Fact #835: August 25, 2014 Average Annual Gasoline Pump Price...
Broader source: Energy.gov (indexed) [DOE]
Excel file with dataset for Fact 835: Average Annual Gasoline Pump Price, 1929-2013 fotw835web.xlsx More Documents & Publications Offshore Wind Market and Economic Analysis...
Dealing with uncertainty in estimating average annual flood damage for ungaged watersheds
Toneatti, Silvana Victoria
1996-01-01T23:59:59.000Z
Average annual damage (AAD) is a key central component of the hydrologic, hydraulic, and economic information developed in the evaluation of flood damage reduction plans. AAD or the expected value of annual damage, in dollars, is a...
Dominican Republic - Annual Average Wind Speed at 80 meters
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41clothThe Bonneville Power Administration wouldDecemberReportsEnergy Analysis55 Federal Register Dominican Republic - Annual
Variation in the annual average radon concentration measured in homes in Mesa County, Colorado
Rood, A.S.; George, J.L.; Langner, G.H. Jr.
1990-04-01T23:59:59.000Z
The purpose of this study is to examine the variability in the annual average indoor radon concentration. The TMC has been collecting annual average radon data for the past 5 years in 33 residential structures in Mesa County, Colorado. This report is an interim report that presents the data collected up to the present. Currently, the plans are to continue this study in the future. 62 refs., 3 figs., 12 tabs.
Jae-weon Lee; In-guy Koh
1997-04-30T23:59:59.000Z
A first order inflation model where a gauge coupling constant runs as the universe inflates is investigated. This model can solve the graceful-exit problem within Einstein gravity by varying the bubble formation rate. The sufficient expansion condition gives group theoretical constraints on the inflaton field, while the appropriate density perturbation requires an additional scalar field or cosmic strings.
Dimopoulos, Konstantinos
2014-01-01T23:59:59.000Z
A new family of inflation models is introduced and studied. The models are characterised by a scalar potential which, far from the origin, approximates an inflationary plateau, while near the origin becomes monomial, as in chaotic inflation. The models are obtained in the context of global supersymmetry starting with a superpotential, which interpolates from a generalised monomial to an O'Raifearteagh form for small to large values of the inflaton field respectively. It is demonstrated that the observables obtained, such as the scalar spectral index and the tensor to scalar ratio, are in excellent agreement with the latest Planck satellite observations. Some discussion on initial conditions and eternal inflation is included.
Konstantinos Dimopoulos
2014-06-11T23:59:59.000Z
A new family of inflation models is introduced and studied. The models are characterised by a scalar potential which, far from the origin, approximates an inflationary plateau, while near the origin becomes monomial, as in chaotic inflation. The models are obtained in the context of global supersymmetry starting with a superpotential, which interpolates from a generalised monomial to an O'Raifearteagh form for small to large values of the inflaton field respectively. It is demonstrated that the observables obtained, such as the scalar spectral index and the tensor to scalar ratio, are in excellent agreement with the latest observations. Some discussion of initial conditions and eternal inflation is included.
Frey, H. Christopher
Study of the Uncertainties in Predictions by ISC3ST and AERMOD of Annual Average Benzene and 1 of Annual Average Benzene and 1,3-Butadiene Concentrations around the Houston Ship Channel Control # 735 is on uncertainties in ISC3ST and AERMOD predictions of annual averaged concentrations of benzene and 1,3-butadiene
Syed Moeez Hassan; Viqar Husain; Sanjeev S. Seahra
2015-03-05T23:59:59.000Z
We consider the semi-classical dynamics of a free massive scalar field in a homogeneous and isotropic cosmological spacetime. The scalar field is quantized using the polymer quantization method assuming that it is described by a gaussian coherent state. For quadratic potentials, the semi-classical equations of motion yield a universe that has an early "polymer inflation" phase which is generic and almost exactly de Sitter, followed by a epoch of slow-roll inflation. We compute polymer corrections to the slow roll formalism, and discuss the probability of inflation in this model using a physical Hamiltonian arising from time gauge fixing. We also show how in this model, it is possible to obtain a significant amount of slow-roll inflation from sub-Planckain initial data, hence circumventing some of the criticisms of standard scenarios. These results show the extent to which a quantum gravity motivated quantization method affects early universe dynamics.
D'Amico, Guido; Gobbetti, Roberto; Kleban, Matthew; Schillo, Marjorie, E-mail: gda2@nyu.edu, E-mail: rg1509@nyu.edu, E-mail: mk161@nyu.edu, E-mail: mls604@nyu.edu [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY (United States)
2013-03-01T23:59:59.000Z
Higher-form flux that extends in all 3+1 dimensions of spacetime is a source of positive vacuum energy that can drive meta-stable eternal inflation. If the flux also threads compact extra dimensions, the spontaneous nucleation of a bubble of brane charged under the flux can trigger a classical cascade that steadily unwinds many units of flux, gradually decreasing the vacuum energy while inflating the bubble, until the cascade ends in the self-annihilation of the brane into radiation. With an initial number of flux quanta Q{sub 0}?>N, this can result in N efolds of inflationary expansion while producing a scale-invariant spectrum of adiabatic density perturbations with amplitude and tilt consistent with observation. The power spectrum has an oscillatory component that does not decay away during inflation, relatively large tensor power, and interesting non-Gaussianities. Unwinding inflation fits naturally into the string landscape, and our preliminary conclusion is that consistency with observation can be attained without fine-tuning the string parameters. The initial conditions necessary for the unwinding phase are produced automatically by bubble formation, so long as the critical radius of the bubble is smaller than at least one of the compact dimensions threaded by flux.
Creminelli, Paolo [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy); Noreña, Jorge [ICC, University of Barcelona (IEEC-UB), Marti i Franques 1, Barcelona 08028 (Spain); Peña, Manuel [Depto. de Física Teórica and IFIC, Universdad de Valencia-CSIC, Edificio de Institutos de Paterna, E-46980, Paterna (Valencia) (Spain); Simonovi?, Marko, E-mail: creminel@ictp.it, E-mail: jorge.norena@icc.ub.edu, E-mail: mapeji@ific.uv.es, E-mail: marko.simonovic@sissa.it [SISSA, via Bonomea 265, 34136, Trieste (Italy)
2012-11-01T23:59:59.000Z
We study the possibility that the approximate time shift symmetry during inflation is promoted to the full invariance under time reparametrization t ? t-tilde (t), or equivalently under field redefinition of the inflaton ? ? ?-tilde (?). The symmetry allows only two operators at leading order in derivatives, so that all n-point functions of scalar perturbations are fixed in terms of the power spectrum normalization and the speed of sound. During inflation the decaying mode only decays as 1/a and this opens up the possibility to violate some of the consistency relations in the squeezed limit, although this violation is suppressed by the (small) breaking of the field reparametrization symmetry. In particular one can get terms in the 3-point function that are only suppressed by 1/k{sub L} in the squeezed limit k{sub L}?0 compared to the local shape.
Djuna Croon; Veronica Sanz; Jack Setford
2015-09-11T23:59:59.000Z
Identifying the inflaton with a pseudo-Goldstone boson explains the flatness of its potential. Successful Goldstone Inflation should also be robust against UV corrections, such as from quantum gravity: in the language of the effective field theory this implies that all scales are sub-Planckian. In this paper we present scenarios which realise both requirements by examining the structure of Goldstone potentials arising from Coleman-Weinberg contributions. We focus on single-field models, for which we notice that both bosonic and fermionic contributions are required and that spinorial fermion representations can generate the right potential shape. We then evaluate the constraints on non-Gaussianity from higher-derivative interactions, finding that axiomatic constraints on Goldstone boson scattering prevail over the current CMB measurements. The fit to CMB data can be connected to the UV completions for Goldstone Inflation, finding relations in the spectrum of new resonances. Finally, we show how hybrid inflation can be realised in the same context, where both the inflaton and the waterfall fields share a common origin as Goldstones.
Hybrid and multifield inflation
Sfakianakis, Evangelos I
2014-01-01T23:59:59.000Z
In this thesis I study the generation of density perturbations in two classes of inflationary models: hybrid inflation and multifield inflation with non-minimal coupling to gravity. In the case of hybrid inflation, we ...
of energy. With an annual average growth rate of 25%, wind is one of the foremost source of harnessing cleaner energy for production of electricity. Wind turbines have been developed to tap power from wind. As a single wind turbine is insufficient, multiple turbines are installed forming a wind farm. Generally, wind
Julien M. E. Fraïsse; Daniel Braun
2015-04-13T23:59:59.000Z
We investigate in detail a recently introduced "coherent averaging scheme" in terms of its usefulness for achieving Heisenberg limited sensitivity in the measurement of different parameters. In the scheme, $N$ quantum probes in a product state interact with a quantum bus. Instead of measuring the probes directly and then averaging as in classical averaging, one measures the quantum bus or the entire system and tries to estimate the parameters from these measurement results. Combining analytical results from perturbation theory and an exactly solvable dephasing model with numerical simulations, we draw a detailed picture of the scaling of the best achievable sensitivity with $N$, the dependence on the initial state, the interaction strength, the part of the system measured, and the parameter under investigation.
Primordial anisotropies in gauged hybrid inflation
Abolhasani, Ali Akbar; Emami, Razieh [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Firouzjahi, Hassan, E-mail: abolhasani@ipm.ir, E-mail: emami@ipm.ir, E-mail: firouzh@mail.lns.cornell.edu [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)
2014-05-01T23:59:59.000Z
We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent ?N mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.
Laura Mersini-Houghton
2011-06-17T23:59:59.000Z
In this paper we explore the relationship between the existence of eternal inflation and the initial conditions leading to inflation. We demonstrate that past and future completion of inflation is related, in that past-incomplete inflation can not be future eternal. Bubble universes nucleating close to the initial conditions hypersurface have the largest Lorentz boosts and experience the highest anisotropy. Consequently, their probability to collide upon formation is one. Thus instead of continuing eternally inflation ends soon after it starts. The difficulty in actualizing eternal inflation originates from the breaking of two underlying symmetries: Lorentz invariance and the general covariance of the theory which lead to an inconsistency of Einstein equations. Eternal inflation may not be eternal.
Predictions From Eternal Inflation
Leichenauer, Stefan
2011-01-01T23:59:59.000Z
Renata Kallosh, Andrei Linde, and Sandip P. Trivedi. DeNemanja Kaloper and Andrei Linde. Cosmology vs. holography.?a-Bellido and Andrei D. Linde. Stationarity of inflation
Extended Inflation from Strings
J. Garcia-Bellido; M. quiros
1991-09-25T23:59:59.000Z
We study the possibility of extended inflation in the effective theory of gravity from strings compactified to four dimensions and find that it strongly depends on the mechanism of supersymmetry breaking. We consider a general class of string--inspired models which are good candidates for successful extended inflation. In particular, the $\\omega$--problem of ordinary extended inflation is automatically solved by the production of only very small bubbles until the end of inflation. We find that the inflaton field could belong either to the untwisted or to the twisted massless sectors of the string spectrum, depending on the supersymmetry breaking superpotential.
Desroche, Mariel; Felder, Gary N. [Department of Physics, Clark Science Center, Smith College, Northampton, Massachusetts 01063 (United States); Kratochvil, Jan M.; Linde, Andrei [Department of Physics, Stanford University, Stanford, California 94305-4060 (United States)
2005-05-15T23:59:59.000Z
During the last ten years a detailed investigation of preheating was performed for chaotic inflation and for hybrid inflation. However, nonperturbative effects during reheating in the new inflation scenario remained practically unexplored. We investigate preheating in new inflation, using a combination of analytical and numerical methods. We find that the decay of the homogeneous component of the inflaton field and the resulting process of spontaneous symmetry breaking in the simplest models of new inflation usually occurs almost instantly: for the new inflation on the GUT scale it takes only about 5 oscillations of the field distribution. The decay of the homogeneous inflaton field is so efficient because of a combined effect of tachyonic preheating and parametric resonance. At that stage, the homogeneous oscillating inflaton field decays into a collection of waves of the inflaton field, with a typical wavelength of the order of the inverse inflaton mass. This stage usually is followed by a long stage of decay of the inflaton field into other particles, which can be described by the perturbative approach to reheating after inflation. The resulting reheating temperature typically is rather low.
Djuna Croon; Veronica Sanz
2015-01-12T23:59:59.000Z
Slow-roll inflation requires the inflaton field to have an exceptionally flat potential, which combined with measurements of the scale of inflation demands some degree of fine-tuning. Alternatively, the flatness of the potential could be due to the inflaton's origin as a pseudo-Goldstone boson, as in Natural Inflation. Alas, consistency with Planck data places the original proposal of Natural Inflation in a tight spot, as it requires a trans-Planckian excursion of the inflaton. Although one can still tune the renormalizable potential to sub-Planckian values, higher order corrections from quantum gravity or sources of breaking of the Goldstone symmetry would ruin the predictivity of the model. In this paper we show how in more realistic models of Natural Inflation one could achieve inflation without a trans-Planckian excursion of the field. We show how a variant of Extra-natural inflation with bulk fermions can achieve the desired goal and discuss its four-dimensional duals. We also present a new type of four dimensional models inspired in Little Higgs and Composite Higgs models which can lead to sub-Planckian values of the inflaton field.
Croon, Djuna
2014-01-01T23:59:59.000Z
Slow-roll inflation requires the inflaton field to have an exceptionally flat potential, which combined with measurements of the scale of inflation demands some degree of fine-tuning. Alternatively, the flatness of the potential could be due to the inflaton's origin as a pseudo-Goldstone boson, as in Natural Inflation. Alas, consistency with Planck data places the original proposal of Natural Inflation in a tight spot, as it requires a trans-Planckian excursion of the inflaton. Although one can still tune the renormalizable potential to sub-Planckian values, higher order corrections from quantum gravity or sources of breaking of the Goldstone symmetry would ruin the predictivity of the model. In this paper we show how in more realistic models of Natural Inflation one could achieve inflation without a trans-Planckian excursion of the field. We show how a variant of Extra-natural inflation with bulk fermions can achieve the desired goal and discuss its four-dimensional duals. We also present a new type of four ...
Nonminimally coupled hybrid inflation
Koh, Seoktae [Center for Quantum Spacetime, Sogang University, Shinsu-dong 1, Mapo-gu, 121-742, Seoul (Korea, Republic of); Minamitsuji, Masato [Department of Physics, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337 (Japan)
2011-02-15T23:59:59.000Z
We discuss the hybrid inflation model where the inflaton field is nonminimally coupled to gravity. In the Jordan frame, the potential contains {phi}{sup 4} term as well as terms in the original hybrid inflation model. In our model, inflation can be classified into the type (I) and the type (II). In the type (I), inflation is terminated by the tachyonic instability of the waterfall field, while in the type (II) by the violation of slow-roll conditions. In our model, the reheating takes place only at the true minimum and even in the case (II) finally the tachyonic instability occurs after the termination of inflation. For a negative nonminimal coupling, inflation takes place in the vacuum-dominated region, in the large field region, or near the local minimum/maximum. Inflation in the vacuum-dominated region becomes either the type (I) or (II), resulting in a blue or red spectrum of the curvature perturbations, respectively. Inflation around the local maximum can be either the type (I) or the type (II), which results in the red spectrum of the curvature perturbations, while around the local minimum it must be the type (I), which results in the blue spectrum. In the large field region, to terminate inflation, potential in the Einstein frame must be positively tilted, always resulting in the red spectrum. We then numerically solve the equations of motion to investigate the whole dynamics of inflaton and confirm that the spectrum of curvature perturbations changes from red to blue ones as scales become smaller.
Visinelli, Luca, E-mail: u0583682@utah.edu [Department of Physics and Astronomy, University of Utah, 115 South 1400 East 201, Salt Lake City, Utah 84112-0830 (United States)
2011-09-01T23:59:59.000Z
We derive the requirements that a generic axion-like field has to satisfy in order to play the role of the inflaton field in the warm inflation scenario. Compared to the parameter space in ordinary Natural Inflation models, we find that the parameter space in our model is enlarged. In particular, we avoid the problem of having an axion decay constant f that relates to the Planck scale, which is instead present in the ordinary Natural Inflation models; in fact, our model can easily accommodate values of the axion decay constant that lie well below the Planck scale.
Dominik J. Schwarz; Erandy Ramirez
2009-12-22T23:59:59.000Z
We propose a version of chaotic inflation, in which a fundamental scale M, well below the Planck scale M_P, fixes the initial value of the effective potential. If this scale happens to be the scale of grand unified theories, there are just enough e-foldings of inflation. An initial epoch of fast-roll breaks scale-invariance at the largest observable scales.
Eternal Inflation, past and future
Anthony Aguirre
2007-12-04T23:59:59.000Z
Cosmological inflation, if it occurred, radically alters the picture of the `big bang', which would merely point to reheating at the end of inflation. Moreover, this reheating may be only local, so that inflation continues elsewhere and forever, continually spawning big-bang-like regions. This chapter reviews this idea of `eternal inflation', then focuses on what this may mean for the ultimate beginning of the universe. In particular, I will argue that given eternal inflation, the universe may be free of a cosmological initial singularity, might be eternal (and eternally inflating) to the past, and might obey an interesting sort of cosmological time-symmetry.
Ferrara, S
2015-01-01T23:59:59.000Z
Theories with elementary scalar degrees of freedom seem nowadays required for simple descriptions of the Standard Model and of the Early Universe. It is then natural to embed theories of inflation in supergravity, also in view of their possible ultraviolet completion in String Theory. After some general remarks on inflation in supergravity, we describe examples of minimal inflaton dynamics which are compatible with recent observations, including higher-curvature ones inspired by the Starobinsky model. We also discuss different scenarios for supersymmetry breaking during and after inflation, which include a revived role for non-linear realizations. In this spirit, we conclude with a discussion of the link, in four dimensions, between "brane supersymmetry breaking" and the super--Higgs effect in supergravity.
Tom Banks; Willy Fischler
2015-01-09T23:59:59.000Z
This paper is a major revision of our previous work on the HST model of inflation. We identify the local fluctuations of the metric with fluctuations of the mass and angular momentum of black holes, and show that the consistency conditions in HST for a single trajectory to see more and more of a homogeneous distribution of black holes, imply that the system outside the horizon is undergoing inflation: small systems of equal entropy, are not in causal contact. Homogeneity then requires that the initial trajectory underwent inflation that expanded the black hole radius into our current horizon. The low entropy of the initial state of the universe is explained by the fact that this is the maximal entropy state, which has long lived localized excitations, and which can form structures more complex than black holes. The number of e-folds, reheat temperature of the universe and size of inflationary fluctuations are calculated in terms of a few parameters.
Jarmo Mäkelä
2014-08-26T23:59:59.000Z
We consider a novel model of cosmic inflation. In our model one does not need any specific matter field to drive inflation, but inflation stems from the microscopic, Planck scale structure of spacetime, thus being of quantum gravitational origin. At a certain temperature spacetime performs a phase transition, where the cosmological constant drops from a huge, Planck scale value, which is about $10^{87}s^{-2}$ to its present, pretty small value $10^{-35}s^{-2}$. When the cosmological constant is large, the universe goes through a period of very rapid expansion which, however, comes to an abrupt end after the phase transition has been completed. Assuming that the cosmological constant depends on the age of the universe in an appropriate manner during the phase transition one may recover the predictions of the conventional inflationary scenario.
Asymptotically Safe Higgs Inflation
Zhong-Zhi Xianyu; Hong-Jian He
2014-10-09T23:59:59.000Z
We construct a new inflation model in which the standard model Higgs boson couples minimally to gravity and acts as the inflaton. Our construction of Higgs inflation incorporates the standard model with Einstein gravity which exhibits asymptotic safety in the ultraviolet region. The slow roll condition is satisfied at large field value due to the asymptotically safe behavior of Higgs self-coupling at high energies. We find that this minimal construction is highly predictive, and is consistent with both cosmological observations and collider experiments.
William H. Kinney
2004-06-29T23:59:59.000Z
I examine the status of inflationary cosmology in light of the first-year data from the WMAP satellite, focusing on the simplest models of inflation: those driven by a single scalar field. The WMAP observation of the Cosmic Microwave Background is the first unified, self-consistent data set capable of putting meaningful constraints on the inflationary parameter space. WMAP provides significant support for the inflationary paradigm in general, and single-field slow-roll inflation models provide a good fit to existing observational constraints.
Spacetime Average Density (SAD) cosmological measures
Page, Don N., E-mail: profdonpage@gmail.com [Department of Physics, 4-183 CCIS, University of Alberta, Edmonton, Alberta, T6G 2E1 Canada (Canada)
2014-11-01T23:59:59.000Z
The measure problem of cosmology is how to obtain normalized probabilities of observations from the quantum state of the universe. This is particularly a problem when eternal inflation leads to a universe of unbounded size so that there are apparently infinitely many realizations or occurrences of observations of each of many different kinds or types, making the ratios ambiguous. There is also the danger of domination by Boltzmann Brains. Here two new Spacetime Average Density (SAD) measures are proposed, Maximal Average Density (MAD) and Biased Average Density (BAD), for getting a finite number of observation occurrences by using properties of the Spacetime Average Density (SAD) of observation occurrences to restrict to finite regions of spacetimes that have a preferred beginning or bounce hypersurface. These measures avoid Boltzmann brain domination and appear to give results consistent with other observations that are problematic for other widely used measures, such as the observation of a positive cosmological constant.
Remote Inflation as hybrid-like sneutrino/MSSM inflation
Tomohiro Matsuda
2009-07-03T23:59:59.000Z
A new scenario of hybrid-like inflation is considered for sneutrino and MSSM fields. Contrary to the usual hybrid inflation model, the direct coupling between a trigger field and the sneutrino/MSSM inflaton field is not necessary for the scenario. The dissipation and the radiation from the sneutrino/MSSM inflaton can be written explicitly by using the Yukawa couplings. Remote inflation does not require the shift symmetry or cancellation in solving the eta-problem.
Di Marco, Fabrizio; Notari, Alessio [Dipartimento di Fisica, Universita degli Studi di Bologna and INFN via Irnerio, 46-40126, Bologna (Italy); Physics Department, McGill University, 3600 University Road, Montreal, Quebec City, H3A 2T8 (Canada)
2006-03-15T23:59:59.000Z
We show that inflation in a false vacuum becomes viable in the presence of a spectator scalar field nonminimally coupled to gravity. The field is unstable in this background; it grows exponentially and slows down the pure de Sitter phase itself, allowing then fast tunneling to a true vacuum. We compute the constraint from graceful exit through bubble nucleation and the spectrum of cosmological perturbations.
Dvali, Gia
2003-10-03T23:59:59.000Z
We propose a new class of inflationary solutions to the standard cosmological problems (horizon, flatness, monopole,...), based on a modification of old inflation. These models do not require a potential which satisfies the normal inflationary slow-roll conditions. Our universe arises from a single tunneling event as the inflaton leaves the false vacuum. Subsequent dynamics (arising from either the oscillations of the inflaton field or thermal effects) keep a second field trapped in a false minimum, resulting in an evanescent period of inflation (with roughly 50 e-foldings) inside the bubble. This easily allows the bubble to grow sufficiently large to contain our present horizon volume. Reheating is accomplished when the inflaton driving the last stage of inflation rolls down to the true vacuum, and adiabatic density perturbations arise from moduli-dependent Yukawa couplings of the inflaton to matter fields. Our scenario has several robust predictions, including virtual absence of gravity waves, a possible absence of tilt in scalar perturbations, and a higher degree of non-Gaussianity than other models. It also naturally incorporates a solution to the cosmological moduli problem.
Inflation Driven by Unification Energy
Mark P. Hertzberg; Frank Wilczek
2014-07-22T23:59:59.000Z
We examine the hypothesis that inflation is primarily driven by vacuum energy at a scale indicated by gauge coupling unification. Concretely, we consider a class of hybrid inflation models wherein the vacuum energy associated with a grand unified theory condensate provides the dominant energy during inflation, while a second "inflaton" scalar slow-rolls. We show that it is possible to obtain significant tensor-to-scalar ratios while fitting the observed spectral index.
Laura Mersini-Houghton; Malcolm J Perry
2012-11-06T23:59:59.000Z
We propose a new measure for eternal inflation that includes both conditions, large field fluctuations and smooth homogeneous domains, in the self reproducing probability estimate. We show that due to the increasing inhomogeneities in the background spacetime fractal, self-reproduction stops within a finite time t_f, thus inflation can not be eternal.
Testing Inflation: A Bootstrap Approach
Latham Boyle; Paul J. Steinhardt
2010-10-08T23:59:59.000Z
We note that the essential idea of inflation, that the universe underwent a brief period of accelerated expansion followed by a long period of decelerated expansion, can be encapsulated in a "closure condition" which relates the amount of accelerated expansion during inflation to the amount of decelerated expansion afterward. We present a protocol for systematically testing the validity of this condition observationally.
Li Sheng; Piao Yunsong [College of Physical Sciences, Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Liu Yang [College of Physical Sciences, Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Department of Physics, Shandong University, Jinan 250100 (China)
2009-12-15T23:59:59.000Z
In a given path with multiple branches, in principle, it can be expected that there are some fork points, where one branch is bifurcated into different branches, or various branches converge into one or several branches. In this paper, it is shown that if there is a web formed by such branches in a given field space, in which each branch can be responsible for a period of slow roll inflation, a multiverse separated by a domain wall network will come into being, some of which might correspond to our observable universe. We discuss this scenario and show possible observations of a given observer at late time.
M. B. Altaie
2001-05-07T23:59:59.000Z
In this paper we follow a new approach for particle creation by a localized strong gravitational field. The approach is based on a definition of the physical vacuum drawn from Heisenberg uncertainty principle. Using the fact that the gravitational field red-shifts the frequency modes of the vacuum, a condition on the minimum stregth of the gravitational field required to achieve real particle creation is derived. Application of this requirement on a Schwartzchid black hole resulted in deducing an upper limit on the region, outside the event horizon, where real particles can be created. Using this regional upper limit, and considering particle creation by black holes as a consequence of the Casimir effect, with the assumption that the created quanta are to be added to the initial energy, we deduce a natural power law for the development of the event horizon, and consequently a logarithmic law for the area spectrum of an inflating black hole. Application of the results on a cosmological model shows that if we start with a Planck-dimensional black hole, then through the process of particle creation we end up with a universe having the presently estimated critical density. Such a universe will be in a state of eternal inflation.
Hints of Universality from Inflection Point Inflation
Downes, Sean Donovan
2013-07-25T23:59:59.000Z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 II.2.1 Old Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 II.2.2 Chaotic Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 II.2.3 Inflection Point Inflation... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 III.3.1 Scales of SUSY Breaking and Inflation . . . . . . . . . . . . . . . . . . . . . . . 22 III.3.2 A Simple Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 III.4 What We Talk About When We Talk About...
Extended inflation with induced gravity
Accetta, F. S.; Trester, J. J.
1989-05-15T23:59:59.000Z
We consider a recently proposed extended model of inflation which improves upon the original old inflation scenario by achieving a graceful exit from the false-vacuum phase. In this paper extended inflation is generalized to include a potential /ital V/(/phi/) for the Brans-Dicke-type field /phi/. We find that whereas a graceful exit can still be had, the inclusion of a potential places constraints on the percolation time scale for exiting the inflationary phase. Additional constraints on /ital V/(/phi/) and the false-vacuum energy density /rho//sub /ital F// from density and gravitational-wave perturbations are discussed. For initially small values of /phi/ the false vacuum undergoes power-law inflation, while for initially large values of /phi/ the expansion is exponential. Within true-vacuum regions slow-rolling inflation can occur. As a result, this model generically leads to multiple episodes of inflation. We discuss the significance these multiple episodes of inflation may have on the formation of large-scale structure and the production of voids.
Natural Inflation and Quantum Gravity
Anton de la Fuente; Prashant Saraswat; Raman Sundrum
2015-01-29T23:59:59.000Z
Cosmic Inflation provides an attractive framework for understanding the early universe and the cosmic microwave background. It can readily involve energies close to the scale at which Quantum Gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular the constraint of the Weak Gravity Conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically-controlled and predictive class of Natural Inflation models.
Inflation, evidence and falsifiability
Giulia Gubitosi; Macarena Lagos; Joao Magueijo; Rupert Allison
2015-06-30T23:59:59.000Z
In this paper we consider the issue of paradigm evaluation by applying Bayes' theorem along the following nested chain of progressively more complex structures: i) parameter estimation (within a model), ii) model selection and comparison (within a paradigm), iii) paradigm evaluation. In such a chain the Bayesian evidence works both as the posterior's normalization at a given level and as the likelihood function at the next level up. Whilst raising no objections to the standard application of the procedure at the two lowest levels, we argue that it should receive an essential modification when evaluating paradigms, in view of the issue of falsifiability. By considering toy models we illustrate how unfalsifiable models and paradigms are always favoured by the Bayes factor. We argue that the evidence for a paradigm should not only be high for a given dataset, but exceptional with respect to what it would have been, had the data been different. We propose a measure of falsifiability (which we term predictivity), and a prior to be incorporated into the Bayesian framework, suitably penalising unfalsifiability. We apply this measure to inflation seen as a whole, and to a scenario where a specific inflationary model is hypothetically deemed as the only one viable as a result of information alien to cosmology (e.g. Solar System gravity experiments, or particle physics input). We conclude that cosmic inflation is currently difficult to falsify and thus to be construed as a scientific theory, but that this could change were external/additional information to cosmology to select one of its many models. We also compare this state of affairs to bimetric varying speed of light cosmology.
False Vacuum Decay after Inflation
T. Asaka; W. Buchmuller; L. Covi
2001-04-03T23:59:59.000Z
Inflation is terminated by a non-equilibrium process which finally leads to a thermal state. We study the onset of this transition in a class of hybrid inflation models. The exponential growth of tachyonic modes leads to decoherence and spinodal decomposition. We compute the decoherence time, the spinodal time, the size of the formed domains and the homogeneous classical fields within a single domain.
Dark energy from gravitoelectromagnetic inflation?
Federico Agustin Membiela; Mauricio Bellini
2008-07-29T23:59:59.000Z
Gravitoectromagnetic Inflation (GI) was introduced to describe in an unified manner, electromagnetic, gravitatory and inflaton fields from a 5D vacuum state. On the other hand, the primordial origin and evolution of dark energy is today unknown. In this letter we show using GI that the zero modes of some redefined vector fields $B_i=A_i/a$ produced during inflation, could be the source of dark energy in the universe.
Accidental inflation from Kähler uplifting
Ben-Dayan, Ido; Westphal, Alexander; Wieck, Clemens [Deutsches Elektronen-Synchrotron DESY, Theory Group, Notkestrasse 85, D-22603 Hamburg (Germany); Jing, Shenglin, E-mail: ido.bendayan@desy.de, E-mail: shenglin.jing@utoronto.ca, E-mail: alexander.westphal@desy.de, E-mail: clemens.wieck@desy.de [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St.George Street, Toronto, ON, M5S 3H8 (Canada)
2014-03-01T23:59:59.000Z
We analyze the possibility of realizing inflation with a subsequent dS vacuum in the Käahler uplifting scenario. The inclusion of several quantum corrections to the 4d effective action evades previous no-go theorems and allows for construction of simple and successful models of string inflation. The predictions of several benchmark models are in accord with current observations, i.e., a red spectral index, negligible non-gaussianity, and spectral distortions similar to the simplest models of inflation. A particularly interesting subclass of models are ''left-rolling'' ones, where the overall volume of the compactified dimensions shrinks during inflation. We call this phenomenon ''inflation by deflation'' (IBD), where deflation refers to the internal manifold. This subclass has the appealing features of being insensitive to initial conditions, avoiding the overshooting problem, and allowing for observable running ? ? 0.012 and enhanced tensor-to-scalar ratio r ? 10{sup ?5}. The latter results differ significantly from many string inflation models.
Open inflation in the landscape
Daisuke Yamauchi; Andrei Linde; Atsushi Naruko; Misao Sasaki; Takahiro Tanaka
2011-08-11T23:59:59.000Z
Open inflation scenario is attracting a renewed interest in the context of string landscape. Since there are a large number of metastable de Sitter vacua in string landscape, tunneling transitions to lower metastable vacua through the bubble nucleation occur quite naturally. Although the deviation of Omega_0 from unity is small by the observational bound, we argue that the effect of this small deviation on the large angle CMB anisotropies can be significant for tensor-type perturbation in open inflation scenario. We consider the situation in which there is a large hierarchy between the energy scale of the quantum tunneling and that of the slow-roll inflation in the nucleated bubble. If the potential just after tunneling is steep enough, a rapid-roll phase appears before the slow-roll inflation. In this case the power spectrum is basically determined by the Hubble rate during the slow-roll inflation. If such rapid-roll phase is absent, the power spectrum keeps the memory of the high energy density there in the large angular components. The amplitude of large angular components can be enhanced due to the effects of the wall fluctuation mode if the bubble wall tension is small. Therefore, one can construct some models in which the deviation of Omega_0 from unity is large enough to produce measurable effects. We also consider a more general class of models, where the false vacuum decay may occur due to Hawking-Moss tunneling, as well as the models involving more than one scalar field. We discuss scalar perturbations in these models and point out that a large set of such models is already ruled out by observational data, unless there was a very long stage of slow-roll inflation after the tunneling. These results show that observational data allow us to test various assumptions concerning the structure of the string theory potentials and the duration of the last stage of inflation.
Aguirre, Anthony; Johnson, Matthew C. [Department of Physics, University of California, Santa Cruz, California 95064 (United States)
2006-06-15T23:59:59.000Z
We investigate the formation via tunneling of inflating (false-vacuum) bubbles in a true-vacuum background, and the reverse process. Using effective potentials from the junction condition formalism, all true- and false-vacuum bubble solutions with positive interior and exterior cosmological constant, and arbitrary mass are catalogued. We find that tunneling through the same effective potential appears to describe two distinct processes: one in which the initial and final states are separated by a wormhole (the Farhi-Guth-Guven mechanism), and one in which they are either in the same hubble volume or separated by a cosmological horizon. In the zero-mass limit, the first process corresponds to the creation of an inhomogenous universe from nothing, while the second mechanism is equivalent to the nucleation of true- or false-vacuum Coleman-De Luccia bubbles. We compute the probabilities of both mechanisms in the WKB approximation using semiclassical Hamiltonian methods, and find that--assuming both process are allowed--neither mechanism dominates in all regimes.
Spatial curvature falsifies eternal inflation
Kleban, Matthew; Schillo, Marjorie, E-mail: mk161@nyu.edu, E-mail: mls604@nyu.edu [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York (United States)
2012-06-01T23:59:59.000Z
Inflation creates large-scale cosmological density perturbations that are characterized by an isotropic, homogeneous, and Gaussian random distribution about a locally flat background. Even in a flat universe, the spatial curvature measured within one Hubble volume receives contributions from long wavelength perturbations, and will not in general be zero. These same perturbations determine the Cosmic Microwave Background (CMB) temperature fluctuations, which are O(10{sup ?5}). Consequently, the low-l multipole moments in the CMB temperature map predict the value of the measured spatial curvature ?{sub k}. On this basis we argue that a measurement of |?{sub k}| > 10{sup ?4} would rule out slow-roll eternal inflation in our past with high confidence, while a measurement of ?{sub k} < ?10{sup ?4} (which is positive curvature, a locally closed universe) rules out false-vacuum eternal inflation as well, at the same confidence level. In other words, negative curvature (a locally open universe) is consistent with false-vacuum eternal inflation but not with slow-roll eternal inflation, and positive curvature falsifies both. Near-future experiments will dramatically extend the sensitivity of ?{sub k} measurements and constitute a sharp test of these predictions.
Open inflation in the landscape
Yamauchi, Daisuke; Naruko, Atsushi; Sasaki, Misao; Tanaka, Takahiro
2011-01-01T23:59:59.000Z
Open inflation scenario is attracting a renewed interest in the context of string landscape. Since there are a large number of metastable de Sitter vacua in string landscape, tunneling transitions to lower metastable vacua through the bubble nucleation occur quite naturally. Although the deviation of Omega_0 from unity is small by the observational bound, we argue that the effect of this small deviation on the large angle CMB anisotropies can be significant for tensor-type perturbation in open inflation scenario. We consider the situation in which there is a large hierarchy between the energy scale of the quantum tunneling and that of the slow-roll inflation in the nucleated bubble. If the potential just after tunneling is steep enough, a rapid-roll phase appears before the slow-roll inflation. In this case the power spectrum is basically determined by the Hubble rate during the slow-roll inflation. If such rapid-roll phase is absent, the power spectrum keeps the memory of the high energy density there in the...
Universality class in conformal inflation
Kallosh, Renata; Linde, Andrei, E-mail: kallosh@stanford.edu, E-mail: alinde@stanford.edu [Department of Physics and SITP, Stanford University, Stanford, California 94305 (United States)
2013-07-01T23:59:59.000Z
We develop a new class of chaotic inflation models with spontaneously broken conformal invariance. Observational consequences of a broad class of such models are stable with respect to strong deformations of the scalar potential. This universality is a critical phenomenon near the point of enhanced symmetry, SO(1,1), in case of conformal inflation. It appears because of the exponential stretching of the moduli space and the resulting exponential flattening of scalar potentials upon switching from the Jordan frame to the Einstein frame in this class of models. This result resembles stretching and flattening of inhomogeneities during inflationary expansion. It has a simple interpretation in terms of velocity versus rapidity near the Kähler cone in the moduli space, similar to the light cone of special theory of relativity. This effect makes inflation possible even in the models with very steep potentials. We describe conformal and superconformal versions of this cosmological attractor mechanism.
Robert Brout
2005-08-04T23:59:59.000Z
It is proposed that after the macroscopic fluctuation of energy density that is responsible for inflation dies away, a class of microscopic fluctuations, always present, survives to give the present day dark energy. This latter is simply a reinterpretation of the causet mechanism of Ahmed, Dodelson, Green and Sorkin, wherein the emergence of space is dropped but only energy considerations are maintained. At postinflation times, energy is exchanged between the "cisplanckian" cosmos and an unknown foam-like transplanckian reservoir. Whereas during inflation, the energy flows only from the latter to the former after inflation it fluctuates in sign thereby accounting for the tiny effective cosmological constant that seems to account for dark energy.
False Vacuum Chaotic Inflation: The New Paradigm?
David H. Lyth; Ewan D. Stewart
1994-08-19T23:59:59.000Z
Recent work is reported on inflation model building in the context of supergravity and superstrings, with special emphasis on False Vacuum (`Hybrid') Chaotic Inflation. Globally supersymmetric models do not survive in generic supergravity theories, but fairly simple conditions can be formulated which do ensure successful supergravity inflation. The conditions are met in some of the versions of supergravity that emerge from superstrings.
2001 annual report 2001 annual report
New Mexico, University of
2001 annual report 2001 annual report 2001 annual report 2001 annual report 2001 annual report 2001 annual report 2001 annual report 2001 annual reportelectrical & computer engineering 2001 annual report the university of new mexico department of 2001 annual report 2001 annual report 2001 annual report 2001 annual
Supergravity chaotic inflation and moduli stabilization
Davis, S C [Service de Physique Theorique, Orme des Merisiers, CEA/Saclay, 91191 Gif-sur-Yvette Cedex (France); Postma, M, E-mail: sdavis@lorentz.leidenuniv.nl, E-mail: mpostma@nikhef.nl, E-mail: postma@mail.desy.de [DESY, Notkestrasse 85, 22607 Hamburg (Germany)
2008-03-15T23:59:59.000Z
Chaotic inflation predicts a large gravitational wave signal which can be tested by the upcoming Planck satellite. We discuss a supergravity implementation of chaotic inflation in the presence of moduli fields, and find that inflation does not work with a generic Kachru-Kallosh-Linde-Trivedi moduli stabilization potential. A viable model can be constructed with a fine-tuned moduli sector, but only for a very specific choice of Kaehler potential. Our analysis also shows that inflation models satisfying {partial_derivative}{sub i}W{sub inf}=0 for all inflation sector fields {phi}{sub i} can be combined successfully with a fine-tuned moduli sector.
