Powered by Deep Web Technologies
Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Reservoir Character of the Avalon Shale (Bone Spring Formation) of the Delaware Basin, West Texas and Southeast New Mexico: Effect of Carbonate-rich Sediment Gravity Flows  

E-Print Network (OSTI)

play is not considered to extend to the top of the first Bone Spring carbonate because hydraulic fracturing in the upper parts may penetrate overlying water-bearing units within the Delaware Mountains Group. The Avalon has been reported to range from...

Stolz, Dustin

2014-05-31T23:59:59.000Z

2

Avalon Solar LLC | Open Energy Information  

Open Energy Info (EERE)

Avalon Solar LLC Avalon Solar LLC Jump to: navigation, search Name Avalon Solar LLC Place Albuquerque, New Mexico Zip 87123 Sector Solar Product Albuquerque-based solar project developer. Coordinates 35.08418°, -106.648639° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.08418,"lon":-106.648639,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

3

MHK Projects/Avalon Tidal | Open Energy Information  

Open Energy Info (EERE)

Avalon Tidal Avalon Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1068,"lon":-74.7463,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

4

Regional geologic characterization of the Second Bone Spring Sandstone, Delaware basin, Lea and Eddy Counties, New Mexico  

E-Print Network (OSTI)

The Bone Spring Formation is a series of interbedded siliciclastics and carbonates that were deposited in the Delaware basin during the Leonardian (Early Permian). It consists of the First, Second and Third Carbonate and the First, Second and Third...

Downing, Amanda Beth

2012-06-07T23:59:59.000Z

5

Springs  

NLE Websites -- All DOE Office Websites (Extended Search)

Springs Springs Nature Bulletin No. 618 November 19, 1960 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H. Thompson, Senior Naturalist SPRINGS Springs -- cold, clear springs bubbling from hillsides or welling up from secret depths -- played an important part in the settlement of these United States from the Blue Ridge mountains of Virginia and the Great Smokies in Tennessee to the Ozarks of Illinois, Missouri and Arkansas. Always more plentiful in mountainous and hilly country, they were much more numerous and vigorous in those days before the great forests were cut over or destroyed. Then, most of the rainfall was retained and sank into the ground. Springs are fed by ground water. An early settler, penetrating a frontier wilderness with his family and their meager possessions, traveled and searched until he found a suitable home-site. That was determined not only by the quality of the land and what brew on it but also by the availability of water and timber. Although some preferred to dig a well, fearful that the dreaded milk sickness and "the shakes" or ague might lurk in spring water, a favorite location was near some good "strong" spring.

6

Hooper Springs  

NLE Websites -- All DOE Office Websites (Extended Search)

(PDCI) Upgrade Project Whistling Ridge Energy Project Line Rebuild, Relocation and Substation Projects Wind Projects Hooper Springs BPA is proposing to build a new...

7

First-Year Sophomore Junior Senior Fall Spring Fall Spring Fall Spring Fall Spring  

E-Print Network (OSTI)

First-Year Sophomore Junior Senior Fall Spring Fall Spring Fall Spring Fall Spring 18 Credits 17 Credits 15 Credits 15 Credits (3) ENGIN 351 (3) ChE 120

Massachusetts at Amherst, University of

8

Spring Frogs  

NLE Websites -- All DOE Office Websites (Extended Search)

Frogs Frogs Nature Bulletin No. 6 March 17, 1945 Forest Preserve District of Cook County Clayton F. Smith, President Dr. David H. Thompson, Zoologist SPRING FROGS The CRICKET FROG and the SPRING PEEPER are among the first of the winter sleepers to come out of hibernation and greet the new year, On March 10, a few were found at McGinnis Slough, near Orland Park, where the sun had melted the ice and warmed the water along the shore. A week later the ice was all gone and they were singing in full chorus. If it freezes again, they will crawl back under the logs, leaves and trash where they spent the winter. Both of these frogs are tiny -- about the size of a lima bean. The cricket frog has a rough skin and a dark triangle between the eyes. The spring peeper' s skin is smooth with a large dark-colored X on the back. The male frog does all the singing, blowing up the loose skin at his throat into a small balloon to serve as an amplifier. The cricket frog gets its name from the song of the male, which is a rapid series of staccato chirps -- as sharp as a note struck on a xylophone. The spring peeper's voice is a drawn-out "pe-e-e-ep", sounding like that of a cold hungry baby chick.

9

Spring 2012 Fall 2012 Spring 2013 Fall 2013 Spring 2014 Fall 2014 Spring 2015 Fall 2015 Spring 2016 Fall 2016 College of Applied Sciences  

E-Print Network (OSTI)

285 EDSE 285 College of Engineering Spring 2012 Fall 2012 Spring 2013 Fall 2013 Spring 2014 Fall 2014Spring 2012 Fall 2012 Spring 2013 Fall 2013 Spring 2014 Fall 2014 Spring 2015 Fall 2015 Spring 2016 242 SCWK 242 SCWK 242 SCWK 242 SCWK 242 College of Business Spring 2012 Fall 2012 Spring 2013 Fall

Su, Xiao

10

Spring Walks  

NLE Websites -- All DOE Office Websites (Extended Search)

Walks Walks Nature Bulletin No. 111 April 12, 1947 Forest Preserve District of Cook County William N. Erickson, President Roberts Mann, Supt. of Conservation SPRING WALKS Spring is here. Get out into the forest preserves and enjoy it. Wild ducks are stopping on their northward night to rest and feed in the ponds and sloughs. You will hear the shrill singing of the spring peeper and cricket frogs. The robins, bluebirds, meadow larks, flickers and redwing blackbirds are here, and every day new birds appear. By the middle of April, some of the early wildflowers should be blooming on sunny slopes; by May the woodlands will be carpeted with blossoms. Wear stout walking shoes and heavy socks without holes or wrinkles. Wear old clothing but not too much, the outer garments preferably of hard smooth cloth, such as khaki or denim, that last year's burs and weed seeds can't cling to. Don't load yourself with equipment. Travel light. If you have a small knapsack, all right.

11

5-Year Planning Document for CEE Course Offerings Course Fall Spring Fall Spring Fall Spring Fall Spring Fall Spring  

E-Print Network (OSTI)

5-Year Planning Document for CEE Course Offerings Course Fall Spring Fall Spring Fall Spring Fall Spring Fall Spring CEE 001 Cooperative Education Program Archambault Archambault Archambault Archambault CEE 251 Engineering Spatial Measurements CEE 290 Construction Systems Hanna Farhan Hanna Farhan CEE

Wisconsin at Madison, University of

12

First-Year Sophomore Junior Senior Fall Spring Fall Spring Fall Spring Fall Spring  

E-Print Network (OSTI)

First-Year Sophomore Junior Senior Fall Spring Fall Spring Fall Spring Fall Spring 18 Credits 15 Credits 18 Credits 15 Credits 16 Credits 17 Credits 15 Credits 15 Credits (3) ENGIN 351 (3) ChE 120 (3credits) ENGLWP 112 (3) ENGIN 110 (4) MATH 131 (4) Social World Elective (3) MATH 331 (3) CHEM 262

Massachusetts at Amherst, University of

13

FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING LIN CALC DIF  

E-Print Network (OSTI)

FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING LIN CALC DIF I II ALG in structural engineering should take both; one will count as 4 credits of BSCE elective course work. PH 211-213 are interchangeable with PH 221-223 Math / Science Requirements CALCULUS PHYSICS Engineering / Computer Science

Latiolais, M. Paul

14

FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING LIN CALC DIF  

E-Print Network (OSTI)

FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING LIN CALC DIF I II ALG 5/1/2013AL Department of Civil and Environmental Engineering Civil Engineering Program pdx.edu/cee Possible 4 Year Course Plan SOPHOMORE INQUIRY Engineering / Computer Science Requirements General Education

Bertini, Robert L.

15

FirstYear Sophomore Junior Senior Fall Spring Fall Spring Fall Spring Fall Spring  

E-Print Network (OSTI)

FirstYear Sophomore Junior Senior Fall Spring Fall Spring Fall Spring Fall Spring 18 Credits 15 Credits 18 Credits 15 Credits 16 Credits 17 Credits 19 Credits 17 Credits (3) ENGIN 3514 (3) ChE 120 Fundamentals (1) ChE 291A

Mountziaris, T. J.

16

FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING PUBLIC APP TECH E E  

E-Print Network (OSTI)

FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING FALL WINTER SPRING PUBLIC APP TECH E E I ELECTIVE E - APPROVED MATH ELECTIVE SOPHOMORE INQUIRY LANG AND COMP DESIGN CS UD ELEC Engineering

Bertini, Robert L.

17

ART & LITERARY SPRING 2012  

E-Print Network (OSTI)

ART & LITERARY MAGAZINE VOL. --10 SPRING 2012 #12;2 AD LIBITUM SPRING 2012 3 Ad Libitum Staff Cover LIBITUM SPRING 2012 Today I was at the vending machine buying a soda to have with my lunch. I was put machine. The candies, chips and cookies were care- lessly stuffed on to a metal coil; with each dollar

Kenny, Paraic

18

Joshua Smith Spring 2006  

E-Print Network (OSTI)

Stormwater Utilities in Georgia Joshua Smith Spring 2006 #12;The UGA Land Use Clinic provides in Georgia Author: Joshua Smith Editor: Jamie Baker Roskie University of Georgia Land Use Clinic Spring 2006....................................................................................................10 #12;#12;1Stormwater Utilities in Georgia Stormwater Utilities in Georgia Joshua Smith Spring 2006

Rosemond, Amy Daum

19

ACCESS Magazine Spring 2012  

E-Print Network (OSTI)

Regional Politics and the Golden Gate Bridge, Philadelphia:Regional Politics, and the Golden Gate Bridge University ofuse. This spring the Golden Gate Bridge celebrates its 75th

2012-01-01T23:59:59.000Z

20

Pilgrim Hot Springs, Alaska  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

data processing and use of FLIR - fast, cost effective method to measure natural heat loss * Pilgrim Hot Springs Resource Development - baseload power for the Nome area....

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Computer Project # 1 Nonlinear Springs  

E-Print Network (OSTI)

Computer Project # 1. Nonlinear Springs. Goal: Investigate the behavior of nonlinear springs. Tools needed: ode45, plot routines. Description: Sometimes for...

2005-08-19T23:59:59.000Z

22

Avalon, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania: Energy Resources Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.5009019°, -80.0675554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5009019,"lon":-80.0675554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

23

Avalon, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

California: Energy Resources California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.341888°, -118.325699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.341888,"lon":-118.325699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

24

Hot Springs, Virginia  

SciTech Connect

Three major springs are located in the Warm Springs Valley of the Allegheny Mountains in western Virginia along US route 220--the Warm, Hot and Healing--all now owned by Virginia Hot Springs, Inc. The Homestead, a large and historic luxurious resort, is located at Hot Springs. The odorless mineral water used at The Homestead spa flows from several springs at temperatures ranging from 39{degrees}C to 41{degrees}C (102{degrees} to 106{degrees}F) (Loam and Gersh, 1992). It is piped to individual, one-person bathtubs in separate men`s and women`s bathhouses, where is is mixed to provide an ideal temperature of 40{degrees}C (104{degrees}F). Tubs are drained and refilled after each use so that no chemical treatment is necessary. Mineral water from the same springs is used in an indoor swimming pool maintained at 29{degrees}C (84{degrees}F), and an outdoor swimming pool maintained at 22{degrees}C (72{degrees}F). Eight kilometers (5 miles) away to the northeast, but still within the 6,000-ha (15,000-acre) Homestead property, are the Warm Springs, which flow at 36{degrees}C (96{degrees}F). The rate of discharge is so great, 63 L/s (1000 gpm) (Muffler, 1979) that the two large Warm Springs pools, in separate men`s and women`s buildings, maintain the temperature on a flow-through basis requiring no chemical treatment. The men`s pool was designed by Thomas Jefferson and opened in 1761; the ladies` pool was opened in 1836. The adjacent {open_quotes}drinking spring{close_quotes} and the two covered pools have been preserved in their original condition.

Lund, J.W.

1996-05-01T23:59:59.000Z

25

FALL SPRING FALL SPRING FALL SPRING FALL SPRING FALL Year 1 Year 2 Year 3 Year 4 Year 5  

E-Print Network (OSTI)

FALL SPRING FALL SPRING FALL SPRING FALL SPRING FALL Year 1 Year 2 Year 3 Year 4 Year 5 CORE W to meet BioE Engineering Elective Reqt. (c) ­ course used to meet ChE Techical Elective Reqt Revised 11

Lawrence, Rick L.

26

(ME 117, 118) Fall Spring  

E-Print Network (OSTI)

Spring 16 cr. 18 cr. Sophomore Fall Spring 17 cr. 18 cr. Junior Fall Spring 15 cr. 18 cr. Senior Fall Spring 14 cr. 12 cr. Co-requisite Course. Course at start of line to be taken prior to or at the same of all 100- 200 level courses, except core Mechanical Engineering 2010-2012 Flowsheet, Rev 2

Dyer, Bill

27

FALL SPRING FALL SPRING FALL SPRINGFALL SPRING YEAR 1 YEAR 2 YEAR 3 YEAR 4  

E-Print Network (OSTI)

B FALL SPRING FALL SPRING FALL SPRINGFALL SPRING YEAR 1 YEAR 2 YEAR 3 YEAR 4 ECHM 100 (CHBE 100) 2). There is a pre- requisite of M-273Q (MATH 224). CHMY-373 (CHEM 324) could be taken Spring of year 3. Also, CHMY Math Placement ExamB M-172-Q (MATH 182) 4 cr Chemical Engineering Prerequisite Flowchart Catalog: 2010

Lawrence, Rick L.

28

FALL SPRING FALL SPRING FALL SPRINGFALL SPRING YEAR 1 YEAR 2 YEAR 3 YEAR 4  

E-Print Network (OSTI)

B FALL SPRING FALL SPRING FALL SPRINGFALL SPRING YEAR 1 YEAR 2 YEAR 3 YEAR 4 CHBE 100 2 cr CHMY-141 324) could be taken Spring of year 3. Also, CHMY-371 (CHEM 323) may be substituted for CHMY-373 (CHEM Engineering Prerequisite Flowchart Catalog: 2008-2010 updated 2009 rev. 06/29/10, rwl ­ new course numbers E

Lawrence, Rick L.

29

Spring bypass assembly. [LMFBR  

SciTech Connect

Pipe clamp comprises two substantially semicircular rim halves biased toward each other by spring assemblies. Adjustable stop means 5 limit separation of the rim halves when the pipe expands.

Jablonski, H.; Roughgarden, J.D.

1982-06-02T23:59:59.000Z

30

Biotechnology Laboratory Spring 2012  

E-Print Network (OSTI)

CH369T Biotechnology Laboratory Spring 2012 Instructor: Dr. Gene McDonald Office: WEL 3.270C Phone, and at the same time to introduce you to issues associated with various biotechnology laboratory operations. After

31

Spring 2014 Controls -1  

E-Print Network (OSTI)

Spring 2014 Controls - 1 A simple model for the electrical dynamics of a solenoid valve includes the coil resistance R in series with the coil inductance L, as indicated in the figure to the left

Virginia Tech

32

Midterm Examination Spring, 2005  

E-Print Network (OSTI)

expression with exclusive-OR and AND gates. (8 pt) DCBADCBADBCADCBAF +++= Fig. 1 Logic Diagram for BCD to Excess-3 Code Converter #12; (MEC520) Midterm Examination Spring, 2005 #12;

Ryu, Jee-Hwan

33

Learning From Real Springs  

E-Print Network (OSTI)

Many springs do not obey Hooke's Law because they are constructed to have an intrinsic tension which must be overcome before normal elongation occurs. This property, well-known to engineers, is universally neglected in elementary physics courses...

Bassichis, William

2013-01-29T23:59:59.000Z

34

Fatigue of Spring Steels  

Science Journals Connector (OSTI)

... CONSIDERABLE trouble has been experienced by the failure in service of aero-engine valve ... valve springs. A paper by Swan, Sutton, and Douglas, read before the Institution of Mechanical ...

1931-04-25T23:59:59.000Z

35

Scripting Support in Spring  

Science Journals Connector (OSTI)

This is just a simple introduction to closures. In the next section, we develop a simple rule engine by using Groovy and Spring; closures are used also. For a... http://groovy.c...

Chris Schaefer; Clarence Ho; Rob Harrop

2014-01-01T23:59:59.000Z

36

NTSF Spring 2011 Agenda | Department of Energy  

Office of Environmental Management (EM)

Spring 2011 Agenda NTSF Spring 2011 Agenda Final Agenda for NTSF meeting in Denver Colorado. NTSF Spring 2011 Agenda More Documents & Publications NTSF 2014 Meeting Agenda NTSF...

37

Hot Springs | Open Energy Information  

Open Energy Info (EERE)

Springs Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hot Springs Dictionary.png Hot Springs: A naturally occurring spring of hot water, heated by geothermal processes in the subsurface, and typically having a temperature greater than 37°C. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Mammoth Hot Springs at Yellowstone National Park (reference: http://www.hsd3.org/HighSchool/Teachers/MATTIXS/Mattix%20homepage/studentwork/Laura%20Cornelisse%27s%20Web%20Page/Yellowstone%20National%20Park.htm) Hot springs occur where geothermally heated waters naturally flow out of the surface of the Earth. Hot springs may deposit minerals and spectacular

38

Spring 2010 WHO'S WHO AND  

E-Print Network (OSTI)

Spring 2010 WHO'S WHO AND WHAT'S WHAT How do I get information about...? Which person handles is frequently updated as new information is provided. At the beginning of both the fall and spring semesters ..........................................................................................................................................5 Engineering

Yorke, James

39

for the brain SPRING 2012  

E-Print Network (OSTI)

Plug-ins for the brain SPRING · 2012 NATURE'S SOLARCELLS Learning from diatoms · 28 HANNIBAL'S HEAD

Malinnikova, Eugenia

40

Philosophy Courses Spring 2015  

E-Print Network (OSTI)

Philosophy Courses Spring 2015 All philosophy courses satisfy the Humanities requirement -- except 120, which counts as one of the two required courses in Math/Logic. Many philosophy courses (e.g., Business Ethics, Philosophy of Law) complement other major programs. For those with a sustained interest

Kasman, Alex

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Philosophy Courses Spring 2014  

E-Print Network (OSTI)

Philosophy Courses Spring 2014 All philosophy courses satisfy the Humanities requirement -- except 120, which counts as one of the two required courses in Math/Logic. Many philosophy courses (e.g., Business Ethics, Philosophy of Law) complement other major programs. For those with a sustained interest

Young, Paul Thomas

42

Philosophy Courses Spring 2013  

E-Print Network (OSTI)

Philosophy Courses Spring 2013 All philosophy courses satisfy the Humanities requirement -- except 120, which counts as one of the two required courses in Math/Logic. Many philosophy courses (e.g., Business Ethics, Philosophy of Law) complement other major programs. For those with a sustained interest

Kasman, Alex

43

Philosophy Courses Spring 2012  

E-Print Network (OSTI)

Philosophy Courses Spring 2012 All philosophy courses satisfy the Humanities requirement -- except 120, which counts as one of the two required courses in Math/Logic. Many philosophy courses (e.g., Business Ethics, Philosophy of Law) complement other major programs. For those with a sustained interest

Young, Paul Thomas

44

Project Year Spring 2009  

E-Print Network (OSTI)

Project Year Spring 2009 Project Title A Database of Film and Media History and Aesthetics Part 2 experience with colleagues, they were eager to participate in expanding the database to include clips or they simply don't have the time, or both. Solution: The development of a user-friendly database of clips would

Gray, Jeffrey J.

45

WELDON SPRING FORMER ARMY  

E-Print Network (OSTI)

.S. Department of Energy (DOE) and listed on the National Priorities List as Weldon Spring Quarry/Plant/Pits site production lines, and eight areas where explosive wastes were burned. Approximately 5,000 people live within. As part of a removal action, Burning Ground #1 was fenced to eliminate any potential exposures while

46

Marketing Intelligence Spring 2009  

E-Print Network (OSTI)

- 1 - Marketing Intelligence Syllabus Spring 2009 #12;- 2 - Course Description: The practice of marketing is changing. Due to increasing desktop computing power and companies amassing massive amounts of data, marketing decisions made by companies are becoming more and more data based. This holds in many

Jank, Wolfgang

47

University Calendar Spring 2017  

E-Print Network (OSTI)

10-18 Spring recess (Passover, Easter) Apr 18 Residence halls open 2 p.m. Apr 19 Classes resume TBD (Rosh Hashanah) Sept 25 Classes resume Sept 29 Classes recess 1 p.m. (Yom Kippur) Oct 2 Classes resume 26 Residence halls open 2 p.m. Nov 27 Classes resume Dec 13 Last day of classes Dec 14-20 Final

Suzuki, Masatsugu

48

Air Pollution Spring 2010  

E-Print Network (OSTI)

and control. 6. Examine regional and global air pollution issues. Prerequisite: CHEM 113 and (MATH 261 or MATHATS 555 Air Pollution Spring 2010 T Th 11:00 ­ 12:15, NESB 101 Instructor: Prof. Sonia Kreidenweis an understanding of types and sources of air pollution. 2. Examine concentrations of air pollutants

49

Biodegradable synthetic bone composites  

DOE Patents (OSTI)

The invention provides for a biodegradable synthetic bone composition comprising a biodegradable hydrogel polymer scaffold comprising a plurality of hydrolytically unstable linkages, and an inorganic component; such as a biodegradable poly(hydroxyethylmethacrylate)/hydroxyapatite (pHEMA/HA) hydrogel composite possessing mineral content approximately that of human bone.

Liu, Gao; Zhao, Dacheng; Saiz, Eduardo; Tomsia, Antoni P.

2013-01-01T23:59:59.000Z

50

UNDERGRADUATE SPRING SYMPOSIUM  

E-Print Network (OSTI)

of Architecture Building West Wing Atrium Sponsored by: Undergraduate Research Opportunities Program (UROP) #12 Yoganathan, BME 2:00pm Shear Stress Effects on Key Bone Formation Markers in 2T3 Pre-osteoblasts Saujanya Microdroplets John Widloski, Physics Mentor: Dr. Roman Grigoriev & Dr. Dmitri Vainchtein, Physics 3:00pm

Gaucher, Eric

51

Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs, And Desert  

Open Energy Info (EERE)

Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs, And Desert Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs, And Desert Peak Geothermal Systems, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs, And Desert Peak Geothermal Systems, Nevada Details Activities (3) Areas (3) Regions (0) Abstract: Gaseous emissions from the landscape can be used to explore for geothermal systems, characterize their lateral extent, or map the trends of concealed geologic structures that may provide important reservoir permeability at depth. Gaseous geochemical signatures vary from system to system and utilization of a multi-gas analytical approach to exploration or characterization should enhance the survey's clarity. This paper describes

52

Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

(Poncha Spring) Space Heating Low Temperature Geothermal (Poncha Spring) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal Facility Facility Salida Hot Springs (Poncha Spring) Sector Geothermal energy Type Space Heating Location Salida, Colorado Coordinates 38.5347193°, -105.9989022° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

53

Spring 2009 Technical Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring 2009 Technical Workshop Spring 2009 Technical Workshop in Support of U.S. Department of Energy 2009 Congestion Study Webcast, transcript, and presentations available at: http://www.congestion09.anl.gov/ Crowne Plaza Chicago O'Hare Hotel & Conference Center March 25-26, 2009 Agenda Day 1 - Wednesday, March 25, 2009 9:00 a.m. Registration Check-In & Continental Breakfast 10:00 a.m. DOE Welcome/Purpose of Workshop David Meyer, Senior Policy Advisor, Office of Electricity Delivery and Energy Reliability, U.S. Department of Energy (DOE-OE) 10:15 a.m. Session 1 - Historic Congestion in the Western Interconnection The Western Electric Coordinating Council Transmission Expansion Planning and Policy Committee has conducted an analysis of historic congestion in the Western

54

Experto Universitario Java Sesin 1: Spring core  

E-Print Network (OSTI)

Enterprise Spring © 2012-2013 Depto. Ciencia de la Computación e IA Spring core Puntos a tratar 2 #12;Experto Universitario Java Enterprise Spring © 2012-2013 Depto. Ciencia de la Computación e IA;Experto Universitario Java Enterprise Spring © 2012-2013 Depto. Ciencia de la Computación e IA Spring core

Escolano, Francisco

55

Transatlantic Bone Marrow Transplantation  

Science Journals Connector (OSTI)

The Ontario Cancer Institute/ Princess Margaret Hospital, Bone Marrow Transplant and Leukemia Service, Toronto, Canada, Dr. J. H. Lipton, asked our new HLA-DNA typing laboratory at University Hospital in Olomo...

M. Bencov; J. Benca

1997-01-01T23:59:59.000Z

56

Research Assistantship Available Starting Spring 2013  

E-Print Network (OSTI)

Research Assistantship Available Starting Spring 2013 A research assistantship is available including fac- ulty and students from electrical engineering, computer science, biological sciences Spring 2013 and be funded through Spring 2015. Inter- ested students should submit a resume to David

Koppelman, David M.

57

Spring 2015 National Transportation Stakeholders Forum Meeting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 National Transportation Stakeholders Forum Meeting, New Mexico Spring 2015 National Transportation Stakeholders Forum Meeting, New Mexico Save the Date The spring 2015 meeting...

58

Industrial Assessment Centers Quarterly Update, Spring 2014 ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment Centers Quarterly Update, Spring 2014 Read the Industrial Assessment Centers (IAC) Quarterly Update -- Spring 2014 Industrial Assessment Centers (IAC) Quarterly Update...

59

Spring loaded locator pin assembly  

DOE Patents (OSTI)

This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece.

Groll, Todd A. (Idaho Falls, ID); White, James P. (Pocatelo, ID)

1998-01-01T23:59:59.000Z

60

Spring loaded locator pin assembly  

DOE Patents (OSTI)

This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece. 5 figs.

Groll, T.A.; White, J.P.

1998-03-03T23:59:59.000Z

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

FAUNA AND IDENTITY: RITUAL, FEAST AND DIET AT GOAT SPRING PUEBLO, NEW MEXICO  

E-Print Network (OSTI)

. This is an unprepared pit filled with charcoal, corn, pottery sherds, lithics and burned bone. The fact that this pit was plastered over with a floor suggests that this was not made for repeated use. Rather, this pit was a probably associated with a single event... believe that the subfloor pit was used to deposit the remains from a single feasting event. The pit from Goat Spring Pueblo, did not show evidence multiple burning events and was not lined. Also, the level of burning on the bones recovered...

