming Desulfurization Hydrotreating/ Fuels Solvent Deasphalting Downstream Charge Capacity Table 6. Operable Crude Oil and Downstream Charge Capacity of Petroleum Refineries, January 1, 1986 to (Thousand Barrels per Stream Day, Except Where Noted) January 1, 2015 JAN 1, 1986 16,346 6,892 1,880 5,214 463 1,125 3,744 8,791 NA JAN 1, 1987 16,460 6,935

  3. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Alkylates Aromatics Road Oil and Lubricants Petroleum Coke (MMcfd) Hydrogen Sulfur (short tons/day) Production Capacity Asphalt Isomers Marketable Table 7. Operable Production Capacity of Petroleum Refineries, January 1, 1986 to January 1, 2015 (Thousand Barrels per Stream Day, Except Where Noted) a JAN 1, 1986 941 276 804 258 246 356 2,357 NA JAN 1, 1987 974 287 788 326 250 364 2,569 23,806 JAN 1, 1988 993 289 788 465 232 368 2,418 27,639 JAN 1, 1989 1,015 290 823 469 230 333 2,501 28,369 JAN

  4. Spacetime Average Density (SAD) cosmological measures

    SciTech Connect (OSTI)

    Page, Don N.

    2014-11-01

    The measure problem of cosmology is how to obtain normalized probabilities of observations from the quantum state of the universe. This is particularly a problem when eternal inflation leads to a universe of unbounded size so that there are apparently infinitely many realizations or occurrences of observations of each of many different kinds or types, making the ratios ambiguous. There is also the danger of domination by Boltzmann Brains. Here two new Spacetime Average Density (SAD) measures are proposed, Maximal Average Density (MAD) and Biased Average Density (BAD), for getting a finite number of observation occurrences by using properties of the Spacetime Average Density (SAD) of observation occurrences to restrict to finite regions of spacetimes that have a preferred beginning or bounce hypersurface. These measures avoid Boltzmann brain domination and appear to give results consistent with other observations that are problematic for other widely used measures, such as the observation of a positive cosmological constant.

  5. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200

  6. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 9 9 0 1,268,500 1,236,500 32,000 1,332,000 1,297,000 35,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0

  7. CSTI high capacity power

    SciTech Connect (OSTI)

    Winter, J.M.

    1994-09-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY88, the Advanced Technology Program was incorporated into NASA`s new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  8. Representation of Solar Capacity Value in the ReEDS Capacity Expansion Model

    SciTech Connect (OSTI)

    Sigrin, B.; Sullivan, P.; Ibanez, E.; Margolis, R.

    2014-03-01

    An important issue for electricity system operators is the estimation of renewables' capacity contributions to reliably meeting system demand, or their capacity value. While the capacity value of thermal generation can be estimated easily, assessment of wind and solar requires a more nuanced approach due to the resource variability. Reliability-based methods, particularly assessment of the Effective Load-Carrying Capacity, are considered to be the most robust and widely-accepted techniques for addressing this resource variability. This report compares estimates of solar PV capacity value by the Regional Energy Deployment System (ReEDS) capacity expansion model against two sources. The first comparison is against values published by utilities or other entities for known electrical systems at existing solar penetration levels. The second comparison is against a time-series ELCC simulation tool for high renewable penetration scenarios in the Western Interconnection. Results from the ReEDS model are found to compare well with both comparisons, despite being resolved at a super-hourly temporal resolution. Two results are relevant for other capacity-based models that use a super-hourly resolution to model solar capacity value. First, solar capacity value should not be parameterized as a static value, but must decay with increasing penetration. This is because -- for an afternoon-peaking system -- as solar penetration increases, the system's peak net load shifts to later in the day -- when solar output is lower. Second, long-term planning models should determine system adequacy requirements in each time period in order to approximate LOLP calculations. Within the ReEDS model we resolve these issues by using a capacity value estimate that varies by time-slice. Within each time period the net load and shadow price on ReEDS's planning reserve constraint signals the relative importance of additional firm capacity.

  9. Polarized electron beams at milliampere average current

    SciTech Connect (OSTI)

    Poelker, Matthew

    2013-11-01

    This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today's CEBAF polarized source operating at ~ 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

  10. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2014 Lindsay Goldberg LLC/Axeon Speciality Products LLC Nustar Asphalt LLC/Nustar Asphalt Refining LLC 2/14 Savannah, GA 28,000 Lindsay Goldberg LLC/Axeon Specialty Products LLC Nustar Asphalt LLC/Nustar Asphalt Refining LLC 2/14 Paulsboro, NJ 70,000 bbl/cd= Barrels per calendar day Sources: Energy Information Administration (EIA) Form

  11. Why Are We Talking About Capacity Markets? (Presentation)

    SciTech Connect (OSTI)

    Milligan, M.

    2011-06-01

    Capacity markets represent a new and novel way to achieve greater economic use of variable generation assets such as wind and solar, and this concept is discussed in this presentation.

  12. Capacity Requirements to Support Inter-Balancing Area Wind Delivery

    SciTech Connect (OSTI)

    Kirby, B.; Milligan, M.

    2009-07-01

    Paper examines the capacity requirements that arise as wind generation is integrated into the power system and how those requirements change depending on where the wind energy is delivered.

  13. Average and effective Q-values for fission product average (n,2n) and

    Office of Scientific and Technical Information (OSTI)

    (n,3n) reaction cross sections (Technical Report) | SciTech Connect Technical Report: Average and effective Q-values for fission product average (n,2n) and (n,3n) reaction cross sections Citation Details In-Document Search Title: Average and effective Q-values for fission product average (n,2n) and (n,3n) reaction cross sections Authors: Kawano, Toshihiko [1] + Show Author Affiliations Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) Publication Date: 2015-10-01 OSTI

  14. Chaninik Wind Group: Harnessing Wind, Building Capacity

    Office of Environmental Management (EM)

    Chaninik Wind Group: Harnessing Wind, Building Capacity Installation of Village Energy Information System Smart Grid Controller, Thermal Stoves and Meters to Enhance the Efficiency of Wind- Diesel Hybrid Power Generation in Tribal Regions of Alaska Department of Energy Tribal Energy Program Review November 16-20, 2009 The Chananik Wind Group Our goal is to become the "heartbeat of our region." Department of Energy Tribal Energy Program Review November 16-20, 2009 Department of Energy

  15. Table 1. Real Average Transportation and Delivered Costs of Coal...

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Average Transportation and Delivered Costs of Coal, By Year and Primary Transport Mode" "Year","Average Transportation Cost of Coal (Dollars per Ton)","Average Delivered Cost...

  16. Fact #693: September 19, 2011 Average Vehicle Footprint for Cars...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the average track width of the vehicle. The upcoming Corporate Average Fuel Economy (CAFE) Standards have fuel economy targets based on the vehicle footprint. The average...

  17. High capacity oil burner

    SciTech Connect (OSTI)

    Pedrosa, O.A. Jr.; Couto, N.C.; Fanqueiro, R.C.C.

    1983-11-01

    The present invention relates to a high capacity oil burner comprising a cylindrical atomizer completely surrounded by a protective cylindrical housing having a diameter from 2 to 3 times greater than the diameter of said atomizer; liquid fuels being injected under pressure into said atomizer and accumulating within said atomizer in a chamber for the accumulation of liquid fuels, and compressed air being injected into a chamber for the accumulation of air; cylindrical holes communicating said chamber for the accumulation of liquid fuels with the outside and cylindrical holes communicating said chamber for the accumulation of air with said cylindrical holes communicating the chamber for the accumulation of liquids with the outside so that the injection of compressed air into said liquid fuel discharge holes atomizes said fuel which is expelled to the outside through the end portions of said discharge holes which are circumferentially positioned to be burnt by a pilot flame; said protecting cylindrical housing having at its ends perforated circular rings into which water is injected under pressure to form a protecting fan-like water curtain at the rear end of the housing and a fan-like water curtain at the flame to reduce the formation of soot; the burning efficiency of said burner being superior to 30 barrels of liquid fuel per day/kg of the apparatus.

  18. Distributed generation hits market

    SciTech Connect (OSTI)

    1997-10-01

    The pace at which vendors are developing and marketing gas turbines and reciprocating engines for small-scale applications may signal the widespread growth of distributed generation. Loosely defined to refer to applications in which power generation equipment is located close to end users who have near-term power capacity needs, distributed generation encompasses a broad range of technologies and load requirements. Disagreement is inevitable, but many industry observers associate distributed generation with applications anywhere from 25 kW to 25 MW. Ten years ago, distributed generation users only represented about 2% of the world market. Today, that figure has increased to about 4 or 5%, and probably could settle in the 20% range within a 3-to-5-year period, according to Michael Jones, San Diego, Calif.-based Solar Turbines Inc. power generation marketing manager. The US Energy Information Administration predicts about 175 GW of generation capacity will be added domestically by 2010. If 20% comes from smaller plants, distributed generation could account for about 35 GW. Even with more competition, it`s highly unlikely distributed generation will totally replace current market structures and central stations. Distributed generation may be best suited for making market inroads when and where central systems need upgrading, and should prove its worth when the system can`t handle peak demands. Typical applications include small reciprocating engine generators at remote customer sites or larger gas turbines to boost the grid. Additional market opportunities include standby capacity, peak shaving, power quality, cogeneration and capacity rental for immediate demand requirements. Integration of distributed generation systems--using gas-fueled engines, gas-fired combustion engines and fuel cells--can upgrade power quality for customers and reduce operating costs for electric utilities.

  19. Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation Generation Southeastern’s Power Operations employees perform the tasks of declaring, scheduling, dispatching, and accounting for capacity and energy generated at the 22 hydroelectric projects in the agency’s 11-state marketing area. Southeastern has Certified System Operators, meeting the criteria set forth by the North American Electric Reliability Corporation. Southeastern's Power Operations employees perform the tasks of declaring, scheduling, dispatching, and accounting

  20. Property:USGSMeanCapacity | Open Energy Information

    Open Energy Info (EERE)

    USGSMeanCapacity Jump to: navigation, search Property Name USGSMeanCapacity Property Type String Description Mean capacity potential at location based on the USGS 2008 Geothermal...

  1. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    of capacity that may understate the amount that can actually be stored. Working Gas Design Capacity: This measure estimates a natural gas facility's working gas capacity, as...

  2. EIS-0171: Pacificorp Capacity Sale

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration (BPA) EIS assesses the proposed action of providing surplus power from its facilites to PacifiCorp in response to its request for a continued supply of firm capacity. BPA has surplus electrical capacity (peakload energy) that BPA projects will not be required to meet its existing obligations.

  3. Modeling Climate-Water Impacts on Electricity Sector Capacity Expansion: Preprint

    SciTech Connect (OSTI)

    Cohen, S. M.; Macknick, J.; Averyt, K.; Meldrum, J.

    2014-05-01

    Climate change has the potential to exacerbate water availability concerns for thermal power plant cooling, which is responsible for 41% of U.S. water withdrawals. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water projections from Coupled Model Intercomparison Project 3 (CMIP3) data are applied to surface water rights available to new generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water rights. The mean climate projection has only a small impact on national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water rights to offset climate impacts. Climate impacts are notable in southwestern states that purchase fewer water rights and obtain a greater share from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.

  4. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Inc",630 8,"John W Turk Jr Power Plant","Coal","Southwestern Electric Power Co",609 9,"Harry L. Oswald","Natural gas","Arkansas Electric Coop Corp",548 10,"Flint ...

  5. Doubling Geothermal Generation Capacity by 2020. A Strategic Analysis

    SciTech Connect (OSTI)

    Wall, Anna; Young, Katherine

    2016-01-01

    This report identifies the potential of U.S. geothermal resource and the current market to add an additional 3 GW of geothermal by 2020, in order to meet the goal set forth in the Climate Action Plan.

  6. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Power LLC",2001.9 2,"Brayton Point","Coal","Brayton Point Energy LLC",1518.5 3,"Northfield Mountain","Pumped storage","FirstLight Power Resources, Inc. - MA",1124 ...

  7. Atmospheric Crude Oil Distillation Operable Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Charge Capacity (BSD) Catalytic Hydrotreating NaphthaReformer Feed Charge Cap (BSD) Catalytic Hydrotreating Gasoline Charge Capacity (BSD) Catalytic Hydrotreating...

  8. Interconnection Standards for Small Generators | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    (FERC) adopted new "small generator" interconnection standards for distributed energy resources up to 20 megawatts (MW) in capacity in November 2013 and September 2014,...

  9. Average System Cost Methodology : Administrator's Record of Decision.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1984-06-01

    Significant features of average system cost (ASC) methodology adopted are: retention of the jurisdictional approach where retail rate orders of regulartory agencies provide primary data for computing the ASC for utilities participating in the residential exchange; inclusion of transmission costs; exclusion of construction work in progress; use of a utility's weighted cost of debt securities; exclusion of income taxes; simplification of separation procedures for subsidized generation and transmission accounts from other accounts; clarification of ASC methodology rules; more generous review timetable for individual filings; phase-in of reformed methodology; and each exchanging utility must file under the new methodology within 20 days of implementation by the Federal Energy Regulatory Commission of the ten major participating utilities, the revised ASC will substantially only affect three. (PSB)

  10. Annual average efficiency of a solar thermochemical reactor....

    Office of Scientific and Technical Information (OSTI)

    Annual average efficiency of a solar thermochemical reactor. Citation Details In-Document Search Title: Annual average efficiency of a solar thermochemical reactor. Abstract not ...

  11. High Average Brightness Photocathode Development for FEL Applications...

    Office of Scientific and Technical Information (OSTI)

    Conference: High Average Brightness Photocathode Development for FEL Applications Citation Details In-Document Search Title: High Average Brightness Photocathode Development for...

  12. Excess Capacity from LADWP Control Area

    Office of Environmental Management (EM)

    Excess Capacity from LADWP Control Area (LADWP, Glendale, Burbank) Summer 2001 1 in 2 1 in 5 1in 10 Total Load (CEC Draft Demand Forecast 10/16/2000 6,169 6,471 6,533 LADWP DSM Program (10) Sales LADWP to CDWR 77 LADWP to TID 51 6,287 6,589 6,651 (In-State and Out-of-State) Thermal LADWP (LADWP 2000 Integrated Resource Plan) 5.170 Burbank 313 Glendale 297 Self Generation - in LADWP Control Area 338 6.118 Allowance for outages (6%) (367) Total 5,751 LADWP Hydro 1,948 Firm Contracts and

  13. COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY Empowering Communities in the Age of E-Government Prepared by Melinda Downing, Environmental Justice Program Manager, U.S. Department of Energy MAR 06 MARCH 2006 Since 1999, the Department of Energy has worked with the National Urban Internet and others to create community capacity through technology.  Empowering Communities in the Age of E-Government Table of Contents Message from the Environmental Justice Program Manager . . . . . . . . 3

  14. Total Natural Gas Underground Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  15. Total Natural Gas Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt Caverns Number of Existing Aquifers Number of Depleted Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data

  16. NMAC 17.9.568 Interconnection of Generating Facilities with a...

    Open Energy Info (EERE)

    a Rated Capacity up to and including 10 MWLegal Abstract These rules outline the procedures for interconnection of generating facilities with a rated capacity up to and...

  17. Spray dryer capacity stretched 50%

    SciTech Connect (OSTI)

    Paraskevas, J.

    1983-01-01

    This article describes plant equipment modifications which has resulted in a 50% increase in spray drying capacity. The installation of a new atomizer and screening system in NL Chemicals' Newberry Springs plant which produces natural clays for use as rheological additives in industrial coatings, cosmetics and other products, resulted in a 50% increase in spray drying capacity. Energy consumption per pound of product was reduced by 7%, and product quality improved. This was achieved in less than three months at an investment of less than 10% of what an additional spray dryer would have cost.

  18. Atmospheric Crude Oil Distillation Operable Capacity

    Gasoline and Diesel Fuel Update (EIA)

    (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum

  19. California Working Natural Gas Underground Storage Capacity ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  20. Worldwide Energy Efficiency Action through Capacity Building...

    Open Energy Info (EERE)

    Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Name Worldwide...

  1. Peak Underground Working Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Capacity Peak Underground Working Natural Gas Storage Capacity Released: September 3, 2010 for data as of April 2010 Next Release: August 2011 References Methodology Definitions...

  2. Washington Working Natural Gas Underground Storage Capacity ...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Washington Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  3. Mississippi Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  4. Pennsylvania Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Pennsylvania Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May...

  5. Working and Net Available Shell Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Working and Net Available Shell Storage Capacity With Data for September 2015 | Release ... Containing storage capacity data for crude oil, petroleum products, and selected biofuels. ...

  6. Fact #889: September 7, 2015 Average Diesel Price Lower than...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years Fact 889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First...

  7. Fact #889: September 7, 2015 Average Diesel Price Lower than...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years - Dataset Excel file and dataset for Average Diesel Price Lower than Gasoline ...

  8. Fact #835: August 25, 2014 Average Annual Gasoline Pump Price...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 835: August 25, 2014 Average Annual Gasoline Pump Price, 1929-2013 - Dataset Excel file with dataset for Fact 835: Average Annual Gasoline Pump Price, 1929-2013 File ...

  9. Fact #915: March 7, 2016 Average Historical Annual Gasoline Pump...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 915: March 7, 2016 Average Historical Annual Gasoline Pump Price, 1929-2015 - Dataset Excel file and dataset for Average Historical Annual Gasoline Pump Price, 1929-2015 File ...

  10. High average power scaling of optical parametric amplification through cascaded difference-frequency generators

    DOE Patents [OSTI]

    Jovanovic, Igor; Comaskey, Brian J.

    2004-09-14

    A first pump pulse and a signal pulse are injected into a first optical parametric amplifier. This produces a first amplified signal pulse. At least one additional pump pulse and the first amplified signal pulse are injected into at least one additional optical parametric amplifier producing an increased power coherent optical pulse.

  11. winter_capacity_2010.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 4.B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2001-2010 Actual, 2011-2015 Projected (Megawatts and Percent) Interconnection NERC Regional Assesment Area 2001/2002 2002/2003 2003/2004 2004/2005 2005/2006 2006/2007 2007/2008 2008/2009 2009/2010 2010/ 2011 2011/2012E 2012/2013E 2013/2014E 2014/2015E 2015/2016E FRCC 39,699 42,001 36,229 41,449 42,493 45,993 46,093 45,042 51,703 45,954 44,196 44,750 45,350

  12. High capacity carbon dioxide sorbent

    DOE Patents [OSTI]

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  13. High capacity immobilized amine sorbents

    DOE Patents [OSTI]

    Gray, McMahan L.; Champagne, Kenneth J.; Soong, Yee; Filburn, Thomas

    2007-10-30

    A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

  14. Probabilistic Approach to Quantifying the Contribution of Variable Generation and Transmission to System Reliability: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Milligan, M.