Cosmological perturbations and noncommutative tachyon inflation
Liu Daojun; Li Xinzhou [Shanghai United Center for Astrophysics (SUCA), Shanghai Normal University, 100 Guilin Road, Shanghai 200234 (China) and Division of Astrophysics, E-institute of Shanghai Universities, Shanghai Normal University, 100 Guilin Road, Shanghai 200234 (China)
2004-12-15T23:59:59.000Z
The motivation for studying the rolling tachyon and noncommutative inflation comes from string theory. In the tachyon inflation scenario, metric perturbations are created by tachyon field fluctuations during inflation. We drive the exact mode equation for scalar perturbations of the metric and investigate the cosmological perturbations in the commutative and noncommutative inflationary spacetime driven by the tachyon field which have a Born-Infeld Lagrangian. Although at lowest order the predictions of tachyon inflation are no different than those from standard slow-roll inflation, due to the modified inflationary dynamics there exists modifications to the power spectra of fluctuations generated during inflation. In the noncommutative tachyon inflation scenario, the stringy noncommutativity of spacetime results in corrections to the primordial power spectrum that lead to a spectral index that is greater than 1 on large scales and less than 1 on small scales as the first-year results of the Wilkinson Microwave Anisotropy Probe indicate.
Accidental inflation in string theory
Linde, Andrei; Westphal, Alexander, E-mail: alinde@stanford.edu, E-mail: awestpha@stanford.edu [Department of Physics, Stanford University, Stanford, CA 94305-4060 (United States)
2008-03-15T23:59:59.000Z
We show that inflation in type IIB string theory driven by the volume modulus can be realized in the context of the racetrack-based Kallosh-Linde model (KL) of moduli stabilization. Inflation here arises through the volume modulus slow-rolling down from a flat hilltop or inflection point of the scalar potential. This situation can be quite generic in the landscape, where by uplifting one of the two adjacent minima one can turn the barrier either into a flat saddle point or into an inflection point supporting eternal inflation. The resulting spectral index is tunable in the range of 0.93{approx}
Chaotic inflation and supersymmetry breaking
Kallosh, Renata; Linde, Andrei; Rube, Tomas [Stanford Institute of Theoretical Physics and Department of Physics, Stanford University, Stanford, California 94305 (United States); Olive, Keith A. [William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455 (United States)
2011-10-15T23:59:59.000Z
We investigate the recently proposed class of chaotic inflation models in supergravity with an arbitrary inflaton potential V({phi}). These models are extended to include matter fields in the visible sector and we employ a mechanism of supersymmetry breaking based on a particular phenomenological version of the KKLT mechanism (the KL model). We describe specific features of reheating in this class of models and show how one can solve the cosmological moduli and gravitino problems in this context.
Salomeh Khoeini-Moghaddam
2014-11-13T23:59:59.000Z
We extend multi-brid idea to multi-field separable model with non-canonical kinetic term. Considering a specific surface of end of inflation and introducing new fields, we find explicit expression for number of e-folds in terms of this new fields. Using $\\delta$N formalism we get cosmological parameters for this general case. We use our general results for DBI model in speed limit, comparison to observation gives numerical estimation for the parameters of the model.
Inflection point inflation within supersymmetry
Enqvist, Kari [Physics Department and Helsinki Institute of Physics, FI-00014 University of Helsinki (Finland); Mazumdar, Anupam; Stephens, Philip, E-mail: kari.enqvist@helsinki.fi, E-mail: a.mazumdar@lancaster.ac.uk, E-mail: p.stephens@lancaster.ac.uk [Physics Department, Lancaster University, Lancaster, LA1 4YB (United Kingdom)
2010-06-01T23:59:59.000Z
We propose to address the fine tuning problem of inflection point inflation by the addition of extra vacuum energy that is present during inflation but disappears afterwards. We show that in such a case, the required amount of fine tuning is greatly reduced. We suggest that the extra vacuum energy can be associated with an earlier phase transition and provide a simple model, based on extending the SM gauge group to SU(3){sub C} × SU(2){sub L} × U(1){sub Y} × U(1){sub B?L}, where the Higgs field of U(1){sub B?L} is in a false vacuum during inflation. In this case, there is virtually no fine tuning of the soft SUSY breaking parameters of the flat direction which serves as the inflaton. However, the absence of radiative corrections which would spoil the flatness of the inflaton potential requires that the U(1){sub B?L} gauge coupling should be small with g{sub B?L} ? 10{sup ?4}.
Superconformal symmetry, NMSSM, and inflation
Ferrara, Sergio [Physics Department, Theory Unit, CERN, CH 1211, Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati (Italy); Kallosh, Renata; Linde, Andrei; Marrani, Alessio [Department of Physics, Stanford University, Stanford, California 94305 (United States); Van Proeyen, Antoine [Instituut voor Theoretische Fysica, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)
2011-01-15T23:59:59.000Z
We identify a particularly simple class of supergravity models describing superconformal coupling of matter to supergravity. In these models, which we call the canonical superconformal supergravity models, the kinetic terms in the Jordan frame are canonical, and the scalar potential is the same as in the global theory. The pure supergravity part of the total action has a local Poincare supersymmetry, whereas the chiral and vector multiplets coupled to supergravity have a larger local superconformal symmetry. The scale-free globally supersymmetric theories, such as the NMSSM with a scale-invariant superpotential, can be naturally embedded into this class of theories. After the supergravity embedding, the Jordan frame scalar potential of such theories remains scale free; it is quartic, it contains no mass terms, no nonrenormalizable terms, no cosmological constant. The local superconformal symmetry can be broken by additional terms, which, in the small field limit, are suppressed by the gravitational coupling. This can be achieved by introducing the nonminimal scalar-curvature coupling, and by taking into account interactions with a hidden sector. In this approach, the smallness of the mass parameters in the NMSSM may be traced back to the original superconformal invariance. This allows one to address the {mu} problem and the cosmological domain wall problem in this model, and to implement chaotic inflation in the NMSSM. We discuss the gravitino problem in the NMSSM inflation, as well as the possibility to obtain a broad class of new versions of chaotic inflation in supergravity.
Open Inflation with Arbitrary False Vacuum Mass
Martin Bucher; Neil Turok
1995-03-21T23:59:59.000Z
We calculate the power spectrum of adiabatic density perturbations in an open inflationary model in which inflation occurs in two stages. First an epoch of old inflation creates a large, smooth universe, solving the horizon and homogeneity problems. Then an open universe emerges through the nucleation of a single bubble, with constant density hypersurfaces inside the bubble having constant negative spatial curvature. An epoch of `slow roll' inflation, shortened to give $\\Omega _0false vacuum.
Strong Dynamics and Inflation: a review
Phongpichit Channuie
2015-01-12T23:59:59.000Z
In this article, we review how strong dynamics can be efficiently employed as a viable alternative to study the mechanism of cosmic inflation. We examine single-field inflation in which the inflaton emerges as a bound state stemming from various strongly interacting field theories. We constrain the number of e-foldings for composite models of inflation in order to obtain a successful inflation. We study a set of cosmological parameters, e.g., the primordial spectral index $n_{s}$ and tensor-to-scalar ratio $r$, and confront the predicted results with the joint Planck data, and with the recent BICEP2 data.
A Delicate Universe: Compactification Obstacles to D-brane Inflation...
Office of Scientific and Technical Information (OSTI)
A Delicate Universe: Compactification Obstacles to D-brane Inflation Citation Details In-Document Search Title: A Delicate Universe: Compactification Obstacles to D-brane Inflation...
Multi-Stream Inflation: Bifurcations and Recombinations in the Multiverse
Yi Wang
2010-01-06T23:59:59.000Z
In this Letter, we briefly review the multi-stream inflation scenario, and discuss its implications in the string theory landscape and the inflationary multiverse. In multi-stream inflation, the inflation trajectory encounters bifurcations. If these bifurcations are in the observable stage of inflation, then interesting observational effects can take place, such as domain fences, non-Gaussianities, features and asymmetries in the CMB. On the other hand, if the bifurcation takes place in the eternal stage of inflation, it provides an alternative creation mechanism of bubbles universes in eternal inflation, as well as a mechanism to locally terminate eternal inflation, which reduces the measure of eternal inflation.
C:\\ANNUAL\\Vol2chps.v8\\ANNUAL2.VP
U.S. Energy Information Administration (EIA) Indexed Site
Energy Information Administration Historical Natural Gas Annual 1930 Through 2000 2 1. Quantity and Average Price of Natural Gas Production in the United States, 1930-2000...
Fact #835: August 25, Average Historical Annual Gasoline Pump Price,
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a g e October 20, 2014209ofRestrictions on FormerWindFEMPFax(DOE) FYDispositionEnergy Fact
Solar: monthly and annual average direct normal (DNI) GIS data...
from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the...
Haiti - Annual Average Wind Speed at 80 meters
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41clothThe Bonneville Power AdministrationHawaiiEnergyFloridaOutlook MaryVehiclesConfined SpaceEmergingHadronTOWARDS 74Â°
Fact #835: August 25, Average Historical Annual Gasoline Pump...
Broader source: Energy.gov (indexed) [DOE]
50% since the data series began in 1929. The effect of the U.S. embargo of oil from Iran can be seen in the early 1980's with the price of gasoline peaking in 1982. From 2002...
Gravitational Waves and the Scale of Inflation
Mehrdad Mirbabayi; Leonardo Senatore; Eva Silverstein; Matias Zaldarriaga
2015-04-17T23:59:59.000Z
We revisit alternative mechanisms of gravitational wave production during inflation and argue that they generically emit a non-negligible amount of scalar fluctuations. We find the scalar power is larger than the tensor power by a factor of order $1/\\epsilon^2$. For an appreciable tensor contribution the associated scalar emission completely dominates the zero-point fluctuations of inflaton, resulting in a tensor-to-scalar ratio $r\\sim \\epsilon^2$. A more quantitative result can be obtained if one further assumes that gravitational waves are emitted by localized sub-horizon processes, giving $r_{\\rm max} \\simeq 0.3 \\epsilon^2$. However, $\\epsilon$ is generally time dependent, and this result for $r$ depends on its instantaneous value during the production of the sources, rather than just its average value, somewhat relaxing constraints from the tilt $n_s$. We calculate the scalar 3-point correlation function in the same class of models and show that non-Gaussianity cannot be made arbitrarily small, i.e. $f_{NL} \\geq 1$, independently of the value of $r$. Possible exceptions in multi-field scenarios are discussed.
BPRC Annual Report BPRC Awards Compared to Inflation Since 1980
Howat, Ian M.
,810, 5% #12;BPRC Personnel Trends (1987 2006) 40 46 49 52 56 60 56 60 64 63 66 69 66 72 63 11 16 25 22 to BPRC/Geological Sciences/OSU. Library Annex will be renamed for him.BPRC/Geological Sciences/OSU. Library Annex will be renamed for him. #12;StaffStaff Mary DavisMary Davis was the second recipient
On Singularities in Cosmic Inflation
Ikjyot Singh Kohli
2015-07-02T23:59:59.000Z
In this paper, we examine a flat FLRW spacetime with a scalar field potential and show by applying Osgood's criterion to the Einstein field equations that all such models, irrespective of the particular choice of potential develop finite-time singularities. That is, we show that solutions to the field equations become singular in finite time, which can have important implications for the role of inflation in cosmological models. We further point out that a possible reason for this behaviour is that the solutions to the field equations in such inflationary scenarios do not obey global existence and uniqueness properties, which is a typical characteristic of solutions that diverge in finite time.
Attraction towards an inflection point inflation
Allahverdi, Rouzbeh [Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Dutta, Bhaskar [Department of Physics, Texas A and M University, College Station, Texas 77843-4242 (United States); Mazumdar, Anupam [Physics Department, Lancaster University, Lancaster, LA1 4YB (United Kingdom); Niels Bohr Institute, Blegdamsvej-17, Copenhagen-2100 (Denmark)
2008-09-15T23:59:59.000Z
Many models of high-energy physics possess metastable vacua. It is conceivable that the Universe can get trapped in such a false vacuum, irrespective of its origin and prior history, at an earlier stage during its evolution. The ensuing false vacuum inflation results in a cold and empty universe and has a generic graceful exit problem. We show that an inflection point inflation along the flat directions of the minimal supersymmetric standard model (MSSM) can resolve this graceful exit problem by inflating the bubble, which nucleates out of a false vacuum. The important point is that the initial condition for an MSSM inflation can be naturally realized, due to an attractor behavior toward the inflection point. We investigate these issues in detail and also present an example where metastable vacua, hence the false vacuum inflation, can happen within the MSSM.
False Vacuum Inflation with a Quartic Potential
David Roberts; Andrew R Liddle; David H Lyth
1994-11-25T23:59:59.000Z
We consider a variant of Hybrid Inflation, where inflation is driven by two interacting scalar fields, one of which has a `Mexican hat' potential and the other a quartic potential. Given the appropriate initial conditions one of the fields can be trapped in a false vacuum state, supported by couplings to the other field. The energy of this vacuum can be used to drive inflation, which ends when the vacuum decays to one of its true minima. Depending on parameters, it is possible for inflation to proceed via two separate epochs, with the potential temporarily steepening sufficiently to suspend inflation. We use numerical simulations to analyse the possibilities, and emphasise the shortcomings of the slow-roll approximation for analysing this scenario. We also calculate the density perturbations produced, which can have a spectral index greater than one.
Effects of thermal fluctuations on thermal inflation
Takashi Hiramatsu; Yuhei Miyamoto; Jun'ichi Yokoyama
2014-12-25T23:59:59.000Z
The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these thermal fluctuations using lattice simulations. We conclude that though they do not ruin the thermal inflation scenario, the phase transition at the end of thermal inflation proceeds through phase mixing and is therefore not accompanied by the formations of bubbles nor appreciable amplitude of gravitational waves.
A numerical study of pseudoscalar inflation
Cheng, Shu-Lin; Ng, Kin-Wang
2015-01-01T23:59:59.000Z
A numerical study of a pseudoscalar inflation having an axion-photon-like coupling is performed by solving numerically the coupled differential equations of motion for inflaton and photon mode functions from the onset of inflation to the end of reheating. The backreaction due to particle production is also included self-consistently. We find that this particular inflation model realizes the idea of a warm inflation in which a steady thermal bath is established by the particle production. In most cases this thermal bath exceeds the amount of radiation released in the reheating process. In the strong coupling regime, the transition from the inflationary to the radiation-dominated phase does not involve either a preheating or reheating process. In addition, energy density peaks produced near the end of inflation may lead to the formation of primordial black holes.
Inflation and Alternatives with Blue Tensor Spectra
Yi Wang; Wei Xue
2014-10-20T23:59:59.000Z
We study the tilt of the primordial gravitational waves spectrum. A hint of blue tilt is shown from analyzing the BICEP2 and POLARBEAR data. Motivated by this, we explore the possibilities of blue tensor spectra from the very early universe cosmology models, including null energy condition violating inflation, inflation with general initial conditions, and string gas cosmology, etc. For the simplest G-inflation, blue tensor spectrum also implies blue scalar spectrum. In general, the inflation models with blue tensor spectra indicate large non-Gaussianities. On the other hand, string gas cosmology predicts blue tensor spectrum with highly Gaussian fluctuations. If further experiments do confirm the blue tensor spectrum, non-Gaussianity becomes a distinguishing test between inflation and alternatives.
A numerical study of pseudoscalar inflation
Shu-Lin Cheng; Wolung Lee; Kin-Wang Ng
2015-08-02T23:59:59.000Z
A numerical study of a pseudoscalar inflation having an axion-photon-like coupling is performed by solving numerically the coupled differential equations of motion for inflaton and photon mode functions from the onset of inflation to the end of reheating. The backreaction due to particle production is also included self-consistently. We find that this particular inflation model realizes the idea of a warm inflation in which a steady thermal bath is established by the particle production. In most cases this thermal bath exceeds the amount of radiation released in the reheating process. In the strong coupling regime, the transition from the inflationary to the radiation-dominated phase does not involve either a preheating or reheating process. In addition, energy density peaks produced near the end of inflation may lead to the formation of primordial black holes.
Inflation and alternatives with blue tensor spectra
Wang, Yi; Xue, Wei, E-mail: yw366@cam.ac.uk, E-mail: wei.xue@sissa.it [Centre for Theoretical Cosmology, DAMTP, University of Cambridge, Cambridge CB3 0WA (United Kingdom)
2014-10-01T23:59:59.000Z
We study the tilt of the primordial gravitational waves spectrum. A hint of blue tilt is shown from analyzing the BICEP2 and POLARBEAR data. Motivated by this, we explore the possibilities of blue tensor spectra from the very early universe cosmology models, including null energy condition violating inflation, inflation with general initial conditions, and string gas cosmology, etc. For the simplest G-inflation, blue tensor spectrum also implies blue scalar spectrum. In general, the inflation models with blue tensor spectra indicate large non-Gaussianities. On the other hand, string gas cosmology predicts blue tensor spectrum with highly Gaussian fluctuations. If further experiments do confirm the blue tensor spectrum, non-Gaussianity becomes a distinguishing test between inflation and alternatives.
Freivogel, Ben; /Stanford U., Phys. Dept. /LBL, Berkeley; Hubeny, Veronika E.; /LBL, Berkeley /Durham U., Dept. of Math.; Maloney, Alexander; /Stanford U., Phys. Dept.; Myers, Rob; /Perimeter Inst. Theor. Phys. /Waterloo U.; Rangamani, Mukund; /LBL, Berkeley /Durham U., Dept. of Math.; Shenker, Stephen; /Stanford U., Phys. Dept.
2005-10-07T23:59:59.000Z
We study the realization of inflation within the AdS/CFT correspondence. We assume the existence of a string landscape containing at least one stable AdS vacuum and a (nearby) metastable de Sitter state. Standard arguments imply that the bulk physics in the vicinity of the AdS minimum is described by a boundary CFT. We argue that large enough bubbles of the dS phase, including those able to inflate, are described by mixed states in the CFT. Inflating degrees of freedom are traced over and do not appear explicitly in the boundary description. They nevertheless leave a distinct imprint on the mixed state. Analytic continuation allows us, in principle, to recover a large amount of nonperturbatively defined information about the inflating regime. Our work also shows that no scattering process can create an inflating region, even by quantum tunneling, since a pure state can never evolve into a mixed state under unitary evolution.We study the realization of inflation within the AdS/CFT correspondence. We assume the existence of a string landscape containing at least one stable AdS vacuum and a (nearby) metastable de Sitter state. Standard arguments imply that the bulk physics in the vicinity of the AdS minimum is described by a boundary CFT. We argue that large enough bubbles of the dS phase, including those able to inflate, are described by mixed states in the CFT. Inflating degrees of freedom are traced over and do not appear explicitly in the boundary description. They nevertheless leave a distinct imprint on the mixed state. Analytic continuation allows us, in principle, to recover a large amount of nonperturbatively defined information about the inflating regime. Our work also shows that no scattering process can create an inflating region, even by quantum tunneling, since a pure state can never evolve into a mixed state under unitary evolution.
The expected anisotropy in solid inflation
Nicola Bartolo; Marco Peloso; Angelo Ricciardone; Caner Unal
2014-07-30T23:59:59.000Z
Solid inflation is an effective field theory of inflation in which isotropy and homogeneity are accomplished via a specific combination of anisotropic sources (three scalar fields that individually break isotropy). This results in specific observational signatures that are not found in standard models of inflation: a non-trivial angular dependence for the squeezed bispectrum, and a possibly long period of anisotropic inflation (to drive inflation, the "solid" must be very insensitive to any deformation, and thus background anisotropies are very slowly erased). In this paper we compute the expected level of statistical anisotropy in the power spectrum of the curvature perturbations of this model. To do so, we account for the classical background values of the three scalar fields that are generated on large (superhorizon) scales during inflation via a random walk sum, as the perturbation modes leave the horizon. Such an anisotropy is unavoidably generated, even starting from perfectly isotropic classical initial conditions. The expected level of anisotropy is related to the duration of inflation and to the amplitude of the squeezed bispectrum. If this amplitude is close to its current observational limit (so that one of the most interesting predictions of the model can be observed in the near future), we find that a level of statistical anisotropy $\\gtrsim 3\\%$ in the power spectrum is to be expected, if inflation lasted $\\gtrsim 20-30$ e-folds more than the final $50-60$ efolds required to generare the CMB modes. We also comment and point out various similarities between solid inflation and models of inflation where a suitable coupling of the inflaton to a vector kinetic term $F^{2}$ gives frozen and scale invariant vector perturbations on superhorizon scales.
Seasonal Average Temperature - Hanford Site
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Average Temperature Hanford Meteorological Station Real Time Met Data from Around the Site Current HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary...
Localization on the Landscape and Eternal Inflation
Laura Mersini-Houghton; Malcolm J. Perry
2014-04-22T23:59:59.000Z
We investigate the validity of the assertion that eternal inflation populates the landscape of string theory. We verify that bubble solutions do not satisfy the Klein Gordon equation for the landscape potential. Solutions to the landscape potential within the formalism of quantum cosmology are Anderson localized wavefunctions. Those are inconsistent with inflating bubble solutions. The physical reasons behind the failure of a relation between eternal inflation and the landscape are rooted in quantum phenomena such as interference between wavefunction concentrated around the various vacua in the landscape.
Inflation and New Agegraphic Dark Energy
Cheng-Yi Sun; Rui-Hong Yue
2011-04-23T23:59:59.000Z
In the note, we extend the discussion of the new agegraphic dark energy (NADE) model to include the inflation stage. Usually, in the inflation models, for convenience the conformal time $\\eta$ is set to be zero at the end of inflation. This is incompatible with the NADE model since $\\eta=0$ indicates the divergence of NADE. To avoid the difficulty, we can redefine the conformal time as $\\eta+\\delta$. However, we find that the positive constant $\\delta$ must be so large that NADE can not become dominated at present time.
A Natural Framework for Chaotic Inflation
Kaloper, Nemanja; Sorbo, Lorenzo [Department of Physics, University of California, Davis, California 95616 (United States); Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003 (United States)
2009-03-27T23:59:59.000Z
We show that inflation with a quadratic potential occurs naturally in theories where an axionlike field mixes with a 4-form. Such an axion is massive, with the mass which arises from the mixing being protected by the axion shift symmetry. The 4-form backgrounds break this symmetry spontaneously and comprise a minilandscape, where their fluxes can change by emission of membranes. Inflation can begin when the 4-form dominates the energy density. Eventually, this energy is reduced by membrane emission, and the axion can roll slowly towards its minimum, as in the simplest version of chaotic inflation.
Inflation from Broken Scale Invariance
Csaba Csaki; Nemanja Kaloper; Javi Serra; John Terning
2014-06-19T23:59:59.000Z
We construct a model of inflation based on a low-energy effective theory of spontaneously broken global scale invariance. This provides a shift symmetry that protects the inflaton potential from quantum corrections. Since the underlying scale invariance is non-compact, arbitrarily large inflaton field displacements are readily allowed in the low-energy effective theory. A weak breaking of scale invariance by almost marginal operators provides a non-trivial inflaton minimum, which sets and stabilizes the final low-energy value of the Planck scale. The underlying scale invariance ensures that the slow-roll approximation remains valid over large inflaton displacements, and yields a scale invariant spectrum of perturbations as required by the CMB observations.
Inflation with High Derivative Couplings
Bin Chen; Miao Li; Tower Wang; Yi Wang
2006-11-23T23:59:59.000Z
We study a class of generalized inflation models in which the inflaton is coupled to the Ricci scalar by a general $f(\\phi, R)$ term. The scalar power spectrum, the spectral index, the running of the spectral index, the tensor mode spectrum and a new consistency relation of the model are calculated. We discuss in detail the issues of how to diagonize the coupled perturbation equations, how to deal with an entropy-like source, and how to determine the initial condition by quantization. By studying some explicit models, we find that rich phenomena such as a blue scalar power spectrum, a large running of the spectral index, and a blue tensor mode spectrum can be obtained.
Conformal Frame Dependence of Inflation
Domènech, Guillem
2015-01-01T23:59:59.000Z
Physical equivalence between different conformal frames in scalar-tensor theory of gravity is a known fact. However, assuming that matter minimally couples to the metric of a particular frame, which we call the matter Jordan frame, the matter point of view of the universe may vary from frame to frame. Thus, there is a clear distinction between gravitational sector (curvature and scalar field) and matter sector. In this paper, focusing on a simple power-law inflation model in the Einstein frame, two examples are considered; a super-inflationary and a bouncing universe Jordan frames. Then we consider a spectator curvaton minimally coupled to a Jordan frame, and compute its contribution to the curvature perturbation power spectrum. In these specific examples, we find a blue tilt at short scales for the super-inflationary case, and a blue tilt at large scales for the bouncing case.
Remote inflation: hybrid-like inflation without hybrid-type potential
Matsuda, Tomohiro, E-mail: matsuda@sit.ac.jp [Laboratory of Physics, Saitama Institute of Technology, Fusaiji, Okabe-machi, Saitama 369-0293 (Japan)
2009-07-01T23:59:59.000Z
A new scenario of hybrid-like inflation is considered without using hybrid-type potential. Radiation raised continuously by a dissipating inflaton field keeps symmetry restoration in a remote sector, and the false-vacuum energy of the remote sector dominates the energy density during inflation. Remote inflation is terminated when the temperature reaches the critical temperature, or when the slow-roll condition is violated. Without introducing a complex form of couplings, inflaton field may either roll-in (like a standard hybrid inflation) or roll-out (like an inverted-hybrid model or quintessential inflation) on arbitrary inflaton potential. Significant signatures of remote inflation can be observed in the spectrum caused by 1. the inhomogeneous phase transition in the remote sector, or; 2. a successive phase transition in the remote sector. Remote inflation can predict strong amplification or suppression of small-scale perturbations without introducing multiple inflation. Since the inflaton may have a run-away potential, it is also possible to identify the inflaton with quintessence, without introducing additional mechanisms. Even if the false-vacuum energy is not dominated by the remote sector, the phase transition in the remote sector is possible during warm inflation, which may cause significant amplification/suppression of the curvature perturbations.
Remote Inflation: Hybrid-like inflation without hybrid-type potential
Tomohiro Matsuda
2009-06-18T23:59:59.000Z
A new scenario of hybrid-like inflation is considered without using hybrid-type potential. Radiation raised continuously by a dissipating inflaton field keeps symmetry restoration in a remote sector, and the false-vacuum energy of the remote sector dominates the energy density during inflation. Remote inflation is terminated when the temperature reaches the critical temperature, or when the slow-roll condition is violated. Without introducing a complex form of couplings, inflaton field may either roll-in (like a standard hybrid inflation) or roll-out (like an inverted-hybrid model or quintessential inflation) on arbitrary inflaton potential. Significant signatures of remote inflation can be observed in the spectrum caused by (1) the inhomogeneous phase transition in the remote sector, or (2) a successive phase transition in the remote sector. Remote inflation can predict strong amplification or suppression of small-scale perturbations without introducing multiple inflation. Since the inflaton may have a run-away potential, it is also possible to identify the inflaton with quintessence, without introducing additional mechanisms. Even if the false-vacuum energy is not dominated by the remote sector, the phase transition in the remote sector is possible during warm inflation, which may cause significant amplification/suppression of the curvature perturbations.
Averaging Hypotheses in Newtonian Cosmology
T. Buchert
1995-12-20T23:59:59.000Z
Average properties of general inhomogeneous cosmological models are discussed in the Newtonian framework. It is shown under which circumstances the average flow reduces to a member of the standard Friedmann--Lema\\^\\i tre cosmologies. Possible choices of global boundary conditions of inhomogeneous cosmologies as well as consequences for the interpretation of cosmological parameters are put into perspective.
Inflating with large effective fields
Burgess, C.P. [PH-TH Division, CERN, CH-1211, Genève 23 (Switzerland); Cicoli, M. [Dipartimento di Fisica e Astronomia, Università di Bologna, Via Irnerio 46, 40126 Bologna (Italy); Quevedo, F. [Abdus Salam ICTP, Strada Costiera 11, Trieste 34014 (Italy); Williams, M., E-mail: cburgess@perimeterinstitute.ca, E-mail: mcicoli@ictp.it, E-mail: f.quevedo@damtp.cam.ac.uk, E-mail: mwilliams@perimeterinsititute.ca [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton ON (Canada)
2014-11-01T23:59:59.000Z
We re-examine large scalar fields within effective field theory, in particular focussing on the issues raised by their use in inflationary models (as suggested by BICEP2 to obtain primordial tensor modes). We argue that when the large-field and low-energy regimes coincide the scalar dynamics is most effectively described in terms of an asymptotic large-field expansion whose form can be dictated by approximate symmetries, which also help control the size of quantum corrections. We discuss several possible symmetries that can achieve this, including pseudo-Goldstone inflatons characterized by a coset G/H (based on abelian and non-abelian, compact and non-compact symmetries), as well as symmetries that are intrinsically higher dimensional. Besides the usual trigonometric potentials of Natural Inflation we also find in this way simple large-field power laws (like V ? ?{sup 2}) and exponential potentials, V(?) = ?{sub k}V{sub x}e{sup ?k?/M}. Both of these can describe the data well and give slow-roll inflation for large fields without the need for a precise balancing of terms in the potential. The exponential potentials achieve large r through the limit |?| || ? and so predict r ? (8/3)(1-n{sub s}); consequently n{sub s} ? 0.96 gives r ? 0.11 but not much larger (and so could be ruled out as measurements on r and n{sub s} improve). We examine the naturalness issues for these models and give simple examples where symmetries protect these forms, using both pseudo-Goldstone inflatons (with non-abelian non-compact shift symmetries following familiar techniques from chiral perturbation theory) and extra-dimensional models.
Inflation in Supergravity with a Single Superfield
Terada, Takahiro
2015-01-01T23:59:59.000Z
Supergravity is a well-motivated theory beyond the standard model of particle physics, and a suitable arena to study high-energy physics at the early universe including inflation, whose observational evidences are growing more and more. Inflation in supergravity, however, cannot be easily described because of restrictions from supersymmetry (SUSY). The scalar potential has an exponential factor and a large negative term whereas a flat and positive potential is needed to realize inflation. The standard method to obtain such an inflationary scalar potential requires an additional superfield to the one containing inflaton. In this thesis, we propose and develop an alternative method which does not require the additional superfield and thus reduces the necessary degrees of freedom by half. That is, we study inflation in supergravity with only a single chiral superfield which contains inflaton. We accomplish it by introducing a higher dimensional term in the inflaton Kahler potential, which plays an important dual...
Inflatable tool with rib expansion support
Mody, R.K.
1990-12-25T23:59:59.000Z
This patent describes apparatus for introduction into a subterranean well on a conduit. It comprises a cylindrical housing including upper and lower collar members; means for securing the housing relative to the conduit; an inflatable elastomeric element disposed around the exterior of the housing; anchoring means; and elastically expandable belt means carried around the exterior of the anchoring means and spaced between the inflatable elastomeric element and each of the collars.
The simplest extension of Starobinsky inflation
Carsten van de Bruck; Laura Elena Paduraru
2015-05-07T23:59:59.000Z
We consider the simplest extension to the Starobinsky model, by allowing an extra scalar field to help drive inflation. We perform our analysis in the Einstein frame and calculate the power spectra at the end of inflation to second order in the slow--roll parameters. We find that the model gives predictions in great agreement with the current Planck data without the need for fine-tuning. Our results encourage current efforts to embed the model in a supergravity setting.
First Order Inflation in General Relativity
David Wands
1994-07-20T23:59:59.000Z
I give a general formulation of the constraints on models of inflation ended by a first order phase transition arising from the requirement that they do not produce too many large (observable) true vacuum voids -- the `big bubble problem'. It is shown that this constraint can be satisfied by a simple model in Einstein gravity -- a variant of `hybrid' or `false vacuum' inflation. (Talk presented at `Birth of the Universe' workshop Rome, May 1994)
Inflation driven by q-de Sitter
M. R. Setare; D. Momeni; V. Kamali; R. Myrzakulov
2015-06-30T23:59:59.000Z
We propose a generalised de Sitter scale factor for the cosmology of early and late time universe, including single scalar field is called as inflaton. This form of scale factor has a free parameter $q$ is called as nonextensivity parameter. When $q=1$, the scale factor is de Sitter. This scale factor is an intermediate form between power-law and de Sitter. We study cosmology of such families. We show that both kinds of dark components, dark energy and dark matter simultaneously are described by this family of solutions. As a motivated idea, we investigate inflation in the framework of $q$-de Sitter. We consider three types of scenarios for inflation. In a single inflation scenario, we observe that, inflation ended without any specific ending inflation $\\phi_{end}$, the spectral index and the associated running of the spectral index are %$ n_\\mathrm{s} - 1 \\sim -2\\epsilon, \\quad \\alpha_\\mathrm{s} \\equiv 0 $. To end the inflation: we should have $q=\\frac{3}{4}$. We deduce that the inflation ends when the evolution of the scale factor is $a (t) =e_ {3/4} (t) $. With this scale factor there is no need to specify $\\phi_{end}$. As an alternative to have inflation with ending point, We will study q-inflation model in the context of warm inflation. We propose two forms of damping term $\\Gamma$. In the first case when $\\Gamma=\\Gamma_0$, we show the scale invariant spectrum, (Harrison-Zeldovich spectrum, i.e. $n_s=1$) may be approximately presented by ($q=\\frac{9}{10},~~N=70$). Also there is a range of values of $R$ and $n_s$ which is compatible with the BICEP2 data where $q=\\frac{9}{10}$. In case $\\Gamma=\\Gamma_1V(\\phi)$, it is observed that small values of a number of e-folds are assured for small values of $q$ parameter. For $q=\\frac{9}{10}$ a range of values of $R$ and $n_s$ is compatible with the BICEP2 data.
False Vacuum Inflation with Einstein Gravity
Edmund J Copeland; Andrew R Liddle; David H Lyth; Ewan D Stewart; David Wands
1994-01-10T23:59:59.000Z
We investigate chaotic inflation models with two scalar fields, such that one field (the inflaton) rolls while the other is trapped in a false vacuum state. The false vacuum becomes unstable when the inflaton field falls below some critical value, and a first or second order transition to the true vacuum ensues. Particular attention is paid to Linde's second-order `Hybrid Inflation'; with the false vacuum dominating, inflation differs from the usual true vacuum case both in its cosmology and in its relation to particle physics. The spectral index of the adiabatic density perturbation can be very close to 1, or it can be around ten percent higher. The energy scale at the end of inflation can be anywhere between $10^{16}$\\,GeV and $10^{11}$\\,GeV, though reheating is prompt so the reheat temperature can't be far below $10^{11}\\,$GeV. Topological defects are almost inevitably produced at the end of inflation, and if the inflationary energy scale is near its upper limit they can have significant effects. Because false vacuum inflation occurs with the inflaton field far below the Planck scale, it is easier to implement in the context of supergravity than standard chaotic inflation. That the inflaton mass is small compared with the inflationary Hubble parameter is still a problem for generic supergravity theories, but remarkably this can be avoided in a natural way for a class of supergravity models which follow from orbifold compactification of superstrings. This opens up the prospect of a truly realistic, superstring
The Frame Potential, on Average
Ingemar Bengtsson; Helena Granstrom
2008-10-24T23:59:59.000Z
A SIC consists of N^2 equiangular unit vectors in an N dimensional Hilbert space. The frame potential is a function of N^2 unit vectors. It has a unique global minimum if the vectors form a SIC, and this property has been made use of in numerical searches for SICs. When the vectors form an orbit of the Heisenberg group the frame potential becomes a function of a single fiducial vector. We analytically compute the average of this function over Hilbert space. We also compute averages when the fiducial vector is placed in certain special subspaces defined by the Clifford group.
New models of chaotic inflation in supergravity
Kallosh, Renata; Linde, Andrei, E-mail: kallosh@stanford.edu, E-mail: alinde@stanford.edu [Department of Physics, Stanford University, Stanford, CA 94305 (United States)
2010-11-01T23:59:59.000Z
We introduce a new class of models of chaotic inflation inspired by the superconformal approach to supergravity. This class of models allows a functional freedom of choice of the inflaton potential V = |f(?)|{sup 2}. The simplest model of this type has a quadratic potential m{sup 2}?{sup 2}/2. Another model describes an inflaton field with the standard symmetry breaking potential ?{sup 2}(?{sup 2}?v{sup 2}){sup 2}. Depending on the value of v and on initial conditions for inflation, the spectral index n{sub s} may take any value from 0.97 to 0.93, and the tensor-to-scalar ratio r may span the interval form 0.3 to 0.01. A generalized version of this model has a potential ?{sup 2}(?{sup ?}?v{sup ?}){sup 2}. At large ? and ? > 0, this model describes chaotic inflation with the power law potential ? ?{sup 2?}. For ? < 0, this potential describes chaotic inflation with a potential which becomes flat in the large field limit. We further generalize these models by introducing a nonminimal coupling of the inflaton field to gravity. The mechanism of moduli stabilization used in these models allows to improve and generalize several previously considered models of chaotic inflation in supergravity.
Nonperturbative dynamics of reheating after inflation: A review
Amin, Mustafa A.
Our understanding of the state of the universe between the end of inflation and big bang nucleosynthesis (BBN) is incomplete. The dynamics at the end of inflation are rich and a potential source of observational signatures. ...
4, 22832300, 2004 Hemispheric average
Paris-Sud XI, Université de
ACPD 4, 22832300, 2004 Hemispheric average Cl atom concentration U. Platt et al. Title Page U. Platt1 , W. Allen2 , and D. Lowe2 1 Institut f¨ur Umweltphysik, University of Heidelberg, INF 229 February 2004 Accepted: 9 March 2004 Published: 4 May 2004 Correspondence to: U. Platt (ulrich.platt
The Problem with False Vacuum Higgs Inflation
Malcolm Fairbairn; Philipp Grothaus; Robert Hogan
2014-03-28T23:59:59.000Z
We investigate the possibility of using the only known fundamental scalar, the Higgs, as an inflaton with minimal coupling to gravity. The peculiar appearance of a plateau or a false vacuum in the renormalised effective scalar potential suggests that the Higgs might drive inflation. For the case of a false vacuum we use an additional singlet scalar field, motivated by the strong CP problem, and its coupling to the Higgs to lift the barrier allowing for a graceful exit from inflation by mimicking hybrid inflation. We find that this scenario is incompatible with current measurements of the Higgs mass and the QCD coupling constant and conclude that the Higgs can only be the inflaton in more complicated scenarios.
Inflation and Uplifting with Nilpotent Superfields
Renata Kallosh; Andrei Linde
2014-11-26T23:59:59.000Z
Recently it was found that a broad class of existing inflationary models based on supergravity can be significantly simplified if some of the standard, unconstrained chiral superfields are replaced by nilpotent superfields, associated with Volkov-Akulov supersymmetry. The same method allows to simplify the existing models of uplifting of AdS vacua in string theory. In this paper we will show that one can go well beyond simplifying the models that already exist. We will propose a broad class of new models of chaotic inflation based on supergravity with nilpotent superfields, which simultaneously incorporate both inflation and uplifting. They provide a simple unified description of inflation and the present acceleration of the universe in the supergravity context.
Chaotic inflation in higher derivative gravity theories
Myrzakul, Shynaray; Sebastiani, Lorenzo
2015-01-01T23:59:59.000Z
In this paper, we investigate chaotic inflation from scalar field subjected to potential in the framework of $f(R^2, P, Q)$-gravity, where we add a correction to Einstein's gravity based on a function of the square of the Ricci scalar $R^2$, the contraction of the Ricci tensor $P$, and the contraction of the Riemann tensor $Q$. The Gauss-Bonnet case is also discussed. We give the general formalism of inflation, deriving the slow-roll parameters, the $e$-folds number, and the spectral indexes. Several explicit examples are furnished, namely we will consider the cases of massive scalar field and scalar field with quartic potential and some power-law function of the curvature invariants under investigation in the gravitational action of the theory. Viable inflation according with observations is analyzed.
On Power Law Inflation in DBI Models
Michal Spalinski
2007-04-26T23:59:59.000Z
Inflationary models in string theory which identify the inflaton with an open string modulus lead to effective field theories with non-canonical kinetic terms: Dirac-Born-Infeld scalar field theories. In the case of a $D$-brane moving in an AdS throat with a quadratic scalar field potential DBI kinetic terms allow a novel realization of power law inflation. This note adresses the question of whether this behaviour is special to this particular choice of throat geometry and potential. The answer is that for any throat geometry one can explicitly find a potential which leads to power law inflation. This generalizes the well known fact that an exponential potential gives power law inflation in the case of canonical kinetic terms.