Mendha, Muhammad Ali A

2013-09-26T23:59:59.000Z

62

200 N. Spring Street  

Office of Legacy Management (LM)

Dipartment of Energy. ,' Dipartment of Energy. ,' Washington,DC20585 ., .\ FEB 1 7 ' 19g5' ,The Honorable Richa,rd. Riordon .', 200 N. Spring Street 'Los Angeles, California ,90012 '~ Dear Mayor Riordon: " Secretary of Energy Hazel O'Leary'has announced a neb approach to openness ins- the Department of Energy (DOE) and its communications with the public. fin support of this initiative, we are pleased~ to forward the enclosed information related to the. former Shannon Luminous Metals site in your jurisdiction that pe.rformed work for DOE's'predecessor agencies.' .This'information is provided foryour information, use! and,retention.~' "I , DOE's Formerly.Utilized Sites Remedial Action Program (FUSRAP) is responsible for identification of, sites used by DOE's predecessor agencies, determining

63

Spring loaded thermocouple module  

DOE Patents (OSTI)

A thermocouple arrangement is provided for mounting in a blind hole of a specimen. The thermocouple arrangement includes a cup-like holder member, which receives an elongated thermal insulator, one end of which is seated at an end wall of the holder. A pair of thermocouple wires, threaded through passageways in the insulator, extend beyond the insulator member, terminating in free ends which are joined together in a spherical weld bead. A spring, held captive within the holder, applies a bias force to the weld bead, through the insulator member. The outside surface of the holder is threaded for engagement with the blind hole of the specimen. When the thermocouple is installed in the specimen, the spherical contact surface of the weld bead is held in contact with the end wall of the blind hole, with a predetermined bias force.

McKelvey, Thomas E. (Solana Beach, CA); Guarnieri, Joseph J. (San Diego, CA)

1985-01-01T23:59:59.000Z

64

spring 2010 Columbia EnginEEring  

E-Print Network (OSTI)

spring 2010 Columbia EnginEEring Michael MassiMino, Bs '84, nasa astronaut--page 15 ursula Burns an impaCt leaders making an impact flight #12;coluMBia engineering | spring 2010 | 1 contentsSpring 2010 West 120th street, Mc 4714 new York, nY 10027 #12;2 | engineering neWs | spring 2010 colu

Hone, James

65

Boise State University SPRING UPDATE 2012  

E-Print Network (OSTI)

Boise State University SPRING UPDATE 2012 January 11, 2012 #12;SPRING UPDATE 2012 #12;SPRING UPDATE 2012 Highlights since August 2011 · Three new Ph.D. programs approved: Materials Science & Engineering in overturning the murder conviction of American student Amanda Knox #12;SPRING UPDATE 2012 #12;All Steinway

Barrash, Warren

66

METR 2603.001, Spring 2013, Dr. LaDue Syllabus, Spring 2013, p. 1  

E-Print Network (OSTI)

Syllabus -- Spring 2013 Class Schedule: MWF 9:30­10:20am, Carson Engineering Rm 117METR 2603.001, Spring 2013, Dr. LaDue Syllabus, Spring 2013, p. 1 course. #12;METR 2603.001, Spring 2013, Dr. LaDue Syllabus, Spring 2013

Droegemeier, Kelvin K.

67

Spring Already? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Already? Spring Already? Spring Already? March 22, 2011 - 5:25pm Addthis Drew Bittner Web Manager, Office of Energy Efficiency and Renewable Energy Seems we were just hunkering down for cold weather and bundling into our big coats just last week. Well, come to think of it, it WAS last week-it got pretty darn cold here in the DC area a couple of nights back. This might make you wonder when spring is going to get here. Good question. Even though the average temperature shows an upward trend over the weeks to come, we all know that temperatures bounce up and down a lot. Add to that the atmospheric instability that generates, and we get plenty of rain (and even severe thunderstorms) as well. What does this have to do with energy? Everything. For one, home and business owners have to compensate for erratic, unpredictable changes in

68

Advanced Policy Practice Spring 2014  

E-Print Network (OSTI)

Advanced Policy Practice Spring 2014 SW 548-001 Instructor course that focuses on the theory and evidence-based skill sets of policy analysis, development, implementation, and change. The course focuses on policy

Grissino-Mayer, Henri D.

69

Spring Already? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Already? Spring Already? Spring Already? March 22, 2011 - 5:25pm Addthis Drew Bittner Web Manager, Office of Energy Efficiency and Renewable Energy Seems we were just hunkering down for cold weather and bundling into our big coats just last week. Well, come to think of it, it WAS last week-it got pretty darn cold here in the DC area a couple of nights back. This might make you wonder when spring is going to get here. Good question. Even though the average temperature shows an upward trend over the weeks to come, we all know that temperatures bounce up and down a lot. Add to that the atmospheric instability that generates, and we get plenty of rain (and even severe thunderstorms) as well. What does this have to do with energy? Everything. For one, home and business owners have to compensate for erratic, unpredictable changes in

70

Motor Gasoline Market Spring 2007 and Implications for Spring 2008  

Gasoline and Diesel Fuel Update (EIA)

Motor Gasoline Market Spring 2007 Motor Gasoline Market Spring 2007 and Implications for Spring 2008 April 2008 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requestor. Preface and Contacts

71

Spring 2008 ASA Meeting Disclaimer  

U.S. Energy Information Administration (EIA) Indexed Site

8 Meeting of the 8 Meeting of the American Statistical Association Committee on Energy Statistics and the Energy Information Administration In two adjacent files you will find unedited transcripts of EIA's spring 2008 meeting with the American Statistical Association Committee on Energy Statistics. Beginning with the fall 2003 meeting, EIA no longer edits these transcripts. Summaries of previous meetings can be found to the right of the Thursday and Friday transcripts. The public meeting took place on April 9, 2008 in the Forrestal Building at 1000 Independence Ave., S.W., Washington, D.C. 20585. All sessions were plenary and were held in room 8E-089. The spring meeting agenda, papers, presentation slides and other materials may be found at: http://www.eia.gov/smg/asa_meeting_2008/spring/index.html

72

Spring into Energy Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring into Energy Savings Spring into Energy Savings Spring into Energy Savings April 14, 2009 - 6:00am Addthis Amy Foster Parish No winter lasts forever; no spring skips its turn. - Hal Borland In my part of the country, winter seems to hang on an interminably long time. So I always look forward to the first signs of spring with unbridled glee. At the first glimpse of a cherry blossom, the winter boots are banished to the back of the closet and the sandals are put to work in earnest. But while spring may give the perfect excuse to hang up the winter coat, the advent of spring does not mean that we can pack away thoughts of energy efficiency with our wool sweaters. Last winter, Jennifer Carter gave us a number of great energy efficiency tips for winter. Now that spring's milder temperatures are upon us and it's time to consider what energy efficiency

73

ARM - Field Campaign - Spring SCM IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Send Campaign : Spring SCM IOP 1998.04.27 - 1998.05.17 Lead Scientist : David Randall For data sets, see below. Abstract The Spring 1998 SCMCloud IOP was conducted from...

74

Hot Springs Metropolitan Planning Organization 2030 Long Range Transportation Plan  

E-Print Network (OSTI)

Hot Springs Area Metropolitan Planning Organization 100 Broadway Terrace Hot Springs, Arkansas 71901 Adopted November 3, 2005 HSA-MPO 2030 LRTPii Participating Agencies Garland County Hot... Spring County City of Hot Springs City of Mountain Pine Hot Springs Village The Greater Hot Springs Chamber of Commerce The Arkansas State Highway and Transportation Department In Cooperation With United States Department of Transportation...

Hot Springs Metropolitan Planning Organization

2005-11-03T23:59:59.000Z

75

Spring 2014 Composite Data Products: Backup Power  

SciTech Connect

This report includes 30 composite data products (CDPs) produced in Spring 2014 for fuel cell backup power systems.

Kurtz, J.; Sprik, S.; Saur, G.

2014-06-01T23:59:59.000Z

76

A more general form for parallel springs  

Science Journals Connector (OSTI)

The well-known result for the addition of springs in parallel assumes that the springs are constrained to compress the same amount. We consider the implications of removing this constraint by holding one end of each spring fixed but allowing the other ends to compress as needed to achieve static equilibrium.

Timothy J. Folkerts

2002-01-01T23:59:59.000Z

77

Montana Statewide Spring Canola Variety Evaluation  

E-Print Network (OSTI)

0 2011 Montana Statewide Spring Canola Variety Evaluation #12;1 Table of Contents: Page Project .................................................................................................................11-20 #12;2 Montana Statewide Spring Canola Variety Evaluation, 2011 Project Leaders: Heather Mason Montana Statewide Spring Canola Variety Evaluation. SPONSOR VARIETY TYPE HERBICIDE RESISTANCE CONTACT

Dyer, Bill

78

Spring 2006 CS 649 1 Sensor Networks  

E-Print Network (OSTI)

· Execution engine for scripting language · Code size #12;Programming Wireless Sensors Spring 2006 CS 649 3Spring 2006 CS 649 1 CS649 Sensor Networks Lecture 25: Reprogramming Andreas Terzis http://hinrg.cs.jhu.edu/wsn06/ #12;Outline Spring 2006 CS 649 2 · Problem: Reprogram the network after it is deployed

Amir, Yair

79

Erera, Spring School 2004 Transportation Security  

E-Print Network (OSTI)

and Systems Engineering Georgia Institute of Technology #12;Erera, Spring School 2004 Outline ! UnderstandingErera, Spring School 2004 Transportation Security Alan Erera and Chelsea C. White III Industrial ! Transportation security research: future #12;Erera, Spring School 2004 Outline ! Understanding transportation

Erera, Alan

80

Fracture, aging and disease in bone  

E-Print Network (OSTI)

separate during bone fracture. Nature Materials 4, 612 (on nonagenarians with hip fractures? Injury 30, 169 (1999).bone mass as predictors of fracture in a prospective study.

Ager, J.W.; Balooch, G.; Ritchie, R.O.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Bioactive Glass Scaffolds for Bone Regeneration  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioactive Glass Scaffolds for Bone Regeneration Bioactive Glass Scaffolds for Bone Regeneration Print Wednesday, 28 September 2011 00:00 Natural materials are renowned for their...

82

Spring Cleaning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Cleaning Spring Cleaning Spring Cleaning April 23, 2012 - 3:58pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory One thing I forget to do in the spring is to change the furnace filter. I try to do it at least quarterly, but that doesn't always happen. I don't have air conditioning (which would also have a filter that needed to be changed periodically)-I don't particularly need it at 8,000 ft, especially when I'm working in town all day-so I just turn the furnace off altogether for the summer, usually some time in May. I can just open the house up on a summer evening, and the evening breezes cool everything off pretty well-the ultimate in energy efficiency! I'll remember again in September, when it's time to turn the furnace back on. Part of the problem is that I can't just change the filter. I have to

83

Annual Report CMS Spring Assembly  

E-Print Network (OSTI)

Annual Report 2007-2008 CMS Spring Assembly & Length of Service Awards March 9, 2012 #12;Annual Report 2007-2008 News & Events: Alumni David Mearns (CMS MS `86) Selected as co-recipient of USF's Distinguished Alumni Award, Fall 2011 #12;Annual Report 2007-2008 News & Events: Faculty Dr. Robert Byrne

Meyers, Steven D.

84

Spring 2014 Heat Transfer -1  

E-Print Network (OSTI)

Spring 2014 1 Heat Transfer - 1 Consider a cylindrical nuclear fuel rod of length L and diameter df and the tube at a rate m , and the outer surface of the tube is well insulated. Heat generation occurs within. The specific heat of water pc , and the thermal conductivity of the fuel rod fk are constants. The system

Virginia Tech

85

Ecology of Ecotourism Spring, 2014  

E-Print Network (OSTI)

FOR 4934: Ecology of Ecotourism Spring, 2014 Room 106 Rogers Hall Monday Periods 6-8 (12:50 to 3 with an understanding of the management and planning of ecotourism opportunities. Specific learning outcomes include recreation and tourism development; · understand ecological impacts and ecotourism management approaches

Watson, Craig A.

86

Online Marketing Analytics Spring 2009  

E-Print Network (OSTI)

- 1 - Online Marketing Analytics Syllabus Spring 2009 #12;- 2 - Course Description: The practice of marketing is changing. Due to increasing desktop computing power and companies amassing massive amounts of data, marketing decisions made by companies are becoming more and more data based. This holds in many

Jank, Wolfgang

87

SPRING 2014 wind energy's impact  

E-Print Network (OSTI)

SPRING 2014 wind energy's impact on birds, bats......... 2-3 school news........... 4-5 alumni news measurable benefits reaped by the use of wind energy. But, it is a fact: all energy sources, alternative Interactions with Offshore Wind Energy Facilities," involves the design, deployment and testing

Tullos, Desiree

88

Chemistry Department Colloquium: Spring, 2012  

E-Print Network (OSTI)

Chemistry Department Colloquium: Spring, 2012 Friday, March 16; 3:30 Seminar Hall (room 1315 Chemistry) Lost in Translation: How Regulators Use Science and How Scientists Can Help Bridge Gaps Stephanie to combine her Chemistry background with a legal education to improve the use of science in environmental

Sheridan, Jennifer

89

Spring 2009 ASA Meeting Disclaimer  

U.S. Energy Information Administration (EIA) Indexed Site

9 Meeting of the 9 Meeting of the American Statistical Association Committee on Energy Statistics and the Energy Information Administration In two adjacent files you will find unedited transcripts of EIA's spring 2009 meeting with the American Statistical Association Committee on Energy Statistics. Beginning with the fall 2003 meeting, EIA no longer edits these transcripts. Summaries of previous meetings can be found to the right of the Thursday and Friday transcripts. The public meeting took place on April 2 and 3, 2009 in the Forrestal Building at 1000 Independence Ave., S.W., Washington, D.C. 20585. All of the plenary and one of the break-out sessions were in room 8E-089. Another breakout session was held in room 5E-069. The spring meeting agenda, papers, presentation slides and other materials

90

AMF Deployment, Steamboat Springs, Colorado  

NLE Websites -- All DOE Office Websites (Extended Search)

Colorado Colorado Steamboat Deployment AMF Home Steamboat Springs Home Storm Peak Lab Data Plots and Baseline Instruments Data Sets Experiment Planning STORMVEX Proposal Abstract and Related Campaigns Science Plan NWS Forecasting Plots STORMVEX Website Outreach STORMVEX Backgrounder (PDF, 1.6MB) News AMF2 STORMVEX Blog Images Contacts Gerald Mace AMF Deployment, Steamboat Springs, Colorado This view shows the instrument locations for the STORMVEX campaign. At the westernmost site is the Valley Floor. Heading east up the mountain is Christy Peak, Thunderhead, and Storm Peak Laboratory at the far east. Valley Floor: 40° 39' 43.92" N, 106° 49' 0.84" W Thunderhead: 40° 39' 15.12" N, 106° 46' 23.16" W Storm Peak: 40° 27' 18.36" N, 106° 44' 40.20" W

91

Spring Valley | Open Energy Information  

Open Energy Info (EERE)

Valley Valley Jump to: navigation, search Name Spring Valley Facility Spring Valley Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Pattern Energy Developer Pattern Energy Energy Purchaser NV Energy Location Ely NV Coordinates 39.10555447°, -114.4940186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.10555447,"lon":-114.4940186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

92

ENERGY STAR Snapshot Spring 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Spring 2012 Spring 2012 Snapshot data runs through December 31, 2011. The ENERGY STAR Snapshot provides an at-a-glance summary of the latest national ENERGY STAR metrics to help you, our partners, see the impact of your efforts. The ENERGY STAR Snapshot is distributed twice a year and provides: * Trends in energy benchmarking of commercial and industrial buildings. * State-by-state activity along with activity for the top Designated Market Areas. * Industrial sector participation in ENERGY STAR. * Trends in ENERGY STAR certified commercial and industrial facilities. Summary By the end of calendar year 2011, commercial and industrial organizations exceeded figures for benchmarking and certification that were achieved in 2010. Since June, 2011:

93

Spring 2014 Heat Transfer -2  

E-Print Network (OSTI)

Spring 2014 Heat Transfer - 2 A thin electronic chip is in the shape of a square wafer, b = 1 cm surface of the chip with a heat transfer coefficient of h = 100 W/m2 -K. Assume the chip has a uniform per side with a mass of m = 0.3 grams and specific heat of C = 103 J/kg-K. The chip is mounted

Virginia Tech

94

CAS Alumni & Development Spring 2006  

E-Print Network (OSTI)

Understanding Cell Structure in the Doe Lab Four Stars Alumni Tech Talk Search Class Notes Online 1245://cas.uoregon.edu/alumnidev/cascade/2006spring/comix.html (1 of 6)6/19/2007 9:45:45 AM #12;CAS Alumni & Development "This was deep stuff of the Comparative Literature Reading Project. Spiegelman's work shows us that comics can be "a form capacious enough

Oregon, University of

95

CHEMICAL AND BIOLOGICAL ENGINEERING CURRICULUM DUAL BS CHE/CH DEGREE Revised 2-21-12 CSB CH 101 (4) Spring -FRESH Fall -SOPH Spring -SOPH Fall -JR Spring -JR Fall -SR Spring -SR  

E-Print Network (OSTI)

CHEMICAL AND BIOLOGICAL ENGINEERING CURRICULUM DUAL BS CHE/CH DEGREE Revised 2-21-12 CSB CH 101 (4) Spring - FRESH Fall - SOPH Spring - SOPH Fall - JR Spring - JR Fall - SR Spring - SR (CH 117) (CH 118) CH 16 15 COURSE OFFERING Summer Only Fall Only Spring Only OPTIONAL COURSES GES 100 (1) MA 112 (3) MA

Carver, Jeffrey C.

96

2013 CHEMICAL AND BIOLOGICAL ENGINEERING CURRICULUM -BS CHE DEGREE Revised 6-25-13 CSB Fall -FRESH Spring -FRESH Fall -SOPH Spring -SOPH Fall -JR Spring -JR Fall -SR Spring -SR  

E-Print Network (OSTI)

2013 CHEMICAL AND BIOLOGICAL ENGINEERING CURRICULUM - BS CHE DEGREE Revised 6-25-13 CSB Fall - FRESH Spring - FRESH Fall - SOPH Spring - SOPH Fall - JR Spring - JR Fall - SR Spring - SR (CH 117) (CH 16 15 15/17 4/0 15/17 15 COURSE OFFERING Summer Only Fall Only Spring Only Total Hours 127 OPTIONAL

Carver, Jeffrey C.

97

2013 CHEMICAL AND BIOLOGICAL ENGINEERING CURRICULUM -BS CHE DEGREE Revised 6-25-13 CSB Fall -FRESH Spring -FRESH Fall -SOPH Spring -SOPH Fall -JR Spring -JR Fall -SR Spring -SR  

E-Print Network (OSTI)

2013 CHEMICAL AND BIOLOGICAL ENGINEERING CURRICULUM - BS CHE DEGREE Revised 6-25-13 CSB Fall - FRESH Spring - FRESH Fall - SOPH Spring - SOPH Fall - JR Spring - JR Fall - SR Spring - SR (CH 117) (CH/0 12/14 15 COURSE OFFERING Summer Only Fall Only Spring Only Total Hours 127 OPTIONAL COURSES MA 112 (3

Carver, Jeffrey C.

98

Bone Surface and Whole Bone as Biomarkers for Acute Fluoride Exposure  

Science Journals Connector (OSTI)

......whole bone Fas a function oftime after the F doseswere tested for statistically significant differences by the Kruskal-Wallis test and Dunn's multiple comparison test. The correlation between bone surface and whole bone F concentrations......

Marlia Afonso Rabelo Buzalaf; Elide Escolstico Caroselli; Juliane Guimares de Carvalho; Rodrigo Cardoso de Oliveira; Vanessa Eid da Silva Cardoso; Gary Milton Whitford

2005-01-01T23:59:59.000Z

99

Colorado's Hot Springs | Open Energy Information  

Open Energy Info (EERE)

http:crossref.org Citation D. Frazier. 2000. Colorado's Hot Springs. Boulder, Colorado: Pruett Publishing Company. 165p. Retrieved from "http:en.openei.orgw...

100

Colorado thermal spring water geothermometry (public dataset...  

Open Energy Info (EERE)

dataset) Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Colorado thermal spring water geothermometry (public dataset) Abstract The zipped Excel file...

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

FUPWG Spring 2010 Providence: Washington Update  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers an update on Washington and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

102

Athletic Training Coordinator Hometown: Colorado Springs, CO  

E-Print Network (OSTI)

WHO WE ARE Gaby Bell Athletic Training Coordinator Hometown: Colorado Springs, CO Certifications Athletic Training Graduate Assistant Jonathan Hodapp Student Athletic Trainer Mike Carlson Student Athletic

Van Stryland, Eric

103

FUPWG Spring 2014 Agenda and Presentations  

Energy.gov (U.S. Department of Energy (DOE))

Agenda and presentations from the Federal Utility Partnership Working Group's Spring 2014 meeting held May 7-8, 2014 in Virginia Beach, Virginia.

104

Glenwood Springs Amendments | Open Energy Information  

Open Energy Info (EERE)

Amendments Jump to: navigation, search OpenEI Reference LibraryAdd to library Land Use Plan: Glenwood Springs Amendments Organization BLM Published Publisher Not Provided, 2002 DOI...

105

FUPWG Spring 2013 Report and Presentations  

Energy.gov (U.S. Department of Energy (DOE))

Report and presentations from the Federal Utility Partnership Working Group's Spring 2013 meeting held May 22-23, 2013 in San Francisco, California.

106

Irradiation Effects on Human Cortical Bone Fracture Behavior  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic...

107

Seismic baseline and induction studies- Roosevelt Hot Springs...  

Open Energy Info (EERE)

studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Abstract Local seismic networks were established at the Roosevelt Hot Springs geothermal area, utah and at Raft...

108

EIS-0502: Hot Springs to Anaconda Transmission Line Rebuild Project...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Springs to Anaconda Transmission Line Rebuild Project, Montana EIS-0502: Hot Springs to Anaconda Transmission Line Rebuild Project, Montana SUMMARY DOE's Bonneville Power...

109

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

110

Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility...

111

Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal...

112

Steamboat Springs Health and Rec. Pool & Spa Low Temperature...  

Open Energy Info (EERE)

Springs Health and Rec. Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Springs Health and Rec. Pool & Spa Low Temperature Geothermal...

113

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

114

Core Holes At Steamboat Springs Area (Warpinski, Et Al., 2004...  

Open Energy Info (EERE)

Steamboat Springs Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Steamboat Springs Area (Warpinski,...

115

Compound and Elemental Analysis At Valles Caldera - Sulphur Springs...  

Open Energy Info (EERE)

Sulphur Springs Geothermal Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Geothermal Area Exploration Technique Compound and...

116

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...  

Open Energy Info (EERE)

Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Geothermal Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs...

117

Hydrothermal Exploration at Pilgrim Hot Springs, Alaska | Department...  

Energy Savers (EERE)

Springs, Alaska Hydrothermal Exploration at Pilgrim Hot Springs, Alaska Lower Temperature Geothermal Resources are Yielding Power Thanks to Energy Department Investments Lower...

118

Aeromagnetic Survey At Roosevelt Hot Springs Geothermal Area...  

Open Energy Info (EERE)

literature review of the Roosevelt Hot Springs Geothermal Area. Notes Aeromagnetic intensity residual map compiled for Roosevelt Hot Springs Geothermal Area, providing...

119

Surface Gas Sampling At Valles Caldera - Sulphur Springs Area...  

Open Energy Info (EERE)

Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique...

120

Resistivity Tomography At Crump's Hot Springs Area (DOE GTP)...  

Open Energy Info (EERE)

Tomography At Crump's Hot Springs Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Resistivity Tomography At Crump's Hot Springs...

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Montana Statewide Spring Canola Variety Trial  

E-Print Network (OSTI)

2013 Montana Statewide Spring Canola Variety Trial #12;Table of Contents: Page Project personnel ..........................................................................................................10-17 #12;2 Montana Statewide Spring Canola Variety Trial, 2013 Project Leader: Brooke Bohannon Canola Variety Evaluation. #12;4 Montana State University, College of Agriculture, Montana Agricultural

Dyer, Bill

122

Montana Statewide Spring Canola Variety Trial  

E-Print Network (OSTI)

1 2012 Montana Statewide Spring Canola Variety Trial #12;1 Table of Contents: Page Project ..........................................................................................................12-29 #12;2 Montana Statewide Spring Canola Variety Trial, 2012 Project Leader: Brooke Bohannon@landolakes.com Bayer CropScience InVigor L120 H LL Mr. Jordan Varberg InVigor L130 H LL Hybrid Canola Marketing

Dyer, Bill

123

Spring 2013 International Peer Advisor Application  

E-Print Network (OSTI)

Spring 2013 International Peer Advisor Application Are you interested in being a part of the Spring 2013 New International Student Orientations as an International Peer Advisor? Complete the attached Arrival Orientation Duties of an International Peer Advisor: · Meet new international students · Help

Texas at Arlington, University of

124

Spring Semester 2013 Courses, Independent Studio  

E-Print Network (OSTI)

Spring Semester 2013 Courses, Independent Studio and Workshops 13 week term: January 28 - April 27.fas.harvard.edu/ceramics #12;Ceramics Program Spring 2013 Course Offerings January 28 - April 27, 2013 Beginning - Advanced and hard slabs, plaster molds and coil building. Collective Perspective Instructor: Delanie Wise

125

ENGINEERING 12 SPRING 2008 PHYSICAL SYSTEMS ANALYSIS  

E-Print Network (OSTI)

on the primary and secondary coils. #12;ENGINEERING 12, SPRING 2008 2/3 LABORATORY 1 One of the most commonENGINEERING 12 SPRING 2008 PHYSICAL SYSTEMS ANALYSIS LABORATORY 1: TRANSFORMERS Objectives or counterclockwise). In the following discussion the subscript 1 will be used for the primary coil and the subscript

Moreshet, Tali

126

Spring Semester 2015 Courses, Independent Studio  

E-Print Network (OSTI)

Spring Semester 2015 Courses, Independent Studio and Workshops 14 week term: January 26 ­ May 2 Brandl #12;Ceramics Program Spring 2015 Course Offerings 14 week term: January 26 ­ May 2 Beginning) Augment your hand building skills in this fun yet challenging course. Coil and slab building as well

Chou, James

127

Spring Cleaning | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleaning Cleaning Spring Cleaning April 23, 2012 - 3:58pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory One thing I forget to do in the spring is to change the furnace filter. I try to do it at least quarterly, but that doesn't always happen. I don't have air conditioning (which would also have a filter that needed to be changed periodically)-I don't particularly need it at 8,000 ft, especially when I'm working in town all day-so I just turn the furnace off altogether for the summer, usually some time in May. I can just open the house up on a summer evening, and the evening breezes cool everything off pretty well-the ultimate in energy efficiency! I'll remember again in September, when it's time to turn the furnace back on. Part of the problem is that I can't just change the filter. I have to

128

American Coal Council 2004 Spring Coal Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

American Coal Council American Coal Council 2004 Spring Coal Forum Dallas, Texas May 17-19, 2004 Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory ACC Spring Coal Forum, 2004 Presentation Outline * Background * Power plant-water issues * DOE/NETL R&D program * Conclusion/future plans ACC Spring Coal Forum, 2004 Global Water Availability Ocean 97% Fresh Water 2.5% 0 20 40 60 80 100 Ice Groundwater Lakes and Rivers ACC Spring Coal Forum, 2004 Three Things Power Plants Require 1) Access to transmission lines 2) Available fuel, e.g., coal or natural gas 3) Water ACC Spring Coal Forum, 2004 Freshwater Withdrawals and Consumption Mgal / Day Irrigation 81,300 Irrigation 81,300 Thermoelectric 3,310 Consumption Sources: "Estimated Use of Water in the United States in 1995," USGS Circular 1200, 1998

129

Positive modulator of bone morphogenic protein-2  

DOE Patents (OSTI)

Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.