    2012-09-01

    The increasing electrical load served by variable generation (VG), such as wind and solar energy, in the United States and many other countries has stimulated an interesting line of research to better quantify the capacity value of these resources. Methods applied traditionally to thermal units based on their average outage rates do not apply to VG because of their uncertain and non-dispatchable nature. The North American Electric Reliability Corporation's Integration of Variable Generation Task Force recently released a report that highlighted the need to develop and benchmark underlying loss-of-load expectation and related metrics that reasonably and fairly calculate the contribution to planning reserves, or capacity value, of solar and wind power. As the fraction of generation coming from VG becomes more significant, their estimated capacity value will have a larger impact on system planning. In this paper, we provide a method to include VG in traditional probabilistic-based adequacy methods. This method has been implemented in the Renewable Energy Probabilistic Resource Assessment tool developed at the National Renewable Energy Laboratory. Through an example based on the U.S. Western Interconnection, this method is applied to assess the effect that transmission can have on resource adequacy. We also analyze the interactions between available transmission and capacity value for VG.

  15. Accelerating Monte Carlo molecular simulations by reweighting and reconstructing Markov chains: Extrapolation of canonical ensemble averages and second derivatives to different temperature and density conditions

    SciTech Connect (OSTI)

    Kadoura, Ahmad; Sun, Shuyu Salama, Amgad

    2014-08-01

    Accurate determination of thermodynamic properties of petroleum reservoir fluids is of great interest to many applications, especially in petroleum engineering and chemical engineering. Molecular simulation has many appealing features, especially its requirement of fewer tuned parameters but yet better predicting capability; however it is well known that molecular simulation is very CPU expensive, as compared to equation of state approaches. We have recently introduced an efficient thermodynamically consistent technique to regenerate rapidly Monte Carlo Markov Chains (MCMCs) at different thermodynamic conditions from the existing data points that have been pre-computed with expensive classical simulation. This technique can speed up the simulation more than a million times, making the regenerated molecular simulation almost as fast as equation of state approaches. In this paper, this technique is first briefly reviewed and then numerically investigated in its capability of predicting ensemble averages of primary quantities at different neighboring thermodynamic conditions to the original simulated MCMCs. Moreover, this extrapolation technique is extended to predict second derivative properties (e.g. heat capacity and fluid compressibility). The method works by reweighting and reconstructing generated MCMCs in canonical ensemble for Lennard-Jones particles. In this paper, system's potential energy, pressure, isochoric heat capacity and isothermal compressibility along isochors, isotherms and paths of changing temperature and density from the original simulated points were extrapolated. Finally, an optimized set of Lennard-Jones parameters (?, ?) for single site models were proposed for methane, nitrogen and carbon monoxide.

  16. Utility Static Generation Reliability

    Energy Science and Technology Software Center (OSTI)

    1993-03-05

    PICES (Probabilistic Investigation of Capacity and Energy Shortages) was developed for estimating an electric utility''s expected frequency and duration of capacity deficiencies on a daily on and off-peak basis. In addition to the system loss-of-load probability (LOLP) and loss-of-load expectation (LOLE) indices, PICES calculates the expected frequency and duration of system capacity deficiencies and the probability, expectation, and expected frequency and duration of a range of system reserve margin states. Results are aggregated and printedmore » on a weekly, monthly, or annual basis. The program employs hourly load data and either the two-state (on/off) or a more sophisticated three-state (on/partially on/fully off) generating unit representation. Unit maintenance schedules are determined on a weekly, levelized reserve margin basis. In addition to the 8760-hour annual load record, the user provides the following information for each unit: plant capacity, annual maintenance requirement, two or three-state unit failure and repair rates, and for three-state models, the partial state capacity deficiency. PICES can also supply default failure and repair rate values, based on the Edison Electric Institute''s 1979 Report on Equipment Availability for the Ten-Year Period 1968 Through 1977, for many common plant types. Multi-year analysis can be performed by specifying as input data the annual peak load growth rates and plant addition and retirement schedules for each year in the study.« less

  17. U.S. Oxygenated, Average Refiner Gasoline Prices

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    - - - - - - 1994-2014 Through Retail Outlets 1994-2006 Sales for Resale, Average - - - - - - 1994-2014 DTW 1994-2006 Rack 1994-2006 Bulk 1994-2006

  18. "Table 2. Real Average Annual Coal Transportation Costs, By Primary...

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Average Annual Coal Transportation Costs, By Primary Transport Mode and Supply Region" "(2013 dollars per ton)" "Coal Supply Region",2008,2009,2010,2011,2012,2013 "Railroad"...

  19. Turning Bayesian model averaging into Bayesian model combination...

    Office of Scientific and Technical Information (OSTI)

    Turning Bayesian model averaging into Bayesian model combination Authors: Carroll, James 1 ; Monteith, Kristine 2 ; Seppi, Kevin 2 ; Martinez, Tony 2 + Show Author...

  20. High Average Brightness Photocathode Development for FEL Applications...

    Office of Scientific and Technical Information (OSTI)

    High Average Brightness Photocathode Development for FEL Applications Citation Details ... OFFICE OF SCIENCE (SC) Country of Publication: United States Language: English Subject: 46

  1. Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1978-2014 | Department of Energy 70: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 The Corporate Average Fuel Economy (CAFE) is the sales-weighted harmonic mean fuel economy of a manufacturer's fleet of new cars or light trucks in a certain model year (MY). First enacted by Congress in 1975, the standards for cars began in MY 1978 and for light trucks in MY 1979. In general, the average of all

  2. Electric Sales, Revenue, and Average Price 2011 - Energy Information...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alphabetical Frequency Tag Cloud See All Electricity Reports Electric Sales, Revenue, and Average Price With Data for 2014 | Release Date: October 21, 2015 | Next Release Date: ...

  3. Impacts of different data averaging times on statistical analysis of distributed domestic photovoltaic systems

    SciTech Connect (OSTI)

    Widen, Joakim; Waeckelgaard, Ewa; Paatero, Jukka; Lund, Peter

    2010-03-15

    The trend of increasing application of distributed generation with solar photovoltaics (PV-DG) suggests that a widespread integration in existing low-voltage (LV) grids is possible in the future. With massive integration in LV grids, a major concern is the possible negative impacts of excess power injection from on-site generation. For power-flow simulations of such grid impacts, an important consideration is the time resolution of demand and generation data. This paper investigates the impact of time averaging on high-resolution data series of domestic electricity demand and PV-DG output and on voltages in a simulated LV grid. Effects of 10-minutely and hourly averaging on descriptive statistics and duration curves were determined. Although time averaging has a considerable impact on statistical properties of the demand in individual households, the impact is smaller on aggregate demand, already smoothed from random coincidence, and on PV-DG output. Consequently, the statistical distribution of simulated grid voltages was also robust against time averaging. The overall judgement is that statistical investigation of voltage variations in the presence of PV-DG does not require higher resolution than hourly. (author)

  4. Iran outlines oil productive capacity

    SciTech Connect (OSTI)

    Not Available

    1992-11-09

    National Iranian Oil Co. (NIOC) tested production limits last month to prove a claim of 4 million bd capacity made at September's meeting of the organization of Petroleum Exporting Countries. Onshore fields account for 3.6 million bd of the total, with offshore fields providing the rest. NIOC plans to expand total capacity to 4.5 million bd by April 1993, consisting of 4 million b/d onshore and 500,000 b/d offshore. Middle East Economic Survey says questions remain about completion dates for gas injection, drilling, and offshore projects, but expansion targets are attainable within the scheduled time. NIOC said some slippage may be unavoidable, but it is confident the objective will be reached by third quarter 1993 at the latest. More than 60 rigs are working or about to be taken under contract to boost development drilling in onshore fields and provide gas injection in some. NIOC has spent $3.2 billion in foreign exchange on the drilling program in the last 2 1/2 years.

  5. U.S. Refining Capacity Utilization

    Reports and Publications (EIA)

    1995-01-01

    This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in reported crude oil distillation capacities and utilization rates among different classes of refineries.

  6. California: Conducting Polymer Binder Boosts Storage Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award California: Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award August 19, 2013 - 10:17am ...

  7. T10K Change Max Capacity

    Energy Science and Technology Software Center (OSTI)

    2013-08-16

    This command line utility will enable/disable the Oracle StorageTek T10000 tape drive's maximum capacity feature.

  8. High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources

    SciTech Connect (OSTI)

    Laxson, A.; Hand, M. M.; Blair, N.

    2006-10-01

    This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

  9. Capacity planning in a transitional economy: What issues? Which models?

    SciTech Connect (OSTI)

    Mubayi, V.; Leigh, R.W.; Bright, R.N.

    1996-03-01

    This paper is devoted to an exploration of the important issues facing the Russian power generation system and its evolution in the foreseeable future and the kinds of modeling approaches that capture those issues. These issues include, for example, (1) trade-offs between investments in upgrading and refurbishment of existing thermal (fossil-fired) capacity and safety enhancements in existing nuclear capacity versus investment in new capacity, (2) trade-offs between investment in completing unfinished (under construction) projects based on their original design versus investment in new capacity with improved design, (3) incorporation of demand-side management options (investments in enhancing end-use efficiency, for example) within the planning framework, (4) consideration of the spatial dimensions of system planning including investments in upgrading electric transmission networks or fuel shipment networks and incorporating hydroelectric generation, (5) incorporation of environmental constraints and (6) assessment of uncertainty and evaluation of downside risk. Models for exploring these issues include low power shutdown (LPS) which are computationally very efficient, though approximate, and can be used to perform extensive sensitivity analyses to more complex models which can provide more detailed answers but are computationally cumbersome and can only deal with limited issues. The paper discusses which models can usefully treat a wide range of issues within the priorities facing decision makers in the Russian power sector and integrate the results with investment decisions in the wider economy.

  10. "2014 Average Monthly Bill- Industrial"

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial" "(Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U)" "State","Number of Customers","Average Monthly Consumption (kWh)","Average Price (cents/kWh)","Average Monthly Bill (Dollar and cents)" "New England",28017,56832.854,11.842263,6730.2959 "Connecticut",4648,63016.315,12.915601,8138.9361 "Maine",3023,92553.92,8.9475131,8281.2741

  11. "2014 Average Monthly Bill- Residential"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential" "(Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U)" "State","Number of Customers","Average Monthly Consumption (kWh)","Average Price (cents/kWh)","Average Monthly Bill (Dollar and cents)" "New England",6243013,630.1915,17.822291,112.31456 "Connecticut",1459239,729.69421,19.748254,144.10186 "Maine",706952,549.37782,15.272983,83.90638

  12. U.S. Refiner Sales to End Users (Average) Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales Type: Sales to End Users, Average Through Retail Outlets Sales for Resale, Average DTW Rack Bulk Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Formulation/ Grade Sales Type Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Conventional, Average 2.161 2.057 1.785 1.759 1.601 1.472 1994-2015 Conventional Regular 2.124 2.018 1.743 1.721 1.562 1.431 1994-2015 Conventional Midgrade 2.325 2.229 1.985 1.923

  13. Want to Put an End to Capacity Markets? Think Real-Time Pricing

    SciTech Connect (OSTI)

    Reeder, Mark

    2006-07-15

    The amount of generation capacity that must be installed to meet resource adequacy requirements often causes the energy market to be suppressed to the point that it fails to produce sufficient revenues to attract new entry. A significant expansion in the use of real-time pricing can, over time, cause the energy market to become a more bountiful source of revenues for generators, allowing the elimination of the capacity market. (author)

  14. Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants

    Reports and Publications (EIA)

    2013-01-01

    The current and future projected cost and performance characteristics of new electric generating capacity are a critical input into the development of energy projections and analyses.

  15. 1,"Elm Road Generating Station","Coal","Wisconsin Electric Power...

    U.S. Energy Information Administration (EIA) Indexed Site

    summer capacity (MW)" 1,"Elm Road Generating Station","Coal","Wisconsin Electric Power ... Electric Power Co",1190 4,"Columbia (WI)","Coal","Wisconsin Power & Light ...

  16. Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards, Model Years 2012-2016 The final rule for the Corporate Average Fuel Economy (CAFE) Standards was published in March 2010. Under this rule, each light vehicle model...

  17. Does anyone have access to 2012 average residential rates by...

    Open Energy Info (EERE)

    Does anyone have access to 2012 average residential rates by utility company? I'm seeing an inconsistency between the OpenEI website and EIA 861 data set. Home > Groups > Utility...

  18. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars, cents per kilowatt-hour)" ,1993,1994,1995,1996,1997,1998,1999,2000,200...

  19. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars, cents per kilowatt-hour) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002...

  20. Pennsylvania Average Price of Natural Gas Delivered to Residential...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    67 15.82 17.83 18.62 18.32 NA 1989-2015 Commercial Average Price 10.73 11.25 12.09 11.21 11.10 NA...

  1. Averaged null energy condition violation in a conformally flat spacetime

    SciTech Connect (OSTI)

    Urban, Douglas; Olum, Ken D.

    2010-01-15

    We show that the averaged null energy condition can be violated by a conformally coupled scalar field in a conformally flat spacetime in 3+1 dimensions. The violation is dependent on the quantum state and can be made as large as desired. It does not arise from the presence of anomalies, although anomalous violations are also possible. Since all geodesics in conformally flat spacetimes are achronal, the achronal averaged null energy condition is likewise violated.

  2. High Average Brightness Photocathode Development for FEL Applications

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect High Average Brightness Photocathode Development for FEL Applications Citation Details In-Document Search Title: High Average Brightness Photocathode Development for FEL Applications Authors: Rao T. ; Ben-Zvi I. ; Skarita, J. ; Wang, E. Publication Date: 2013-08-26 OSTI Identifier: 1095687 Report Number(s): BNL--101607-2013-CP KA-04 DOE Contract Number: DE-AC02-98CH10886 Resource Type: Conference Resource Relation: Conference: 35th International Free Electron

  3. Flavor Physics Data from the Heavy Flavor Averaging Group (HFAG)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Heavy Flavor Averaging Group (HFAG) was established at the May 2002 Flavor Physics and CP Violation Conference in Philadelphia, and continues the LEP Heavy Flavor Steering Group's tradition of providing regular updates to the world averages of heavy flavor quantities. Data are provided by six subgroups that each focus on a different set of heavy flavor measurements: B lifetimes and oscillation parameters, Semi-leptonic B decays, Rare B decays, Unitarity triangle parameters, B decays to charm final states, and Charm Physics.

  4. Strongly Coupled Data Assimilation Using Leading Averaged Coupled

    Office of Scientific and Technical Information (OSTI)

    Covariance (LACC). Part II: CGCM experiments (Journal Article) | SciTech Connect Strongly Coupled Data Assimilation Using Leading Averaged Coupled Covariance (LACC). Part II: CGCM experiments Citation Details In-Document Search Title: Strongly Coupled Data Assimilation Using Leading Averaged Coupled Covariance (LACC). Part II: CGCM experiments Authors: Liu, Feiyu ; Liu, Zhengyu ; Zhang, S. ; Liu, Y. ; Jacob, Robert L. Publication Date: 2015-11-01 OSTI Identifier: 1237902 DOE Contract Number:

  5. U.S. Nuclear Generation of Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Capacity and Generation by State and Reactor 2015 P XLS ... data information in the Annual Energy Review, table 9.2. U. S. Nuclear power plants projected electricity ...

  6. Illinois Nuclear Profile - Braidwood Generation Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,178","9,197",89.1,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  7. Illinois Nuclear Profile - Byron Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,164","10,337",101.4,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  8. North Dakota Refining Capacity Study

    SciTech Connect (OSTI)

    Dennis Hill; Kurt Swenson; Carl Tuura; Jim Simon; Robert Vermette; Gilberto Marcha; Steve Kelly; David Wells; Ed Palmer; Kuo Yu; Tram Nguyen; Juliam Migliavacca

    2011-01-05

    According to a 2008 report issued by the United States Geological Survey, North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. With the size and remoteness of the discovery, the question became 'can a business case be made for increasing refining capacity in North Dakota?' And, if so what is the impact to existing players in the region. To answer the question, a study committee comprised of leaders in the region's petroleum industry were brought together to define the scope of the study, hire a consulting firm and oversee the study. The study committee met frequently to provide input on the findings and modify the course of the study, as needed. The study concluded that the Petroleum Area Defense District II (PADD II) has an oversupply of gasoline. With that in mind, a niche market, naphtha, was identified. Naphtha is used as a diluent used for pipelining the bitumen (heavy crude) from Canada to crude markets. The study predicted there will continue to be an increase in the demand for naphtha through 2030. The study estimated the optimal configuration for the refinery at 34,000 barrels per day (BPD) producing 15,000 BPD of naphtha and a 52 percent refinery charge for jet and diesel yield. The financial modeling assumed the sponsor of a refinery would invest its own capital to pay for construction costs. With this assumption, the internal rate of return is 9.2 percent which is not sufficient to attract traditional investment given the risk factor of the project. With that in mind, those interested in pursuing this niche market will need to identify incentives to improve the rate of return.