Inflation after COBE: Lectures on inflationary cosmology
Turner, M.S. [Chicago Univ., IL (United States). Enrico Fermi Inst.]|[Fermi National Accelerator Lab., Batavia, IL (United States)
1992-12-31T23:59:59.000Z
In these lectures I review the standard hot big-bang cosmology, emphasizing its successes, its shortcomings, and its major challenge-a detailed understanding of the formation of structure in the Universe. I then discuss the motivations for and the fundamentals of inflationary cosmology, particularly emphasizing the quantum origin of metric (density and gravity-wave) perturbations. Inflation addresses the shortcomings of the standard cosmology and provides the ``initial data`` for structure formation. I conclude by addressing the implications of inflation for structure formation, evaluating the various cold dark matter models in the light of the recent detection of temperature anisotropies in the cosmic background radiation by COBE. In the near term, the study of structure formation offers a powerful probe of inflation, as well as specific inflationary models.
The Price of WMAP Inflation in Supergravity
J. Ellis; Z. Lalak; S. Pokorski; K. Turzynski
2006-06-15T23:59:59.000Z
The three-year data from WMAP are in stunning agreement with the simplest possible quadratic potential for chaotic inflation, as well as with new or symmetry-breaking inflation. We investigate the possibilities for incorporating these potentials within supergravity, particularly of the no-scale type that is motivated by string theory. Models with inflation driven by the matter sector may be constructed in no-scale supergravity, if the moduli are assumed to be stabilised by some higher-scale dynamics and at the expense of some fine-tuning. We discuss specific scenarios for stabilising the moduli via either D- or F-terms in the effective potential, and survey possible inflationary models in the presence of D-term stabilisation.
Observational constraints on braneworld chaotic inflation
Andrew R Liddle; Anthony J Smith
2003-08-13T23:59:59.000Z
We examine observational constraints on chaotic inflation models in the Randall-Sundrum Type II braneworld. If inflation takes place in the high-energy regime, the perturbations produced by the quadratic potential are further from scale-invariance than in the standard cosmology, in the quartic case more or less unchanged, while for potentials of greater exponent the trend is reversed. We test these predictions against a data compilation including the WMAP measurements of microwave anisotropies and the 2dF galaxy power spectrum. While in the standard cosmology the quartic potential is at the border of what the data allow and all higher powers excluded, we find that in the high-energy regime of braneworld inflation even the quadratic case is under strong observational pressure. We also investigate the intermediate regime where the brane tension is comparable to the inflationary energy scale, where the deviations from scale-invariance prove to be greater.
Self-Assembled Polymer Membrane Capsules Inflated by Osmotic Pressure
Bausch, Andreas
Self-Assembled Polymer Membrane Capsules Inflated by Osmotic Pressure Vernita D. Gordon,, Xi Chen stabilized by adsorption to colloids and inflated by osmotic pressure from internal free polyelectrolyte deformation. The osmotic pressure inflating these capsules has the potential to trigger release of contents
Inflation models, spectral index and observational constraints
Laura Covi
2000-03-30T23:59:59.000Z
We have evaluated the observational constraints on the spectral index $n$, in the context of a $\\Lambda$CDM model. For $n$ scale-independent, as predicted by most models of inflation, present data require $n\\simeq 1.0 \\pm 0.1$ at the 2-$\\sigma$ level. We have also studied the two-parameter scale-dependent spectral index, predicted by running-mass inflation models. Present data allow significant variation of $n$ in this case, within the theoretically preferred region of parameter space.
Transplanckian energy production and slow roll inflation
Ulf H. Danielsson
2004-11-26T23:59:59.000Z
In this paper we investigate how the energy density due to a non-standard choice of initial vacuum affects the expansion of the universe during inflation. To do this we introduce source terms in the Friedmann equations making sure that we respect the relation between gravity and thermodynamics. We find that the energy production automatically implies a slow rolling cosmological constant. Hence we also conclude that there is no well defined value for the cosmological constant in the presence of sources. We speculate that a non-standard vacuum can provide slow roll inflation on its own.
Inflatable partition for fighting mine fires
Conti, Ronald S. (Pittsburgh, PA); Lazzara, Charles P. (Pittsburgh, PA)
1995-01-01T23:59:59.000Z
The seal is a lightweight, inflatable, bag which may be inflated by a portable air generator and is used to seal a burning mine passage. A collapsible tube-like aperture extends through the seal and allows passage of high expansion foam through the seal in a feed tube. The foam fills the passageway and extinguishes the fire. In other embodiments, the feed tubes incorporate means to prevent collapse of the aperture. In these embodiments a shroud connects the feed tube to a foam generator. This seal allows creation of a high expansion foam fire fighting barrier even in upward sloping passages.
Generating Luminous and Dark Matter During Inflation
Barrie, Neil D
2015-01-01T23:59:59.000Z
We propose a new mechanism for generating both luminous and dark matter during cosmic inflation. According to this mechanism, ordinary and dark matter carry common charge which is associated with an anomalous $ U(1)_{X} $ group. Anomaly terms source $ \\mathcal{CP} $ and $ U(1)_{X} $ charge violating processes during inflation, producing corresponding non-zero Chern-Simons numbers which are subsequently reprocessed into baryon and dark matter densities. The general framework developed is then applied to two possible extensions of the Standard Model with anomalous gauged $B$ and $B-L$, each with an additional dark matter candidate.
Generating Luminous and Dark Matter During Inflation
Neil D. Barrie; Archil Kobakhidze
2015-03-09T23:59:59.000Z
We propose a new mechanism for generating both luminous and dark matter during cosmic inflation. According to this mechanism, ordinary and dark matter carry common charge which is associated with an anomalous $ U(1)_{X} $ group. Anomaly terms source $ \\mathcal{CP} $ and $ U(1)_{X} $ charge violating processes during inflation, producing corresponding non-zero Chern-Simons numbers which are subsequently reprocessed into baryon and dark matter densities. The general framework developed is then applied to two possible extensions of the Standard Model with anomalous gauged $B$ and $B-L$, each with an additional dark matter candidate.
Multifield consequences for D-brane inflation
Dias, Mafalda; Frazer, Jonathan; Liddle, Andrew R., E-mail: m.dias@sussex.ac.uk, E-mail: j.frazer@sussex.ac.uk, E-mail: a.liddle@sussex.ac.uk [Astronomy Centre, University of Sussex, Brighton BN1 9QH (United Kingdom)
2012-06-01T23:59:59.000Z
We analyse the multifield behaviour in D-brane inflation when contributions from the bulk are taken into account. For this purpose, we study a large number of realisations of the potential; we find the nature of the inflationary trajectory to be very consistent despite the complex construction. Inflation is always canonical and occurs in the vicinity of an inflection point. Extending the transport method to non-slow-roll and to calculate the running, we obtain distributions for observables. The spectral index is typically blue and the running positive, putting the model under moderate pressure from WMAP7 constraints. The local f{sub NL} and tensor-to-scalar ratio are typically unobservably small, though we find approximately 0.5% of realisations to give observably large local f{sub NL}. Approximating the potential as sum-separable, we are able to give fully analytic explanations for the trends in observed behaviour. Finally we find the model suffers from the persistence of isocurvature perturbations, which can be expected to cause further evolution of adiabatic perturbations after inflation. We argue this is a typical problem for models of multifield inflation involving inflection points and renders models of this type technically unpredictive without a description of reheating.
Chaotic inflation with curvaton induced running
Martin S. Sloth
2014-09-08T23:59:59.000Z
While dust contamination now appears as a likely explanation of the apparent tension between the recent BICEP2 data and the Planck data, we will here explore the consequences of a large running in the spectral index as suggested by the BICEP2 collaboration as an alternative explanation of the apparent tension, but which would be in conflict with prediction of the simplest model of chaotic inflation. The large field chaotic model is sensitive to UV physics, and the nontrivial running of the spectral index suggested by the BICEP2 collaboration could therefore, if true, be telling us some additional new information about the UV completion of inflation. However, before we would be able to draw such strong conclusions with confidence, we would first have to also carefully exclude all the alternatives. Assuming monomial chaotic inflation is the right theory of inflation, we therefore explore the possibility that the running could be due to some other less UV sensitive degree of freedom. As an example, we ask if it is possible that the curvature perturbation spectrum has a contribution from a curvaton, which makes up for the large running in the spectrum. We find that this effect could mask the information we can extract about the UV physics. We also study different different models, which might lead to a large negative intrinsic running of the curvaton.
Lifetime Ruin Minimization: Should Retirees Hedge Inflation
Huang, Huaxiong
- conomic inflation rate for the population. For example in the U.S. the Consumer Price Index (CPI) has happy, in the appendix we also solve the model by maximizing utility of lifetime consumption. Either way industry is shifting its attention from wealth accumulation to generating a sustainable retirement income
Global-local duality in eternal inflation
Bousso, Raphael; Yang, I-S. [Center for Theoretical Physics, Department of Physics, University of California, Berkeley, California 94720-7300 (United States) and Lawrence Berkeley National Laboratory, Berkeley, California 94720-8162 (United States)
2009-12-15T23:59:59.000Z
We prove that the light-cone time cutoff on the multiverse defines the same probabilities as a causal patch with initial conditions in the longest-lived metastable vacuum. This establishes the equivalence of two measures of eternal inflation which naively appear very different (though both are motivated by holography). The duality can be traced to an underlying geometric relation which we identify.
Issues in Complex Structure Moduli Inflation
Hirotaka Hayashi; Ryo Matsuda; Taizan Watari
2014-10-28T23:59:59.000Z
Supersymmetric compactification with moderately large radius (${\\rm Re} \\sim {\\cal O}(10)$ or more) not only accommodates supersymmetric unification, but also provides candidates for an inflaton in the form of geometric moduli; the value of ${\\rm Re} > 1$ may be used as a parameter that brings corrections to the inflaton potential under control. Motivated by a bottom-up idea "right-handed sneutrino inflation" scenario, we study whether complex structure moduli can play some role during the slow-roll inflation and/or reheating process in this moderately large radius regime. Even when we allow a tuning introduced by Kallosh and Linde, the barrier of volume stabilization potential from gaugino condensation racetrack superpotential can hardly be as high as $(10^{16} \\; {\\rm GeV})^4$ for generic choice of parameters in this regime. It is also found that even very small deformation of complex structure during inflation/reheating distorts the volume stabilization potential, so that the volume stabilization imposes tight constraints on large-field inflation scenario involving evolution of complex structure moduli. A few ideas of satisfying those constraints in string theory are also discussed.
Large-Field Inflation and Supersymmetry Breaking
Wilfried Buchmuller; Emilian Dudas; Lucien Heurtier; Clemens Wieck
2014-07-14T23:59:59.000Z
Large-field inflation is an interesting and predictive scenario. Its non-trivial embedding in supergravity was intensively studied in the recent literature, whereas its interplay with supersymmetry breaking has been less thoroughly investigated. We consider the minimal viable model of chaotic inflation in supergravity containing a stabilizer field, and add a Polonyi field. Furthermore, we study two possible extensions of the minimal setup. We show that there are various constraints: first of all, it is very hard to couple an O'Raifeartaigh sector with the inflaton sector, the simplest viable option being to couple them only through gravity. Second, even in the simplest model the gravitino mass is bounded from above parametrically by the inflaton mass. Therefore, high-scale supersymmetry breaking is hard to implement in a chaotic inflation setup. As a separate comment we analyze the simplest chaotic inflation construction without a stabilizer field, together with a supersymmetrically stabilized Kahler modulus. Without a modulus, the potential of such a model is unbounded from below. We show that a heavy modulus cannot solve this problem.
Variable Average Absolute Percent Differences
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (MillionStructural Basis of5, 2014 |and Terry M.38 4.23ValidationVariable Average Absolute Percent
Observational constraints on Tachyon and DBI inflation
Li, Sheng; Liddle, Andrew R., E-mail: sl277@sussex.ac.uk, E-mail: arl@roe.ac.uk [Astronomy Centre, University of Sussex, Brighton, BN1 9QH (United Kingdom)
2014-03-01T23:59:59.000Z
We present a systematic method for evaluation of perturbation observables in non-canonical single-field inflation models within the slow-roll approximation, which allied with field redefinitions enables predictions to be established for a wide range of models. We use this to investigate various non-canonical inflation models, including Tachyon inflation and DBI inflation. The Lambert W function will be used extensively in our method for the evaluation of observables. In the Tachyon case, in the slow-roll approximation the model can be approximated by a canonical field with a redefined potential, which yields predictions in better agreement with observations than the canonical equivalents. For DBI inflation models we consider contributions from both the scalar potential and the warp geometry. In the case of a quartic potential, we find a formula for the observables under both non-relativistic (sound speed c{sub s}{sup 2} ? 1) and relativistic behaviour (c{sub s}{sup 2} || 1) of the scalar DBI inflaton. For a quadratic potential we find two branches in the non-relativistic c{sub s}{sup 2} ? 1 case, determined by the competition of model parameters, while for the relativistic case c{sub s}{sup 2} ? 0, we find consistency with results already in the literature. We present a comparison to the latest Planck satellite observations. Most of the non-canonical models we investigate, including the Tachyon, are better fits to data than canonical models with the same potential, but we find that DBI models in the slow-roll regime have difficulty in matching the data.
An ignoble approach to large field inflation
Kaloper, Nemanja [Department of Physics, University of California, Davis, CA 95616 (United States); Lawrence, Albion [Theory Group, Martin Fisher School of Physics, Brandeis University, MS057, PO Box 549110, Waltham, MA 02454 (United States); Sorbo, Lorenzo, E-mail: kaloper@physics.ucdavis.edu, E-mail: albion@brandeis.edu, E-mail: sorbo@physics.umass.edu [Department of Physics, University of Massachusetts, Amherst, MA 01003 (United States)
2011-03-01T23:59:59.000Z
We study an inflationary model developed by Kaloper and Sorbo, in which the inflaton is an axion with a sub-Planckian decay constant, whose potential is generated by mixing with a topological 4-form field strength. This gives a 4d construction of ''axion monodromy inflation{sup :} the axion winds many times over the course of inflation and draws energy from the 4-form. The classical theory is equivalent to chaotic inflation with a quadratic inflaton potential. Such models can produce ''high scale'' inflation driven by energy densities of the order of (10{sup 16}GeV){sup 4}, which produces primordial gravitational waves potentially accessible to CMB polarization experiments. We analyze the possible corrections to this scenario from the standpoint of 4d effective field theory, identifying the physics which potentially suppresses dangerous corrections to the slow-roll potential. This yields a constraint relation between the axion decay constant, the inflaton mass, and the 4-form charge. We show how these models can evade the fundamental constraints which typically make high-scale inflation difficult to realize. Specifically, the moduli coupling to the axion-four-form sector must have masses higher than the inflationary Hubble scale (?<10{sup 14}GeV). There are also constraints from states that become light due to multiple windings of the axion, as happens in explicit string theory constructions of this scenario. Further, such models generally have a quantum-mechanical ''tunneling mode'' in which the axion jumps between windings, which must be suppressed. Finally, we outline possible observational signatures.
C:\\ANNUAL\\Vol2chps.v8\\ANNUAL2.VP
Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]
53 Energy Information Administration Historical Natural Gas Annual 1930 Through 2000 35. Average Price of Natural Gas Delivered to U.S. Electric Utilities by State, 1967-2000...
C:\\ANNUAL\\Vol2chps.v8\\ANNUAL2.VP
Gasoline and Diesel Fuel Update (EIA)
4 Energy Information Administration Historical Natural Gas Annual 1930 Through 2000 27. Average Price of Natural Gas Delivered to U.S. Residential Consumers by State, 1995-2000...
Achronal averaged null energy condition
Graham, Noah; Olum, Ken D. [Department of Physics, Middlebury College, Middlebury, Vermont 05753 (United States) and Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155 (United States)
2007-09-15T23:59:59.000Z
The averaged null energy condition (ANEC) requires that the integral over a complete null geodesic of the stress-energy tensor projected onto the geodesic tangent vector is never negative. This condition is sufficient to prove many important theorems in general relativity, but it is violated by quantum fields in curved spacetime. However there is a weaker condition, which is free of known violations, requiring only that there is no self-consistent spacetime in semiclassical gravity in which ANEC is violated on a complete, achronal null geodesic. We indicate why such a condition might be expected to hold and show that it is sufficient to rule out closed timelike curves and wormholes connecting different asymptotically flat regions.
Can inflation solve the hierarchy problem?
Biswas, Tirthabir; Notari, Alessio [Physics Department, McGill University, 3600 University Road, Montreal, QC, H3A 2T8 (Canada)
2006-08-15T23:59:59.000Z
Inflation with tunneling from a false to a true vacuum becomes viable in the presence of a scalar field that slows down the initial de Sitter phase. As a by-product this field also sets dynamically the value of M{sub Planck} observed today. This can be very large if the tunneling rate (which is exponentially sensitive to the barrier) is small enough. Therefore along with inflation we also provide a natural dynamical explanation for why gravity is so weak today. Moreover we predict a spectrum of gravity waves peaked at around 0.1 mHz, that will be detectable by the planned space interferometer LISA. Finally we discuss interesting predictions on cosmological scalar and tensor fluctuations in light of the WMAP 3-year data.
Reheating predictions in single field inflation
Cook, Jessica L; Easson, Damien A; Krauss, Lawrence M
2015-01-01T23:59:59.000Z
Reheating is a transition era after the end of inflation, during which the inflaton is converted into the particles that populate the Universe at later times. No direct cosmological observables are normally traceable to this period of reheating. Indirect bounds can however be derived. One possibility is to consider cosmological evolution for observable CMB scales from the time of Hubble crossing to the present time. Depending upon the model, the duration and final temperature after reheating, as well as its equation of state, are directly linked to inflationary observables. For single-field inflationary models and for reheating scenarios that may be approximated by a constant equation of state, it is straightforward to derive relations between the reheating duration (or final temperature), its equation of state parameter, and the scalar power spectrum amplitude and spectral index. As a result, one may employ current bounds on inflation to constrain the nature of reheating. Alternatively, it is possible to fur...
Volume-weighted measure for eternal inflation
Winitzki, Sergei [Department of Physics, Ludwig-Maximilians University, Munich (Germany) and Yukawa Institute of Theoretical Physics, Kyoto University, Kyoto (Japan)
2008-08-15T23:59:59.000Z
I propose a new volume-weighted probability measure for cosmological 'multiverse' scenarios involving eternal inflation. The 'reheating-volume (RV) cutoff' calculates the distribution of observable quantities on a portion of the reheating hypersurface that is conditioned to be finite. The RV measure is gauge-invariant, does not suffer from the 'youngness paradox', and is independent of initial conditions at the beginning of inflation. In slow-roll inflationary models with a scalar inflaton, the RV-regulated probability distributions can be obtained by solving nonlinear diffusion equations. I discuss possible applications of the new measure to 'landscape' scenarios with bubble nucleation. As an illustration, I compute the predictions of the RV measure in a simple toy landscape.
Perturbation spectrum in inflation with cutoff
A. Kempf; J. C. Niemeyer
2001-09-20T23:59:59.000Z
It has been pointed out that the perturbation spectrum predicted by inflation may be sensitive to a natural ultraviolet cutoff, thus potentially providing an experimentally accessible window to aspects of Planck scale physics. A priori, a natural ultraviolet cutoff could take any form, but a fairly general classification of possible Planck scale cutoffs has been given. One of those categorized cutoffs, also appearing in various studies of quantum gravity and string theory, has recently been implemented into the standard inflationary scenario. Here, we continue this approach by investigating its effects on the predicted perturbation spectrum. We find that the size of the effect depends sensitively on the scale separation between cutoff and horizon during inflation.
Large Non-Gaussianity in Axion Inflation
Barnaby, Neil; Peloso, Marco [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States)
2011-05-06T23:59:59.000Z
The inflationary paradigm has enjoyed phenomenological success; however, a compelling particle physics realization is still lacking. Axions are among the best-motivated inflaton candidates, since the flatness of their potential is naturally protected by a shift symmetry. We reconsider the cosmological perturbations in axion inflation, consistently accounting for the coupling to gauge fields c{phi}FF-tilde, which is generically present in these models. This coupling leads to production of gauge quanta, which provide a new source of inflaton fluctuations, {delta}{phi}. For c > or approx. 10{sup 2}M{sub p}{sup -1}, these dominate over the vacuum fluctuations, and non-Gaussianity exceeds the current observational bound. This regime is typical for concrete realizations that admit a UV completion; hence, large non-Gaussianity is easily obtained in minimal and natural realizations of inflation.
Hints of Universality from Inflection Point Inflation
Downes, Sean Donovan
2013-07-25T23:59:59.000Z
. . . . . . . . . . . . . . . . . 20 III.1 A Vast Solution Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 III.2 Kachru-Kallosh-Linde-Trivedi Moduli Stabilization . . . . . . . . . . . . . . . . . . . 21 III.3 The Kallosh-Linde Problem... of quasi-de Sitter expansion [20]. D-brane dynamics, replete with their Dirac-Born-Infeld (DBI) action were used to study inflation in [21]. More exotic scenarios from the kinetic sector were also considered, notably Ghost Infla- tion [22]. Aside from...
Inflation in no-scale supergravity
Lahanas, A B
2015-01-01T23:59:59.000Z
$R+R^2$ Supergravity is known to be equivalent to standard Supergravity coupled to two chiral supermultiples with a no-scale K\\"ahler potential. Within this framework, that can accomodate vanishing vacuum energy and spontaneous supersymmetry breaking, we consider modifications of the associated superpotential and study the resulting models, which, viewed as generalizations of the Starobinsky model, for a range of the superpotential parameters, describe viable single-field slow-roll inflation.
Higgs inflation in a radiative seesaw model
Shinya Kanemura; Toshinori Matsui; Takehiro Nabeshima
2013-04-13T23:59:59.000Z
We investigate a simple model to explain inflation, neutrino masses and dark matter simultaneously. This is based on the so-called radiative seesaw model proposed by Ma in order to explain neutrino masses and dark matter by introducing a $Z_2$-odd isospin doublet scalar field and $Z_2$-odd right-handed neutrinos. We study the possibility that the Higgs boson as well as neutral components of the $Z_2$-odd scalar doublet field can satisfy conditions from slow-roll inflation and vacuum stability up to the inflation scale. We find that a part of parameter regions where these scalar fields can play a role of an inflaton is compatible with the current data from neutrino experiments and those of the dark matter abundance as well as the direct search results. A phenomenological consequence of this scenario results in a specific mass spectrum of scalar bosons, which can be tested at the LHC, the International Linear Collider and the Compact Linear Collider.
Constraining inflation with future galaxy redshift surveys
Huang, Zhiqi; Vernizzi, Filippo [CEA, Institut de Physique Théorique, 91191 Gif-sur-Yvette cédex (France); Verde, Licia, E-mail: zhiqi.huang@cea.fr, E-mail: liciaverde@icc.ub.edu, E-mail: filippo.vernizzi@cea.fr [Institute of Sciences of the Cosmos (ICCUB), University of Barcelona, Marti i Franques 1, Barcelona 08024 (Spain)
2012-04-01T23:59:59.000Z
With future galaxy surveys, a huge number of Fourier modes of the distribution of the large scale structures in the Universe will become available. These modes are complementary to those of the CMB and can be used to set constraints on models of the early universe, such as inflation. Using a MCMC analysis, we compare the power of the CMB with that of the combination of CMB and galaxy survey data, to constrain the power spectrum of primordial fluctuations generated during inflation. We base our analysis on the Planck satellite and a spectroscopic redshift survey with configuration parameters close to those of the Euclid mission as examples. We first consider models of slow-roll inflation, and show that the inclusion of large scale structure data improves the constraints by nearly halving the error bars on the scalar spectral index and its running. If we attempt to reconstruct the inflationary single-field potential, a similar conclusion can be reached on the parameters characterizing the potential. We then study models with features in the power spectrum. In particular, we consider ringing features produced by a break in the potential and oscillations such as in axion monodromy. Adding large scale structures improves the constraints on features by more than a factor of two. In axion monodromy we show that there are oscillations with small amplitude and frequency in momentum space that are undetected by CMB alone but can be measured by including galaxy surveys in the analysis.
Broader source: Energy.gov [DOE]
The Annual Training Plan Template is used by an organization's training POC to draft their organization's annual training plan.
General Single Field Inflation with Large Positive Non-Gaussianity
Miao Li; Tower Wang; Yi Wang
2008-03-29T23:59:59.000Z
Recent analysis of the WMAP three year data suggests $f_{NL}^{local}\\simeq86.8$ in the WMAP convention. It is necessary to make sure whether general single field inflation can produce a large positive $f_{NL}$ before turning to other scenarios. We give some examples to generate a large positive $f_{NL}^{equil}$ in general single field inflation. Our models are different from ghost inflation. Due to the appearance of non-conventional kinetic terms, $f_{NL}^{equil}\\gg1$ can be realized in single field inflation.
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasma |Efficiency Â»Sustainability AwardsY-12LettersGuidance &Anna Garcia About UsAnnual PlanningAnnual09
Large Scale Power and Running Spectral Index in New Old Inflation
Dvali, G.
2003-11-07T23:59:59.000Z
We have proposed a new class of inflationary scenarios in which the first stage of expansion is driven by ''old'' false vacuum inflation. This ends by nucleation of a bubble, which then further inflates. Unlike the standard slow-roll scenarios the ''clock'' ending the second inflationary phase is not a local order parameter, but rather the average value of an oscillating scalar field, which locks the system at a saddle point of the potential in a temporary inflationary state. Inflation ends when the amplitude drops below a certain critical point and liberates the system from the false vacuum state. The second stage of inflation has only about 50 e-foldings, a number which is determined entirely by the ratio of the fundamental mass scales, such as the Planck/string scale and the supersymmetry breaking scale. The density perturbations are generated due to fluctuations of moduli-dependent Yukawa couplings. In this note we explore the observable imprints in the fluctuation spectrum of generic cross-couplings in the superpotential and in the Kaehler potential. We show that in the presence of generic non-renormalizable interactions in the superpotential between the fluctuating modulus and the oscillating inflaton, the amplitude of the density perturbations is exponentially cut-off for sufficiently large wavelengths. With reasonable choices of scales and interactions, this long wavelength cutoff can occur at approximately the current horizon size. The perturbative corrections in the Kaehler potential give non-trivial potentially observable tilt and a running of the spectral index which is different from the standard inflationary models.
NREL Annual Environmental Performance Reports (Annual Site Environment...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
NREL Annual Environmental Performance Reports (Annual Site Environmental Reports) NREL Annual Environmental Performance Reports (Annual Site Environmental Reports) Every year NREL...
Inflating a Rubber Balloon 6GEJPKECN 7PKXGTUKV[ $GTNKP )GTOCP[
Struchtrup, Henning
investigate what happens when a single balloon is inflated, say, by mouth. We simulate that process and show of a balloon by mouth. %! @B78?? represents the muscle forces that push the air into the balloon. #12;INFLATING A RUBBER BALLOON 571 Figure 2
Gradient expansion of superhorizon perturbations in G-inflation
Frusciante, Noemi; Zhou, Shuang-Yong; Sotiriou, Thomas P., E-mail: nfruscia@sissa.it, E-mail: szhou@sissa.it, E-mail: sotiriou@sissa.it [SISSA and INFN Sezione di Trieste, Via Bonomea 265, 34136, Trieste (Italy)
2013-07-01T23:59:59.000Z
We develop the gradient expansion formalism for shift-symmetric Galileon-type actions. We focus on backgrounds that undergo inflation, work in the synchronous gauge, and obtain a general solution up to second order without imposing extra conditions at first order. The solution simplifies during the late stages of inflation. We also define a curvature perturbation conserved up to first order.
Higgs inflation and suppression of axion isocurvature perturbation
Nakayama, Kazunori
2015-01-01T23:59:59.000Z
We point out that cosmological constraint from the axion isocurvature perturbation is relaxed if the Higgs field obtains a large field value during inflation in the DFSZ axion model. This scenario is consistent with the Higgs inflation model, in which two Higgs doublets have non-minimal couplings and play a role of inflaton.
Higgs inflation and suppression of axion isocurvature perturbation
Kazunori Nakayama; Masahiro Takimoto
2015-05-22T23:59:59.000Z
We point out that cosmological constraint from the axion isocurvature perturbation is relaxed if the Higgs field obtains a large field value during inflation in the DFSZ axion model. This scenario is consistent with the Higgs inflation model, in which two Higgs doublets have non-minimal couplings and play a role of inflaton.
Quasiattractor dynamics of lambda-phi^4-inflation
V. V. Kiselev; S. A. Timofeev
2008-06-11T23:59:59.000Z
At high e-foldings of expansion, the inflation with the quartic potential exhibits the parametric attractor governed by the slowly running Hubble rate. This quasiattractor simplifies the analysis of predictions for the inhomogeneity generated by the quantum fluctuations of inflaton. The method reveals the connection of inflation e-folding with general parameters of preheating regime in various scenarios and observational data.
Cosmology as Science?: From Inflation to Eternity
None
2011-10-06T23:59:59.000Z
The last decade or two have represented the golden age of observational cosmology, producing a revolution in our picture of the Universe on its largest scales, and perhaps also its smallest ones. I will argue that these recent development bring to the forefront some vexing questions about whether various fundamental assumptions about the universe are in fact falsifiable. I will focus on 3 issues: (1) "Proving" Inflation, (2) Dark Energy and Anthropic Arguments, and (3) Cosmology of the far future.Interview with Lawrence M. Krauss
Primordial Magnetic Fields in False Vacuum Inflation
A. C. Davis; K. Dimopoulos
1996-10-25T23:59:59.000Z
We show that, during false vacuum inflation, a primordial magnetic field can be created, sufficiently strong to seed the galactic dynamo and generate the observed galactic magnetic fields. Considering the inflaton dominated regime, our field is produced by the Higgs-field gradients, resulting from a grand unified phase transition. The evolution of the field is followed from its creation through to the epoch of structure formation, subject to the relevant constraints. We find that it is possible to create a magnetic field of sufficient magnitude, provided the phase transition occurs during the final 5 e-foldings of the inflationary period.
Multi-field inflation from holography
Garriga, Jaume; Urakawa, Yuko [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Skenderis, Kostas, E-mail: jaume.garriga@ub.edu, E-mail: K.Skenderis@soton.ac.uk, E-mail: urakawa.yuko@h.mbox.nagoya-u.ac.jp [STAG Research Centre and Mathematical Sciences, University of Southampton, Southampton SO17 1BJ (United Kingdom)
2015-01-01T23:59:59.000Z
We initiate the study of multi-field inflation using holography. Bulk light scalar fields correspond to nearly marginal operators in the boundary theory and the dual quantum field theory is a deformation of a CFT by such operators. We compute the power spectra of adiabatic and entropy perturbations in a simple model and find that the adiabatic curvature perturbation is not conserved in the presence of entropy perturbations but becomes conserved when the entropy perturbations are set to zero or the model is effectively a single scalar model, in agreement with expectations from cosmological perturbation theory.
Hamilton-Jacobi Formalism for Tachyon Inflation
A. Aghamohammadi; A. Mohammadi; T. Golanbari; Kh. Saaidi
2015-02-26T23:59:59.000Z
Tachyon inflation is reconsidered by using the recent observational data obtained from Planck-2013 and BICEP2. The Hamilton-Jacobi formalism is picked out as a desirable approach in this work, which allows one to easily obtain the main parameters of the model. The Hubble parameter is supposed as a power-law and exponential function of the scalar field, and each case is considered separately. The constraints on the model, which come from observational data, are explained during the work. The results show a suitable value for the tensor spectral index and an appropriate form of the potential.
Dissipative effects on reheating after inflation
Mukaida, Kyohei; Nakayama, Kazunori, E-mail: mukaida@hep-th.phys.s.u-tokyo.ac.jp, E-mail: kazunori@hep-th.phys.s.u-tokyo.ac.jp [Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)
2013-03-01T23:59:59.000Z
The inflaton must convert its energy into radiation after inflation, which, in a conventional scenario, is caused by the perturbative inflaton decay. This reheating process would be much more complicated in some cases: the decay products obtain masses from an oscillating inflaton and thermal environment, and hence the conventional reheating scenario can be modified. We study in detail processes of particle production from the inflaton, their subsequent thermalization and evolution of inflaton/plasma system by taking dissipation of the inflaton in a hot plasma into account. It is shown that the reheating temperature is significantly affected by these effects.
Inflation in no-scale supergravity
A. B. Lahanas; K. Tamvakis
2015-03-15T23:59:59.000Z
$R+R^2$ Supergravity is known to be equivalent to standard Supergravity coupled to two chiral supermultiples with a no-scale K\\"ahler potential. Within this framework, that can accomodate vanishing vacuum energy and spontaneous supersymmetry breaking, we consider modifications of the associated superpotential and study the resulting models, which, viewed as generalizations of the Starobinsky model, for a range of the superpotential parameters, describe viable single-field slow-roll inflation. In all models studied in this work the tensor to scalar ratio is found to be small, well below the upper bound established by the very recent PLANCK and BICEP2 data.
Power Suppression in D-Brane Inflation
Akers, Christopher Nelson
2013-10-01T23:59:59.000Z
where we think it is. We check this by plotting as a function of N, and making sure that it is satisfied while the inflaton is on the left side of the flat region. 26 FIG. 16. We see that around . Afterwards, slow-roll inflation...) (2013), arXiv:1303.5076 [astro-ph.CO]. [6] P. A. R. Ade et al. [BICEP2 Collaboration], arXiv:1403.3985 [astro-ph.CO]. [7] Baumann et al., arXiv:0706.0360 [hep-th]. [8] Trodden et al., arXiv:astro-ph/0401547. [9] S. Dodelson, Modern Cosmology...
Towards the physical vacuum of cosmic inflation
Jiang, Hongliang
2015-01-01T23:59:59.000Z
There have been long debates about the initial condition of inflationary perturbations. In this work we explicitly show the decay of excited states during inflation via interactions. For this purpose, we note that the folded shape non-Gaussianity can be interpreted as the decay of the non-Bunch-Davies initial condition. The one loop diagrams with non-Bunch-Davies propagators are calculated to uncover the decay of such excited states. The observed smallness of non-Gaussianity keeps the window open for probing inflationary initial conditions and trans-Planckian physics.
Probability of Slowroll Inflation in the Multiverse
I-Sheng Yang
2012-10-23T23:59:59.000Z
Slowroll after tunneling is a crucial step in one popular framework of the multiverse---false vacuum eternal inflation (FVEI). In a landscape with a large number of fields, we provide a heuristic estimation for its probability. We find that the chance to slowroll is exponentially suppressed, where the exponent comes from the number of fields. However, the relative probability to have more e-foldings is only mildly suppressed as $N_e^{-\\alpha} $ with $\\alpha\\sim3$. Base on these two properties, we show that the FVEI picture is still self-consistent and may have a strong preference between different slowroll models.
Spectral averaging techniques for Jacobi matrices
Rafael del Rio; Carmen Martinez; Hermann Schulz-Baldes
2008-02-20T23:59:59.000Z
Spectral averaging techniques for one-dimensional discrete Schroedinger operators are revisited and extended. In particular, simultaneous averaging over several parameters is discussed. Special focus is put on proving lower bounds on the density of the averaged spectral measures. These Wegner type estimates are used to analyze stability properties for the spectral types of Jacobi matrices under local perturbations.
Measure problem for eternal and non-eternal inflation
Linde, Andrei; Noorbala, Mahdiyar, E-mail: alinde@stanford.edu, E-mail: noorbala@stanford.edu [Department of Physics, Stanford University, Stanford, CA 94305 (United States)
2010-09-01T23:59:59.000Z
We study various probability measures for eternal inflation by applying their regularization prescriptions to models where inflation is not eternal. For simplicity we work with a toy model describing inflation that can interpolate between eternal and non-eternal inflation by continuous variation of a parameter. We investigate whether the predictions of four different measures (proper time, scale factor cutoff, stationary and causal diamond) change continuously with the change of this parameter. We will show that only for the stationary measure the predictions change continuously. For the proper-time and the scale factor cutoff, the predictions are strongly discontinuous. For the causal diamond measure, the predictions are continuous only if the stage of the slow-roll inflation is sufficiently long.
The chaotic regime of D-term inflation
Buchmüller, W. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Domcke, V. [SISSA/INFN, Via Bonomea 265, 34136 Trieste (Italy); Schmitz, K., E-mail: wilfried.buchmueller@desy.de, E-mail: valerie.domcke@sissa.it, E-mail: kai.schmitz@ipmu.jp [Kavli IPMU (WPI), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa (Japan)
2014-11-01T23:59:59.000Z
We consider D-term inflation for small couplings of the inflaton to matter fields. Standard hybrid inflation then ends at a critical value of the inflaton field that exceeds the Planck mass. During the subsequent waterfall transition the inflaton continues its slow-roll motion, whereas the waterfall field rapidly grows by quantum fluctuations. Beyond the decoherence time, the waterfall field becomes classical and approaches a time-dependent minimum, which is determined by the value of the inflaton field and the self-interaction of the waterfall field. During the final stage of inflation, the effective inflaton potential is essentially quadratic, which leads to the standard predictions of chaotic inflation. The model illustrates how the decay of a false vacuum of GUT-scale energy density can end in a period of 'chaotic inflation'.
Matter inflation with A{sub 4} flavour symmetry breaking
Antusch, Stefan [Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, CH-4056 Switzerland (Switzerland); Nolde, David, E-mail: stefan.antusch@unibas.ch, E-mail: david.nolde@unibas.ch [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, München, D-80805 Germany (Germany)
2013-10-01T23:59:59.000Z
We discuss model building in tribrid inflation, which is a framework for realising inflation in the matter sector of supersymmetric particle physics models. The inflaton is a D-flat combination of matter fields, and inflation ends by a phase transition in which some Higgs field obtains a vacuum expectation value. We first describe the general procedure for implementing tribrid inflation in realistic models of particle physics that can be applied to a wide variety of BSM particle physics models around the GUT scale. We then demonstrate how the procedure works for an explicit lepton flavour model based on an A{sub 4} family symmetry. The model is both predictive and phenomenologically viable, and illustrates how tribrid inflation connects cosmological and particle physics parameters. In particular, it predicts a relation between the neutrino Yukawa coupling and the running of the spectral index ?{sub s}. We also show how topological defects from the flavour symmetry breaking can be avoided automatically.
Strong Planck constraints on braneworld and non-commutative inflation
Calcagni, Gianluca [Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain); Kuroyanagi, Sachiko; Ohashi, Junko; Tsujikawa, Shinji, E-mail: calcagni@iem.cfmac.csic.es, E-mail: skuro@rs.tus.ac.jp, E-mail: j1211703@ed.tus.ac.jp, E-mail: shinji@rs.kagu.tus.ac.jp [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)
2014-03-01T23:59:59.000Z
We place observational likelihood constraints on braneworld and non-commutative inflation for a number of inflaton potentials, using Planck, WMAP polarization and BAO data. Both braneworld and non-commutative scenarios of the kind considered here are limited by the most recent data even more severely than standard general-relativity models. At more than 95 % confidence level, the monomial potential V(?)??{sup p} is ruled out for p ? 2 in the Randall-Sundrum (RS) braneworld cosmology and, for p > 0, also in the high-curvature limit of the Gauss-Bonnet (GB) braneworld and in the infrared limit of non-commutative inflation, due to a large scalar spectral index. Some parameter values for natural inflation, small-varying inflaton models and Starobinsky inflation are allowed in all scenarios, although some tuning is required for natural inflation in a non-commutative spacetime.
Challenges for Large-Field Inflation and Moduli Stabilization
Wilfried Buchmuller; Emilian Dudas; Lucien Heurtier; Alexander Westphal; Clemens Wieck; Martin Wolfgang Winkler
2015-02-06T23:59:59.000Z
We analyze the interplay between K\\"ahler moduli stabilization and chaotic inflation in supergravity. While heavy moduli decouple from inflation in the supersymmetric limit, supersymmetry breaking generically introduces non-decoupling effects. These lead to inflation driven by a soft mass term, $m_\\varphi^2 \\sim m m_{3/2}$, where $m$ is a supersymmetric mass parameter. This scenario needs no stabilizer field, but the stability of moduli during inflation imposes a large supersymmetry breaking scale, $m_{3/2} \\gg H$, and a careful choice of initial conditions. This is illustrated in three prominent examples of moduli stabilization: KKLT stabilization, K\\"ahler Uplifting, and the Large Volume Scenario. Remarkably, all models have a universal effective inflaton potential which is flattened compared to quadratic inflation. Hence, they share universal predictions for the CMB observables, in particular a lower bound on the tensor-to-scalar ratio, $r \\gtrsim 0.05$.