Zamora, Paul O. (Gaithersburg, MD); Pena, Louis A. (Poquott, NY); Lin, Xinhua (Plainview, NY); Takahashi, Kazuyuki (Germantown, MD)

2009-01-27T23:59:59.000Z

130

Treatment for Myeloma Bone Disease  

Science Journals Connector (OSTI)

...in the use of bone-seeking radiopharmaceuticals make these attractive therapeutic...26 Abildgaard N, Bentzen SM, Nielsen JL, Heickendorff...patients, correlation with TC-99M-sestaMIBI scintigraphy...Palermo S. Samarium-153 Sm-EDTMP and zoledronic acid...

Howard S. Yeh and James R. Berenson

2006-10-15T23:59:59.000Z

131

Spring/dimple instrument tube restraint  

DOE Patents (OSTI)

A nuclear fuel assembly for a pressurized water nuclear reactor has a spring and dimple structure formed in a non-radioactive insert tube placed in the top of a sensor receiving instrumentation tube thimble disposed in the fuel assembly and attached at a top nozzle, a bottom nozzle, and intermediate grids. The instrumentation tube thimble is open at the top, where the sensor or its connection extends through the cooling water for coupling to a sensor signal processor. The spring and dimple insert tube is mounted within the instrumentation tube thimble and extends downwardly adjacent the top. The springs and dimples restrain the sensor and its connections against lateral displacement causing impact with the instrumentation tube thimble due to the strong axial flow of cooling water. The instrumentation tube has a stainless steel outer sleeve and a zirconium alloy inner sleeve below the insert tube adjacent the top. The insert tube is relatively non-radioactivated inconel alloy. The opposed springs and dimples are formed on diametrically opposite inner walls of the insert tube, the springs being formed as spaced axial cuts in the insert tube, with a web of the insert tube between the cuts bowed radially inwardly for forming the spring, and the dimples being formed as radially inward protrusions opposed to the springs. 7 figures.

DeMario, E.E.; Lawson, C.N.

1993-11-23T23:59:59.000Z

132

Behavior of Bidirectional Spring Unit in Isolated Floor Systems  

E-Print Network (OSTI)

gravity based sys- tems suspension mechanisms or linear spring based systems coil springs or rubber unitsBehavior of Bidirectional Spring Unit in Isolated Floor Systems Shenlei Cui, M.ASCE1 ; Michel of bidirectional spring units used as isolators in a kind of isolated floor system, three types of characterization

Bruneau, Michel

133

CHEMICAL AND BIOLOGICAL ENGINEERING CURRICULUM -BS CHE DEGREE PRE-MED SUGGESTED FLOWCHART Revised 2-21-12 CSB Fall -FRESH Spring -FRESH Fall -SOPH Spring -SOPH Fall -JR Spring -JR Fall -SR Spring -SR  

E-Print Network (OSTI)

CHEMICAL AND BIOLOGICAL ENGINEERING CURRICULUM - BS CHE DEGREE PRE-MED SUGGESTED FLOWCHART Revised 2-21-12 CSB Fall - FRESH Spring - FRESH Fall - SOPH Spring - SOPH Fall - JR Spring - JR Fall - SR Spring - SR (CH 117) (CH 118) CH 101 (4) CH 102 (4) CH 231 (3) CH 232 (3) *Career El (1) *CHE EL (3) (BSC

Carver, Jeffrey C.

134

CURRICULUM REQUIREMENTS NOTES FOR REGISTRATION FOR SPRING 2012  

E-Print Network (OSTI)

Spring 2013 ENGIN 111 X CEE 121 X X CEE 270 X X CEE 331 X CEE 357 X Second year students If you plan in the Spring semester. Third and Fourth year students Review carefully your Engineering Science/EngineeringCURRICULUM REQUIREMENTS NOTES FOR REGISTRATION FOR SPRING 2012 Courses Spring 2012 Fall 2012

Mountziaris, T. J.

135

2013 CHEMICAL AND BIOLOGICAL ENGINEERING CURRICULUM -BS CHE DEGREE PRE-MED SUGGESTED FLOWCHART Revised 6-25-13 CSB Fall -FRESH Spring -FRESH Fall -SOPH Spring -SOPH Fall -JR Spring -JR Fall -SR Spring -SR  

E-Print Network (OSTI)

2013 CHEMICAL AND BIOLOGICAL ENGINEERING CURRICULUM - BS CHE DEGREE PRE-MED SUGGESTED FLOWCHART Revised 6-25-13 CSB Fall - FRESH Spring - FRESH Fall - SOPH Spring - SOPH Fall - JR Spring - JR Fall - SR Spring - SR (CH 117) (CH 118) CH 101 (4) CH 102 (4) CH 231 (3) CH 232 (3) a,i Career EL (4) a,i Career EL

Carver, Jeffrey C.

136

ARM - News from the Steamboat Springs Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

ColoradoNews from the Steamboat Springs Deployment Steamboat Deployment AMF Home Steamboat Springs Home Storm Peak Lab Data Plots and Baseline Instruments Data Sets Experiment Planning STORMVEX Proposal Abstract and Related Campaigns Science Plan NWS Forecasting Plots STORMVEX Website Outreach STORMVEX Backgrounder (PDF, 1.6MB) News AMF2 STORMVEX Blog Images Contacts Gerald Mace News from the Steamboat Springs Deployment Releases WPSD (Paducah, KY) "STORMVEX Cloud Study" January 19, 2011 The Daily Sentinel, Grand Junction "Steamboat project gives scientists unique, grounded look at clouds" December 12, 2010 Steamboat Pilot & Today "Steamboat cloud study to help create better global climate models" Image Gallery December 12, 2010 Also picked up by:

137

Driving Green: Spring has Sprung, but don't 'Spring Ahead' | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green: Spring has Sprung, but don't 'Spring Ahead' Green: Spring has Sprung, but don't 'Spring Ahead' Driving Green: Spring has Sprung, but don't 'Spring Ahead' March 14, 2012 - 2:32pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory With gas prices skyrocketing, it may be time to evaluate your driving habits. No, I'm not talking about "hypermilling" (going to extreme lengths to get the best fuel economy possible), which can involve some dangerous techniques. (There actually is a Hypermiling Safety Foundation, which advocates legal techniques to get the best mileage possible.) You can still "drive green" safely to help save fuel and operating costs. First, of course, you should keep your car well maintained, whatever its age - regular oil changes, tires properly inflated and aligned, engine tuned up

138

METR 2603.001, Spring 2014, Dr. LaDue Syllabus, METR 2603.001, Spring 2014, p. 1  

E-Print Network (OSTI)

METR 2603.001, Spring 2014, Dr. LaDue Syllabus, METR 2603.001, Spring 2014, Carson Engineering Center Rm 117 Instructor: Dr. LaDue Email: dzaras;METR 2603.001, Spring 2014, Dr. LaDue Syllabus, METR 2603.001, Spring 2014

Droegemeier, Kelvin K.

139

SpringWorks | Open Energy Information  

Open Energy Info (EERE)

SpringWorks SpringWorks Jump to: navigation, search Name SpringWorks Place Minnetonka, Minnesota Zip 55343-8684 Product SpringWorks was created to discover and nurture incubation companies and emerging technologies for Petters Group Worldwide. Coordinates 44.939448°, -93.467869° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.939448,"lon":-93.467869,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

140

Think Spring, Think Local... | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Think Spring, Think Local... Think Spring, Think Local... Think Spring, Think Local... April 25, 2013 - 11:15am Addthis Eating locally grown produce is healthy and reduces greenhouse gas emissions. | Photo courtesy of ©iStockphoto.com/CDH_Design Eating locally grown produce is healthy and reduces greenhouse gas emissions. | Photo courtesy of ©iStockphoto.com/CDH_Design Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs How can I participate? Visit your local farmers' market or join a CSA to get your fruits and vegetables this summer. Are you getting excited thinking about how you plan to support your local economy, your larger environment and also your health this spring? I know I am! The nicer weather the eastern regions have been experiencing lately has got

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Summary of Weldon Spring Site Focus Area  

Office of Legacy Management (LM)

of Weldon Spring Site Focus Area of Weldon Spring Site Focus Area Work Session February 5, 2003 Weldon Spring Interpretive Center Focus Area: Monitoring and Maintenance This was the third of three work sessions that focus on specific issues addressed in the draft Long-Term Stewardship Plan for the Weldon Spring, Missouri, Site, dated August 9, 2002. At 6:00 p.m., before the start of the work session, Dan Collette, Technical Support Manager for S.M. Stoller, the U.S. Department of Energy (DOE) Grand Junction Office (GJO) contractor, gave a demonstration of the on-line document retrieval and geographic information systems. Introduction Dave Geiser, DOE Headquarters Director of the Office of Long-Term Stewardship, discussed a DOE Headquarters proposal to establish the Office of Legacy Management in fiscal year 2004.

142

Spring Canyon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Spring Canyon Wind Farm Spring Canyon Wind Farm Jump to: navigation, search Name Spring Canyon Wind Farm Facility Spring Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser Xcel Energy Location Near Peetz CO Coordinates 40.95366°, -103.166993° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.95366,"lon":-103.166993,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

Wessington Springs Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wessington Springs Wind Farm Wessington Springs Wind Farm Facility Wessington Springs Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown Developer Babcock & Brown Energy Purchaser Heartland Consumers Power District Location Southwest of Wessington Springs SD Coordinates 43.947387°, -98.657427° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.947387,"lon":-98.657427,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Math 373 Quiz 6 Spring 2014  

E-Print Network (OSTI)

Math 373. Quiz 6. Spring 2014. April 17, 2014. 1. Zijing is buying 100 shares of Sun Corporation. Zijing will pay commissions of 0.50 per share. At the same time,

jeffb_000

2014-08-16T23:59:59.000Z

145

STAT 479 Spring 2013 Test 1  

E-Print Network (OSTI)

STAT 479. Spring 2013. Test 1. February 12, 2013. 1. (10 points) The random variable X is the loss under a medical insurance policy and is distributed as a 2...

Owner

2014-01-14T23:59:59.000Z

146

PSYCHOLOGY 376: CHILD DEVELOPMENT SPRING 2013  

E-Print Network (OSTI)

1 PSYCHOLOGY 376: CHILD DEVELOPMENT SPRING 2013 Instructor: Alison Sachet, Ph.D. Office: 398 Straub the availability of Internet access, it would be wise to plan on taking the quizzes at Knight Library

Lockery, Shawn

147

Advisor's name: ______________________________________ SPRING 2014 SOJ ADVISING SURVEY  

E-Print Network (OSTI)

Advisor's name: ______________________________________ SPRING 2014 SOJ ADVISING SURVEY appointments to see your advisor? _________Current online scheduler _________A new online scheduling system would you like to meet with your advisor? _________Once per month _________Once per semester

Mohaghegh, Shahab

148

CMSC 412101 (Spring 1996) Professor: TA: TA  

E-Print Network (OSTI)

CMSC 412­101 (Spring 1996) Professor: TA: TA: Dr. Jeff Hollingsworth Charles Lin Alex Kaplunovich 4161 AV Williams 1109 A V Williams 1109 A V Williams (40) 5­2708 hollings@cs.umd.edu clin

Hollingsworth, Jeffrey K.

149

CMSC 412 (Spring 2002) Professor: TA: TA  

E-Print Network (OSTI)

CMSC 412 (Spring 2002) Professor: TA: TA: Dr. Jeff Hollingsworth Abdel-Hameed Badawy Cemal Yilmaz 4161 AV Williams 1151 A V Williams 1151 A V Williams (40) 5-2708 hollings@cs.umd.edu absalam

Hollingsworth, Jeffrey K.

150

Spring 2013 Composite Data Products - Backup Power  

SciTech Connect

This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes 21 composite data products (CDPs) produced in Spring 2013 for fuel cell backup power systems.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.; Post, M.; Peters, M.

2013-05-01T23:59:59.000Z

151

ARM - Field Campaign - Spring 2002 SCM IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Send Campaign : Spring 2002 SCM IOP 2002.05.25 - 2002.06.15 Lead Scientist : David Randall For data sets, see below. Abstract The proposed single column model (SCM) IOP for...

152

ARM - Field Campaign - Spring 1997 SCM IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Send Campaign : Spring 1997 SCM IOP 1997.04.01 - 1997.04.30 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore...

153

ARM - Field Campaign - Spring 1996 SCM IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Send Campaign : Spring 1996 SCM IOP 1996.04.01 - 1996.04.30 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore...

154

Spring 2012 Who's Who and What's What  

E-Print Network (OSTI)

Spring 2012 Who's Who and What's What Where do I get information about...? Which person handles...? Where do I call for...? Who can help with...? #12;Guide to Who's Who and What's What INTRODUCTION

Li, Teng

155

MBA 51702H: Marketing Management Spring 2014  

E-Print Network (OSTI)

MBA 51702H: Marketing Management Spring 2014 INSTRUCTOR: Dr. April Atwood office: Marketing Management, by Kotler, Philip and Keller, Kevin, Pearson PrenticeHall. **any recent edition COURSE OVERVIEW: Marketing is perhaps one of the most misunderstood and underappreciated aspects

Carter, John

156

Search Engine Technologies CS 5319, Spring 2007  

E-Print Network (OSTI)

Search Engine Technologies CS 5319, Spring 2007 Nigel Ward Sample Project Ideas 1. I would like in the guest department similar to the target person, ranked by similarity. 2. The Dean would like an intranet

Ward, Nigel

157

SpringSummer 2007 1 Hello Again!  

E-Print Network (OSTI)

Spring­Summer 2007 1 Hello Again! 1 Director's Message 2 In Other News: Special Announcement applications. The continued on page 2 Hello Again! We hope you have had an opportunity to read our first two e

Rau, Don C.

158

Mineral Springs of Alaska | Open Energy Information  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Report: Mineral Springs of Alaska Abstract Geologists and engineers of the United States Geological Survey, who for a number...

159

Macho Springs Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Macho Springs Wind Farm Macho Springs Wind Farm Jump to: navigation, search Name Macho Springs Wind Farm Facility Macho Springs Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Owner Element Power Developer Element Power Energy Purchaser American Electric Power Location Luna County NM Coordinates 32.573639°, -107.456399° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.573639,"lon":-107.456399,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

Chattanooga Eagle Ford Western Gulf TX-LA-MS Salt Basin Uinta Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Western Western Gulf TX-LA-MS Salt Basin Uinta Basin Devonian (Ohio) Marcellus Utica Bakken*** Avalon- Bone Spring San Joaquin Basin Monterey Santa Maria, Ventura, Los Angeles Basins Monterey- Temblor Pearsall Tuscaloosa Big Horn Basin Denver Basin Powder River Basin Park Basin Niobrara* Mowry Niobrara* Heath** Manning Canyon Appalachian Basin Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville- Bossier Hermosa Mancos Pierre Conasauga Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Montana Thrust Belt Marfa Basin Valley & Ridge Province Arkoma Basin Forest

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Digital electronic bone growth stimulator  

DOE Patents (OSTI)

The present invention relates to the electrical treatment of biological tissue. In particular, the present invention discloses a device that produces discrete electrical pulse trains for treating osteoporosis and accelerating bone growth. According to its major aspects and broadly stated, the present invention consists of an electrical circuit configuration capable of generating Bassett-type waveforms shown with alternative signals provide for the treatment of either fractured bones or osteoporosis. The signal generator comprises a quartz clock, an oscillator circuit, a binary divider chain, and a plurality of simple, digital logic gates. Signals are delivered efficiently, with little or no distortion, and uniformly distributed throughout the area of injury. Perferably, power is furnished by widely available and inexpensive radio batteries, needing replacement only once in several days. The present invention can be affixed to a medical cast without a great increase in either weight or bulk. Also, the disclosed stimulator can be used to treat osteoporosis or to strengthen a healing bone after the cast has been removed by attaching the device to the patient`s skin or clothing.

Kronberg, J.W.

1993-01-01T23:59:59.000Z

162

Cross-shaped torsional spring  

DOE Patents (OSTI)

The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section. 30 figs.

Williamson, M.M.; Pratt, G.A.

1999-06-08T23:59:59.000Z

163

Modified fish-bone model: A simplified MDOF model for simulation of seismic responses of moment resisting frames  

Science Journals Connector (OSTI)

Abstract This paper presents a simplified Multi-Degree-Of-Freedom (MDOF) model through modification of fish-bone model (or generic frame). Modified Fish-Bone (MFB) model is developed through three enhancements: (i) the moment of inertia for half-beams is reduced slightly to modify the assumption of equal rotation at each story joints, (ii) a number of truss elements are inserted to the fish-bone model to simulate flexural deformation of moment frames due to axial elongation and contraction of columns, and (iii) momentrotation relationship of representative rotational springs is supposed to be bilinear instead of trilinear in order to consider simultaneous yielding at both ends of the beam in moment frames. The proposed model is evaluated with respect to nonlinear dynamic analysis results of three classic moment resisting frames subjected to 94 records of FEMA-440 ground motion data set. Moreover, the adequacy of this model is compared with the fish-bone model and two predictors of nonlinear seismic demand. The statistical study of predicted interstory drift demonstrates the superiority of the proposed model over the fish-bone model and both seismic demand predictors.

A.R. Khaloo; H. Khosravi

2013-01-01T23:59:59.000Z

164

Bone Mineral Density in Women with Depression  

Science Journals Connector (OSTI)

...illness and the normal women were individually matched for age, body-mass index, and menstrual status; women with many of the risk factors associated with decreased bone mineral density were excluded; dual-energy x-ray absorptiometry was used to measure bone density at the spine, hip, and radius; and bone... Major depression is a complex disorder reflecting genetic, developmental, and environmental factors. Although its pathophysiology is not clearly understood, depression is associated with hypothalamic dysfunction specifically, hypercortisolism, the ...

Michelson D.; Stratakis C.; Hill L.

1996-10-17T23:59:59.000Z

165

WRITTEN IN BONE: Bone Biographer's Casebook Douglas Owsley and Karin Bruwelheide  

E-Print Network (OSTI)

afflictions that would have made daily life miserable. In addition to dental disease and gout, his bones were

Mathis, Wayne N.

166

Composite bone substitutes prepared by two methods  

E-Print Network (OSTI)

Hydroxyapatite-polyethylene composites: effect of graftingof braded carbon/PEEK composite compression bone plates,Koch, Hydroxyapatite/SiO2 Composites via Freeze Casting for

Lee, Hoe Yun; Lee, Hoe Yun

2012-01-01T23:59:59.000Z

167

Ultrasound-Confirmed Frontal Bone Fracture  

E-Print Network (OSTI)

table--frontal sinus fractures. Facial Plast Surg Clin NorthConfirmed Frontal Bone Fracture Jeremy N. Johnson, DO Danielan isolated comminuted fracture of the left frontal sinus

Johnson, Jeremy N; Crandall, Stephen; Kang, Christopher S

2009-01-01T23:59:59.000Z

168

Bioactive Glass Scaffolds for Bone Regeneration  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure....

169

School Trips & Projects in Spring  

NLE Websites -- All DOE Office Websites (Extended Search)

& Projects in Spring & Projects in Spring Nature Bulletin No. 484 March 9, 1957 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H. Thompson, Senior Naturalist SCHOOL TRIPS & PROJECTS IN SPRINg Spring is the morning of the year when nature reawakens. The days become noticeably longer and warmer. We feel an urge to get out-of- doors and see green growing plants, early wildflowers, and swelling buds on trees and shrubs; see and hear birds returning from their winter homes; hear the mating songs of frogs and toads. The nearest forest preserve, park, meadow or hedgerow -- even a city street or weedy vacant lot -- will have a wealth of plant and animal life. March is a chancy month for field trips but spring can be perking in a classroom before many signs of it appear outdoors. One twig of a forsythia bush, placed in a bottle of water, will soon display its yellow flowers; willow and aspen twigs will develop fat fuzzy catkins; the end of branches from cottonwood, soft maple and elm trees will reveal how some of their winter buds produce flowers and others burst into leaves. The long reddish catkins on a male cottonwood are showy but the small flowers of a maple or an elm are no less beautiful, although seldom noticed on the trees.

170

FEA design and computation system for springs  

Science Journals Connector (OSTI)

Nowadays, new kinds of springs have been applied. Their design is adapted specifically to the construction environment as well as for the fulfilment of several tasks (multifunction springs). For their calculation, standard methods of analysis fail. The Finite Element Analysis (FEA) offers itself as a computation possibility. But, in most cases, design engineers cannot meet the demands connected with the FEA application on account of their tasks and position in the design process as well as their training. A coupled CAD/FEA system is adapted to the specifications of the design of springs and spring assemblies and facilitates the application of the FEA essentially by a design engineer. The SPRINGPROCESSOR, as the heart of the described system, is completely realised. It uses in an exemplary way the programming possibilities of the FEA system ANSYS. Starting with the problem arising in the application of the Finite Element Analysis in spring engineering, solution ideas and the basic architecture of the CAD/FEA system are described and, by means of selected examples, the basic procedure and the capability of the program system is illustrated.

Ulf Kletzin; Derk Micke; Hans-Jurgen Schorcht

2001-01-01T23:59:59.000Z

171

Granite Springs Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Springs Geothermal Project Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Granite Springs Geothermal Project Project Location Information Coordinates 40.1475°, -118.64861111111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.1475,"lon":-118.64861111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

172

Okpilak Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Okpilak Springs Geothermal Area Okpilak Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Okpilak Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":69.3,"lon":-144.0333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

Serpentine Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Serpentine Springs Geothermal Area Serpentine Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Serpentine Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.85703165,"lon":-164.7097211,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

174

ARM - Field Campaign - Spring Cloud IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsSpring Cloud IOP govCampaignsSpring Cloud IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Spring Cloud IOP 2000.03.01 - 2000.03.26 Lead Scientist : Gerald Mace For data sets, see below. Summary The Atmospheric Radiation Measurement (ARM) Program conducted a Cloud Intensive Operational Period (IOP) in March 2000 that was the first-ever effort to document the 3-dimensional cloud field from observational data. Prior numerical studies of solar radiation propagation through the atmosphere in the presence of clouds have been limited by the necessity to use theoretical representations of clouds. Three-dimensional representations of actual clouds and their microphysical properties, such as the distribution of ice and water, had previously not been possible

175

Baltazor Springs Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Springs Geothermal Project Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Baltazor Springs Geothermal Project Project Location Information Coordinates 41.923888888889°, -118.71° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.923888888889,"lon":-118.71,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

176

Spring Grove Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Grove Biomass Facility Grove Biomass Facility Jump to: navigation, search Name Spring Grove Biomass Facility Facility Spring Grove Sector Biomass Owner P.H. Glatfelder Location Spring Grove, Pennsylvania Coordinates 39.8745436°, -76.8658078° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8745436,"lon":-76.8658078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

Pebble Springs Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Pebble Springs Wind Farm Pebble Springs Wind Farm Facility Pebble Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser LADWP/Burbank/Glendale Location Gilliam County near Arlington OR Coordinates 45.712306°, -120.184242° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.712306,"lon":-120.184242,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

178

Camp Springs Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Camp Springs Wind Farm Camp Springs Wind Farm Facility Camp Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Location TX Coordinates 32.739516°, -100.741382° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.739516,"lon":-100.741382,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

179

Residential Energy Efficiency Stakeholder Meeting - Spring 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Stakeholder Meeting - Spring 2012 Residential Energy Efficiency Stakeholder Meeting - Spring 2012 Residential Energy Efficiency Stakeholder Meeting - Spring 2012 The U.S. Department of Energy (DOE) Building America program held the second annual Residential Energy Efficiency Stakeholder Meeting on February 29-March 2, 2012, in Austin, Texas. At this meeting, hundreds of building industry professionals came together to share their perspective on the most current innovation projects in the residential buildings sector. This meeting provided an opportunity for researchers and industry stakeholders to showcase and discuss the latest in cutting-edge, energy-efficient residential building technologies and practices. The meeting also included working sessions from each Standing Technical Committee (STC), which outlined work that will best assist in overcoming

180

Boiling Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Boiling Springs Geothermal Area Boiling Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Boiling Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3641,"lon":-115.856,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Tuana Springs Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Tuana Springs Wind Farm Tuana Springs Wind Farm Facility Tuana Springs Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer John Deere Wind Energy Purchaser Idaho Power Location Twin Falls County ID Coordinates 42.814261°, -114.996665° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.814261,"lon":-114.996665,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

182

Butte Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Springs Geothermal Area Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Butte Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.771138,"lon":-119.114138,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

183

Shakes Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Shakes Springs Geothermal Area Shakes Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Shakes Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.71765648,"lon":-132.0025034,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

184

Sulphur Springs Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Geothermal Facility Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sulphur Springs Geothermal Facility General Information Name Sulphur Springs Geothermal Facility Facility Sulphur Springs Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.786346628248°, -122.78226971626° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.786346628248,"lon":-122.78226971626,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

185

Nonlinear springs with applications to flow regulation valves and mechanisms  

E-Print Network (OSTI)

This thesis focuses on the application of nonlinear springs for fluid flow control valves where geometric constraints, or fabrication technologies, limit the use of available solutions. Types of existing nonlinear springs ...

Freeman, David Calvin

2008-01-01T23:59:59.000Z

186

Microsoft Word - PR 12 13 Hooper Springs DEIS Public Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

needs in southeast Idaho and northwestern Wyoming. The line would run from a proposed new BPA Hooper Springs Substation near the city of Soda Springs, Idaho, to a proposed BPA...

187

UNIVERSITY OF SASKATCHEWAN | Spring 2012Undergraduate Recruitment Magazine  

E-Print Network (OSTI)

UNIVERSITY OF SASKATCHEWAN | Spring 2012Undergraduate Recruitment Magazine Adventuresin Australia of Saskatchewan Undergraduate Recruitment Magazine SPRING 2012 MANAGER OF UNDERGRADUATE RECRUITMENT Dan Seneker: Student and Enrolment Services Division University of Saskatchewan 38 College Building Saskatoon, SK S7N 5

Peak, Derek

188

UNIVERSITY OF SASKATCHEWAN | Spring 2014Undergraduate Recruitment Magazine  

E-Print Network (OSTI)

UNIVERSITY OF SASKATCHEWAN | Spring 2014Undergraduate Recruitment Magazine Starting on page 8 University of Saskatchewan Undergraduate Recruitment Magazine US is published annually and reaches more than 4,000 prospective University of Saskatchewan students. Spring 2014 Manager of Undergraduate

Saskatchewan, University of

189

BIOSC 871-02 Spring 2004 Dr. Margaret Ptacek  

E-Print Network (OSTI)

BIOSC 871-02 Spring 2004 SPECIATION Dr. Margaret Ptacek Week of Topic Thurs. Discussion Leader 1 VERSION OF PAPER DUE FRIDAY, APRIL 23 #12;2 BIOSC 871-02 Spring 2004 SPECIATION INSTRUCTOR: Dr. Margaret

Ptacek, Margaret B.