  9. Revision of the Branch Technical Position on Concentration Averaging and Encapsulation - 12510

    SciTech Connect (OSTI)

    Heath, Maurice; Kennedy, James E.; Ridge, Christianne; Lowman, Donald [U.S. NRC, Washington, DC, 20555-0001 (United States); Cochran, John [Sandia National Laboratory (United States)

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) regulation governing low-level waste (LLW) disposal, 'Licensing Requirements for Land Disposal of Radioactive Waste', 10 CFR Part 61, establishes a waste classification system based on the concentration of specific radionuclides contained in the waste. The regulation also states, at 10 CFR 61.55(a)(8), that, 'the concentration of a radionuclide (in waste) may be averaged over the volume of the waste, or weight of the waste if the units are expressed as nanocuries per gram'. The NRC's Branch Technical Position on Concentration Averaging and Encapsulation provides guidance on averaging radionuclide concentrations in waste under 10 CFR 61.55(a)(8) when classifying waste for disposal. In 2007, the NRC staff proposed to revise the Branch Technical Position on Concentration Averaging and Encapsulation. The Branch Technical Position on Concentration Averaging and Encapsulation is an NRC guidance document for averaging and classifying wastes under 10 CFR 61. The Branch Technical Position on Concentration Averaging and Encapsulation is used by nuclear power plants (NPPs) licensees and sealed source users, among others. In addition, three of the four U.S. LLW disposal facility operators are required to honor the Branch Technical Position on Concentration Averaging and Encapsulation as a licensing condition. In 2010, the Commission directed the staff to develop guidance regarding large scale blending of similar homogenous waste types, as described in SECY-10-0043 as part of its Branch Technical Position on Concentration Averaging and Encapsulation revision. The Commission is improving the regulatory approach used in the Branch Technical Position on Concentration Averaging and Encapsulation by moving towards a making it more risk-informed and performance-based approach, which is more consistent with the agency's regulatory policies. Among the improvements to the Branch Technical Position on Concentration Averaging and Encapsulation are more risk-informed limits for the sizes of sealed sources for safe disposal. Using more realistic intruder exposure scenarios, the suggested limits for Class B and C waste disposal of sealed sources, particularly Cs-137 and Co-60, have been increased. These suggested changes, and others in the Branch Technical Position on Concentration Averaging and Encapsulation, if adopted by Agreement States, have the potential to eliminate numerous orphan sources (i.e., sources that currently have no disposal pathway) that are now being stored. Permanent disposal of these sources, rather than temporary storage, will help reduce safety and security risks. The revised Branch Technical Position on Concentration Averaging and Encapsulation has an alternative approach section which provides flexibility to generators and processors, while also ensuring that intruder protection will be maintained. Alternative approaches provide flexibility by allowing for consideration of likelihood of intrusion, the possibility of averaging over larger volumes and allowing for disposal of large activity sources. The revision has improved the organization of the Branch Technical Position on Concentration Averaging and Encapsulation, improved its clarity, better documented the bases for positions, and made the positions more risk informed while also maintaining protection for intruder as required by 10 CFR Part 61. (authors)

  10. High average power scaleable thin-disk laser

    DOE Patents [OSTI]

    Beach, Raymond J. (Livermore, CA); Honea, Eric C. (Sunol, CA); Bibeau, Camille (Dublin, CA); Payne, Stephen A. (Castro Valley, CA); Powell, Howard (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)

    2002-01-01

    Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.

  11. Turning Bayesian model averaging into Bayesian model combination

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Turning Bayesian model averaging into Bayesian model combination Citation Details In-Document Search Title: Turning Bayesian model averaging into Bayesian model combination Authors: Carroll, James [1] ; Monteith, Kristine [2] ; Seppi, Kevin [2] ; Martinez, Tony [2] + Show Author Affiliations Los Alamos National Laboratory BYU Publication Date: 2011-07-28 OSTI Identifier: 1084524 Report Number(s): LA-UR-11-04419; LA-UR-11-4419 DOE Contract Number: AC52-06NA25396

  12. U.S. average gasoline price up slightly

    Gasoline and Diesel Fuel Update (EIA)

    U.S. average gasoline price up slightly The U.S. average retail price for regular gasoline rose slightly to $3.65 a gallon on Monday. That's up a tenth of a penny from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.89 a gallon, down 4.4 cents from a week ago. Prices were lowest in the Gulf Coast States at 3.34 a gallon, down 2.6 cents. Jonathan Cogan for EIA,

  13. Turning Bayesian model averaging into Bayesian model combination

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Turning Bayesian model averaging into Bayesian model combination Citation Details In-Document Search Title: Turning Bayesian model averaging into Bayesian model combination Authors: Carroll, James [1] ; Monteith, Kristine [2] ; Seppi, Kevin [2] ; Martinez, Tony [2] + Show Author Affiliations Los Alamos National Laboratory BYU Publication Date: 2011-07-28 OSTI Identifier: 1084524 Report Number(s): LA-UR-11-04419; LA-UR-11-4419 DOE Contract Number: AC52-06NA25396

  14. WINDExchange: U.S. Installed Wind Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Printable Version Bookmark and Share Workforce Development Collegiate Wind Competition Wind for Schools Project School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Installed Wind Capacity This page has maps of the United States that show installed wind capacity by state and its progression. This map shows the installed wind capacity in megawatts. As of June 30, 2015, 67,870 megawatts have been installed. Alaska, 62 megawatts; Hawaii,

  15. Increasing the Capacity of Existing Power Lines

    SciTech Connect (OSTI)

    2013-04-01

    The capacity of the grid has been largely unchanged for decades and needs to expand to accommodate new power plants and renewable energy projects.

  16. EEI/DOE Transmission Capacity Report

    Broader source: Energy.gov (indexed) [DOE]

    ... The data show a continuation of past trends. Specifically, transmission capacity is being ... 1978 through 2012. These results show trends over time at the national and regional ...

  17. Solar Energy and Capacity Value (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01

    This is a one-page, two-sided fact sheet on the capacity of solar power to provide value to utilities and power system operators.

  18. ,"Washington Natural Gas Underground Storage Capacity (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Underground Storage Capacity (MMcf)",1,"Annual",2014 ,"Release...

  19. ,"Texas Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Underground Storage Capacity (MMcf)",1,"Annual",2014 ,"Release Date:","9...

  20. Voluntary Initiative: Partnering to Enhance Program Capacity

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Program Sustainability Peer Exchange Call Series: Voluntary Initiative: Partnering to Enhance Program Capacity, Call Slides and Summary, May 8, 2014.

  1. Peak Underground Working Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Previous Articles Previous Articles Estimates of Peak Underground Working Gas Storage Capacity in the United States, 2009 Update (Released, 8312009) Estimates of Peak Underground...

  2. Underground Natural Gas Working Storage Capacity - Methodology

    Gasoline and Diesel Fuel Update (EIA)

    ... changed to active. References Methodology Related Links Storage Basics Field Level Annual Capacity Data Map of Storage Facilities Natural Gas Data Tables Short-Term Energy Outlook

  3. ,"Total Natural Gas Underground Storage Capacity "

    U.S. Energy Information Administration (EIA) Indexed Site

    ...orcapaepg0sacmmcfm.htm" ,"Source:","Energy Information Administration" ,"For Help, ... 1: Total Natural Gas Underground Storage Capacity " "Sourcekey","N5290US2","NGMEP...

  4. Climate Change Capacity Development (C3D+) | Open Energy Information

    Open Energy Info (EERE)

    Capacity Development (C3D+) Jump to: navigation, search Logo: Climate Change Capacity Development (C3D+) Name Climate Change Capacity Development (C3D+) AgencyCompany...

  5. Trinidad and Tobago-Building Capacity for Innovative Policy NAMAs...

    Open Energy Info (EERE)

    Trinidad and Tobago-Building Capacity for Innovative Policy NAMAs (Redirected from Building Capacity for Innovative Policy NAMAs) Jump to: navigation, search Name Building Capacity...

  6. UNDP-Low Emission Capacity Building Programme | Open Energy Informatio...

    Open Energy Info (EERE)

    Capacity Building Programme Jump to: navigation, search Logo: UNDP-Low Emission Capacity Building Programme Name UNDP-Low Emission Capacity Building Programme AgencyCompany...

  7. Generation Planning (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Generation Planning Thumbnail image of BPA White Book BPA White Book (1998-2014) Draft Dry...

  8. Carbon Dioxide Sealing Capacity: Textural or Compositional Controls?

    SciTech Connect (OSTI)

    Cranganu, Constantin; Soleymani, Hamidreza; Sadiqua, Soleymani; Watson, Kieva

    2013-11-30

    This research project is aiming to assess the carbon dioxide sealing capacity of most common seal-rocks, such as shales and non-fractured limestones, by analyzing the role of textural and compositional parameters of those rocks. We hypothesize that sealing capacity is controlled by textural and/or compositional pa-rameters of caprocks. In this research, we seek to evaluate the importance of textural and compositional parameters affecting the sealing capacity of caprocks. The conceptu-al framework involves two testable end-member hypotheses concerning the sealing ca-pacity of carbon dioxide reservoir caprocks. Better understanding of the elements controlling sealing quality will advance our knowledge regarding the sealing capacity of shales and carbonates. Due to relatively low permeability, shale and non-fractured carbonate units are considered relatively imper-meable formations which can retard reservoir fluid flow by forming high capillary pres-sure. Similarly, these unites can constitute reliable seals for carbon dioxide capture and sequestration purposes. This project is a part of the comprehensive project with the final aim of studying the caprock sealing properties and the relationship between microscopic and macroscopic characteristics of seal rocks in depleted gas fields of Oklahoma Pan-handle. Through this study we examined various seal rock characteristics to infer about their respective effects on sealing capacity in special case of replacing reservoir fluid with super critical carbon dioxide (scCO{sub 2}). To assess the effect of textural and compositional properties on scCO{sub 2} maximum reten-tion column height we collected 30 representative core samples in caprock formations in three counties (Cimarron, Texas, Beaver) in Oklahoma Panhandle. Core samples were collected from various seal formations (e.g., Cherokee, Keys, Morrowan) at different depths. We studied the compositional and textural properties of the core samples using several techniques. Mercury Injection Porosimetry (MIP), Scanning Electron Microsco-py SEM, and Sedigraph measurements are used to assess the pore-throat-size distribu-tion, sorting, texture, and grain size of the samples. Also, displacement pressure at 10% mercury saturation (Pd) and graphically derived threshold pressure (Pc) were deter-mined by MIP technique. SEM images were used for qualitative study of the minerals and pores texture of the core samples. Moreover, EDS (Energy Dispersive X-Ray Spec-trometer), BET specific surface area, and Total Organic Carbon (TOC) measurements were performed to study various parameters and their possible effects on sealing capaci-ty of the samples. We found that shales have the relatively higher average sealing threshold pressure (Pc) than carbonate and sandstone samples. Based on these observations, shale formations could be considered as a promising caprock in terms of retarding scCO{sub 2} flow and leak-age into above formations. We hypothesized that certain characteristics of shales (e.g., 3 fine pore size, pore size distribution, high specific surface area, and strong physical chemical interaction between wetting phase and mineral surface) make them an effi-cient caprock for sealing super critical CO{sub 2}. We found that the displacement pressure at 10% mercury saturation could not be the ultimate representative of the sealing capacity of the rock sample. On the other hand, we believe that graphical method, introduced by Cranganu (2004) is a better indicator of the true sealing capacity. Based on statistical analysis of our samples from Oklahoma Panhandle we assessed the effects of each group of properties (textural and compositional) on maximum supercriti-cal CO{sub 2} height that can be hold by the caprock. We conclude that there is a relatively strong positive relationship (+.40 to +.69) between supercritical CO{sub 2} column height based on Pc and hard/ soft mineral content index (ratio of minerals with Mohs hardness more than 5 over minerals with Mohs hardness less than 5) in both shales and limestone samples. Average median pore rad

  9. Parity-violating anomalies and the stationarity of stochastic averages

    SciTech Connect (OSTI)

    Reuter, M.

    1988-01-15

    Within the framework of stochastic quantization the parity-violating anomalies in odd space-time dimensions are derived from the asymptotic stationarity of the stochastic average of a certain fermion bilinear. Contrary to earlier attempts, this method yields the correct anomalies for both massive and massless fermions.

  10. Speckle averaging system for laser raster-scan image projection

    DOE Patents [OSTI]

    Tiszauer, Detlev H. (Tracy, CA); Hackel, Lloyd A. (Livermore, CA)

    1998-03-17

    The viewers' perception of laser speckle in a laser-scanned image projection system is modified or eliminated by the addition of an optical deflection system that effectively presents a new speckle realization at each point on the viewing screen to each viewer for every scan across the field. The speckle averaging is accomplished without introduction of spurious imaging artifacts.

  11. Speckle averaging system for laser raster-scan image projection

    DOE Patents [OSTI]

    Tiszauer, D.H.; Hackel, L.A.

    1998-03-17

    The viewers` perception of laser speckle in a laser-scanned image projection system is modified or eliminated by the addition of an optical deflection system that effectively presents a new speckle realization at each point on the viewing screen to each viewer for every scan across the field. The speckle averaging is accomplished without introduction of spurious imaging artifacts. 5 figs.

  12. Florida Average Price of Natural Gas Delivered to Residential and

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers by Local Distribution and Markete 4.58 24.59 24.41 23.37 21.56 19.15 1989-2015 Commercial Average Price 10.92 10.91 11.15 10.61 10.69 10.89

  13. Georgia Average Price of Natural Gas Delivered to Residential and

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers by Local Distribution and Markete 5.45 24.78 25.75 20.43 15.20 14.41 1989-2015 Commercial Average Price 9.08 9.07 9.38 8.65 9.72 7.80

  14. Virginia Average Price of Natural Gas Delivered to Residential and

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers by Local Distribution and Market 20.25 21.10 19.45 NA 11.72 12.09 1989-2015 Commercial Average Price 8.55 8.58 8.91 8.02 7.57 7.9

  15. Maryland Average Price of Natural Gas Delivered to Residential...

    Gasoline and Diesel Fuel Update (EIA)

    8.35 18.44 19.08 19.39 13.51 12.72 1989-2015 Commercial Average Price 11.74 10.98 11.61 11.11 9.98 9.56...

  16. Michigan Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    2.50 13.65 13.52 13.21 8.93 7.84 1989-2015 Commercial Average Price 8.91 9.31 9.17 9.05 7.46 6.75...

  17. New York Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    6.28 17.10 17.33 17.53 14.26 12.27 1989-2015 Commercial Average Price 6.84 6.08 5.75 5.99 6.27 6.3...

  18. Maryland Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 12.20 2006-2010 Marketers 13.51 2006-2010 Percent Sold by Local Distribution Companies 81.7 2006-2010 Commercial Average Price 9.87 10.29 10.00 10.06 ...

  19. Florida Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 17.85 2006-2010 Marketers 19.44 2006-2010 Percent Sold by Local Distribution Companies 97.9 2006-2010 Commercial Average Price 10.60 11.14 10.41 10.87 ...

  20. New Jersey Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 12.77 2006-2010 Marketers 14.87 2006-2010 Percent Sold by Local Distribution Companies 96.6 2006-2010 Commercial Average Price 10.11 9.51 8.50 9.55 ...

  1. Michigan Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Average Price 8.95 9.14 8.35 7.82 8.28 7.49 1967-2015 Local Distribution Companies 10.00 2006-2010 Marketers 7.61 2006-2010 Percent Sold by Local Distribution Companies ...

  2. Virginia Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 12.64 2006-2010 Marketers 13.64 2006-2010 Percent Sold by Local Distribution Companies 90.9 2006-2010 Commercial Average Price 9.55 9.69 8.77 8.83 9.17 ...

  3. Pennsylvania Average Price of Natural Gas Delivered to Residential...

    U.S. Energy Information Administration (EIA) Indexed Site

    Local Distribution Companies 12.82 2006-2010 Marketers 13.78 2006-2010 Percent Sold by Local Distribution Companies 91.2 2006-2010 Commercial Average Price 10.47 10.42 10.24 10.11 ...

  4. District of Columbia Average Price of Natural Gas Delivered to...

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Price 12.26 12.24 11.19 11.64 12.18 11.55 1980-2015 Local Distribution Companies 12.99 2006-2010 Marketers 12.12 2006-2010 Percent Sold by Local Distribution Companies 16.4 ...

  5. Compact neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  6. Improving Power System Modeling. A Tool to Link Capacity Expansion and Production Cost Models

    SciTech Connect (OSTI)

    Diakov, Victor; Cole, Wesley; Sullivan, Patrick; Brinkman, Gregory; Margolis, Robert

    2015-11-01

    Capacity expansion models (CEM) provide a high-level long-term view at the prospects of the evolving power system. In simulating the possibilities of long-term capacity expansion, it is important to maintain the viability of power system operation in the short-term (daily, hourly and sub-hourly) scales. Production-cost models (PCM) simulate routine power system operation on these shorter time scales using detailed load, transmission and generation fleet data by minimizing production costs and following reliability requirements. When based on CEM 'predictions' about generating unit retirements and buildup, PCM provide more detailed simulation for the short-term system operation and, consequently, may confirm the validity of capacity expansion predictions. Further, production cost model simulations of a system that is based on capacity expansion model solution are 'evolutionary' sound: the generator mix is the result of logical sequence of unit retirement and buildup resulting from policy and incentives. The above has motivated us to bridge CEM with PCM by building a capacity expansion - to - production cost model Linking Tool (CEPCoLT). The Linking Tool is built to onset capacity expansion model prescriptions onto production cost model inputs. NREL's ReEDS and Energy Examplar's PLEXOS are the capacity expansion and the production cost models, respectively. Via the Linking Tool, PLEXOS provides details of operation for the regionally-defined ReEDS scenarios.

  7. Comparison of Capacity Value Methods for Photovoltaics in the Western United States

    SciTech Connect (OSTI)

    Madaeni, S. H.; Sioshansi, R.; Denholm, P.

    2012-07-01

    This report compares different capacity value estimation techniques applied to solar photovoltaics (PV). It compares more robust data and computationally intense reliability-based capacity valuation techniques to simpler approximation techniques at 14 different locations in the western United States. The capacity values at these locations are computed while holding the underlying power system characteristics fixed. This allows the effect of differences in solar availability patterns on the capacity value of PV to be directly ascertained, without differences in the power system confounding the results. Finally, it examines the effects of different PV configurations, including varying the orientation of a fixed-axis system and installing single- and double-axis tracking systems, on the capacity value. The capacity value estimations are done over an eight-year running from 1998 to 2005, and both long-term average capacity values and interannual capacity value differences (due to interannual differences in solar resource availability) are estimated. Overall, under the assumptions used in the analysis, we find that some approximation techniques can yield similar results to reliability-based methods such as effective load carrying capability.

  8. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized

  9. Working and Net Available Shell Storage Capacity

    Reports and Publications (EIA)

    2015-01-01

    Working and Net Available Shell Storage Capacity is the U.S. Energy Information Administration’s (EIA) report containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an important crude oil market center. Data are released twice each year near the end of May (data for March 31) and near the end of November (data for September 30).

  10. Modeling an Application's Theoretical Minimum and Average Transactional Response Times

    SciTech Connect (OSTI)

    Paiz, Mary Rose

    2015-04-01

    The theoretical minimum transactional response time of an application serves as a ba- sis for the expected response time. The lower threshold for the minimum response time represents the minimum amount of time that the application should take to complete a transaction. Knowing the lower threshold is beneficial in detecting anomalies that are re- sults of unsuccessful transactions. On the converse, when an application's response time falls above an upper threshold, there is likely an anomaly in the application that is causing unusual performance issues in the transaction. This report explains how the non-stationary Generalized Extreme Value distribution is used to estimate the lower threshold of an ap- plication's daily minimum transactional response time. It also explains how the seasonal Autoregressive Integrated Moving Average time series model is used to estimate the upper threshold for an application's average transactional response time.

  11. Average dynamics of a finite set of coupled phase oscillators

    SciTech Connect (OSTI)

    Dima, Germn C. Mindlin, Gabriel B.

    2014-06-15

    We study the solutions of a dynamical system describing the average activity of an infinitely large set of driven coupled excitable units. We compared their topological organization with that reconstructed from the numerical integration of finite sets. In this way, we present a strategy to establish the pertinence of approximating the dynamics of finite sets of coupled nonlinear units by the dynamics of its infinitely large surrogate.