Higgs inflation in Gauss-Bonnet braneworld
Rong-Gen Cai; Zong-Kuan Guo; Shao-Jiang Wang
2015-09-12T23:59:59.000Z
The measured masses of the Higgs boson and top quark indicate that the effective potential of the standard model either develops an unstable electroweak vacuum or stands stable all the way up to the Planck scale. In the latter case in which the top quark mass is about $2\\sigma$ below its present central value, the Higgs boson can be the inflaton with the help of a large nonminimal coupling to curvature in four dimensions. We propose a scenario in which the Higgs boson can be the inflaton in a five-dimensional Gauss-Bonnet braneworld model to solve both the unitarity and stability problems which usually plague Higgs inflation. We find that in order for Higgs inflation to happen successfully in the Gauss-Bonnet regime, the extra dimension scale must appear roughly in the range between the TeV scale and the instability scale of standard model. At the tree level, our model can give rise to a naturally small nonminimal coupling $\\xi\\sim\\mathcal{O}(1)$ for the Higgs quartic coupling $\\lambda\\sim\\mathcal{O}(0.1)$ if the extra dimension scale lies at the TeV scale. At the loop level, the inflationary predictions at the tree level are preserved. Our model can be confronted with future experiments and observations from both particle physics and cosmology.
Generation of coherent structures after cosmic inflation
Gleiser, Marcelo; Stamatopoulos, Nikitas [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Graham, Noah [Department of Physics, Middlebury College, Middlebury, Vermont 05753 (United States)
2011-05-01T23:59:59.000Z
We investigate the nonlinear dynamics of hybrid inflation models, which are characterized by two real scalar fields interacting quadratically. We start by solving numerically the coupled Klein-Gordon equations in static Minkowski spacetime, searching for possible coherent structures. We find long-lived, localized configurations, which we identify as a new kind of oscillon. We demonstrate that these two-field oscillons allow for ''excited'' states with much longer lifetimes than those found in previous studies of single-field oscillons. We then solve the coupled field equations in an expanding Friedmann-Robertson-Walker spacetime, finding that as the field responsible for inflating the Universe rolls down to oscillate about its minimum, it triggers the formation of long-lived two-field oscillons, which can contribute up to 20% of the total energy density of the Universe. We show that these oscillons emerge for a wide range of parameters consistent with WMAP 7-year data. These objects contain total energy of about 25x10{sup 20} GeV, localized in a region of approximate radius 6x10{sup -26} cm. We argue that these structures could have played a key role during the reheating of the Universe.
Inflation and deformation of conformal field theory
Garriga, Jaume; Urakawa, Yuko, E-mail: jaume.garriga@ub.edu, E-mail: yurakawa@ffn.ub.es [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain)
2013-07-01T23:59:59.000Z
It has recently been suggested that a strongly coupled phase of inflation may be described holographically in terms of a weakly coupled quantum field theory (QFT). Here, we explore the possibility that the wave function of an inflationary universe may be given by the partition function of a boundary QFT. We consider the case when the field theory is a small deformation of a conformal field theory (CFT), by the addition of a relevant operator O, and calculate the primordial spectrum predicted in the corresponding holographic inflation scenario. Using the Ward-Takahashi identity associated with Weyl rescalings, we derive a simple relation between correlators of the curvature perturbation ? and correlators of the deformation operator O at the boundary. This is done without specifying the bulk theory of gravitation, so that the result would also apply to cases where the bulk dynamics is strongly coupled. We comment on the validity of the Suyama-Yamaguchi inequality, relating the bi-spectrum and tri-spectrum of the curvature perturbation.
F-term Axion Monodromy Inflation
Fernando Marchesano; Gary Shiu; Angel M. Uranga
2014-10-09T23:59:59.000Z
The continuous shift symmetry of axions is at the heart of several realizations of inflationary models. In particular, axion monodromy inflation aims at achieving super-Planckian field ranges for the inflaton in the context of string theory. Despite the elegant underlying principle, explicit models constructed hitherto are exceedingly complicated. We propose a new and better axion monodromy inflationary scenario, where the inflaton potential arises from an F-term. We present several scenarios, where the axion arises from the Kaluza-Klein compactification of higher dimensional gauge fields (or p-form potentials) in the presence of fluxes and/or torsion homology. The monodromy corresponds to a change in the background fluxes, and its F-term nature manifests in the existence of domain walls interpolating among flux configurations. Our scenario leads to diverse inflaton potentials, including linear large field behaviour, chaotic inflation, as well as potentials with even higher powers. They provide an elegant set of constructions with properties in the ballpark of the recent BICEP2 observational data on primordial gravitational waves.
Punctuated inflation and the low CMB multipoles
Jain, Rajeev Kumar; Sriramkumar, L. [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India)] [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019 (India); Chingangbam, Pravabati [Korea Institute for Advanced Study, 207-43 Cheongnyangni 2-dong, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)] [Korea Institute for Advanced Study, 207-43 Cheongnyangni 2-dong, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Gong, Jinn-Ouk [Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706-1390 (United States)] [Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706-1390 (United States); Souradeep, Tarun, E-mail: rajeev@hri.res.in, E-mail: prava@kias.re.kr, E-mail: jgong@hep.wisc.edu, E-mail: sriram@hri.res.in, E-mail: tarun@iucaa.ernet.in [IUCAA, Post Bag 4, Ganeshkhind, Pune 411 007 (India)] [IUCAA, Post Bag 4, Ganeshkhind, Pune 411 007 (India)
2009-01-15T23:59:59.000Z
We investigate inflationary scenarios driven by a class of potentials which are similar in form to those that arise in certain minimal supersymmetric extensions of the standard model. We find that these potentials allow a brief period of departure from inflation sandwiched between two stages of slow roll inflation. We show that such a background behavior leads to a step like feature in the scalar power spectrum. We set the scales such that the drop in the power spectrum occurs at a length scale that corresponds to the Hubble radius today - a feature that seems necessary to explain the lower power observed in the quadrupole moment of the Cosmic Microwave Background (CMB) anisotropies. We perform a Markov Chain Monte Carlo analysis to determine the values of the model parameters that provide the best fit to the recent WMAP 5-year data for the CMB angular power spectrum. We find that an inflationary spectrum with a suppression of power at large scales that we obtain leads to a much better fit (with just one extra parameter, {chi}{sub eff}{sup 2} improves by 6.62) of the observed data when compared to the best fit reference {Lambda}CDM model with a featureless, power law, primordial spectrum.
Axion inflation in type II string theory
Grimm, Thomas W. [Physikalisches Institut der Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany) and Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)
2008-06-15T23:59:59.000Z
Inflationary models driven by a large number of axion fields are discussed in the context of type IIB compactifications with N=1 supersymmetry. The inflatons arise as the scalar modes of the R-R two-forms evaluated on vanishing two-cycles in the compact geometry. The vanishing cycles are resolved by small two-volumes or NS-NS B fields which sit together with the inflatons in the same supermultiplets. String world sheets wrapping the vanishing cycles correct the metric of the R-R inflatons. They can help to generate kinetic terms close to the Planck scale and a mass hierarchy between the axions and their nonaxionic partners during inflation. At small string coupling, D-brane corrections are subleading in the metric of the R-R inflatons. However, an axion potential can be generated by D1 instantons or gaugino condensates on D5-branes. Models with a sufficiently large number of axions admit regions of chaotic inflation which can stretch over the whole axion field range for potentials from gaugino condensates. These models could allow for a possibly detectable amount of gravitational waves with tensor to scalar ratio as high as r<0.14.
Planck 2015. XX. Constraints on inflation
Ade, P A R; Arnaud, M; Arroja, F; Ashdown, M; Aumont, J; Baccigalupi, C; Ballardini, M; Banday, A J; Barreiro, R B; Bartolo, N; Battaner, E; Benabed, K; Benoit, A; Benoit-Levy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bucher, M; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Contreras, D; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Desert, F -X; Diego, J M; Dole, H; Donzelli, S; Dore, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Ensslin, T A; Eriksen, H K; Fergusson, J; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Frolov, A; Galeotta, S; Galli, S; Ganga, K; Gauthier, C; Giard, M; Giraud-Heraud, Y; Gjerlow, E; Gonzalez-Nuevo, J; Gorski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Hamann, J; Handley, W; Hansen, F K; Hanson, D; Harrison, D L; Henrot-Versille, S; Hernandez-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huang, Z; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Juvela, M; Keihanen, E; Keskitalo, R; Kim, J; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lahteenmaki, A; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leonardi, R; Lesgourgues, J; Levrier, F; Lewis, A; Liguori, M; Lilje, P B; Linden-Vornle, M; Lopez-Caniego, M; Lubin, P M; Ma, Y -Z; Macias-Perez, J F; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Martin, P G; Martinez-Gonzalez, E; Masi, S; Matarrese, S; Mazzotta, P; McGehee, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschenes, M -A; Molinari, D; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munchmeyer, M; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Norgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paladini, R; Pandolfi, S; Paoletti, D; Pasian, F; Patanchon, G; Pearson, T J; Peiris, H V; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Popa, L; Pratt, G W; Prezeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rowan-Robinson, M; Rubino-Martin, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Scott, D; Seiffert, M D; Shellard, E P S; Shiraishi, M; Spencer, L D; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Trombetti, T; Tucci, M; Tuovinen, J; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; White, M; Yvon, D; Zacchei, A; Zibin, J P; Zonca, A
2015-01-01T23:59:59.000Z
We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be $n_\\mathrm{s} = 0.968 \\pm 0.006$ and tightly constrain its scale dependence to $d n_s/d \\ln k =-0.003 \\pm 0.007$ when combined with the Planck lensing likelihood. When the high-$\\ell$ polarization data is included, the results are consistent and uncertainties are reduced. The upper bound on the tensor-to-scalar ratio is $r_{0.002} < 0.11$ (95% CL), consistent with the B-mode polarization constraint $r< 0.12$ (95% CL) obtained from a joint BICEP2/Keck Array and Planck analysis. These results imply that $V(\\phi) \\propto \\phi^2$ and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as $R^2$ ...
Warm inflation dynamics in the low temperature regime
Bastero-Gil, Mar [Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Granada-18071 (Spain); Berera, Arjun [School of Physics, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom)
2007-08-15T23:59:59.000Z
Warm inflation scenarios are studied with the dissipative coefficient computed in the equilibrium approximation. Use is made of the analytical expressions available in the low temperature regime with focus on the possibility of achieving strong dissipation within this approximation. Two different types of models are examined: monomial or equivalently chaotic type potentials, and hybrid like models where the energy density during inflation is dominated by the false vacuum. In both cases dissipation is shown to typically increase during inflation and bring the system into the strong dissipative regime. Observational consequences are explored for the amplitude of the primordial spectrum and the spectral index, which translate into constraints on the number of fields mediating the dissipative mechanism, and the number of light degrees of freedom produced during inflation. This paper furthers the foundational development of warm inflation dynamics from first principles quantum field theory by calculating conservative lower bound estimates on dissipative effects during inflation using the well established thermal equilibrium approximation. This approximation does not completely represent the actual physical system and earlier work has shown relaxing both the equilibrium and low temperature constraints can substantially enlarge the warm inflation regime, but these improvements still need further theoretical development.
Power spectrum for inflation models with quantum and thermal noises
Ramos, Rudnei O.; Silva, L.A. da, E-mail: rudnei@uerj.br, E-mail: las.leandro@gmail.com [Departamento de Física Teórica, Universidade do Estado do Rio de Janeiro, 20550-013 Rio de Janeiro, RJ (Brazil)
2013-03-01T23:59:59.000Z
We determine the power spectrum for inflation models covering all regimes from cold (isentropic) to warm (nonisentropic) inflation. We work in the context of the stochastic inflation approach, which can nicely describe both types of inflationary regimes concomitantly. A throughout analysis is carried out to determine the allowed parameter space for simple single field polynomial chaotic inflation models that is consistent with the most recent cosmological data from the nine-year Wilkinson Microwave Anisotropy Probe (WMAP) and in conjunction with other observational cosmological sources. We present the results for both the amplitude of the power spectrum, the spectral index and for the tensor to scalar curvature perturbation amplitude ratio. We briefly discuss cases when running is present. Despite single field polynomial-type inflaton potential models be strongly disfavored, or even be already ruled out in their simplest versions in the case of cold inflation, this is not the case for nonisentropic inflation models in general (warm inflation in particular), though higher order polynomial potentials (higher than quartic order) tend to become less favorable also in this case, presenting a much smaller region of parameter space compatible with the recent observational cosmological data.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm BiofuelinAnalysis of CloudAndreaAug 15,31Annual Reports
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23 362 ofSubscribeDepartment(EAP)Energy2012ANCHORAGE,1 2011 Annual Report to the Oak Ridge Community
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23 362 ofSubscribeDepartment(EAP)Energy2012ANCHORAGE,1 2011 Annual Report to the Oak Ridge
Optimization Online - Dual Averaging Methods for Regularized ...
Lin Xiao
2010-04-15T23:59:59.000Z
Apr 15, 2010 ... ... simple minimization problem that involves the running average of all past subgradients of the loss function and the whole regularization term, ...
Sandia National Laboratories: increasing average wind turbine...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
increasing average wind turbine power rating Latest Version of the Composite Materials Database Available for Download On December 3, 2014, in Energy, Materials Science, News, News...
Constraining hybrid inflation models with WMAP three-year results
Cardoso, Antonio [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 2EG (United Kingdom)
2007-01-15T23:59:59.000Z
We reconsider the original model of quadratic hybrid inflation in light of the WMAP three-year results and study the possibility of obtaining a spectral index of primordial density perturbations, n{sub s}, smaller than 1 from this model. The original hybrid inflation model naturally predicts n{sub s}{>=}1 in the false vacuum dominated regime but it is also possible to have n{sub s}<1 when the quadratic term dominates. We therefore investigate whether there is also an intermediate regime compatible with the latest constraints, where the scalar field value during the last 50 e-folds of inflation is less than the Planck scale.
Adiabatic regularisation of power spectra in $k$-inflation
Alinea, Allan L; Nakanishi, Yukari; Naylor, Wade
2015-01-01T23:59:59.000Z
We look at the question posed by Parker {\\it et al.} about the effect of UV regularisation on the power spectrum for inflation. Focusing on the slow-roll $k$-inflation, we show that up to second order in the Hubble and sound flow parameters, the adiabatic regularisation of such model leads to no difference in the power spectrum apart from certain cases that violate near scale invariant power spectra. Furthermore, extending to non-minimal $k$-inflation, we establish the equivalence of the subtraction terms in the adiabatic regularisation of the power spectrum in Jordan and Einstein frames.
Spectral indices in Eddington-inspired Born-Infeld inflation
Inyong Cho; Jinn-Ouk Gong
2015-06-23T23:59:59.000Z
We investigate the scalar and the tensor spectral indices of the quadratic inflation model in Eddington-inspired Born-Infeld (EiBI) gravity. We find the EiBI corrections to the spectral indices are of second and first order in the slow-roll approximation for the scalar and the tensor perturbations respectively. This is very promising since the quadratic inflation model in general relativity provides a very nice fit for the spectral indices. Together with the suppression of the tensor-to-scalar ratio EiBI inflation is well along with the observational data.
The Measure for the Multiverse and the Probability for Inflation
Miao Li; Yi Wang
2007-04-09T23:59:59.000Z
We investigate the measure problem in the framework of inflationary cosmology. The measure of the history space is constructed and applied to inflation models. Using this measure, it is shown that the probability for the generalized single field slow roll inflation to last for $N$ e-folds is suppressed by a factor $\\exp(-3N)$, and the probability for the generalized $n$-field slow roll inflation is suppressed by a much larger factor $\\exp(-3nN)$. Some non-inflationary models such as the cyclic model do not suffer from this difficulty.
Statistical anisotropies in gravitational waves in solid inflation
Akhshik, Mohammad [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Emami, Razieh [School of Physics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Firouzjahi, Hassan [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Wang, Yi, E-mail: m.akhshik@ipm.ir, E-mail: emami@ipm.ir, E-mail: firouz@ipm.ir, E-mail: yw366@cam.ac.uk [Centre for Theoretical Cosmology, DAMTP, University of Cambridge, Cambridge CB3 0WA (United Kingdom)
2014-09-01T23:59:59.000Z
Solid inflation can support a long period of anisotropic inflation. We calculate the statistical anisotropies in the scalar and tensor power spectra and their cross-correlation in anisotropic solid inflation. The tensor-scalar cross-correlation can either be positive or negative, which impacts the statistical anisotropies of the TT and TB spectra in CMB map more significantly compared with the tensor self-correlation. The tensor power spectrum contains potentially comparable contributions from quadrupole and octopole angular patterns, which is different from the power spectra of scalar, the cross-correlation or the scalar bispectrum, where the quadrupole type statistical anisotropy dominates over octopole.
Annual Reports | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
in PDF and will require Adobe Reader for viewing. Freedom of Information Act Annual Reports Annual Report for 2014 Annual Report for 2013 Annual Report for 2012 Annual Report...
Measurement strategies for estimating long-term average wind speeds
Ramsdell, J.V.; Houston, S.; Wegley, H.L.
1980-10-01T23:59:59.000Z
The uncertainty and bias in estimates of long-term average wind speeds inherent in continuous and intermittent measurement strategies are examined by simulating the application of the strategies to 40 data sets. Continuous strategies have smaller uncertainties for fixed duration measurement programs, but intermittent strategies make more efficient use of instruments and have smaller uncertainties for a fixed amount of instrument use. Continuous strategies tend to give biased estimates of the long-term annual mean speed unless an integral number of years' data is collected or the measurement program exceeds 3 years in duration. Intermittent strategies with three or more month-long measurement periods per year do not show any tendency toward bias.
Kinetic Gravity Braiding and axion inflation
Debaprasad Maity
2013-03-11T23:59:59.000Z
We constructed a new class of inflationary model with the higher derivative axion field which obeys constant shift symmetry. In the usual axion (natural) inflation, the axion decay constant is predicted to be in the super-Planckian regime which is believed to be incompatible with an effective field theory framework. With a novel mechanism originating from a higher derivative kinetic gravity braiding (KGB) of an axion field we found that there exist a huge parameter regime in our model where axion decay constant could be naturally sub-Planckian. Thanks to the KGB which effectively reduces the Planck constant. This effectively reduced Planck scale provides us the mechanism of further lowering down the speed of an axion field rolling down its potential without introducing super-Planckian axion decay constant. We also find that with that wide range of parameter values, our model induces almost scale invariant power spectrum as observed in CMB experiments.
Axions, inflation and the anthropic principle
Mack, Katherine J., E-mail: mack@ast.cam.ac.uk [Kavli Institute for Cosmology, Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)
2011-07-01T23:59:59.000Z
The QCD axion is the leading solution to the strong-CP problem, a dark matter candidate, and a possible result of string theory compactifications. However, for axions produced before inflation, symmetry-breaking scales of f{sub a}?>10{sup 12} GeV (which are favored in string-theoretic axion models) are ruled out by cosmological constraints unless both the axion misalignment angle ?{sub 0} and the inflationary Hubble scale H{sub I} are extremely fine-tuned. We show that attempting to accommodate a high-f{sub a} axion in inflationary cosmology leads to a fine-tuning problem that is worse than the strong-CP problem the axion was originally invented to solve. We also show that this problem remains unresolved by anthropic selection arguments commonly applied to the high-f{sub a} axion scenario.
Averages in vector spaces over finite fields
Wright J.; Carbery A.; Stones B.
2008-01-01T23:59:59.000Z
We study the analogues of the problems of averages and maximal averages over a surface in R-n when the euclidean structure is replaced by that of a vector space over a finite field, and obtain optimal results in a number ...
MESOSCALE AVERAGING OF NUCLEATION AND GROWTH MODELS
Burger, Martin
MESOSCALE AVERAGING OF NUCLEATION AND GROWTH MODELS MARTIN BURGER , VINCENZO CAPASSO , AND LIVIO-Kolmogorov relations for the degree of crystallinity. By relating the computation of expected values to mesoscale averaging, we obtain a suitable description of the process at the mesoscale. We show how the variance
Characterizing and Mitigating Work Time Inflation in Task Parallel Programs
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Olivier, Stephen L.; de Supinski, Bronis R.; Schulz, Martin; Prins, Jan F.
2013-01-01T23:59:59.000Z
Task parallelism raises the level of abstraction in shared memory parallel programming to simplify the development of complex applications. However, task parallel applications can exhibit poor performance due to thread idleness, scheduling overheads, andwork time inflation– additional time spent by threads in a multithreaded computation beyond the time required to perform the same work in a sequential computation. We identify the contributions of each factor to lost efficiency in various task parallel OpenMP applications and diagnose the causes of work time inflation in those applications. Increased data access latency can cause significant work time inflation in NUMA systems. Our localitymore »framework for task parallel OpenMP programs mitigates this cause of work time inflation. Our extensions to the Qthreads library demonstrate that locality-aware scheduling can improve performance up to 3X compared to the Intel OpenMP task scheduler.« less
Cosmological moduli problem in large volume scenario and thermal inflation
Choi, Kiwoon [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Park, Wan-Il [School of Physics, KIAS, Seoul 130-722 (Korea, Republic of); Shin, Chang Sub, E-mail: kchoi@kaist.ac.kr, E-mail: wipark@kias.re.kr, E-mail: csshin@apctp.org [APCTP, Pohang, Gyeongbuk 790-784 (Korea, Republic of)
2013-03-01T23:59:59.000Z
We show that in a large volume scenario of type IIB string or F-theory compactifications, single thermal inflation provides only a partial solution to the cosmological problem of the light volume modulus. We then clarify the conditions for double thermal inflation, being a simple extension of the usual single thermal inflation scenario, to solve the cosmological moduli problem in the case of relatively light moduli masses. Using a specific example, we demonstrate that double thermal inflation can be realized in large volume scenario in a natural manner, and the problem of the light volume modulus can be solved for the whole relevant mass range. We also find that right amount of baryon asymmetry and dark matter can be obtained via a late-time Affleck-Dine mechanism and the decays of the visible sector NLSP to flatino LSP.
From SupernovaeFrom Supernovae to Inflationto Inflation
Yamamoto, Hirosuke
From SupernovaeFrom Supernovae to Inflationto Inflation Katsuhiko SatoKatsuhiko Sato 1)Department.4. NucleosynthesisNucleosynthesis in supernovaein supernovae II.II. ParticleParticle cosmologycosmology andand Early
Naturally inflating on steep potentials through electromagnetic dissipation
Anber, Mohamed M.; Sorbo, Lorenzo [Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003 (United States)
2010-02-15T23:59:59.000Z
In models of natural inflation, the inflaton is an axionlike particle. Unfortunately, axion potentials in UV-complete theories appear to be too steep to drive inflation. We show that, even for a steep potential, natural inflation can occur if the coupling between axion and gauge fields is taken into account. Because of this coupling, quanta of the gauge field are produced by the rolling of the axion. If the coupling is large enough, such a dissipative effect slows down the axion, leading to inflation even for a steep potential. The spectrum of perturbations is quasiscale invariant, but in the simplest construction its amplitude is larger than 10{sup -5}. We discuss a possible way out of this problem.
Axion inflation and gravity waves in string theory
Kallosh, Renata; Sivanandam, Navin; Soroush, Masoud [Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, California 94305-4060 (United States)
2008-02-15T23:59:59.000Z
The majority of models of inflation in string theory predict an absence of measurable gravitational waves, r<<10{sup -3}. The most promising proposals for making string theoretic models that yield measurable tensor fluctuations involve axion fields with slightly broken shift symmetry. We consider such models in detail, with a particular focus on the N-flation scenario and on axion valley/natural inflation models. We find that in Calabi-Yau threefold compactifications with logarithmic Kaehler potentials K it appears to be difficult to meet the conditions required for axion inflation in the supergravity regime. However, in supergravities with an (approximately) quadratic shift-symmetric K, axion inflation may be viable. Such Kaehler potentials do arise in some string models, in specific limits of the moduli space. We describe the most promising classes of models; more detailed study will be required before one can conclude that working models exist.
Inflatable containment diaphragm for sealing and removing stacks
Meskanick, G.R.; Rosso, D.T.
1993-04-13T23:59:59.000Z
A diaphragm with an inflatable torus-shaped perimeter is used to seal at least one end of a stack so that debris that might be hazardous will not be released during removal of the stack. A diaphragm is inserted and inflated in the lower portion of a stack just above where the stack is to be cut such that the perimeter of the diaphragm expands and forms a seal against the interior surface of the stack.
Inflation beyond T-models and primordial B-modes
Yi-Fu Cai; Jinn-Ouk Gong; Shi Pi
2014-09-30T23:59:59.000Z
We describe extended theories which shares the gauge transformation symmetry of the T-models, and takes the T-models as well as Starobinsky model as special cases. We derive a general relation between the two slow-roll parameters, and find that a large class of models can be embedded. Such models include more general Starobinsky-like inflation as well as the chaotic inflation with a large tensor-to-scalar ratio consistent with the BICEP2 result.
none,
2008-01-01T23:59:59.000Z
This annual report includes: a brief overview of Western; FY 2008 operational highlights; and financial data.
Folded inflatable protective device and method for making same
Behr, V.L.; Nelsen, J.M.; Gwinn, K.W.
1998-10-20T23:59:59.000Z
An apparatus and method are disclosed for making an inflatable protective device made of lightweight material that can withstand the initial stress from inflation and enhance radial inflation. The device includes a cushion and an inflator port. The invention further includes several stacks of folded cushion material including a combination of full-width stacks and half-width stacks: a first full-width stack defined by one or more fan folds in a first lateral half of the cushion wherein the folds are substantially centered above a first center line and are substantially over the inflator port; a second full-width stack defined by one or more fan folds in a second lateral half of the cushion wherein the folds are substantially centered above the first center line and substantially over the inflator port in the first full-width stack; a first half-width stack defined by a plurality of fan folds in the bottom of the cushion where neither edge of each fold extends substantially over the second center line; and a second half-width stack defined by a plurality of fan folds in the top of the cushion wherein neither edge of each fold extends substantially over the second center line. 22 figs.
Folded inflatable protective device and method for making same
Behr, Vance L. (Albuquerque, NM); Nelsen, James M. (Albuquerque, NM); Gwinn, Kenneth W. (Cedar Crest, NM)
1998-01-01T23:59:59.000Z
An apparatus and method for making an inflatable protective device made of lightweight material that can withstand the initial stress from inflation and enhance radial inflation. The device includes a cushion and an inflator port. The invention further includes several stacks of folded cushion material including a combination of full-width stacks and half-width stacks: a first full-width stack defined by one or more fan folds in a first lateral half of the cushion wherein the folds are substantially centered above a first center line and are substantially over the inflator port; a second full-width stack defined by one or more fan folds in a second lateral half of the cushion wherein the folds are substantially centered above the first center line and substantially over the inflator port in the first full-width stack; a first half-width stack defined by a plurality of fan folds in the bottom of the cushion where neither edge of each fold extends substantially over the second center line; and a second half-width stack defined by a plurality of fan folds in the top of the cushion wherein neither edge of each fold extends substantially over the second center line.
How Well Can We Really Determine the Scale of Inflation?
Ogan Özsoy; Kuver Sinha; Scott Watson
2014-11-13T23:59:59.000Z
A detection of primordial B-modes has been heralded not only as a smoking gun for the existence of inflation, but also as a way to establish the scale at which inflation took place. In this paper we critically reinvestigate the connection between a detection of primordial gravity waves and the scale of inflation. We consider whether the presence of additional fields and non-adiabaticity during inflation may have provided an additional source of primordial B-modes competitive with those of the quasi-de Sitter vacuum. In particular, we examine whether the additional sources could provide the dominant signal, which could lead to a misinterpretation of the scale of inflation. In light of constraints on the level of non-Gaussianity coming from Planck we find that only hidden sectors with strictly gravitationally strength couplings provide a feasible mechanism. The required model building is somewhat elaborate, and so we discuss possible UV completions in the context of Type IIB orientifold compactifications with RR axions. We find that an embedding is possible and that dangerous sinusoidal corrections can be suppressed through the compactification geometry. Our main result is that even when additional sources of primordial gravity waves are competitive with the inflaton, a positive B-mode detection would still be a relatively good indicator of the scale of inflation. This conclusion will be strengthened by future constraints on both non-Gaussianity and CMB polarization.
Delaying the waterfall transition in warm hybrid inflation
Bastero-Gil, Mar [Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada, 18071 (Spain); Berera, Arjun; Metcalf, Thomas P. [SUPA, School of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ (United Kingdom); Rosa, João G., E-mail: mbg@ugr.es, E-mail: ab@ph.ed.ac.uk, E-mail: t.p.metcalf@ed.ac.uk, E-mail: joao.rosa@ua.pt [Departamento de Física da Universidade de Aveiro and I3N, Campus de Santiago, Aveiro, 3810-183 (Portugal)
2014-03-01T23:59:59.000Z
We analyze the dynamics and observational predictions of supersymmetric hybrid inflation in the warm regime, where dissipative effects are mediated by the waterfall fields and their subsequent decay into light degrees of freedom. This produces a quasi-thermal radiation bath with a slowly-varying temperature during inflation and further damps the inflaton's motion, thus prolonging inflation. As in the standard supercooled scenario, inflation ends when the waterfall fields become tachyonic and can no longer sustain a nearly constant vacuum energy, but the interaction with the radiation bath makes the waterfall fields effectively heavier and delays the phase transition to the supersymmetric minimum. In this work, we analyze for the first time the effects of finite temperature corrections and SUSY mass splittings on the quantum effective potential and the resulting dissipation coefficient. We show, in particular, that dissipation can significantly delay the onset of the tachyonic instability to yield 50–60 e-folds of inflation and an observationally consistent primordial spectrum, which is not possible in the standard supercooled regime when inflation is driven by radiative corrections.
How Likely are Constituent Quanta to Initiate Inflation?
Berezhiani, Lasha
2015-01-01T23:59:59.000Z
We propose an intuitive framework for studying the problem of initial conditions in slow-roll inflation. In particular, we consider a universe at high, but sub-Planckian energy density and analyze the circumstances under which it is plausible for it to become dominated by inflated patches at late times, without appealing to the idea of self-reproduction. Our approach is based on defining a prior probability distribution for the constituent quanta of the pre-inflationary universe. To test the idea that inflation can begin under very generic circumstances, we make specific -- yet quite general and well grounded -- assumptions on the prior distribution. As a result, we are led to the conclusion that the probability for a given region to ignite inflation at sub-Planckian densities is extremely small. Furthermore, if one chooses to use the enormous volume factor that inflation yields as an appropriate measure, we find that the regions of the universe which started inflating at densities below the self-reproductive...
Thermal ghost imaging with averaged speckle patterns
Shapiro, Jeffrey H.
We present theoretical and experimental results showing that a thermal ghost imaging system can produce images of high quality even when it uses detectors so slow that they respond only to intensity-averaged (that is, ...
Selling Geothermal Systems The "Average" Contractor
Selling Geothermal Systems #12;The "Average" Contractor · History of sales procedures · Manufacturer Driven Procedures · What makes geothermal technology any harder to sell? #12;"It's difficult to sell a geothermal system." · It should
STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES
CALIFORNIA ENERGY COMMISSION STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES 2005 TO 2018 Mignon Marks Principal Author Mignon Marks Project Manager David Ashuckian Manager ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY DIVISION B.B. Blevins Executive Director
Distributed Averaging Via Lifted Markov Chains
Jung, Kyomin
Motivated by applications of distributed linear estimation, distributed control, and distributed optimization, we consider the question of designing linear iterative algorithms for computing the average of numbers in a ...
Self-averaging characteristics of spectral fluctuations
Petr Braun; Fritz Haake
2014-10-20T23:59:59.000Z
The spectral form factor as well as the two-point correlator of the density of (quasi-)energy levels of individual quantum dynamics are not self-averaging. Only suitable smoothing turns them into useful characteristics of spectra. We present numerical data for a fully chaotic kicked top, employing two types of smoothing: one involves primitives of the spectral correlator, the second a small imaginary part of the quasi-energy. Self-averaging universal (like the CUE average) behavior is found for the smoothed correlator, apart from noise which shrinks like $1\\over\\sqrt N$ as the dimension $N$ of the quantum Hilbert space grows. There are periodically repeated quasi-energy windows of correlation decay and revival wherein the smoothed correlation remains finite as $N\\to\\infty$ such that the noise is negligible. In between those windows (where the CUE averaged correlator takes on values of the order ${1\\over N^2}$) the noise becomes dominant and self-averaging is lost. We conclude that the noise forbids distinction of CUE and GUE type behavior. Surprisingly, the underlying smoothed generating function does not enjoy any self-averaging outside the range of its variables relevant for determining the two-point correlator (and certain higher-order ones). --- We corroborate our numerical findings for the noise by analytically determining the CUE variance of the smoothed single-matrix correlator.
On Loops in Inflation II: IR Effects in Single Clock Inflation (Journal
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,SeparationConnect Journal Article:UsingMesonSpeedingSpeeding accessArticle) | SciTechOn Inflation
On Loops in Inflation II: IR Effects in Single Clock Inflation (Journal
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,SeparationConnect Journal Article:UsingMesonSpeedingSpeeding accessArticle) | SciTechOn InflationArticle) |
Cascading dust inflation in Born-Infeld gravity
Jose Beltran Jimenez; Lavinia Heisenberg; Gonzalo J. Olmo; Christophe Ringeval
2015-09-04T23:59:59.000Z
In the framework of Born-Infeld inspired gravity theories, which deviates from General Relativity (GR) in the high curvature regime, we discuss the viability of Cosmic Inflation without scalar fields. For energy densities higher than the new mass scale of the theory, a gravitating dust component is shown to generically induce an accelerated expansion of the Universe. Within such a simple scenario, inflation gracefully exits when the GR regime is recovered, but the Universe would remain matter dominated. In order to implement a reheating era after inflation, we then consider inflation to be driven by a mixture of unstable dust species decaying into radiation. Because the speed of sound gravitates within the Born-Infeld model under consideration, our scenario ends up being predictive on various open questions of the inflationary paradigm. The total number of e-folds of acceleration is given by the lifetime of the unstable dust components and is related to the duration of reheating. As a result, inflation does not last much longer than the number of e-folds of deceleration allowing a small spatial curvature and large scale deviations to isotropy to be observable today. Energy densities are self-regulated as inflation can only start for a total energy density less than a threshold value, again related to the species' lifetime. Above this threshold, the Universe may bounce thereby avoiding a singularity. Another distinctive feature is that the accelerated expansion is of the superinflationary kind, namely the first Hubble flow function is negative. We show however that the tensor modes are never excited and the tensor-to-scalar ratio is always vanishing, independently of the energy scale of inflation.
Holographic Theories of Inflation and Fluctuations
Tom Banks; Willy Fischler
2011-12-06T23:59:59.000Z
The theory of holographic space-time (HST) generalizes both string theory and quantum field theory. It provides a geometric rationale for supersymmetry (SUSY) and a formalism in which super-Poincare invariance follows from Poincare invariance. HST unifies particles and black holes, realizing both as excitations of non-commutative geometrical variables on a holographic screen. Compact extra dimensions are interpreted as finite dimensional unitary representations of super- algebras, and have no moduli. Full field theoretic Fock spaces, and continuous moduli are both emergent phenomena of super-Poincare invariant limits in which the number of holographic degrees of freedom goes to infinity. Finite radius de Sitter (dS) spaces have no moduli, and break SUSY with a gravitino mass scaling like $\\Lambda^{1/4}$. We present a holographic theory of inflation and fluctuations. The inflaton field is an emergent concept, describing the geometry of an underlying HST model, rather than "a field associated with a microscopic string theory". We argue that the phrase in quotes is meaningless in the HST formalism.
Leptogenesis during Axion Relaxation after Inflation
Schmitz, Kai
2015-01-01T23:59:59.000Z
In this talk, I present a novel and minimal alternative to thermal leptogenesis, which builds upon the assumption that the electroweak gauge bosons are coupled to an axion-like scalar field, as it is, for instance, the case in certain string compactifications. The motion of this axion-like field after the end of inflation generates an effective chemical potential for leptons and antileptons, which, in the presence of lepton number-violating scatterings mediated by heavy Majorana neutrinos, provides an opportunity for baryogenesis via leptogenesis. In contrast to thermal leptogenesis, the final baryon asymmetry turns out to be insensitive to the masses and CP-violating phases in the heavy neutrino sector. Moreover, the proposed scenario requires a reheating temperature of at least O(10^12) GeV and it is, in particular, consistent with heavy neutrino masses close the scale of grand unification. This talk was given in February 2015 at HPNP 2015 at Toyama University and is based on recent work (arXiv:1412.2043 [h...
Large Field Inflation from Axion Mixing
Shiu, Gary; Ye, Fang
2015-01-01T23:59:59.000Z
We study the general multi-axion systems, focusing on the possibility of large field inflation driven by axions. We find that through axion mixing from a non-diagonal metric on the moduli space and/or from St\\"uckelberg coupling to a U(1) gauge field, an effectively super-Planckian decay constant can be generated without the need of "alignment" in the axion decay constants. We also investigate the consistency conditions related to the gauge symmetries in the multi-axion systems, such as vanishing gauge anomalies and the potential presence of generalized Chern-Simons terms. Our scenario applies generally to field theory models whose axion periodicities are intrinsically sub-Planckian, but it is most naturally realized in string theory. The types of axion mixings invoked in our scenario appear quite commonly in D-brane models, and we present its implementation in type II superstring theory. Explicit stringy models exhibiting all the characteristics of our ideas are constructed within the frameworks of Type IIA ...
Table 7.1 Average Prices of Purchased Energy Sources, 2002
U.S. Energy Information Administration (EIA) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on GoogleTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions,6 End Uses of Fuel Consumption,2 Average
Annual Report School of Engineering
Alpay, S. Pamir
Annual Report 1999-2000 School of Engineering University of Connecticut #12;#12;University of Connecticut School of Engineering Annual Report 1999-2000 Table of Contents School of Engineering Annual Departments Chemical Engineering Annual Report Summary
,"Housing Units1","Average Square Footage Per Housing Unit",...
U.S. Energy Information Administration (EIA) Indexed Site
6 Average Square Footage of Mobile Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per...
Stochastic Nash Equilibrium Problems: Sample Average ...
2010-01-22T23:59:59.000Z
convergence of stationary points of sample average optimization problems, see for .... (c) Finally we model the competition in the electricity spot market as a ...... out to be p(Q, ?), Ci(qi) denotes the total cost for producing qi amount of electricity
Inflation, Symmetry, and B-Modes
Mark P. Hertzberg
2015-07-27T23:59:59.000Z
We examine the role of using symmetry and effective field theory in inflationary model building. We describe the standard formulation of starting with an approximate shift symmetry for a scalar field, and then introducing corrections systematically in order to maintain control over the inflationary potential. We find that this leads to models in good agreement with recent data. On the other hand, there are attempts in the literature to deviate from this paradigm by invoking other symmetries and corrections. In particular: in a suite of recent papers, several authors have made the claim that standard Einstein gravity with a cosmological constant and a massless scalar carries conformal symmetry. They further claim that such a theory carries another hidden symmetry; a global SO(1,1) symmetry. By deforming around the global SO(1,1) symmetry, they are able to produce a range of inflationary models with asymptotically flat potentials, whose flatness is claimed to be protected by these symmetries. These models tend to give rise to B-modes with small amplitude. Here we explain that these authors are merely introducing a redundancy into the description, not an actual conformal symmetry. Furthermore, we explain that the only real (global) symmetry in these models is not at all hidden, but is completely manifest when expressed in the Einstein frame; it is in fact the shift symmetry of a scalar field. When analyzed systematically as an effective field theory, deformations do not generally produce asymptotically flat potentials and small B-modes, but other types of potentials with B-modes of appreciable amplitude. Such simple models typically also produce the observed red spectral index, Gaussian fluctuations, etc. In short: simple models of inflation, organized by expanding around a shift symmetry, are in excellent agreement with recent data.
Eternal inflation, bubble collisions, and the persistence of memory
Garriga, Jaume; Guth, Alan H.; Vilenkin, Alexander [Departament de Fisica Fonamental, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Institute of Cosmology, Department of Physics and Astronomy Tufts University, Medford, Massachusetts 02155 (United States)
2007-12-15T23:59:59.000Z
A 'bubble universe' nucleating in an eternally inflating false vacuum will experience, in the course of its expansion, collisions with an infinite number of other bubbles. In an idealized model, we calculate the rate of collisions around an observer inside a given reference bubble. We show that the collision rate violates both the homogeneity and the isotropy of the bubble universe. Each bubble has a center which can be related to 'the beginning of inflation' in the parent false vacuum, and any observer not at the center will see an anisotropic bubble collision rate that peaks in the outward direction. Surprisingly, this memory of the onset of inflation persists no matter how much time elapses before the nucleation of the reference bubble.