190

Armored spring-core superconducting cable and method of construction  

DOE Patents (OSTI)

An armored spring-core superconducting cable (12) is provided. The armored spring-core superconducting cable (12) may include a spring-core (20), at least one superconducting strand (24) wound onto the spring-core (20), and an armored shell (22) that encases the superconducting strands (24). The spring-core (20) is generally a perforated tube that allows purge gases and cryogenic liquids to be circulated through the armored superconducting cable (12), as well as managing the internal stresses within the armored spring-core superconducting cable (12). The armored shell (22) manages the external stresses of the armored spring-core superconducting cable (12) to protect the fragile superconducting strands (24). The armored spring-core superconducting cable (12) may also include a conductive jacket (34) formed outwardly of the armored shell (22).

McIntyre, Peter M. (611 Montclair, College Station, TX 77840); Soika, Rainer H. (1 Hensel, #X4C, College Station, TX 77840)

2002-01-01T23:59:59.000Z

191

EK 210: Introduction to Engineering Design Spring 2014  

E-Print Network (OSTI)

EK 210: Introduction to Engineering Design Spring 2014 Syllabus to Engineering Design Spring 2014 Syllabus Week Date Topic On-Line Learning/21/14 Overview of the Course Introduction to Engineering Design a) Class organization

Lin, Xi

192

Forensic Management Academy Spring 2011 Tentative Schedule Forensic Management Academy  

E-Print Network (OSTI)

Forensic Management Academy ­ Spring 2011 Tentative Schedule Forensic Management Academy Spring:00 Tour Forensic Program Facilities 4:30 ­ 7:30 Session VIII Conflict Management Joyce Heames7:00 Free

Mohaghegh, Shahab

193

cctoday_spring_2007web.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

7 * ISSUE NO. 71, SPRING 2007 7 * ISSUE NO. 71, SPRING 2007 A NEWSLETTER ABOUT INNOVATIVE TECHNOLOGIES FOR COAL UTILIZATION INSIDE THIS ISSUE NETL Mercury Control ....................1 New Turbine Consortium ................4 NETL Monitors CO 2 Storage............6 Upcoming Events ...........................7 2007 Budget Emphasizes Coal ........7 International Initiatives ...................8 Active CCT, PPII, CCPI Status ........10 See "NETL Mercury" on page 2... See "News Bytes" on page 5... On March 5, 2007, Jeffrey D. Jarrett resigned his post as Assistant Sec- retary for Fossil Energy to join the private sector. In December 2006, Thomas D. Shope was appointed as FE's Principal Deputy Assistant Secretary. Shope, an attorney, previ- ously served as FE's Chief of Staff,

194

Office of Indian Energy Newsletter: Spring/Summer 2014  

Energy.gov (U.S. Department of Energy (DOE))

Indian Energy Beat: News on Actions to Accelerate Energy Development in Indian Country Spring/Summer 2014 Issue

195

Manchester Spring Chinook Broodstock Project, 1998-1999 Annual Report.  

SciTech Connect

This yearly report concerned facilities upgrade and endangered Snake River spring/summer chinook salmon captive broodstock rearing.

McAuley, W.Carlin; Wastel, Michael R.; Flagg, Thomas A. (Northwest and Alaska Fisheries Science Center, Coastal Zone and Estuarine Studies Division, Seattle, WA)

2000-02-01T23:59:59.000Z

196

Detachment Faulting & Geothermal Resources- Pearl Hot Spring, NV  

Energy.gov (U.S. Department of Energy (DOE))

Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV presentation at the April 2013 peer review meeting held in Denver, Colorado.

197

FUPWG Spring 2011 Washington, D.C., Update  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the Federal Utility Partnership Working Group (FUPWG) Washington update, and is given during the FUPWG Spring 2011 meeting.

198

MTSC735, Spring 2008 Electrical measurements 1 Electrical measurements  

E-Print Network (OSTI)

position between coil windings. Circuit designed to have zero output at equilibrium. MTSC735, Spring 20081 MTSC735, Spring 2008 Electrical measurements 1 Electrical measurements Critical to all/reducing noise from measurements MTSC735, Spring 2008 Electrical measurements 2 Measurements Believe nothing

Plaisted, David A.

199

Design of FePd spring actuators Taishi Wada*  

E-Print Network (OSTI)

. The coil spring made by a FSMA is activated by the attractive magnetic force produced by electromagnets on the above principle by using polycrystalline FePd alloy. Since the stiffness of the FePd coil spring become actuation. Keywords: actuator, coil spring, FePd, wire, ferromagnetic shape memory alloy, superelasticity

Taya, Minoru

200

Assessment of the eel stock in Sweden, spring 2012  

E-Print Network (OSTI)

Assessment of the eel stock in Sweden, spring 2012 Aqua reports 2012:9 First post-evaluation of the Swedish Eel Management Plan Willem Dekker #12;Assessment of the eel stock in Sweden, spring 2012 First: Dekker, W. (2012). Assessment of the eel stock in Sweden, spring 2012. First post

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

BE 437 NANOMETER SCALE PROCESSES IN LIVING SYSTEMS (Spring 2014)  

E-Print Network (OSTI)

BE 437 NANOMETER SCALE PROCESSES IN LIVING SYSTEMS (Spring 2014) The world at the nanometer and the tools that engineers have designed to study such systems is a vital component toward overcoming particle tracking) Micro- and nano-machines I No Class: Spring Break No Class: Spring Break Micro- and nano

Vajda, Sandor

202

Ecological Engineering Flowchart Colorado State University Effective Spring 2014  

E-Print Network (OSTI)

Ecological Engineering Flowchart Colorado State University Effective Spring 2014 Prerequisites - 3 15 Freshman CIVE 102 MATH 124 MATH160 (CHEM 111) Spring CIVE 103 - 3 S Eng Graphics & Comp MATH & Cultural Awareness - 3 17 Sophmore CIVE 260 CIVE 260 MATH 160 PH 141 CHEM 111 Spring CIVE 261 - 3 F

203

Environmental Engineering Flowchart Colorado State University Effective Spring 2014  

E-Print Network (OSTI)

Environmental Engineering Flowchart Colorado State University Effective Spring 2014 Prerequisites - 3 15 Freshman CIVE 102 MATH 124 MATH160 PH 141 (MATH161) Spring CIVE 103 - 3 S Eng Graphics & Comp Comp 18 Sophmore CIVE 202 CIVE 260 CIVE 260 MATH 160 PH 141 CHEM 111 CHEM 112 (CHEM 113) Spring CIVE

204

Civil Engineering Flowchart Colorado State University Effective Spring 2014  

E-Print Network (OSTI)

Civil Engineering Flowchart Colorado State University Effective Spring 2014 Prerequisites and (co 102 MATH 124 MATH 160 PH 141 (MATH161) Spring CIVE 103 - 3 S Eng Graphics & Comp MATH 161 - 4 Calculus CIVE 260 CIVE 260 MATH 160 PH 141 CHEM 111 Spring CIVE 203 - 3 S Eng Sys & Decision CIVE 261 - 3 F

205

Advising Notes BAEN Preregistration for Spring 2012Everyone  

E-Print Network (OSTI)

Advising Notes ­ BAEN Preregistration for Spring 2012Everyone · The student advising period) are offered only once per year. Students need to take all required BAEN courses offered in the spring plan and have a preliminary schedule for the spring worked out before the advising meeting. If courses

Mukhtar, Saqib

206

BE 437 NANOMETER SCALE PROCESSES IN LIVING SYSTEMS (Spring 2013)  

E-Print Network (OSTI)

BE 437 NANOMETER SCALE PROCESSES IN LIVING SYSTEMS (Spring 2013) The world at the nanometer and the tools that engineers have designed to study such systems is a vital component toward overcoming particle localization tracking) Hmwk 4 Dist 12-Mar No Class: Spring Recess 14-Mar No Class: Spring

Vajda, Sandor

207

Advising Notes BAEN Preregistration for Spring 2013Everyone  

E-Print Network (OSTI)

Advising Notes ­ BAEN Preregistration for Spring 2013Everyone · The student advising period) are offered only once per year. Students need to take all required BAEN courses offered in the spring. · Be familiar with your degree plan and have a preliminary schedule for the spring worked out before

Mukhtar, Saqib

208

Bioactive Glass Scaffolds for Bone Regeneration  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioactive Glass Scaffolds for Bioactive Glass Scaffolds for Bone Regeneration Bioactive Glass Scaffolds for Bone Regeneration Print Wednesday, 28 September 2011 00:00 Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density ratios. Working at ALS Beamline 8.3.2, researchers from Berkeley Lab and the Imperial College London have created bioactive glass scaffolds that mirror nature's efficient materials. The three-dimensional glass scaffold is as porous as trabecular bone, has a compressive strength comparable to that of cortical bone, and a strength-to-porosity ratio higher than any previously reported scaffolds.

209

Bioactive Glass Scaffolds for Bone Regeneration  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioactive Glass Scaffolds for Bone Regeneration Print Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density ratios. Working at ALS Beamline 8.3.2, researchers from Berkeley Lab and the Imperial College London have created bioactive glass scaffolds that mirror nature's efficient materials. The three-dimensional glass scaffold is as porous as trabecular bone, has a compressive strength comparable to that of cortical bone, and a strength-to-porosity ratio higher than any previously reported scaffolds.

210

Bioactive Glass Scaffolds for Bone Regeneration  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioactive Glass Scaffolds for Bone Regeneration Print Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density ratios. Working at ALS Beamline 8.3.2, researchers from Berkeley Lab and the Imperial College London have created bioactive glass scaffolds that mirror nature's efficient materials. The three-dimensional glass scaffold is as porous as trabecular bone, has a compressive strength comparable to that of cortical bone, and a strength-to-porosity ratio higher than any previously reported scaffolds.

211

Bioactive Glass Scaffolds for Bone Regeneration  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioactive Glass Scaffolds for Bone Regeneration Print Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density ratios. Working at ALS Beamline 8.3.2, researchers from Berkeley Lab and the Imperial College London have created bioactive glass scaffolds that mirror nature's efficient materials. The three-dimensional glass scaffold is as porous as trabecular bone, has a compressive strength comparable to that of cortical bone, and a strength-to-porosity ratio higher than any previously reported scaffolds.

212

Bioactive Glass Scaffolds for Bone Regeneration  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioactive Glass Scaffolds for Bone Regeneration Print Bioactive Glass Scaffolds for Bone Regeneration Print Natural materials are renowned for their unique combination of outstanding mechanical properties and exquisite microstructure. For example, bone, cork, and wood are porous biological materials with high specific stiffness (stiffness per unit weight) and specific strength. The outstanding mechanical properties of these materials are attributed to their anisotropic structures, which have optimized strength-to-density and stiffness-to-density ratios. Working at ALS Beamline 8.3.2, researchers from Berkeley Lab and the Imperial College London have created bioactive glass scaffolds that mirror nature's efficient materials. The three-dimensional glass scaffold is as porous as trabecular bone, has a compressive strength comparable to that of cortical bone, and a strength-to-porosity ratio higher than any previously reported scaffolds.

213

Structural Analysis of Human and Bovine Bone for Development of Synthetic Materials  

E-Print Network (OSTI)

bones, as well as mimicking nature by developing a synthetic material to repair bones. Experimentally, bovine bone, tumor-free human bone, and cancerous human bone were studied via the small scale mechanical loading test. Failure analysis was conducted...

Jang, Eunhwa

2012-10-19T23:59:59.000Z

214

Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Steamboat Springs Geothermal Area Steamboat Springs Geothermal Area (Redirected from Steamboat Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (1) 10 Exploration Activities (14) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.388,"lon":-119.743,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Jemez Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Springs Geothermal Area Jemez Springs Geothermal Area (Redirected from Jemez Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.77166667,"lon":-106.69,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

216

SPRING / PRINTEMPS 2014 AQUATIC & RECREATION PROGRAMS  

E-Print Network (OSTI)

SPRING / PRINTEMPS 2014 AQUATIC & RECREATION PROGRAMS ACTIVIT?S AQUATIQUES & R?CR?ATIVES ONLINE REGISTRATION FROM APRIL 21 TO 25 www.gaiters.ca/recreation INSCRIPTION EN LIGNE DU 21 AU 25 AVRIL ALL OUR FINANCIERE #12;REGISTRATIONS INSCRIPTIONS #12;INFORMATION For more information on the recreation programs

217

University of Colorado Boulder Colorado Springs Denver  

E-Print Network (OSTI)

University of Colorado Boulder · Colorado Springs · Denver Office of the Vice President for Academic Affairs and Research 1800 Grant Street, Suite 800 35 UCA Denver, Colorado 80203-1185 (303) 860 Diversity Report Prepared by the University of Colorado System Office of Institutional Research April 2009

Stowell, Michael

218

Air Chemistry and Pollution Spring 2014  

E-Print Network (OSTI)

ATOC 3500 Air Chemistry and Pollution Spring 2014 Meeting: T/Th, 12:30 ­ 1:45 am; Duane G1B25 in the news; for example, the quality of the air we breathe directly affects our health. In addition to mitigate the effects of air pollution. Finally, we examine some recent examples of atmospheric chemical

Toohey, Darin W.

219

Reviewed: Spring 2008 MSU Departmental Assessment Plan  

E-Print Network (OSTI)

1 Reviewed: Spring 2008 MSU Departmental Assessment Plan 2007-2008 Department: Electrical realistic planning for program assessment data and analysis. The results of this indepth review of the ECE subsequent on-site accreditation reviews. After careful consideration, the following Assessment Plan model

Dyer, Bill

220

CHEM /8853 1 CHEM 8853, Spring,  

E-Print Network (OSTI)

semester biochemistry, one semester organic chemistry (CHEM 1315 or 2312) T-SQUARE PAGE (COURSE WEBSITECHEM /8853 1 CHEM 8853, Spring, Bioconjugate and Bioorthogonal Chemistry Syllabus COURSE MEETING expensive. You will be able to get through the course without purchasing either book. PREREQUISITES: one

Sherrill, David

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Department of Mechanical Engineering Spring 2013  

E-Print Network (OSTI)

Device - Global Overview Tyco Fire Protection Products produces an air maintenance device (AMD-1) for dryPENNSTATE Department of Mechanical Engineering Spring 2013 Design of a Competitive Air Maintenance products and established team goals to be competitive with these products Generated multiple concepts

Demirel, Melik C.

222

Revised Spring 2008 NIH Public Access Policy  

E-Print Network (OSTI)

Revised Spring 2008 NIH Public Access Policy Notice Number: NOT-OD-08-033 - (See Notice NOT-OD-08-161 (Consolidated Appropriations Act, 2008), the NIH voluntary Public Access Policy (NOT-OD-05-022) is now mandatory shall implement the public access policy in a manner consistent with copyright law. Specifics 1. The NIH

223

Spring 2006 CS 649 1 Sensor Networks  

E-Print Network (OSTI)

density deployment · Energy constraints · Power usage · Classification of algorithms · Examples >> sensor range) #12;Energy Constraints Spring 2006 CS 649 4 · Not always possible to do additional deployment (e.g. emergency services). · Untethered operation due to lack of infrastructure precludes the use

Amir, Yair

224

CHEMICAL ENGINEERING Fall Term Spring Term  

E-Print Network (OSTI)

to Engineering (FYE) 2 CHEM 112 General Chemistry 3 CHEM 111 General Chemistry 3 CHEG 112 Introduction I 3 CHEG 345 Chemical Engineering Laboratory I 3 CHEM 333 Organic Chemistry Laboratory 1 CHEM 332CHEMICAL ENGINEERING CURRICULUM FALL 2010 Fall Term Spring Term EGGG 101 Introduction

Lee, Kelvin H.

225

Cloud Microphysics Spring 2013 **odd years?**  

E-Print Network (OSTI)

ATS724 Cloud Microphysics (2-0-0) Spring 2013 **odd years?** Prerequisites: ATS620, ATS621; Ph, as the class will involve designing and building a simple cloud microphysical model. Course Description: **Sue and observations of nucleation, mechanisms of cloud droplet-spectra broadening, precipitation particle growth

226

Geothermal Energy in Iceland Spring 2009  

E-Print Network (OSTI)

Geothermal Energy in Iceland Kaeo Ahu CEE 491 Spring 2009 Final Presentation #12;HISTORY Iceland has five major geothermal power plants (GPP) Two produce electric and thermal energy Three produce Creating the availability of geothermal resources #12;HISTORY & BACKGROUND Iceland's first settlers used

Prevedouros, Panos D.

227

ECOLOGY LIFE 320 Spring Semester 2011  

E-Print Network (OSTI)

ECOLOGY LIFE 320 Spring Semester 2011 INSTRUCTOR: Dr. Liba Pejchar Office: 234 Wagar E-mail: liba to the fundamental principles of ecology. You will learn about the mechanisms that generate ecological patterns the distribution and abundance of organisms in nature. We will spend most of the semester studying ecology

228

GIS Analysis GIS 6116 -Spring 2015  

E-Print Network (OSTI)

GIS Analysis GIS 6116 - Spring 2015 School of Forest Resources and Conservation Geomatics Program _______________________________________________________________________________________ 1 GIS 6116 (GIS Analysis) INSTRUCTORS: Dr. Hartwig Henry Hochmair (FLREC Fort Lauderdale) Dr. Amr Information Analysis (2nd ed.). Hoboken, New Jersey, WIley & Sons. - Mitchell A (2005). The ESRI Guide to GIS

Watson, Craig A.

229

Chemistry 106X -Spring 2011 General Chemistry  

E-Print Network (OSTI)

Chemistry 106X - Spring 2011 General Chemistry Instructor: Christopher Iceman Class: MWF 1 and can be purchased in the UAF bookstore or elsewhere: · Chemistry and Chemical Reactivity 7th Ed for Chemistry and Chemical Reactivity 7th Ed. (1 or 2 semester) · TurningPoint Technologies ResponseCard RF

Wagner, Diane

230

Chemistry and Biochemistry Graduate Student Spring 2012  

E-Print Network (OSTI)

Chemistry and Biochemistry Graduate Student Tutors Spring 2012 (All arrangements are solely between.axelrod@mail.utexas.edu Organic Chemistry Chris Bates chrismbates@gmail.com General Chemistry Lecture/Lab Organic Chemistry Amy Bonaparte abonaparte@mail.utexas.edu General and Organic Chemistry Shelly Casciato slcasciato

231

CHEMICAL ENGINEERING Fall Term Spring Term  

E-Print Network (OSTI)

CHEG 332 Chemical Engineering Kinetics 3 CHEG 342 Heat and Mass Transfer 3 CHEG 341 Fluid Mechanics 3CHEMICAL ENGINEERING CURRICULUM Fall Term Spring Term EGGG 101 Introduction to Engineering (FYE) 2 CHEG 112 Introduction to Chemical Engineering 3 CHEM 111 General Chemistry 3 CHEM 112 General Chemistry

Lee, Kelvin H.

232

Neutrinoless Double Phys 135c Spring 2007  

E-Print Network (OSTI)

Neutrinoless Double Beta Decay Phys 135c Spring 2007 Michael Mendenhall #12;Theory Overview #12 beta decays #12;neutrinoless double beta decays n e- p beta decay e #12;neutrinoless double beta decays n e- p beta decay e n e- p n e- p double beta decay e e #12;neutrinoless double beta decays n e- p

Golwala, Sunil

233

BEE 533. Engineering Professionalism Spring 2008  

E-Print Network (OSTI)

BEE 533. Engineering Professionalism Spring 2008 Credit: 1 to 2 hours Catalogue description: Presentations address engineering professionalism and ethics, and provide preparation for the general NY FE Examination taught in a team-based format. The course emphasizes the engineer's professional responsibilities

Walter, M.Todd

234

Wetlands Ecology and Management Spring 2006  

E-Print Network (OSTI)

WFS 340 Wetlands Ecology and Management Spring 2006 Instructor: Dr. Matthew Gray (mattjgray-3897) Required Text: Wetlands, 2000, 3rd edition (ISBN 047129232X) Authors: William J. Mitsch and James C. Gosselink Course Goal: To expose students to the basic principles of wetland ecology and management via

Gray, Matthew

235

Wetlands Ecology and Management Spring 2008  

E-Print Network (OSTI)

WFS 340 Wetlands Ecology and Management Spring 2008 Instructor: Dr. Matthew Gray (mgray11@utk-3897) Drew Wirwa (dwirwa@utk.edu, 201 Ellington PSB, 974-3897) Recommended Text: Wetlands, 2007, 4th edition students to the basic principles of wetland ecology and management via class lectures, labs, and field

Gray, Matthew

236

Wetlands Ecology and Management Spring 2005  

E-Print Network (OSTI)

WFS 340 Wetlands Ecology and Management Spring 2005 Instructor: Dr. Matthew Gray (mattjgray-2635) Required Text: Wetlands, 2000, 3rd edition (ISBN 047129232X) Authors: William J. Mitsch and James C. Gosselink Course Goal: To expose students to the basic principles of wetland ecology and management via

Gray, Matthew

237

Wetlands Ecology and Management Spring 2007  

E-Print Network (OSTI)

WFS 340 Wetlands Ecology and Management Spring 2007 Instructor: Dr. Matthew Gray (mgray11@utk Text: Wetlands, 2000, 3rd edition (ISBN 047129232X) Authors: William J. Mitsch and James C. Gosselink Course Goal: To expose students to the basic principles of wetland ecology and management via class

Gray, Matthew

238

Wetlands Ecology and Management Spring 2009  

E-Print Network (OSTI)

WFS 340 Wetlands Ecology and Management Spring 2009 Instructor: Dr. Matthew Gray (mgray11@utk-3897) Drew Wirwa (dwirwa@utk.edu, 201 Ellington PSB, 974-3897) Recommended Text: Wetlands, 2007, 4th edition students to the basic principles of wetland ecology and management via class lectures, labs, and field

Gray, Matthew

239

SWIR at Steamboat Springs Geothermal Area (Kruse 2012) | Open Energy  

Open Energy Info (EERE)

SWIR at Steamboat Springs Geothermal Area (Kruse 2012) SWIR at Steamboat Springs Geothermal Area (Kruse 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: SWIR At Steamboat Springs Geothermal Area (Kruse 2012) Exploration Activity Details Location Steamboat Springs Geothermal Area Exploration Technique SWIR Activity Date Spectral Imaging Sensor MASTER, ASTER, AVIRIS Usefulness useful DOE-funding none Notes Analysis of the SWIR MASTER/ASTER data allow mapping of characteristic minerals associated with hot springs/mineral deposits, including carbonate, kaolinite, alunite, buddingtonite, muscovite, and hydrothermal silica. Mineral identification and the general distribution of specific minerals were verified utilizing ground spectral measurements and mineral maps produced from AVIRIS hyperspectral data.

240

Hydrogeologic investigation of Coso Hot Springs, Inyo County, California.  

Open Energy Info (EERE)

Hydrogeologic investigation of Coso Hot Springs, Inyo County, California. Hydrogeologic investigation of Coso Hot Springs, Inyo County, California. Final report October 1977--January 1978 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Hydrogeologic investigation of Coso Hot Springs, Inyo County, California. Final report October 1977--January 1978 Details Activities (2) Areas (1) Regions (0) Abstract: This investigation included: review of existing geologic, geophysical, and hydrologic information; field examination of geologic rock units and springs and other features of hydrologic significance and sampling of waters for chemical analysis; determination of the local Coso Hot Springs and regional groundwater hydrology, including consideration of recharge, discharge, movement, and water quality; and determination of the

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Spring 2013 National Transportation Stakeholders Forum Meeting, New York |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Transportation Stakeholders Forum » Spring 2013 National National Transportation Stakeholders Forum » Spring 2013 National Transportation Stakeholders Forum Meeting, New York Spring 2013 National Transportation Stakeholders Forum Meeting, New York Spring 2013 National Transportation Stakeholders Forum Meeting, New York Save the Date NTSF Registration Announcement NTSF 2013 Agenda EM's Huizenga Gives Keynote Address at National Transportation Stakeholders Forum Spring 2013 NTSF Presentations May 14, 2013 Presentations Communication Is Key to Packaging and Transportation Safety and Compliance North American Standard Level VI Inspection Program Update: Ensuring Safe Transportation of Radioactive Material Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing U.S. Nuclear Waste Technical Review Board: Roles and Priorities

242

Geochemistry And Geothermometry Of Spring Water From The Blackfoot  

Open Energy Info (EERE)

Geothermometry Of Spring Water From The Blackfoot Geothermometry Of Spring Water From The Blackfoot Reservoir Region, Southeastern Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geochemistry And Geothermometry Of Spring Water From The Blackfoot Reservoir Region, Southeastern Idaho Details Activities (3) Areas (1) Regions (0) Abstract: The Blackfoot Reservoir region in southeastern Idaho is recognized as a potential geothermal area because of the presence of several young rhyolite domes (50,000 years old), Quaternary basalt flows, and warm springs. North- to northwest-trending high-angle normal faults of Tertiary to Holocene age appear to be the dominant structural control of spring activity. Surface spring-water temperatures average 14°C except for a group of springs west of the Reservoir Mountains which average 33°C.