  12. Averaging cross section data so we can fit it

    SciTech Connect (OSTI)

    Brown, D.

    2014-10-23

    The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).

  13. Table A44. Average Prices of Purchased Electricity and Steam

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Average Prices of Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Dollars per Physical Units)" ," Electricity",," Steam" ," (kWh)",," (million Btu)" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic

  14. Table 14a. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Average Electricity Prices, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars, cents per kilowatt-hour in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,6.799,6.7999,6.9,6.9,6.9,6.9,7,7,7.1,7.1,7.2,7.2,7.2,7.3,7.3,7.4,7.5,7.6 "AEO

  15. Planned Geothermal Capacity | Open Energy Information

    Open Energy Info (EERE)

    Map of Development Projects Planned Geothermal Capacity in the U.S. is reported by the Geothermal Energy Association via their Annual U.S. Geothermal Power Production and...

  16. Capacity Building Project with Howard University

    Broader source: Energy.gov [DOE]

    The purpose of this initiative is to build community capacity for public participation in environmental and energy decision making. The target communities are those impacted by U.S. Department of...

  17. Comparing Resource Adequacy Metrics and Their Influence on Capacity Value: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Milligan, M.

    2014-04-01

    Traditional probabilistic methods have been used to evaluate resource adequacy. The increasing presence of variable renewable generation in power systems presents a challenge to these methods because, unlike thermal units, variable renewable generation levels change over time because they are driven by meteorological events. Thus, capacity value calculations for these resources are often performed to simple rules of thumb. This paper follows the recommendations of the North American Electric Reliability Corporation?s Integration of Variable Generation Task Force to include variable generation in the calculation of resource adequacy and compares different reliability metrics. Examples are provided using the Western Interconnection footprint under different variable generation penetrations.

  18. Measuring the capacity impacts of demand response

    SciTech Connect (OSTI)

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  19. Alaska Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    2013 2014 View History Total Storage Capacity 83,592 83,592 2013-2014 Depleted Fields 83,592 83,592 2013-2014 Total Working Gas Capacity 67,915 67,915 2013-2014 Depleted Fields 67,915 67,915 2013-2014 Total Number of Existing Fields 5 5 2013-2014 Depleted Fields 5 5 2013

  20. Cooling and Heating Season Impacts of Right-Sizing of Fixed- and Variable-Capacity Heat Pumps With Attic and Indoor Ductwork

    SciTech Connect (OSTI)

    Cummings, James; Withers, Charles; Kono, Jamie

    2015-06-01

    ?A new generation of central, ducted variable-capacity heat pump systems has come on the market, promising very high cooling and heating efficiency. They are controlled differently than standard fixed-capacity systems. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they vary their cooling and heating output over a wide range (approximately 40% - 118% of nominal full capacity), thus staying 'on' for 60% - 100% more hours per day compared to fixed -capacity systems. Experiments in this research examined the performance of 2-ton and 3-ton fixed- and variable-capacity systems and the impacts of system oversizing.

  1. Nuclear power generation and fuel cycle report 1996

    SciTech Connect (OSTI)

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  2. Fact #885: August 10, 2015 Electricity Generation - Planned Additions and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retirements | Department of Energy 5: August 10, 2015 Electricity Generation - Planned Additions and Retirements Fact #885: August 10, 2015 Electricity Generation - Planned Additions and Retirements SUBSCRIBE to the Fact of the Week Between April 2015 and March 2016, there is a cumulative total of 88,953 megawatts of new electric utility capacity planned. This new capacity will add to the current U.S. capacity of about 1,071,000 megawatts. Over half (53%) of the new capacity that is planned

  3. U.S. Conventional, Average Refiner Gasoline Prices

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1.841 2.259 3.008 3.083 2.977 2.778 1994-2014 Through Retail Outlets 1.845 2.264 3.016 3.098 2.997 2.800 1994-2014 Sales for Resale, Average 1.738 2.143 2.841 2.886 2.774 2.587 1994-2014 DTW 1.843 2.270 2.939 3.024 2.825 2.736 1994-2014 Rack 1.750 2.155 2.851 2.887 2.775 2.589 1994-2014 Bulk 1.664 2.069 2.758 2.843 2.755 2.535 1994-2014

  4. U.S. Conventional, Average Refiner Gasoline Prices

    Gasoline and Diesel Fuel Update (EIA)

    161 2.057 1.785 1.759 1.601 1.472 1994-2015 Through Retail Outlets 2.160 2.058 1.786 1.760 1.602 1.472 1994-2015 Sales for Resale, Average 1.975 1.763 1.553 1.513 1.373 1.290 1994-2015 DTW 2.319 2.109 1.812 1.637 1.591 1.532 1994-2015 Rack 1.965 1.759 1.559 1.519 1.372 1.288 1994-2015 Bulk 1.991 1.707 1.449 1.413 1.326 1.254

  5. U.S. Reformulated, Average Refiner Gasoline Prices

    Gasoline and Diesel Fuel Update (EIA)

    660 2.501 2.155 2.007 1.905 1.836 1994-2015 Through Retail Outlets 2.661 2.503 2.157 2.008 1.907 1.837 1994-2015 Sales for Resale, Average 2.283 1.996 1.728 1.651 1.537 1.497 1994-2015 DTW 2.795 2.477 2.128 1.979 1.864 1.854 1994-2015 Rack 2.165 1.886 1.634 1.577 1.459 1.412 1994-2015 Bulk 2.208 1.866 1.645 1.566 1.524 1.456

  6. Table 17. Average Price of U.S. Coke Exports

    Gasoline and Diesel Fuel Update (EIA)

    7. Average Price of U.S. Coke Exports (dollars per short ton) Year to Date Continent and Country of Destination July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 234.67 253.60 264.43 252.47 261.48 -3.4 Canada* 209.80 247.54 287.72 243.43 285.74 -14.8 Mexico 460.37 307.48 200.84 305.69 217.48 40.6 Other** 643.59 666.50 577.54 640.63 545.34 17.5 South America Total 135.27 - 465.18 252.87 154.98 63.2 Other** 135.27 - 465.18 252.87 154.98 63.2

  7. Table 19. Average Price of U.S. Coal Imports

    Gasoline and Diesel Fuel Update (EIA)

    9. Average Price of U.S. Coal Imports (dollars per short ton) Year to Date Continent and Country of Origin July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 121.76 122.71 133.33 119.13 130.81 -8.9 Canada 121.76 122.71 133.33 119.13 130.81 -8.9 Mexico - - 209.82 113.43 209.82 -45.9 South America Total 65.22 66.89 76.03 67.64 78.56 -13.9 Colombia 65.34 66.89 75.63 67.59 78.37 -13.8 Peru - 92.99 81.65 86.24 81.65 5.6 Venezuela 57.60 - 90.59

  8. Table 22. Average Price of U.S. Coke Imports

    Gasoline and Diesel Fuel Update (EIA)

    2. Average Price of U.S. Coke Imports (dollars per short ton) Year to Date Continent and Country of Origin July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 120.37 192.95 189.61 131.75 96.81 36.1 Canada 120.37 192.95 189.61 131.75 96.81 36.1 South America Total 201.39 274.73 223.17 202.76 223.17 -9.1 Colombia 201.39 274.73 223.17 202.76 223.17 -9.1 Europe Total 120.34 302.86 363.18 153.02 397.65 -61.5 Czech Republic - 288.36 - 288.36 - -

  9. Table 8. Average Price of U.S. Coal Exports

    Gasoline and Diesel Fuel Update (EIA)

    8. Average Price of U.S. Coal Exports (dollars per short ton) Year to Date Continent and Country of Destination July - September 2015 April - June 2015 July - September 2014 2015 2014 Percent Change North America Total 82.44 83.85 79.86 81.55 76.14 7.1 Canada* 89.71 89.92 84.62 88.24 75.55 16.8 Dominican Republic 77.11 78.67 56.46 84.15 53.14 58.4 Guatemala 34.59 103.41 - 45.24 81.92 -44.8 Honduras 45.36 45.36 54.43 47.54 54.43 -12.7 Jamaica 80.74 90.72 55.34 73.19 54.88 33.4 Mexico 74.06 75.06

  10. Gauge and averaging in gravitational self-force

    SciTech Connect (OSTI)

    Gralla, Samuel E.

    2011-10-15

    A difficulty with previous treatments of the gravitational self-force is that an explicit formula for the force is available only in a particular gauge (Lorenz gauge), where the force in other gauges must be found through a transformation law once the Lorenz-gauge force is known. For a class of gauges satisfying a 'parity condition' ensuring that the Hamiltonian center of mass of the particle is well-defined, I show that the gravitational self-force is always given by the angle average of the bare gravitational force. To derive this result I replace the computational strategy of previous work with a new approach, wherein the form of the force is first fixed up to a gauge-invariant piece by simple manipulations, and then that piece is determined by working in a gauge designed specifically to simplify the computation. This offers significant computational savings over the Lorenz gauge, since the Hadamard expansion is avoided entirely and the metric perturbation takes a very simple form. I also show that the rest mass of the particle does not evolve due to first-order self-force effects. Finally, I consider the 'mode sum regularization' scheme for computing the self-force in black hole background spacetimes, and use the angle-average form of the force to show that the same mode-by-mode subtraction may be performed in all parity-regular gauges. It appears plausible that suitably modified versions of the Regge-Wheeler and radiation gauges (convenient to Schwarzschild and Kerr, respectively) are in this class.

  11. Microwave generator

    DOE Patents [OSTI]

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  12. Transparent Cost Database for Generation at Regional Level? ...

    Open Energy Info (EERE)

    cost of electricity generation using different technologies. I think at all these data are national averages, however. I was wondering if such data was available at...

  13. Levelized Power Generation Cost Codes

    Energy Science and Technology Software Center (OSTI)

    1996-04-30

    LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generationmore » cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor.« less

  14. Table 14a. Average Electricity Prices, Projected vs. Actual

    Gasoline and Diesel Fuel Update (EIA)

    a. Average Electricity Prices, Projected vs. Actual Projected Price in Constant Dollars (constant dollars, cents per kilowatt-hour in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 6.80 6.80 6.90 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20 7.20 7.20 7.30 7.30 7.40 7.50 7.60 AEO 1995 1993 6.80 6.80 6.70 6.70 6.70 6.70 6.70 6.80 6.80 6.90 6.90 6.90 7.00 7.00 7.10 7.10 7.20

  15. Ensemble bayesian model averaging using markov chain Monte Carlo sampling

    SciTech Connect (OSTI)

    Vrugt, Jasper A; Diks, Cees G H; Clark, Martyn P

    2008-01-01

    Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery etal. Mon Weather Rev 133: 1155-1174, 2(05)) has recommended the Expectation-Maximization (EM) algorithm for BMA model training, even though global convergence of this algorithm cannot be guaranteed. In this paper, we compare the performance of the EM algorithm and the recently developed Differential Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo (MCMC) algorithm for estimating the BMA weights and variances. Simulation experiments using 48-hour ensemble data of surface temperature and multi-model stream-flow forecasts show that both methods produce similar results, and that their performance is unaffected by the length of the training data set. However, MCMC simulation with DREAM is capable of efficiently handling a wide variety of BMA predictive distributions, and provides useful information about the uncertainty associated with the estimated BMA weights and variances.

  16. High average power magnetic modulator for copper lasers

    SciTech Connect (OSTI)

    Cook, E.G.; Ball, D.G.; Birx, D.L.; Branum, J.D.; Peluso, S.E.; Langford, M.D.; Speer, R.D.; Sullivan, J.R.; Woods, P.G.

    1991-06-14

    Magnetic compression circuits show the promise of long life for operation at high average powers and high repetition rates. When the Atomic Vapor Laser Isotope Separation (AVLIS) Program at Lawrence Livermore National Laboratory needed new modulators to drive their higher power copper lasers in the Laser Demonstration Facility (LDF), existing technology using thyratron switched capacitor inversion circuits did not meet the goal for long lifetimes at the required power levels. We have demonstrated that magnetic compression circuits can achieve this goal. Improving thyratron lifetime is achieved by increasing the thyratron conduction time, thereby reducing the effect of cathode depletion. This paper describes a three stage magnetic modulator designed to provide a 60 kV pulse to a copper laser at a 4. 5 kHz repetition rate. This modulator operates at 34 kW input power and has exhibited MTBF of {approx}1000 hours when using thyratrons and even longer MTBFs with a series of stack of SCRs for the main switch. Within this paper, the electrical and mechanical designs for the magnetic compression circuits are discussed as are the important performance parameters of lifetime and jitter. Ancillary circuits such as the charge circuit and reset circuit are shown. 8 refs., 5 figs., 1 tab.

  17. HPSS Disk Cache Upgrade Caters to Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPSS Disk Cache Upgrade Caters to Capacity HPSS Disk Cache Upgrade Caters to Capacity Analysis of NERSC Users' Data-Access Habits Reveals Sweet Spot for Short-term Storage October 16, 2015 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov HPSS 09 vert NERSC users today are benefiting from a business decision made three years ago by the center's Storage Systems Group (SSG) as they were looking to upgrade the High-Performance Storage System (HPSS) disk cache: rather than focus primarily on

  18. Ukraine-Capacity Building for Low Carbon Growth | Open Energy...

    Open Energy Info (EERE)

    Ukraine-Capacity Building for Low Carbon Growth (Redirected from UNDP-Capacity Building for Low Carbon Growth in Ukraine) Jump to: navigation, search Name UNDP-Capacity Building...

  19. Magnetocumulative generator

    DOE Patents [OSTI]

    Pettibone, J.S.; Wheeler, P.C.

    1981-06-08

    An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing providing a housing chamber with an electrically conducting surface. The chamber forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber, from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers disposed adjacent to the housing causes a phased closure of the chamber which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

  20. Photon generator

    DOE Patents [OSTI]

    Srinivasan-Rao, Triveni (Shoreham, NY)

    2002-01-01

    A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

  1. Cluster generator

    DOE Patents [OSTI]

    Donchev, Todor I. (Urbana, IL); Petrov, Ivan G. (Champaign, IL)

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  2. Thermoelectric generator

    DOE Patents [OSTI]

    Pryslak, N.E.

    1974-02-26

    A thermoelectric generator having a rigid coupling or stack'' between the heat source and the hot strap joining the thermoelements is described. The stack includes a member of an insulating material, such as ceramic, for electrically isolating the thermoelements from the heat source, and a pair of members of a ductile material, such as gold, one each on each side of the insulating member, to absorb thermal differential expansion stresses in the stack. (Official Gazette)

  3. Electric generator

    DOE Patents [OSTI]

    Foster, Jr., John S. (Pleasanton, CA); Wilson, James R. (Livermore, CA); McDonald, Jr., Charles A. (Danville, CA)

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  4. Fact #615: March 22, 2010 Average Vehicle Trip Length | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 5: March 22, 2010 Average Vehicle Trip Length Fact #615: March 22, 2010 Average Vehicle Trip Length According to the latest National Household Travel Survey, the average trip length grew to over 10 miles in 2009, just slightly over the 9.9 mile average in 2001. Trips to work in 2009 increased to an average of 12.6 miles. The average trip length has been growing each survey year since the lowest average in 1983. Average Vehicle Trip Length, 1969-2009 Graph showing the average vehicle

  5. Illinois Nuclear Profile - Dresden Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Dresden Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 2,867,"7,727",101.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" 3,867,"6,866",90.4,"BWR","application/vnd.ms-excel","application/vnd.ms-excel"

  6. Kansas Nuclear Profile - Wolf Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,160","9,556",94.0,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  7. Washington Nuclear Profile - Columbia Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Columbia Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 2,"1,097","9,241",96.2,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,"1,097","9,241",96.2

  8. HT Combinatorial Screening of Novel Materials for High Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage Presentation for...

  9. Montana Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Montana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  10. Design and Evaluation of Novel High Capacity Cathode Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon esp13thackeray.pdf More Documents & Publications Design and Evaluation of High Capacity Cathodes Design and Evaluation of Novel High Capacity Cathode Materials Design ...

  11. Design and Evaluation of Novel High Capacity Cathode Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Design and Evaluation of High Capacity Cathodes Vehicle Technologies Office Merit Review 2014: Design and Evaluation of High Capacity Cathodes Design and ...

  12. Property:Installed Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    Installed Capacity (MW) Jump to: navigation, search Property Name Installed Capacity (MW) Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:Insta...

  13. Tunisia-Capacity Development for GHG inventories and MRV | Open...

    Open Energy Info (EERE)

    Tunisia-Capacity Development for GHG inventories and MRV Jump to: navigation, search Name Capacity Development for GHG inventories and MRV in Tunisia AgencyCompany Organization...

  14. EPA-GHG Inventory Capacity Building | Open Energy Information

    Open Energy Info (EERE)

    EPA-GHG Inventory Capacity Building Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building AgencyCompany Organization: United States Environmental...

  15. EPA-GHG Inventory Capacity Building | Open Energy Information

    Open Energy Info (EERE)

    Capacity Building) Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building AgencyCompany Organization: United States Environmental Protection...

  16. Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics with SEI Layer Modeling-Thermo-electrochemistry, Capacity Degradation and Mechanics with SEI Layer 2011 DOE ...

  17. Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

    Office of Environmental Management (EM)

    Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

  18. DOE Issues Enforcement Guidance on Large-Capacity Clothes Washer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enforcement Guidance on Large-Capacity Clothes Washer Waivers and the Waiver Process DOE Issues Enforcement Guidance on Large-Capacity Clothes Washer Waivers and the Waiver Process...

  19. Property:Number of Plants included in Capacity Estimate | Open...

    Open Energy Info (EERE)

    Plants included in Capacity Estimate Jump to: navigation, search Property Name Number of Plants included in Capacity Estimate Property Type Number Retrieved from "http:...

  20. New Mexico Working Natural Gas Underground Storage Capacity ...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  1. UNDP/EC-China-Climate Change Capacity Building Program | Open...

    Open Energy Info (EERE)

    UNDPEC-China-Climate Change Capacity Building Program Redirect page Jump to: navigation, search REDIRECT EU-UNDP Low Emission Capacity Building Programme (LECBP) Retrieved from...

  2. EC/UNDP Climate Change Capacity Building Program | Open Energy...

    Open Energy Info (EERE)

    ECUNDP Climate Change Capacity Building Program Jump to: navigation, search Name UNDPEC Climate Change Capacity Building Program AgencyCompany Organization The European Union...

  3. Costa Rica-EU-UNDP Climate Change Capacity Building Program ...

    Open Energy Info (EERE)

    EU-UNDP Climate Change Capacity Building Program Jump to: navigation, search Name Costa Rica-EU-UNDP Climate Change Capacity Building Program AgencyCompany Organization The...