Volume modulus inflation and the gravitino mass problem
Conlon, J P [Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom)] [Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Kallosh, R; Linde, A [Department of Physics, Stanford University, Stanford, CA 94305 (United States)] [Department of Physics, Stanford University, Stanford, CA 94305 (United States); Quevedo, F, E-mail: jpc41@cam.ac.uk, E-mail: kallosh@stanford.edu, E-mail: alinde@stanford.edu, E-mail: f.quevedo@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)] [DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2008-09-15T23:59:59.000Z
The Hubble constant during the last stages of inflation in a broad class of models based on the Kachru-Kallosh-Linde-Trivedi mechanism should be smaller than the gravitino mass, H{approx}
Reheating-volume measure for random-walk inflation
Winitzki, Sergei [Department of Physics, Ludwig-Maximilians University, Munich (Germany); Yukawa Institute of Theoretical Physics, Kyoto University, Kyoto (Japan)
2008-09-15T23:59:59.000Z
The recently proposed 'reheating-volume' (RV) measure promises to solve the long-standing problem of extracting probabilistic predictions from cosmological multiverse scenarios involving eternal inflation. I give a detailed description of the new measure and its applications to generic models of eternal inflation of random-walk type. For those models I derive a general formula for RV-regulated probability distributions that is suitable for numerical computations. I show that the results of the RV cutoff in random-walk type models are always gauge invariant and independent of the initial conditions at the beginning of inflation. In a toy model where equal-time cutoffs lead to the 'youngness paradox', the RV cutoff yields unbiased results that are distinct from previously proposed measures.
Consistent generation of magnetic fields in axion inflation models
Fujita, Tomohiro; Tada, Yuichiro; Takeda, Naoyuki; Tashiro, Hiroyuki
2015-01-01T23:59:59.000Z
There has been a growing evidence for the existence of magnetic fields in the extra-galactic regions, while the attempt to associate their origin with the inflationary epoch alone has been found extremely challenging. We therefore take into account the consistent post-inflationary evolution of the magnetic fields that are originated from vacuum fluctuations during inflation. In the model of our interest, the electromagnetic (EM) field is coupled to a pseudo-scalar inflaton $\\phi$ through the characteristic term $\\phi F\\tilde F$, breaking the conformal invariance. This interaction dynamically breaks the parity and enables a continuous production of only one of the polarization states of the EM field through tachyonic instability. The produced magnetic fields are thus helical. We find that the dominant contribution to the observed magnetic fields in this model comes from the modes that leave the horizon near the end of inflation, further enhanced by the tachyonic instability right after the end of inflation. Th...
The physics of business cycles and inflation Hans G. Danielmeyer and Thomas Martinetz
of the inflation rate are due to 3 crude oil price shocks. Natural damping prohibits cycles (dashed envelope lines show the increase of inflation due to the crude oil price shocks of the Jan Kippur Embargo consecutive cycles observed in the USA for employment and inflation. They are driven by three oil price shocks
Modeling Animal-Vehicle Collisions Using Diagonal Inflated Bivariate Poisson Regression
Washington at Seattle, University of
1 Modeling Animal-Vehicle Collisions Using Diagonal Inflated Bivariate Poisson Regression of highway AVCs, this study adopts a diagonal inflated bivariate Poisson regression method, an inflated version of bivariate Poisson regression model, to fit the reported AVC and carcass removal data sets
Annual Report 2001 Annual Report 2001
Habib, Ayman
The Arctic Institute of North America Annual Report 2001 The Arctic Institute of North America Annual Report 2001 #12;2000 Board of Directors · James Raffan,Seeley's Bay,Ontario (Chair until September 2001) · Murray B. Todd, Calgary,Alberta (Chair as of September 2001) · Luc Bouthillier,Québec City
Library Annual Report Library Annual Report
Tobar, Michael
Library Annual Report 2007 Library Annual Report 2007 #12;www.library.uwa.edu.au Our mission: By delivering excellent information resources and services the Library is integral to the University's mission of advancing, transmitting and sustaining knowledge. Our vision: The Library will continue to be at the heart
Generalized Uncertainty Principle and Recent Cosmic Inflation Observations
Abdel Nasser Tawfik; Abdel Magied Diab
2014-10-29T23:59:59.000Z
The recent background imaging of cosmic extragalactic polarization (BICEP2) observations are believed as an evidence for the cosmic inflation. BICEP2 provided a first direct evidence for the inflation, determined its energy scale and debriefed witnesses for the quantum gravitational processes. The ratio of scalar-to-tensor fluctuations $r$ which is the canonical measurement of the gravitational waves, was estimated as $r=0.2_{-0.05}^{+0.07}$. Apparently, this value agrees well with the upper bound value corresponding to PLANCK $r\\leq 0.012$ and to WMAP9 experiment $r=0.2$. It is believed that the existence of a minimal length is one of the greatest predictions leading to modifications in the Heisenberg uncertainty principle or a GUP at the Planck scale. In the present work, we investigate the possibility of interpreting recent BICEP2 observations through quantum gravity or GUP. We estimate the slow-roll parameters, the tensorial and the scalar density fluctuations which are characterized by the scalar field $\\phi$. Taking into account the background (matter and radiation) energy density, $\\phi$ is assumed to interact with the gravity and with itself. We first review the Friedmann-Lemaitre-Robertson-Walker (FLRW) Universe and then suggest modification in the Friedmann equation due to GUP. By using a single potential for a chaotic inflation model, various inflationary parameters are estimated and compared with the PLANCK and BICEP2 observations. While GUP is conjectured to break down the expansion of the early Universe (Hubble parameter and scale factor), two inflation potentials based on certain minimal supersymmetric extension of the standard model result in $r$ and spectral index matching well with the observations. Corresponding to BICEP2 observations, our estimation for $r$ depends on the inflation potential and the scalar field. A power-law inflation potential does not.
Position space CMB anomalies from multi-stream inflation
Wang, Yi, E-mail: yi.wang@ipmu.jp [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)
2013-10-01T23:59:59.000Z
Temporary domain walls are produced during the bifurcation era of multi-stream inflation. The observational effects from such a domain wall to spectator field perturbations are calculated, and we expect the inflationary perturbations share similarities with the case of spectator field. A domain wall induces a preferred direction in the sky, affecting the angular distribution of perturbations. A correlated suppression of multipoles together with an alignment of multipole moments on the preferred direction are generated. Other observational aspects of multi-stream inflation, including hemispherical asymmetry and cold spot are also briefly reviewed.
Can Higgs Inflation be Saved with High-scale Supersymmetry ?
Sibo Zheng
2015-04-30T23:59:59.000Z
It is shown whether Higgs inflation can be saved with high-scale supersymmetry critically depends on the magnitude of non-minimal coupling constant $\\xi$. For small $\\xi \\leq 500$, the threshold correction at scale $M_{P}/\\xi$ is constrained in high precision.Its magnitude is in the narrow range of $(-0.03, -0.02)$ and $(-0.05, -0.04)$ for the wino and higgsino/singlino dark matter, respectively. While in the large $\\xi$-region with $\\xi \\geq 10^{4}$, such high-scale supersymmetry is excluded by too large threshold correction as required by Higgs inflation.
Can Higgs Inflation be Saved with High-scale Supersymmetry ?
Zheng, Sibo
2015-01-01T23:59:59.000Z
It is shown whether Higgs inflation can be saved with high-scale supersymmetry critically depends on the magnitude of non-minimal coupling constant $\\xi$. For small $\\xi \\leq 500$, the threshold correction at scale $M_{P}/\\xi$ is constrained in high precision.Its magnitude is in the narrow range of $(-0.03, -0.02)$ and $(-0.05, -0.04)$ for the wino and higgsino/singlino dark matter, respectively. While in the large $\\xi$-region with $\\xi \\geq 10^{4}$, such high-scale supersymmetry is excluded by too large threshold correction as required by Higgs inflation.
Nontrivial Dynamics in the Early Stages of Inflation
E. Calzetta; C. El Hasi
1994-08-05T23:59:59.000Z
Inflationary cosmologies, regarded as dynamical systems, have rather simple asymptotic behavior, insofar as the cosmic baldness principle holds. Nevertheless, in the early stages of an inflationary process, the dynamical behavior may be very complex. In this paper, we show how even a simple inflationary scenario, based on Linde's ``chaotic inflation'' proposal, manifests nontrivial dynamical effects such as the breakup of invariant tori, formation of cantori and Arnol'd's diffusion. The relevance of such effects is highlighted by the fact that even the occurrence or not of inflation in a given Universe is dependent upon them.
Knapp, C L; Stoffel, T L; Whitaker, S D
1980-10-01T23:59:59.000Z
Monthly averaged data is presented which describes the availability of solar radiation at 248 National Weather Service stations. Monthly and annual average daily insolation and temperature values have been computed from a base of 24 to 25 years of data. Average daily maximum, minimum, and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3/sup 0/C (65/sup 0/F). For each station, global anti K/sub T/ (cloudiness index) were calculated on a monthly and annual basis. (MHR)
G-Bounce Inflation: Towards Nonsingular Inflation Cosmology with Galileon Field
Taotao Qiu; Yu-Tong Wang
2015-04-29T23:59:59.000Z
We study a nonsingular bounce inflation model, which can drive the early universe from a contracting phase, bounce into an ordinary inflationary phase, followed by the reheating process. Besides the bounce that avoided the Big-Bang singularity which appears in the standard cosmological scenario, we make use of the Horndesky theory and design the kinetic and potential forms of the lagrangian, so that neither of the two big problems in bouncing cosmology, namely the ghost and the anisotropy problems, will appear. The cosmological perturbations can be generated either in the contracting phase or in the inflationary phase, where in the latter the power spectrum will be scale-invariant and fit the observational data, while in the former the perturbations will have nontrivial features that will be tested by the large scale structure experiments. We also fit our model to the CMB TT power spectrum.
Impact Ionization Model Using Average Energy and Average Square Energy of Distribution Function
Dunham, Scott
Impact Ionization Model Using Average Energy and Average Square Energy of Distribution Function Ken relaxation length, v sat ø h''i (¸ 0:05¯m), the energy distribution function is not well described calculation of impact ionization coefficient requires the use of a high energy distribution function because
Long-term average performance benefits of parabolic trough improvements
Gee, R.; Gaul, H.W.; Kearney, D.; Rabl, A.
1980-03-01T23:59:59.000Z
Improved parabolic trough concentrating collectors will result from better design, improved fabrication techniques, and the development and utilization of improved materials. The difficulty of achieving these improvements varies as does their potential for increasing parabolic trough performance. The purpose of this analysis is to quantify the relative merit of various technology advancements in improving the long-term average performance of parabolic trough concentrating collectors. The performance benefits of improvements are determined as a function of operating temperature for north-south, east-west, and polar mounted parabolic troughs. The results are presented graphically to allow a quick determination of the performance merits of particular improvements. Substantial annual energy gains are shown to be attainable. Of the improvements evaluated, the development of stable back-silvered glass reflective surfaces offers the largest performance gain for operating temperatures below 150/sup 0/C. Above 150/sup 0/C, the development of trough receivers that can maintain a vacuum is the most significant potential improvement. The reduction of concentrator slope errors also has a substantial performance benefit at high operating temperatures.
Table 3a. Real Average Annual Coal Transportation Costs from Coal Basin to State
U.S. Energy Information Administration (EIA) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onsource History View NewUS NationalStocks 2009 2010 2011 2012Presented To:Imported Refiner Acquisition Cost of
Table 3b. Real Average Annual Coal Transportation Costs from Coal Basin to State
U.S. Energy Information Administration (EIA) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onsource History View NewUS NationalStocks 2009 2010 2011 2012Presented To:Imported Refiner Acquisition Cost ofb. Real
Table 3c. Real Average Annual Coal Transportation Costs from Coal Basin to State
U.S. Energy Information Administration (EIA) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onsource History View NewUS NationalStocks 2009 2010 2011 2012Presented To:Imported Refiner Acquisition Cost ofb.
Table 4a. Real Average Annual Coal Transportation Costs from State to State by T
U.S. Energy Information Administration (EIA) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onsource History View NewUS NationalStocks 2009 2010 2011 2012Presented To:Imported RefinerPrincipal shale gasa. Real
Table 4b. Real Average Annual Coal Transportation Costs from State to State by W
U.S. Energy Information Administration (EIA) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onsource History View NewUS NationalStocks 2009 2010 2011 2012Presented To:Imported RefinerPrincipal shale gasa.
Table 4c. Real Average Annual Coal Transportation Costs from State to State by R
U.S. Energy Information Administration (EIA) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onsource History View NewUS NationalStocks 2009 2010 2011 2012Presented To:Imported RefinerPrincipal shale gasa.c.
United States Wind Resource Map: Annual Average Wind Speed at 30 Meters
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onsource History View NewUS National FuelYancey County, North Carolina:text HomeSchool Wind ProjectWindA Guide Produced30
United States Wind Resource Map: Annual Average Wind Speed at 80 Meters
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onsource History View NewUS National FuelYancey County, North Carolina:text HomeSchool Wind ProjectWindA Guide
United States- Land Based and Offshore Annual Average Wind Speed at 100 Meters
Broader source: Energy.gov [DOE]
Full-size, high resolution version of the 100-meter land-based and offshore wind speed resource map.
Solar: monthly and annual average direct normal (DNI) GIS data at 40km
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onsource History View New PagessourceRavenand Some InitialSissonville,Solar Resources by ClassPage Edit HistorySolar2
Fact #835: August 25, 2014 Average Annual Gasoline Pump Price, 1929-2013
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankShale_Gas.pdfServiceDepartmentEnergy 9: August 22, 2011 Energyofof EnergyLastOxideCarandGasoline-
The Impact of Annual Average Daily Traffic on Highway Runoff Pollutant Concentrations
Kayhanian, Masoud; Singh, Amardeep; Suverkropp, Claus; Borroum, Steve
2002-01-01T23:59:59.000Z
Cadmium Chromium Copper Lead Nickel Zinc Nutrients Ammonia (N) Nitrate (Cadmium Chromium Copper Lead Nickel Zinc Nutrients Ammonia-N Nitrate-Cadmium Chromium Copper Lead Nickel Zinc Nutrients Ammonia (N) Nitrate (
Cosmology as Science: From Inflation to the Future
Krass, Lawrence [Case Western Reserve
2010-01-08T23:59:59.000Z
Recent developments in cosmology bring to the forefront fundamental questions about our ability to falsify various fundamental assumptions about the universe. I will discuss three issues that reflect different aspects of these questions: (1) "Proving" Inflation (2) Anthropic "Explanations" (3) Cosmology of the far future.
Extending Higgs Inflation with TeV Scale New Physics
Hong-Jian He; Zhong-Zhi Xianyu
2014-10-09T23:59:59.000Z
Higgs inflation is among the most economical and predictive inflation models, although the original Higgs inflation requires tuning the Higgs or top mass away from its current experimental value by more than $2\\sigma$ deviations, and generally gives a negligible tensor-to-scalar ratio $r \\sim 10^{-3}$ (if away from the vicinity of critical point). In this work, we construct a minimal extension of Higgs inflation, by adding only two new weak-singlet particles at TeV scale, a vector-quark $T$ and a real scalar $S$. The presence of singlets $(T, S)$ significantly impact the renormalization group running of the Higgs boson self-coupling. With this, our model provides a wider range of the tensor-to-scalar ratio $r = O(0.1 - 10^{-3})$, consistent with the favored $r$ values by either BICEP2 or Planck data, while keeping the successful prediction of the spectral index $ n_s \\simeq 0.96 $. It further allows the Higgs and top masses to fully fit the collider measurements. We also discuss implications for searching the predicted TeV-scale vector-quark $T$ and scalar $S$ at the LHC and future high energy pp colliders.
No Large Scale Curvature Perturbations during Waterfall of Hybrid Inflation
Ali Akbar Abolhasani; Hassan Firouzjahi
2011-01-18T23:59:59.000Z
In this paper the possibility of generating large scale curvature perturbations induced from the entropic perturbations during the waterfall phase transition of standard hybrid inflation model is studied. We show that whether or not appreciable amounts of large scale curvature perturbations are produced during the waterfall phase transition depend crucially on the competition between the classical and the quantum mechanical back-reactions to terminate inflation. If one considers only the classical evolution of the system we show that the highly blue-tilted entropy perturbations induce highly blue-tilted large scale curvature perturbations during the waterfall phase transition which dominate over the original adiabatic curvature perturbations. However, we show that the quantum back-reactions of the waterfall field inhomogeneities produced during the phase transition dominate completely over the classical back-reactions. The cumulative quantum back-reactions of very small scales tachyonic modes terminate inflation very efficiently and shut off the curvature perturbations evolution during the waterfall phase transition. This indicates that the standard hybrid inflation model is safe under large scale curvature perturbations during the waterfall phase transition.
The Effective Planck Mass and the Scale of Inflation
Ignatios Antoniadis; Subodh P. Patil
2015-04-23T23:59:59.000Z
Observable quantities in cosmology are dimensionless, and therefore independent of the units in which they are measured. This is true of all physical quantities associated with the primordial perturbations that source cosmic microwave background anisotropies such as their amplitude and spectral properties. However, if one were to try and infer an absolute energy scale for inflation-- a priori, one of the more immediate corollaries of detecting primordial tensor modes-- one necessarily makes reference to a particular choice of units, the natural choice for which is Planck units. In this note, we discuss various aspects of how inferring the energy scale of inflation is complicated by the fact that the effective strength of gravity as seen by inflationary quanta necessarily differs from that seen by gravitational experiments at presently accessible scales. The uncertainty in the former relative to the latter has to do with the unknown spectrum of universally coupled particles between laboratory scales and the putative scale of inflation. These intermediate particles could be in hidden as well as visible sectors or could also be associated with Kaluza-Klein resonances associated with a compactification scale below the scale of inflation. We discuss various implications for cosmological observables.
Inhomogeneous Cosmology, Inflation and Late-Time Accelerating Universe
J. W. Moffat
2007-05-30T23:59:59.000Z
An exact inhomogeneous solution of Einstein's field equations is shown to be able to inflate in a non-uniform way in the early universe and explain anomalies in the WMAP power spectrum data. It is also possible for the model to explain the accelerated expansion of the universe by late-time inhomogeneous structure.
Running of scalar spectral index in multi-field inflation
Jinn-Ouk Gong
2015-05-20T23:59:59.000Z
We compute the running of the scalar spectral index in general multi-field slow-roll inflation. By incorporating explicit momentum dependence at the moment of horizon crossing, we can find the running straightforwardly. At the same time, we can distinguish the contributions from the quasi de Sitter background and the super-horizon evolution of the field fluctuations.
INFLATABLE PLUG FOR THREAT MITIGATION IN TRANSPORTATION TUNNELS
Barbero, Ever J.
INFLATABLE PLUG FOR THREAT MITIGATION IN TRANSPORTATION TUNNELS Xavier Martinez1 , Julio Davalos2 and government entities. Fires, noxious fumes, deadly gasses, and flooding threats have occurred in major are of difficult and limited accessibility, but also because most of the potential threats, such as fires, flooding
Oscillations in the CMB from Axion Monodromy Inflation
Flauger, Raphael; /Texas U.; McAllister, Liam; Pajer, Enrico; /Cornell U., Phys. Dept.; Westphal, Alexander; /SLAC /Stanford U., Phys. Dept.; Xu, Gang; /Cornell U., Phys. Dept.
2011-12-01T23:59:59.000Z
We study the CMB observables in axion monodromy inflation. These well-motivated scenarios for inflation in string theory have monomial potentials over super-Planckian field ranges, with superimposed sinusoidal modulations from instanton effects. Such periodic modulations of the potential can drive resonant enhancements of the correlation functions of cosmological perturbations, with characteristic modulations of the amplitude as a function of wavenumber. We give an analytical result for the scalar power spectrum in this class of models, and we determine the limits that present data places on the amplitude and frequency of modulations. Then, incorporating an improved understanding of the realization of axion monodromy inflation in string theory, we perform a careful study of microphysical constraints in this scenario. We find that detectable modulations of the scalar power spectrum are commonplace in well-controlled examples, while resonant contributions to the bispectrum are undetectable in some classes of examples and detectable in others. We conclude that resonant contributions to the spectrum and bispectrum are a characteristic signature of axion monodromy inflation that, in favorable cases, could be detected in near-future experiments.
Oscillations in the CMB from axion monodromy inflation
Flauger, Raphael [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); McAllister, Liam; Pajer, Enrico; Xu, Gang [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Westphal, Alexander, E-mail: raphael.flauger@yale.edu, E-mail: mcallister@cornell.edu, E-mail: ep295@cornell.edu, E-mail: awestpha@stanford.edu, E-mail: gx26@cornell.edu [Department of Physics, Stanford University, Stanford, CA 94305 (United States)
2010-06-01T23:59:59.000Z
We study the CMB observables in axion monodromy inflation. These well-motivated scenarios for inflation in string theory have monomial potentials over super-Planckian field ranges, with superimposed sinusoidal modulations from instanton effects. Such periodic modulations of the potential can drive resonant enhancements of the correlation functions of cosmological perturbations, with characteristic modulations of the amplitude as a function of wavenumber. We give an analytical result for the scalar power spectrum in this class of models, and we determine the limits that present data places on the amplitude and frequency of modulations. Then, incorporating an improved understanding of the realization of axion monodromy inflation in string theory, we perform a careful study of microphysical constraints in this scenario. We find that detectable modulations of the scalar power spectrum are commonplace in well-controlled examples, while resonant contributions to the bispectrum are undetectable in some classes of examples and detectable in others. We conclude that resonant contributions to the spectrum and bispectrum are a characteristic signature of axion monodromy inflation that, in favorable cases, could be detected in near-future experiments.
Gauge - invariant fluctuations of the metric in stochastic inflation
Mauricio Bellini
2000-01-07T23:59:59.000Z
I derive the stochastic equation for the perturbations of the metric for a gauge - invariant energy - momemtum - tensor (EMT) in stochastic inflation. A quantization for the field that describes the gauge - invariant perturbations for the metric is developed. In a power - law expansion for the universe the amplitude for these perturbations on a background metric could be very important in the infrared sector.
Primordial fluctuations of the metric in the warm inflation scenario
Mauricio Bellini
2000-05-16T23:59:59.000Z
I consider a semiclassical expansion of the scalar field in the warm inflation scenario. I study the evolution for the fluctuations of the metric around the Friedmann-Robertson-Walker one. The formalism predicts that, in the power-law expansion universe, the fluctuations of the metric decreases with time.
Time-dependent angularly averaged inverse transport
Guillaume Bal; Alexandre Jollivet
2009-05-07T23:59:59.000Z
This paper concerns the reconstruction of the absorption and scattering parameters in a time-dependent linear transport equation from knowledge of angularly averaged measurements performed at the boundary of a domain of interest. We show that the absorption coefficient and the spatial component of the scattering coefficient are uniquely determined by such measurements. We obtain stability results on the reconstruction of the absorption and scattering parameters with respect to the measured albedo operator. The stability results are obtained by a precise decomposition of the measurements into components with different singular behavior in the time domain.
The 2009 World Average of $?_s$
Siegfried Bethke
2009-08-15T23:59:59.000Z
Measurements of $\\alpha_s$, the coupling strength of the Strong Interaction between quarks and gluons, are summarised and an updated value of the world average of $\\alpha_s (M_Z)$ is derived. Building up on previous reviews, special emphasis is laid on the most recent determinations of $\\alpha_s$. These are obtained from $\\tau$-decays, from global fits of electroweak precision data and from measurements of the proton structure function $\\F_2$, which are based on perturbative QCD calculations up to $O(\\alpha_s^4)$; from hadronic event shapes and jet production in $\\epem$ annihilation, based on $O(\\alpha_s^3) $ QCD; from jet production in deep inelastic scattering and from $\\Upsilon$ decays, based on $O(\\alpha_s^2) $ QCD; and from heavy quarkonia based on unquenched QCD lattice calculations. Applying pragmatic methods to deal with possibly underestimated errors and/or unknown correlations, the world average value of $\\alpha_s (M_Z)$ results in $\\alpha_s (M_Z) = 0.1184 \\pm 0.0007$. The measured values of $\\alpha_s (Q)$, covering energy scales from $Q \\equiv \\mtau = 1.78$ GeV to 209 GeV, exactly follow the energy dependence predicted by QCD and therefore significantly test the concept af Asymptotic Freedom.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Required Annual Notices The Women's Health and Cancer Rights Act of 1998 (WHCRA) The medical programs sponsored by LANS will not restrict benefits if you or your dependent...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Annual Notices The Women's Health and Cancer Rights Act of 1998 (WHCRA) The medical programs sponsored by LANS will not restrict benefits if you or your dependent receives...
Broader source: Energy.gov [DOE]
The Organization of PJM States, Inc. (OPSI) is hosting its annual meeting in Chicago, IL, on October 13-14, 2014.
Broader source: Energy.gov [DOE]
The South-Central Partnership for Energy Efficiency as a Resource (SPEER) is hosting their 3rd Annual Summit in Dallas, Texas.
U.S. Energy Information Administration (EIA) Indexed Site
8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...
U.S. Energy Information Administration (EIA) Indexed Site
6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...
U.S. Energy Information Administration (EIA) Indexed Site
7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...
SFU LIBRARY ANNUAL REPORT 2006/07 #12;22 TABLE OF CONTENTS Message from the University Librarian................................................... ....................................... 7 WAC Bennett Library.................................................................. ....................................... 8 Samuel and Frances Belzberg Library
none,
2007-01-01T23:59:59.000Z
This annual report includes: a brief overview of Western; FY 2007 highlights; FY 2007 Integrated Resource Planning, or IRP, survey; and financial data.
U.S. Energy Information Administration (EIA) Indexed Site
Annual . 1996 Published October 1997 1997 Published October 1998 1998 Published October 1999 1999 Published October 2000 2000 Published December 2001...
Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.; Wiley, Julie G.; Reed, Jennifer R.
2010-02-26T23:59:59.000Z
The EMSL 2009 Annual Report describes the science conducted at EMSL during 2009 as well as outreach activities and awards and honors received by users and staff.
Avoiding the blue spectrum and the fine-tuning of initial conditions in hybrid inflation
Sebastien Clesse; Jonathan Rocher
2009-04-20T23:59:59.000Z
Hybrid inflation faces two well-known problems: the blue spectrum of the non-supersymmetric version of the model and the fine-tuning of the initial conditions of the fields leading to sufficient inflation to account for the standard cosmological problems. They are investigated by studying the exact two-fields dynamics instead of assuming slow-roll. When the field values are restricted to be less than the reduced Planck mass, a non-negligible part of the initial condition space (around 15% depending on potential parameters) leads to successful inflation. Most of it is located outside the usual inflationary valley and organized in continuous patterns instead of being isolated as previously found. Their existence is explained and their properties are studied. This shows that no excessive fine-tuning is required for successful hybrid inflation. Moreover, by extending the initial condition space to planckian-like or super-planckian values, inflation becomes generically sufficiently long and can produce a red-tilted scalar power spectrum due to slow-roll violations. The robustness of these properties is confirmed by conducting our analysis on three other models of hybrid-type inflation in various framework: "smooth" and "shifted" inflation in SUSY and SUGRA, and "radion assisted" gauge inflation. A high percentage of successful inflation for smooth hybrid inflation (up to 80%) is observed.
Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress...
Office of Environmental Management (EM)
Fact 870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 Fact 870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 The Corporate Average Fuel...
Steelcase's Closed-Loop Energy Recovery System Results in $250,000 Savings Annually
Wege, P. M.
1981-01-01T23:59:59.000Z
includes wood, cardboard, paper, fabrics, paint sludge, and solvent sludge. Incineration reduces waste volume, cutting landfill and hauling charges substantially. Heat recovery has lowered natural gas bills by 10%. Net annual savings average more than $250...
Annual Performance Report FY 2004 Annual Performance Plan FY...
Broader source: Energy.gov (indexed) [DOE]
I am pleased to present the Office of Inspector General's (OIG's) combined Fiscal Year 2004 Annual Performance Report and Fiscal Year 2005 Annual Performance Plan. In Fiscal Year...
The Average Mass Profile of Galaxy Clusters
R. G. Carlberg; H. K. C. Yee; E. Ellingson; S. L. Morris; R. Abraham; P. Gravel; C. J. Pritchet; T. Smecker-Hane; F. D. A. Hartwick; J. E. Hesser; J. B. Hutchings; J. B. Oke
1997-05-23T23:59:59.000Z
The average mass density profile measured in the CNOC cluster survey is well described with the analytic form rho(r)=A/[r(r+a_rho)^2], as advocated on the basis on n-body simulations by Navarro, Frenk & White. The predicted core radii are a_rho=0.20 (in units of the radius where the mean interior density is 200 times the critical density) for an Omega=0.2 open CDM model, or a_rho=0.26 for a flat Omega=0.2 model, with little dependence on other cosmological parameters for simulations normalized to the observed cluster abundance. The dynamically derived local mass-to-light ratio, which has little radial variation, converts the observed light profile to a mass profile. We find that the scale radius of the mass distribution, 0.20<= a_rho <= 0.30 (depending on modeling details, with a 95% confidence range of 0.12-0.50), is completely consistent with the predicted values. Moreover, the profiles and total masses of the clusters as individuals can be acceptably predicted from the cluster RMS line-of-sight velocity dispersion alone. This is strong support of the hierarchical clustering theory for the formation of galaxy clusters in a cool, collisionless, dark matter dominated universe.
The Gravitational Wave Background and Higgs False Vacuum Inflation
Isabella Masina
2014-03-20T23:59:59.000Z
For a narrow band of values of the top quark and Higgs boson masses, the Standard Model Higgs potential develops a shallow local minimum at energies of about $10^{16}$ GeV, where primordial inflation could have started in a cold metastable state. For each point of that band, the highness of the Higgs potential at the false minimum is calculable, and there is an associated prediction for the inflationary gravitational wave background, namely for the tensor to scalar ratio $r$. We show that the recent measurement of $r$ by the BICEP2 collaboration, $r=0.16 _{-0.05}^{+0.06}$ at $1\\sigma$, combined with the most up-to-date measurements of the top quark and Higgs boson masses, reveals that the hypothesis that a Standard Model shallow false minimum was the source of inflation in the early Universe is viable.
Observational consequences of chaotic inflation with nonminimal coupling to gravity
Linde, Andrei; Noorbala, Mahdiyar [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305 (United States); Westphal, Alexander, E-mail: alinde@stanford.edu, E-mail: noorbala@stanford.edu, E-mail: alexander.westphal@desy.de [Deutsches Elektronen-Synchrotron DESY, Theory Group, D-22603 Hamburg (Germany)
2011-03-01T23:59:59.000Z
Recently there was an extensive discussion of Higgs inflation in the theory with the potential ?/4 (?{sup 2}?v{sup 2}){sup 2} and nonminimal coupling to gravity ?/2 ?{sup 2}R, for ? >> 1 and v || 1. We extend this investigation to the theories m{sup 2}/2 ?{sup 2} and ?/4 (?{sup 2}?v{sup 2}){sup 2} with arbitrary values of ? and v and describe implementation of these models in supergravity. We analyze observational consequences of these models and find a surprising coincidence of the inflationary predictions of the model ?/4 (?{sup 2}?v{sup 2}){sup 2} with ? < 0 in the limit |?|v{sup 2} ? 1 with the predictions of the Higgs inflation scenario for ? >> 1.
Bounce Inflation Cosmology with Standard Model Higgs Boson
Youping Wan; Taotao Qiu; Fa Peng Huang; Yi-Fu Cai; Hong Li; Xinmin Zhang
2015-10-06T23:59:59.000Z
It is of great interest to connect cosmology in the early universe to the Standard Model of particle physics. In this paper, we try to construct a bounce inflation model with the standard model Higgs boson, where the one loop correction is taken into account in the effective potential of Higgs field. In this model, a Galileon term has been introduced to eliminate the ghost mode when bounce happens. Moreover, due to the fact that the Fermion loop correction can make part of the Higgs potential negative, one naturally obtains a large equation of state(EoS) parameter in the contracting phase, which can eliminate the anisotropy problem. After the bounce, the model can drive the universe into the standard higgs inflation phase, which can generate nearly scale-invariant power spectrum.
Bounce Inflation Cosmology with Standard Model Higgs Boson
Wan, Youping; Huang, Fa Peng; Cai, Yi-Fu; Li, Hong; Zhang, Xinmin
2015-01-01T23:59:59.000Z
It is of great interest to connect cosmology in the early universe to the Standard Model of particle physics. In this paper, we try to construct a bounce inflation model with the standard model Higgs boson, where the one loop correction is taken into account in the effective potential of Higgs field. In this model, a Galileon term has been introduced to eliminate the ghost mode when bounce happens. Moreover, due to the fact that the Fermion loop correction can make part of the Higgs potential negative, one naturally obtains a large equation of state(EoS) parameter in the contracting phase, which can eliminate the anisotropy problem. After the bounce, the model can drive the universe into the standard higgs inflation phase, which can generate nearly scale-invariant power spectrum.
Consistency condition for inflation from (broken) conformal symmetry
Schalm, Koenraad; Aalst, Ted van der [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden (Netherlands); Shiu, Gary, E-mail: kschalm@lorentz.leidenuniv.nl, E-mail: shiu@physics.wisc.edu, E-mail: vdaalst@lorentz.leidenuniv.nl [Department of Physics, University of Wisconsin-Madison, Madison, WI 53706 (United States)
2013-03-01T23:59:59.000Z
We investigate the symmetry constraints on the bispectrum, i.e. the three-point correlation function of primordial density fluctuations, in slow-roll inflation. It follows from the defining property of slow-roll inflation that primordial correlation functions inherit most of their structure from weakly broken de Sitter symmetries. Using holographic techniques borrowed from the AdS/CFT correspondence, the symmetry constraints on the bispectrum can be mapped to a set of stress-tensor Ward identities in a weakly broken 2+1-dimensional Euclidean CFT. We construct the consistency condition from these Ward identities using conformal perturbation theory. This requires a second order Ward identity and the use of the evolution equation. Our result also illustrates a subtle difference between conformal perturbation theory and the slow-roll expansion.
On the fate of coupled flat directions during inflation
Sánchez, Juan C. Bueno [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid (Spain); Enqvist, Kari, E-mail: jcbueno@fis.ucm.es, E-mail: kari.enqvist@helsinki.fi [University of Helsinki and Helsinki Institute of Physics, FIN-00014, University of Helsinki (Finland)
2013-03-01T23:59:59.000Z
We investigate the stochastic dynamics of the long wavelength modes of a generic light scalar field that during inflation is coupled to another scalar field. The coupling plays an important role for the fluctuation of the field amplitude and may block its initial growth. We find that such a blocking is avoided, albeit only temporarily, if the light scalar has an initial non-vanishing expectation value (?) larger than a certain critical value, for which we provide an estimate. We also show that the field fluctuations will eventually reach an equilibrium amplitude provided inflation is sufficiently long-lasting. We present a novel, general expression for the variance (?{sup 2}) that takes into account the coupling of the massless field and describes the growth during the epoch of quasi-free fluctuations as well as the late-time approach to the equilibrium.
Studying inflation with future space-based gravitational wave detectors
Jinno, Ryusuke; Moroi, Takeo [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Takahashi, Tomo, E-mail: jinno@hep-th.phys.s.u-tokyo.ac.jp, E-mail: moroi@phys.s.u-tokyo.ac.jp, E-mail: tomot@cc.saga-u.ac.jp [Department of Physics, Saga University, Saga 840-8502 (Japan)
2014-12-01T23:59:59.000Z
Motivated by recent progress in our understanding of the B-mode polarization of cosmic microwave background (CMB), which provides important information about the inflationary gravitational waves (IGWs), we study the possibility to acquire information about the early universe using future space-based gravitational wave (GW) detectors. We perform a detailed statistical analysis to estimate how well we can determine the reheating temperature after inflation as well as the amplitude, the tensor spectral index, and the running of the inflationary gravitational waves. We discuss how the accuracies depend on noise parameters of the detector and the minimum frequency available in the analysis. Implication of such a study on the test of inflation models is also discussed.
ISO(4,1) Symmetry in the EFT of Inflation
Paolo Creminelli; Razieh Emami; Marko Simonovi?; Gabriele Trevisan
2014-02-27T23:59:59.000Z
In DBI inflation the cubic action is a particular linear combination of the two, otherwise independent, cubic operators \\dot \\pi^3 and \\dot \\pi (\\partial_i \\pi)^2. We show that in the Effective Field Theory (EFT) of inflation this is a consequence of an approximate 5D Poincar\\'e symmetry, ISO(4,1), non-linearly realized by the Goldstone \\pi. This symmetry uniquely fixes, at lowest order in derivatives, all correlation functions in terms of the speed of sound c_s. In the limit c_s \\to 1, the ISO(4,1) symmetry reduces to the Galilean symmetry acting on \\pi. On the other hand, we point out that the non-linear realization of SO(4,2), the isometry group of 5D AdS space, does not fix the cubic action in terms of c_s.
Bounce Inflation Cosmology with Standard Model Higgs Boson
Youping Wan; Taotao Qiu; Fa Peng Huang; Yi-Fu Cai; Hong Li; Xinmin Zhang
2015-09-28T23:59:59.000Z
It is of great interest to connect cosmology in the early universe to the Standard Model of particle physics. In this paper, we try to construct a bounce inflation model with the standard model Higgs boson, where the one loop correction is taken into account in the effective potential of Higgs field. In this model, a Galileon term has been introduced to eliminate the ghost mode when bounce happens. Moreover, due to the fact that the Fermion loop correction can make part of the Higgs potential negative, one naturally obtains a large equation of state(EoS) parameter in the contracting phase, which can eliminate the anisotropy problem. After the bounce, the model can drive the universe into the standard higgs inflation phase, which can generate nearly scale-invariant power spectrum.
Saddle point inflation from $f(R)$ theory
Michal Artymowski; Zygmunt Lalak; Marek Lewicki
2015-08-20T23:59:59.000Z
We analyse several saddle point inflationary scenarios based on power-law $f(R)$ models. We investigate inflation resulting from $f(R) = R + \\alpha_n M^{2(1-n)}R^n + \\alpha_{n+1}M^{-2n}R^{n+1}$ and $f(R) = \\sum_n^l \\alpha_n M^{2(1-n)} R^n$ as well as $l\\to\\infty$ limit of the latter. In all cases we have found relation between $\\alpha_n$ coefficients and checked consistency with the PLANCK data as well as constraints coming from the stability of the models in question. Each of the models provides solutions which are both stable and consistent with PLANCK data, however only in parts of the parameter space where inflation starts on the plateau of the potential, some distance from the saddle. And thus all the correct solutions bear some resemblance to the Starobinsky model.
Breaking discrete symmetries in the effective field theory of inflation
Dario Cannone; Jinn-Ouk Gong; Gianmassimo Tasinato
2015-05-29T23:59:59.000Z
We study the phenomenon of discrete symmetry breaking during the inflationary epoch, using a model-independent approach based on the effective field theory of inflation. We work in a context where both time reparameterization symmetry and spatial diffeomorphism invariance can be broken during inflation. We determine the leading derivative operators in the quadratic action for fluctuations that break parity and time-reversal. Within suitable approximations, we study their consequences for the dynamics of linearized fluctuations. Both in the scalar and tensor sectors, we show that such operators can lead to new direction-dependent phases for the modes involved. They do not affect the power spectra, but can have consequences for higher correlation functions. Moreover, a small quadrupole contribution to the sound speed can be generated.
A new parameter in attractor single-field inflation
Jinn-Ouk Gong; Misao Sasaki
2015-06-16T23:59:59.000Z
We revisit the notion of slow-roll in the context of general single-field inflation. As a generalization of slow-roll dynamics, we consider an inflaton $\\phi$ in an attractor phase where the time derivative of $\\phi$ is determined by a function of $\\phi$, $\\dot\\phi=\\dot\\phi(\\phi)$. In other words, we consider the case when the number of $e$-folds $N$ counted backward in time from the end of inflation is solely a function of $\\phi$, $N=N(\\phi)$. In this case, it is found that we need a new independent parameter to properly describe the dynamics of the inflaton field in general, in addition to the standard parameters conventionally denoted by $\\epsilon$, $\\eta$, $c_s^2$ and $s$. Two illustrative examples are presented to discuss the non-slow-roll dynamics of the inflaton field consistent with observations.