243

Chemical And Isotopic Investigation Of Warm Springs Associated With Normal  

Open Energy Info (EERE)

Isotopic Investigation Of Warm Springs Associated With Normal Isotopic Investigation Of Warm Springs Associated With Normal Faults In Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Chemical And Isotopic Investigation Of Warm Springs Associated With Normal Faults In Utah Details Activities (3) Areas (1) Regions (0) Abstract: Thermal springs associated with normal faults in Utah have been analyzed for major cations and anions, and oxygen and hydrogen isotopes. Springs with measured temperatures averaging greater than 40°C are characterized by Na + K- and SO4 + Cl-rich waters containing 103 to 104 mg/l of dissolved solids. Lower temperature springs, averaging less than 40°C, are more enriched in Ca + Mg relative to Na + K. Chemical variations monitored through time in selected thermal springs are probably produced by

244

Spring and Summer Energy-Saving Tips | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring and Summer Energy-Saving Tips Spring and Summer Energy-Saving Tips Spring and Summer Energy-Saving Tips May 30, 2012 - 1:21pm Addthis Simple and inexpensive actions can help you save energy and money during the warm spring and summer months. | Photo courtesy of iStockphoto.com/eyedias. Simple and inexpensive actions can help you save energy and money during the warm spring and summer months. | Photo courtesy of iStockphoto.com/eyedias. Here you'll find strategies to help you save energy during the spring and summer when the weather is warm and you are trying to keep your home cool. Some of the tips below are free and can be used on a daily basis to increase your savings; others are simple and inexpensive actions you can take to ensure maximum savings through the spring and summer. If you haven't already, conduct an energy assessment to find out where you

245

Spring and Summer Energy-Saving Tips | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring and Summer Energy-Saving Tips Spring and Summer Energy-Saving Tips Spring and Summer Energy-Saving Tips May 30, 2012 - 1:21pm Addthis Simple and inexpensive actions can help you save energy and money during the warm spring and summer months. | Photo courtesy of iStockphoto.com/eyedias. Simple and inexpensive actions can help you save energy and money during the warm spring and summer months. | Photo courtesy of iStockphoto.com/eyedias. Here you'll find strategies to help you save energy during the spring and summer when the weather is warm and you are trying to keep your home cool. Some of the tips below are free and can be used on a daily basis to increase your savings; others are simple and inexpensive actions you can take to ensure maximum savings through the spring and summer. If you haven't already, conduct an energy assessment to find out where you

246

Application of synchrotron radiation computed microtomography for quantification of bone microstructure in human and rat bones  

SciTech Connect

This work aims to evaluate histomorphometric quantification by synchrotron radiation computed microto-mography in bones of human and rat specimens. Bones specimens are classified as normal and pathological (for human samples) and irradiated and non-irradiated samples (for rat ones). Human bones are specimens which were affected by some injury, or not. Rat bones are specimens which were irradiated, simulating radiotherapy procedures, or not. Images were obtained on SYRMEP beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. The system generated 14 {mu}m tomographic images. The quantification of bone structures were performed directly by the 3D rendered images using a home-made software. Resolution yielded was excellent what facilitate quantification of bone microstructures.

Parreiras Nogueira, Liebert; Barroso, Regina Cely; Pereira de Almeida, Andre; Braz, Delson; Almeida, Carlos Eduardo de; Borba de Andrade, Cherley; Tromba, Giuliana [Nuclear Instrumentation Laboratory / COPPE / UFRJ, P.O. Box 68509, 21945-970, Rio de Janeiro (Brazil); Physics Institute / State University of Rio de Janeiro, 20550-900, Rio de Janeiro (Brazil); Nuclear Instrumentation Laboratory / COPPE / UFRJ, P.O. Box 68509, 21945-970, Rio de Janeiro (Brazil); Laboratory of Radiological Sciences / State University of Rio de Janeiro, Rio de Janeiro (Brazil); Sincrotrone Trieste SCpA, Strada Statale S.S. 14 km 163.5, 34012 Basovizza, Trieste (Italy)

2012-05-17T23:59:59.000Z

247

Insights into Spring 2008 Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

Insights into Spring 2008 Gasoline Prices Insights into Spring 2008 Gasoline Prices Insights into Spring 2008 Gasoline Prices EIA released a new analytical report entitled Motor Gasoline Market Spring 2007 and Implications for Spring 2008. It includes a discussion of scheduled refinery outages in 2008 prepared in accordance with Section 804 of the Energy Independence and Security Act (EISA) of 2007, which requires EIA to review and analyze information on such outages from commercial reporting services and assess to their expected effects on the price and supply of gasoline. Changes in wholesale gasoline prices relative to crude oil are determined by the tightness between gasoline supply (production and net imports) and demand. Expectations for U.S. gasoline supply relative to demand are for a more favorable situation in January through May 2008 than was the case in the comparable 2007 period. Demand growth, which varies seasonally and depends on economic factors, is expected to slow. New gasoline supply is affected by refinery outages, refinery run decisions, and import variations. Planned refinery outages for January through May 2008 are lower than for the same period in 2007. Given lower planned outages and assuming the return of unplanned outages to more typical levels, including the return of BP's Texas City refinery to full operation, gasoline production could increase between 100 and 200 thousand barrels per day over last year's level, depending on the market incentives. In addition, ethanol use, which adds to gasoline supply, is expected to continue to increase. Considering the uncertainty in all the gasoline supply components, there is little likelihood of events combining in 2008 to lead to the kind of tight supply downstream from crude oil markets seen in spring 2007. In summary, refinery outage and import impacts should contribute less to gasoline price increases in 2008 than in 2007. If all of the low-range estimates for supply occurred, total gasoline supply would increase about 200 thousand barrels per day (Figure S1). However, record crude oil prices are nonetheless pushing current and expected gasoline prices to record levels.

248

Fracture, aging and disease in bone  

E-Print Network (OSTI)

by enhancing the materials resistance to microstructuralgrowth resistance of microcracking brittle materials. J. Am.resistance to fracture of the Page 4 Fracture, Aging and Disease in Bone underlying material.

Ager, J.W.; Balooch, G.; Ritchie, R.O.

2006-01-01T23:59:59.000Z

249

Microsoft Word - WeldonSpringFAQ.docx  

Office of Legacy Management (LM)

Spring, Missouri, Site Spring, Missouri, Site Page 1 of 2 Last Updated: 8/11/2009 Frequently Asked Questions Q: Is my drinking water safe? A: On the basis of groundwater studies conducted by the U.S. Department of Energy (DOE), U.S. Geological Survey, and Missouri Department of Natural Resources, the extent of groundwater contamination is well understood. DOE can state with confidence that groundwater contaminants of concern generated by WSSRAP are not detectable above background levels in samples from any private drinking water wells or any of the pumping wells in the St. Charles County well field. The Missouri Department of Health has conducted private well surveys during the 1990s to test for project-related contaminants; data have shown no cause for concern. The St. Charles County well field is sampled quarterly.

250

Thousand Springs Wind Park | Open Energy Information  

Open Energy Info (EERE)

Park Park Jump to: navigation, search Name Thousand Springs Wind Park Facility Thousand Springs Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exergy Developer Exergy Energy Purchaser Idaho Power Location Twin Falls County ID Coordinates 42.7452°, -114.828° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7452,"lon":-114.828,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

Hot Springs Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Hot Springs Wind Farm Facility Hot Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Idaho Windfarms / John Deere Developer Idaho Windfarms Energy Purchaser Idaho Power Location Elmore County ID Coordinates 42.95°, -115.63° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.95,"lon":-115.63,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

Wilbur Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wilbur Springs Geothermal Area Wilbur Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wilbur Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.038874,"lon":-122.419653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

253

N Springs expedited response action proposal  

SciTech Connect

Since signing the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) in 1989, the parties to the agreement have recognized the need to modify the approach to conducting investigations, studies, and cleanup actions at Hanford. To implement this approach, the parties have jointly developed the Hanford Past-Practice Strategy. The strategy defines a non-time-critical expedited response action (ERA) as a response action ``needed to abate a threat to human health or welfare or the environment where sufficient time exists for formal planning prior to initiation of response. In accordance with the past-practice strategy, DOE proposes to conduct an ERA at the N Springs, located in the Hanford 100 N Area, to substantially reduce the strontium-90 transport into the river through the groundwater pathway. The purpose of this ERA proposal is to provide sufficient information to select a preferred alternative at N Springs. The nature of an ERA requires that alternatives developed for the ERA be field ready; therefore, all the technologies proposed for the ERA should be capable of addressing the circumstances at N Springs. A comparison of these alternatives is made based on protectiveness, cost, technical feasibility, and institutional considerations to arrive at a preferred alternative. Following the selection of an alternative, a design phase will be conducted; the design phase will include a detailed look at design parameters, performance specifications, and costs of the selected alternative. Testing will be conducted as required to generate design data.

Not Available

1994-01-01T23:59:59.000Z

254

Jemez Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Springs Geothermal Area Jemez Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.77166667,"lon":-106.69,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

255

125 total creditsMar. 15, 2013 (offered Fall/Spring)  

E-Print Network (OSTI)

125 total creditsMar. 15, 2013 CH 101 General Chemistry 4 cr ECE 121 or ENGR 111 1 cr (offered Fall/Spring) Freshman Year Sophomore Year Junior Year Senior Year Fall - 15 cr Spring - 16 cr Fall - 15 cr Spring - 16 cr Fall - 16 cr Spring - 16 cr Fall - 16 cr Spring - 15 cr Department of Electrical and Computer

Carver, Jeffrey C.

256

Carnegie Mellon University 70-451 Management Information Systems: Spring 2012Carnegie Mellon University 70-451 Management Information Systems: Spring 2012 1Carnegie Mellon University 70-451 Management Information Systems: Spring 2012 1Carnegie Mellon Univ  

E-Print Network (OSTI)

Carnegie Mellon University 70-451 Management Information Systems: Spring 2012Carnegie Mellon University 70-451 Management Information Systems: Spring 2012 1Carnegie Mellon University 70-451 Management Information Systems: Spring 2012 1Carnegie Mellon University 70-451 Management Information Systems: Spring

Gatterbauer, Wolfgang

257

Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Details Activities (5) Areas (2) Regions (0) Abstract: Studies of the geology, geochemistry of thermal waters, and of one exploratory geothermal well show that two related hot spring systems discharge in Canon de San Diego at Soda Dam (48°C) and Jemez Springs (72°C). The hot springs discharge from separate strands of the Jemez fault zone which trends northeastward towards the center of Valles Caldera. Exploration drilling to Precambrian basement beneath Jemez Springs

258

EIS-0451: Hooper Springs Project, Caribou County, Idaho | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Hooper Springs Project, Caribou County, Idaho 1: Hooper Springs Project, Caribou County, Idaho EIS-0451: Hooper Springs Project, Caribou County, Idaho Summary This EIS evaluates the environmental impacts of DOE's Bonneville Power Administration's proposal to construct, operate, and maintain a single-circuit, 115-kilovolt (kV) transmission line and a 138/115-kV substation (collectively referred to as the Hooper Springs Project). The new substation would be located adjacent to PacifiCorp's existing 345/138-kV Threemile Knoll Substation, located near the City of Soda Springs in Caribou County, Idaho. Public Comment Opportunities None available at this time. Documents Available for Download March 11, 2013 EIS-0451: Draft Environmental Impact Statement Hooper Springs Project, Caribou County, Idaho March 8, 2013

259

Beowawe Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area (Redirected from Beowawe Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Beowawe Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Geofluid Geochemistry 11 NEPA-Related Analyses (0) 12 Exploration Activities (8) 13 References Map: Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Beowawe, Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

260

Roosevelt Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area (Redirected from Roosevelt Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Roosevelt Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Heat Source 11 Geofluid Geochemistry 12 NEPA-Related Analyses (0) 13 Exploration Activities (9) 14 References Map: Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Milford, Utah Exploration Region: Northern Basin and Range Geothermal Region

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Hydrogeology of the Blautopf spring - Tracer tests in Blauhohle cave |  

Open Energy Info (EERE)

Hydrogeology of the Blautopf spring - Tracer tests in Blauhohle cave Hydrogeology of the Blautopf spring - Tracer tests in Blauhohle cave Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hydrogeology of the Blautopf spring - Tracer tests in Blauhohle cave Author Andreas Kucha Published Publisher Not Provided, 2012 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Hydrogeology of the Blautopf spring - Tracer tests in Blauhohle cave Citation Andreas Kucha. Hydrogeology of the Blautopf spring - Tracer tests in Blauhohle cave [Internet]. 2012. [cited 2013/10/17]. Available from: http://www.agw.kit.edu/english/blauhoele_cave.php Retrieved from "http://en.openei.org/w/index.php?title=Hydrogeology_of_the_Blautopf_spring_-_Tracer_tests_in_Blauhohle_cave&oldid=688895"

262

Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase  

Open Energy Info (EERE)

Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Abstract N/A Author U.S. Geothermal Inc. Published Publisher Not Provided, 2010 Report Number N/A DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Citation U.S. Geothermal Inc.. 2010. Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement. Boise Idaho: (!) . Report No.: N/A. Retrieved from "http://en.openei.org/w/index.php?title=Idaho_Public_Utilities_Commission_Approves_Neal_Hot_Springs_Power_Purchase_Agreement&oldid=682748"

263

Spring structure for a thermionic converter emitter support arrangement  

DOE Patents (OSTI)

A support is provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end is supported by a spring structure that includes a pair of Belleville springs, and the spring structure is supported by a support structure fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element at the front end, a larger metal main support at the rear end that is attached to the housing, and with a ceramic layer between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer captured between the Belleville springs. 7 figs.

Allen, D.T.

1992-03-17T23:59:59.000Z

264

Spring structure for a thermionic converter emitter support arrangement  

SciTech Connect

A support is provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housing, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

Allen, Daniel T. (La Jolla, CA)

1992-01-01T23:59:59.000Z

265

E-Print Network 3.0 - adaptive bone remodelling Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

various sites and involves resorption by osteoclast, followed... mineral density and bone micro- architecture. Our paper focuses on bone microstructure and remodeling... in bone...

266

E-Print Network 3.0 - areal bone mineral Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

(DXA)-derived areal bone mineral density (BMD) and reductions in vertebral fracture incidence... than the bone volume fraction (mineralized bone volumebulk volume).12...

267

E-Print Network 3.0 - assessing bone mass Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

on assessment of bone mass... the amount of bone mass and predict the risk for fracture. However, the cur- rently available techniques... - tive assessment of bone ......

268

E-Print Network 3.0 - antibody-facilitated bone marrow Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

of off... marrow, manifested as artifactual broadening of bone micro-structures in the image. The resulting images... (B0) at bone and bone marrow ... Source: Southern...

269

Office of Indian Energy Newsletter: Spring 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring 2013 Spring 2013 Office of Indian Energy Newsletter: Spring 2013 Indian Energy Beat: News on Actions to Accelerate Energy Development in Indian Country Spring 2013 Issue: Federal Technical Assistance Aims to Accelerate Tribal energy Project Deployment Message from the Director Indian Country Energy Roundup: Conferences and Webinars Sharing Knowledge: Renewable Energy Technical Potential on Tribal Lands Winning the Future: Strategic Planning Opens Doors for Isolated Alaskan Village Building Bridges: NANA Regional Corporation Collaborates to Help Alaska Natives Tackle Energy Challenges Opening Doors Webinar Series Addresses Top Tribal Energy Development Considerations Education Program Helps Tribes Prepare for Energy Projects Leading the Charge: Bright Skies Ahead for Moapa

270

Understanding The Chena Hot Springs, Alaska, Geothermal System Using  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Understanding The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Understanding The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Details Activities (7) Areas (1) Regions (0) Abstract: Chena Hot Springs is a small, moderate temperature, deep circulating geothermal system, apparently typical of those associated to hot springs of interior Alaska. Multi-stage drilling was used in some

271

Under Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Under Steamboat Springs Geothermal Area Under Steamboat Springs Geothermal Area (Redirected from Under Steamboat Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Under Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

272

Ch. VIII, Soil mercury investigations, Waunita Hot Springs |...  

Open Energy Info (EERE)

mercury investigations, Waunita Hot Springs Authors C. D. Ringrose and R. H. Pearl Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation with the U.S....

273

Ch. II, Waunita Hot Springs, Colorado Geothermal Prospect Reconaissanc...  

Open Energy Info (EERE)

Waunita Hot Springs, Colorado Geothermal Prospect Reconaissance Author GeothermEx Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation with the U.S....

274

Ch. I, Report on Waunita Hot Springs Project, Gunnison County...  

Open Energy Info (EERE)

Springs Project, Gunnison County, Colorado Author K. W. Nickerson and Associates Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation with the U.S....

275

Ch. VI, The geophysical environment around Waunita Hot Springs...  

Open Energy Info (EERE)

Ch. VI, The geophysical environment around Waunita Hot Springs Author A. L. Lange Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation with the U.S....

276

Micro-Earthquake At Roosevelt Hot Springs Geothermal Area (Zandt...  

Open Energy Info (EERE)

Activity Details Location Roosevelt Hot Springs Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1982 Usefulness not indicated DOE-funding Unknown...

277

Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity Details...

278

Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity...

279

Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck,...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity...

280

FUPWG Spring 2010 Meeting in Rapid City: Navy Techval Program  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the Navy Techval Program and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

FUPWG Spring 2010 Meeting South Dakota: Washington Update  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers an update on Washington given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

282

Isotopic Analysis- Fluid At Roosevelt Hot Springs Geothermal...  

Open Energy Info (EERE)

and literature review of the Roosevelt Hot Springs Geothermal Area. Notes Stable isotope analysis of thermal fluids determined meteoric origin primarily from the Mineral...

283

Core Analysis At Valles Caldera - Sulphur Springs Geothermal...  

Open Energy Info (EERE)

Details Location Valles Caldera - Sulphur Springs Geothermal Area Exploration Technique Core Analysis Activity Date - 1992 Usefulness not indicated DOE-funding Unknown Notes...

284

Fuel Cell Vehicle Learning Demonstration: Spring 2008 Results (Presentation)  

SciTech Connect

Presentation prepared for the 2008 National Hydrogen Association Conference that describes the spring 2008 results for DOE's Fuel Cell Vehicle Learning Demonstration.

Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

2008-04-02T23:59:59.000Z

285

Petrography Analysis At Valles Caldera - Sulphur Springs Geothermal...  

Open Energy Info (EERE)

(Armstrong, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Petrography Analysis At Valles Caldera - Sulphur Springs Geothermal...

286

Field Mapping At Hot Sulphur Springs Area (Goranson, 2005) |...  

Open Energy Info (EERE)

DOE-funding Unknown References Colin Goranson (2005) Recent Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area...

287

Reflection Survey At Hot Sulphur Springs Area (Goranson, 2005...  

Open Energy Info (EERE)

DOE-funding Unknown References Colin Goranson (2005) Recent Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area...

288

Rice On-Campus Interviewing Spring 2014 Deadline Dates  

E-Print Network (OSTI)

Fair · February 7 Career & Internship Expo · March 3 - 7 Spring Break · March 13 Recruiter Chili Cook-Off

Alvarez, Pedro J.

289

Goddard Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

ENERGYGeothermal Home Goddard Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5...

290

Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder,...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Exploration Activity Details...

291

Fuel Cell Vehicle Learning Demonstration: Spring 2007 Results (Presentation)  

SciTech Connect

This presentation provides the results, as of Spring 2007, for the fuel cell vehicle learning demonstration conducted by the National Renewable Energy Laboratory.

Wipke, K.; Sprik, S.; Thomas, H.; Welch, C.; Gronich, S.; Garbak, J.

2007-03-20T23:59:59.000Z

292

Flow Test At Valles Caldera - Sulphur Springs Geothermal Area...  

Open Energy Info (EERE)

Flow Test At Valles Caldera - Sulphur Springs Geothermal Area (Musgrave, Et Al., 1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test...

293

Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder,...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder, 1994) Exploration Activity Details...

294

Aerial Photography At Pilgrim Hot Springs Area (Prakash, Et Al...  

Open Energy Info (EERE)

Prakash, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Pilgrim Hot Springs Area (Prakash, Et Al., 2010)...

295

Isotopic Analysis At Jemez Springs Area (Goff, Et Al., 1981)...  

Open Energy Info (EERE)

Goff, Et Al., 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Jemez Springs Area (Goff, Et Al., 1981) Exploration...

296

Ground Gravity Survey At Under Steamboat Springs Area (Warpinski...  

Open Energy Info (EERE)

Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Under Steamboat Springs Area (Warpinski,...

297

Isotopic Analysis At Jemez Springs Area (Rao, Et Al., 1996) ...  

Open Energy Info (EERE)

Rao, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Jemez Springs Area (Rao, Et Al., 1996) Exploration...

298

Magnetotellurics At Beowawe Hot Springs Area (Garg, Et Al., 2007...  

Open Energy Info (EERE)

Garg, Et Al., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Beowawe Hot Springs Area (Garg, Et Al., 2007) Exploration...

299

Reflection Survey At Under Steamboat Springs Area (Warpinski...  

Open Energy Info (EERE)

Under Steamboat Springs Area (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Under Steamboat...

300

Micro-Earthquake At Waunita Hot Springs Geothermal Area (Lange...  

Open Energy Info (EERE)

was to assess the extent of active fault failure and the potential importance of fracture permeability in the subsurface surrounding the hot springs. Notes The first...

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Chena Hot Springs GRED III Project: Final Report Geology, Petrology...  

Open Energy Info (EERE)

hot springs area. This included pluton mapping, limited mapping of localfaults and fracture orientations, and petrology, mineralogy, geochemistry, of surface rocksamples. 2)...

302

Idaho Public Utilities Commission Approves Neal Hot Springs Power...  

Open Energy Info (EERE)

Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Idaho Public Utilities...

303

Compound and Elemental Analysis At Jemez Springs Area (Goff ...  

Open Energy Info (EERE)

not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, andor wells. References Fraser E. Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles...

304

Audio-Magnetotellurics At Baltazor Hot Springs Area (Isherwood...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Audio-Magnetotellurics At Baltazor Hot Springs Area (Isherwood & Mabey, 1978) Exploration...

305

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Environmental Management (EM)

Office 2013 Peer Review Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells PI - Bernie Karl Chena Hot Springs Resort Track 1 Project Officer:...

306

E&PNews Spring09.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

Commentary ...................................1 Commentary ...................................1 Deepwater power .........................4 Alabama shales ..............................7 Near-miscible CO 2 flooding .......9 UDS overview ...............................11 Bakken shale projects .............. 14 GAO report ....................................19 Wired pipe technology ............ 21 E&P Snapshots ............................ 22 Upcoming Presentations ........ 24 ContaCts Roy Long Technology Manager- Ultra-Deepwater, Strategic Center for Natural Gas & Oil 281-494-2520 roy.long@netl.doe.gov albert Yost Technology Manager- Exploration & Production, Strategic Center for Natural Gas & Oil 304-285-4479 albert.yost@netl.doe.gov Oil & Natural Gas Program Newsletter Spring 2009 1 Dear e&P Focus Readers:

307

Field Mapping At Brady Hot Springs Area (Wesnousky, Et Al., 2003...  

Open Energy Info (EERE)

Brady Hot Springs Area (Wesnousky, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Brady Hot Springs Area...

308

CARBONATE STABLE ISOTOPES | Terrestrial Teeth and Bones  

Science Journals Connector (OSTI)

Teeth and bones of fossil vertebrates can preserve a record of Quaternary terrestrial environments in the form of isotopic compositions of carbon (13C/12C), nitrogen (15N/14N), and oxygen (18O/16O). These isotopic signatures in teeth and bones have yielded valuable information on the extent of savanna environments under tropical climates, on the ancient levels of aridity, on the spread of dense forests at the beginning of the Holocene, and on the paleodiet of hominids and their associated fauna.

H. Bocherens; D.G. Drucker

2007-01-01T23:59:59.000Z

309

CARBONATE STABLE ISOTOPES | Terrestrial Teeth and Bones  

Science Journals Connector (OSTI)

Abstract Teeth and bones of fossil vertebrates can preserve a record of Quaternary terrestrial environments in the form of the isotopic compositions of carbon (13C/12C), nitrogen (15N/14N), and oxygen (18O/16O). These isotopic signatures in teeth and bones have yielded valuable information on the extent of savanna environments under tropical climates, on the ancient levels of aridity, on the spread of dense forests at the beginning of the Holocene, and on the paleodiet of Hominids and their associated fauna.

H. Bocherens; D.G. Drucker

2013-01-01T23:59:59.000Z

310

Mechanical bone strength in the proximal tibia  

E-Print Network (OSTI)

. Hvid I, Jansen J: Mechanical strength of the tibial resection surface in total knee replacement. Eng Med 12:173-176, 1983 9. Hvid I, Jansen J: Cancellous bone strength at the proximal human tibia. Eng Med 13:21-25, 1984 28 10. Hvid I, Jansen J.... Hvid I, Jansen J: Mechanical strength of the tibial resection surface in total knee replacement. Eng Med 12:173-176, 1983 9. Hvid I, Jansen J: Cancellous bone strength at the proximal human tibia. Eng Med 13:21-25, 1984 28 10. Hvid I, Jansen J...

Prommin, Danu

2012-06-07T23:59:59.000Z

311

Research Finds Vitamin D Deficiency Affects Bone Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

of vitamin D, the "sunshine vitamin," have been previously linked to the health and fracture risk of human bone on the basis of low calcium intake and reduced bone density. The...

312

On-Line Renewals Spring 2015 Co-op Timeline  

E-Print Network (OSTI)

On-Line Renewals Spring 2015 Co-op Timeline All students applying for Co-ops &/or Internships must for Spring 2015 Co-op ( Renewals are for Co-ops only). Also Work Term Evaluations will be accepted. November 10, 2014 Earliest date for submitting Coop Renewals to start working (on January 12th ) December 1

Heller, Barbara

313

Matthew Melissa Physics 141A Spring 2013 1 Giant Magnetoresistance  

E-Print Network (OSTI)

­ Physics 141A ­ Spring 2013 4 Outline · Background · Discovery of GMR · Some basic theory · Applications: magnetic field sensors, hard drive read heads, magnetic RAM #12;Matthew Melissa ­ Physics 141A ­ Spring 2013 5 Background · Ordinary magnetoresistance (OMR) discovered in 1856 by Lord Kelvin · Resistance

Budker, Dmitry

314

Department of Mechanical Engineering Spring 2010 Bipedal Machine  

E-Print Network (OSTI)

PENNSTATE Department of Mechanical Engineering Spring 2010 Bipedal Machine Overview The Spring 2010 group inherited a bipedal machine structure capable of withstanding static loading, but not dynamic times the machine weight) in several different loading orientations. The group made exctensive use

Demirel, Melik C.

315

Department of Mechanical Engineering Spring 2010 Wellbore Coil Tubing  

E-Print Network (OSTI)

PENNSTATE Department of Mechanical Engineering Spring 2010 Wellbore Coil Tubing Overview In BP reaching the bottom of the wellbore utilizing a pre- loaded constant force spring. The coiled tubing's North American Gas Division, there are approximately 800 wellbores with coiled tubing installed

Demirel, Melik C.

316

IN A CUREUF HEALTH CANCER CENTER NEWS SPRING 2014  

E-Print Network (OSTI)

care and research for the Southeast's most comprehensive academic health center. In each issue, weIN A CUREUF HEALTH CANCER CENTER NEWS Believe SPRING 2014 PAGE6 #12;www.cancer.ufl.eduBelieve in a Cure//Spring 20142 Believe in a Cure is the newsletter for the UF Health Cancer Center, home to cancer

Roy, Subrata

317

Department of Industrial Engineering Spring 2011 African Climate Exchange II  

E-Print Network (OSTI)

PENNSTATE Department of Industrial Engineering Spring 2011 African Climate Exchange II Overview Mr. Combining with a Mechanical Engineering team in Spring 2011, the goal was to work with the M.E. team while Engineering team to establish a facility around the Injera machine that was previously built in Fall 2010

Demirel, Melik C.