  4. FAO-Capacity Development on Climate Change | Open Energy Information

    Open Energy Info (EERE)

    Capacity Development on Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: FAO-Capacity Development on Climate Change AgencyCompany Organization: Food and...

  5. India-Vulnerability Assessment and Enhancing Adaptive Capacities...

    Open Energy Info (EERE)

    Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change Jump to: navigation, search Name India-Vulnerability Assessment and Enhancing Adaptive Capacities to...

  6. Trinidad and Tobago-Building Capacity for Innovative Policy NAMAs...

    Open Energy Info (EERE)

    Trinidad and Tobago-Building Capacity for Innovative Policy NAMAs Jump to: navigation, search Name Building Capacity for Innovative Policy NAMAs AgencyCompany Organization...

  7. Kansas Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  8. West Virginia Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) West Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May...

  9. Indiana Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Indiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  10. Oregon Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oregon Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  11. Arkansas Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Arkansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  12. Alaska Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alaska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  13. Oklahoma Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oklahoma Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  14. Nebraska Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Nebraska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  15. Michigan Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Michigan Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  16. Minnesota Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Minnesota Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  17. Utah Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  18. Missouri Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Missouri Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  19. Virginia Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  20. Maryland Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Maryland Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  1. Wyoming Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  2. Ohio Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Ohio Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  3. Illinois Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Illinois Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  4. Iowa Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  5. Kentucky Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kentucky Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  6. Texas Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  7. Louisiana Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Louisiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  8. Alabama Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alabama Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  9. ,"Table 4.B Winter Net Internal Demand, Capacity Resources,...

    U.S. Energy Information Administration (EIA) Indexed Site

    B Winter Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region," ,"2001-2010 Actual, 2011-2015 Projected" ...

  10. Capacity Adequacy and Revenue Sufficiency in Electricity Markets...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capacity Adequacy and Revenue Sufficiency in Electricity Markets with Wind Power Title Capacity Adequacy and Revenue Sufficiency in Electricity Markets with Wind Power Publication...

  11. New York Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New York Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  12. Wireless Battery Management System for Safe High-Capacity Energy...

    Office of Scientific and Technical Information (OSTI)

    Wireless Battery Management System for Safe High-Capacity Energy Storage Citation Details In-Document Search Title: Wireless Battery Management System for Safe High-Capacity Energy ...

  13. TSD capacity model interface with waste reduction planning in the Environmental Restoration Program

    SciTech Connect (OSTI)

    Phifer, B.E. Jr.; Grumski, J.T.

    1991-01-01

    This report provides a picture of how the integration of waste generation forecasting with treatment, storage, and disposal (TSD) capacity modeling interfaces with waste reduction planning in the Environmental Restoration Program. Background information is given for the major activities at the seven Martin Marietta Energy Systems, Inc., sites: (1) Oak Ridge National Laboratory; (2) Oak Ridge Y-12 Plant; (3) Oak Ridge K-25 Site; (4) Paducah Gaseous Diffusion Plant; (5) Portsmouth Gaseous Diffusion Plant; (6) Oak Ridge Associated Universities; and (7) the off-site contaminated areas near DOE facilities. A perspective is provided for strategies to achieve waste reduction, how waste generation forecasts rates were developed, and how those forecasted waste generation rates will be used in TSD capacity modeling. The generation forecasting in combination with TSD modeling allows development of quantifiable goals and subsequent waste reduction. 2 figs.

  14. Alabama Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    43,600 43,600 43,600 43,600 43,600 43,600 2002-2015 Total Working Gas Capacity 33,150 33,150 33,150 33,150 33,150 33,150 2012-2015 Total Number of Existing Fields 2 2 2 2 2 2

  15. Alaska Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    83,592 83,592 83,592 83,592 83,592 83,592 2013-2015 Total Working Gas Capacity 67,915 67,915 67,915 67,915 67,915 67,915 2013-2015 Total Number of Existing Fields 5 5 5 5 5 5

  16. Washington Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    39,210 41,309 43,673 46,900 46,900 46,900 1988-2014 Aquifers 39,210 41,309 43,673 46,900 46,900 46,900 1999-2014 Depleted Fields 0 0 1999-2014 Total Working Gas Capacity 23,514...

  17. Maryland Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    64,000 64,000 64,000 64,000 64,000 64,000 2002-2015 Total Working Gas Capacity 18,300 18,300 18,300 18,300 18,300 18,300 2012-2015 Total Number of Existing Fields 1 1 1 1 1 1

  18. Michigan Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    1,079,462 1,070,462 1,070,462 1,071,630 1,071,630 1,071,630 2002-2015 Total Working Gas Capacity 682,569 682,569 682,569 685,726 685,726 685,726 2012-2015 Total Number of Existing Fields 44 44 44 44 44 44

  19. Minnesota Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    7,000 7,000 7,000 7,000 7,000 7,000 2002-2015 Total Working Gas Capacity 2,000 2,000 2,000 2,000 2,000 2

  20. Mississippi Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    31,301 331,301 331,301 331,812 331,812 331,812 2002-2015 Total Working Gas Capacity 200,903 200,903 200,903 201,388 201,388 201,388 2012-2015 Total Number of Existing Fields 12 12 12 12 12 12

  1. Missouri Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    13,845 13,845 13,845 13,845 13,845 13,845 2002-2015 Total Working Gas Capacity 6,000 6,000 6,000 6,000 6,000 6

  2. Montana Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    76,301 376,301 376,301 376,301 376,301 376,301 2002-2015 Total Working Gas Capacity 197,501 197,501 197,501 197,501 197,501 197,501 2012-2015 Total Number of Existing Fields 5 5 5 5 5 5

  3. New York Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    245,779 245,779 245,779 245,779 245,779 245,779 2002-2015 Total Working Gas Capacity 126,871 126,871 126,871 126,871 126,871 126,871 2012-2015 Total Number of Existing Fields 26 26 26 26 26 26

  4. Ohio Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    575,794 575,794 575,794 575,794 575,794 575,794 2002-2015 Total Working Gas Capacity 230,828 230,828 230,828 230,828 230,828 230,828 2012-2015 Total Number of Existing Fields 24 24 24 24 24 24

  5. Oklahoma Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    376,435 376,435 374,735 375,135 375,135 375,143 2002-2015 Total Working Gas Capacity 190,955 190,955 189,255 189,455 189,455 191,455 2012-2015 Total Number of Existing Fields 13 13 13 13 13 13

  6. Oregon Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    29,565 29,565 29,565 29,565 29,565 29,565 2002-2015 Total Working Gas Capacity 15,935 15,935 15,935 15,935 15,935 15,935 2012-2015 Total Number of Existing Fields 7 7 7 7 7 7

  7. Pennsylvania Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    771,422 771,422 771,422 771,422 771,422 771,422 2002-2015 Total Working Gas Capacity 429,796 429,796 429,796 429,796 429,796 429,796 2012-2015 Total Number of Existing Fields 49 49 49 49 49 49

  8. Texas Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    832,644 832,644 832,644 832,644 832,644 834,965 2002-2015 Total Working Gas Capacity 528,445 528,335 528,335 528,335 528,335 528,335 2012-2015 Total Number of Existing Fields 36 36 36 36 36 36

  9. Utah Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    124,518 124,518 124,509 124,509 124,509 124,509 2002-2015 Total Working Gas Capacity 54,942 54,942 54,942 54,942 54,942 54,942 2012-2015 Total Number of Existing Fields 3 3 3 3 3 3

  10. Virginia Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    9,500 9,500 9,500 9,500 9,500 9,500 2002-2015 Total Working Gas Capacity 5,400 5,400 5,400 5,400 5,400 5,400 2012-2015 Total Number of Existing Fields 2 2 2 2 2 2

  11. California Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    603,012 603,012 603,012 601,808 601,808 601,808 2002-2015 Total Working Gas Capacity 376,996 376,996 376,996 375,496 375,496 375,496 2012-2015 Total Number of Existing Fields 14 14 14 14 14 14

  12. Colorado Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    130,186 130,186 130,186 130,186 130,186 130,186 2002-2015 Total Working Gas Capacity 63,774 63,774 63,774 63,774 63,774 63,774 2012-2015 Total Number of Existing Fields 10 10 10 10 10 10

  13. Illinois Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    ,004,598 1,004,598 1,003,899 1,004,100 1,004,100 1,004,100 2002-2015 Total Working Gas Capacity 304,312 304,312 303,613 303,613 303,613 303,613 2012-2015 Total Number of Existing Fields 28 28 28 28 28 28

  14. Indiana Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    10,749 110,749 110,749 110,749 111,581 111,581 2002-2015 Total Working Gas Capacity 32,760 32,760 32,760 32,760 33,592 33,592 2012-2015 Total Number of Existing Fields 21 21 21 21 21 21

  15. Iowa Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    288,210 288,210 288,210 288,210 288,210 288,210 2002-2015 Total Working Gas Capacity 90,313 90,313 90,313 90,313 90,313 90,313 2012-2015 Total Number of Existing Fields 4 4 4 4 4 4

  16. Kansas Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    82,984 282,984 282,984 282,984 282,984 282,984 2002-2015 Total Working Gas Capacity 122,980 122,980 122,980 122,980 122,980 122,980 2012-2015 Total Number of Existing Fields 17 17 17 17 17 17

  17. Kentucky Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    21,723 221,723 221,723 221,722 221,722 221,722 2002-2015 Total Working Gas Capacity 107,600 107,600 107,572 107,571 107,571 107,571 2012-2015 Total Number of Existing Fields 23 23 23 23 23 23

  18. Louisiana Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    742,627 742,627 749,867 749,867 749,867 749,867 2002-2015 Total Working Gas Capacity 452,359 452,359 457,530 457,530 457,530 457,530 2012-2015 Total Number of Existing Fields 19 19 19 19 19 19

  19. West Virginia Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    528,637 528,637 528,637 528,637 528,637 528,637 2002-2015 Total Working Gas Capacity 259,324 259,324 259,324 259,321 259,321 259,315 2012-2015 Total Number of Existing Fields 30 30 30 30 30 30

  20. Wyoming Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    157,985 157,985 157,985 157,985 157,985 157,985 2002-2015 Total Working Gas Capacity 73,705 73,705 73,705 73,705 73,705 73,705 2012-2015 Total Number of Existing Fields 9 9 9 9 9 9

  1. Biogass Generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Another internet tool by: Build Your Own Page 1 of 5 Teach...build...learn...renewable energy! Biogas Generator A Renewable Energy Project Kit The Pembina Institute What Is Biogas? Biogas is actually a mixture of gases, usually carbon dioxide and methane. It is produced by a few kinds of microorganisms, usually when air or oxygen is absent. (The absence of oxygen is called "anaerobic conditions.") Animals that eat a lot of plant material, particularly grazing animals such as cattle,

  2. Monthly Generation System Peak (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Monthly Generation System Peak (GSP) This site is no longer maintained. Page last...

  3. UWB multi-burst transmit driver for averaging receivers

    DOE Patents [OSTI]

    Dallum, Gregory E

    2012-11-20

    A multi-burst transmitter for ultra-wideband (UWB) communication systems generates a sequence of precisely spaced RF bursts from a single trigger event. There are two oscillators in the transmitter circuit, a gated burst rate oscillator and a gated RF burst or RF power output oscillator. The burst rate oscillator produces a relatively low frequency, i.e., MHz, square wave output for a selected transmit cycle, and drives the RF burst oscillator, which produces RF bursts of much higher frequency, i.e., GHz, during the transmit cycle. The frequency of the burst rate oscillator sets the spacing of the RF burst packets. The first oscillator output passes through a bias driver to the second oscillator. The bias driver conditions, e.g., level shifts, the signal from the first oscillator for input into the second oscillator, and also controls the length of each RF burst. A trigger pulse actuates a timing circuit, formed of a flip-flop and associated reset time delay circuit, that controls the operation of the first oscillator, i.e., how long it oscillates (which defines the transmit cycle).

  4. Cooling and Heating Season Impacts of Right-Sizing of Fixed- and Variable-Capacity Heat Pumps With Attic and Indoor Ductwork

    SciTech Connect (OSTI)

    Cummings, James; Withers, Charles; Kono, Jamie

    2015-06-24

    A new generation of full variable-capacity air-conditioning (A/C) and heat pump units has come on the market that promises to deliver very high cooling and heating efficiency. The units are controlled differently than standard single-capacity (fixed-capacity) systems. Instead of cycling on at full capacity and cycling off when the thermostat is satisfied, the new units can vary their capacity over a wide range (approximately 40%118% of nominal full capacity) and stay on for 60%100% more hours per day than the fixed-capacity systems depending on load-to-capacity ratios. Two-stage systems were not evaluated in this research effort.

  5. Average Neutron Total Cross Sections in the Unresolved Energy Range From ORELA High Resolutio Transmission Measurements

    SciTech Connect (OSTI)

    Derrien, H

    2004-05-27

    Average values of the neutron total cross sections of {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu have been obtained in the unresolved resonance energy range from high-resolution transmission measurements performed at ORELA in the past two decades. The cross sections were generated by correcting the effective total cross sections for the self-shielding effects due to the resonance structure of the data. The self-shielding factors were found by calculating the effective and true cross sections with the computer code SAMMY for the same Doppler and resolution conditions as for the transmission measurements, using an appropriate set of resonance parameters. Our results are compared to results of previous measurements and to the current ENDF/B-VI data.

  6. Magnetocumulative generator

    DOE Patents [OSTI]

    Pettibone, Joseph S. (Livermore, CA); Wheeler, Paul C. (Livermore, CA)

    1983-01-01

    An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing (100, 101, 102, 103, 104, 105) providing a housing chamber (106) with an electrically conducting surface. The chamber (106) forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber (106), from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers (107, 108) disposed adjacent to the housing causes a phased closure of the chamber (106) which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

  7. Fact #744: September 10, 2012 Average New Light Vehicle Price Grows Faster

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    than Average Used Light Vehicle Price | Department of Energy 4: September 10, 2012 Average New Light Vehicle Price Grows Faster than Average Used Light Vehicle Price Fact #744: September 10, 2012 Average New Light Vehicle Price Grows Faster than Average Used Light Vehicle Price In 2011 the average used light vehicle price was 36% higher than in 1990, while the average new light vehicle price was 67% higher than it was in 1990. The average price of a used vehicle had been between $6,000 and

  8. Developing High Capacity, Long Life Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life Anodes Developing High Capacity, Long Life Anodes 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es020_amine_2011_p.pdf More Documents & Publications Developing A New High Capacity Anode With Long Cycle Life Developing High Capacity, Long Life Anodes Development of High Capacity Anode for Li-ion Batteries

  9. Triboelectric generator

    DOE Patents [OSTI]

    Wang, Zhong L; Fan, Fengru; Lin, Long; Zhu, Guang; Pan, Caofeng; Zhou, Yusheng

    2015-11-03

    A generator includes a thin first contact charging layer and a thin second contact charging layer. The thin first contact charging layer includes a first material that has a first rating on a triboelectric series. The thin first contact charging layer has a first side with a first conductive electrode applied thereto and an opposite second side. The thin second contact charging layer includes a second material that has a second rating on a triboelectric series that is more negative than the first rating. The thin first contact charging layer has a first side with a first conductive electrode applied thereto and an opposite second side. The thin second contact charging layer is disposed adjacent to the first contact charging layer so that the second side of the second contact charging layer is in contact with the second side of the first contact charging layer.

  10. Air conditioning system with supplemental ice storing and cooling capacity

    DOE Patents [OSTI]

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  11. Florida products pipeline set to double capacity

    SciTech Connect (OSTI)

    True, W.R.

    1995-11-13

    Directional drilling has begun this fall for a $68.5 million, approximately 110,000 b/d expansion of Central Florida Pipeline Co.`s refined products line from Tampa to Orlando. The drilling started in August and is scheduled to conclude this month, crossing under seven water bodies in Hillsborough, Polk, and Osceola counties. The current 6 and 10-in. system provides more than 90% of the petroleum products used in Central Florida, according to Central Florida Pipeline. Its additional capacity will meet the growing region`s demand for gasoline, diesel, and jet fuel. The new pipeline, along with the existing 10-in. system, will increase total annual capacity from 30 million bbl (82,192 b/d) to approximately 70 million bbl (191,781 b/d). The older 6-in. line will be shutdown when the new line is operating fully. The steps of pipeline installation are described.

  12. Natural Gas Underground Storage Capacity (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  13. Increasing water holding capacity for irrigation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Increasing water holding capacity for irrigation Researchers recommend solutions for sediment trapping in irrigation system LANL and SNL leveraged technical expertise to determine the sources of sediment and recommend solutions for irrigation sediment buildup management. April 3, 2012 Santa Cruz Irrigation District (SCID) Kenny Salazar, owner of Kenny Salazar Orchards, stands beside the Santa Cruz Reservoir Dam, which holds back the waters of the Santa Cruz Irrigation District. Salazar, a board

  14. Minnesota Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    7,000 7,000 7,000 7,000 7,000 7,000 1988-2014 Aquifers 7,000 7,000 7,000 7,000 7,000 7,000 1999-2014 Total Working Gas Capacity 2,000 2,000 2,000 2,000 2,000 2,000 2008-2014...

  15. Missouri Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    10,889 11,502 13,845 13,845 13,845 13,845 1988-2014 Aquifers 10,889 11,502 13,845 13,845 13,845 13,845 1999-2014 Total Working Gas Capacity 3,040 3,656 6,000 6,000 6,000 6,000...

  16. California Nuclear Profile - San Onofre Nuclear Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    San Onofre Nuclear Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 2,"1,070","6,989",74.6,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  17. Illinois Nuclear Profile - LaSalle Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    LaSalle Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,118","9,207",94.0,"BWR","application/vnd.ms-excel","application/vnd.ms-excel"

  18. New Jersey Nuclear Profile - PSEG Salem Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    PSEG Salem Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,174","8,777",85.3,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  19. Peak power ratio generator

    DOE Patents [OSTI]

    Moyer, Robert D. (Albuquerque, NM)

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  20. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

  1. Fact #614: March 15, 2010 Average Age of Household Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4: March 15, 2010 Average Age of Household Vehicles Fact #614: March 15, 2010 Average Age of Household Vehicles The average age of household vehicles has increased from 6.6 years in 1977 to 9.2 years in 2009. Pickup trucks have the oldest average age in every year listed. Sport utility vehicles (SUVs), first reported in the 1995 survey, have the youngest average age. Average Vehicle Age by Vehicle Type Graph showing the average vehicle age by type (car, van, pickup, SUV, all household

  2. Fact #671: April 18, 2011 Average Truck Speeds | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: April 18, 2011 Average Truck Speeds Fact #671: April 18, 2011 Average Truck Speeds The Federal Highway Administration studies traffic volume and flow on major truck routes by tracking more than 500,000 trucks. The average speed of trucks on selected interstate highways is between 50 and 60 miles per hour (mph). The average operating speed of trucks is typically below 55 mph in major urban areas, border crossings, and in mountainous terrain. The difference in average speed between peak traffic

  3. Tennessee Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,200 0 NA NA 1998-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 1,200 0 0 1999-2014 Total Working Gas Capacity 860 0 0 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 0 0 2012-2014 Depleted Fields 860 0 0 2008-2014 Total Number of Existing Fields 1 1 1 1 1 1 1998-2014 Depleted Fields 1 1 1 1 1 1

  4. Increasing the Capacity of Existing Power Lines

    Energy Savers [EERE]

    ENERGY AND ENVIRONMENT Continued next page In the continental United States, some 500 power companies operate a complex network of more than 160,000 miles of high-voltage trans- mission lines known as "the grid." The capacity of the grid has been largely unchanged for decades and needs to expand to accommodate new power plants and renewable energy projects. The difference in time and cost between using existing transmission lines or the construction of new ones can make or break plans

  5. Bulalo field, Philippines: Reservoir modeling for prediction of limits to sustainable generation

    SciTech Connect (OSTI)

    Strobel, Calvin J.

    1993-01-28

    The Bulalo geothermal field, located in Laguna province, Philippines, supplies 12% of the electricity on the island of Luzon. The first 110 MWe power plant was on line May 1979; current 330 MWe (gross) installed capacity was reached in 1984. Since then, the field has operated at an average plant factor of 76%. The National Power Corporation plans to add 40 MWe base load and 40 MWe standby in 1995. A numerical simulation model for the Bulalo field has been created that matches historic pressure changes, enthalpy and steam flash trends and cumulative steam production. Gravity modeling provided independent verification of mass balances and time rate of change of liquid desaturation in the rock matrix. Gravity modeling, in conjunction with reservoir simulation provides a means of predicting matrix dry out and the time to limiting conditions for sustainable levelized steam deliverability and power generation.

  6. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  7. Is there life in other markets? BPA explores preschedule capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capacity 7152014 12:00 AM Tweet Page Content BPA launched a new process this spring to acquire preschedule (day-ahead) capacity from third-party suppliers. The goal was...

  8. Ukraine-Capacity Building for Low Carbon Growth | Open Energy...

    Open Energy Info (EERE)

    Ukraine-Capacity Building for Low Carbon Growth Jump to: navigation, search Name UNDP-Capacity Building for Low Carbon Growth in Ukraine AgencyCompany Organization United Nations...

  9. National CHP Roadmap: Doubling Combined Heat and Power Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States ...

  10. The Recovery Act: Cutting Costs and Upping Capacity | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Recovery Act: Cutting Costs and Upping Capacity The Recovery Act: Cutting Costs and Upping Capacity August 25, 2010 - 5:56pm Addthis John Schueler John Schueler Former New ...

  11. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations may cause some voltage control challenges or overloading problems, respectively. But when combined, there at least intuitively could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  12. "Estimated Distributed Solar PV Capacity and Generation- Current Month"

    U.S. Energy Information Administration (EIA) Indexed Site

    4,12,"AL","Final",0.274,1.573,".",1.847,27.991,147.734,".",175.725 2014,12,"AR","Final",1.726,1.5,".",3.226,171.701,148.507,".",320.208 2014,12,"AZ","Final",259.386,204.023,48.316,511.725,38139.406,30066.529,7372.699,75578.635 2014,12,"CA","Final",1314.507,629.972,405.471,2349.95,147260.615,71306.617,43061.859,261629.091

  13. "Estimated Distributed Solar PV Capacity and Generation- Current Month"

    U.S. Energy Information Administration (EIA) Indexed Site

    5,12,"AL","Preliminary",0.301,1.582,0.033,1.916,30.771,148.654,3.345,182.771 2015,12,"AR","Preliminary",2.091,1.707,".",3.799,207.976,169.368,".",377.344 2015,12,"AZ","Preliminary",362.026,215.659,63.964,641.648,41460.334,28029.491,9761.458,79251.283 2015,12,"CA","Preliminary",2052.063,847.843,491.475,3391.381,193212.045,90975.846,51951.1,336138.991

  14. High Capacity Composite Carbon Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capacity Composite Carbon Anodes High Capacity Composite Carbon Anodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es114_pol_2012_o.pdf More Documents & Publications High Capacity Composite Carbon Anodes Fabricated by Autogenic Reactions Spherical Carbon Anodes Fabricated by Autogenic Reactions Vehicle Technologies Office Merit Review 2014: Metal-Based High Capacity Li-Ion Anodes

  15. Los Alamos Neutron Science Center gets capacity boost

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capacity and our availability for stockpile stewardship activities," said Kurt Schoenberg, deputy associate director for Experimental Physical Sciences. "The increased...

  16. Edge-facet pumped, multi-aperture, thin-disk laser geometry for very high average power output scaling

    DOE Patents [OSTI]

    Zapata, Luis E.

    2004-12-21

    The average power output of a laser is scaled, to first order, by increasing the transverse dimension of the gain medium while increasing the thickness of an index matched light guide proportionately. Strategic facets cut at the edges of the laminated gain medium provide a method by which the pump light introduced through edges of the composite structure is trapped and passes through the gain medium repeatedly. Spontaneous emission escapes the laser volume via these facets. A multi-faceted disk geometry with grooves cut into the thickness of the gain medium is optimized to passively reject spontaneous emission generated within the laser material, which would otherwise be trapped and amplified within the high index composite disk. Such geometry allows the useful size of the laser aperture to be increased, enabling the average laser output power to be scaled.

  17. Derivation of 24-Hour Average SO2, Background for the Update...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Derivation of 24-Hour Average SO2, Background for the Update 1 Report Derivation of 24-Hour Average SO2, Background for the Update 1 Report Docket No. EO-05-01. As supporting...

  18. Design and Evaluation of Novel High Capacity Cathode Materials | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es049_thackeray_2012_p.pdf More Documents & Publications Design and Evaluation of High Capacity Cathodes Vehicle Technologies Office Merit Review 2014: Design and Evaluation of High Capacity Cathodes Design and Evaluation of Novel High Capacity Cathode Materials

  19. Pennsylvania Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    776,964 776,822 776,845 774,309 774,309 774,309 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 776,964 776,822 776,845 774,309 774,309 774,309 1999-2014 Total Working Gas Capacity 431,137 431,086 433,110 434,179 433,214 433,214 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 942 938 938 2012-2014 Depleted Fields 431,137 431,086 433,110 433,236 432,276 432,276 2008-2014 Total Number of Existing Fields 51 51 51 51 51 51 1989-2014 Aquifers 1 1 1 2012-2014 Depleted Fields

  20. Texas Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    766,768 783,579 812,394 831,190 842,072 834,124 1988-2014 Salt Caverns 182,725 196,140 224,955 246,310 253,220 254,136 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 584,042 587,439 587,439 584,881 588,852 579,988 1999-2014 Total Working Gas Capacity 504,524 509,961 532,336 533,336 541,161 528,485 2008-2014 Salt Caverns 123,664 130,621 152,102 164,439 168,143 167,546 2008-2014 Aquifers 0 0 2012-2014 Depleted Fields 380,859 379,340 380,234 368,897 373,018 360,938 2008-2014 Total Number of

  1. Kentucky Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    20,368 221,751 221,751 221,751 221,723 221,723 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 9,567 9,567 9,567 9,567 9,567 6,567 1999-2014 Depleted Fields 210,801 212,184 212,184 212,184 212,156 215,156 1999-2014 Total Working Gas Capacity 103,484 107,600 107,600 107,600 107,600 107,600 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 6,629 6,629 6,629 6,629 6,629 4,619 2008-2014 Depleted Fields 96,855 100,971 100,971 100,971 100,971 102,981 2008-2014 Total Number of Existing Fields 23 23 23 23 23

  2. Louisiana Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    51,968 670,880 690,295 699,646 733,939 745,029 1988-2014 Salt Caverns 123,341 142,253 161,668 297,020 213,039 224,129 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 528,626 528,626 528,626 402,626 520,900 520,900 1999-2014 Total Working Gas Capacity 369,031 384,864 397,627 412,482 446,713 454,140 2008-2014 Salt Caverns 84,487 100,320 111,849 200,702 154,333 161,260 2008-2014 Aquifers 0 0 2012-2014 Depleted Fields 284,544 284,544 285,779 211,780 292,380 292,880 2008-2014 Total Number of

  3. Maryland Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4,000 64,000 64,000 64,000 64,000 64,000 1988-2014 Salt Caverns 0 0 1999-2014 Depleted Fields 64,000 64,000 64,000 64,000 64,000 64,000 1999-2014 Total Working Gas Capacity 18,300 18,300 18,300 18,300 18,300 18,300 2008-2014 Salt Caverns 0 0 2012-2014 Depleted Fields 18,300 18,300 18,300 18,300 18,300 18,300 2008-2014 Total Number of Existing Fields 1 1 1 1 1 1 1989-2014 Depleted Fields 1 1 1 1 1 1

  4. Mississippi Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    210,128 235,638 240,241 289,416 303,522 331,469 1988-2014 Salt Caverns 62,301 82,411 90,452 139,627 153,733 181,810 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 147,827 153,227 149,789 149,789 149,789 149,659 1999-2014 Total Working Gas Capacity 108,978 127,248 131,091 168,602 180,654 201,250 2008-2014 Salt Caverns 43,758 56,928 62,932 100,443 109,495 130,333 2008-2014 Aquifers 0 0 2012-2014 Depleted Fields 65,220 70,320 68,159 68,159 71,159 70,917 2008-2014 Total Number of Existing Fields

  5. Montana Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    76,301 376,301 376,301 376,301 376,301 376,301 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 376,301 376,301 376,301 376,301 376,301 376,301 1999-2014 Total Working Gas Capacity 197,508 197,501 197,501 197,501 197,501 197,501 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 0 0 2012-2014 Depleted Fields 197,508 197,501 197,501 197,501 197,501 197,501 2008-2014 Total Number of Existing Fields 5 5 5 5 5 5 1989-2014 Depleted Fields 5 5 5 5 5 5

  6. Utah Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    129,480 129,480 124,465 124,465 124,465 124,465 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 11,980 11,980 4,265 4,265 4,265 4,265 1999-2014 Depleted Fields 117,500 117,500 120,200 120,200 120,200 120,200 1999-2014 Total Working Gas Capacity 52,198 52,189 54,889 54,898 54,898 54,898 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 948 939 939 948 948 948 2008-2014 Depleted Fields 51,250 51,250 53,950 53,950 53,950 53,950 2008-2014 Total Number of Existing Fields 3 3 3 3 3 3 1989-2014 Aquifers 2 2

  7. Wyoming Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    111,120 111,120 106,764 124,937 157,985 157,985 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 10,000 10,000 6,733 6,705 6,705 6,705 1999-2014 Depleted Fields 101,120 101,120 100,030 118,232 151,280 151,280 1999-2014 Total Working Gas Capacity 42,140 42,134 41,284 48,705 73,705 73,705 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 836 830 830 836 836 836 2008-2014 Depleted Fields 41,304 41,304 40,454 47,869 72,869 72,869 2008-2014 Total Number of Existing Fields 8 8 8 9 9 9 1989-2014 Aquifers 1 1

  8. Nebraska Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4,850 34,850 34,850 34,850 34,850 34,850 1988-2014 Salt Caverns 0 0 1999-2014 Depleted Fields 34,850 34,850 34,850 34,850 34,850 34,850 1999-2014 Total Working Gas Capacity 13,619 14,819 14,819 14,819 14,819 14,819 2008-2014 Salt Caverns 0 0 2012-2014 Depleted Fields 13,619 14,819 14,819 14,819 14,819 14,819 2008-2014 Total Number of Existing Fields 1 1 1 1 1 1 1989-2014 Depleted Fields 1 1 1 1 1 1

  9. New Mexico Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    80,000 84,300 84,300 89,100 89,100 89,100 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 80,000 84,300 84,300 89,100 89,100 89,100 1999-2014 Total Working Gas Capacity 55,300 59,000 59,000 63,300 59,738 59,738 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 0 0 2012-2014 Depleted Fields 55,300 59,000 59,000 63,300 59,738 59,738 2008-2014 Total Number of Existing Fields 2 2 2 2 2 2 1989-2014 Aquifers 0 0 1999-2014 Depleted Fields 2 2 2 2 2 2

  10. New York Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    245,579 245,579 245,579 245,579 245,779 245,779 1988-2014 Salt Caverns 2,340 2,340 2,340 0 2,340 2,340 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 243,239 243,239 243,239 245,579 243,439 243,439 1999-2014 Total Working Gas Capacity 128,976 128,976 128,976 129,026 129,551 129,551 2008-2014 Salt Caverns 1,450 1,450 1,450 0 1,450 1,450 2008-2014 Aquifers 0 0 2012-2014 Depleted Fields 127,526 127,526 127,526 129,026 128,101 128,101 2008-2014 Total Number of Existing Fields 26 26 26 26 26 26

  11. Ohio Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    580,380 580,380 580,380 577,944 577,944 577,944 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 580,380 580,380 580,380 577,944 577,944 577,944 1999-2014 Total Working Gas Capacity 225,154 228,350 230,350 230,350 230,828 230,828 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 0 0 2012-2014 Depleted Fields 225,154 228,350 230,350 230,350 230,828 230,828 2008-2014 Total Number of Existing Fields 24 24 24 24 24 24 1989-2014 Depleted Fields 24 24 24 24 24 24

  12. Oklahoma Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    371,338 371,338 372,838 370,838 370,535 375,935 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 170 170 170 1999-2014 Depleted Fields 371,338 371,338 372,838 370,668 370,365 375,765 1999-2014 Total Working Gas Capacity 176,868 179,858 183,358 180,858 181,055 188,455 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 31 31 31 2012-2014 Depleted Fields 176,868 179,858 183,358 180,828 181,025 188,425 2008-2014 Total Number of Existing Fields 13 13 13 13 13 13 1989-2014 Aquifers 1 1 1 2012-2014 Depleted

  13. Oregon Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    29,565 29,565 29,565 28,750 29,565 29,565 1989-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 29,565 29,565 29,565 28,750 29,565 29,565 1999-2014 Total Working Gas Capacity 15,935 15,935 15,935 15,510 15,935 15,935 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 0 0 2012-2014 Depleted Fields 15,935 15,935 15,935 15,510 15,935 15,935 2008-2014 Total Number of Existing Fields 7 7 7 7 7 7 1989-2014 Depleted Fields 7 7 7 7 7 7

  14. U.S. Refinery Utilization and Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Gross Input to Atmospheric Crude Oil Distillation Units 17,178 16,963 16,394 15,690 16,673 16,848 1985-2015 Operable Capacity (Calendar Day) 18,058 18,059 18,125 18,125 18,172 18,186 1985-2015 Operating 17,923 17,939 18,015 17,932 17,846 18,044 1985-2015 Idle 135 121 110 194 326 142 1985-2015 Operable Utilization Rate (%) 95.1 93.9 90.5 86.6 91.8 92.6 1985-2015 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  15. California Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    513,005 542,511 570,511 592,411 599,711 599,711 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 12,000 12,000 1999-2014 Depleted Fields 513,005 542,511 570,511 592,411 587,711 587,711 1999-2014 Total Working Gas Capacity 296,096 311,096 335,396 349,296 374,296 374,296 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 0 0 10,000 10,000 2009-2014 Depleted Fields 296,096 311,096 335,396 349,296 364,296 364,296 2008-2014 Total Number of Existing Fields 13 13 13 14 14 14 1989-2014 Salt Caverns 0 0

  16. Colorado Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    105,768 105,768 105,858 124,253 122,086 130,186 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 105,768 105,768 105,858 124,253 122,086 130,186 1999-2014 Total Working Gas Capacity 48,129 49,119 48,709 60,582 60,582 63,774 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 0 0 2012-2014 Depleted Fields 48,129 49,119 48,709 60,582 60,582 63,774 2008-2014 Total Number of Existing Fields 9 9 9 10 10 10 1989-2014 Depleted Fields 9 9 9 10 10 10

  17. Illinois Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    989,454 990,487 997,364 999,931 1,000,281 1,004,547 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 885,848 772,381 777,294 779,862 974,362 978,624 1999-2014 Depleted Fields 103,606 218,106 220,070 220,070 25,920 25,923 1999-2014 Total Working Gas Capacity 303,761 303,500 302,385 302,962 303,312 304,312 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 252,344 216,132 215,017 215,594 291,544 292,544 2008-2014 Depleted Fields 51,418 87,368 87,368 87,368 11,768 11,768 2008-2014 Total Number of Existing

  18. Indiana Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    114,274 111,271 111,313 110,749 110,749 110,749 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 81,328 81,268 81,310 80,746 80,746 80,746 1999-2014 Depleted Fields 32,946 30,003 30,003 30,003 30,003 30,003 1999-2014 Total Working Gas Capacity 32,157 32,982 33,024 33,024 33,024 33,024 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 19,367 19,437 19,479 19,215 19,215 19,215 2008-2014 Depleted Fields 12,791 13,545 13,545 13,809 13,809 13,809 2008-2014 Total Number of Existing Fields 22 22 22 22 22 22

  19. Kansas Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    82,300 284,821 284,731 284,905 283,974 282,984 1988-2014 Salt Caverns 931 931 931 931 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 281,370 283,891 283,800 283,974 283,974 282,984 1999-2014 Total Working Gas Capacity 119,339 123,190 123,225 123,343 122,970 122,980 2008-2014 Salt Caverns 375 375 375 375 0 2008-2014 Aquifers 0 0 2012-2014 Depleted Fields 118,964 122,814 122,850 122,968 122,970 122,980 2008-2014 Total Number of Existing Fields 19 19 19 19 18 17 1989-2014 Salt Caverns 1 1 1 1 0

  20. Arkansas Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    1,760 21,760 21,359 21,853 21,853 21,853 1988-2014 Salt Caverns 0 0 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 21,760 21,760 21,359 21,853 21,853 21,853 1999-2014 Total Working Gas Capacity 13,898 13,898 12,036 12,178 12,178 12,178 2008-2014 Salt Caverns 0 0 2012-2014 Aquifers 0 0 2012-2014 Depleted Fields 13,898 13,898 12,036 12,178 12,178 12,178 2008-2014 Total Number of Existing Fields 2 2 2 2 2 2 1989-2014 Depleted Fields 2 2 2 2 2 2

  1. Total Natural Gas Underground Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 9,228,173 9,219,173 9,224,005 9,225,079 9,225,911 9,228,240 1989-2015 Alaska 83,592 83,592 83,592 83,592 83,592 83,592 2013-2015 Lower 48 States 9,144,581 9,135,581 9,140,412 9,141,486 9,142,319 9,144,648

  2. U.S. Refinery Utilization and Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Gross Input to Atmospheric Crude Oil Distillation Units 15,177 15,289 15,373 15,724 16,156 16,433 1985-2015 Operable Capacity (Calendar Day) 17,575 17,736 17,328 17,818 17,873 18,026 1985-2015 Operating 16,911 16,991 16,656 17,282 17,626 17,792 1985-2015 Idle 663 745 672 536 247 234 1985-2015 Operable Utilization Rate (%) 86.4 86.2 88.7 88.3 90.4 91.2 1985-2015 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  3. Fact #693: September 19, 2011 Average Vehicle Footprint for Cars and Light

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trucks | Department of Energy 3: September 19, 2011 Average Vehicle Footprint for Cars and Light Trucks Fact #693: September 19, 2011 Average Vehicle Footprint for Cars and Light Trucks A vehicle footprint is the area defined by the four points where the tires touch the ground. It is calculated as the product of the wheelbase and the average track width of the vehicle. The upcoming Corporate Average Fuel Economy (CAFE) Standards have fuel economy targets based on the vehicle footprint. The

  4. Fact #835: August 25, 2014 Average Annual Gasoline Pump Price, 1929-2013

    Office of Environmental Management (EM)

    - Dataset | Department of Energy 35: August 25, 2014 Average Annual Gasoline Pump Price, 1929-2013 - Dataset Fact #835: August 25, 2014 Average Annual Gasoline Pump Price, 1929-2013 - Dataset Excel file with dataset for Fact #835: Average Annual Gasoline Pump Price, 1929-2013 File fotw#835_web.xlsx More Documents & Publications Fact #915: March 7, 2016 Average Historical Annual Gasoline Pump Price, 1929-2015 - Dataset Fact #888: August 31, 2015 Historical Gas Prices - Dataset Offshore

  5. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Average Square Footage of Northeast Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Northeast",20.8,2121,1663,921,836,656,363 "Northeast Divisions and

  6. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Average Square Footage of Midwest Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Midwest",25.9,2272,1898,1372,912,762,551 "Midwest Divisions and

  7. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Average Square Footage of South Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total South",42.1,1867,1637,1549,732,642,607 "South Divisions and

  8. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Average Square Footage of West Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total West",24.8,1708,1374,800,628,506,294 "West Divisions and States"

  9. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Average Square Footage of Single-Family Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Single-Family",78.6,2422,2002,1522,880,727,553 "Census

  10. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Average Square Footage of Multi-Family Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Multi-Family",28.1,930,807,535,453,393,261 "Census Region"

  11. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Average Square Footage of Mobile Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Mobile Homes",6.9,1087,985,746,413,375,283 "Census Region"

  12. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Average Square Footage of U.S. Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total",113.6,1971,1644,1230,766,639,478 "Census Region"

  13. Utility Solar Generation Valuation Methods

    SciTech Connect (OSTI)

    Hansen, Thomas N.; Dion, Phillip J.

    2009-06-30

    Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public Service, Salt River Project, Xcel and Nevada Power Company as well as the Arizona electric cooperatives. In the second phase of the project, three years of 10 second power output data of the SGSSS was used to evaluate the effectiveness of frequency domain analysis, normal statistical distribution analysis and finally maximum/minimum differential output analysis to test the applicability of these mathematic methods in accurately modeling the output variations produced by clouds passing over the SGSSS array.

  14. Table 5.9 Refinery Capacity and Utilization, 1949-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Refinery Capacity and Utilization, 1949-2011 Year Operable Refineries 1 Operable Refineries Capacity Gross Input to Distillation Units 3 Utilization 4 On January 1 Annual Average 2 Number Thousand Barrels per Calendar Day Thousand Barrels Percent 1949 336 6,231 NA 2,027,928 89.2 1950 320 6,223 NA 2,182,828 92.5 1951 325 6,702 NA 2,467,445 97.5 1952 327 7,161 NA 2,536,142 93.8 1953 315 7,620 NA 2,651,068 93.1 1954 308 7,984 NA 2,651,992 88.8 1955 296 8,386 NA 2,854,137 92.2 1956 317 8,583 NA

  15. Fact #715: February 20, 2012 The Average Age of Light Vehicles Continues to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rise | Department of Energy 5: February 20, 2012 The Average Age of Light Vehicles Continues to Rise Fact #715: February 20, 2012 The Average Age of Light Vehicles Continues to Rise The average age for cars and light trucks continues to rise as consumers hold onto their vehicles longer. Between 1995 and 2011, the average age for cars increased by 32% from 8.4 years to 11.1 years. For light trucks, the average age increased by 25% during that same period from 8.3 years to 10.4 years. The

  16. Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 8: May 21, 2012 Average Trip Length is Less Than Ten Miles Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles The average trip length (one-way) is 9.7 miles according to the 2009 Nationwide Personal Transportation Survey. Trip lengths vary by the purpose of the trip. Shopping and family/personal business are the shortest trips, on average. One-way trips to/from work average 12.2 miles. Trip Length by Purpose, 2009 Graphic showing trip length by purpose,

  17. Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy than Midsize Non-Hybrid Cars in 2014 | Department of Energy 9: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014 Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014 For the 2014 model year, midsize hybrid cars averaged 43.4 miles per gallon (mpg) while midsize non-hybrid cars averaged 28.7 mpg; the difference between the two has narrowed due to the rising average

  18. HIGH EFFICIENCY SYNGAS GENERATION

    SciTech Connect (OSTI)

    Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker

    2005-02-01

    This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO and hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested the sorbent and observed that it has both a good oxygen capacity and operates as a highly effective reforming catalyst. We conducted a long duration tests of the sorbent (1,500 hours of continuous operation in the HOP cycle). Although the sorbent lost some oxygen capacity with cycling, the sorbent oxygen capacity stabilized after 1,000 hours and remained constant to the end of the test, 1,500 hour. The activity of the catalyst to reform methane to a hydrogen and carbon monoxide mixture was unchanged through the oxidation/reduction cycling. Our cost and performance analyses indicated a significant reduction in the cost of GTL production when using the HOP process integrated into a GTL plant.

  19. Surface and bulk modified high capacity layered oxide cathodes with low irreversible capacity loss

    DOE Patents [OSTI]

    Manthiram, Arumugam (Austin, TX); Wu, Yan (Austin, TX)

    2010-03-16

    The present invention includes compositions, surface and bulk modifications, and methods of making of (1-x)Li[Li.sub.1/3Mn.sub.2/3]O.sub.2.xLi[Mn.sub.0.5-yNi.sub.0.5-yCo.sub.2- y]O.sub.2 cathode materials having an O3 crystal structure with a x value between 0 and 1 and y value between 0 and 0.5, reducing the irreversible capacity loss in the first cycle by surface modification with oxides and bulk modification with cationic and anionic substitutions, and increasing the reversible capacity to close to the theoretical value of insertion/extraction of one lithium per transition metal ion (250-300 mAh/g).

  20. Michigan Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,069,405 1,069,898 1,075,472 1,078,979 1,079,424 1,079,462 1988-2014 Salt Caverns 3,821 3,834 3,834 3,834 3,834 3,834 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 1,065,583 1,066,064 1,071,638 1,075,145 1,075,590 1,075,629 1999-2014 Total Working Gas Capacity 666,636 667,065 672,632 673,200 674,967 675,003 2008-2014 Salt Caverns 2,150 2,159 2,159 2,159 2,159 2,159 2008-2014 Aquifers 0 0 2012-2014 Depleted Fields 664,486 664,906 670,473 671,041 672,808 672,844 2008-2014 Total Number of

  1. Virginia Underground Natural Gas Storage Capacity

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9,500 9,500 9,500 9,500 9,500 9,500 1998-2014 Salt Caverns 6,200 6,200 6,200 6,200 6,200 6,200 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 3,300 3,300 3,300 3,300 3,300 3,300 1999-2014 Total Working Gas Capacity 5,400 5,400 5,400 5,400 5,400 5,400 2008-2014 Salt Caverns 4,000 4,000 4,000 4,000 4,000 4,000 2008-2014 Aquifers 0 0 2012-2014 Depleted Fields 1,400 1,400 1,400 1,400 1,400 1,400 2009-2014 Total Number of Existing Fields 2 2 2 2 2 2 1998-2014 Salt Caverns 1 1 1 1 1 1

  2. The NASA CSTI High Capacity Power Project

    SciTech Connect (OSTI)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1994-09-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase I of SP-100 and to strengthen, in key areas, the changes for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the CSTI High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project with develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  3. Alabama Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    6,900 32,900 35,400 35,400 35,400 43,600 1995-2014 Salt Caverns 15,900 21,900 21,900 21,900 21,900 30,100 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 11,000 11,000 13,500 13,500 13,500 13,500 1999-2014 Total Working Gas Capacity 20,900 25,150 27,350 27,350 27,350 33,150 2008-2014 Salt Caverns 11,900 16,150 16,150 16,150 16,150 21,950 2008-2014 Aquifers 0 0 2012-2014 Depleted Fields 9,000 9,000 11,200 11,200 11,200 11,200 2008-2014 Total Number of Existing Fields 2 2 2 2 2 2 1995-2014 Salt

  4. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    2010 Existing Capacity, by Energy Source (GW) Number of Generator Nameplate Net Summer Net Winter Plant Fuel Type Generators Capacity Capacity Capacity Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Wind Solar Thermal and Photovoltaic Wood and Wood Derived Fuels Geothermal Other Biomass Pumped Storage Other Total Source(s): EIA, Electric Power Annual 2010, Feb. 2012, Table 1.2. 51 1.0 0.9 0.9 18,150 1,138.6 1,039.1 1,078.7 1,574 5.0 4.4 4.4 151 20.5 22.2 22.1 346 7.9

  5. Low-temperature Stirling Engine for Geothermal Electricity Generation

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Low-temperature Stirling Engine for Geothermal Electricity Generation Citation Details In-Document Search Title: Low-temperature Stirling Engine for Geothermal Electricity Generation Up to 2700 terawatt-hours per year of geothermal electricity generation capacity has been shown to be available within North America, typically with wells drilled into geologically active regions of the earth’s crust where this energy is concentrated

  6. Comparative health and safety assessment of alternative future electrical-generation systems

    SciTech Connect (OSTI)

    Habegger, L.J.; Gasper, J.R.; Brown, C.D.

    1980-01-01

    The report is an analysis of health and safety risks of seven alternative electrical generation systems, all of which have potential for commercial availability in the post-2000 timeframe. The systems are compared on the basis of expected public and occupational deaths and lost workdays per year associated with 1000 MWe average unit generation. Risks and their uncertainties are estimated for all phases of the energy production cycle, including fuel and raw material extraction and processing, direct and indirect component manufacture, on-site construction, and system operation and maintenance. Also discussed is the potential significance of related major health and safety issues that remain largely unquantifiable. The technologies include: the SPS; a low-Btu coal gasification system with an open-cycle gas turbine combined with a steam topping cycle (CG/CC); a light water fission reactor system without fuel reprocessing (LWR); a liquid metal fast breeder fission reactor system (LMFBR); a central station terrestrial photovoltaic system (CTPV); and a first generation fusion system with magnetic confinement. For comparison with the baseload technologies, risk from a decentralized roof-top photovoltaic system with 6 kWe peak capacity and battery storage (DTPV) was also evaluated.

  7. Time-averaged quantum dynamics and the validity of the effective

    Office of Scientific and Technical Information (OSTI)

    Hamiltonian model (Journal Article) | SciTech Connect Time-averaged quantum dynamics and the validity of the effective Hamiltonian model Citation Details In-Document Search Title: Time-averaged quantum dynamics and the validity of the effective Hamiltonian model We develop a technique for finding the dynamical evolution in time of an averaged density matrix. The result is an equation of evolution that includes an effective Hamiltonian, as well as decoherence terms in Lindblad form. Applying

  8. Fact #889: September 7, 2015 Average Diesel Price Lower than Gasoline for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the First Time in Six Years | Department of Energy 9: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years Fact #889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years SUBSCRIBE to the Fact of the Week In July of 2015, the nationwide average price of diesel was lower than the average price of a regular gallon of gasoline for the first time since June 2009. Both gasoline and diesel prices fluctuate throughout the

  9. Average U.S. household to spend $710 less on gasoline during 2015

    Gasoline and Diesel Fuel Update (EIA)

    Average U.S. household to spend $710 less on gasoline during 2015 Even with the recent increases in gasoline prices, the average U.S. household is still expected save $710 in gasoline costs this year compared with what was paid at the pump in 2014. In its new monthly forecast, the U.S. Energy Information Administration said the national average price for regular gasoline is expected to be $2.39 per gallon this year. That's almost $1 less than the $3.36 average in 2014. Lower crude oil prices

  10. Gasoline price to average below $2 in 2016 for first time in 12 years

    Gasoline and Diesel Fuel Update (EIA)

    Gasoline price to average below $2 in 2016 for first time in 12 years The annual average price for U.S. regular-grade gasoline is expected to fall below $2 per gallon this year for the first time since 2004. In its new monthly forecast, the U.S. Energy Information Administration said drivers will pay on average $1.98 per gallon to fill up at the pump with regular-grade gasoline. EIA expects the monthly average price of gasoline to reach a seven-year low of $1.82 per gallon in February, before

  11. Fact #915: March 7, 2016 Average Historical Annual Gasoline Pump Price,

    Office of Environmental Management (EM)

    1929-2015 - Dataset | Department of Energy 5: March 7, 2016 Average Historical Annual Gasoline Pump Price, 1929-2015 - Dataset Fact #915: March 7, 2016 Average Historical Annual Gasoline Pump Price, 1929-2015 - Dataset Excel file and dataset for Average Historical Annual Gasoline Pump Price, 1929-2015 File fotw#915_web.xlsx More Documents & Publications Fact #835: August 25, 2014 Average Annual Gasoline Pump Price, 1929-2013 - Dataset Fact #888: August 31, 2015 Historical Gas Prices -

  12. Relationship Between Wind Generation and Balancing Energy Market Prices in ERCOT: 2007-2009

    SciTech Connect (OSTI)

    Nicholson, E.; Rogers, J.; Porter, K.

    2010-11-01

    This paper attempts to measure the average marginal effects of wind generation on the balancing-energy market price in ERCOT with the help of econometric analysis.

  13. HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage | Department of Energy HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage Presentation for the high temperature combinatorial screening for high capacity hydrogen storage meeting PDF icon ht_ucf_raissi.pdf More Documents & Publications Proceedings of the 1998 U.S. DOE Hydrogen Program Review: April 28-30, 1998 Alexandria, Virginia: Volume I Hydrogen Leak Detection -

  14. Development of High-Capacity Cathode Materials with Integrated Structures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es019_thackeray_2012_o.pdf More Documents & Publications Development of High-Capacity Cathode Materials with Integrated Structures Vehicle Technologies Office Merit Review 2015: Design and Evaluation of High Capacity Cathodes Development of High-Capacity Cathode Materials with Integrated Structures

  15. Development of High-Capacity Cathode Materials with Integrated Structures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es019_kang_2010_o.pdf More Documents & Publications Development of high-capacity cathode materials with integrated structures Development of High-Capacity Cathode Materials with Integrated Structures Development of High-Capacity Cathode Materials with Integrated Structures

  16. Development of high-capacity cathode materials with integrated structures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy high-capacity cathode materials with integrated structures Development of high-capacity cathode materials with integrated structures 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp_14_kang.pdf More Documents & Publications Development of High-Capacity Cathode Materials with Integrated Structures Novel Composite Cathode

  17. Increasing the Capacity of Existing Power Lines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increasing the Capacity of Existing Power Lines Increasing the Capacity of Existing Power Lines The capacity of the grid has been largely unchanged for decades and needs to expand to accommodate new power plants and renewable energy projects. The difference in time and cost between using existing transmission lines or the construction of new ones can make or break plans for new wind or solar farms. PDF icon inl_powerline_cooling_factsheet.pdf More Documents & Publications EIS-0183: Record of

  18. Operation of Distributed Generation Under Stochastic Prices

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris

    2005-11-30

    We model the operating decisions of a commercial enterprisethatneeds to satisfy its periodic electricity demand with either on-sitedistributed generation (DG) or purchases from the wholesale market. Whilethe former option involves electricity generation at relatively high andpossibly stochastic costs from a set of capacity-constrained DGtechnologies, the latter implies unlimited open-market transactions atstochastic prices. A stochastic dynamic programme (SDP) is used to solvethe resulting optimisation problem. By solving the SDP with and withoutthe availability of DG units, the implied option values of the DG unitsare obtained.

  19. Working and Net Available Shell Storage Capacity as of September...

    Gasoline and Diesel Fuel Update (EIA)

    and also allows for tracking seasonal shifts in petroleum product usage of tanks and underground storage. Using the new storage capacity data, it will be possible to calculate...

  20. Design and Evaluation of Novel High Capacity Cathode Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Lithium Source For High Performance Li-ion Cells Design and Evaluation of Novel High Capacity Cathode Materials Lithium Source For High...

  1. Indonesia-ECN Capacity building for energy policy formulation...

    Open Energy Info (EERE)

    strengthen human capacity to enable the provinces of North Sumatra, Yogyakarta, Central Java, West Nusa Tenggara and Papua to formulate sound policies for renewable energy and...

  2. Development of High-Capacity Cathode Materials with Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Development of High-Capacity Cathode Materials with Integrated Structures Vehicle Technologies Office Merit Review 2015: Design and Evaluation of High...

  3. SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS | Department

    Office of Environmental Management (EM)

    of Energy SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS Seismic Capacity of Threaded, Brazed and Grooved Pipe Joints Brent Gutierrez, PhD, PE George Antaki, PE, F.ASME DOE NPH Conference October 25-26, 2011 PDF icon Seismic Capacity of Threaded, Brazed and Grooved Pipe Joints More Documents & Publications FY2015 Status Report: CIRFT Testing of High-Burnup Used Nuclear Fuel Rods from Pressurized Water Reactor and

  4. Design and Evaluation of Novel High Capacity Cathode Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    49thackeray2011o.pdf More Documents & Publications Cathodes Design and Evaluation of Novel High Capacity Cathode Materials Layered Cathode Materials

  5. Tunisia-Capacity Development for GHG inventories and MRV | Open...

    Open Energy Info (EERE)

    Development for GHG inventories and MRV in Tunisia) Jump to: navigation, search Name Capacity Development for GHG inventories and MRV in Tunisia AgencyCompany Organization...

  6. DOE Receives Responses on the Implementation of Large-Capacity...

    Broader source: Energy.gov (indexed) [DOE]

    establishing alternative test procedures for existing large-capacity residential clothes washer models and units. We received responses from several parties, which can be...

  7. Development of High-Capacity Cathode Materials with Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Peer Evaluation PDF icon es019kang2011p.pdf More Documents & Publications Development of High-Capacity Cathode Materials with Integrated Structures Development of...

  8. Property:PotentialEGSGeothermalCapacity | Open Energy Information

    Open Energy Info (EERE)

    Property Type Quantity Description The nameplate capacity technical potential from EGS Geothermal for a particular place. Use this property to express potential electric...

  9. GIZ-Best Practices in Capacity Building Approaches | Open Energy...

    Open Energy Info (EERE)

    Building Approaches: Recommendations for the Design of a Long -Term Capacity Building Strategy for the Wind and Solar Sectors by the MEF Working Group AgencyCompany Organization:...

  10. Reductive Capacity Measurement of Waste Forms for Secondary Radioactive Wastes

    SciTech Connect (OSTI)

    Um, Wooyong; Yang, Jungseok; Serne, R. Jeffrey; Westsik, Joseph H.

    2015-09-28

    The reductive capacities of dry ingredients and final solid waste forms were measured using both the Cr(VI) and Ce(IV) methods and the results were compared. Blast furnace slag (BFS), sodium sulfide, SnF2, and SnCl2 used as dry ingredients to make various waste forms showed significantly higher reductive capacities compared to other ingredients regardless of which method was used. Although the BFS exhibits appreciable reductive capacity, it requires greater amounts of time to fully react. In almost all cases, the Ce(IV) method yielded larger reductive capacity values than those from the Cr(VI) method and can be used as an upper bound for the reductive capacity of the dry ingredients and waste forms, because the Ce(IV) method subjects the solids to a strong acid (low pH) condition that dissolves much more of the solids. Because the Cr(VI) method relies on a neutral pH condition, the Cr(VI) method can be used to estimate primarily the waste form surface-related and readily dissolvable reductive capacity. However, the Cr(VI) method does not measure the total reductive capacity of the waste form, the long-term reductive capacity afforded by very slowly dissolving solids, or the reductive capacity present in the interior pores and internal locations of the solids.

  11. U.S. Fuel Ethanol Plant Production Capacity

    Gasoline and Diesel Fuel Update (EIA)

    All Petrolem Reports U.S. Fuel Ethanol Plant Production Capacity Release Date: June 23, 2015 | Next Release Date: June 2016 Previous Issues Year: 2015 2014 2013 2012 2011 Go This is the fifth release of U.S. Energy Information Administration data on fuel ethanol production capacity. EIA first reported fuel ethanol production capacities as of January 1, 2011 on November 29, 2011. This new report contains production capacity data for all operating U.S. fuel ethanol production plants as of January

  12. ,"New Mexico Natural Gas Underground Storage Capacity (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Underground Storage Capacity (MMcf)",1,"Annual",2014 ,"Release Date:","9...

  13. Property:PotentialOffshoreWindCapacity | Open Energy Information

    Open Energy Info (EERE)

    Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric...

  14. Africa Adaptation Programme: Capacity Building Experiences-Improving...

    Open Energy Info (EERE)

    Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa Language: English Africa Adaptation Programme: Capacity Building Experiences-Improving Access,...

  15. Renewable Motor Fuel Production Capacity Under H.R.4

    Reports and Publications (EIA)

    2002-01-01

    This paper analyzes renewable motor fuel production capacity with the assumption that ethanol will be used to meet the renewable fuels standard.

  16. METHOD OF FABRICATING ELECTRODES INCLUDING HIGH-CAPACITY, BINDER...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search METHOD OF FABRICATING ELECTRODES INCLUDING HIGH-CAPACITY, BINDER-FREE ANODES ...

  17. Table 4. Biodiesel producers and production capacity by state...

    U.S. Energy Information Administration (EIA) Indexed Site

    Biodiesel producers and production capacity by state, December 2015" "State","Number of ... Administration, Form EIA-22M ""Monthly Biodiesel Production Survey""" "U.S. Energy ...

  18. "Period","Annual Production Capacity",,"Monthly B100 Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Biodiesel production capacity and production" "million gallons" "Period","Annual ... is the industry designation for pure biodiesel; a biodiesel blend contains both pure ...

  19. Design and Evaluation of Novel High Capacity Cathode Materials | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 49_thackeray_2011_o.pdf More Documents & Publications Cathodes Design and Evaluation of Novel High Capacity Cathode Materials Layered Cathode Materials

  20. Additional capacities seen in metal oxide lithium-ion battery...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Additional capacities seen in metal oxide lithium-ion battery electrodes Citation Details In-Document Search Title: Additional ...

  1. Enhancing Cation-Exchange Capacity of Biochar for Soil Amendment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Enhancing Cation-Exchange Capacity of Biochar for Soil Amendment and Global Carbon Sequestration Oak...

  2. CCAP-Data and Capacity Needs for Transportation NAMAs | Open...

    Open Energy Info (EERE)

    docsresources973TransportNAMACapacity-Building.pdf Cost: Free Language: English CCAP-Data and Capacity Needs for Transportation NAMAs Screenshot References:...

  3. Spain Installed Wind Capacity Website | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentspain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an...

  4. An examination of the costs and critical characteristics of electric utility distribution system capacity enhancement projects

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Schienbein, Lawrence A.; Nguyen, Tony B.; Brown, Daryl R.; Fathelrahman, Eihab M.

    2004-06-01

    This report classifies and analyzes the capital and total costs (e.g., income tax, property tax, depreciation, centralized power generation, insurance premiums, and capital financing) associated with 130 electricity distribution system capacity enhancement projects undertaken during 1995-2002 or planned in the 2003-2011 time period by three electric power utilities operating in the Pacific Northwest. The Pacific Northwest National Laboratory (PNNL), in cooperation with participating utilities, has developed a large database of over 3,000 distribution system projects. The database includes brief project descriptions, capital cost estimates, the stated need for each project, and engineering data. The database was augmented by additional technical (e.g., line loss, existing substation capacities, and forecast peak demand for power in the area served by each project), cost (e.g., operations, maintenance, and centralized power generation costs), and financial (e.g., cost of capital, insurance premiums, depreciations, and tax rates) data. Though there are roughly 3,000 projects in the database, the vast majority were not included in this analysis because they either did not clearly enhance capacity or more information was needed, and not available, to adequately conduct the cost analyses. For the 130 projects identified for this analysis, capital cost frequency distributions were constructed, and expressed in terms of dollars per kVA of additional capacity. The capital cost frequency distributions identify how the projects contained within the database are distributed across a broad cost spectrum. Furthermore, the PNNL Energy Cost Analysis Model (ECAM) was used to determine the full costs (e.g., capital, operations and maintenance, property tax, income tax, depreciation, centralized power generation costs, insurance premiums and capital financing) associated with delivering electricity to customers, once again expressed in terms of costs per kVA of additional capacity. The projects were sorted into eight categories (capacitors, load transfer, new feeder, new line, new substation, new transformer, reconductoring, and substation capacity increase) and descriptive statistics (e.g., mean, total cost, number of observations, and standard deviation) were constructed for each project type. Furthermore, statistical analysis has been performed using ordinary least squares regression analysis to identify how various project variables (e.g., project location, the primary customer served by the project, the type of project, the reason for the upgrade, size of the upgrade) impact the unit cost of the project.

  5. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    SciTech Connect (OSTI)

    Tawfic, A.F.; Dickson, S.E.; Kim, Y.; Mekky, W.

    2015-03-15

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  6. Acceptance Priority Ranking & Annual Capacity Report

    SciTech Connect (OSTI)

    2004-07-31

    The Nuclear Waste Policy Act of 1982, as amended (the Act), assigns the Federal Government the responsibility for the disposal of spent nuclear fuel and high-level waste. Section 302(a) of the Act authorizes the Secretary to enter into contracts with the owners and generators of commercial spent nuclear fuel and/or high-level waste. The Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (Standard Contract) established the contractual mechanism for the Department's acceptance and disposal of spent nuclear fuel and high-level waste. It includes the requirements and operational responsibilities of the parties to the Standard Contract in the areas of administrative matters, fees, terms of payment, waste acceptance criteria, and waste acceptance procedures. The Standard Contract provides for the acquisition of title to the spent nuclear fuel and/or high-level waste by the Department, its transportation to Federal facilities, and its subsequent disposal.

  7. A comparison of spatial averaging and Cadzow's method for array wavenumber estimation

    SciTech Connect (OSTI)

    Harris, D.B.; Clark, G.A.

    1989-10-31

    We are concerned with resolving superimposed, correlated seismic waves with small-aperture arrays. The limited time-bandwidth product of transient seismic signals complicates the task. We examine the use of MUSIC and Cadzow's ML estimator with and without subarray averaging for resolution potential. A case study with real data favors the MUSIC algorithm and a multiple event covariance averaging scheme.

  8. Renewable energy generation sources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy generation sources have begun to generate significant amounts of power for the national electricity grid. With the Molten Salt Test Loop (MSTL), Sandia and its industry ...

  9. IEED Tribal Energy Development to Build Tribal Energy Development Capacity

    Broader source: Energy.gov [DOE]

    The Assistant Secretary - Indian Affairs for the U.S. Department of the Interior, through the Office of Indian Energy and Economic Development, is soliciting grant proposals from Indian tribes to build tribal capacity for energy resource development or management under the Department of the Interior's (DOl's) Tribal Energy Development Capacity (TEDC) grant program.

  10. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt015_es_wise_2012_p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production FY 2011

  11. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt015_es_wise_2011_p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production FY 2012

  12. New Jersey Nuclear Profile - PSEG Hope Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,161","9,439",92.8,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,"1,161","9,439",92.8

  13. Combining multi-objective optimization and bayesian model averaging to calibrate forecast ensembles of soil hydraulic models

    SciTech Connect (OSTI)

    Vrugt, Jasper A; Wohling, Thomas

    2008-01-01

    Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multi-objective optimization and Bayesian Model Averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multi-objective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM, and used to generate four different model ensembles. These ensembles are post-processed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multi-objective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

  14. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  15. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W. (Los Alamos, NM)

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  16. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    SciTech Connect (OSTI)

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making process regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.

  17. Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yue, Meng; Wang, Xiaoyu

    2015-07-01

    It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making processmore » regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.« less

  18. New High Capacity Getter for Vacuum-Insulated Mobile Liquid Hydrogen Storage Systems

    SciTech Connect (OSTI)

    H. Londer; G. R. Myneni; P. Adderley; G. Bartlok; J. Setina; W. Knapp; D. Schleussner

    2006-05-01

    Current ''Non evaporable getters'' (NEGs), based on the principle of metallic surface sorption of gas molecules, are important tools for the improving the performance of many vacuum systems. High porosity alloys or powder mixtures of Zr, Ti, Al, V, Fe and other metals are the base materials for this type of getters. The continuous development of vacuum technologies has created new challenges for the field of getter materials. The main sorption parameters of the current NEGs, namely, pumping speed and sorption capacity, have reached certain upper limits. Chemically active metals are the basis of a new generation of NEGs. The introduction of these new materials with high sorption capacity at room temperature is a long-awaited development. These new materials enable the new generation of NEGs to reach faster pumping speeds, significantly higher sticking rates and sorption capacities up to 104 times higher during their lifetimes. Our development efforts focus on producing these chemically active metals with controlled insulation or protection. The main structural forms of our new getter materials are spherical powders, granules and porous multi-layers. The full pumping performance can take place at room temperature with activation temperatures ranging from room temperature to 650 C. In one of our first pilot projects, our proprietary getter solution was successfully introduced as a getter pump in a double-wall mobile LH2 tank system. Our getters were shown to have very high sorption capacity of all relevant residual gases, including H2. This new concept opens the opportunity for significant vacuum improvements, especially in the field of H2 pumping which is an important task in many different vacuum applications.

  19. Natural gas productive capacity for the lower 48 states 1984 through 1996, February 1996

    SciTech Connect (OSTI)

    1996-02-09

    This is the fourth wellhead productive capacity report. The three previous ones were published in 1991, 1993, and 1994. This report should be of particular interest to those in Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas. The EIA Dallas Field Office has prepared five earlier reports regarding natural gas productive capacity. These reports, Gas Deliverability and Flow Capacity of Surveillance Fields, reported deliverability and capacity data for selected gas fields in major gas producing areas. The data in the reports were based on gas-well back-pressure tests and estimates of gas-in-place for each field or reservoir. These reports use proven well testing theory, most of which has been employed by industry since 1936 when the Bureau of Mines first published Monograph 7. Demand for natural gas in the United States is met by a combination of natural gas production, underground gas storage, imported gas, and supplemental gaseous fuels. Natural gas production requirements in the lower 48 States have been increasing during the last few years while drilling has remained at low levels. This has raised some concern about the adequacy of future gas supplies, especially in periods of peak heating or cooling demand. The purpose of this report is to address these concerns by presenting a 3-year projection of the total productive capacity of natural gas at the wellhead for the lower 48 States. Alaska is excluded because Alaskan gas does not enter the lower-48 States pipeline system. The Energy Information Administration (EIA) generates this 3-year projection based on historical gas-well drilling and production data from State, Federal, and private sources. In addition to conventional gas-well gas, coalbed gas and oil-well gas are also included.

  20. Flowmeter for determining average rate of flow of liquid in a conduit

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Patent: Flowmeter for determining average rate of flow of liquid in a conduit Citation Details In-Document Search Title: Flowmeter for determining average rate of flow of liquid in a conduit This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and

  1. U.S. average gasoline prices falling to near $2 in December

    Gasoline and Diesel Fuel Update (EIA)

    U.S. average gasoline prices falling to near $2 in December U.S. retail gasoline prices are expected to continue falling over the next few months, dropping to a national average near $2 per gallon in December. In its new forecast, the U.S. Energy Information Administration said high gasoline production, cheaper winter-grade gasoline, and lower gasoline demand following this summer's peak driving season will contribute to savings at the pump for consumers. The monthly average price for gasoline

  2. Fact #622: May 10, 2010 Average Length of Light Vehicle Ownership |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2: May 10, 2010 Average Length of Light Vehicle Ownership Fact #622: May 10, 2010 Average Length of Light Vehicle Ownership Vehicle owners are holding onto their vehicles for a longer period, according to data from R.L. Polk and Company. The vehicle retention trends show that owners held onto a new vehicle for 56.3 months in 2008, up from 48.4 months six years earlier. New vehicle owners hold onto vehicles about 15 or 16 months longer than used vehicle owners. Average

  3. Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Taxes Each Year? | Department of Energy 4: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year? Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year? According to the Federal Highway Administration, the average fuel economy for all light vehicles on the road today is 21.4 miles per gallon (mpg). A person owning a gasoline vehicle with that fuel efficiency pays between $137 and $296 in fuel taxes each year, depending

  4. Fact #889: September 7, 2015 Average Diesel Price Lower than Gasoline for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the First Time in Six Years - Dataset | Department of Energy 9: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years - Dataset Fact #889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years - Dataset Excel file and dataset for Average Diesel Price Lower than Gasoline for the First Time in Six Years File fotw#889_web.xlsx More Documents & Publications Fact #859 February 9, 2015 Excess Supply is the Most Recent

  5. Average U.S. household to spend $710 less on gasoline during 2015

    Gasoline and Diesel Fuel Update (EIA)

    drivers to see big savings at the gasoline pump this summer U.S. consumers are expected to pay the lowest average price for gasoline in six years during this summer's driving season, mostly because of lower crude oil costs. In its new forecast, the U.S. Energy Information Administration said the price for regular gasoline should average $2.45 per gallon this summer. That's down more than a dollar from the $3.59 per gallon seen last summer, and the cheapest average summer pump price since 2009.

  6. Average household expected to save $675 at the pump in 2015

    Gasoline and Diesel Fuel Update (EIA)

    Average household expected to save $675 at the pump in 2015 Although retail gasoline prices have risen in recent weeks U.S. consumers are still expected to save about $675 per household in motor fuel costs this year. In its new monthly forecast, the U.S. Energy Information Administration says the average pump price for regular grade gasoline in 2015 will be $2.43 per gallon. That's about 93 cents lower than last year's average. The savings for consumers will be even bigger during the

  7. Diesel prices continue to increase … U.S. average over $4

    Gasoline and Diesel Fuel Update (EIA)

    Diesel prices continue to increase - U.S. average over $4 The U.S. average retail price for on-highway diesel fuel broke the 4-dollar mark for the first time since last March. The U.S. retail average rose to $4.02 a gallon. That's up 2.8 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Diesel prices were highest in the New England region at 4.39 a gallon, up 1.3 cents from a week ago. Prices were lowest in the Gulf Coast states at 3.81 a

  8. Fact #915: March 7, 2016 Average Historical Annual Gasoline Pump Price,

    Office of Environmental Management (EM)

    1929-2015 | Department of Energy 915: March 7, 2016 Average Historical Annual Gasoline Pump Price, 1929-2015 Fact #915: March 7, 2016 Average Historical Annual Gasoline Pump Price, 1929-2015 SUBSCRIBE to the Fact of the Week When adjusted for inflation, the average annual price of gasoline has fluctuated greatly, and has recently experienced sharp increases and decreases. The effect of the U.S. embargo of oil from Iran can be seen in the early 1980's with the price of gasoline peaking in

  9. Gamma ray generator

    DOE Patents [OSTI]

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  10. Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis

    SciTech Connect (OSTI)

    Sullivan, P.; Eurek, K.; Margolis, R.

    2014-07-01

    Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

  11. Capacity Utilization Study for Aviation Security Cargo Inspection Queuing System

    SciTech Connect (OSTI)

    Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E; Brumback, Daryl L

    2010-01-01

    In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number of cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system s ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.

  12. Time-averaged quantum dynamics and the validity of the effective...

    Office of Scientific and Technical Information (OSTI)

    We develop a technique for finding the dynamical evolution in time of an averaged density matrix. The result is an equation of evolution that includes an effective Hamiltonian, as ...

  13. Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards, Model Years 2012-2016

    Broader source: Energy.gov [DOE]

    The final rule for the Corporate Average Fuel Economy (CAFE) Standards was published in March 2010. Under this rule, each light vehicle model produced for sale in the United States will have a fuel...

  14. U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil, Natural Gas, and Dry Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3...

  15. U.S. Average Depth of Crude Oil Exploratory and Developmental...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3...

  16. U.S. Average Depth of Natural Gas Exploratory and Developmental...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Exploratory and Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3...

  17. U.S. Average Depth of Dry Holes Developmental Wells Drilled ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Dry Holes Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  18. U.S. Average Depth of Dry Holes Exploratory Wells Drilled (Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Exploratory Wells Drilled (Feet per Well) U.S. Average Depth of Dry Holes Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  19. U.S. Average Depth of Natural Gas Developmental Wells Drilled...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  20. U.S. Average Depth of Natural Gas Exploratory Wells Drilled ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...