A new parameter in attractor single-field inflation
Gong, Jinn-Ouk
2015-01-01T23:59:59.000Z
We revisit the notion of slow-roll in the context of general single-field inflation. As a generalization of slow-roll dynamics, we consider an inflaton $\\phi$ in an attractor phase where the time derivative of $\\phi$ is determined by a function of $\\phi$, $\\dot\\phi=\\dot\\phi(\\phi)$. In other words, we consider the case when the number of $e$-folds $N$ counted backward in time from the end of inflation is solely a function of $\\phi$, $N=N(\\phi)$. In this case, it is found that we need a new independent parameter to properly describe the dynamics of the inflaton field in general, in addition to the standard parameters conventionally denoted by $\\epsilon$, $\\eta$, $c_s^2$ and $s$. Two illustrative examples are presented to discuss the non-slow-roll dynamics of the inflaton field consistent with observations.
ISO(4,1) symmetry in the EFT of inflation
Creminelli, Paolo [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy); Emami, Razieh [School of Physics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Teheran (Iran, Islamic Republic of); Simonovi?, Marko; Trevisan, Gabriele, E-mail: creminel@ictp.it, E-mail: emami@mail.ipm.ir, E-mail: msimonov@sissa.it, E-mail: gtrevi@sissa.it [Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, 34136, Trieste (Italy)
2013-07-01T23:59:59.000Z
In DBI inflation the cubic action is a particular linear combination of the two, otherwise independent, cubic operators ?-dot {sup 3} and ?-dot (?{sub i}?){sup 2}. We show that in the Effective Field Theory (EFT) of inflation this is a consequence of an approximate 5D Poincar and apos;e symmetry, ISO(4,1), non-linearly realized by the Goldstone ?. This symmetry uniquely fixes, at lowest order in derivatives, all correlation functions in terms of the speed of sound c{sub s}. In the limit c{sub s} ? 1, the ISO(4,1) symmetry reduces to the Galilean symmetry acting on ?. On the other hand, we point out that the non-linear realization of SO(4,2), the isometry group of 5D AdS space, does not fix the cubic action in terms of c{sub s}.
Weak Gravity Strongly Constrains Large-Field Axion Inflation
Ben Heidenreich; Matthew Reece; Tom Rudelius
2015-06-10T23:59:59.000Z
Models of large-field inflation based on axion-like fields with shift symmetries can be simple and natural, and make a promising prediction of detectable primordial gravitational waves. The Weak Gravity Conjecture is known to constrain the simplest case in which a single axion descends from a gauge field in an extra dimension. By supplementing the Weak Gravity Conjecture with considerations of how the mass spectrum of the theory varies across the axion moduli space, we obtain more powerful constraints that apply to a variety of multi-axion theories including N-flation and alignment models. In every case that we consider, plausible assumptions lead to field ranges that cannot be parametrically larger than the Planck scale. Our results are strongly suggestive of a general inconsistency in models of large-field inflation based on axions, and possibly of a more general principle forbidding super-Planckian field ranges.
Weak Gravity Strongly Constrains Large-Field Axion Inflation
Heidenreich, Ben; Rudelius, Tom
2015-01-01T23:59:59.000Z
Models of large-field inflation based on axion-like fields with shift symmetries can be simple and natural, and make a promising prediction of detectable primordial gravitational waves. The Weak Gravity Conjecture is known to constrain the simplest case in which a single axion descends from a gauge field in an extra dimension. By supplementing the Weak Gravity Conjecture with considerations of how the mass spectrum of the theory varies across the axion moduli space, we obtain more powerful constraints that apply to a variety of multi-axion theories including N-flation and alignment models. In every case that we consider, plausible assumptions lead to field ranges that cannot be parametrically larger than the Planck scale. Our results are strongly suggestive of a general inconsistency in models of large-field inflation based on axions, and possibly of a more general principle forbidding super-Planckian field ranges.
Axion inflation with gauge field production and primordial black holes
Edgar Bugaev; Peter Klimai
2014-10-19T23:59:59.000Z
We study the process of primordial black hole (PBH) formation at the beginning of radiation era for the cosmological scenario in which the inflaton is a pseudo-Nambu-Goldstone boson (axion) and there is a coupling of the inflaton with some gauge field. In this model inflation is accompanied by the gauge quanta production and a strong rise of the curvature power spectrum amplitude at small scales (along with non-Gaussianity) is predicted. We show that data on PBH searches can be used for a derivation of essential constraints on the model parameters in such an axion inflation scenario. We compare our numerical results with the similar results published earlier, in the work by Linde et al.
Quintessential inflation on the brane and the relic gravity wave background
Sami, M.; Sahni, V. [Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, Pune 411 007 (India)
2004-10-15T23:59:59.000Z
Quintessential inflation describes a scenario in which both inflation and dark energy (quintessence) are described by the same scalar field. In conventional braneworld models of quintessential inflation gravitational particle-production is used to reheat the universe. This reheating mechanism is very inefficient and results in an excessive production of gravity waves which violate nucleosynthesis constraints and invalidate the model. We describe a new method of realizing quintessential inflation on the brane in which inflation is followed by 'instant preheating' (Felder, Kofman and Linde 1999). The larger reheating temperature in this model results in a smaller amplitude of relic gravity waves which is consistent with nucleosynthesis bounds. The relic gravity wave background has a 'blue' spectrum at high frequencies and is a generic byproduct of successful quintessential inflation on the brane.
None
2009-06-01T23:59:59.000Z
The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are statistics on total energy production, consumption, trade, and energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and international energy; financial and environment indicators; and data unit conversions.
UNIVERSITY POLICE ANNUAL SECURITY
Kulp, Mark
UNIVERSITY POLICE 2013 ANNUAL SECURITY AND FIRE SAFETY GUIDE In compliance with the Jeanne Clery Disclosure of Campus Security Policy and Campus Crime Statistics Act The University of New Orleans. Please take a moment to read the following information. #12;ANNUAL SECURITY AND FIRE SAFETY GUIDE 2013
Commercialization Annual Report
Technology Commercialization Annual Report Fiscal Year 2008 (July 1, 2007 - June 30, 2008) #12 Commercialization Annual Report Fiscal Year 2008 #12;LETTER FROM THE DIRECTORS Dear Colleagues: The Offices commenced a strategic initiative to improve the management of the information we are acquiring from our
Degravitation, inflation and the cosmological constant as an afterglow
Patil, Subodh P., E-mail: subodh@physik.hu-berlin.de [Humboldt Universitaet zu Berlin, Institut fuer Physik, Newtonstrasse 15, D-12489 Berlin (Germany)
2009-01-15T23:59:59.000Z
In this report, we adopt the phenomenological approach of taking the degravitation paradigm seriously as a consistent modification of gravity in the IR, and investigate its consequences for various cosmological situations. We motivate degravitation - where Netwon's constant is promoted to a scale dependent filter function - as arising from either a small (resonant) mass for the graviton, or as an effect in semi-classical gravity. After addressing how the Bianchi identities are to be satisfied in such a set up, we turn our attention towards the cosmological consequences of degravitation. By considering the example filter function corresponding to a resonantly massive graviton (with a filter scale larger than the present horizon scale), we show that slow roll inflation, hybrid inflation and old inflation remain quantitatively unchanged. We also find that the degravitation mechanism inherits a memory of past energy densities in the present epoch in such a way that is likely significant for present cosmological evolution. For example, if the universe underwent inflation in the past due to it having tunneled out of some false vacuum, we find that degravitation implies a remnant 'afterglow' cosmological constant, whose scale immediately afterwards is parametrically suppressed by the filter scale (L) in Planck units {Lambda} {approx} l{sup 2}{sub pl}/L{sup 2}. We discuss circumstances through which this scenario reasonably yields the presently observed value for {Lambda} {approx} O(10{sup -120}). We also find that in a universe still currently trapped in some false vacuum state, resonance graviton models of degravitation only degravitate initially Planck or GUT scale energy densities down to the presently observed value over timescales comparable to the filter scale. We argue that different functional forms for the filter function will yield similar conclusions. In this way, we argue that although the degravitation models we study have the potential to explain why the cosmological constant is not large in addition to why it is not zero, it does not satisfactorily address the co-incidence problem without additional tuning.
A First Look at Preheating after Axion Monodromy Inflation
Moghaddam, Hossein Bazrafshan
2015-01-01T23:59:59.000Z
We take a first look at preheating after axion monodromy inflation, assuming a standard coupling between the inflaton field and a scalar matter field. We find that in spite of the fact that the oscillation of the inflaton about the field value which minimizes the potential is anharmonic, there is nevertheless a parametric resonance instability, and we determine the Floquet exponent which describes this instability as a function of the parameters of the axion monodromy potential.
Brane-antibrane backreaction in axion monodromy inflation
Conlon, Joseph P., E-mail: j.conlon1@physics.ox.ac.uk [Rudolf Peierls Center for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP (United Kingdom)
2012-01-01T23:59:59.000Z
We calculate the interaction potential between D5 and D-bar 5 branes wrapping distant but homologous 2-cycles. The interaction potential is logarithmic in the separation radius and does not decouple at infinity. We show that logarithmic backreaction is generic for 5-branes wrapping distant but homologous 2-cycles, and we argue that this destabilises models of axion monodromy inflation involving NS5 brane-antibrane pairs in separate warped throats towards an uncontrolled region.
Warm inflation and scalar perturbations of the metric
Mauricio Bellini
2001-01-16T23:59:59.000Z
A second-order expansion for the quantum fluctuations of the matter field was considered in the framework of the warm inflation scenario. The friction and Hubble parameters were expended by means of a semiclassical approach. The fluctuations of the Hubble parameter generates fluctuations of the metric. These metric fluctuations produce an effective term of curvature. The power spectrum for the metric fluctuations can be calculated on the infrared sector.
Warm inflation with back - reaction: a stochastic approach
Mauricio Bellini
1999-10-25T23:59:59.000Z
I study a stochastic approach for warm inflation considering back - reaction of the metric with the fluctuations of matter field. This formalism takes into account the local inhomogeneities fo the spacetime in a globally flat Friedmann - Robertson - Walker metric. The stochastic equations for the fluctuations of the matter field and the metric are obtained. Finally, the dynamics for the amplitude of these fluctuations in a power - law expansion for the universe are examined.
Entropy evolution in warm inflation from a 5D vacuum
Jesus Martin Romero; Mauricio Bellini
2009-12-15T23:59:59.000Z
Using some ideas of Modern Kaluza-Klein theory, we examine the evolution of entropy on a 4D Friedmann-Robertson-Walker (FRW) brane from a 5D vacuum state, which is defined on a 5D background Riemann-flat metric. We found that entropy production is sufficiently important during inflation: $S > 10^{90}$, for all the initial values of temperature $T_0 < T_{GU}$.
APPENDIX A: MONTHLY AVERAGED DATA In many instances monthly averaged data are
Oregon, University of
for solar energy and climatic applications. Click on the buttons on the left to find out more about the lab for preliminary estimates of solar system performance. This section provides a summary of monthly averaged data for all sites in watt hours/meter2 per hour or day. For each site and each solar measurement the data
Jordan frame supergravity and inflation in the NMSSM
Ferrara, Sergio [Physics Department, Theory Unit, CERN, CH 1211, Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati (Italy); Kallosh, Renata; Linde, Andrei [Department of Physics, Stanford University, Stanford, California 94305 (United States); Marrani, Alessio; Van Proeyen, Antoine [Instituut voor Theoretische Fysica, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)
2010-08-15T23:59:59.000Z
We present a complete explicit N=1, d=4 supergravity action in an arbitrary Jordan frame with nonminimal scalar-curvature coupling of the form {Phi}(z,z)R. The action is derived by suitably gauge fixing the superconformal action. The theory has a modified Kaehler geometry, and it exhibits a significant dependence on the frame function {Phi}(z,z) and its derivatives over scalars, in the bosonic as well as in the fermionic part of the action. Under certain simple conditions, the scalar kinetic terms in the Jordan frame have a canonical form. We consider an embedding of the next-to-minimal supersymmetric standard model (NMSSM) gauge theory into supergravity, clarifying the Higgs inflation model recently proposed by Einhorn and Jones. We find that the conditions for canonical kinetic terms are satisfied for the NMSSM scalars in the Jordan frame, which leads to a simple action. However, we find that the gauge singlet field experiences a strong tachyonic instability during inflation in this model. Thus, a modification of the model is required to support the Higgs-type inflation.
Cosmic inflation in a landscape of heavy-fields
Céspedes, Sebastián; Palma, Gonzalo A., E-mail: scespede@ing.uchile.cl, E-mail: gpalmaquilod@ing.uchile.cl [Physics Department, FCFM, Universidad de Chile, Blanco Encalada 2008, Santiago (Chile)
2013-10-01T23:59:59.000Z
Heavy isocurvature fields may have a strong influence on the low energy dynamics of curvature perturbations during inflation, as long as the inflationary trajectory becomes non-geodesic in the multi-field target space (the landscape). If fields orthogonal to the inflationary trajectory are sufficiently heavy, one expects a reliable effective field theory describing the low energy dynamics of curvature perturbations, with self-interactions determined by the shape of the inflationary trajectory. Previous work analyzing the role of heavy-fields during inflation have mostly focused in the effects on curvature perturbations due to a single heavy-field. In this article we extend the results of these works by studying models of inflation in which curvature perturbations interact with two heavy-fields. We show that the second heavy-field (orthogonal to both tangent and normal directions of the inflationary trajectory) may significantly affect the evolution of curvature modes. We compute the effective field theory for the low energy curvature perturbations obtained by integrating out the two heavy-fields and show that the presence of the second heavy-field implies the existence of additional self-interactions not accounted for in the single heavy-field case. We conclude that future observations will be able to constrain the number of heavy fields interacting with curvature perturbations.
Just enough inflation: power spectrum modifications at large scales
Cicoli, Michele [Dipartimento di Fisica ed Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna (Italy); Downes, Sean [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan (China); Dutta, Bhaskar [Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843-4242 (United States); Pedro, Francisco G.; Westphal, Alexander, E-mail: mcicoli@ictp.it, E-mail: ssdownes@phys.ntu.edu.tw, E-mail: dutta@physics.tamu.edu, E-mail: francisco.pedro@desy.de, E-mail: alexander.westphal@desy.de [Deutsches Elektronen-Synchrotron DESY, Theory Group, D-22603 Hamburg (Germany)
2014-12-01T23:59:59.000Z
We show that models of 'just enough' inflation, where the slow-roll evolution lasted only 50- 60 e-foldings, feature modifications of the CMB power spectrum at large angular scales. We perform a systematic analytic analysis in the limit of a sudden transition between any possible non-slow-roll background evolution and the final stage of slow-roll inflation. We find a high degree of universality since most common backgrounds like fast-roll evolution, matter or radiation-dominance give rise to a power loss at large angular scales and a peak together with an oscillatory behaviour at scales around the value of the Hubble parameter at the beginning of slow-roll inflation. Depending on the value of the equation of state parameter, different pre-inflationary epochs lead instead to an enhancement of power at low ?, and so seem disfavoured by recent observational hints for a lack of CMB power at ??< 40. We also comment on the importance of initial conditions and the possibility to have multiple pre-inflationary stages.
Consistent generation of magnetic fields in axion inflation models
Tomohiro Fujita; Ryo Namba; Yuichiro Tada; Naoyuki Takeda; Hiroyuki Tashiro
2015-04-15T23:59:59.000Z
There has been a growing evidence for the existence of magnetic fields in the extra-galactic regions, while the attempt to associate their origin with the inflationary epoch alone has been found extremely challenging. We therefore take into account the consistent post-inflationary evolution of the magnetic fields that are originated from vacuum fluctuations during inflation. In the model of our interest, the electromagnetic (EM) field is coupled to a pseudo-scalar inflaton $\\phi$ through the characteristic term $\\phi F\\tilde F$, breaking the conformal invariance. This interaction dynamically breaks the parity and enables a continuous production of only one of the polarization states of the EM field through tachyonic instability. The produced magnetic fields are thus helical. We find that the dominant contribution to the observed magnetic fields in this model comes from the modes that leave the horizon near the end of inflation, further enhanced by the tachyonic instability right after the end of inflation. The EM field is subsequently amplified by parametric resonance during the period of inflaton oscillation. Once the thermal plasma is formed (reheating), the produced helical magnetic fields undergo a turbulent process called inverse cascade, which shifts their peak correlation scales from smaller to larger scales. We consistently take all these effects into account within the regime where the perturbation of $\\phi$ is negligible and obtain $B_{\\rm eff} \\sim 10^{-19}$G, indicating the necessity of additional mechanisms to accommodate the observations.
Prof. K. Sato's group as of 1986 (6 years after proposing inflation)
Yamamoto, Hirosuke
(1981)467; PLB99(1981)66, A. Guth PRD23(1981)347 cf New inflation A. Linde PLB108(1982)389, Albrechet & Steinhardt PRL 48(1982)1220 R2 theory A. Starobinskiy PLB91(1980)99 Chaotic inflation A. Linde PLB129(1983)177 #12;1981 eternal inflation of Vilenkin and Linde #12; Astronomical Herald March, 1991 (by Astronomical
Gravitoelectromagnetic inflation from a 5D vacuum state: a new formalism
Alfredo Raya; Jose Edgar Madriz Aguilar; Mauricio Bellini
2007-05-22T23:59:59.000Z
We propose a novel formalism for inflation from a 5D vacuum state which could explain both, seeds of matter and magnetic fields in the early universe.
2004 ANNUAL REPORT 2004 NHMFL ANNUAL REPORT
Weston, Ken
1 Year in Review 11 Year in Review 11 Year in Review 11 Year in Review 1 2 Science & Research formats for individuals with print-related accessibility needs. #12;2004 ANNUAL REPORT 1 Chapter 1 YEAR IN REVIEW 2004: The Magnet Lab Transitions into Its Second Decade Less than six months after stepping down
Electric power annual 1996. Volume 1
NONE
1997-08-01T23:59:59.000Z
The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1--with a focus on US electric utilities--contains final 1996 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1996 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold. Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA. Data published in the Electric Power Annual Volume 1 are compiled from three statistical forms filed monthly and two forms filed annually by electric utilities. These forms are described in detail in the Technical Notes. 5 figs., 30 tabs.
Electric power annual 1997. Volume 1
NONE
1998-07-01T23:59:59.000Z
The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1 -- with a focus on US electric utilities -- contains final 1997 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1997 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold (based on a monthly sample: Form EIA-826, ``Monthly Electric Utility Sales and Revenue Report with State Distributions``). Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA.
Electric power annual 1997. Volume 2
NONE
1998-10-01T23:59:59.000Z
The Electric Power Annual 1997, Volume 2 contains annual summary statistics at national, regional, and state levels for the electric power industry, including information on both electric utilities and nonutility power producers. Included are data for electric utility retail sales of electricity, associated revenue, and average revenue per kilowatthour of electricity sold; financial statistics; environmental statistics; power transactions; and demand-side management. Also included are data for US nonutility power producers on installed capacity; gross generation; emissions; and supply and disposition of energy. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts, and the general public with historical data that may be used in understanding US electricity markets. 15 figs., 62 tabs.
none,
2009-01-01T23:59:59.000Z
This annual report includes: a brief overview of Western; some of our major achievements in FY 2009; FY 2009 customer Integrated Resource Planning, or IRP, survey; and financial data.
Petroleum Marketing Annual 2007
U.S. Energy Information Administration (EIA) Indexed Site
August 29, 2008 Petroleum Marketing Annual --- Full report in PDF (1.2 MB) Summary Statistics Summary Statistics Tables PDF 1 Crude Oil Prices PDF TXT 1A Refiner Acquisition Cost...
Petroleum Marketing Annual 2009
U.S. Energy Information Administration (EIA) Indexed Site
the 2010 data. Petroleum Marketing Annual --- Full report in PDF (1.2 MB) Summary Statistics Summary Statistics Tables PDF 1 Crude Oil Prices PDF TXT 1A Refiner Acquisition Cost...
Petroleum Marketing Annual 2008
U.S. Energy Information Administration (EIA) Indexed Site
August 27, 2009 Petroleum Marketing Annual --- Full report in PDF (1.2 MB) Summary Statistics Summary Statistics Tables PDF 1 Crude Oil Prices PDF TXT 1A Refiner Acquisition Cost...
Frantz, Kyle J.
2013 enterprise risk management annual report #12;TABLE OF CONTENTS Contents Executive Summary______________________________________________________________________________________ 1 About Enterprise Risk Management ____________________________________________________________________________________ 33 Appendix A: University System of Georgia Risk Management Policy ______________________________ A-1
Falge, Eva
JAHRESBERICHT ANNUAL REPORT07 #12;Forschungsausblick Klaus J. Hopt über Corporate Governance Ferdi Schüth über zukünftige Energiesysteme Axel Ullrich über innovative Krebsmedikamente Research Outlook Klaus J. Hopt about Corporate Governance Ferdi Schüth about Future Energy Systems Axel Ullrich about New
none,
2010-01-01T23:59:59.000Z
This annual report includes: an overview of Western; approaches for future hydropower and transmission service; major achievements in FY 2010; FY 2010 customer Integrated Resource Planning, or IRP, survey; and financial data.
NONE
1996-11-01T23:59:59.000Z
The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.
NONE
1995-11-17T23:59:59.000Z
The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.
Mathematical Modeling of the First Inflation of Degassed Lungs BELA SUKI,* JOSE S. ANDRADE, JR.,
Stanley, H. Eugene
Mathematical Modeling of the First Inflation of Degassed Lungs BE´LA SUKI,* JOSE´ S. ANDRADE, JR--The pressurevolume (PV) relationship of de- gassed lungs during the first inflation is different from and degassed rabbit lungs. By fitting these data, we found that n 17 5, Plow 23 4 cmH2O
Impedance measurements of ex vivo rat lung at different volumes of inflation
Illinois at Urbana-Champaign, University of
Impedance measurements of ex vivo rat lung at different volumes of inflation Michael L. Oelze that the occurrence of ultrasonically induced lung hemorrhage in rats was directly correlated to the level of lung inflation. In that study, it was hypothesized that the lung could be modeled as two components consisting
Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51%...
Broader source: Energy.gov (indexed) [DOE]
For the 2014 model year, midsize hybrid cars averaged 43.4 miles per gallon (mpg) while midsize non-hybrid cars averaged 28.7 mpg; the difference between the two has narrowed due...
Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress...
70: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 - Dataset Fact 870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 - Dataset Excel file...
Fact #889: September 7, 2015 Average Diesel Price Lower than...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
9: September 7, 2015 Average Diesel Price Lower than Gasoline for the First Time in Six Years Fact 889: September 7, 2015 Average Diesel Price Lower than Gasoline for the First...
Inflation from the Higgs field false vacuum with hybrid potential
Masina, Isabella [Dip. di Fisica, Università di Ferrara and INFN Sez. di Ferrara, Via Saragat 1, I-44100 Ferrara (Italy); Notari, Alessio, E-mail: masina@fe.infn.it, E-mail: notari@ffn.ub.es [Departament de Física Fondamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain)
2012-11-01T23:59:59.000Z
We have recently suggested [1,2] that Inflation could have started in a local minimum of the Higgs potential at field values of about 10{sup 15}–10{sup 17} GeV, which exists for a narrow band of values of the top quark and Higgs masses and thus gives rise to a prediction on the Higgs mass to be in the range 123–129 GeV, together with a prediction on the the top mass and the cosmological tensor-to-scalar ratio r. Inflation can be achieved provided there is an additional degree of freedom which allows the transition to a radiation era. In [1] we had proposed such field to be a Brans-Dicke scalar. Here we present an alternative possibility with an additional subdominant scalar very weakly coupled to the Higgs, realizing an (inverted) hybrid Inflation scenario. Interestingly, we show that such model has an additional constraint m{sub H} < 125.3±3{sub th}, where 3{sub th} is the present theoretical uncertainty on the Standard Model RGEs. The tensor-to-scalar ratio has to be within the narrow range 10{sup ?4}?
Observable spectra of induced gravitational waves from inflation
Alabidi, Laila; Sasaki, Misao [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Kohri, Kazunori [Cosmophysics Group, Theory Center, IPNS, KEK, Tsukuba 305-0801 (Japan); Sendouda, Yuuiti, E-mail: laila@yukawa.kyoto-u.ac.jp, E-mail: kohri@post.kek.jp, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: sendouda@cc.hirosaki-u.ac.jp [Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561 (Japan)
2012-09-01T23:59:59.000Z
Measuring the primordial power spectrum on small scales is a powerful tool in inflation model building, yet constraints from Cosmic Microwave Background measurements alone are insufficient to place bounds stringent enough to be appreciably effective. For the very small scale spectrum, those which subtend angles of less than 0.3 degrees on the sky, an upper bound can be extracted from the astrophysical constraints on the possible production of primordial black holes in the early universe. A recently discovered observational by-product of an enhanced power spectrum on small scales, induced gravitational waves, have been shown to be within the range of proposed space based gravitational wave detectors; such as NASA's LISA and BBO detectors, and the Japanese DECIGO detector. In this paper we explore the impact such a detection would have on models of inflation known to lead to an enhanced power spectrum on small scales, namely the Hilltop-type and running mass models. We find that the Hilltop-type model can produce observable induced gravitational waves within the range of BBO and DECIGO for integral and fractional powers of the potential within a reasonable number of e?folds. We also find that the running mass model can produce a spectrum within the range of these detectors, but require that inflation terminates after an unreasonably small number of e?folds. Finally, we argue that if the thermal history of the Universe were to accomodate such a small number of e?folds the Running Mass Model can produce Primordial Black Holes within a mass range compatible with Dark Matter, i.e. within a mass range 10{sup 20}g?
Averaging top quark results in Run 2 M. Strovink
Strovink, Mark
average (cont'd) The pie chart shows the relative weights of the five input measurements in the world
Nonisotropy in the CMB power spectrum in single field inflation
Donoghue, John F. [Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Dutta, Koushik [Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Foehringer Ring 6, D-80805 Muenchen (Germany); Ross, Andreas [Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Department of Physics, Yale University, New Haven, Connecticut 06520 (United States)
2009-07-15T23:59:59.000Z
Contaldi et al.[C. R. Contaldi, M. Peloso, L. Kofman, and A. Linde, J. Cosmol. Astropart. Phys. 07 (2003) 002] have suggested that an initial period of kinetic energy domination in single field inflation may explain the lack of CMB power at large angular scales. We note that in this situation it is natural that there also be a spatial gradient in the initial value of the inflaton field, and that this can provide a spatial asymmetry in the observed CMB power spectrum, manifest at low values of l. We investigate the nature of this asymmetry and comment on its relation to possible anomalies at low l.
Mutated hybrid inflation in f(R,?R)-gravity
Iihoshi, Masao, E-mail: iihoshi@kiso.phys.se.tmu.ac.jp [Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 (Japan)
2011-02-01T23:59:59.000Z
A new hybrid inflationary scenario in the context of f(R,?R)-gravity is proposed. Demanding the waterfall field to 'support the potential from below' [unlike the original proposal by Stewart in Phys. Lett. B 345, 414 (1995)], we demonstrate that the scalar potential is similar to that of the large-field chaotic inflation model proposed by Linde in Phys. Lett. B 129, 177 (1983). Inflationary observables are used to constrain the parameter space of our model; in the process, an interesting limit on the number of e-folds N is found.
Chaotic Hybrid Inflation with a Gauged B - L
Linda M. Carpenter; Stuart Raby
2014-09-03T23:59:59.000Z
In this paper we present a novel formulation of chaotic hybrid inflation in supergravity. The model includes a waterfall field which spontaneously breaks a gauged $U_1(B-L)$ at a GUT scale. This allows for the possibility of future model building which includes the standard formulation of baryogenesis via leptogenesis with the waterfall field decaying into right-handed neutrinos. We have not considered the following issues in this short paper, i.e. supersymmetry breaking, dark matter or the gravitino or moduli problems. Our focus is on showing the compatibility of the present model with Planck, WMAP and Bicep2 data.
Anisotropic inflation with non-abelian gauge kinetic function
Murata, Keiju [DAMTP, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Soda, Jiro, E-mail: K.Murata@damtp.cam.ac.uk, E-mail: jiro@tap.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto, 606-8502 (Japan)
2011-06-01T23:59:59.000Z
We study an anisotropic inflation model with a gauge kinetic function for a non-abelian gauge field. We find that, in contrast to abelian models, the anisotropy can be either a prolate or an oblate type, which could lead to a different prediction from abelian models for the statistical anisotropy in the power spectrum of cosmological fluctuations. During a reheating phase, we find chaotic behaviour of the non-abelian gauge field which is caused by the nonlinear self-coupling of the gauge field. We compute a Lyapunov exponent of the chaos which turns out to be uncorrelated with the anisotropy.
Towards general patterns of features in multi-field inflation
Xian Gao; Jinn-Ouk Gong
2015-06-29T23:59:59.000Z
We investigate the consequences of general curved trajectories in multi-field inflation. After setting up a completely general formalism using the mass basis, which naturally accommodates the notion of light and heavy modes, we study in detail the simple case of two successive turns in two-field system. We find the power spectrum of the curvature perturbation receives corrections that exhibit oscillatory features sinusoidal in the logarithm of the comoving wavenumber without slow-roll suppression. We show that this is because of the resonance of the heavy modes inside and outside the mass horizon.
Anisotropic cosmology and inflation from tilted Bianchi IX model
Sundell, Peter
2015-01-01T23:59:59.000Z
The dynamics of the tilted Bianchi IX cosmological models are explored allowing energy flux in the source fluid. The equation of state and the tilt angle of the fluid are the two free parameters and the shear, the vorticity and the curvature of the spacetime span a three-dimensional phase space that contains seven fixed points. One of them is an attractor that inflates the universe anisotropically, thus providing a counter example to the cosmic no-hair conjecture. Also, an example of a realistic though fine-tuned cosmology is presented wherein the rotation can grow significant towards the present epoch but the shear stays within the observational bounds.
Anisotropic cosmology and inflation from tilted Bianchi IX model
Peter Sundell; Tomi Koivisto
2015-06-15T23:59:59.000Z
The dynamics of the tilted Bianchi IX cosmological models are explored allowing energy flux in the source fluid. The equation of state and the tilt angle of the fluid are the two free parameters and the shear, the vorticity and the curvature of the spacetime span a three-dimensional phase space that contains seven fixed points. One of them is an attractor that inflates the universe anisotropically, thus providing a counter example to the cosmic no-hair conjecture. Also, an example of a realistic though fine-tuned cosmology is presented wherein the rotation can grow significant towards the present epoch but the shear stays within the observational bounds.
On Brane Inflation Potentials and Black Hole Attractors
Adil Belhaj; Pablo Diaz; Mohamed Naciri; Antonio Segui
2007-11-16T23:59:59.000Z
We propose a new potential in brane inflation theory, which is given by the arctangent of the square of the scalar field. Then we perform an explicit computation for inflationary quantities. This potential has many nice features. In the small field approximation, it reproduces the chaotic and MSSM potentials. It allows one, in the large field approximation, to implement the attractor mechanism for bulk black holes where the geometry on the brane is de Sitter. In particular, we show, up to some assumptions, that the Friedman equation can be reinterpreted as a Schwarzschild black hole attractor equation for its mass parameter.
Axions, strong and weak CP, and KNP inflation
Kim, Jihn E
2015-01-01T23:59:59.000Z
I review the ideas leading to the QCD axion and also comment on the Jarlskog determinant describing the observed weak CP violation, and the axion-related Kim-Nilles-Peloso inflation. All of these use pseudoscalars, and the underlying principle is the discrete gauge symmetry either in the bottom-up or top-down approaches. Here, the effects of gravity are required to be unimportant in the low energy effective theory. String compactification is safe from the gravity spoil of global symmetries and some examples from string compactification are commented.
Dilution of axion dark radiation by thermal inflation
Hattori, Hironori; Omoto, Naoya; Seto, Osamu
2015-01-01T23:59:59.000Z
Axion in the Peccei-Quinn (PQ) mechanism provides a promising solution to the strong CP problem in the standard model of particle physics. Coherently generated PQ scalar fields could dominate the energy density in the early Universe and decay into relativistic axions, which would confront with the current dark radiation constraints. We study the possibility that a thermal inflation driven by a $U(1)$ gauged Higgs field dilutes such axions. A well motivated extra gauged $U(1)$ would be the local $B-L$ symmetry. We also discuss the implication for the case of $U(1)_{B-L}$ and available baryogenesis mechanism in such cosmology.
Quasiattractor in models of new and chaotic inflation
V. V. Kiselev; S. A. Timofeev
2009-05-27T23:59:59.000Z
Inflation with a scalar-field potential of the form \\lambda (\\phi^2-v^2)^2 can be described in terms of a parametrical attractor with critical points, whose driftage depends on the control value of the slowly changing Hubble rate. The method allows us to easily obtain theoretical expressions for fluctuations of inhomogeneity in both the cosmic microwave background and distribution of matter. We find the region for admissible values of potential parameters, wherein theoretical predictions are consistent with experimental results within the limits of measurement uncertainties.
Envelope inflation in Wolf-Rayet stars and extended supernova shock breakout signals
Sanyal, Debashis; Langer, Norbert
2015-01-01T23:59:59.000Z
Massive, luminous stars reaching the Eddington limit in their interiors develop very dilute, extended envelopes. This effect is called envelope inflation. If the progenitors of Type Ib/c supernovae, which are believed to be Wolf-Rayet (WR) stars, have inflated envelopes then the shock breakout signals diffuse in them and can extend their rise times significantly. We show that our inflated, hydrogen-free, WR stellar models with a radius of ~Rsun can have shock breakout signals longer than ~60 s. The puzzlingly long shock breakout signal observed in the Type Ib SN 2008D can be explained by an inflated progenitor envelope, and more such events might argue in favour of existence of inflated envelopes in general.
Improving climate change detection through optimal seasonal averaging: the
Wirosoetisno, Djoko
Improving climate change detection through optimal seasonal averaging: the case of the North. (2015) Improving climate change detection through optimal seasonal averaging: the case of the North;Improving climate change detection through optimal seasonal averaging:1 the case of the North Atlantic jet
Higgs Inflation, Seesaw Physics and Fermion Dark Matter
Nobuchika Okada; Qaisar Shafi
2015-01-22T23:59:59.000Z
We present an inflationary model in which the Standard Model Higgs doublet field with non-minimal coupling to gravity drives inflation, and the effective Higgs potential is stabilized by new physics which includes a dark matter particle and right-handed neutrinos for the seesaw mechanism. All of the new particles are fermions, so that the Higgs doublet is the unique inflaton candidate. With central values for the masses of the top quark and the Higgs boson, the renormalization group improved Higgs potential is employed to yield the scalar spectral index $n_s \\simeq 0.968$, the tensor-to-scalar ratio $r \\simeq 0.003$, and the running of the spectral index $\\alpha=dn_s/d \\ln k \\simeq -5.2 \\times 10^{-4}$ for the number of e-folds $N_0=60$ ($n_s \\simeq 0.962$, $r \\simeq 0.004$, and $\\alpha \\simeq -7.5 \\times 10^{-4}$ for $N_0=50$). The fairly low value of $r \\simeq 0.003$ predicted in this class of models means that the ongoing space and land based experiments are not expected to observe gravity waves generated during inflation. [Dedicated to the memory of Dr. Paul Weber (1947 - 2015). Paul was an exceptional human being and a very special friend who will be sorely missed.
Holographic Inflation and the Low Entropy of the Early Universe
Tom Banks
2015-01-12T23:59:59.000Z
This is a completely rewritten version of the talk I gave at the Philosophy of Cosmology conference in Tenerife, September 2014, which incorporates elements of my IFT Madrid Anthropics Conference talk. The original was too technical. The current version uses intuitive notions from black hole physics to explain the model of inflationary cosmology based on the Holographic Space Time formalism. The reason that the initial state of the universe had low entropy is that more generic states have no localized excitations, since in HST, localized excitations are defined by constraints on the fundamental variables. The only way to obtain a radiation dominated era, is for each time-like geodesic to see an almost uniform gas of small black holes as its horizon expands, such that the holes evaporate into radiation before they collide and coalesce. Comparing the time slicing that follows causal diamonds along a trajectory, with the global FRW slicing, one sees that systems outside the horizon had to undergo inflation, with a number of e-folds fixed by the present and inflationary cosmological constants, and the black hole number density on FRW slices just after inflation ends. These parameters also determine the size of scalar and tensor metric perturbations and the reheat temperature of the universe. I sketch a class of explicit finite quantum mechanical models of cosmology, which have these properties. Physicists interested in the details of those models should consult a recent paper\\cite{holoinflation3}.
Inflation and the scale dependent spectral index: prospects and strategies
Adshead, Peter; Easther, Richard [Department of Physics, Yale University, 217 Prospect Street, New Haven CT 06520 (United States); Pritchard, Jonathan; Loeb, Abraham, E-mail: adshead@kicp.uchicago.edu, E-mail: richard.easther@yale.edu, E-mail: jpritchard@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, MS-51, 60 Garden St, Cambridge, MA 02138 (United States)
2011-02-01T23:59:59.000Z
We consider the running of the spectral index as a probe of both inflation itself, and of the overall evolution of the very early universe. Surveying a collection of simple single field inflationary models, we confirm that the magnitude of the running is relatively consistent, unlike the tensor amplitude, which varies by orders of magnitude. Given this target, we confirm that the running is potentially detectable by future large scale structure or 21 cm observations, but that only the most futuristic measurements can distinguish between these models on the basis of their running. For any specified inflationary scenario, the combination of the running index and unknown post-inflationary expansion history induces a theoretical uncertainty in the predicted value of the spectral index. This effect can easily dominate the statistical uncertainty with which Planck and its successors are expected to measure the spectral index. More positively, upcoming cosmological experiments thus provide an intriguing probe of physics between TeV and GUT scales by constraining the reheating history associated with any specified inflationary model, opening a window into the ''primordial dark age'' that follows the end of inflation.
Supersymmetric B – L inflation near the conformal coupling
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Arai, Masato; Kawai, Shinsuke; Okada, Nobuchika
2014-06-01T23:59:59.000Z
We investigate a novel scenario of cosmological inflation in a gauged B-L extended minimal supersymmetric Standard Model with R-symmetry. We use a noncanonical Kähler potential and a superpotential, both preserving the R-symmetry to construct a model of slow-roll inflation. The model is controlled by two real parameters: the nonminimal coupling ? that originates from the Kähler potential, and the breaking scale v of the U(1)B-L symmetry. We compute the spectrum of the cosmological microwave background radiation and show that the prediction of the model fits well the recent Planck satellite observation for a wide range of the parameter space. Wemore »also find that the typical reheating temperature of the model is low enough to avoid the gravitino problem but nevertheless allows sufficient production of the baryon asymmetry if we take into account the effect of resonance enhancement. The model is free from cosmic strings that impose stringent constraints on generic U(1)B-L based scenarios, as in our scenario the U(1)B-L symmetry is broken from the onset.« less
Hot-Jupiter Inflation due to Deep Energy Deposition
Ginzburg, Sivan
2015-01-01T23:59:59.000Z
Some extrasolar giant planets in close orbits---"hot Jupiters"---exhibit larger radii than that of a passively cooling planet. The extreme irradiation $L_{\\rm eq}$ these hot Jupiters receive from their close in stars creates a thick isothermal layer in their envelopes, which slows down their convective cooling, allowing them to retain their inflated size for longer. This is yet insufficient to explain the observed sizes of the most inflated planets. Some models invoke an additional power source, deposited deep in the planet's envelope. Here we present an analytical model for the cooling of such irradiated, and internally heated gas giants. We show that a power source $L_{\\rm dep}$, deposited at an optical depth $\\tau_{\\rm dep}$, creates an exterior convective region, between optical depths $L_{\\rm eq}/L_{\\rm dep}$ and $\\tau_{\\rm dep}$, beyond which a thicker isothermal layer exists, which in extreme cases may extend to the center of the planet. This convective layer, which occurs only for $L_{\\rm dep}\\tau_{\\r...