318

FALL AND SPRING Per Hour # Hours # Semesters Total  

E-Print Network (OSTI)

$4,060.00 FALL AND SPRING Per Hour # Hours # Semesters Total Tuition $765.00 15 2 $22,950.00 ISS, Engineering, Journalism & Mass Communications, Music and Social Welfare fees. These amounts do NOT include to complete at least 12 hours each fall and spring semester. Calculations are based on 15 hours (an average

319

FALL AND SPRING Per Hour # Hours # Semesters Total  

E-Print Network (OSTI)

$4,060.00 FALL AND SPRING Per Hour # Hours # Semesters Total Tuition $828.00 15 2 $24,840.00 ISS Living Expenses Please see reverse side for Architecture, Arts, Business, Design & Planning, Engineering to change. Tuition will be guaranteed through spring 2018; however, expect approximately a 5% increase each

320

Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Steamboat Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (1) 10 Exploration Activities (14) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.388,"lon":-119.743,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Geophysical Characterization of a Geothermal System Neal Hot Springs,  

Open Energy Info (EERE)

Characterization of a Geothermal System Neal Hot Springs, Characterization of a Geothermal System Neal Hot Springs, Oregon, USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Characterization of a Geothermal System Neal Hot Springs, Oregon, USA Abstract Neal Hot Springs is an active geothermal area that is also the proposed location of a binary power plant, which is being developed by US Geothermal Inc. To date, two production wells have been drilled and an injection well is in the process of being completed. The primary goal of this field camp was to provide a learning experience for students studying geophysics, but a secondary goal was to characterize the Neal Hot Springs area to provide valuable information on the flow of geothermal fluids through the subsurface. This characterization was completed using a variety of

322

Beowawe Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Beowawe Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Geofluid Geochemistry 11 NEPA-Related Analyses (0) 12 Exploration Activities (8) 13 References Map: Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Beowawe, Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

323

Geothermometry At Hot Springs Ranch Area (Szybinski, 2006) | Open Energy  

Open Energy Info (EERE)

Hot Springs Ranch Area (Szybinski, 2006) Hot Springs Ranch Area (Szybinski, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity Details Location Hot Springs Ranch Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes The brine from the drill holes, hot springs, seepages, and irrigation wells was sampled, as well as water from two nearby creeks, (total of 13 samples) and sent for analysis to Thermochem Inc. For sample locations refer to Figure 35; the geochemical data are presented in Appendix C. Geochemical results indicate the presence of two distinct waters in this group of samples (Tom Powell of Thermochem Inc., personal communication, 2005).

324

White Sulphur Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Sulphur Springs Space Heating Low Temperature Geothermal Facility Sulphur Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name White Sulphur Springs Space Heating Low Temperature Geothermal Facility Facility White Sulphur Springs Sector Geothermal energy Type Space Heating Location White Sulphur Springs, Montana Coordinates 46.548277°, -110.9021561° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

325

Manley Hot Springs Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Manley Hot Springs Greenhouse Low Temperature Geothermal Facility Manley Hot Springs Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Manley Hot Springs Greenhouse Low Temperature Geothermal Facility Facility Manley Hot Springs Sector Geothermal energy Type Greenhouse Location Manley Hot Springs, Alaska Coordinates 65.0011111°, -150.6338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

326

Spring Home Maintenance: Windows, Windows, Windows! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Use these tips for window maintence and treatments to save energy this spring. The beginning of spring marks the point in the year when I'm cleaning, purging the house of things I no longer need, and updating my home on needed repairs. This year, I'm focusing on how to lower my energy bills

327

Masson Radium Springs Farm Greenhouse Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Masson Radium Springs Farm Greenhouse Low Temperature Geothermal Facility Masson Radium Springs Farm Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Masson Radium Springs Farm Greenhouse Low Temperature Geothermal Facility Facility Masson Radium Springs Farm Sector Geothermal energy Type Greenhouse Location Radium Springs, New Mexico Coordinates 32.501453°, -106.926575° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

328

Roosevelt Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Roosevelt Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Heat Source 11 Geofluid Geochemistry 12 NEPA-Related Analyses (0) 13 Exploration Activities (9) 14 References Map: Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Milford, Utah Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

329

Chena Hot Springs Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Chena Hot Springs Geothermal Facility Chena Hot Springs Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Chena Hot Springs Geothermal Facility General Information Name Chena Hot Springs Geothermal Facility Facility Chena Hot Springs Sector Geothermal energy Location Information Location Fairbanks, Alaska Coordinates 65.0518255°, -146.0474319° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.0518255,"lon":-146.0474319,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

Noble Gas Geochemistry In Thermal Springs | Open Energy Information  

Open Energy Info (EERE)

Geochemistry In Thermal Springs Geochemistry In Thermal Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Noble Gas Geochemistry In Thermal Springs Details Activities (1) Areas (1) Regions (0) Abstract: The composition of noble gases in both gas and water samples collected from Horseshoe Spring, Yellowstone National Park, was found to be depth dependent. The deeper the sample collection within the spring, the greater the enrichment in Kr, Xe, radiogenic 4He, and 40Ar and the greater the depletion in Ne relative to 36Ar. The compositional variations are consistent with multi-component mixing. The dominant component consists of dissolved atmospheric gases acquired by the pool at the surface in contact with air. This component is mixed in varying degree with two other

331

Brady Hot Springs I Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Hot Springs I Geothermal Facility Hot Springs I Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Brady Hot Springs I Geothermal Facility General Information Name Brady Hot Springs I Geothermal Facility Facility Brady Hot Springs I Sector Geothermal energy Location Information Location Churchill, Nevada Coordinates 39.796370120458°, -119.00998950005° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.796370120458,"lon":-119.00998950005,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

332

Isotopic Analysis At Valles Caldera - Sulphur Springs Area (Woldegabriel &  

Open Energy Info (EERE)

Valles Caldera - Sulphur Springs Area (Woldegabriel & Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Useful for age determinations - not indicated is useful for exploration. References Giday WoldeGabriel, Fraser Goff (1992) K-Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles Caldera, New Mexico And Their Relation To Alteration In A Large Hydrothermal System Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Valles_Caldera_-_Sulphur_Springs_Area_(Woldegabriel_%26_Goff,_1992)&oldid=510971"

333

EA-1173: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Grande Ronde Basin Endemic Spring Chinook Salmon 3: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental Program (Preliminary), Oregon EA-1173: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental Program (Preliminary), Oregon SUMMARY This EA evaluates the environmental impacts for the U.S. Department of Energy Bonneville Power Administration's proposal to fund a program designed to prevent the extinction and begin the recovery of spring Chinook salmon stocks in the Grande Ronde River Basin in the Upper Grande Ronde River, Lostine River, and Catherine Creek in Northeastern Oregon. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 18, 2003 EA-1173-SA-01: Supplement Analysis Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program

334

Neal Hot Springs Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Neal Hot Springs Geothermal Power Plant Neal Hot Springs Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Neal Hot Springs Geothermal Power Plant General Information Name Neal Hot Springs Geothermal Power Plant Facility Neal Hot Springs Sector Geothermal energy Location Information Location Malheur County, Oregon Coordinates 44.02239°, -117.4631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.02239,"lon":-117.4631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

335

Desert Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Desert Hot Springs Space Heating Low Temperature Geothermal Facility Facility Desert Hot Springs Sector Geothermal energy Type Space Heating Location Desert Hot Springs, California Coordinates 33.961124°, -116.5016784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

336

A Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs  

Open Energy Info (EERE)

Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs Area In Northern Greece Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs Area In Northern Greece Details Activities (0) Areas (0) Regions (0) Abstract: In total 24 direct current resistivity soundings were carried out during the preliminary stages of a geothermal exploration survey of the Langada hot springs area (northern Greece). The analysis of the data revealed a horst-type morphology striking NW-SE. Correlation between the location of hot springs, successful drill holes and the basement (horst) indicates that the sector of geothermal interest is concentrated along the major axis of the horst mapped. The horst type geothermal structure fits in

337

Geothermal resource assessment of Idaho Springs, Colorado. Resource series 16  

SciTech Connect

Located in the Front Range of the Rocky Mountains approximately 30 miles west of Denver, in the community of Idaho Springs, are a series of thermal springs and wells. The temperature of these waters ranges from a low of 68/sup 0/F (20/sup 0/C) to a high of 127/sup 0/F (53/sup 0/C). To define the hydrothermal conditions of the Idaho Springs region in 1980, an investigation consisting of electrical geophysical surveys, soil mercury geochemical surveys, and reconnaissance geological and hydrogeological investigations was made. Due to topographic and cultural restrictions, the investigation was limited to the immediate area surrounding the thermal springs at the Indian Springs Resort. The bedrock of the region is faulted and fractured metamorphosed Precambrian gneisses and schists, locally intruded by Tertiary age plutons and dikes. The investigation showed that the thermal waters most likely are fault controlled and the thermal area does not have a large areal extent.

Repplier, F.N.; Zacharakis, T.G.; Ringrose, C.D.

1982-01-01T23:59:59.000Z

338

Geothermometry At Buffalo Valley Hot Springs Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Buffalo Valley Hot Springs Area (Laney, 2005) Buffalo Valley Hot Springs Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being

339

Gila Hot Springs District Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Gila Hot Springs District Heating Low Temperature Geothermal Facility Gila Hot Springs District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Gila Hot Springs District Heating Low Temperature Geothermal Facility Facility Gila Hot Springs Sector Geothermal energy Type District Heating Location Gila Hot Springs, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

340

Building Strong Bones: Calcium Information for Health Care Providers  

E-Print Network (OSTI)

intake of calcium.2 You can help children achieve lifelong bone health by talking to parents and young of calcium necessary for optimal bone development. Research suggests many parents don't know that children to three decades of life ·The rate at which bone is lost in the later years Although the consequences

Rau, Don C.

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Bones as biofuel: a review of whale bone composition with implications for deep-sea biology and palaeoanthropology  

Science Journals Connector (OSTI)

...Review articles 1001 60 144 69 Bones as biofuel: a review of whale bone composition with...first attempts to quantify the enormous biofuel reserves of these giant creatures. The...smaller fatty acids. 3. Whale bones as biofuel These data have been unnoticed for half...

2011-01-01T23:59:59.000Z

342

Exchange-Spring Magnets: Nanocomposite Exchange-Spring Magnets for Motor and Generator Applications  

SciTech Connect

REACT Project: ANL will develop a cost-effective exchange-spring magnet to use in the electric motors of wind generators and EVs that uses no rare earth materials. This ANL exchange-spring magnet combines a hard magnetic outer shell with a soft magnetic inner corecoupling these together increases the performance (energy density and operating temperature). The hard and soft magnet composite particles would be created at the molecular level, followed by consolidation in a magnetic field. This process allows the particles to be oriented to maximize the magnetic properties of low-cost and abundant metals, eliminating the need for expensive imported rare earths. The ultimate goal of this project is to demonstrate this new type of magnet in a prototype electric motor.

None

2012-01-01T23:59:59.000Z

343

Wessington Springs Wind Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Facility Wessington Springs Sector Wind energy Facility Type Community Wind Location SD Coordinates 44.081932°, -98.559685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.081932,"lon":-98.559685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

344

Silver Spring Networks | Open Energy Information  

Open Energy Info (EERE)

Networks Networks Jump to: navigation, search Name Silver Spring Networks Address 575 Broadway Street Place Redwood City, California Zip 94063 Sector Efficiency Product Energy efficiency Website http://www.silverspringnetwork Coordinates 37.4858629°, -122.2067269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4858629,"lon":-122.2067269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

Summary of the Spring 2004 ASA Meeting  

U.S. Energy Information Administration (EIA) Indexed Site

of the Spring Meeting of the American Statistical Association (ASA) Committee on Energy Statistics April 22 and 23, 2004 with the Energy Information Administration 1000 Independence Ave., SW. Washington, D.C. 20585 Thursday, April 22, 2004 Natural Gas Prices and Industrial Sector Responses: An Experimental Module for the Short-Term Integrated Forecasting System (STIFS), Dave Costello, Office of Energy Markets and End Use (EMEU) and Frederick L. Joutz, Associate Professor, Department of Economics, The George Washington University. The Short-Term Integrated Forecasting System (STIFS) generates monthly forecasts of energy demand, supply and prices using some forecast information that is incorporated into STIFS that is generated by other models that do not run in an integrated framework with STIFS. This

346

Hot Springs-Garrison Fiber Optic Project  

SciTech Connect

Bonneville Power Administration (BPA) is proposing to upgrade its operational telecommunications system between the Hot Springs Substation and the Garrison Substation using a fiber optic system. The project would primarily involve installing 190 kilometers (120 miles) of fiber optic cable on existing transmission structures and installing new fiber optic equipment in BPA`s substation yards and control houses. BPA prepared an environmental assessment (EA) evaluating the proposed action. This EA was published in October 1994. The EA identifies a number of minor impacts that might occur as a result of the proposed action, as well as some recommended mitigation measures. This Mitigation Action Plan (MAP) identifies specific measures to avoid, minimize, or compensate for impacts identified in the EA.

Not Available

1994-10-01T23:59:59.000Z

347

Overview of the SPring-8 Diagnostics Beamlines  

SciTech Connect

We present an overview of the two SPring-8 diagnostics beamlines, the beamline I (dipole magnet source) and II (insertion device source). At the beamline I, synchrotron radiation (SR) in both the X-ray and the visible bands is exploited for characterizations of the electron beam. At the beamline II, by observing the spectral, spatial, and temporal characteristics of X-ray SR of the insertion device (ID), new techniques for accelerator diagnostics are investigated. Irradiation experiments with the ID to develop accelerator components such as photon absorbers, and production of intensive 10 MeV {gamma}-rays by backward Compton scattering of external far infrared (FIR) laser photons are being prepared at the beamline II.

Takano, S.; Masaki, M.; Tamura, K.; Mochihashi, A.; Nakamura, T.; Suzuki, S.; Oishi, M.; Shoji, M.; Taniuchi, Y.; Okayasu, Y.; Ohkuma, H. [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo, 679-5198 (Japan); Okajima, S. [Center of Advanced Metrology, Chubu University, Kasugai, Aichi, 487-8501 (Japan)

2010-06-23T23:59:59.000Z

348

Final Environmental Assessment BPA's Hot Springs - Garrison  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BPA's Hot Springs - Garrison Fiber Optic Project DOE-EA-1 002 POWER ADMINISTRATION Bonneville Power Administration DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

349

Summary of the Spring 2006 ASA Meetings  

U.S. Energy Information Administration (EIA) Indexed Site

Summaries of the Summaries of the American Statistical Association (ASA) Committee on Energy Statistics Advice and Energy Information Administration (EIA) Responses at the spring 2006 Meeting 1. How Can Modeling Suggest Data Needs? Open discussion between the Committee and EIA. This session was prompted by Committee remarks in the fall 2005 meeting. Nancy Kirkendall, Chair, and Margot Anderson, Director, EMEU. See transcript for discussion on EIA's Home Page: http://www.eia.gov/calendar/asa_overview.htm 2. Measuring Perceptions of Applying Alternative Disclosure Limitation Methods, Jake Bournazian, SMG Suppression is the most common method that federal agencies use to protect the confidentiality of reported data when releasing an information product. During the past 15 years,

350

Piezoelectric Versus Mechanical Spring Pressure Gauge  

Science Journals Connector (OSTI)

That difficulties in the use of various types of pressure gauges warrant meticulous scrutiny in the rendering of an accurate pressure?time curve has advanced each type of gauge for particular work. In powder gas and internal combustion engine gas pressures the spring type and piezoelectric type offer great possibilities with the first a self?contained unit and the latter a charge?collecting device and with the former following the true curve by an admitted time lag and the latter assumed to be responding instantaneously. Sparse comparative records of the two show the case to be more nearly the reverse of what the popular assumption leads one to believe. Fuller data are needed to determine the comparative lagging characteristics of both types.

R. Alden Webster

1939-01-01T23:59:59.000Z

351

Celebrating Black History Month with DOE's Sheri Bone | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with DOE's Sheri Bone with DOE's Sheri Bone Celebrating Black History Month with DOE's Sheri Bone February 9, 2011 - 2:04pm Addthis Sheri Bone. | File photo. Sheri Bone. | File photo. Ebony Meeks Former Assistant Press Secretary, Office of Public Affairs Throughout the month of February, we're introducing some remarkable African Americans who are working to advance the President's clean energy agenda and help the Department of Energy achieve its mission. This week we're profiling Sheri Bone who is Senior Project Director, Office of Nuclear Materials Integration, National Nuclear Security Administration. Sheri Bone Question: What is your key responsibility? SB: I'm responsible for developing the Department of Energy's strategic plan for nuclear materials. This means directing and leading a team of

352

A combined analytical, numerical, and experimental study of shape-memory-alloy helical springs  

E-Print Network (OSTI)

springs with large ratios of mean coil radius to the cross sectional radius (spring index) and small pitchA combined analytical, numerical, and experimental study of shape-memory-alloy helical springs Reza memory alloy (SMA) Torsion Helical spring Pseudoelastic a b s t r a c t In this paper, the pseudoelastic

Entekhabi, Dara

353

EXPERIMENTAL STUDY OF BI-DIRECTIONAL SPRING UNIT IN ISOLATED FLOOR SYSTEMS  

E-Print Network (OSTI)

) or linear spring based systems (coil springs or rubber units used for restoration force), with viscousEXPERIMENTAL STUDY OF BI-DIRECTIONAL SPRING UNIT IN ISOLATED FLOOR SYSTEMS Shenlei Cui1 , Michel the mechanical behavior of bi-directional spring units used as isolators in a kind of such isolated floor systems

Bruneau, Michel

354

Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera  

E-Print Network (OSTI)

Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley springs located within the Long Valley Caldera, Little Hot Creek (LHC) 1, 3, and 4. All three springs were that springs associated with the Long Valley Caldera contain microbial populations that show some similarities

Ahmad, Sajjad

355

GRADUATE SCHOOL AT MANCHESTER CAMPUS ACADEMIC CALENDAR FOR WINTER/SPRING SEMESTER 2013  

E-Print Network (OSTI)

Engineering and some Public Administration Courses. Spring recess is March 11-15. Students should confirmGRADUATE SCHOOL AT MANCHESTER CAMPUS ACADEMIC CALENDAR FOR WINTER/SPRING SEMESTER 2013 Spring term ­ January - May Spring semester courses begin on January 22 ­ this includes most Education, Systems Software

New Hampshire, University of

356

2013 CHEMICAL AND BIOLOGICAL ENGINEERING CURRICULUMDUAL BS CHE/CH MAJOR (leading to BS ChE w/ 2 majors) Revised 6-25-13 CSB CH 101 (4) Spring -FRESH Fall -SOPH Spring -SOPH Fall -JR Spring -JR Fall -SR Spring -SR  

E-Print Network (OSTI)

2013 CHEMICAL AND BIOLOGICAL ENGINEERING CURRICULUMDUAL BS CHE/CH MAJOR (leading to BS ChE w/ 2 majors) Revised 6-25-13 CSB CH 101 (4) Spring - FRESH Fall - SOPH Spring - SOPH Fall - JR Spring - JR Fall - SR Spring - SR (CH 117) (CH 118) CH 101 (4) CH 102 (4) CH 231 (3) CH 223 (4) CH 461 (3) c CH

Carver, Jeffrey C.

357

Colorado Springs Utilities - Energy Efficient Builder Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficient Builder Program Energy Efficient Builder Program Colorado Springs Utilities - Energy Efficient Builder Program < Back Eligibility Construction Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate $800 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount $110 - $800 Provider Colorado Springs Utilities The Colorado Springs Utilities (CSU) Energy Efficient Builder Program offers an incentive to builders who construct ENERGY STAR® qualified homes within the CSU service area. The incentive range from $110 to $800 per home. ENERGY STAR® qualified homes are designed to deliver improved comfort, healthier air quality, longer durability, and lower energy bills.

358

Spring Valley Public Utilities - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Valley Public Utilities - Commercial and Industrial Energy Spring Valley Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program Spring Valley Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Manufacturing Other Program Info Expiration Date 12/31/2012 State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: varies widely, see program website Replacement Motors: $15 - $2,700, varies by HP and efficiency Variable Speed Drives: $60 - $3,600, varies by HP and intended use Lodging Guestroom Energy Management Systems: $75 - $85

359

Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) | Open  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) Exploration Activity Details Location Roosevelt Hot Springs Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical

360

Spring 2012 National Transportation Stakeholder Forum Meetings, Tennessee |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Waste Management » Packaging and Transportation » Services » Waste Management » Packaging and Transportation » National Transportation Stakeholders Forum » Spring 2012 National Transportation Stakeholder Forum Meetings, Tennessee Spring 2012 National Transportation Stakeholder Forum Meetings, Tennessee NTSF Registration Website Save The Date! NTSF Spring 2012 Agenda NTSF Agenda Midwestern Radioactive Materials Transportation Committee Agenda Northeast High-Level Radioactive Waste Transportation Task Force Agenda Transuranic Waste Transportation Working Group Agenda Western Governor's Association Agenda NTSF Presentations Session Newcomers' Orientation Plenary Sessions Keynote Address Oak Ridge Operations Office of Environmental Management Overview Global Threat Reduction Initiative Task Force for Strategic Developments to Blue Ribbon Commission

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Macroarthropod communities of Sandy Springs of East Texas  

E-Print Network (OSTI)

47 53 54 55 61 65 Pa&~e CONCI. LSIONS . . B IBLIOORAPHY. 7l APPENDIX A APPENDIX B APPENDIX C 113 I*7 LIST OF FILI LiRES I'ICi L RE Page B I Major actuifers of Texas. . . . . H2 First-order spnngs of east Texas. . 100 B3 Second...-order, tempoiary, and standing habitats of east Texas . . . IOI B4 Distribution of lsopoda in east Texas springs. 102 BS Distnbution of Amphipoda in east Texas springs . . 103 B6 Distribution of Ephemeioptera in cast Texas springs. . . . 104 137 Distribution...

Gibson, James Randall

2012-06-07T23:59:59.000Z

362

Adaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine  

SciTech Connect

Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensively used to study stresses and strains produced in implants and bone. However, these static analyses only measure a moment in time and not the adaptive response to the altered environment produced by the therapeutic intervention. Computational analyses that integrate remodeling rules predict how bone will respond over time. Recent work has shown that subject-specific two- and three dimensional adaptive bone remodeling models are feasible and valid. Feasibility and validation were achieved computationally, simulating bone remodeling using an intact human scapula, initially resetting the scapular bone material properties to be uniform, numerically simulating sequential loading, and comparing the bone remodeling simulation results to the actual scapulas material properties. Three-dimensional scapula FE bone model was created using volumetric computed tomography images. Muscle and joint load and boundary conditions were applied based on values reported in the literature. Internal bone remodeling was based on element strain-energy density. Initially, all bone elements were assigned a homogeneous density. All loads were applied for 10 iterations. After every iteration, each bone elements remodeling stimulus was compared to its corresponding reference stimulus and its material properties modified. The simulation achieved convergence. At the end of the simulation the predicted and actual specimen bone apparent density were plotted and compared. Location of high and low predicted bone density was comparable to the actual specimen. High predicted bone density was greater than actual specimen. Low predicted bone density was lower than actual specimen. Differences were probably due to applied muscle and joint reaction loads, boundary conditions, and values of constants used. Work is underway to study this. Nonetheless, the results demonstrate three dimensional bone remodeling simulation validity and potential. Such adaptive predictions take physiological bone remodeling simulations one step closer to reality. Computational analyses are needed that integrate biological remodeling rules and predict how bone will respond over time. We expect the combination of computational static stress analyses together with adaptive bone remodeling simulations to become effective tools for regenerative medicine research.

Sharma, Gulshan B., E-mail: gbsharma@ucalgary.ca [Emory University, Department of Radiology and Imaging Sciences, Spine and Orthopaedic Center, Atlanta, Georgia 30329 (United States); University of Pittsburgh, Swanson School of Engineering, Department of Bioengineering, Pittsburgh, Pennsylvania 15213 (United States); University of Calgary, Schulich School of Engineering, Department of Mechanical and Manufacturing Engineering, Calgary, Alberta T2N 1N4 (Canada); Robertson, Douglas D., E-mail: douglas.d.robertson@emory.edu [Emory University, Department of Radiology and Imaging Sciences, Spine and Orthopaedic Center, Atlanta, Georgia 30329 (United States); University of Pittsburgh, Swanson School of Engineering, Department of Bioengineering, Pittsburgh, Pennsylvania 15213 (United States)

2013-07-01T23:59:59.000Z

363

Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility Facility Bozeman Hot Springs Sector Geothermal energy Type Space Heating Location Bozeman, Montana Coordinates 45.68346°, -111.050499° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

364

Radium Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Radium Hot Springs Space Heating Low Temperature Geothermal Facility Radium Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Radium Hot Springs Space Heating Low Temperature Geothermal Facility Facility Radium Hot Springs Sector Geothermal energy Type Space Heating Location Union County, Oregon Coordinates 45.2334122°, -118.0410627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

365

Miracle Hot Spring Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Miracle Hot Spring Space Heating Low Temperature Geothermal Facility Miracle Hot Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Miracle Hot Spring Space Heating Low Temperature Geothermal Facility Facility Miracle Hot Spring Sector Geothermal energy Type Space Heating Location Bakersfield, California Coordinates 35.3732921°, -119.0187125° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

366

Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Lolo Hot Springs Resort Sector Geothermal energy Type Space Heating Location Missoula County, Montana Coordinates 47.0240503°, -113.6869923° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

367

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White,  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White, Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Used various geochemical techniques to obtain data from which information regarding mass transfer rates. This then led to conclucions of the history/evolution of the geothermal system. Unclear whether useful for exploration purposes. References Art F. White, Nancy J. Chuma, Fraser Goff (1992) Mass Transfer Constraints On The Chemical Evolution Of An Active Hydrothermal System,

368

Hobo Hot Springs Aquaculture Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hobo Hot Springs Aquaculture Low Temperature Geothermal Facility Hobo Hot Springs Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Hobo Hot Springs Aquaculture Low Temperature Geothermal Facility Facility Hobo Hot Springs Sector Geothermal energy Type Aquaculture Location Carson City, Nevada Coordinates 39.192232°, -119.7344478° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

369

Brockway Springs Resort Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Brockway Springs Resort Pool & Spa Low Temperature Geothermal Facility Brockway Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Brockway Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Brockway Springs Resort Sector Geothermal energy Type Pool and Spa Location King's Beach, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

370

Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal Facility Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal Facility Facility Hunter Hot Spring Greenhouse Sector Geothermal energy Type Greenhouse Location Springdale, Montana Coordinates 45.738268°, -110.2271387° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

371

Weldon Spring Plant, Former Construction Worker Screening Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weldon Spring Plant, Former Construction Worker Screening Projects Weldon Spring Plant, Former Construction Worker Screening Projects Weldon Spring Plant, Former Construction Worker Screening Projects Project Name: Building Trades National Medical Screening Program Covered DOE Site: Weldon Spring Plant Worker Population Served: Construction workers Principal Investigator: Knut Ringen, DrPH, MHA, MPH Toll-free Telephone: (800) 866-9663 Website: http://www.btmed.org This project is intended to provide free medical screening to former workers in the building trades (construction workers). The screening targets health problems resulting from exposures, including asbestos, beryllium, cadmium, chromium, lead, mercury, noise, radiation, silica and/or solvents. The project is being carried out by a large group led by CPWR - The Center for Construction Research and Training, an applied

372

Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility Facility Schutz's Hot Spring Sector Geothermal energy Type Space Heating Location Crouch, Idaho Coordinates 44.1151717°, -115.970954° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

373

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Exploration Activity Details Location Indian Valley Hot Springs Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the recharge of the area Notes Hydrogen and oxygen isotope data on waters of Coso thermal and nonthermal waters were studied. Hydrogen and oxygen isotopes do not uniquely define the recharge area for the Coso geothermal system but strongly suggest Sierran recharge with perhaps some local recharge. References

374

City of Tenakee Springs, Alaska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Springs, Alaska (Utility Company) Springs, Alaska (Utility Company) Jump to: navigation, search Name City of Tenakee Springs Place Alaska Utility Id 18541 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Service Residential Average Rates Residential: $0.6380/kWh Commercial: $0.6460/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Tenakee_Springs,_Alaska_(Utility_Company)&oldid=410328

375

Weiser Hot Springs Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Weiser Hot Springs Greenhouse Low Temperature Geothermal Facility Weiser Hot Springs Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Weiser Hot Springs Greenhouse Low Temperature Geothermal Facility Facility Weiser Hot Springs Sector Geothermal energy Type Greenhouse Location Weiser, Idaho Coordinates 44.2509976°, -116.9693327° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

376

Preliminary Assessment of the Structural Controls of Neal Hot Springs  

Open Energy Info (EERE)

Preliminary Assessment of the Structural Controls of Neal Hot Springs Preliminary Assessment of the Structural Controls of Neal Hot Springs Geothermal Field, Malhuer County, Oregon Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Preliminary Assessment of the Structural Controls of Neal Hot Springs Geothermal Field, Malhuer County, Oregon Abstract The Neal Hot Springs geothermal field is marked by hotsprings that effuse from opaline sinter mounds just north of BullyCreek, in Malheur County, Oregon. Production wells have highflow rates and temperatures above 138C at depths of 850-915 m.On a regional scale, the geothermal field occupies a broad zonewithin the intersection between a regional, N-striking, normalfault system within the Oregon-Idaho graben and a regionalNW-striking, normal fault system within the western Snake

377

Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

Area Area (Goff & Janik, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas samples from fumaroles, springs, and/or wells. References Fraser Goff, Cathy J. Janik (2002) Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Valles_Caldera_-_Sulphur_Springs_Area_(Goff_%26_Janik,_2002)&oldid=510466

378

Analysis Of Hot Springs And Associated Deposits In Yellowstone National  

Open Energy Info (EERE)

Hot Springs And Associated Deposits In Yellowstone National Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Analysis Of Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Details Activities (6) Areas (1) Regions (0) Abstract: The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Airborne Visible/IR Image Spectrometer (AVIRIS) data were used to characterize hot spring deposits in the Lower, Midway, and Upper Geyser Basins of Yellowstone National Park from the visible/near infrared (VNIR) to thermal infrared (TIR) wavelengths. Field observations of these basins provided the critical ground-truth for comparison with the

379

Broadwater Athletic Club & Hot Springs Space Heating Low Temperature  

Open Energy Info (EERE)

Athletic Club & Hot Springs Space Heating Low Temperature Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Facility Broadwater Athletic Club & Hot Springs Sector Geothermal energy Type Space Heating Location Helena, Montana Coordinates 46.6002123°, -112.0147188° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

380

Multispectral Imaging At Buffalo Valley Hot Springs Area (Laney, 2005) |  

Open Energy Info (EERE)

Multispectral Imaging At Buffalo Valley Hot Springs Multispectral Imaging At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful DOE-funding Unknown Notes Remote Sensing for Exploration and Mapping of Geothermal Resources, Wendy Calvin, 2005. Task 1: Detailed analysis of hyperspectral imagery obtained in summer of 2003 over Brady's Hot Springs region was completed and validated (Figure 1). This analysis provided a local map of both sinter and tufa deposits surrounding the Ormat plant, identified fault extensions not previously recognized from field mapping and has helped constrain where to put additional wells that were drilled at the site. Task 2: Initial analysis of Landsat and ASTER data for Buffalo Valley and Pyramid Lake was

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sand Dunes Hot Spring Aquaculture Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Sand Dunes Hot Spring Aquaculture Low Temperature Geothermal Facility Sand Dunes Hot Spring Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Sand Dunes Hot Spring Aquaculture Low Temperature Geothermal Facility Facility Sand Dunes Hot Spring Sector Geothermal energy Type Aquaculture Location Hooper, Colorado Coordinates 37.7427775°, -105.8752987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

382

Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Baumgartner Hot Springs Sector Geothermal energy Type Pool and Spa Location Featherville, Idaho Coordinates 43.6098966°, -115.2581378° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

383

Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility Jackson Hot Springs Lodge Sector Geothermal energy Type Space Heating Location Jackson, Montana Coordinates 45.3679793°, -113.4089438° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

384

Stewart Mineral Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Mineral Springs Pool & Spa Low Temperature Geothermal Facility Mineral Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Stewart Mineral Springs Pool & Spa Low Temperature Geothermal Facility Facility Stewart Mineral Springs Sector Geothermal energy Type Pool and Spa Location Weed, California Coordinates 41.4226498°, -122.3861269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

385

Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility Facility Donlay Ranch Hot Spring Sector Geothermal energy Type Greenhouse Location Boise County, Idaho Coordinates 43.9604787°, -115.8563106° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

386

Medical Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Medical Hot Springs Space Heating Low Temperature Geothermal Facility Facility Medical Hot Springs Sector Geothermal energy Type Space Heating Location Union County, Oregon Coordinates 45.2334122°, -118.0410627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

387

Vichy Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Facility Vichy Hot Springs Sector Geothermal energy Type Space Heating Location Ukiah, California Coordinates 39.1501709°, -123.2077831° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

388

Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility Facility Kelly Hot Springs Sector Geothermal energy Type Aquaculture Location Alturas, California Coordinates 41.4871146°, -120.5424555° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

389

Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Facility Summer Lake Hot Springs Sector Geothermal energy Type Space Heating Location Summer Lake, Oregon Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

390

Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Camperworld Hot Springs Sector Geothermal energy Type Pool and Spa Location Garland, Utah Coordinates 41.7410387°, -112.1616194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

391

Camp Preventorium Hot Springs Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Preventorium Hot Springs Pool & Spa Low Temperature Geothermal Preventorium Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Camp Preventorium Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Camp Preventorium Hot Springs Sector Geothermal energy Type Pool and Spa Location Big Bend, California Coordinates 39.6982182°, -121.4608015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

392

Huckelberry Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Huckelberry Hot Springs Pool & Spa Low Temperature Geothermal Facility Huckelberry Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Huckelberry Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Huckelberry Hot Springs Sector Geothermal energy Type Pool and Spa Location Grand Teton Nat'l Park, Wyoming Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

393

Exploration model for possible geothermal reservoir, Coso Hot Springs KGRA,  

Open Energy Info (EERE)

model for possible geothermal reservoir, Coso Hot Springs KGRA, model for possible geothermal reservoir, Coso Hot Springs KGRA, Inyo Co. , California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Exploration model for possible geothermal reservoir, Coso Hot Springs KGRA, Inyo Co. , California Details Activities (1) Areas (1) Regions (0) Abstract: The purpose of this study was to test the hypothesis that a steam-filled fracture geothermal reservoir exists at Coso Hot Springs KGRA, as proposed by Combs and Jarzabek (1977). Gravity data collected by the USGS (Isherwood and Plouff, 1978) was plotted and compared with the geology of the area, which is well known. An east-west trending Bouguer gravity profile was constructed through the center of the heat flow anomaly described by Combs (1976). The best fit model for the observed gravity at

394

California Hot Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hot Springs Pool & Spa Low Temperature Geothermal Facility Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name California Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility California Hot Springs Sector Geothermal energy Type Pool and Spa Location Bakersfield, California Coordinates 35.3732921°, -119.0187125° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

395

Brooks Warm Springs Aquaculture Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Warm Springs Aquaculture Low Temperature Geothermal Facility Warm Springs Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Brooks Warm Springs Aquaculture Low Temperature Geothermal Facility Facility Brooks Warm Springs Sector Geothermal energy Type Aquaculture Location Fergus County, Montana Coordinates 47.2126745°, -109.4141° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

396

Core Analysis At Valles Caldera - Sulphur Springs Area (Woldegabriel &  

Open Energy Info (EERE)

Woldegabriel & Woldegabriel & Goff, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Samples for age dating taken from core hole VC-2B in the Suphur Springs area of the Valles Caldera. References Giday WoldeGabriel, Fraser Goff (1992) K-Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles Caldera, New Mexico And Their Relation To Alteration In A Large Hydrothermal System Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Valles_Caldera_-_Sulphur_Springs_Area_(Woldegabriel_%26_Goff,_1992)&oldid=387687"

397

Hunters Hot Spring Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hunters Hot Spring Space Heating Low Temperature Geothermal Facility Hunters Hot Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hunters Hot Spring Space Heating Low Temperature Geothermal Facility Facility Hunters Hot Spring Sector Geothermal energy Type Space Heating Location Lakeview, Oregon Coordinates 42.1887721°, -120.345792° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

398

Design of repeating projectile toy based on bistable spring propulsion  

E-Print Network (OSTI)

Recently, bistable springs have been proven as a viable propulsion method for the standard 1.75" foam balls used in Nerf projectile toys. This technology was developed at M.I.T. by William Fienup and Barry Kudrowitz, who ...

Blanco, Matthew C. (Matthew Corwin)

2007-01-01T23:59:59.000Z

399

Spring 2001 Vol. 2, No. 2 ii Colorado Climate  

E-Print Network (OSTI)

Colorado Climate Spring 2001 Vol. 2, No. 2 #12;ii Colorado Climate Table of Contents Frost: Nature ....................................................................................................................... 7 Colorado Climate in Review .............................................................................................. 19 What Is the Wettest Month in Colorado

400

Housing and Dining Services Spring Break Information March 2011  

E-Print Network (OSTI)

charge to stay over spring break. Kitchenettes will be open in all residence halls over the break period equipment · Refrigerators with food may be left on · Close and lock your windows and doors · Turn off your

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...  

Open Energy Info (EERE)

and Janik, 1992). Hot spring gas samples were collected by submerging a 20-cm-diameter plastic funnel into the pool over the bubble stream. Fumarole gas samples were collected by...

402

Compound and Elemental Analysis At Valles Caldera - Sulphur Springs...  

Open Energy Info (EERE)

and Janik, 1992). Hot spring gas samples were collected by submerging a 20-cm-diameter plastic funnel into the pool over the bubble stream. Fumarole gas samples were collected by...

403

Gas Sampling At Valles Caldera - Sulphur Springs Geothermal Area...  

Open Energy Info (EERE)

and Janik, 1992). Hot spring gas samples were collected by submerging a 20-cm-diameter plastic funnel into the pool over the bubble stream. Fumarole gas samples were collected by...

404

CSE526: Principles of Programming Languages (Spring 2003) Scott Stoller  

E-Print Network (OSTI)

CSE526: Principles of Programming Languages (Spring 2003) Scott Stoller Exam 1 (version 25mar2003- edly reads inputs until it reads a value k that is not equal to the current value of v

Stoller, Scott

405

Chemical and Isotopic Composition of Casa Diablo Hot Spring:...  

Open Energy Info (EERE)

Composition of Casa Diablo Hot Spring: Magmatic CO2 near Mammoth Lakes, CA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Chemical and...

406

Dean's List Spring 2012 Harpur College of Arts and Sciences  

E-Print Network (OSTI)

Dean's List Spring 2012 Harpur College of Arts and Sciences Abbate, Jennifer Ann Abbott, Benjamin T, Pamela Anugo, Davis U. Appeagyei, Jeffery Appel, Rachel S. Apper, Megan Applegate, Donald Alan Ar

Suzuki, Masatsugu

407

MagLab Reports Volume 20, No. 1 (Spring 2013)  

NLE Websites -- All DOE Office Websites (Extended Search)

20 No. 1 * Spring 2013 User Survey Results Your thoughts on the lab PAGE 18 21 T ICR Magnet The Strongest ICR magnet ever built arrives at the lab this year PAGE 8 2 MAGLAB REPORTS...

408

Soil Sampling At Waunita Hot Springs Geothermal Area (Ringrose...  

Open Energy Info (EERE)

soil samples were taken from a series of profile lines within an approximately 0.06 sq. mi area surrounding the hot springs. Additonally, several samples were taken approximately...

409

ARM - Field Campaign - Spring Single Column Model IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

: Spring Single Column Model IOP 1999.03.01 - 1999.03.22 Lead Scientist : David Randall Data Availability Actual data files for a number of past SCM IOPs are available from...

410

ARM - Field Campaign - Spring 1995 Single Column Model IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

: Spring 1995 Single Column Model IOP 1995.04.01 - 1995.04.30 Lead Scientist : David Randall Data Availability Data Plots from Colorado State University Data Plots from Livermore...

411

Agricultural Business Curriculum (BS) (effective Spring Quarter 2011)  

E-Print Network (OSTI)

Agricultural Business Curriculum (BS) (effective Spring Quarter 2011) Freshman year Animal Science....................................3 Natural Sciences (GER) Biological Sciences 130, 131..............................4 English (GER Mathematics (GER).............................................6 Plant Science 101

Selmic, Sandra

412

Animal Science Curriculum (BS) (effective Spring Quarter 2011)  

E-Print Network (OSTI)

Animal Science Curriculum (BS) (effective Spring Quarter 2011) Freshman Year Animal Science 111 Sciences (GER) Biological Sciences 130, 131, 132, 133.....................8 Plant Science 101......................................................3 Social/Behavioral Sciences (GER)............................3 32 Sophomore Year Agricultural Business 220

Selmic, Sandra

413

Microsoft Word - DSQ Spring 2010_7JUNE10-FINAL  

National Nuclear Security Administration (NNSA)

Spring 2010 Comments Questions or comments regarding the Defense Science Quarterly should be directed to Terri Batuyong, NA-121.1 (Terri.Batuyong@nnsa.doe.gov). Technical Editor:...

414

SURGICAL HUMANITIES DEPARTMENT OF SURGERY | UNIVERSITY OF SASKATCHEWAN Spring 2014  

E-Print Network (OSTI)

SURGICAL HUMANITIES DEPARTMENT OF SURGERY | UNIVERSITY OF SASKATCHEWAN Spring 2014 Journal, COMMUNICATIONS AND MARKETING Department of Surgery University of Saskatchewan COVER PAGE Primal (96" x 60 Humanities Program Department of Surgery University of Saskatchewan Health Sciences Building 107 Wiggins Road

Peak, Derek

415

NTSF Spring 2012 Save The Date! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(NTSF). This year's Forum will be held at the Hilton Knoxville, which is located in the heart of the downtown business district in Knoxville, Tennessee. NTSF Spring 2012 Save The...

416

SPRING/SUMMER 2013 Volume 31, Nos. 1 & 2 Powerhouse  

E-Print Network (OSTI)

SPRING/SUMMER 2013 · Volume 31, Nos. 1 & 2 Powerhouse: Plant research fuels new frontiers Perennial MSU a perennial powerhouse -- a phrase typically reserved for sports, but in this particular case most

417

Prof. Alexandru Suciu MTH 1125 Calculus 3 Spring 2002  

E-Print Network (OSTI)

's position at time t. 2. 6 points A sailboat is running along a straight course with the wind providing velocity in feet per second? #12;MTH 1125 Quiz 1 Spring 2002 3. 8 points Consider the following autonomous

418

Department of Mechanical Engineering Spring 2011 Nanoparticle Reactor Automation  

E-Print Network (OSTI)

PENNSTATE Department of Mechanical Engineering Spring 2011 Nanoparticle Reactor Automation Overview would be fully automated and able to run overnight. The team was also asked to keep the solutions from

Demirel, Melik C.

419

Ecology, Evolution and Behavior Seminar Series Spring Semester 2013  

E-Print Network (OSTI)

Ecology, Evolution and Behavior Seminar Series Spring Semester 2013 All Hilu February 28 Robert Cox University of Virginia The ecology and physiology Christine May James Madison Unv. Disturbance ecology: linking stream communities

Virginia Tech

420

SPRING 2012 STUDY ABROAD in CAPE TOWN, SOUTH AFRICA  

E-Print Network (OSTI)

SPRING 2012 STUDY ABROAD in CAPE TOWN, SOUTH AFRICA Want to find out studying the multiple concerns facing South Africa as it strives to become one. Take three academically engaging courses: The History & Politics of South Africa

Alpay, S. Pamir

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Adjustable Nonlinear Springs to Improve Efficiency of Vibration Energy Harvesters  

E-Print Network (OSTI)

Vibration Energy Harvesting is an emerging technology aimed at turning mechanical energy from vibrations into electricity to power microsystems of the future. Most of present vibration energy harvesters are based on a mass spring structure introducing a resonance phenomenon that allows to increase the output power compared to non-resonant systems, but limits the working frequency bandwidth. Therefore, they are not able to harvest energy when ambient vibrations' frequencies shift. To follow shifts of ambient vibration frequencies and to increase the frequency band where energy can be harvested, one solution consists in using nonlinear springs. We present in this paper a model of adjustable nonlinear springs (H-shaped springs) and their benefits to improve velocity-damped vibration energy harvesters' (VEH) output powers. A simulation on a real vibration source proves that the output power can be higher in nonlinear devices compared to linear systems (up to +48%).

S. Boisseau; G. Despesse; B. Ahmed Seddik

2012-07-19T23:59:59.000Z

422

Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of...  

Open Energy Info (EERE)

Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of Lassen Volcanic National Park Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

423

Double optical spring enhancement for gravitational wave detectors  

E-Print Network (OSTI)

Currently planned second-generation gravitational-wave laser interferometers such as Advanced LIGO exploit the extensively investigated signal-recycling (SR) technique. Candidate Advanced LIGO configurations are usually designed to have two resonances within the detection band, around which the sensitivity is enhanced: a stable optical resonance and an unstable optomechanical resonance - which is upshifted from the pendulum frequency due to the so-called optical-spring effect. Alternative to a feedback control system, we propose an all-optical stabilization scheme, in which a second optical spring is employed, and the test mass is trapped by a stable ponderomotive potential well induced by two carrier light fields whose detunings have opposite signs. The double optical spring also brings additional flexibility in re-shaping the noise spectral density and optimizing toward specific gravitational-wave sources. The presented scheme can be extended easily to a multi-optical-spring system that allows further optimization.

Henning Rehbein; Helge Mueller-Ebhardt; Kentaro Somiya; Stefan L. Danilishin; Roman Schnabel; Karsten Danzmann; Yanbei Chen

2008-05-20T23:59:59.000Z

424

Sligar's Thousand Springs Resort Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Sligar's Thousand Springs Resort Pool & Spa Low Temperature Geothermal Sligar's Thousand Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sligar's Thousand Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Sligar's Thousand Springs Resort Sector Geothermal energy Type Pool and Spa Location Hagerman, Idaho Coordinates 42.8121244°, -114.898669° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

425

Del Rio Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Rio Hot Springs Space Heating Low Temperature Geothermal Facility Rio Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Del Rio Hot Springs Space Heating Low Temperature Geothermal Facility Facility Del Rio Hot Springs Sector Geothermal energy Type Space Heating Location Preston, Idaho Coordinates 42.0963133°, -111.8766173° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

426

Walley's Hot Springs Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Walley's Hot Springs Resort Sector Geothermal energy Type Space Heating Location Genoa, Nevada Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

427

Twin Springs Resort Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Springs Resort Space Heating Low Temperature Geothermal Facility Springs Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Twin Springs Resort Space Heating Low Temperature Geothermal Facility Facility Twin Springs Resort Sector Geothermal energy Type Space Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

428

Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility Facility Geronimo Springs Museum Sector Geothermal energy Type Space Heating Location Truth or Consequences, New Mexico Coordinates 33.1284047°, -107.2528069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

429

Arrowhead Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Arrowhead Hot Springs Space Heating Low Temperature Geothermal Facility Facility Arrowhead Hot Springs Sector Geothermal energy Type Space Heating Location San Bernardino, California Coordinates 34.1083449°, -117.2897652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

430

EIS-0495: Walla Walla Basin Spring Chinook Hatchery Program;  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

495: Walla Walla Basin Spring Chinook Hatchery Program; 495: Walla Walla Basin Spring Chinook Hatchery Program; Milton-Freewater, Oregon, and Dayton, Washington EIS-0495: Walla Walla Basin Spring Chinook Hatchery Program; Milton-Freewater, Oregon, and Dayton, Washington SUMMARY Bonneville Power Administration (BPA) is preparing an EIS to analyze the potential environmental impacts of funding a proposal by the Confederated Tribes of the Umatilla Indian Reservation to construct and operate a hatchery for spring Chinook salmon in the Walla Walla River basin. Additional information is available at the project website: http://efw.bpa.gov/environmental_services/Document_Library/WallaWallaHatchery/. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILALE FOR DOWNLOAD March 28, 2013 EIS-0495: Notice of Intent to Prepare an Environmental Impact Statement

431

Belmont Springs Hatchery Aquaculture Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Springs Hatchery Aquaculture Low Temperature Geothermal Facility Springs Hatchery Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Belmont Springs Hatchery Aquaculture Low Temperature Geothermal Facility Facility Belmont Springs Hatchery Sector Geothermal energy Type Aquaculture Location Fielding, Utah Coordinates 41.8146489°, -112.1160644° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

432

Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility Facility Tecopa Hot Springs Sector Geothermal energy Type Space Heating Location Inyo County, California Coordinates 36.3091865°, -117.5495846° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

433

Warner Springs Ranch Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility Facility Warner Springs Ranch Resort Sector Geothermal energy Type Space Heating Location San Diego, California Coordinates 32.7153292°, -117.1572551° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

434

Jackson Well Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Well Springs Space Heating Low Temperature Geothermal Facility Well Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Well Springs Space Heating Low Temperature Geothermal Facility Facility Jackson Well Springs Sector Geothermal energy Type Space Heating Location Ashland, Oregon Coordinates 42.1853257°, -122.6980457° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

435

Mystic Hot Springs Aquaculture Aquaculture Low Temperature Geothermal  

Open Energy Info (EERE)

Mystic Hot Springs Aquaculture Aquaculture Low Temperature Geothermal Mystic Hot Springs Aquaculture Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Mystic Hot Springs Aquaculture Aquaculture Low Temperature Geothermal Facility Facility Mystic Hot Springs Aquaculture Sector Geothermal energy Type Aquaculture Location Monroe, Utah Coordinates 38.6299724°, -112.1207573° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

436

Local drug delivery for enhancing fracture healing in osteoporotic bone  

Science Journals Connector (OSTI)

Abstract Fragility fractures can cause significant morbidity and mortality in patients with osteoporosis and inflict a considerable medical and socioeconomic burden. Moreover, treatment of an osteoporotic fracture is challenging due to the decreased strength of the surrounding bone and suboptimal healing capacity, predisposing both to fixation failure and non-union. Whereas a systemic osteoporosis treatment acts slowly, local release of osteogenic agents in osteoporotic fracture would act rapidly to increase bone strength and quality, as well as to reduce the bone healing period and prevent development of a problematic non-union. The identification of agents with potential to stimulate bone formation and improve implant fixation strength in osteoporotic bone has raised hope for the fast augmentation of osteoporotic fractures. Stimulation of bone formation by local delivery of growth factors is an approach already in clinical use for the treatment of non-unions, and could be utilized for osteoporotic fractures as well. Small molecules have also gained ground as stable and inexpensive compounds to enhance bone formation and tackle osteoporosis. The aim of this paper is to present the state of the art on local drug delivery in osteoporotic fractures. Advantages, disadvantages and underlying molecular mechanisms of different active species for local bone healing in osteoporotic bone are discussed. This review also identifies promising new candidate molecules and innovative approaches for the local drug delivery in osteoporotic bone.

Laura Kyllnen; Matteo DEste; Mauro Alini; David Eglin

2014-01-01T23:59:59.000Z

437

Is pelvic bone mineral content assessed through dual energy X-ray absorptionmetry an appropriate anatomical area for bone mass estimation in women?  

Science Journals Connector (OSTI)

Bibliographic references seem very controversill regarding the most appropriate anatomical area for bone mass estimation. Since some overlapping in the different bone mass measurements among normal and osteopo...

Prof. Dr. H. Rico; M. Revilla; E. R. Hernndez; L. F. Villa

1992-12-01T23:59:59.000Z

438

2 | engineering neWs | spring 2010 coluMBia engineering | spring 2010 | 3 his issue of Columbia Engineering magazine focuses on engineering  

E-Print Network (OSTI)

2 | engineering neWs | spring 2010 coluMBia engineering | spring 2010 | 3 T his issue of Columbia as the inventor of the Pupin coil and father of long- distance telephony. His pupil and, later, faculty colleague

Hone, James

439

Spring`07SeminarSeriesandWorkshopsSpring`07SeminarSeriesandWorkshops Coordinator: Prof. Jeff Moehlis, Moelis@engineering.ucsb.edu, 893-7513  

E-Print Network (OSTI)

Spring`07SeminarSeriesandWorkshopsSpring`07SeminarSeriesandWorkshops Coordinator: Prof. Jeff Moehlis, Moelis@engineering.ucsb.edu, 893-7513 Center for Control, Dynamical SystemsCenter for Control

Akhmedov, Azer

440

Yakima River Spring Chinook Enhancement Study, 1991 Final Report.  

SciTech Connect

The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 to 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indian Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system. 47 refs., 89 figs., 67 tabs.

Fast, David E.