Perturbations of Single-field Inflation in Modified Gravity Theory
Taotao Qiu; Jun-Qing Xia
2015-04-12T23:59:59.000Z
In this paper, we study the case of single field inflation within the framework of modified gravity theory where the gravity part has an arbitrary form $f(R)$. Via a conformal transformation, this case can be transformed into its Einstein frame where it looks like a two-field inflation model. However, due to the existence of the isocurvature modes in such a multi-degree-of-freedom (m.d.o.f.) system, the (curvature) perturbations are not equivalent in two frames, so in despite of its convenience, it is illegal to treat the perturbations in its Einstein frame as the "real" ones as we always do for pure $f(R)$ theory or single field with nonminimal coupling. Here by pulling the results of curvature perturbations back into its original Jordan frame, we show explicitly the power spectrum and spectral index of the perturbations in the Jordan frame, as well as how it differs from the Einstein frame. We also fit our results with the newest Planck data. Since there are large parameter space in these models, we show that it is easy to fit the data very well.
Perturbations of Single-field Inflation in Modified Gravity Theory
Qiu, Taotao
2015-01-01T23:59:59.000Z
In this paper, we study the case of single field inflation within the framework of modified gravity theory where the gravity part has an arbitrary form $f(R)$. Via a conformal transformation, this case can be transformed into its Einstein frame where it looks like a two-field inflation model. However, due to the existence of the isocurvature modes in such a multi-degree-of-freedom (m.d.o.f.) system, the perturbations are not equivalent in two frames, so in despite of its convenience, it is illegal to treat the perturbations in its Einstein frame as the "real" ones as we always do for pure $f(R)$ theory or single field with nonminiaml coupling, and one should pull them back into its original Jordan frame. In this paper, we calculate the perturbations in such a case in its Jordan frame. We also fit our results with the newest Planck data. Since there are large parameter space in these models, we show that it is easy to fit the data very well.
Observational constraints on an inflation model with a running mass
Laura Covi; David H. Lyth; Leszek Roszkowski
1998-09-09T23:59:59.000Z
We explore a model of inflation where the inflaton mass-squared is generated at a high scale by gravity-mediated soft supersymmetry breaking, and runs at lower scales to the small value required for slow-roll inflation. The running is supposed to come from the coupling of the inflaton to a non-Abelian gauge field. In contrast with earlier work, we do not constrain the magnitude of the supersymmetry breaking scale, and we find that the model might work even if squark and slepton masses come from gauge-mediated supersymmetry breaking. With the inflaton and gaugino masses in the expected range, and $\\alpha = g^2/4\\pi $ in the range $10^{-2}$ to $10^{-3}$ (all at the high scale) the model can give the observed cosmic microwave anisotropy, and a spectral index in the observed range. The latter has significant variation with scale, which can confirm or rule out the model in the forseeable future.
Blue Tensor Spectrum from Particle Production during Inflation
Shinji Mukohyama; Ryo Namba; Marco Peloso; Gary Shiu
2014-07-25T23:59:59.000Z
We discuss a mechanism of particle production during inflation that can result in a blue gravitational wave (GW) spectrum, compatible with the BICEP2 result and with the r < 0.11 limit on the tensor-to-scalar ratio at the Planck pivot scale. The mechanism is based on the production of vector quanta from a rolling pseudo-scalar field. Both the vector and the pseudo-scalar are only gravitationally coupled to the inflaton, to keep the production of inflaton quanta at an unobservable level (the overproduction of non-gaussian scalar perturbations is a generic difficulty for mechanisms that aim to generate a visible GW signal from particle production during inflation). This mechanism can produce a detectable amount of GWs for any inflationary energy scale. The produced GWs are chiral and non-gaussian; both these aspects can be tested with large-scale polarization data (starting from Planck). We study how to reconstruct the pseudo-scalar potential from the GW spectrum.
DBI Galileon inflation in the light of Planck 2015
Escamilla-Rivera, Celia; Sanchez, Juan C Bueno; Moniz, Paulo Vargas; Marto, Joao; .,
2015-01-01T23:59:59.000Z
In this paper we consider a DBI Galileon (DBIG) inflationary model where interesting solutions arise when we constrain its parameter space using Planck 2015 and BICEP2/Keck array and Planck (BKP) joint analysis. In particular, we perform a potential independent analysis by only using the background equations. We focus our attention on inflationary solutions characterized by a warp factor and a constant and varying speed of sound. Phenomenologically, we impose bounds on stringy aspects of the model such as warp factor $f$ and induced gravity parameter $\\tilde{m}$ using the current CMB bounds on spectral index $n_{s}$ and tensor to scalar ratio $r$. In all the cases, we consider the speed of sound restricted to the interval $c_{\\mathcal{D}}\\lesssim1$ in order to avoid large non-Gaussianities. Also, we compute quantities as the energy scale of inflation, mass of the inflaton and how these can change with different warped geometries. In this scenario we find inflation happens at GUT scale with tensor to scalar ra...
Graceful Exit Inflation in $f(T)$ Gravity
G. G. L. Nashed; W. El Hanafy; Sh. Kh. Ibrahim
2015-04-04T23:59:59.000Z
We apply a quadratic teleparallel torsion scalar of the $f(T)=T+\\alpha T^{2}$ field equations to the spatially flat Friedmann-Robertson-Walker (FRW) model. We assume two perfect fluid components, the matter component has a fixed equation of state (EoS) parameter $\\omega$, while the torsion component has a dynamical EoS. We obtain an effective scale factor allowing a graceful exit inflation model with no need to slow roll technique. We perform a standard cosmological study to examine the cosmic evolution. In addition, the effective EoS shows consistent results confirming a smooth phase transition from inflation to radiation dominant universe. We consider the case when the torsion is made of a scalar field. This treatment enables us to induce a scalar field sensitive to the spacetime symmetry with an effective potential constructed from the quadratic $f(T)$ gravity. The model is parameterized by two parameters ($\\alpha,\\omega$) both derive the universe to exit out of de Sitter expansion. The first is purely gravitational and works effectively at large Hubble regime of the early stage allowing a slow roll potential. The second parameter $\\omega$ is a thermal-like correction coupled to the kinetic term and works effectively at low Hubble regime of late stages. The slow roll analysis of the obtained potential can perform tensor-to-scalar ratio and spectral index parameters consistent with the recent Planck and BICEP2 data. Both cosmological and scalar field analyses show consistent results.
Blue tensor spectrum from particle production during inflation
Mukohyama, Shinji; Namba, Ryo [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Peloso, Marco [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Shiu, Gary, E-mail: shinji.mukohyama@ipmu.jp, E-mail: ryo.namba@ipmu.jp, E-mail: peloso@physics.umn.edu, E-mail: shiu@physics.wisc.edu [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)
2014-08-01T23:59:59.000Z
We discuss a mechanism of particle production during inflation that can result in a blue gravitational wave (GW) spectrum, compatible with the BICEP2 result and with the r < 0.11 limit on the tensor-to-scalar ratio at the Planck pivot scale. The mechanism is based on the production of vector quanta from a rolling pseudo-scalar field. Both the vector and the pseudo-scalar are only gravitationally coupled to the inflaton, to keep the production of inflaton quanta at an unobservable level (the overproduction of non-gaussian scalar perturbations is a generic difficulty for mechanisms that aim to generate a visible GW signal from particle production during inflation). This mechanism can produce a detectable amount of GWs for any inflationary energy scale. The produced GWs are chiral and non-gaussian; both these aspects can be tested with large-scale polarization data (starting from Planck). We study how to reconstruct the pseudo-scalar potential from the GW spectrum.
Non-minimal Higgs inflation and frame dependence in cosmology
Steinwachs, Christian F. [School of Mathematical Sciences, University of Nottingham University Park, Nottingham, NG7 2RD (United Kingdom); Kamenshchik, Alexander Yu. [Dipartimento di Fisica e Astronomia and INFN, Via Irnerio 46, 40126 Bologna, Italy and L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences, Kosygin str. 2, 119334 Moscow (Russian Federation)
2013-02-21T23:59:59.000Z
We investigate a very general class of cosmological models with scalar fields non-minimally coupled to gravity. A particular representative in this class is given by the non-minimal Higgs inflation model in which the Standard Model Higgs boson and the inflaton are described by one and the same scalar particle. While the predictions of the non-minimal Higgs inflation scenario come numerically remarkably close to the recently discovered mass of the Higgs boson, there remains a conceptual problem in this model that is associated with the choice of the cosmological frame. While the classical theory is independent of this choice, we find by an explicit calculation that already the first quantum corrections induce a frame dependence. We give a geometrical explanation of this frame dependence by embedding it into a more general field theoretical context. From this analysis, some conceptional points in the long lasting cosmological debate: 'Jordan frame vs. Einstein frame' become more transparent and in principle can be resolved in a natural way.
Observational constraints on gauge field production in axion inflation
Meerburg, P.D. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540 (United States); Pajer, E., E-mail: meerburg@princeton.edu, E-mail: enrico.pajer@gmail.com [Department of Physics, Princeton University, Princeton, NJ 08544 (United States)
2013-02-01T23:59:59.000Z
Models of axion inflation are particularly interesting since they provide a natural justification for the flatness of the potential over a super-Planckian distance, namely the approximate shift-symmetry of the inflaton. In addition, most of the observational consequences are directly related to this symmetry and hence are correlated. Large tensor modes can be accompanied by the observable effects of a the shift-symmetric coupling ?F F-tilde to a gauge field. During inflation this coupling leads to a copious production of gauge quanta and consequently a very distinct modification of the primordial curvature perturbations. In this work we compare these predictions with observations. We find that the leading constraint on the model comes from the CMB power spectrum when considering both WMAP 7-year and ACT data. The bispectrum generated by the non-Gaussian inverse-decay of the gauge field leads to a comparable but slightly weaker constraint. There is also a constraint from ?-distortion using TRIS plus COBE/FIRAS data, but it is much weaker. Finally we comment on a generalization of the model to massive gauge fields. When the mass is generated by some light Higgs field, observably large local non-Gaussianity can be produced.
Gauge-preheating and the end of axion inflation
Adshead, Peter; Scully, Timothy R; Sfakianakis, Evangelos I
2015-01-01T23:59:59.000Z
We study the onset of the reheating epoch at the end of axion-driven inflation where the axion is coupled to an Abelian, $U(1)$, gauge field via a Chern-Simons interaction term. We focus primarily on $m^2\\phi^2$ inflation and explore the possibility that preheating can occur for a range of coupling values consistent with recent observations and bounds on the overproduction of primordial black holes. We find that for a wide range of parameters preheating is efficient. In certain cases the inflaton is seen to transfer all its energy to the gauge fields within a few oscillations. We find that the gauge fields on sub-horizon scales end in an unpolarized state, due to the existence of strong rescattering between the inflaton and gauge modes. We also present a preliminary study of an axion monodromy model coupled to $U(1)$ gauge fields, seeing a similarly efficient preheating behavior as well as indications that the coupling strength has an effect on the creation of oscillons.
CIVIL ENGINEERING AY12 ANNUAL REPORT ANNUAL REPORT
Maxwell, Bruce D.
in Environmental Engineering Master of Construction Engineering Management and, in conjunction with the College, and Environmental Engineering #12;CIVIL ENGINEERING AY12 ANNUAL REPORT Contents I. OverviewCIVIL ENGINEERING AY12 ANNUAL REPORT
Annual Report GreenTouch 20102011 Annual Report
Lefèvre, Laurent
20102011 Annual Report #12;1 GreenTouch 20102011 Annual Report Contents Chairman's Letter............................................................ 30 Service Energy Aware Sustainable Optical Networks (SEASON............................................................................................ 43 Beyond Cellular Green Generation (BCG2
Postdoctoral Research Awards Annual Research Meeting: Joseph...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Joseph Mondloch Postdoctoral Research Awards Annual Research Meeting: Joseph Mondloch Postdoctoral Research Awards Annual Research Meeting: Joseph Mondloch poster presentation....
Data Management Group Annual Report
Toronto, University of
Data Management Group Annual Report 1999 prepared by: Data Management Group Joint Program TOMORROW SURVEY ............... 10 UNIVERSITY RESEARCH ................................................. 10 APPENDIX A: DATA REQUESTS ..................................... 11 #12;Data Management Group 1999 Annual
Data Management Group Annual Report
Toronto, University of
Data Management Group Annual Report 2002 prepared by: Data Management Group Joint Program TOMORROW SURVEY ..................................... 14 DMG PUBLICATIONS Management Group 2002 Annual Report i SUMMARY The Data Management Group (DMG), in cooperation
ANNUAL SECURITY FIRE SAFETY REPORT
ANNUAL SECURITY AND FIRE SAFETY REPORT OCTOBER 1, 2013 DARTMOUTH COLLEGE http://www.dartmouth.edu/~security/ #12;1 Table of Contents MESSAGE FROM THE DIRECTOR OF SAFETY AND SECURITY................................................................................................................................................................... 7 ANNUAL SECURITY REPORT
NONE
1998-10-01T23:59:59.000Z
The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.
Annual Site Environmental Report
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm BiofuelinAnalysis of CloudAndreaAug 15,31Annual2014 Annual Site
International energy annual 1996
NONE
1998-02-01T23:59:59.000Z
The International Energy Annual presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 220 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy reported in the International Energy Annual includes hydroelectric power, geothermal, solar, and wind electric power, biofuels energy for the US, and biofuels electric power for Brazil. New in the 1996 edition are estimates of carbon dioxide emissions from the consumption of petroleum and coal, and the consumption and flaring of natural gas. 72 tabs.
2011 Quality Council Annual Report
Broader source: Energy.gov [DOE]
DEPARTMENT OF ENERGY QUALITY COUNCIL ANNUAL REPORT For Calendar Year 2011 Office of Health Safety and Security
Data Management Group Annual Report
Toronto, University of
Data Management Group Annual Report 1997 #12;Data Management Group Annual Report 1997 A co-operative project that is jointly funded by members of the Toronto Area Transportation Planning Data Collection: (416) 978-3941 #12;Data Management Group 1997 Annual Report Table of Contents 1 INTRODUCTION
2012ANNUAL REPORT AND ACCOUNTS
Birmingham, University of
and Estimation Techniques 21 Consolidated Income and Expenditure Account 25 Balance Sheets 26 Consolidated Cash Flow Statement 28 Consolidated Statement of Total Recognised Gains and Losses 29 Notes to the Accounts2011 2012ANNUAL REPORT AND ACCOUNTS #12;Annual Report and Accounts 2011/12 32 Annual Report
Orbit-averaged guiding-center Fokker-Planck operator
Brizard, A. J. [Department of Chemistry and Physics, Saint Michael's College, Colchester, Vermont 05439 (United States); Decker, J.; Peysson, Y.; Duthoit, F.-X. [CEA, IRFM, Saint-Paul-lez-Durance F-13108 (France)
2009-10-15T23:59:59.000Z
A general orbit-averaged guiding-center Fokker-Planck operator suitable for the numerical analysis of transport processes in axisymmetric magnetized plasmas is presented. The orbit-averaged guiding-center operator describes transport processes in a three-dimensional guiding-center invariant space: the orbit-averaged magnetic-flux invariant {psi}, the minimum-B pitch-angle coordinate {xi}{sub 0}, and the momentum magnitude p.
Office of Energy Efficiency and Renewable Energy (EERE)
The AFN Convention is the largest representative annual gathering in the United States of any Native peoples. In addition to the memorable keynote speeches, the expert panels and special reports, the Convention features several evenings of cultural performances known as Quyana Alaska.
University Library Annual Report
Brierley, Andrew
and a recognition of the need to provide zones within the building for different types of library user behaviourUniversity Library Annual Report 2011-2012 #12;Academic Year 2011-12 brought with it another period of turbulent change most of it positive for the University Library. The major and very tangible difference
Hules, John
2003-01-31T23:59:59.000Z
The National Energy Research Scientific Computing Center (NERSC) is the primary computational resource for scientific research funded by the DOE Office of Science. The Annual Report for FY2002 includes a summary of recent computational science conducted on NERSC systems (with abstracts of significant and representative projects), and information about NERSC's current and planned systems and service
NONE
1999-04-22T23:59:59.000Z
The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.
International Energy Annual, 1992
Not Available
1994-01-14T23:59:59.000Z
This report is prepared annually and presents the latest information and trends on world energy production and consumption for petroleum, natural gas, coal, and electricity. Trade and reserves are shown for petroleum, natural gas, and coal. Prices are included for selected petroleum products. Production and consumption data are reported in standard units as well as British thermal units (Btu) and joules.
Hules (Ed.), John
2006-07-31T23:59:59.000Z
The National Energy Research Scientific Computing Center (NERSC) is the premier computational resource for scientific research funded by the DOE Office of Science. The Annual Report includes summaries of recent significant and representative computational science projects conducted on NERSC systems as well as information about NERSC's current and planned systems and services.
Annual Report Competence Center
Sandoghdar, Vahid
: Fröhlich Druck AG www.froehlich.ch 4 #12;Contents 1 About C4 7 2 The Year in Review 9 3 The C4 Network;2 The Year in Review About this C4 Annual Report Over the past two decades, the C4 Network has grown
2008 annual report Chapterhead
Weston, Ken
-mail hedick@magnet.fsu.edu. Chapter 1 2008 Year in review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 researChhighlights #12;2008 annual report CHapter 1 3 2008-Yearinreview Chapter 1: 2008 - Year in review all user programs and magnets operated throughout 2008! that is really saying something, because
TOTAL ANNUAL Rent / Mortgage $
Snider, Barry B.
etc.) $ Child Care Expenses $ Educational Loans taken out in parent's name $ Other (itemize below): $ $ RESOURCES TOTAL ANNUAL AMOUNT Parent 1 Wages $ Parent 2 Wages $ Interest and/or Dividend Income $ Net Income $ Contributions to tax deferred plans(401K) $ Non Educational Veterans' Benefits $ Unemployment Compensation
Al Faruque, Mohammad Abdullah
1 2014 Annual Fire Safety Report University of California Campus Fire Marshals HIGHER EDUCATION to the Fire Safety in Student Housing Buildings of current or perspective students and employees be reported INTRODUCTION Fire Safety is an essential tool in protecting a campus community from injuries, deaths, business
2014 Annual Fire Safety Report University of California, Santa Barbara Fire Marshals) requires that certain information pertaining to the Fire Safety in Student Housing Buildings of current. #12; 2 9/19/14 HIGHER EDUCATION OPPORTUNITY ACT INTRODUCTION Fire Safety is an essential tool
Weber, Donald Albert
1957-01-01T23:59:59.000Z
in the world, wms in a serious soon omio slump in 1937? At, that time, U? S? Steel had 260, %R employees on 17 7'guaranteed Annual Wag~ill It Workt?" ~Sio ~S +~s i , Narch 2, 1955, Vol. 66, No. 5, p, 7, 5? 6. 70 its payrolls If the company would have...
Medium term municipal solid waste generation prediction by autoregressive integrated moving average
Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan [Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)
2014-09-12T23:59:59.000Z
Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.
Symmetry Breaking and False Vacuum Decay after Hybrid Inflation
Juan Garcia-Bellido; Margarita Garcia Perez; Antonio Gonzalez-Arroyo
2003-03-25T23:59:59.000Z
We discuss the onset of symmetry breaking from the false vacuum in generic scenarios in which the mass squared of the symmetry breaking (Higgs) field depends linearly with time, as it occurs, via the evolution of the inflaton, in models of hybrid inflation. We show that the Higgs fluctuations evolve from quantum to classical during the initial stages. This justifies the subsequent use of real-time lattice simulations to describe the fully non-perturbative and non-linear process of symmetry breaking. The early distribution of the Higgs field is that of a smooth classical gaussian random field, and consists of lumps whose shape and distribution is well understood analytically. The lumps grow with time and develop into ``bubbles'' which eventually collide among themselves, thus populating the high momentum modes, in their way towards thermalization at the true vacuum. With the help of some approximations we are able to provide a quasi-analytic understanding of this process.
Signs of Analyticity in Single-Field Inflation
Baumann, Daniel; Lee, Hayden; Porto, Rafael A
2015-01-01T23:59:59.000Z
The analyticity of response functions and scattering amplitudes implies powerful relations between low-energy observables and the underlying short-distance dynamics. These 'IR/UV' relations are rooted in basic physical principles, such as causality and unitarity. In this paper, we seek similar connections in inflation, relating cosmological observations to the physics responsible for the accelerated expansion. We assume that the inflationary theory is Lorentz invariant at short distances, but allow for non-relativistic interactions and a non-trivial speed of propagation at low energies. Focusing on forward scattering, we derive a 'sum rule' which equates a combination of low-energy parameters to an integral which is sensitive to the high-energy behavior of the theory. While for relativistic amplitudes unitarity is sufficient to prove positivity of the sum rule, this is not guaranteed in the non-relativistic case. We discuss the conditions under which positivity still applies, and show that they are satisfied ...
Running-mass inflation model and primordial black holes
Drees, Manuel; Erfani, Encieh, E-mail: drees@th.physik.uni-bonn.de, E-mail: erfani@th.physik.uni-bonn.de [Physikalisches Institut and Bethe Center for Theoretical Physics, Universität Bonn, Nussallee 12, 53115 Bonn (Germany)
2011-04-01T23:59:59.000Z
We revisit the question whether the running-mass inflation model allows the formation of Primordial Black Holes (PBHs) that are sufficiently long-lived to serve as candidates for Dark Matter. We incorporate recent cosmological data, including the WMAP 7-year results. Moreover, we include ''the running of the running'' of the spectral index of the power spectrum, as well as the renormalization group ''running of the running'' of the inflaton mass term. Our analysis indicates that formation of sufficiently heavy, and hence long-lived, PBHs still remains possible in this scenario. As a by-product, we show that the additional term in the inflaton potential still does not allow significant negative running of the spectral index.
Bose-Einstein condensation as an alternative to inflation
Das, Saurya
2015-01-01T23:59:59.000Z
It was recently shown that gravitons with a very small mass should have formed a Bose-Einstein condensate in the very early Universe, whose density and quantum potential can account for the dark matter and dark energy in the Universe respectively. Here we show that the condensation can also naturally explain the observed large scale homogeneity and isotropy of the Universe. Furthermore gravitons continue to fall into their ground state within the condensate at every epoch, accounting for the observed flatness of space at cosmological distances scales. Finally, we argue that the density perturbations due to quantum fluctuations within the condensate give rise to a scale invariant spectrum. This therefore provides a viable alternative to inflation, which is not associated with the well-known problems associated with the latter.
Non-Gaussian perturbations from multi-field inflation
Laura E. Allen; Sujata Gupta; David Wands
2005-12-13T23:59:59.000Z
We show how the primordial bispectrum of density perturbations from inflation may be characterised in terms of manifestly gauge-invariant cosmological perturbations at second order. The primordial metric perturbation, zeta, describing the perturbed expansion of uniform-density hypersurfaces on large scales is related to scalar field perturbations on unperturbed (spatially-flat) hypersurfaces at first- and second-order. The bispectrum of the metric perturbation is thus composed of (i) a local contribution due to the second-order gauge-transformation, and (ii) the instrinsic bispectrum of the field perturbations on spatially flat hypersurfaces. We generalise previous results to allow for scale-dependence of the scalar field power spectra and correlations that can develop between fields on super-Hubble scales.
Inflation with a Planck-scale frequency cutoff
J. C. Niemeyer
2000-11-22T23:59:59.000Z
The implementation of a Planck-scale high frequency and short wavelength cutoff in quantum theories on expanding backgrounds may have potentially nontrivial implications, such as the breaking of local Lorentz invariance and the existence of a yet unknown mechanism for the creation of vacuum modes. In scenarios where inflation begins close to the cutoff scale, these effects could have observable consequences as trans-Planckian modes are redshifted to cosmological scales. In close analogy with similar studies of Hawking radiation, a simple theory of a minimally coupled scalar field in de Sitter space is studied, with a high frequency cutoff imposed by a nonlinear dispersion relation. Under certain conditions the model predicts deviations from the standard inflationary scenario. We also comment on the difficulties in generalizing fluid models of Hawking radiation to cosmological space-times.
Constraints on Axion Inflation from the Weak Gravity Conjecture
Rudelius, Tom
2015-01-01T23:59:59.000Z
We derive constraints facing models of axion inflation based on decay constant alignment from a string-theoretic and quantum gravitational perspective. In particular, we investigate the prospects for alignment and `anti-alignment' of $C_4$ axion decay constants in type IIB string theory, deriving a strict no-go result in the latter case. We discuss the relationship of axion decay constants to the weak gravity conjecture and demonstrate agreement between our string-theoretic constraints and those coming from the `generalized' weak gravity conjecture. Finally, we consider a particular model of decay constant alignment in which the potential of $C_4$ axions in type IIB compactifications on a Calabi-Yau three-fold is dominated by contributions from $D7$-branes, pointing out that this model evades some of the challenges derived earlier in our paper but is highly constrained by other geometric considerations.
Inflation scenario via the Standard Model Higgs boson and LHC
A. O. Barvinsky; A. Yu. Kamenshchik; A. A. Starobinsky
2008-09-11T23:59:59.000Z
We consider a quantum corrected inflation scenario driven by a generic GUT or Standard Model type particle model whose scalar field playing the role of an inflaton has a strong non-minimal coupling to gravity. We show that currently widely accepted bounds on the Higgs mass falsify the suggestion of the paper arXiv:0710.3755 (where the role of radiative corrections was underestimated) that the Standard Model Higgs boson can serve as the inflaton. However, if the Higgs mass could be raised to $\\sim 230$ GeV, then the Standard Model could generate an inflationary scenario with the spectral index of the primordial perturbation spectrum $n_s\\simeq 0.935$ (barely matching present observational data) and the very low tensor-to-scalar perturbation ratio $r\\simeq 0.0006$.
Chaotic inflation from nonlinear sigma models in supergravity
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hellerman, Simeon; Kehayias, John; Yanagida, Tsutomu T.
2015-03-01T23:59:59.000Z
We present a common solution to the puzzles of the light Higgs or quark masses and the need for a shift symmetry and large field values in high scale chaotic inflation. One way to protect, for example, the Higgs from a large supersymmetric mass term is if it is the Nambu–Goldstone boson (NGB) of a nonlinear sigma model. However, it is well known that nonlinear sigma models (NLSMs) with nontrivial Kähler transformations are problematic to couple to supergravity. An additional field is necessary to make the Kähler potential of the NLSM invariant in supergravity. This field must have a shiftmore »symmetry — making it a candidate for the inflaton (or axion). We give an explicit example of such a model for the coset space SU(3)/SU(2) × U(1), with the Higgs as the NGB, including breaking the inflaton’s shift symmetry and producing a chaotic inflation potential. This construction can also be applied to other models, such as one based on E?/SO(10) × U(1) × U(1) which incorporates the first two generations of (light) quarks as the Nambu–Goldstone multiplets, and has an axion in addition to the inflaton. Along the way we clarify and connect previous work on understanding NLSMs in supergravity and the origin of the extra field (which is the inflaton here), including a connection to Witten–Bagger quantization. This framework has wide applications to model building; a light particle from a NLSM requires, in supergravity, exactly the structure for chaotic inflaton or an axion« less
Distributed Average Consensus in Sensor Networks with Random Link Failures
Moura, José
Distributed Average Consensus in Sensor Networks with Random Link Failures Soummya Kar Department: soummyakgandrew.cmu.edu Abstract We study the impact of the topology of a sensor network on distributed average in terms of a moment of the distribution of the norm of a function of the network graph Laplacian matrix L
THE AVERAGED CONTROL SYSTEM OF FAST OSCILLATING CONTROL SYSTEMS
Paris-Sud XI, Université de
, control systems, small control, optimal control, Finsler geometry. AMS subject classifications. 34C29, 34H used for design. The use of averaging in optimal control of oscillating systems [10, 13, 14, 7THE AVERAGED CONTROL SYSTEM OF FAST OSCILLATING CONTROL SYSTEMS ALEX BOMBRUN AND JEAN
Meehan, Barbara Theresa
2000-01-01T23:59:59.000Z
This study examined the relation between inflated self-concepts and levels of aggression in a sample of 167 aggressive second- and third-grade students. Variable-oriented data analyses of children's self- and others' reports of competence...
Do High Oil Prices Presage Inflation? The Evidence from G-5 Countries
LeBlanc, Michael; Chinn, Menzie David
2004-01-01T23:59:59.000Z
Do High Oil Prices Presage Inflation? The Evidence from G-5to be more sensitive to oil prices than in the U.S. , isa dollar denominated oil price. References Blanchard O.J.
Integrating Inflation-Linked Instruments in the Asset Liability Management Framework
Bhulai, Sandjai
Integrating Inflation-Linked Instruments in the Asset Liability Management Framework Angelique Mak.........................................................................................................16 3 Asset and Liability Management ...... University Amsterdam includes a six-month internship. My internship took place at the Group Asset Liability
Lack of Inflated Radii for Kepler Giant Planet Candidates Receiving Modest Stellar Irradiation
Demory, Brice-Olivier
The most irradiated transiting hot Jupiters are characterized by anomalously inflated radii, sometimes exceeding Jupiter's size by more than 60%. While different theoretical explanations have been applied, none of them ...
Exit from Inflation with a First-Order Phase Transition and a Gravitational Wave Blast
Amjad Ashoorioon
2015-03-18T23:59:59.000Z
In double-field inflation, which exploits two scalar fields, one of the fields rolls slowly during inflation whereas the other field is trapped in a meta-stable vacuum. The nucleation rate from the false vacuum to the true one becomes substantial enough that triggers a first order phase transition and ends inflation. We revisit the question of first order phase transition in an "extended" model of hybrid inflation, realizing the double-field inflationary scenario, and correctly identify the parameter space that leads to a first order phase transition at the end of inflation. We compute the gravitational wave profile which is generated during this first order phase transition. Assuming instant reheating, the peak frequency falls in the $1$ GHz to $10$ GHz frequency band and the amplitude varies in the range $10^{-11}\\lesssim \\Omega_{\\rm GW} h^2 \\lesssim 10^{-8}$, depending on the value of the cosmological constant in the false vacuum. The signature could be observed by the planned Chongqing high frequency gravitational probe. For a narrow band of vacuum energies, the first order phase transition can happen after the end of inflation via the violation of slow-roll, with a peak frequency that varies from $1$ THz to $100$ THz. For smaller values of cosmological constant, even though inflation can end via slow-roll violation, the universe gets trapped in a false vacuum whose energy drives a second phase of eternal inflation. This range of vacuum energies do not lead to viable inflationary models, unless the value of the cosmological constant is compatible with the observed value, $M\\sim 10^{-3}$ eV.
Meehan, Barbara Theresa
2000-01-01T23:59:59.000Z
THE RELATION BETWEEN AGGRESSION AND INFLATED SELF-CONCEPTS IN AGGRESSIVE CHILDREN: A REPLICATION STUDY A Thesis BARBARA THERESA MEEHAN Submitted to the Oifice of Graduate Studies of Texas ARM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 2000 Major Subject: Psychology THE RELATION BETWEEN AGGRESSION AND INFLATED SELF-CONCEPTS IN AGGRESSIVE CHILDREN: A REPLICATION STUDY A Thesis BARBARA THERESA MEEHAN Submitted to Texas AdtM University...
Low-energy effective field theory for chromo-natural inflation
Dimastrogiovanni, Emanuela [School of Physics and Astronomy, University of Minnesota, Minneapolis, 55455 (United States); Fasiello, Matteo; Tolley, Andrew J., E-mail: emanuela1573@gmail.com, E-mail: mrf65@case.edu, E-mail: andrew.j.tolley@case.edu [Department of Physics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106 (United States)
2013-02-01T23:59:59.000Z
Chromo-natural inflation is a novel model of inflation which relies on the existence of non-abelian gauge fields interacting with an axion. In its simplest realization, an SU(2) gauge field is assumed to begin inflation in a rotationally invariant VEV. The dynamics of the gauge fields significantly modifies the equations of motion for the axion, providing an additional damping term that supports slow-roll inflation, without the need to fine tune the axion decay constant. We demonstrate that in an appropriate slow-roll limit it is possible to integrate out the massive gauge field fluctuations whilst still maintaining the nontrivial modifications of the gauge field to the axion. In this slow-roll limit, chromo-natural inflation is exactly equivalent to a single scalar field effective theory with a non-minimal kinetic term, i.e. a P(X,?) model. This occurs through a precise analogue of the gelaton mechanism, whereby heavy fields can have unsuppressed effects on the light field dynamics without contradicting decoupling. The additional damping effect of the gauge fields can be completely captured by the non-minimal kinetic term of the single scalar field effective theory. We utilize the single scalar field effective theory to infer the power spectrum and non-gaussianities in chromo-natural inflation and confirm that the mass squared of all the gauge field fluctuations is sufficiently large and positive that they completely decouple during inflation. These results confirm that chromo-natural inflation is a viable, stable and compelling model for the generation of inflationary perturbations.
Warm inflation with coupled thermal quantum fluctuations: a new semiclassical approach
Mauricio Bellini
2000-10-25T23:59:59.000Z
I consider a new semiclassical expansion for the inflaton field in the framework of warm inflation scenario. The fluctuations of the matter field are considered as thermally coupled with the particles of the thermal bath. This coupling parameter depends on the temperature of the bath. The power spectrum remains invariant under this new semiclassical expansion for the inflaton. However, I find that the thermal component of the amplitude for the primordial field fluctuations should be very small at the end of inflation.
Office Inspector General DOE Annual Performance Report FY 2008...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Inspector General DOE Annual Performance Report FY 2008, Annual Performance Plan FY 2009 Office Inspector General DOE Annual Performance Report FY 2008, Annual Performance Plan FY...
Self-unitarization of New Higgs Inflation and compatibility with Planck and BICEP2 data
Cristiano Germani; Yuki Watanabe; Nico Wintergerst
2014-12-09T23:59:59.000Z
In this paper we show that the Germani-Kehagias model of Higgs inflation (or New Higgs Inflation), where the Higgs boson is kinetically non-minimally coupled to the Einstein tensor is in perfect compatibility with the latest Planck and BICEP2 data. Moreover, we show that the tension between the Planck and BICEP2 data can be relieved within the New Higgs inflation scenario by a negative running of the spectral index. Regarding the unitarity of the model, we argue that it is unitary throughout the evolution of the Universe. Weak couplings in the Higgs-Higgs and Higgs-graviton sectors are provided by a large background dependent cut-off scale during inflation. In the same regime, the W and Z gauge bosons acquire a very large mass, thus decouple. On the other hand, if they are also non-minimally coupled to the Higgs boson, their effective masses can be enormously reduced. In this case, the W and Z bosons are no longer decoupled. After inflation, the New Higgs model is well approximated by a quartic Galileon with a renormalizable potential. We argue that this can unitarily create the right conditions for inflation to eventually start.
Self-unitarization of New Higgs Inflation and compatibility with Planck and BICEP2 data
Germani, Cristiano; Wintergerst, Nico [Arnold Sommerfeld Center, Ludwig-Maximilians-Universität, Theresienstr. 37, 80333 München (Germany); Watanabe, Yuki, E-mail: cristiano.germani@lmu.de, E-mail: watanabe@resceu.s.u-tokyo.ac.jp, E-mail: nico.wintergerst@physik.lmu.de [Research Center for the Early Universe, University of Tokyo, Tokyo 113-0033 (Japan)
2014-12-01T23:59:59.000Z
In this paper we show that the Germani-Kehagias model of Higgs inflation (or New Higgs Inflation), where the Higgs boson is kinetically non-minimally coupled to the Einstein tensor is in perfect compatibility with the latest Planck and BICEP2 data. Moreover, we show that the tension between the Planck and BICEP2 data can be relieved within the New Higgs inflation scenario by a negative running of the spectral index. Regarding the unitarity of the model, we argue that it is unitary throughout the evolution of the Universe. Weak couplings in the Higgs-Higgs and Higgs-graviton sectors are provided by a large background dependent cut-off scale during inflation. In the same regime, the W and Z gauge bosons acquire a very large mass, thus decouple. On the other hand, if they are also non-minimally coupled to the Higgs boson, their effective masses can be enormously reduced. In this case, the W and Z bosons are no longer decoupled. After inflation, the New Higgs model is well approximated by a quartic Galileon with a renormalizable potential. We argue that this can unitarily create the right conditions for inflation to eventually start.
NONE
1998-12-01T23:59:59.000Z
Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.
Petroleum marketing annual 1994
NONE
1995-08-24T23:59:59.000Z
The Petroleum Marketing Annual (PMA) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysis, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the fob and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Annual. For this production, all estimates have been recalculated since their earlier publication in the Petroleum Marketing Monthly (PMM). These calculations made use of additional data and corrections that were received after the PMM publication date.
NONE
1995-12-01T23:59:59.000Z
The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.
International energy annual 1997
NONE
1999-04-01T23:59:59.000Z
The International Energy Annual presents an overview of key international energy trends for production, consumption, imports, and exports of primary energy commodities in over 220 countries, dependencies, and areas of special sovereignty. Also included are population and gross domestic product data, as well as prices for crude oil and petroleum products in selected countries. Renewable energy reported in the International Energy Annual includes hydroelectric power and geothermal, solar, and wind electric power. Also included are biomass electric power for Brazil and the US, and biomass, geothermal, and solar energy produced in the US and not used for electricity generation. This report is published to keep the public and other interested parties fully informed of primary energy supplies on a global basis. The data presented have been largely derived from published sources. The data have been converted to units of measurement and thermal values (Appendices E and F) familiar to the American public. 93 tabs.
Hules, John (ed.)
1999-03-01T23:59:59.000Z
This 1998 annual report from the National Scientific Energy Research Computing Center (NERSC) presents the year in review of the following categories: Computational Science; Computer Science and Applied Mathematics; and Systems and Services. Also presented are science highlights in the following categories: Basic Energy Sciences; Biological and Environmental Research; Fusion Energy Sciences; High Energy and Nuclear Physics; and Advanced Scientific Computing Research and Other Projects.
Hules, John (editor)
2001-12-12T23:59:59.000Z
The National Energy Research Scientific Computing Center (NERSC) is the primary computational resource for scientific research funded by the DOE Office of Science. The Annual Report for FY2001 includes a summary of recent computational science conducted on NERSC systems (with abstracts of significant and representative projects); information about NERSC's current systems and services; descriptions of Berkeley Lab's current research and development projects in applied mathematics, computer science, and computational science; and a brief summary of NERSC's Strategic Plan for 2002-2005.
NONE
1996-05-01T23:59:59.000Z
The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.
Alpay, S. Pamir
....................................................... 31 Civil & Environmental Engineering Annual Report Summary2000 2001 School of Engineering | University of Connecticut Annual Report #12;School of Engineering Annual Report 1 University of ConnecticutUniversity of Connecticut School of Engineering Annual Report
NONE
1995-07-05T23:59:59.000Z
The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.
INDIVIDUAL REFORM ELEMENTS .63Average course exam score
Colorado at Boulder, University of
INDIVIDUAL REFORM ELEMENTS .63Average course exam score .11In class clicker score .02Lecture: · Correlations with effort/curricular elements are positive but not high, indicating no individual course reform
Does anyone have access to 2012 average residential rates by...
Does anyone have access to 2012 average residential rates by utility company? I'm seeing an inconsistency between the OpenEI website and EIA 861 data set. Home > Groups > Utility...
STATE OF CALIFORNIA AREA WEIGHTED AVERAGE CALCULATION WORKSHEET: RESIDENTIAL
of a building feature, material, or construction assembly occur in a building, a weighted average there is more than one level of floor, wall, or ceiling insulation in a building, or more than one type
Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging
Raftery, Adrian
Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging J. Mc postprocessing method that creates calibrated predictive probability density functions (PDFs). Probabilistic wind extend BMA to wind speed, taking account of these challenges. This method provides calibrated and sharp
On the Choice of Average Solar Zenith Angle
Cronin, Timothy W.
Idealized climate modeling studies often choose to neglect spatiotemporal variations in solar radiation, but doing so comes with an important decision about how to average solar radiation in space and time. Since both ...
CANCER PROGRAM ANNUAL REPORT CANCER PROGRAM
Illinois at Chicago, University of
CANCER PROGRAM ANNUAL REPORT CANCER PROGRAM 2010 ANNUAL REPORT WITH STATISTICAL DATA FROM 2009 UNIVERSITY OF ILLINOIS MEDICAL CENTER #12;2 CANCER PROGRAM ANNUAL REPORT 2 #12;3 CANCER PROGRAM ANNUAL REPORT 3 UIMC CANCER PROGRAM CHANGING MULTIDISCIPLINARY CARE. FOR GOOD. #12;4 CANCER PROGRAM ANNUAL REPORT
Flavor Physics Data from the Heavy Flavor Averaging Group (HFAG)
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
The Heavy Flavor Averaging Group (HFAG) was established at the May 2002 Flavor Physics and CP Violation Conference in Philadelphia, and continues the LEP Heavy Flavor Steering Group's tradition of providing regular updates to the world averages of heavy flavor quantities. Data are provided by six subgroups that each focus on a different set of heavy flavor measurements: B lifetimes and oscillation parameters, Semi-leptonic B decays, Rare B decays, Unitarity triangle parameters, B decays to charm final states, and Charm Physics.
Inflation driven by q-de Sitter in light of Planck 2013 and BICEP2 results
M. R. Setare; D. Momeni; V. Kamali; R. Myrzakulov
2014-09-09T23:59:59.000Z
We propose a generalised de Sitter scale factor for the cosmology of early and late time universe, including single scalar field is called as inflaton. This form of scale factor has a free parameter $q$ is called as nonextensivity parameter. When $q=1$, the scale factor is de Sitter. This scale factor is an intermediate form between power-law and de Sitter. We study cosmology of such families. We show that both kinds of dark components, dark energy and dark matter simultaneously are described by this family of solutions. As a motivated idea, we investigate inflation in the framework of $q$-de Sitter. We consider three types of scenarios for inflation. In a single inflation scenario, we observe that, inflation ended without any specific ending inflation $\\phi_{end}$, the spectral index and the associated running of the spectral index are %$ n_\\mathrm{s} - 1 \\sim -2\\epsilon, \\quad \\alpha_\\mathrm{s} \\equiv 0 $. To end the inflation: we should have $q=\\frac{3}{4}$. We deduce that the inflation ends when the evolution of the scale factor is $a (t) =e_ {3/4} (t) $. With this scale factor there is no need to specify $\\phi_{end}$. As an alternative to have inflation with ending point, We will study q-inflation model in the context of warm inflation. We propose two forms of damping term $\\Gamma$. In the first case when $\\Gamma=\\Gamma_0$, we show the scale invariant spectrum, (Harrison-Zeldovich spectrum, i.e. $n_s=1$) may be approximately presented by ($q=\\frac{9}{10},~~N=70$). Also there is a range of values of $R$ and $n_s$ which is compatible with the BICEP2 data where $q=\\frac{9}{10}$. In case $\\Gamma=\\Gamma_1V(\\phi)$, it is observed that small values of a number of e-folds are assured for small values of $q$ parameter. For $q=\\frac{9}{10}$ a range of values of $R$ and $n_s$ is compatible with the BICEP2 data.
Historical Natural Gas Annual 1999
U.S. Energy Information Administration (EIA) Indexed Site
1999 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...
Tanana Chiefs Conference Annual Convention
Broader source: Energy.gov [DOE]
The Tanana Chiefs Conference is holding its annual convention to discuss issues in the region, hold elections, and adopt resolutions presented by Tribes.
Faculty Annual Review Academic Affairs
Jones, Michelle
.........................................................................................................................................3 2.0 Annual review of probationary faculty (except Fourth-Year Review)..............................................................3 2.1 Fourth-Year Review of probationary faculty
School of Engineering Annual Report
Alpay, S. Pamir
Activities............................. Civil & Environmental Engineering.......... PROGRAMS Engineering Diversity Program....................................... Environmental EngineeringSchool of Engineering 1 9 9 9 Annual Report #12;University of ConnecticutUniversity of Connecticut
Fiscal Year 2004 Annual Report
Salvaggio, Carl
NTID Fiscal Year 2004 Annual Report (Click here to jump to the Table of Contents) #12;#12;-1- FY ................... 17 Assessment Information on Entering Class
Is a Higgs Vacuum Instability Fatal for High-Scale Inflation?
John Kearney; Hojin Yoo; Kathryn M. Zurek
2015-03-17T23:59:59.000Z
We study the inflationary evolution of a scalar field $h$ with an unstable potential for the case where the Hubble parameter $H$ during inflation is larger than the instability scale $\\Lambda_I$ of the potential. Quantum fluctuations in the field of size $\\delta h \\sim \\frac{H}{2 \\pi}$ imply that the unstable part of the potential is sampled during inflation. We investigate the evolution of these fluctuations to the unstable regime, and in particular whether they generate cosmological defects or even terminate inflation. We apply the results of a toy scalar model to the case of the Standard Model (SM) Higgs boson, whose quartic evolves to negative values at high scales, and extend previous analyses of Higgs dynamics during inflation utilizing statistical methods to a perturbative and fully gauge-invariant formulation. We show that the dynamics are controlled by the renormalization group-improved quartic coupling $\\lambda(\\mu)$ evaluated at a scale $\\mu = H$, such that Higgs fluctuations are enhanced by the instability if $H > \\Lambda_I$. Even if $H > \\Lambda_I$, the instability in the SM Higgs potential does not end inflation; instead the universe slowly sloughs off crunching patches of space that never come to dominate the evolution. As inflation proceeds past 50 $e$-folds, a significant proportion of patches exit inflation in the unstable vacuum, and as much as 1% of the spacetime can rapidly evolve to a defect. Depending on the nature of these defects, however, the resulting universe could still be compatible with ours.
Fourth Annual Western Evolutionary Biology Meeting
Rose, Michael R.
Fourth Annual Western Evolutionary Biology Meeting University of California Presentation of the fourth annual Western Evolutionary Biologist of the Year (WEBEY) Award. 5:00 PM Fourth Annual WEBEY Address, Maureen Stanton, UC Davis 6:00 PM
The Western Water Assessment Annual RISA Report
Neff, Jason
;Western Water Assessment 2007 Annual Report 2 Table of Contents I. Areas of FocusThe Western Water Assessment Annual RISA Report Reporting Period: January 2007-December 2007 #12-30 #12;Western Water Assessment 2007 Annual Report 3
Inflation, de Sitter Landscape and Super-Higgs effect
Renata Kallosh; Andrei Linde; Marco Scalisi
2015-01-05T23:59:59.000Z
We continue developing cosmological models involving nilpotent chiral superfields, which provide a simple unified description of inflation and the current acceleration of the universe in the supergravity context. We describe here a general class of models with a positive cosmological constant at the minimum of the potential, such that supersymmetry is spontaneously broken in the direction of the nilpotent superfield $S$. In the unitary gauge, these models have a simple action where all highly non-linear fermionic terms of the classical Volkov-Akulov action disappear. We present masses for bosons and fermions in these theories. By a proper choice of parameters in this class of models, one can fit any possible set of the inflationary parameters $n_{s}$ and $r$, a broad range of values of the vacuum energy $V_{0}$, which plays the role of the dark energy, and achieve a controllable level of supersymmetry breaking. This can be done without introducing light moduli, such as Polonyi fields, which often lead to cosmological problems in phenomenological supergravity.
Starobinsky-like inflation induced by f(T) gravity
W. El Hanafy; G. L. Nashed
2014-10-08T23:59:59.000Z
We study a single fluid component in a flat like universe governed by $f(T)$ gravity theories. The flat like universe does not imply a vanishing sectional curvature $k$, but assuming a vanishing of the coefficient of $k$ in the modified Friedmann equations. This enables us to extract a compatible pair of a scale factor $a(t)$ and an inverse power series $f(T)$. The Equation of State (EoS) evolves similarly in all models $k=0, \\pm 1$. In large Hubble ($H$)-spacetime the theory is consistent with the inflationary universe scenario and respects the conservation principle. We study the case when the teleparallel torsion is made of a single scalar field. The theory produces Starobinsky model naturally at its zeroth order without using a conformal transformation. Higher order solutions continuously interpolate between Starobinsky and quadratic inflation models. The slow-roll analysis shows double solutions so that for a single value of the spectral index $n_{s}$ the theory can predict double tensor-to-scalar ratios $r$ of Planck and BICEP2 data.
Noncommutative minisuperspace, gravity-driven acceleration and kinetic inflation
S. M. M. Rasouli; Paulo Vargas Moniz
2014-11-05T23:59:59.000Z
In this paper, we introduce a noncommutative version of the Brans-Dicke (BD) theory and obtain the Hamiltonian equations of motion for a spatially flat Friedmann--Lema\\^{\\i}tre--Robertson--Walker universe filled with a perfect fluid. We focus on the case where the scalar potential as well as the ordinary matter sector are absent. Then, we investigate gravity-driven acceleration and kinetic inflation in this noncommutative BD cosmology. In contrast to the commutative case, in which the scale factor and BD scalar field are in a power-law form, in the noncommutative case the power-law scalar factor is multiplied by a dynamical exponential warp factor. This warp factor depends on the noncommutative parameter as well as the momentum conjugate associated to the BD scalar field. We show that the BD scalar field and the scale factor effectively depend on the noncommutative parameter. For very small values of this parameter, we obtain an appropriate inflationary solution, which can overcome problems within BD standard cosmology in a more efficient manner. Furthermore, a graceful exit from an early acceleration epoch towards a decelerating radiation epoch is provided. For late times, due to the presence of the noncommutative parameter, we obtain a zero acceleration epoch, which can be interpreted as the coarse-grained explanation.
The degeneracy problem in non-canonical inflation
Easson, Damien A. [Department of Physics and School of Earth and Space Exploration and Beyond Center, Arizona State University, Tempe, AZ 85287-1504 (United States); Powell, Brian A., E-mail: easson@asu.edu, E-mail: brian.powell007@gmail.com [Institute for Defense Analyses, Alexandria, VA 22311 (United States)
2013-03-01T23:59:59.000Z
While attempting to connect inflationary theories to observational physics, a potential difficulty is the degeneracy problem: a single set of observables maps to a range of different inflaton potentials. Two important classes of models affected by the degeneracy problem are canonical and non-canonical models, the latter marked by the presence of a non-standard kinetic term that generates observables beyond the scalar and tensor two-point functions on CMB scales. The degeneracy problem is manifest when these distinguishing observables go undetected. We quantify the size of the resulting degeneracy in this case by studying the most well-motivated non-canonical theory having Dirac-Born-Infeld Lagrangian. Beyond the scalar and tensor two-point functions on CMB scales, we then consider the possible detection of equilateral non-Gaussianity at Planck-precision and a measurement of primordial gravitational waves from prospective space-based laser interferometers. The former detection breaks the degeneracy with canonical inflation but results in poor reconstruction prospects, while the latter measurement enables a determination of n{sub T} which, while not breaking the degeneracy, can be shown to greatly improve the non-canonical reconstruction.
Nuclear Fusion in the Deuterated cores of inflated hot Jupiters
Ouyed, Rachid
2015-01-01T23:59:59.000Z
In Ouyed et al. (1998), Deuterium-Deuterium (DD) burning in the deep interior of giant planets (at the core-mantle interface) was proposed as a mechanism to explain their observed heat excess. An issue with such a mechanism is the extreme condition of high interior temperatures (~ 10^5 K) in a concentrated D layer needed to account for the excess heat. In this paper, we show that screened DD fusion in a deuterated core is a more plausible mechanism to explain the excess heat and observed inflated radii of some Jovian exoplanets ("hot Jupiters"). The screening alleviates the extreme temperature constraint and removes the requirement of a stratified D layer, so that DD-fusion is a significant internal energy source (~ 10^(25)-10^(27) erg/s) even within the expected range of core temperature (~ 10^4 K) and density of hot Jupiters. The mechanism is universal, long-lasting (Gigayears), and should be effective as long as the metallicity is not too high and the core has not been significantly eroded away already. Ap...
Inflationary Magnetogenesis in $R^{2}$-Inflation after Planck 2015
AlMuhammad, Anwar Saleh
2015-01-01T23:59:59.000Z
We study the primordial magnetic field generated by the simple model $f^2 FF$ in Starobinsky, $R^2$-inflationary, model. The scale invariant PMF is achieved at relatively high power index of the coupling function, $\\left| \\alpha \\right| \\approx 7.44$. This model does not suffer from the backreaction problem as long as, the rate of inflationary expansion, $H$, is in the order of or less than the upper bound reported by Planck ($\\le 3.6 \\times 10^{-5} M_\\rm{Pl}$) in both de Sitter and power law expansion, which show similar results. We calculate the lower limit of the reheating parameter, $R_\\rm{rad} > 6.888$ in $R^2$-inflation. Based on the upper limit obtained from CMB, we find that the upper limits of magnetic field and reheating energy density as, $\\left(\\rho_{B_\\rm{end}} \\right)_\\rm{CMB} < 1.184 \\times 10^{-20} M_\\rm{Pl}^4$ and $\\left(\\rho_\\rm{reh} \\right)_\\rm{CMB} < 8.480 \\times 10^{-22} M_\\rm{Pl}^4$. All of foregoing results are well more than the lower limit derived from WMAP7 for both large and s...
The TT, TB, EB and BB correlations in anisotropic inflation
Chen, Xingang [Department of Physics, The University of Texas at Dallas, Richardson, TX 75083 (United States); Emami, Razieh [School of Physics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Firouzjahi, Hassan [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Wang, Yi, E-mail: Xingang.Chen@utdallas.edu, E-mail: emami@ipm.ir, E-mail: firouz@ipm.ir, E-mail: yw366@cam.ac.uk [Centre for Theoretical Cosmology, DAMTP, University of Cambridge, Cambridge CB3 0WA (United Kingdom)
2014-08-01T23:59:59.000Z
The ongoing and future experiments will measure the B-mode from different sky coverage and frequency bands, with the potential to reveal non-trivial features in polarization map. In this work we study the TT, TB, EB and BB correlations associated with the B-mode polarization of CMB map in models of charged anisotropic inflation. The model contains a chaotic-type large field complex inflaton which is charged under the U(1) gauge field. We calculate the statistical anisotropies generated in the power spectra of the curvature perturbation, the tensor perturbation and their cross-correlation. It is shown that the asymmetry in tensor power spectrum is a very sensitive probe of the gauge coupling. While the level of statistical anisotropy in temperature power spectrum can be small and satisfy the observational bounds, the interactions from the gauge coupling can induce large directional dependence in tensor modes. This will leave interesting anisotropic fingerprints in various correlations involving the B-mode polarization such as the TB cross-correlation which may be detected in upcoming Planck polarization data. In addition, the TT correlation receives an anisotropic contribution from the tensor sector which naturally decays after l ?> 100. We expect that the mechanism of using tensor sector to induce asymmetry at low l to be generic which can also be applied to address other low l CMB anomalies.
Testing Inflation with Large Scale Structure: Connecting Hopes with Reality
Marcelo Alvarez; Tobias Baldauf; J. Richard Bond; Neal Dalal; Roland de Putter; Olivier Doré; Daniel Green; Chris Hirata; Zhiqi Huang; Dragan Huterer; Donghui Jeong; Matthew C. Johnson; Elisabeth Krause; Marilena Loverde; Joel Meyers; P. Daniel Meerburg; Leonardo Senatore; Sarah Shandera; Eva Silverstein; Anže Slosar; Kendrick Smith; Matias Zaldarriaga; Valentin Assassi; Jonathan Braden; Amir Hajian; Takeshi Kobayashi; George Stein; Alexander van Engelen
2014-12-15T23:59:59.000Z
The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large scale structure is however from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude $f_{\\rm NL}^{\\rm loc}$ ($f_{\\rm NL}^{\\rm eq}$), natural target levels of sensitivity are $\\Delta f_{\\rm NL}^{\\rm loc, eq.} \\simeq 1$. We highlight that such levels are within reach of future surveys by measuring 2-, 3- and 4-point statistics of the galaxy spatial distribution. This paper summarizes a workshop held at CITA (University of Toronto) on October 23-24, 2014.
Annual Mass Balance Of Blue Glacier, U.S.A.: 1955-97 H. CONWAY, L. A. RASMUSSEN, and H.-P. MARSHALL
Rasmussen, L.A.
Annual Mass Balance Of Blue Glacier, U.S.A.: 1955-97 H. CONWAY, L. A. RASMUSSEN, and H.-P. MARSHALL with other glaciers in the region and elsewhere in the world. Glacier-average annual mass balances, beginning balance. Two alternative time series of mass balance consistent with the long-term mass changes
Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23 362 334 318 706Production%3.PDFFeet) YearProduction from GreaterResidentialYearMillionAnnual .
NONE
1997-03-01T23:59:59.000Z
This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary.
None
2011-10-01T23:59:59.000Z
This twenty-ninth edition of the Annual Energy Review (AER) presents the U.S. Energy Information Administration’s (EIA) most comprehensive look at integrated energy statistics. The summary statistics on the Nation’s energy production, consumption, trade, stocks, and prices cover all major energy commodities and all energy-consuming sectors of the U.S. economy from 1949 through 2010. The AER is EIA’s historical record of energy statistics and, because the coverage spans six decades, the statistics in this report are well-suited to long-term trend analysis.
Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23 362 334 318 706Production% of41.1DieselRegular gasolinegasoline0,Feb-15AlabamaAnnual Coal Report 2013
Office of Environmental Management (EM)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23 362 of Thomas P. D'Agostino2015 GTO PeerScience andAmes LabEnergy 0 Report Annual Fire12014 2013
Annual Site Environmental Report
Broader source: Energy.gov (indexed) [DOE]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23 362 ofSubscribeDepartment(EAP)Energy2012ANCHORAGE,1 2011 Annual Report to the Oak
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm BiofuelinAnalysis of CloudAndreaAug 15, 1996Annual Energy38
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirt DocumentationSitesWeather Outreach HomeDeKalb CountyAlumniLaboratoryLaboratoryAbout /Annual
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) | SciTech Connect Journal Article: X-ray lineARMParticipants AboutAncient Proteins Help Unravel areports Annual Reports
None
2000-01-01T23:59:59.000Z
OAK-B135 NPL 1999 Annual Report. The Nuclear Physics Laboratory at the University of Washington in Seattle pursues a broad program of nuclear physics research. Research activities are conducted locally and at remote sites. The current program includes ''in-house'' research on nuclear collisions using the local tandem Van de Graaff and superconducting linac accelerators as well as local and remote non-accelerator research on fundamental symmetries and weak interactions and user-mode research on relativistic heavy ions at large accelerator facilities around the world.
International energy annual 1995
NONE
1996-12-01T23:59:59.000Z
The International Energy Annual presents information and trends on world energy production and consumption for petroleum, natural gas, coal, and electricity. Production and consumption data are reported in standard units as well as British thermal units (Btu). Trade and reserves are shown for petroleum, natural gas, and coal. Data are provided on crude oil refining capacity and electricity installed capacity by type. Prices are included for selected crude oils and for refined petroleum products in selected countries. Population and Gross Domestic Product data are also provided.
U.S. Energy Information Administration (EIA) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onsource History View NewUS National FuelYancey County, NorthDiesel3, 2013TWO Washington, D.C.43Total DeliveredReal
NERSC Announces Third Annual HPC Achievement Awards
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Computing Center (NERSC) announced the winners of its third annual High Performance Computing (HPC) Achievement Awards on Feb. 24, 2015, during the annual NERSC User...
Postdoctoral Research Awards Annual Research Meeting: Brandon...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Brandon Mercado Postdoctoral Research Awards Annual Research Meeting: Brandon Mercado Poster Presentation at 2012 EERE Annual Research Meeting, Postdoctoral Research Awards, from...
Postdoctoral Research Awards Annual Research Meeting: Padmaja...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Padmaja Gunda Postdoctoral Research Awards Annual Research Meeting: Padmaja Gunda Poster Presentation at 2012 EERE Annual Research Meeting, Postdoctoral Research Awards, from the...
International Institute for Sustainable Laboratories Annual Conference...
Office of Environmental Management (EM)
International Institute for Sustainable Laboratories Annual Conference International Institute for Sustainable Laboratories Annual Conference September 21, 2015 8:00AM PDT to...
Presidential Permit Holders - Annual Reports | Department of...
Permit Holders - Annual Reports Presidential Permit Holders - Annual Reports Presidential permit holders are responsible for reporting the gross amount electric energy which flows...
EARTH SCIENCES DIVISION ANNUAL REPORT 1978
Authors, Various
2012-01-01T23:59:59.000Z
Mexico, 52nd Annual Fall Technical Conference and Exhibition of the SOC. Pet.Mexico. Preprint, 52nd annual meeting cf the SOC. of Pet.
EIA - Annual Energy Outlook 2014 Early Release
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Annual Energy Outlook 2013 LED Light emitting diode AEO2014 Annual Energy Outlook 2014 LNG Liquefied natural gas ATRA American Taxpayer Relief Act of 2012 LPG Liquefied petroleum...
Water Environment Federation's Annual Technical Exhibition and...
Office of Environmental Management (EM)
Water Environment Federation's Annual Technical Exhibition and Conference Water Environment Federation's Annual Technical Exhibition and Conference September 26, 2015 8:30AM CDT to...
International energy annual, 1989. [Contains glossary
Not Available
1991-02-01T23:59:59.000Z
This report is prepared annually and presents the latest information and trends on world energy production, consumption, reserves, trade, and prices for five primary energy sources: petroleum, natural gas, coal, hydroelectricity, and nuclear electricity. It also presents information on petroleum products. Since the early 1980's the world's total output of primary energy has increased steadily. The annual average growth rate of energy production during the decade was 1.9 percent. Throughout the 1980's, petroleum was the world's most heavily used type of energy. In 1989, three countries--the United States, the USSR, and China--were the leading producers and consumers of world energy. Together, these countries consumed and produced almost 50 percent of the world's total energy. Global production and consumption of crude oil and natural gas liquids increased during the 1980's, despite a decline in total production and demand in the early part of the decade. World production of dry natural gas continued to rise steadily in the 1980's. For the last several years, China has been the leading producer of coal, followed by the United States. In 1989, hydroelectricity supply declined slightly from the upward trend of the last 10 years. Nuclear power generation rose slightly from the 1988 level, compared with the marked growth in earlier years. Prices for major crude oils all increased between 1988 and 1989, but remained well below the price levels at the beginning of the decade. 26 figs., 36 tabs.
Annual Report 2010 Aarhus University
Schierup, Mikkel Heide
FOR ENVIRONMENT AND ENERGY AU #12;Title: Nuuk Ecological Research Operations Subtitle: 4th Annual Report 2010 NUUK BASIC: Research projects 67 6.1 Heat sources for glacial melt in a sub-arctic fjord (Godthåbsfjord4th Annual Report 2010 Aarhus University DCE Danish Centre for Environment and Energy #12
ANNUAL SUSTAINABILITY REPORT YORK UNIVERSITY
ANNUAL SUSTAINABILITY REPORT 2013 2014 YORK UNIVERSITY #12;0 #12;Table of Contents Message from the President 003 Message from the PSC Chair 007 Part 1: President's Sustainability Council Annual Report 2013's Sustainability Leadership Award Recipients 108 Part 2: Environmental Sustainability Report 2013-2014 111 #12
Eighth Annual Risk Management Conference
Chaudhuri, Sanjay
Eighth Annual Risk Management Conference Risk Management Amidst Global Rebalancing 10 Â 11 July 2014, Singapore The Risk Management Institute (RMI) at the National University of Singapore invites submissions for its 8th annual conference on risk management in Singapore on 10 and 11 July 2014. We
ANNUAL SECURITY & FIRE SAFETY REPORT
Maxwell, Bruce D.
ANNUAL SECURITY & FIRE SAFETY REPORT 2014 A guide to policies, procedures, practices, and programs implemented to keep students, faculty, and staff safe and facilities secure. www.montana.edu/reports/security.pdf #12;Inside this Report 2014 Annual Security and Fire Safety Report for Reporting Year 2013
ANNUAL FIRE SAFETY RESIDENCE HALLS
Fernandez, Eduardo
1 2013 ANNUAL FIRE SAFETY REPORT FOR RESIDENCE HALLS As Required by the Higher Education Opportunity Act (HEOA) #12;2 INTRODUCTION Contents of this annual fire safety report reflect the requirements outlined in the HEOA, which are included in Florida Atlantic University's (FAU) campus fire safety program
Annual Energy Outlook Retrospective Review
Reports and Publications (EIA)
2015-01-01T23:59:59.000Z
The Annual Energy Outlook Retrospective Review provides a yearly comparison between realized energy outcomes and the Reference case projections included in previous Annual Energy Outlooks (AEO) beginning with 1982. This edition of the report adds the AEO 2012 projections and updates the historical data to incorporate the latest data revisions.
Pennsylvania Average Price of Natural Gas Delivered to Residential and
Gasoline and Diesel Fuel Update (EIA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,Separation 23 362 334 318 706Production% of Total2003Year Jan Feb19Feet)Vented andPAD AnnualCubicCommercial
Table A44. Average Prices of Purchased Electricity and Steam
U.S. Energy Information Administration (EIA) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on GoogleTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions,6 End Uses ofNonfuelTotal9. by Census4.
On the coupled evolution of inflation, wealth and atmospheric concentrations of carbon dioxide
Garrett, Timothy J
2010-01-01T23:59:59.000Z
In a prior study (Garrett, 2009), a thermodynamically-based economic growth model was introduced that was based on the finding that the rate of consumption of energy by civilization has been related to its historical accumulation of inflation-adjusted Gross World Product (GWP), or its ``wealth'', through a constant value {\\lambda} of 9.7 {\\pm} 0.3 milliwatts per 1990 US dollar. Here, this simple model is extended to describe, first, a thermodynamically-based theory for economic inflation and, second, a prognostic model for the coupled multi-decadal evolution of CO2 concentrations and GWP. Multi-decadal hindcasts of GWP and CO2 concentrations made with this model are shown to be accurate. Applied to coming decades, the model implies that, like a long-term natural disaster, future greenhouse warming will accelerate economic inflation. Such inflation will slow growth of not just inflation-adjusted economic wealth, but also CO2 emission rates because the two are coupled through {\\lambda}. Maintaining atmospheric ...
High average power scaleable thin-disk laser
Beach, Raymond J. (Livermore, CA); Honea, Eric C. (Sunol, CA); Bibeau, Camille (Dublin, CA); Payne, Stephen A. (Castro Valley, CA); Powell, Howard (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)
2002-01-01T23:59:59.000Z
Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.
Not Available
1994-07-14T23:59:59.000Z
This twelfth edition of the Annual Energy Review (AER) presents the Energy Information Administration`s historical energy statistics. For most series, statistics are given for every year from 1949 through 1993. Because coverage spans four and a half decades, the statistics in this report are well-suited to long-term trend analyses. The AER is comprehensive. It covers all major energy activities, including consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels and electricity. The AER also presents Energy Information Administration (EIA) statistics on some renewable energy sources. EIA estimates that its consumption series include about half of the renewable energy used in the United States. For a more complete discussion of EIA`s renewables data, see p. xix, ``Introducing Expanded Coverage of Renewable Energy Data Into the Historical Consumption Series.`` Copies of the 1993 edition of the Annual Energy Review may be obtained by using the order form in the back of this publication. Most of the data in the 1993 edition also are available on personal computer diskette. For more information about the diskettes, see the back of this publication. In addition, the data are available as part of the National Economic, Social, and Environmental Data Bank on a CD-ROM. For more information about the data bank, contact the US Department of Commerce Economics and Statistics Administration, on 202-482-1986.
Not Available
1994-01-06T23:59:59.000Z
The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.
Paleosecular variation and the average geomagnetic field at 20 latitude
Johnson, Catherine Louise
-averaged field (TAF) for a two-parameter longitudinally symmetric (zonal) model. Values for our model parameters rocks, and oceanic sediments, but consistent with that from reversed polarity continental and igneous to paleosecular variation (PSV). We examine PSV at ±20° using virtual geomagnetic pole (VGP) dispersion
Optimal Control with Weighted Average Costs and Temporal Logic Specifications
Murray, Richard M.
Optimal Control with Weighted Average Costs and Temporal Logic Specifications Eric M. Wolff Control and Dynamical Systems California Institute of Technology Pasadena, California 91125 Email: ewolff@caltech.edu Ufuk Topcu Control and Dynamical Systems California Institute of Technology Pasadena, California 91125
Navy Estimated Average Hourly Load Profile by Month (in MW)
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Navy Estimated Average Hourly Load Profile by Month (in MW) MONTH HE1 HE2 HE3 HE4 HE5 HE6 HE7 HE8 HE9 HE10 HE11 HE12 HE13 HE14 HE15 HE16 HE17 HE18 HE19 HE20 HE21 HE22 HE23 HE24...
Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging
Raftery, Adrian
Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging J. MCLEAN 2011, in final form 26 May 2012) ABSTRACT Probabilistic forecasts of wind vectors are becoming critical as interest grows in wind as a clean and re- newable source of energy, in addition to a wide range of other
The High Average Power Laser Program 15th HAPL meeting
1 The High Average Power Laser Program 15th HAPL meeting Aug 8 & 9, 2006 General Atomics Scientific Inst 16. Optiswitch Technology 17. ESLI Electricity Generator Electricity Generator Reaction (i.e. 5 Hz) "First Light" on Electra Pre-Amplifier (input to main amplifier) 23 J laser output #12
Probabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging
Washington at Seattle, University of
February 24, 2006 1J. McLean Sloughter is Graduate Research Assistant, Adrian E. Raftery is BlumsteinProbabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging J. McLean Sloughter, Adrian E. Raftery and Tilmann Gneiting 1 Department of Statistics, University of Washington
The Scientist : Surpassing the Law of Averages The Scientist
Heller, Eric
/8/2009 7:02:24 PM] #12;The Scientist : Surpassing the Law of Averages "Single-cell genomics appears to be the most straightforward, and at the moment the only way we can assemble the genomes of the uncultured and pushing technological limitations to bring their studies of genomics, genetics, RNA transcription
Fact #693: September 19, 2011 Average Vehicle Footprint for Cars...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
below. Supporting Information Average Vehicle Footprint, 2008-2010 Model Year Car Light Truck All Light Vehicles 2008 45.4 53.0 49.0 2009 45.2 52.7 48.2 2010 45.2 54.0 48.8...
First Test of High Frequency Gravity Waves from Inflation using ADVANCED LIGO
Alejandro Lopez; Katherine Freese
2015-01-11T23:59:59.000Z
Inflation models ending in a first order phase transition produce gravitational waves (GW) via bubble collisions of the true vacuum phase. We demonstrate that these bubble collisions can leave an observable signature in Advanced LIGO, an upcoming ground-based GW experiment. These GW are dependent on two parameters of the inflationary model: $\\varepsilon$ represents the energy difference between the false vacuum and the true vacuum of the inflaton potential, and $\\chi$ measures how fast the phase transition ends ($\\chi \\sim$ the number of e-folds during the actual phase transition). Advanced LIGO will be able to test the validity of single-phase transition models within the parameter space $10^7 \\rm{GeV}\\lesssim \\varepsilon^{1/4} \\lesssim 10^{10} \\rm{GeV}$ and $0.19 \\lesssim \\chi \\lesssim 1$. If inflation occurred through a first order phase transition, then Advanced LIGO could be the first to discover high frequency GW from inflation.
J. R. Morris
2001-06-06T23:59:59.000Z
Generalized slow roll conditions and parameters are obtained for a general form of scalar-tensor theory (with no external sources), having arbitrary functions describing a nonminimal gravitational coupling F(\\phi), a Kahler-like kinetic function k(\\phi), and a scalar potential V(\\phi). These results are then used to analyze a simple toy model example of chaotic inflation with a single scalar field \\phi and a standard Higgs potential and a simple gravitational coupling function. In this type of model inflation can occur with inflaton field values at an intermediate scale of roughly 10^{11} GeV when the particle physics symmetry breaking scale is approximately 1 TeV, provided that the theory is realized within the Jordan frame. If the theory is realized in the Einstein frame, however, the intermediate scale inflation does not occur.
Universe Decay, Inflation and the Large Eigenvalue of the Cosmological Constant Seesaw
Michael McGuigan
2007-02-22T23:59:59.000Z
We discuss implications of the large eigenvalue of the cosmological constant seesaw mechanism extending hep-th/0602112 and hep-th/0604108. While the previous papers focused on the small eigenvalue as a cosmological constant associated with the accelerating Universe, here we draw attention to the physical implications of the large eigenvalue. In particular we find that the large eigenvalue can give rise to a period of inflation terminated by Universe decay. The mechanism involves quantum tunneling and mixing and introduces parameters $\\Gamma$, the decay constant, and $\\theta$, the mixing angle. We discuss the cosmological constant seesaw mechanism in the context of various models of current interest including chain inflation, inflatonless inflation, string theory, Universe entanglement and different approaches to the hierarchy problem.
Large tensor mode, field range bound and consistency in generalized G-inflation
Kunimitsu, Taro; Watanabe, Yuki; Yokoyama, Jun'ichi
2015-01-01T23:59:59.000Z
We systematically show that in potential driven generalized G-inflation models, quantum corrections coming from new physics at the strong coupling scale can be avoided, while producing observable tensor modes. The effective action can be approximated by the tree level action, and as a result, these models are internally consistent, despite the fact that we introduced new mass scales below the energy scale of inflation. Although observable tensor modes are produced with sub-strong coupling scale field excursions, this is not an evasion of the Lyth bound, since the models include higher-derivative non-canonical kinetic terms, and effective rescaling of the field would result in super-Planckian field excursions. We argue that the enhanced kinetic term of the inflaton screens the interactions with other fields, keeping the system weakly coupled during inflation.
Annual Salary & Guaranteed First-Year Bonus Information 2012-2013 Bachelor's Level Alumni
Manchak, John
Annual Salary & Guaranteed First-Year Bonus Information 2012-2013 Bachelor's Level Alumni Data was collected in December 2013 and January 2014 20.9% Response Rate Salary & Bonus Information Available for 759 All information was self-reported. College # of Responses Average Salary # Who Received Bonus Bonus
Not Available
1993-10-28T23:59:59.000Z
The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.
NONE
1997-04-01T23:59:59.000Z
The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.
Not Available
1994-12-06T23:59:59.000Z
Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.
Boom and Bust Inflation: A Graceful Exit via Compact Extra Dimensions
Brown, Adam R. [Physics Department, Columbia University, New York, New York 10027 (United States)
2008-11-28T23:59:59.000Z
A model of inflation is proposed in which compact extra dimensions allow a graceful exit without recourse to flat potentials or super-Planckian field values. Though bubbles of true vacuum are too sparse to uniformly reheat the Universe by colliding with each other, a compact dimension enables a single bubble to uniformly reheat by colliding with itself. This mechanism, which generates an approximately scale invariant perturbation spectrum, requires that inflation be driven by a bulk field, that vacuum decay be slow, and that the extra dimension be at least a hundred times larger than the false vacuum Hubble length.
Does the first chaotic inflation model in supergravity provide the best fit to the Planck data?
Andrei Linde
2015-01-17T23:59:59.000Z
I describe the first model of chaotic inflation in supergravity, which was proposed by Goncharov and the present author in 1983. The inflaton potential of this model has a plateau-type behavior $V_{0} (1- {8\\over 3}\\, e^{-\\sqrt 6 |\\phi|})$ at large values of the inflaton field. This model predicts $n_{s} = 1-{2\\over N} \\approx 0.967$ and $r = {4\\over 3 N^{2}} \\approx 4 \\times 10^{{-4}}$, in good agreement with the Planck data. I propose a slight generalization of this model, which allows to describe not only inflation but also dark energy and supersymmetry breaking.
New Higgs Inflation in a No-Scale Supersymmetric SU(5) GUT
John Ellis; Hong-Jian He; Zhong-Zhi Xianyu
2014-12-23T23:59:59.000Z
Higgs inflation is attractive because it identifies the inflaton with the electroweak Higgs boson. In this work, we construct a new class of supersymmetric Higgs inflationary models in the no-scale supergravity with an SU(5) GUT group. Extending the no-scale Kahler potential and SU(5) GUT superpotential, we derive a generic potential for Higgs inflation that includes the quadratic monomial potential and a Starobinsky-type potential as special limits. This type of models can accommodate a wide range of the tensor-to-scalar ratio $r = O(10^{-3}-10^{-1})$, as well as a scalar spectral index $n_s \\sim 0.96$.
Sustainability of multi-field inflation and bound on string scale
Jinn-Ouk Gong
2009-02-11T23:59:59.000Z
We study the effects of the interaction terms between the inflaton fields on the inflationary dynamics in multi-field models. With power law type potential and interactions, the total number of e-folds may get considerably reduced and can lead to unacceptably short period of inflation. Also we point out that this can place a bound on the characteristic scale of the underlying theory such as string theory. Using a simple multi-field chaotic inflation model from string theory, the string scale is constrained to be larger than the scale of grand unified theory.
On the possibility of blue tensor spectrum within single field inflation
Yi-Fu Cai; Jinn-Ouk Gong; Shi Pi; Emmanuel N. Saridakis; Shang-Yu Wu
2014-12-23T23:59:59.000Z
We present a series of theoretical constraints on the potentially viable inflation models that might yield a blue spectrum for primordial tensor perturbations. By performing a detailed dynamical analysis we show that, while there exists such possibility, the corresponding phase space is strongly bounded. Our result implies that, in order to achieve a blue tilt for inflationary tensor perturbations, one may either construct a non-canonical inflation model delicately, or study the generation of primordial tensor modes beyond the standard scenario of single slow-roll field.
Anisotropic Power-law Inflation: A counter example to the cosmic no-hair conjecture
Jiro Soda
2014-10-31T23:59:59.000Z
It is widely believed that anisotropy in the expansion of the universe will decay exponentially fast during inflation. This is often referred to as the cosmic no-hair conjecture. However, we find a counter example to the cosmic no-hair conjecture in the context of supergravity. As a demonstration, we present an exact anisotropic power-law inflationary solution which is an attractor in the phase space. We emphasize that anisotropic inflation is quite generic in the presence of anisotropic sources which couple with an inflaton.
Power spectrum and anisotropy of super inflation in loop quantum cosmology
Xiao-Jun Yue; Jian-Yang Zhu
2013-03-25T23:59:59.000Z
We investigate the scalar mode of perturbation of super inflation in the version of loop quantum cosmology in which the gauge invariant holonomy corrections are considered. Given a background solution, we calculate the power spectrum of the perturbation in the classical and LQC conditions. Then we compute the anisotropy originated from the perturbation. It is found that in the presence of the gauge invariant holonomy corrections the power spectrum is exponentially blue and the anisotropy also grows exponentially in the epoch of super inflation.
The effects of a fast-turning trajectory in multiple-field inflation
Maciej Konieczka; Raquel H. Ribeiro; Krzysztof Turzynski
2014-08-27T23:59:59.000Z
The latest results from PLANCK impose strong constraints on features in the spectrum of the curvature perturbations from inflation. We analyse the possibility of particle production induced by sharp turns of the trajectory in field space in inflation models with multiple fields. Although the evolution of the background fields can be altered by particle production, we find rather modest changes in the power spectrum even for the most extreme case in which the entire kinetic energy of the scalar fields is converted into particles.
Harmony, S.C.; Boyack, B.E.
1995-04-01T23:59:59.000Z
VELCOR is an integrated, engineering-level computer code that models the progression of severe accidents in light water reactor (LWR) nuclear power plants. The entire spectrum of severe accident phenomena, including reactor coolant system and containment thermal-hydraulic response, core heatup, degradation and relocation, and fission product release and transport is treated in MELCOR in a unified framework for both boiling water reactors (BWRs) and pressurized water reactors (PWRs). Its current uses include the estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. Independent assessment efforts have been successfully completed by the US and international MELCOR user communities. Most of these independent assessment efforts have been conducted to support the needs and fulfill the requirements of the individual user organizations. The resources required to perform an extensive set of model and integral code assessments are large. A prudent approach to fostering code development and maturation is to coordinate the individual assessment efforts of the MELCOR user community. While retaining individual control over assessment resources, each organization using the MELCOR code could work with the other users to broaden assessment coverage and minimize duplication. In recognition of these considerations, the US Nuclear Regulatory Commission (US NRC) has initiated the MELCOR Cooperative Assessment Program (MCAP), a vehicle for coordinating and standardizing the assessment practices of the various MELCOR users. In addition, the user community will have a forum to better communicate lessons learned regarding MELCOR applications, capabilities, and user guidelines and limitations and to provide a user community perspective on code development needs and priorities. This second Annual Report builds on the foundation laid with the first Annual Report.
Energy Information Administration/Petroleum Marketing Annual
Gasoline and Diesel Fuel Update (EIA)
. . . . . . . . . . . . . . . . - 49 392 Energy Information AdministrationPetroleum Marketing Annual 1998 Kerosene refiners . . . . . . . . . . . . . . . . . . . . . . . . . . ....
Energy Information Administration/Petroleum Marketing Annual
Gasoline and Diesel Fuel Update (EIA)
. . . . . . . . . . . . . . . . - 49 392 Energy Information AdministrationPetroleum Marketing Annual 1999 Kerosene refiners . . . . . . . . . . . . . . . . . . . . . . . . . . ....