1991-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Proceedings of the MSPLS Spring '98 Workshop Page 1 of 1 file://G:\\Work\\MSPLS\\Spring98\\index.html 7/8/98  

E-Print Network (OSTI)

and Computer Sciences, Loyola University of Chicago, 6525 North Sheridan Road, Chicago, IL 60626. Email: laufer@cs.luc.edu. Gerald Baumgartner #12;MSPLS Spring '98 Workshop Program Page 1 of 2 file://G:\\Work\\MSPLS\\Spring98\\program.html 8/14/98 MSPLS Spring '98 Workshop Program Saturday, 16 May 1998 1:30-2:00 Registration 2

Baumgartner, Gerald

442

S:\\Registration & Records\\Term Communications\\2014 Spring\\Spring 2014 UG Registration.docx 1 of 2 JOHNS HOPKINS UNIVERSITY  

E-Print Network (OSTI)

.jhu.edu 2. Sign in with your JHED ID and enter your password 3. Under Registration, select SearchS:\\Registration & Records\\Term Communications\\2014 Spring\\Spring 2014 UG Registration.docx 1 for Classes 4. Select Spring 2014 from the dropdown 5. After searching for and finding your class, check

Weaver, Harold A. "Hal"

443

S:\\Registration & Records\\Term Communications\\2014 Spring\\GR Spring 2014 NEW GR WEB Instructions.docx page 1 of 2 JOHNS HOPKINS UNIVERSITY  

E-Print Network (OSTI)

to Registration 4. Click on Search for Classes/Registration 5. Select the academic period (Spring 2014), enter the course number, and then click Search 6. To choose your preferred section, enter a check markS:\\Registration & Records\\Term Communications\\2014 Spring\\GR Spring 2014 NEW GR WEB Instructions

Weaver, Harold A. "Hal"

444

S:\\Registration & Records\\Term Communications\\2015 Spring\\GR Spring 2015 NEW GR WEB Instructions.docx page 1 of 2 JOHNS HOPKINS UNIVERSITY  

E-Print Network (OSTI)

to Registration 4. Click on Search for Classes/Registration 5. Select the academic period (Spring 2015), enter the course number, and then click Search 6. To choose your preferred section, enter a check markS:\\Registration & Records\\Term Communications\\2015 Spring\\GR Spring 2015 NEW GR WEB Instructions

Weaver, Harold A. "Hal"

445

S:\\Registration & Records\\Term Communications\\2014 Spring\\Spring 2014 UG Registration.docx 1 of 2 JOHNS HOPKINS UNIVERSITY  

E-Print Network (OSTI)

.jhu.edu 2. Sign in with your JHED ID and enter your password 3. Under Registration, select SearchS:\\Registration & Records\\Term Communications\\2014 Spring\\Spring 2014 UG Registration.docx 1 for Classes 4. Select Spring 2015 from the dropdown 5. After searching for and finding your class, check

Weaver, Harold A. "Hal"

446

S:\\Registration & Records\\Term Communications\\2014 Spring\\GR Spring 2014 NEW GR WEB Instructions.docx page 1 of 2 JOHNS HOPKINS UNIVERSITY  

E-Print Network (OSTI)

. Sign In and enter your JHED ID and password 3. Point to Registration 4. Click on Search for Classes/Registration 5. Select the academic period (Spring 2015), enter the course number, and then click Search 6S:\\Registration & Records\\Term Communications\\2014 Spring\\GR Spring 2014 NEW GR WEB Instructions

Weaver, Harold A. "Hal"

447

Spring`07SeminarSeriesandWorkshopsSpring`07SeminarSeriesandWorkshops Coordinator: Prof. Mustafa Khammash, khammash@engineering.ucsb.edu, 893-4967  

E-Print Network (OSTI)

Spring`07SeminarSeriesandWorkshopsSpring`07SeminarSeriesandWorkshops Coordinator: Prof. Mustafa Khammash, khammash@engineering.ucsb.edu, 893-4967 Center for Control, Dynamical University of California, Santa Barbara Systems and Computation SpringSeminarSeries`08 April 1 Ilya Nemenman, Los Alamos National

Akhmedov, Azer

448

Senate Forum, Spring 2011, Vol. XXVI (3) Volume XXVI, Number 3, Spring 2011 A publication of the Academic Senate, California State University, Fullerton  

E-Print Network (OSTI)

Senate Forum, Spring 2011, Vol. XXVI (3) Page 19 Volume XXVI, Number 3, Spring 2011 A publication rely on search engines like Google as their primary source of academic investigation (Chang, Morales and may feel overwhelmed by the sheer number of databases the library offers. #12;Senate Forum, Spring

de Lijser, Peter

449

Bone Cancer Rates in Dinosaurs Compared with Modern Vertebrates  

E-Print Network (OSTI)

Data on the prevalence of bone cancer in dinosaurs is available from past radiological examination of preserved bones. We statistically test this data for consistency with rates extrapolated from information on bone cancer in modern vertebrates, and find that there is no evidence of a different rate. Thus, this test provides no support for a possible role of ionizing radiation in the K-T extinction event.

L. C. Natarajan; A. L. Melott; B. M. Rothschild; L. D. Martin

2007-10-16T23:59:59.000Z

450

State and Tribal Government Working Group Visits the Weldon Spring Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weldon Spring Weldon Spring Site State and Tribal Government Working Group Visits the Weldon Spring Site June 1, 2011 - 3:18pm Addthis State and Tribal Government Working Group Visits the Weldon Spring Site State and Tribal Government Working Group Visits the Weldon Spring Site State and Tribal Government Working Group Visits the Weldon Spring Site State and Tribal Government Working Group Visits the Weldon Spring Site What does this project do? Goal 1. Protect human health and the environment On Wednesday, June 1, 2011, the Office of Legacy Management (LM) Weldon Spring, Missouri, Site hosted the State and Tribal Government Working Group (STGWG) for a half-day tour of the site to provide insight on the daily operations of an LM site. The event was part of the STGWG 2011 Spring

451

On nano size structures for enhanced bone formation.  

E-Print Network (OSTI)

??Purpose The general aim of the present thesis was to investigate early bone response to titanium implants modified with nano size structures. Therefore, 1. a (more)

Meirelles, Luiz

2007-01-01T23:59:59.000Z

452

Aging and Fracture of Human Cortical Bone and Tooth Dentin  

E-Print Network (OSTI)

Mechanistic aspects of fracture and R-curve behavior inof failure of solid biomaterials and bone: `fracture' and `pre- fracture' toughness. Materials Science and Engineering:

Ager III, Joel W.

2008-01-01T23:59:59.000Z

453

Design, analyses and experimental study of a foil gas bearing with compression springs as a compliance support  

E-Print Network (OSTI)

A new foil bearing with compression springs is designed, built, analyzed, and tested. This foil gas bearing uses a series of compression springs as a compliant structure instead of corrugated bump foils. A spring model to estimate the stiffness...

Song, Ju Ho

2009-06-02T23:59:59.000Z

454

E-Print Network 3.0 - acute bone crises Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

mography. Bone... Subchondral Bone Analyses by Micro-Computed Tomography Catherine Marchand, Ph.D.,1 Hongmei Chen, Ph.D.,1... to analyze subchondral bone features below treated...

455

Nonlinear Quantum Optical Springs and Their Nonclassical Properties  

E-Print Network (OSTI)

The original idea of quantum optical spring arises from the requirement of quantization of the frequency of oscillations in the Hamiltonian of harmonic oscillator. This purpose is achieved by considering a spring whose constant (and so its frequency) depends on the quantum states of another system. Recently, it is realized that by the assumption of frequency modulation of $\\omega$ to $\\omega\\sqrt{1+\\mu a^\\dagger a}$ the mentioned idea can be established. In the present paper, we generalize the approach of quantum optical spring with particular attention to the {\\it dependence of frequency to the intensity of radiation field} that {\\it naturally} observes in the {\\it nonlinear coherent states}, from which we arrive at a physical system has been called by us as {\\it nonlinear quantum optical spring}. Then, after the introduction of the generalized Hamiltonian of nonlinear quantum optical spring and it's solution, we will investigate the nonclassical properties of the obtained states. Specially, typical collapse and revival in the distribution functions and squeezing parameters, as particular quantum features, will be revealed.

M. J. Faghihi; M. K. Tavassoly

2014-07-29T23:59:59.000Z

456

Irradiation Effects on Human Cortical Bone Fracture Behavior  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation Effects on Human Cortical Bone Fracture Behavior Print Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in bone. However, the role that irradiation plays in these high-exposure experiments, and how it affects the properties of bone tissue, are not yet fully understood. A team of researchers led by Robert O. Ritchie at the Lawrence Berkeley National Laboratory and the University of California, Berkeley used synchrotron radiation micro-tomography at Advanced Light Source Beamline 8.3.2 to investigate changes in crack path and toughening mechanisms in human cortical bone with increased exposure to radiation, finding that exposure to high levels of irradiation can lead to drastic losses in strength, ductility, and toughness.

457

Irradiation Effects on Human Cortical Bone Fracture Behavior  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation Effects on Human Cortical Bone Fracture Behavior Print Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in bone. However, the role that irradiation plays in these high-exposure experiments, and how it affects the properties of bone tissue, are not yet fully understood. A team of researchers led by Robert O. Ritchie at the Lawrence Berkeley National Laboratory and the University of California, Berkeley used synchrotron radiation micro-tomography at Advanced Light Source Beamline 8.3.2 to investigate changes in crack path and toughening mechanisms in human cortical bone with increased exposure to radiation, finding that exposure to high levels of irradiation can lead to drastic losses in strength, ductility, and toughness.

458

Irradiation Effects on Human Cortical Bone Fracture Behavior  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation Effects on Human Irradiation Effects on Human Cortical Bone Fracture Behavior Irradiation Effects on Human Cortical Bone Fracture Behavior Print Wednesday, 28 July 2010 00:00 Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in bone. However, the role that irradiation plays in these high-exposure experiments, and how it affects the properties of bone tissue, are not yet fully understood. A team of researchers led by Robert O. Ritchie at the Lawrence Berkeley National Laboratory and the University of California, Berkeley used synchrotron radiation micro-tomography at Advanced Light Source Beamline 8.3.2 to investigate changes in crack path and toughening mechanisms in human cortical bone with increased exposure to radiation, finding that exposure to high levels of irradiation can lead to drastic losses in strength, ductility, and toughness.

459

Irradiation Effects on Human Cortical Bone Fracture Behavior  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation Effects on Human Cortical Bone Fracture Behavior Print Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in bone. However, the role that irradiation plays in these high-exposure experiments, and how it affects the properties of bone tissue, are not yet fully understood. A team of researchers led by Robert O. Ritchie at the Lawrence Berkeley National Laboratory and the University of California, Berkeley used synchrotron radiation micro-tomography at Advanced Light Source Beamline 8.3.2 to investigate changes in crack path and toughening mechanisms in human cortical bone with increased exposure to radiation, finding that exposure to high levels of irradiation can lead to drastic losses in strength, ductility, and toughness.

460

Irradiation Effects on Human Cortical Bone Fracture Behavior  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation Effects on Human Cortical Bone Fracture Behavior Print Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in bone. However, the role that irradiation plays in these high-exposure experiments, and how it affects the properties of bone tissue, are not yet fully understood. A team of researchers led by Robert O. Ritchie at the Lawrence Berkeley National Laboratory and the University of California, Berkeley used synchrotron radiation micro-tomography at Advanced Light Source Beamline 8.3.2 to investigate changes in crack path and toughening mechanisms in human cortical bone with increased exposure to radiation, finding that exposure to high levels of irradiation can lead to drastic losses in strength, ductility, and toughness.

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Protocadherin-7 induces bone metastasis of breast cancer  

SciTech Connect

Highlights: PCDH7 is overexpression in high bone metastatic MDA-MB-231 cells. PCDH7 is up-regulation in bone metastatic breast cancer tissues. Suppression of PCDH7 inhibits cell proliferation, migration, and invasion in vitro. PCDH7 induces breast cancer bone metastasis in vivo. -- Abstract: Breast cancer had a propensity to metastasize to bone, resulting in serious skeletal complications associated with poor outcome. Previous study showed that Protocadherin-7 (PCDH7) play an important role in brain metastatic breast cancer, however, the role of PCDH7 in bone metastatic breast cancer has never been explored. In the present study, we found that PCDH7 expression was up-regulation in bone metastatic breast cancer tissues by real-time PCR and immunohistochemistry assays. Furthermore, suppression of PCDH7 inhibits breast cancer cell proliferation, migration, and invasion in vitro by MTT, scratch, and transwell assays. Most importantly, overexpression of PCDH7 promotes breast cancer cell proliferation and invasion in vitro, and formation of bone metastasis in vivo. These data provide an important insight into the role of PCDH7 in bone metastasis of breast cancer.

Li, Ai-Min [Department of Orthopedics, The 5th Central Hospital of Tianjin, Tianjin (China)] [Department of Orthopedics, The 5th Central Hospital of Tianjin, Tianjin (China); Tian, Ai-Xian [Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China)] [Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Zhang, Rui-Xue [Department of Clinical Laboratory Diagnosis, Tianjin Medical University, Tianjin (China)] [Department of Clinical Laboratory Diagnosis, Tianjin Medical University, Tianjin (China); Ge, Jie [Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China) [Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Sun, Xuan [Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China)] [Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Cao, Xu-Chen, E-mail: caoxuch@126.com [Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China) [Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China)

2013-07-05T23:59:59.000Z

462

E-Print Network 3.0 - adam12-s stimulates bone Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

and computer... design (dimensions, profile shape and material properties) on the load sharing with adjacent bone... and consequent bone resorption was tested, using a set of...

463

Supercritical carbon dioxide-processed resorbable polymer nanocomposites for bone graft substitute applications.  

E-Print Network (OSTI)

?? Numerous clinical situations necessitate the use of bone graft materials to enhance bone formation. While autologous and allogenic materials are considered the gold standards (more)

Baker, Kevin

2011-01-01T23:59:59.000Z

464

E-Print Network 3.0 - alveolar bone defects Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

de mathmatiques Collection: Mathematics 30 Evaluation of trabecular bone patterns on dental radiographic images: influence of cortical bone. Summary: , G.J., "An investigation...

465

E-Print Network 3.0 - aspirate bone graft Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

-based implants for bone reconstruction and repair. We have developed HA-coated carbon-fiber polymer composites... that match bone's elastic modulus and show advantageous in...

466

E-Print Network 3.0 - artificial bone substitute Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

interconnections in the nano-composite material bone: Fibrillar cross-links resist fracture on several length scales Summary: to its biomedical significance, bone has been used...

467

E-Print Network 3.0 - affecting bone mineral Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

of remodeling on the mineralization of bone... of therapies that reduce the risk of fracture, increase bone mineral density or change the biochemical markers... mass and...

468

E-Print Network 3.0 - activity bone mineral Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

of remodeling on the mineralization of bone... of therapies that reduce the risk of fracture, increase bone mineral density or change the biochemical markers... mass and...

469

E-Print Network 3.0 - adsorbed bone sialoprotein Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

mass Philipp J. Thurner a... 2010 Edited by: D. Burr Keywords: Osteopontin Rodent Fracture toughness Bone matrix properties... Mineralization The ability of bone to resist...

470

E-Print Network 3.0 - anorganic bone clinical Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

predictor of bone mass... formation from bone marrow progenitors. Journal of ... Source: Brand, Paul H. - Department of Physiology and Pharmacology, University of Toledo...

471

E-Print Network 3.0 - adverse events bone Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

by Explorit Topic List Advanced Search Sample search results for: adverse events bone Page: << < 1 2 3 4 5 > >> 1 Mechanoregulated bone adaptation in osteoarthritis This...

472

Zim's Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Zim's Hot Springs Geothermal Area Zim's Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Zim's Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Idaho Batholith GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

473

Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown Notes Useful for age determinations - not indicated is useful for exploration. References Giday WoldeGabriel, Fraser Goff (1992) K-Ar Dates Of Hydrothermal

474

Hot Springs National Park Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs National Park Space Heating Low Temperature Geothermal Facility Facility Hot Springs National Park Sector Geothermal energy Type Space Heating Location Hot Springs, Arkansas Coordinates 34.5037004°, -93.0551795° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

475

Neal Hot Springs II Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Neal Hot Springs II Geothermal Project Neal Hot Springs II Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Neal Hot Springs II Geothermal Project Project Location Information Coordinates 44.023055555556°, -117.46° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.023055555556,"lon":-117.46,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

476

Pagosa Springs District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Facility Pagosa Springs District Heating Sector Geothermal energy Type District Heating Location Pagosa Springs, Colorado Coordinates 37.26945°, -107.0097617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

477

Digging Into Efficient Landscaping This Spring | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Digging Into Efficient Landscaping This Spring Digging Into Efficient Landscaping This Spring Digging Into Efficient Landscaping This Spring March 7, 2012 - 1:40pm Addthis Amanda McAlpin Preparing for its seasonal cycle, the warmth from the sun is growing stronger, and with temperatures slowly increasing, I was able to dine on the patio at my local coffee shop this weekend. It's evident the days of winter are almost past, and springtime planting around the house will soon begin. Trees, shrubs, and other vegetation thriving around your home aren't only beautiful, they can also save energy if carefully chosen and strategically planted. The Energy Savers website offers information dedicated to getting you started in the right direction with your own landscaping at home. One particularly helpful feature advises on landscaping according to the

478

Lee Hot Springs Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Hot Springs Geothermal Project Hot Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Lee Hot Springs Geothermal Project Project Location Information Coordinates 39.208055555556°, -118.72388888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.208055555556,"lon":-118.72388888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

479

City of Spring Grove, Minnesota (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

City of Spring Grove, Minnesota (Utility Company) City of Spring Grove, Minnesota (Utility Company) Jump to: navigation, search Name City of Spring Grove Place Minnesota Utility Id 17823 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Demand Commercial Commercial- Single-Phase Commercial Commercial- Three-Phase Commercial Large Commercial Commercial Peak Alert Commercial Peak Alert- Northern Engraving Commercial Peak Alert- Tweeten Lutheran Commercial Residential- Duel Fuel Energy Residential Residential- Single-Phase Residential

480

Geographic Information System At Brady Hot Springs Area (Laney, 2005) |  

Open Energy Info (EERE)

Geographic Information System At Brady Hot Springs Geographic Information System At Brady Hot Springs Area (Laney, 2005) Exploration Activity Details Location Brady Hot Springs Area Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes InSAR Ground Displacement Analysis, Gary Oppliger and Mark Coolbaugh. This project supports increased utilization of geothermal resources in the Western United States by developing basic measurements and interpretations that will assist reservoir management and expansion at Bradys, Desert Peak and the Desert Peak EGS study area (80 km NE of Reno, Nevada) and will serve as a technology template for other geothermal fields. Raw format European Space Agency (ESA) ERS 1/2 satellite synthetic Aperture Radar (SAR) radar scenes acquired from 1992 through 2002 are being processed to

Note: This page contains sample records for the topic "avalon bone spring" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Warm Springs State Hospital Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

State Hospital Space Heating Low Temperature Geothermal State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility Facility Warm Springs State Hospital Sector Geothermal energy Type Space Heating Location Warm Springs, Montana Coordinates 46.1813145°, -112.78476° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

482

Leach Hot Springs Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Leach Hot Springs Geothermal Project Leach Hot Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Leach Hot Springs Geothermal Project Project Location Information Coordinates 40.603888888889°, -117.64805555556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.603888888889,"lon":-117.64805555556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

483

Under Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Under Steamboat Springs Geothermal Area Under Steamboat Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Under Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

484

Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Details Activities (2) Areas (2) Regions (0) Abstract: Local seismic networks were established at the Roosevelt Hot Springs geothermal area, utah and at Raft River geothermal area, Idaho to monitor the background seismicity prior to initiation of geothermal power production. The Raft River study area is currently seismically quiet down

485

City of Harbor Springs, Michigan (Utility Company) | Open Energy  

Open Energy Info (EERE)

Harbor Springs, Michigan (Utility Company) Harbor Springs, Michigan (Utility Company) Jump to: navigation, search Name Harbor Springs City of Place Michigan Utility Id 8083 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Inside City Commercial Commercial Outside City Commercial Demand Inside City Commercial Demand Outside City Commercial Energy Optimization Plan Surcharge Rates: Commercial Commercial Energy Optimization Plan Surcharge Rates: Residential Residential Residential Inside City Residential Residential Outside City Residential

486

Spring Forward and Start Saving Money | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forward and Start Saving Money Forward and Start Saving Money Spring Forward and Start Saving Money March 8, 2013 - 10:15am Addthis Installing blinds or draperies can help you save on cooling costs during the summer months. | Photo courtesy of ©iStockphoto.com/powershot Installing blinds or draperies can help you save on cooling costs during the summer months. | Photo courtesy of ©iStockphoto.com/powershot Jason Lutterman Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Follow these spring tips to save money in your home. March has begun, and as millions around the world prepare to "spring forward" one hour for Daylight Saving Time on March 10th, you might consider this as an opportunity to also save some money to use in the

487

Magnetotellurics At Valles Caldera - Sulphur Springs Area (Wilt & Haar,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Magnetotellurics At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Magnetotelluric results indicate deep low resistivity at the western edge of the caldera which may be associated with deep hot fluids. On the basis of geophysical and well data, we make three estimates of reservoir

488

Jemez Springs Bathhouse Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Bathhouse Pool & Spa Low Temperature Geothermal Facility Bathhouse Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jemez Springs Bathhouse Pool & Spa Low Temperature Geothermal Facility Facility Jemez Springs Bathhouse Sector Geothermal energy Type Pool and Spa Location Jemez Springs, New Mexico Coordinates 35.7686356°, -106.692258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

489

Geothermal Literature Review At Breitenbush Hot Springs Area (Ingebritsen,  

Open Energy Info (EERE)

Ingebritsen, Ingebritsen, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Breitenbush Hot Springs Area (Ingebritsen, Et Al., 1996) Exploration Activity Details Location Breitenbush Hot Springs Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Defense of previous 1993 thermal gradient hole interpretations. References S. E. Ingebritsen, M. A. Scholl, D. R. Sherrod (1996) Reply To The Comment By D D Blackwell And G R Priest On Heat Flow From Four New Research Drill Holes In The Western Cascades, Oregon, Usa By S E Ingebritsen, M A Scholl And D R Sherrod Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Breitenbush_Hot_Springs_Area_(Ingebritsen,_Et_Al.,_1996)&oldid=510797"

490

Big Spring II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Big Spring II Wind Farm Big Spring II Wind Farm Facility Big Spring II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer York Research Energy Purchaser TXU Electric & Gas Location Howard County TX Coordinates 32.146715°, -101.398244° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.146715,"lon":-101.398244,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

491

Manley Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Manley Hot Springs Space Heating Low Temperature Geothermal Facility Facility Manley Hot Springs Sector Geothermal energy Type Space Heating Location Manley Hot Springs, Alaska Coordinates 65.0011111°, -150.6338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

492

Compound and Elemental Analysis At Breitenbush Hot Springs Area (Wood,  

Open Energy Info (EERE)

2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Breitenbush Hot Springs Area (Wood, 2002) Exploration Activity Details Location Breitenbush Hot Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

493

Pilgrim Hot Springs, Alaska Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Springs, Alaska Geothermal Project Springs, Alaska Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Pilgrim Hot Springs, Alaska Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description A combination of existing and innovative remote sensing and geophysical techniques will be used to site the two confirmation core holes. These include a suite of Landsat, Aster, and FLIR techniques using infrared radiation combined with a CSAMT/AMT resistivity survey, 4.5 m to 150 m temperature gradient holes, and 1980 convective heat loss calculations. These will be used in combination to determine the natural heat loss from the Pilgrim geothermal system and allow an order of magnitude estimate of the resource potential.

494

Spring Home Maintenance: Windows, Windows, Windows! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Maintenance: Windows, Windows, Windows! Home Maintenance: Windows, Windows, Windows! Spring Home Maintenance: Windows, Windows, Windows! April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Caulking is an easy way to reduce air leakage around your windows. | Photo courtesy of ©iStockphoto.com/BanksPhotos Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Use these tips for window maintence and treatments to save energy this spring. The beginning of spring marks the point in the year when I'm cleaning, purging the house of things I no longer need, and updating my home on needed repairs. This year, I'm focusing on how to lower my energy bills

495

Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature  

Open Energy Info (EERE)

Space Heating Low Temperature Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature Geothermal Facility Facility Roosevelt Warm Springs Institute for Rehab. Sector Geothermal energy Type Space Heating Location Warm Springs, Georgia Coordinates 32.8904081°, -84.6810381° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

496

TransForum Volume 10, No. 1 - Spring 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

1- Spring 2010 1- Spring 2010 RESEARCH REVIEWS 2 Argonne Receives R&D 100 Award for Superhard and Slick Coating 3 Argonne to Explore Lithium-air Battery 4 Argonne's TTRDC Partners with India 5 EcoCAR Participants in Year Two of Competition 6 Charging Ahead: Taking PHEVs Farther on a Single Battery Charge 7 New Molecule Could Help Make Batteries Safer, Less Expensive 8 A Great Debate: Fuel Economy versus Fuel Consumption 10 ARPA-E Awards $6 Million to Two Argonne Projects 11 Green Racing: Fueling Change in the Auto Industry 12 Six Myths about Plug-in Hybrid Electric Vehicles 14 IN THE NEWS 15 FASTRAX 16 PUTTING ARGONNE'S RESOURCES TO WORK FOR YOU Charging Ahead with Ultracapacitors page 6 2 TransForum 8 Spring 2010

497

Colorado Springs Utilities - Renewable Energy Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Rebate Program Renewable Energy Rebate Program Colorado Springs Utilities - Renewable Energy Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Maximum Rebate PV (Residential): $15,000 PV (Commercial): $37,500 Wind (Residential): $3,750 Wind (Commercial): $12,500 Program Info Start Date 1/1/2006 State Colorado Program Type Utility Rebate Program Rebate Amount PV: $1.50 per watt Wind: $1.25 per watt Solar Water Heating (Residential): $1,500 - $3,000 depending on heating capacity Solar Water Heating (Commercial): 30% of installed cost, up to $15,000 Provider Colorado Springs Utilities Through its Renewable Energy Rebate Program, Colorado Springs Utilities (CSU) offers a rebate to customers who install grid-connected

498

Why sequence thermophiles in Great Basin hot springs?  

NLE Websites -- All DOE Office Websites (Extended Search)

thermophiles in Great Basin hot springs? thermophiles in Great Basin hot springs? A thermophile is an organism that thrives in extremely hot temperature conditions. These conditions are found in the Great Basin hot springs, where the organisms have been exposed to unique conditions which guide their lifecycle. High temperature environments often support large and diverse populations of microorganisms, which appear to be hot spots of biological innovation of carbon fixation. Sequencing these microbes that make their home in deadly heat could provide various insights into understanding energy production and carbon cycling. Converting cellulosic biomass to ethanol is one of the most promising strategies to reduce petroleum consumption in the near future. This can only be achieved by enhancing recovery of fermentable sugars from complex

499

City of Wessington Springs, South Dakota (Utility Company) | Open Energy  

Open Energy Info (EERE)

Wessington Springs, South Dakota (Utility Company) Wessington Springs, South Dakota (Utility Company) Jump to: navigation, search Name City of Wessington Springs Place South Dakota Utility Id 20359 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 1 Ele Res Residential 11 Sec Lgt 1.50 Lighting 12 Sec Lgt 3.00 Lighting 14 Sec Lgt 5.00 Lighting 15 Res 06 Debt Ser Residential 16 Sm 06 Com Debt Commercial 17 Lr 06 Debt Serv 18 03 Debt Serv 2 Elec Comm Commercial 5 Elec City 6 LCom Energy Commercial 8 Demand Rate

500

EA-1116: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16: Kalina Geothermal Demonstration Project, Steamboat 16: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada EA-1116: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada SUMMARY This EA evaluates the environmental impacts of the proposal for the U.S. Department of Energy Golden Field Office to partially fund assistance for the construction and operation of a privately owned 6-megawatt geothermal power plant which includes one geothermal production well, one injection well, and ancillary facilities such as on-site access road(s) and interconnected to electric transmission lines to existing geothermal power plants. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD February 22, 1999 EA-1116: Finding of No Significant Impact Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada