National Library of Energy BETA

Sample records for automotive traction inverter

  1. Permanent Magnet Development for Automotive Traction Motors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape015_anderson_2012_o.pdf More Documents & Publications Permanent Magnet Development for Automotive Traction Motors Permanent Magnet Development for Automotive Traction Motors Vehicle Technologies Office Merit Review 2014: Permanent Magnet Development for Automotive Traction

  2. Gas cooled traction drive inverter

    DOE Patents [OSTI]

    Chinthavali, Madhu Sudhan

    2013-10-08

    The present invention provides a modular circuit card configuration for distributing heat among a plurality of circuit cards. Each circuit card includes a housing adapted to dissipate heat in response to gas flow over the housing. In one aspect, a gas-cooled inverter includes a plurality of inverter circuit cards, and a plurality of circuit card housings, each of which encloses one of the plurality of inverter cards.

  3. Air-Cooled Traction Drive Inverter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air-Cooled Traction Drive Inverter Air-Cooled Traction Drive Inverter 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape042_chinthavali_2012_o.pdf More Documents & Publications High-Temperature, Air-Cooled Traction Drive Inverter Packaging Wide Bandgap Power Electronics Vehicle Technologies Office Merit Review 2015: Electric Drive Inverter R&D

  4. High-Temperature, Air-Cooled Traction Drive Inverter Packaging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Air-Cooled Traction Drive Inverter Benchmarking of Competitive Technologies High Temperature, High Voltage Fully Integrated Gate Driver Circuit

  5. High-Temperature, Air-Cooled Traction Drive Inverter Packaging | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Temperature, Air-Cooled Traction Drive Inverter Packaging High-Temperature, Air-Cooled Traction Drive Inverter Packaging 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape025_chinthavali_2010_p.pdf More Documents & Publications Air-Cooled Traction Drive Inverter Benchmarking of Competitive Technologies High Temperature, High Voltage Fully Integrated Gate Driver Cir

  6. Traction Drive Inverter Cooling with Submerged Liquid Jet Impingement on Microfinned Enhanced Surfaces (Presentation)

    SciTech Connect (OSTI)

    Waye, S.; Narumanchi, S.; Moreno, G.

    2014-09-01

    Jet impingement is one means to improve thermal management for power electronics in electric-drive traction vehicles. Jet impingement on microfin-enhanced surfaces further augments heat transfer and thermal performance. A channel flow heat exchanger from a commercial inverter was characterized as a baseline system for comparison with two new prototype designs using liquid jet impingement on plain and microfinned enhanced surfaces. The submerged jets can target areas with the highest heat flux to provide local cooling, such as areas under insulated-gate bipolar transistors and diode devices. Low power experiments, where four diodes were powered, dissipated 105 W of heat and were used to validate computational fluid dynamics modeling of the baseline and prototype designs. Experiments and modeling used typical automotive flow rates using water-ethylene glycol as a coolant (50%-50% by volume). The computational fluid dynamics model was used to predict full inverter power heat dissipation. The channel flow and jet impingement configurations were tested at full inverter power of 40 to 100 kW (output power) on a dynamometer, translating to an approximate heat dissipation of 1 to 2 kW. With jet impingement, the cold plate material is not critical for the thermal pathway. A high-temperature plastic was used that could eventually be injection molded or formed, with the jets formed from a basic aluminum plate with orifices acting as nozzles. Long-term reliability of the jet nozzles and impingement on enhanced surfaces was examined. For jet impingement on microfinned surfaces, thermal performance increased 17%. Along with a weight reduction of approximately 3 kg, the specific power (kW/kg) increased by 36%, with an increase in power density (kW/L) of 12% compared with the baseline channel flow configuration.

  7. A Five-Leg Inverter for Driving a Traction Motor and a Compressor Motor

    SciTech Connect (OSTI)

    Su, Gui-Jia; Hsu, John S

    2006-01-01

    This paper presents an integrated inverter for speed control of a traction motor and a compressor motor to reduce the compressor drive cost in EV/HEV applications. The inverter comprises five phase-legs; three of which are for control of a three-phase traction motor and the remaining two for a two-phase compressor motor with three terminals. The common terminal of the two-phase motor is tied to the neutral point of the three-phase traction motor to eliminate the requirement of a third phase leg. Further cost savings are made possible by sharing the switching devices, dc bus filter capacitors, gate drive power supplies, and control circuit. Simulation and experimental results are included to verify that speed control of the two motors is independent from each other.

  8. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    SciTech Connect (OSTI)

    None, None

    2012-01-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  9. Advanced Liquid Cooling for a Traction Drive Inverter Using Jet Impingement and Microfinned Enhanced Surfaces: Preprint

    SciTech Connect (OSTI)

    Waye, S. K.; Narumanchi, S.; Mihalic, M.; Moreno, G.; Bennion, K.; Jeffers, J.

    2014-08-01

    Jet impingement on plain and micro-finned enhanced surfaces was compared to a traditional channel flow configuration. The jets provide localized cooling to areas heated by the insulated-gate bipolar transistor and diode devices. Enhanced microfinned surfaces increase surface area and thermal performance. Using lighter materials and designing the fluid path to manage pressure losses increases overall performance while reducing weight, volume, and cost. Powering four diodes in the center power module of the inverter and computational fluid dynamics (CFD) modeling was used to characterize the baseline as well as jet-impingement-based heat exchangers. CFD modeling showed the thermal performance improvements should hold for a fully powered inverter. Increased thermal performance was observed for the jet-impingement configurations when tested at full inverter power (40 to 100 kW output power) on a dynamometer. The reliability of the jets and enhanced surfaces over time was also investigated. Experimentally, the junction-to- coolant thermal resistance was reduced by up to 12.5% for jet impingement on enhanced surfaces s compared to the baseline channel flow configuration. Base plate-to-coolant (convective) resistance was reduced by up to 37.0% for the jet-based configuration compared to the baseline, suggesting that while improvements to the cooling side reduce overall resistance, reducing the passive stack resistance may contribute to lowering overall junction-to-coolant resistance. Full inverter power testing showed reduced thermal resistance from the middle of the module baseplate to coolant of up to 16.5%. Between the improvement in thermal performance and pumping power, the coefficient of performance improved by up to 13% for the jet-based configuration.

  10. Inverter Cost Analysis and Marketing Intelligence | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Analysis and Marketing Intelligence Inverter Cost Analysis and Marketing Intelligence 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ape032_whaling_2011_o.pdf More Documents & Publications Interim Update: Global Automotive Power Electronics R&D Relevant To DOE 2015 and 2020 Cost Targets Permanent Magnet Development for Automotive Traction Motors Low-Cost U.S. Manufacturing of Power Electronics for Electric

  11. Ac traction gets on track

    SciTech Connect (OSTI)

    O`Connor, L.

    1995-09-01

    This article describes inverter-based ac traction systems which give freight locomotives greater adhesion, pulling power, and braking capacity. In the 1940s, dc traction replaced the steam engine as a source of train propulsion, and it has ruled the freight transportation industry ever since. But now, high-performance ac-traction systems, with their unprecedented levels of pulling power and adhesion, are becoming increasingly common on America`s freight railroads. In thousands of miles of demonstration tests, today`s ac-traction systems have outperformed traditional dc-motor driven systems. Major railroad companies are convinced enough of the benefits of ac traction to have integrated it into their freight locomotives.

  12. Advanced Integrated Traction System

    SciTech Connect (OSTI)

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step towards enabling a smart-grid application. GM under this work assessed 29 technologies; investigated 36 configurations/types power electronics and electric machines, filed 41 invention disclosures; and ensured technology compatibility with vehicle production. Besides the development of a high temperature ETS the development of industrial suppliers took place because of this project. Suppliers of industrial power electronic components are numerous, but there are few that have traction drive knowledge. This makes it difficult to achieve component reliability, durability, and cost requirements necessary of high volume automotive production. The commercialization of electric traction systems for automotive industry requires a strong diverse supplier base. Developing this supplier base is dependent on a close working relationship between the OEM and supplier so that appropriate component requirements can be developed. GM has worked closely with suppliers to develop components for electric traction systems. Components that have been the focus of this project are power modules, capacitors, heavy copper boards, current sensors, and gate drive and controller chip sets. Working with suppliers, detailed component specifications have been developed. Current, voltage, and operation environment during the vehicle drive cycle were evaluated to develop higher resolution/accurate component specifications.

  13. Permanent Magnet Development for Automotive Traction Motors

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Permanent Magnet Development for Automotive Traction Motors

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  15. Permanent Magnet Development for Automotive Traction Motors

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  16. Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inverter with New 900 Volt Silicon Carbide MOSFET Technology | Department of Energy 88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Presentation given by Cree at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about 88 kilowatt automotive inverter with new

  17. Utilizing the Traction Drive Power Electronics System to Provide Plug-in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capability for PHEVs | Department of Energy Traction Drive Power Electronics System to Provide Plug-in Capability for PHEVs Utilizing the Traction Drive Power Electronics System to Provide Plug-in Capability for PHEVs 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_04_su.pdf More Documents & Publications Current Source Inverters for HEVs and FCVs Inverter Using Current Source

  18. High Power Density Integrated Traction Machine Drive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ape024_wang_2011_o.pdf More Documents & Publications High Power Density Integrated Traction Machine Drive Power Device Packaging Current Source Inverters for HEVs and FCVs

  19. Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Merit Review 2015: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives Vehicle Technologies Office...

  20. Traction Drive Systems Breakout Group

    Broader source: Energy.gov (indexed) [DOE]

    TRACTION DRIVE SYSTEM BREAKOUT GROUP EV Everywhere Workshop July 24, 2012 Breakout Session 1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the...

  1. Integrated Inverter For Driving Multiple Electric Machines

    DOE Patents [OSTI]

    Su, Gui-Jia [Knoxville, TN; Hsu, John S [Oak Ridge, TN

    2006-04-04

    An electric machine drive (50) has a plurality of inverters (50a, 50b) for controlling respective electric machines (57, 62), which may include a three-phase main traction machine (57) and two-phase accessory machines (62) in a hybrid or electric vehicle. The drive (50) has a common control section (53, 54) for controlling the plurality of inverters (50a, 50b) with only one microelectronic processor (54) for controlling the plurality of inverters (50a, 50b), only one gate driver circuit (53) for controlling conduction of semiconductor switches (S1-S10) in the plurality of inverters (50a, 50b), and also includes a common dc bus (70), a common dc bus filtering capacitor (C1) and a common dc bus voltage sensor (67). The electric machines (57, 62) may be synchronous machines, induction machines, or PM machines and may be operated in a motoring mode or a generating mode.

  2. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules...

  3. Advanced Modular Inverter Technology Development

    SciTech Connect (OSTI)

    Adam Szczepanek

    2006-02-04

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

  4. FreedomCAR Advanced Traction Drive Motor Development Phase I

    SciTech Connect (OSTI)

    Ley, Josh; Lutz, Jon

    2006-09-01

    The overall objective of this program is to design and develop an advanced traction motor that will meet the FreedomCAR and Vehicle Technologies (FCVT) 2010 goals and the traction motor technical targets. The motor specifications are given in Section 1.3. Other goals of the program include providing a cost study to ensure the motor can be developed within the cost targets needed for the automotive industry. The program has focused on using materials that are both high performance and low costs such that the performance can be met and cost targets are achieved. In addition, the motor technologies and machine design features must be compatible with high volume manufacturing and able to provide high reliability, efficiency, and ruggedness while simultaneously reducing weight and volume. Weight and volume reduction will become a major factor in reducing cost, material cost being the most significant part of manufacturing cost at high volume. Many motor technology categories have been considered in the past and present for traction drive applications, including: brushed direct current (DC), PM (PM) brushless dc (BLDC), alternating current (AC) induction, switched reluctance and synchronous reluctance machines. Of these machine technologies, PM BLDC has consistently demonstrated an advantage in terms of power density and efficiency. As rare earth magnet cost has declined, total cost may also be reduced over the other technologies. Of the many different configurations of PM BLDC machines, those which incorporate power production utilizing both magnetic torque as well as reluctance torque appear to have the most promise for traction applications. There are many different PM BLDC machine configurations which employ both of these torque producing mechanisms; however, most would fall into one of two categories--some use weaker magnets and rely more heavily on reluctance torque (reluctance-dominant PM machines), others use strong PMs and supplement with reluctance torque (magnet-dominant PM machines). This report covers a trade study that was conducted in this phase I program to explore which type of machine best suits the FCVT requirements.

  5. AZ Automotive: Presentation

    Broader source: Energy.gov [DOE]

    The role of midsize automotive module suppliers in meeting the goals of the Energy Independence and Security act of 2007

  6. Sandia Energy - Inverter Reliability Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inverter Reliability Program Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Systems Reliability Inverter Reliability Program Inverter Reliability...

  7. Workplace Charging Challenge Partner: Bosch Automotive Service...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bosch Automotive Service Solutions, Inc. Workplace Charging Challenge Partner: Bosch Automotive Service Solutions, Inc. Workplace Charging Challenge Partner: Bosch Automotive...

  8. Power inverters

    DOE Patents [OSTI]

    Miller, David H. (Redondo Beach, CA); Korich, Mark D. (Chino Hills, CA); Smith, Gregory S. (Woodland Hills, CA)

    2011-11-15

    Power inverters include a frame and a power module. The frame has a sidewall including an opening and defining a fluid passageway. The power module is coupled to the frame over the opening and includes a substrate, die, and an encasement. The substrate includes a first side, a second side, a center, an outer periphery, and an outer edge, and the first side of the substrate comprises a first outer layer including a metal material. The die are positioned in the substrate center and are coupled to the substrate first side. The encasement is molded over the outer periphery on the substrate first side, the substrate second side, and the substrate outer edge and around the die. The encasement, coupled to the substrate, forms a seal with the metal material. The second side of the substrate is positioned to directly contact a fluid flowing through the fluid passageway.

  9. Traction Drive Systems Breakout | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Traction Drive Systems Breakout Traction Drive Systems Breakout Presentation given at the EV Everywhere Grand Challenge … Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL. PDF icon 9a_miller_ed.pdf More Documents & Publications Power Electronics and Thermal Management Breakout Session Electric Drive Status and Challenges Advanced Power Electronics and Electric Motors (APEEM) R&D Program Overview

  10. Coda Automotive | Open Energy Information

    Open Energy Info (EERE)

    Coda Automotive Place: Santa Monica, California Zip: 90403 Product: California-based electric vehicle company which builds its cars in China. References: Coda Automotive1...

  11. Utilizing the Traction Drive Power Electronics System to Provide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Traction Drive Power Electronics System to Provide Plug-in Capability for PHEVs Utilizing the Traction Drive Power Electronics System to Provide Plug-in Capability for PHEVs 2009 ...

  12. Advanced Integrated Electric Traction System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape014_smith_2010_o.pdf More Documents & Publications Advanced Integrated Electric Traction System Advanced Integrated Electric Traction System Vehicle Technologies Office Merit Review 2015: Brushless and Permanent Magnet Free Wound Field Synchronous Motors for EV Traction

  13. A Five-Level Three-Phase Cascade Multilevel Inverter Using a Single DC Source for a PM Synchronous Motor Drive

    SciTech Connect (OSTI)

    Ozpineci, Burak; Chiasson, John N; Tolbert, Leon M

    2007-01-01

    The interest here is in using a single DC power source to construct a 3-phase 5-level cascade multilevel inverter to be used as a drive for a PM traction motor. The 5-level inverter consists of a standard 3-leg inverter (one leg for each phase) and an H-bridge in series with each inverter leg, which use a capacitor as a DC source. It is shown that one can simultaneously maintain the regulation of the capacitor voltage while achieving an output voltage waveform which is 25% higher than that obtained using a standard 3-leg inverter by itself.

  14. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

  15. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel...

  16. Experimental Approach of a High Performance Control of Two PermanentMagnet Synchronous Machines in an Integrated Drive for Automotive Applications

    SciTech Connect (OSTI)

    Tang, Lixin; Su, Gui-Jia

    2006-01-01

    The close-loop digital signal processor (DSP) control of an integrated-dual inverter, which is able to drive two permanent magnet (PM) motors independently, is presented and evaluated experimentally. By utilizing the neutral point of the main traction motor, only two inverter poles are needed for the two-phase auxiliary motor. The modified field-oriented control scheme for this integrated inverter was introduced and employed in real-time control. The experimental results show the inverter is able to control two drives independently. An integrated, component count reduced drive is achieved.

  17. EV Everywhere Workshop: Traction Drive Systems Breakout Group...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere Workshop: Traction Drive Systems Breakout Group Report Presentation given at the EV Everywhere Grand Challenge Electric Drive (Power Electronics and Electric ...

  18. Simple cost model for EV traction motors

    SciTech Connect (OSTI)

    Cuenca, R.M.

    1995-02-01

    A simple cost model has been developed that allows the calculation of the OEM cost of electric traction motors of three different types, normalized as a function of power in order to accommodate different power and size. The model includes enough information on the various elements integrated in the motors to allow analysis of individual components and to factor-in the effects of changes in commodities prices. A scalable cost model for each of the main components of an electric vehicle (EV) is a useful tool that can have direct application in computer simulation or in parametric studies. For the cost model to have wide usefulness, it needs to be valid for a range of values of some parameter that determines the magnitude or size of the component. For instance, in the case of batteries, size may be determined by energy capacity, usually expressed in kilowatt-hours (kWh), while in the case of traction motors, size is better determined by rated power, usually expressed in kilowatts (kW). The simplest case is when the cost of the component in question is a direct function of its size; then cost is simply the product of its specific cost ($/unit size) and the number of units (size) in the vehicle in question. Batteries usually fall in this category (cost = energy capacity x $/kWh). But cost is not always linear with size or magnitude; motors (and controllers), for instance, become relatively less expensive as power rating increases. Traction motors, one of the main components for EV powertrains are examined in this paper, and a simplified cost model is developed for the three most popular design variations.

  19. Vehicle Technologies Office Merit Review 2014: Permanent Magnet Development for Automotive Traction Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Ames Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about permanent magnet development...

  20. Advanced Integrated Electric Traction System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ape014_smith_2011_o.pdf More Documents & Publications Advanced Integrated Electric Traction System Advanced Integrated Electric Traction System Vehicle Technologies Office: 2013 Advanced Power Electronics and Electric Motors R&D Annual Progress Report

  1. Advanced Integrated Electric Traction System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_09_smith.pdf More Documents & Publications Advanced Integrated Electric Traction System Advanced Integrated Electric Traction System Class 8 Truck Freight Efficiency Improvement Project

  2. Electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, S.R.

    1995-09-12

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  3. Electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, Susan R. (Wixom, MI)

    1995-01-01

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  4. Multilevel DC link inverter

    DOE Patents [OSTI]

    Su, Gui-Jia

    2003-06-10

    A multilevel DC link inverter and method for improving torque response and current regulation in permanent magnet motors and switched reluctance motors having a low inductance includes a plurality of voltage controlled cells connected in series for applying a resulting dc voltage comprised of one or more incremental dc voltages. The cells are provided with switches for increasing the resulting applied dc voltage as speed and back EMF increase, while limiting the voltage that is applied to the commutation switches to perform PWM or dc voltage stepping functions, so as to limit current ripple in the stator windings below an acceptable level, typically 5%. Several embodiments are disclosed including inverters using IGBT's, inverters using thyristors. All of the inverters are operable in both motoring and regenerating modes.

  5. Automotive Fuel Cell Corporation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Corporation n SNL researcher Cy Fujimoto demonstrates his new flexible hydrocarbon polymer electrolyte mem- brane, which could be a key factor in realizing a hydrogen car. The close partnership between Sandia and AFCC has resulted in a very unique and promising technology for future automotive applications. Dr. Rajeev Vohra Manager R&D AFCC Hydrocarbon Membrane Fuels the Suc- cess of Future Generation Vehicles While every car manufacturer, such as GM and Ford, has developed their

  6. Integrity Automotive | Open Energy Information

    Open Energy Info (EERE)

    Product: Joint venture between Kentucky businessman Randal Waldman of Integrity Manufacturing and California-based electric car maker Zap. References: Integrity Automotive1...

  7. Automotive Energy Storage Systems 2015

    Broader source: Energy.gov [DOE]

    Automotive Energy Storage Systems 2015, the ITB Group’s 16th annual technical conference, was held from March 4–5, 2015, in Novi, Michigan.

  8. Bluebird Automotive | Open Energy Information

    Open Energy Info (EERE)

    Sector: Vehicles Product: Producer of electric vehicles for the delivery market and other cars, specialising in making fast electric vehicles. References: Bluebird Automotive1...

  9. Advanced Electric Traction System Technology Development

    SciTech Connect (OSTI)

    Anderson, Iver

    2011-01-14

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  10. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop...

  11. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Automotive Waste Heat Recovery Thermoelectric Generator Development for Automotive Waste Heat Recovery Presentation given at the 16th Directions in Engine-Efficiency and...

  12. Innovative Drivetrains in Electric Automotive Technology Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drivetrains in Electric Automotive Technology Education (IDEATE) Innovative Drivetrains in Electric Automotive Technology Education (IDEATE) 2012 DOE Hydrogen and Fuel Cells...

  13. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D ...

  14. Oscar Automotive Ltd | Open Energy Information

    Open Energy Info (EERE)

    Oscar Automotive Ltd Place: London, Greater London, United Kingdom Sector: Hydro, Hydrogen Product: OSCar Automotive is working towards the commercialisation of hydrogen fuel...

  15. Bright Automotive Inc | Open Energy Information

    Open Energy Info (EERE)

    Automotive Inc Jump to: navigation, search Name: Bright Automotive, Inc. Place: Anderson, Indiana Zip: 46013 Product: Designer and OEM for the IDEA PHEV. References: Bright...

  16. Korean Automotive Research Instituiton | Open Energy Information

    Open Energy Info (EERE)

    Korean Automotive Research Instituiton Jump to: navigation, search Name: Korean Automotive Research Instituiton Place: Korea Information About Partnership with NREL Partnership...

  17. Fisker Automotive Inc | Open Energy Information

    Open Energy Info (EERE)

    Fisker Automotive Inc Jump to: navigation, search Name: Fisker Automotive Inc Place: Irvine, California Zip: 92606 Product: Irvine-based hybrid vehicle manufacturer. Coordinates:...

  18. Green Automotive Company Inc | Open Energy Information

    Open Energy Info (EERE)

    Company Inc Jump to: navigation, search Name: Green Automotive Company Inc Place: Texas Zip: 75001 Product: Texas-based electric vehicle manufacturer. References: Green Automotive...

  19. Resonant snubber inverter

    DOE Patents [OSTI]

    Lai, Jih-Sheng (Knoxville, TN); Young, Sr., Robert W. (Oak Ridge, TN); Chen, Daoshen (Knoxville, TN); Scudiere, Matthew B. (Oak Ridge, TN); Ott, Jr., George W. (Knoxville, TN); White, Clifford P. (Knoxville, TN); McKeever, John W. (Oak Ridge, TN)

    1997-01-01

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  20. Resonant snubber inverter

    DOE Patents [OSTI]

    Lai, J.S.; Young, R.W. Sr.; Chen, D.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; McKeever, J.W.

    1997-06-24

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 14 figs.

  1. Inverters Unlimited Inc | Open Energy Information

    Open Energy Info (EERE)

    Inverters Unlimited Inc Jump to: navigation, search Name: Inverters Unlimited Inc Place: New York Zip: 12205 Sector: Solar Product: US-based manufacturer of solar inverters....

  2. Hybrid and Electric Traction Motor | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A World-Class Traction Motor for Hybrid and Electric Vehicles Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in...

  3. EV Everywhere Workshop: Traction Drive Systems Breakout Group Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Traction Drive Systems Breakout Group Report EV Everywhere Workshop: Traction Drive Systems Breakout Group Report Presentation given at the EV Everywhere Grand Challenge … Electric Drive (Power Electronics and Electric Machines) Workshop on July 24, 2012 held at the Doubletree O'Hare, Chicago, IL. PDF icon 7a_marlino_ed.pdf More Documents & Publications EV Everywhere - Charge to Breakout Sessions EV Everywhere Framing Workshop - Report Out & Lessons Learned

  4. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-08-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a power density surpassed by no other machine design.

  5. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-10-11

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a high power density.

  6. Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike todays large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldors motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

  7. Novel Nanostructured Interface Solution for Automotive Thermoelectric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modules Application | Department of Energy Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Presents nanostructured thermal/electrical interface tapeŽ concept involving carbon nanotube and metal nanowire films to improve thermomechanical cycling behavior of automotive TEGs PDF icon asheghi.pdf More Documents & Publications Thermoelectrics Partnership: Automotive

  8. Automotive Turbocharging: Industrial Requirements and Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharging: Industrial Requirements and Technology Developments Automotive Turbocharging: Industrial Requirements and Technology Developments Significant improvements in...

  9. Vehicle Technologies Office: Graduate Automotive Technology Education

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (GATE) | Department of Energy Education & Workforce Development » Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) DOE established the Graduate Automotive Technology Education (GATE) Centers of Excellence to provide future generations of engineers and scientists with knowledge and skills in advanced automotive technologies. By funding curriculum development and expansion as well as

  10. Progress Report for Advanced Automotive Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Energy Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 1999 FY 1999 FY 1999 FY 1999 Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Office of

  11. Ceramic Automotive Stirling Engine Program

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  12. Inverted organic photosensitive device

    DOE Patents [OSTI]

    Forrest, Stephen R.; Tong, Xiaoran; Lee, Jun Yeob; Cho, Yong Joo

    2015-09-08

    There is disclosed a method for preparing the surface of a metal substrate. The present disclosure also relates to an organic photovoltaic device including a metal substrate made by such method. Also disclosed herein is an inverted photosensitive device including a stainless steel foil reflective electrode, an organic donor-acceptor heterojunction over the reflective electrode, and a transparent electrode over the donor-acceptor heterojunction.

  13. Traction sheave elevator, hoisting unit and machine space

    DOE Patents [OSTI]

    Hakala, Harri (Hyvinkaa, FI); Mustalahti, Jorma (Hyvinkaa, FI); Aulanko, Esko (Kerava, FI)

    2000-01-01

    Traction sheave elevator consisting of an elevator car moving along elevator guide rails, a counterweight moving along counterweight guide rails, a set of hoisting ropes (3) on which the elevator car and counterweight are suspended, and a drive machine unit (6) driving a traction sheave (7) acting on the hoisting ropes (3) and placed in the elevator shaft. The drive machine unit (6) is of a flat construction. A wall of the elevator shaft is provided with a machine space with its open side facing towards the shaft, the essential parts of the drive machine unit (6) being placed in the space. The hoisting unit (9) of the traction sheave elevator consists of a substantially discoidal drive machine unit (6) and an instrument panel (8) mounted on the frame (20) of the hoisting unit.

  14. NSF/DOE Thermoelectics Partnership: Thermoelectrics for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery 2011 DOE...

  15. Bannon Automotive LLC | Open Energy Information

    Open Energy Info (EERE)

    Name: Bannon Automotive LLC Place: New York Product: New York-based manufacturer of electric cars. References: Bannon Automotive LLC1 This article is a stub. You can help...

  16. Next Generation Inverter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inverter Next Generation Inverter 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape040_smith_2012_o.pdf More Documents & Publications Next Generation Inverter Vehicle Technologies Office Merit Review 2014: Next Generation Inverter Vehicle Technologies Office Merit Review 2015: Next Generation Inverter

  17. Engineering and Materials for Automotive Thermoelectric Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering and Materials for Automotive Thermoelectric Applications Design and optimization of TE exhaust generator, vehicle integration, and thermal management; distributed...

  18. Novel Nanostructured Interface Solution for Automotive Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presents nanostructured thermalelectrical interface tape concept involving carbon nanotube and metal nanowire films to improve thermomechanical cycling behavior of automotive ...

  19. Graduate Automotive Technology Education (GATE) Initiative Awards |

    Office of Environmental Management (EM)

    Department of Energy Graduate Automotive Technology Education (GATE) Initiative Awards Graduate Automotive Technology Education (GATE) Initiative Awards September 8, 2011 - 11:46am Addthis Graduate Automotive Technology Education (GATE) Initiative Awards DOE's Graduate Automotive Technology Education (GATE) initiative will award $6.4 million over the course of five years to support seven Centers of Excellence at American colleges, universities, and university-affiliated research

  20. High Power Density Integrated Traction Machine Drive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape024_wang_2010_p.pdf More Documents & Publications High Power Density Integrated Traction Machine Drive Novel Packaging to Reduce Stray Inductance in Power Electronics Power Device Packaging

  1. Passive Two-Phase Cooling of Automotive Power Electronics: Preprint

    SciTech Connect (OSTI)

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-08-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  2. Traction drive automatic transmission for gas turbine engine driveline

    DOE Patents [OSTI]

    Carriere, Donald L. (Livonia, MI)

    1984-01-01

    A transaxle driveline for a wheeled vehicle has a high speed turbine engine and a torque splitting gearset that includes a traction drive unit and a torque converter on a common axis transversely arranged with respect to the longitudinal centerline of the vehicle. The drive wheels of the vehicle are mounted on a shaft parallel to the turbine shaft and carry a final drive gearset for driving the axle shafts. A second embodiment of the final drive gearing produces an overdrive ratio between the output of the first gearset and the axle shafts. A continuously variable range of speed ratios is produced by varying the position of the drive rollers of the traction unit. After starting the vehicle from rest, the transmission is set for operation in the high speed range by engaging a first lockup clutch that joins the torque converter impeller to the turbine for operation as a hydraulic coupling.

  3. Development of Radically Enhanced alnico Magnets (DREAM) for Traction Drive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motors | The Ames Laboratory Development of Radically Enhanced alnico Magnets (DREAM) for Traction Drive Motors Research Personnel Publications Synthesis In order to enable domestic automobile makers to offer a broad range of vehicles with electric drive motors with either hybrid or purely electric motor drives, this project will utilize a demonstrated science-based process to design and synthesize a high energy product permanent magnet of the alnico type in bulk final shapes without rare

  4. Inverter Ground Fault Overvoltage Testing

    SciTech Connect (OSTI)

    Hoke, Andy; Nelson, Austin; Chakraborty, Sudipta; Chebahtah, Justin; Wang, Trudie; McCarty, Michael

    2015-08-12

    This report describes testing conducted at NREL to determine the duration and magnitude of transient overvoltages created by several commercial PV inverters during ground fault conditions. For this work, a test plan developed by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Load rejection overvoltage test results were reported previously in a separate technical report.

  5. Autonomie: Automotive System Design | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Autonomie: Automotive System Design Autonomie: Automotive System Design Argonne's Autonomie is a MATLAB©-based software environment and framework for automotive control system design, simulation and analysis. Autonomie is capable of Model-in-the-Loop (MIL), Software-in-the-Loop (SIL), Hardware-in-the-Loop (HIL) and Rapid-Control-Prototyping (RCP) Integrating math-based engineering activities through all stages of development Mixing and matching models of different levels of abstraction with

  6. Automotive Thermoelectric Moduleswith Scalable Thermo- and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electro-Mechanical Interfaces | Department of Energy Moduleswith Scalable Thermo- and Electro-Mechanical Interfaces Automotive Thermoelectric Moduleswith Scalable Thermo- and Electro-Mechanical Interfaces Interface materials based on carbon nanotubes and metallic alloys, scalable p- and n-type thermoelectrics, materials compatibility for improved reliability, and performance targets for automotive applications are discussed PDF icon goodson.pdf More Documents & Publications Automotive

  7. Engineering and Materials for Automotive Thermoelectric Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Materials for Automotive Thermoelectric Applications Engineering and Materials for Automotive Thermoelectric Applications Design and optimization of TE exhaust generator, vehicle integration, and thermal management; distributed cooling and heating with TE devices; discovery and development of highly efficient TE materials. PDF icon yang.pdf More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Electrical and Thermal

  8. Center for Lightweighting Automotive Materials and Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Materials and Processing 2008 Annual Merit Review Results Summary - 16. Technology Integration and Education GATE Center of Excellence in Lightweight Materials...

  9. Electrifying the Automotive Market | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrifying the Automotive Market Argonne is developing battery technology that extends the range for electric vehicles while increasing safety and decreasing price. PDF icon...

  10. Autonomie Automotive Simulation Tool | Open Energy Information

    Open Energy Info (EERE)

    industrial, aerospace, and automotive applications. It provides an efficient methodology that includes four key elements in the development process: modeling a plant (from...

  11. Goodyear Tire Plant Gains Traction on Energy Savings After Completing Save

    Office of Environmental Management (EM)

    Energy Now Assessment | Department of Energy Goodyear Tire Plant Gains Traction on Energy Savings After Completing Save Energy Now Assessment Goodyear Tire Plant Gains Traction on Energy Savings After Completing Save Energy Now Assessment This case study describes how the Goodyear Tire Plant saved approximately 93,000 MMBtu and $875,000 annually after increasing steam system energy efficiency in their Union City, Tennessee, plant. PDF icon Goodyear Tire Plant Gains Traction on Energy Savings

  12. FY 2008 Progress Report for Lightweighting Materials - 4. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4. Automotive Metals-Titanium FY 2008 Progress Report for Lightweighting Materials - 4. Automotive Metals-Titanium Lightweighting Materials focuses on the development and...

  13. FY 2009 Progress Report for Lightweighting Materials - 4. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4. Automotive Metals - Titanium FY 2009 Progress Report for Lightweighting Materials - 4. Automotive Metals - Titanium The primary Lightweight Materials activity goal is to...

  14. NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Automotive Waste Heat Recovery Development for commercialization of automotive thermoelectric generators from high-ZT TE materials with using low-cost, widely available...

  15. Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

  16. PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR 2009 DOE Hydrogen Program and...

  17. Penn State DOE Graduate Automotive Technology Education (Gate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Penn State DOE Graduate Automotive Technology Education (Gate) Program for In-Vehicle, High-Power Energy Storage Systems Penn State DOE Graduate Automotive Technology Education...

  18. Xiamien King Long United Automotive Industry Suzhou | Open Energy...

    Open Energy Info (EERE)

    Xiamien King Long United Automotive Industry Suzhou Jump to: navigation, search Name: Xiamien King Long United Automotive Industry (Suzhou) Place: Suzhou, Fujian Province, China...

  19. ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum Industry Roadmap for the Automotive Market (May 1999) ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999) PDF icon autoroadmap.pdf More Documents ...

  20. Can Automotive Battery Recycling Help Meet Lithium Demand? |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can Automotive Battery Recycling Help Meet Lithium Demand? Title Can Automotive Battery Recycling Help Meet Lithium Demand? Publication Type Presentation Year of Publication 2013...

  1. Development of a Thermoelectric Device for an Automotive Zonal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Device for an Automotive Zonal HVAC System Development of a Thermoelectric Device for an Automotive Zonal HVAC System Presents development of a thermoelectric device...

  2. Zap Youngman Automotive Group JV | Open Energy Information

    Open Energy Info (EERE)

    search Name: Zap & Youngman Automotive Group JV Place: China Sector: Vehicles Product: Joint Venture between ZAP (OTCBB: ZAAP) and Youngman Automotive Group (China) to develop,...

  3. Reva Electric Bannon Automotive JV | Open Energy Information

    Open Energy Info (EERE)

    & Bannon Automotive JV Place: New York Product: New York-based JV, manufacturer of electric cars. References: Reva Electric & Bannon Automotive JV1 This article is a stub....

  4. FY 2009 Progress Report for Lightweighting Materials - 6. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6. Automotive Metals - Crosscutting FY 2009 Progress Report for Lightweighting Materials - 6. Automotive Metals - Crosscutting The primary Lightweight Materials activity goal is to...

  5. W.E.T. Automotive Systems | Open Energy Information

    Open Energy Info (EERE)

    E.T. Automotive Systems Jump to: navigation, search Name: W.E.T. Automotive Systems Place: Odelzhausen, Germany Information About Partnership with NREL Partnership with NREL Yes...

  6. CX: Categorical Determination-Alcoa Tennessee Automotive Sheet...

    Office of Environmental Management (EM)

    CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion Project CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion Project Categorical...

  7. FY 2008 Progress Report for Lightweighting Materials - 2. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2. Automotive Metals-Wrought FY 2008 Progress Report for Lightweighting Materials - 2. Automotive Metals-Wrought Lightweighting Materials focuses on the development and validation...

  8. FY 2009 Progress Report for Lightweighting Materials - 3. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3. Automotive Metals - Cast FY 2009 Progress Report for Lightweighting Materials - 3. Automotive Metals - Cast The primary Lightweight Materials activity goal is to validate a...

  9. FY 2009 Progress Report for Lightweighting Materials - 2. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2. Automotive Metals - Wrought FY 2009 Progress Report for Lightweighting Materials - 2. Automotive Metals - Wrought The primary Lightweight Materials activity goal is to validate...

  10. FY 2008 Progress Report for Lightweighting Materials - 3. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3. Automotive Metals-Cast FY 2008 Progress Report for Lightweighting Materials - 3. Automotive Metals-Cast Lightweighting Materials focuses on the development and validation of...

  11. FY 2008 Progress Report for Lightweighting Materials - 6. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6. Automotive Metals-Crosscutting FY 2008 Progress Report for Lightweighting Materials - 6. Automotive Metals-Crosscutting Lightweighting Materials focuses on the development and...

  12. Impacts of Cooling Technology on Solder Fatigue for Power Modules in Electric Traction Drive Vehicles: Preprint

    SciTech Connect (OSTI)

    O'Keefe, M.; Vlahinos, A.

    2009-08-01

    Describes three power module cooling topologies for electric traction drive vehicles: two advanced options using jet impingement cooling and one option using pin-fin liquid cooling.

  13. Microgrid and Inverter Control and Simulator Software

    SciTech Connect (OSTI)

    2012-09-13

    A collection of software that can simulate the operation of an inverter on a microgrid or control a real inverter. In addition, it can simulate the control of multiple nodes on a microgrid." Application: Simulation of inverters and microgrids; control of inverters on microgrids." The MMI submodule is designed to control custom inverter hardware, and to simulate that hardware. The INVERTER submodule is only the simulator code, and is of an earlier generation than the simulator in MMI. The MICROGRID submodule is an agent-based simulator of multiple nodes on a microgrid which presents a web interface. The WIND submodule produces movies of wind data with a web interface.

  14. High Temperature Thermoelectric Materials Characterization for Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program | Department of Energy High Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program High Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program 2009 DOE

  15. Thermoelectrics Partnership: Automotive Thermoelectric Modules with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scalable Thermo- and Electro-Mechanical Interfaces | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace067_goodson_2011_o.pdf More Documents & Publications Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application

  16. Inverter R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inverter R&D Inverter R&D 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape053chinthavali2013...

  17. Automotive Thermoelectric Generators and HVAC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generators and HVAC Automotive Thermoelectric Generators and HVAC Provides overview of DOE-supported projects in automotive thermoelectric generators and heaters/air conditioners PDF icon deer12_fairbanks.pdf More Documents & Publications Thermoelectrics: The New Green Automotive Technology Vehicular Thermoelectrics: The New Green Technology Thermoelectrics: The New Green Automotive Technology

  18. Electrohydraulic Forming of Near Net Shape Automotive Panels

    Broader source: Energy.gov [DOE]

    The Development of Advancing Automotive Panel Manufacturing for Increased Energy and Material Savings

  19. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, Susan R. (Wixom, MI)

    1994-01-01

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  20. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  1. Automotive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  2. Automotive Thermoelectric Generator Design Issues | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Issues Automotive Thermoelectric Generator Design Issues Mechanical, electrical, thermal engineering, and durability issues related to use of TEGs in the challenging automotive environment need to be resolved as they affect warranty cost and customer acceptance. PDF icon stabler.pdf More Documents & Publications Automotive Waste Heat Conversion to Power Program Automotive Thermoelectric Generator (TEG) Controls Skutterudite Thermoelectric Generator For Automotive Waste Heat Recover

  3. Thermal Study of Inverter Components: Preprint

    SciTech Connect (OSTI)

    Sorensen, N. R.; Thomas, E. V.; Quintana, M. A.; Barkaszi, S.; Rosenthal, A.; Zhang, Z.; Kurtz, S.

    2012-06-01

    Thermal histories of inverter components were collected from operating inverters from several manufacturers and three locations. The data were analyzed to determine thermal profiles, the dependence on local conditions, and to assess the effect on inverter reliability. Inverter temperatures were shown to increase with the power dissipation of the inverters, follow diurnal and annual cycles, and have a dependence on wind speed. An accumulated damage model was applied to the temperature profiles and an example of using these data to predict reliability was explored.

  4. Fault-tolerant three-level inverter

    DOE Patents [OSTI]

    Edwards, John; Xu, Longya; Bhargava, Brij B.

    2006-12-05

    A method for driving a neutral point clamped three-level inverter is provided. In one exemplary embodiment, DC current is received at a neutral point-clamped three-level inverter. The inverter has a plurality of nodes including first, second and third output nodes. The inverter also has a plurality of switches. Faults are checked for in the inverter and predetermined switches are automatically activated responsive to a detected fault such that three-phase electrical power is provided at the output nodes.

  5. Novel Transverse Flux Machine for Vehicle Traction Applications: Preprint

    SciTech Connect (OSTI)

    Wan, Z.; Ahmed, A.; Husain, I.; Muljadi, E.

    2015-04-02

    A novel transverse flux machine topology for electric vehicle traction applications using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to the Halbach array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite-element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from finite element analysis (FEA) show that the motor achieved comparable torque density to conventional rare-earth permanent magnet (PM) machines. This machine is a viable candidate for direct-drive applications with low cost and high torque density.

  6. Grid Integration & Advanced Inverters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration & Advanced Inverters - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  7. Inverter Ground Fault Overvoltage Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inverter Ground Fault Overvoltage Testing Andy Hoke, Austin Nelson, and Sudipta Chakraborty National Renewable Energy Laboratory Justin Chebahtah, Trudie Wang, and Michael McCarty SolarCity Corporation Technical Report NREL/TP-5D00-64173 August 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory

  8. Effective switching frequency multiplier inverter

    DOE Patents [OSTI]

    Su, Gui-Jia (Oak Ridge, TN); Peng, Fang Z. (Okemos, MI)

    2007-08-07

    A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.

  9. Gripper deploying and inverting linkage

    DOE Patents [OSTI]

    Minichan, R.L.; Killian, M.A.

    1993-03-02

    An end effector deploying and inverting linkage. The linkage comprises an air cylinder mounted in a frame or tube, a sliding bracket next to the air cylinder, a stopping bracket depending from the frame and three, pivotally-attached links that are attached to the end effector and to each other in such a way as to be capable of inverting the end effector and translating it laterally. The first of the three links is a straight element that is moved up and down by the shaft of the air cylinder. The second link is attached at one end to the stopping bracket and to the side of the end effector at the other end. The first link is attached near the middle of the second, sharply angled link so that, as the shaft of the air cylinder moves up and down, the second link rotates about an axis perpendicular to the frame and inverts and translates the end effector. The rotation of the second link is stopped at both ends when the link engages stops on the stopping bracket. The third link, slightly angled, is attached to the sliding bracket at one end and to the end of the end effector at the other. The third helps to control the end effector in its motion.

  10. Thermoelectrics Partnership: Automotive Thermoelectric Modules with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scalable Thermo- and Electro-Mechanical Interfaces | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace067_goodson_2012_o.pdf More Documents & Publications Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces

  11. Fractional-Slot Surface Mounted PM Motors with Concentrated Windings for HEV Traction Drives

    SciTech Connect (OSTI)

    Bailey, J.M.

    2005-10-24

    High-power density and efficiency resulting from elimination of rotor windings and reduced magnetic-flux losses have made the rare earth permanent magnet (PM) motor a leading candidate for the Department of Energy's Office of FreedomCAR and Vehicle Technologies (FCVTs) traction drive motor. These traction drives are generally powered by radial-gap motors, having the magnets on or embedded in a rotating cylinder separated from the inside surface of a slotted cylindrical stator by an annular gap. The two main types of radial-gap PM rotors are those with magnets mounted on the surface of a supporting back iron, called PM surface mounted (PMSM) motors, and those with magnets mounted in slots in the rotor, called interior PM (IPM) motors. Most early PM motor research was on the PMSM motor, which was thought to have an inherently low stator inductance. A low stator inductance can lead to currents dangerously exceeding rated current as the back-emf across the inductance increases with speed; consequently, part of the attempted solution has been to increase the stator inductance to reduce the rate of current rise. Although analysis suggested that there should be no problem designing sufficiently high stator inductance into PMSMs, attempts to do so were often not successful and a motor design was sought that would have a higher intrinsic inductance. Commercial research at Toyota has focused on IPM motors because they can achieve a high-saliency ratio, which helps them operate over a high constant power speed ratio (CPSR), but they are more difficult to fabricate. The Oak Ridge National Laboratory's (ORNL) position has been to continue research on brushless direct current (dc) motors (BDCMs) because of ease of fabrication and increased power output. Recently there has been a revival of interest in a fractional-slot PMSMs [15] made with concentrated windings because they possess three important features. First, they can increase the motor's inductance sufficiently to reduce the characteristic current to value of the rated current, which will enable them to operate at high CPSR. This feature also limits short-circuit fault currents. Second, their segmented structure simplifies assembly problems and is expected to reduce assembly costs. Third, the back-emf waveform is nearly sinusoidal with low cogging. To examine in depth this design ORNL entered into a collaborative agreement with the University of Wisconsin to build and test a 6 kW laboratory demonstration unit. Design, fabrication, and testing of the unit to 4000 rpm were completed during FY 2005. The motor will be sent to ORNL to explore ways to control its inverter to achieve higher efficiency during FY 2006. This paper first reviews the concept of characteristic current and what is meant by optimal flux weakening. It then discusses application of the fractional-slot concentrated winding technique to increase the d-axis inductance of a PMSM showing how this approach differs from an integral-slot motor with sinusoidal-distributed windings. This discussion is followed by a presentation of collaborative analyses and comparison with the University of Wisconsin's measured data on a 6 kW, 36-slot, 30-pole motor with concentrated windings. Finally ORNL presents a PMSM design with integral-slot windings that appears to meet the FreedomCAR Specifications, but has some disadvantages. Further collaboration with the University of Wisconsin is planned for FY 2006 to design a motor that meets FreedomCAR specifications.

  12. Microgrid and Inverter Control and Simulator Software

    Energy Science and Technology Software Center (OSTI)

    2012-09-13

    A collection of software that can simulate the operation of an inverter on a microgrid or control a real inverter. In addition, it can simulate the control of multiple nodes on a microgrid." Application: Simulation of inverters and microgrids; control of inverters on microgrids." The MMI submodule is designed to control custom inverter hardware, and to simulate that hardware. The INVERTER submodule is only the simulator code, and is of an earlier generation than themore »simulator in MMI. The MICROGRID submodule is an agent-based simulator of multiple nodes on a microgrid which presents a web interface. The WIND submodule produces movies of wind data with a web interface.« less

  13. System and method for regulating resonant inverters

    DOE Patents [OSTI]

    Stevanovic, Ljubisa Dragoljub (Clifton Park, NY); Zane, Regan Andrew (Superior, CO)

    2007-08-28

    A technique is provided for direct digital phase control of resonant inverters based on sensing of one or more parameters of the resonant inverter. The resonant inverter control system includes a switching circuit for applying power signals to the resonant inverter and a sensor for sensing one or more parameters of the resonant inverter. The one or more parameters are representative of a phase angle. The resonant inverter control system also includes a comparator for comparing the one or more parameters to a reference value and a digital controller for determining timing of the one or more parameters and for regulating operation of the switching circuit based upon the timing of the one or more parameters.

  14. Plasmonic Backscattering Enhanced Inverted Photovoltaics

    SciTech Connect (OSTI)

    Dissanayake, D. M. N. M.; Roberts, B.; Ku, P.C.

    2011-01-01

    A plasmonic nanoparticle incorporated inverted organic photovoltaic structure was demonstrated where a monolayer of Ag nanoparticles acted as a wavelength selective reflector. Enhanced light harvesting via plasmonic backscattering into the photovoltaic absorber was observed, resulting in a two-fold improvement in the photocurrent and increased open-circuit voltage. Further, utilizing an optical spacer, the plasmonic backscattering was spectrally controlled, thereby modulating the external quantum efficiency and the photocurrent. Unlike a regular thin-film metallic back reflector, excellent off-resonance optical transmission in excess of 80% was observed from the Ag nanoparticles, making this structure highly suitable for semi-transparent and multi-junction photovoltaic applications.

  15. Sandia Inverter Performance Test Protocol Efficiency Weighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inverter Performance Test Protocol Efficiency Weighting Alternatives Jeff Newmiller ∗ , William Erdman † , Joshua S. Stein ‡ , Sigifredo Gonzalez ‡ ∗ DNV GL, San Ramon, CA, US; † Cinch, Lafayette, CA, US; ‡ Sandia National Laboratories, Albuquerque, NM, US Abstract-The Sandia Inverter Performance Test Protocol defined two possible weighted-average efficiency values for use in comparing inverter performance, of which one definition was selected by the California Energy Commission

  16. Vehicle Technologies Office Merit Review 2015: Traction Drive Systems with Integrated Wireless Charging

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about traction drive...

  17. Integrated Inverter Control for Multiple Electric Machines -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Find More Like This Return to Search Integrated Inverter Control for Multiple Electric Machines Oak Ridge National Laboratory Contact ORNL About This...

  18. Interim Update: Global Automotive Power Electronics R&D Relevant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interim Update: Global Automotive Power Electronics R&D Relevant To DOE 2015 and 2020 Cost Targets Interim Update: Global Automotive Power Electronics R&D Relevant To DOE 2015 and ...

  19. Next Generation Bipolar Plates for Automotive PEM Fuel Cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Bipolar Plates for Automotive PEM Fuel Cells Next Generation Bipolar Plates for Automotive PEM Fuel Cells Part of a 100 million fuel cell award announced by DOE...

  20. Electrocatalysts for Automotive Fuel Cells: Status and Challenges

    Broader source: Energy.gov [DOE]

    Presentation by Nilesh Dale for the 2013 DOE Catalyst Working Group Meeting on electrocatalysts for automotive fuel cells.

  1. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Automotive Thermoelectric Applications Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical and Thermal Transport...

  2. The Challenges for PEMFC Catalysts in Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation by Stephen Campbell for the 2013 DOE Catalysis Working Group Meeting on PEMFC catalysts in automotive applications.

  3. Workplace Charging Challenge Partner: Bosch Automotive Service Solutions,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc. | Department of Energy Bosch Automotive Service Solutions, Inc. Workplace Charging Challenge Partner: Bosch Automotive Service Solutions, Inc. Workplace Charging Challenge Partner: Bosch Automotive Service Solutions, Inc. Bosch Automotive Service Solutions is committed to reducing their carbon footprint. As a part of that commitment, Bosch has implemented a workplace charging policy that makes plug-in electric vehicle (PEV) charging available to their associates. Providing the

  4. High Energy Novel Cathode / Alloy Automotive Cell | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Energy Novel Cathode / Alloy Automotive Cell High Energy Novel Cathode / Alloy Automotive Cell 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es131_choi_2012_p.pdf More Documents & Publications High Energy Novel Cathode / Alloy Automotive Cell Vehicle Technologies Office Merit Review 2014: High Energy Novel Cathode / Alloy Automotive Cell Vehicle Technologies Office Merit Review 2014: Advanced High

  5. FY 2008 Progress Report for Lightweighting Materials - 2. Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metals-Wrought | Department of Energy 2. Automotive Metals-Wrought FY 2008 Progress Report for Lightweighting Materials - 2. Automotive Metals-Wrought Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies to reduce automobile weight without compromising other attributes. PDF icon 2_automotive_metals-wrought.pdf More Documents & Publications FY 2009 Progress Report for Lightweighting Materials - 2. Automotive Metals -

  6. FY 2008 Progress Report for Lightweighting Materials - 3. Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metals-Cast | Department of Energy 3. Automotive Metals-Cast FY 2008 Progress Report for Lightweighting Materials - 3. Automotive Metals-Cast Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies to reduce automobile weight without compromising other attributes. PDF icon 3_automotive_metals-cast.pdf More Documents & Publications FY 2009 Progress Report for Lightweighting Materials - 3. Automotive Metals - Cast FY 2009

  7. FY 2008 Progress Report for Lightweighting Materials - 4. Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metals-Titanium | Department of Energy 4. Automotive Metals-Titanium FY 2008 Progress Report for Lightweighting Materials - 4. Automotive Metals-Titanium Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies to reduce automobile weight without compromising other attributes. PDF icon 4_automotive_metals-titanium.pdf More Documents & Publications FY 2009 Progress Report for Lightweighting Materials - 4. Automotive Metals -

  8. FY 2009 Progress Report for Lightweighting Materials - 2. Automotive Metals

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Wrought | Department of Energy 2. Automotive Metals - Wrought FY 2009 Progress Report for Lightweighting Materials - 2. Automotive Metals - Wrought The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability. PDF icon 2_automotive_metals-wrought.pdf More Documents & Publications FY 2008 Progress Report for Lightweighting Materials - 2. Automotive Metals-Wrought Vehicle

  9. FY 2009 Progress Report for Lightweighting Materials - 3. Automotive Metals

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Cast | Department of Energy 3. Automotive Metals - Cast FY 2009 Progress Report for Lightweighting Materials - 3. Automotive Metals - Cast The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability. PDF icon 3_automotive_metals-cast.pdf More Documents & Publications FY 2008 Progress Report for Lightweighting Materials - 3. Automotive Metals-Cast Vehicle Technologies

  10. FY 2009 Progress Report for Lightweighting Materials - 4. Automotive Metals

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Titanium | Department of Energy 4. Automotive Metals - Titanium FY 2009 Progress Report for Lightweighting Materials - 4. Automotive Metals - Titanium The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability. PDF icon 4_automotive_metals-titanium.pdf More Documents & Publications FY 2008 Progress Report for Lightweighting Materials - 4. Automotive Metals-Titanium Low

  11. FY 2009 Progress Report for Lightweighting Materials - 5. Automotive Metals

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Steel | Department of Energy 5. Automotive Metals - Steel FY 2009 Progress Report for Lightweighting Materials - 5. Automotive Metals - Steel The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability. PDF icon 5_automotive_metals-steel.pdf More Documents & Publications FY 2008 Progress Report for Lightweighting Materials - 5. Automotive Metals-Steel Auto/Steel

  12. FY 2009 Progress Report for Lightweighting Materials - 6. Automotive Metals

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Crosscutting | Department of Energy 6. Automotive Metals - Crosscutting FY 2009 Progress Report for Lightweighting Materials - 6. Automotive Metals - Crosscutting The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability. PDF icon 6_automotive_metals-crosscutting.pdf More Documents & Publications FY 2008 Progress Report for Lightweighting Materials - 6. Automotive

  13. Fact #570: May 11, 2009 Automotive Manufacturing Employment Declining |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0: May 11, 2009 Automotive Manufacturing Employment Declining Fact #570: May 11, 2009 Automotive Manufacturing Employment Declining The number of people employed by automotive manufacturing has been decreasing since 2000. Although nearly three times as many people are employed by motor vehicle parts manufacturing as motor vehicle manufacturing, parts manufacturing has experienced a sharper decline in employment since 2000. Automotive Manufacturing Employment, 1990-2008

  14. Development of Thermoelectric Technology for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement. PDF icon deer08_gundlach.pdf More Documents & Publications Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry Develop Thermoelectric

  15. Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications: Fuel Cell Tech Team Review | Department of Energy Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review This presentation reports on direct hydrogen PEMFC manufacturing cost estimation for automotive applications. PDF icon Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech

  16. Electrohydraulic Forming of Near Net Shape Automotive Panels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrohydraulic Forming of Near Net Shape Automotive Panels The Development of Advancing Automotive Panel Manufacturing for Increased Energy and Material Savings The U.S. automotive industry manufactures approximately 17 million vehicles annually that each contain 900 pounds of stamped steel sheet metal parts. The current technology predomi- nately used in automotive panel manufacturing is conventional stamping, which includes drawing, piercing, trimming, and fanging operations. These

  17. Thermoelectric Generator Development for Automotive Waste Heat Recovery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy for Automotive Waste Heat Recovery Thermoelectric Generator Development for Automotive Waste Heat Recovery Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon deer10_meisner.pdf More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM

  18. Table II: Technical Targets for Membranes: Automotive | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy II: Technical Targets for Membranes: Automotive Table II: Technical Targets for Membranes: Automotive Technical targets for fuel cell membranes in automotive applications defined by the High Temperature Working Group (February 2003). PDF icon technical_targets_membr_auto.pdf More Documents & Publications Table IV: Technical Targets for Membranes: Stationary Table I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive R&D Plan for the High Temperature Membrane

  19. Low Temperature Automotive Diesel Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Automotive Diesel Combustion Low Temperature Automotive Diesel Combustion 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace002_miles_2011_o.pdf More Documents & Publications Low-Temperature Automotive Diesel Combustion Mixture Formation in a Light-Duty Diesel Engine Light-Duty Diesel Combustion

  20. Past experiences with automotive external combustion engines

    SciTech Connect (OSTI)

    Amann, C.A.

    1999-07-01

    GMR (General Motors Research Laboratories, now GM R and D Center) has a history of improving the internal combustion engine, especially as it relates to automotive use. During the quarter century from 1950--75, considerable effort was devoted to evaluating alternative powerplants based on thermodynamic cycles different from those on which the established spark-ignition and diesel engines are founded. Two of these, the steam engine and the Stirling engine, incorporated external combustion. Research on those two alternatives is reviewed. Both were judged to fall short of current needs for commercial success as prime movers for conventional automotive vehicles.

  1. Mod I automotive Stirling engine mechanical development

    SciTech Connect (OSTI)

    Simetkosky, M.

    1984-01-01

    The Mod I Stirling engine was the first automotive Stirling engine designed specifically for automotive application. Testing of these engines has revealed several deficiencies in engine mechanical integrity which have been corrected by redesign or upgrade. The main deficiencies uncovered during the Mod I program lie in the combustion, auxiliary, main seal, and heater head areas. This paper will address each of the major area deficiencies in detail, and describe the corrective actions taken as they apply to the Mod I and the next Stirling-engine design, the Upgraded Mod I (a redesign to incorporate new materials for cost/weight reduction and improved performance).

  2. Advanced Soft Switching Inverter for Reducing Switching and Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Soft Switching Inverter for Reducing Switching and Power Losses Advanced Soft Switching Inverter for Reducing Switching and Power Losses 2009 DOE Hydrogen Program and Vehicle...

  3. Advanced Soft Switching Inverter for Reducing Switching and Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Soft Switching Inverter for Reducing Switching and Power Losses Advanced Soft Switching Inverter for Reducing Switching and Power Losses 2010 DOE Vehicle Technologies and Hydrogen...

  4. Integrated digital inverters based on two-dimensional anisotropic...

    Office of Scientific and Technical Information (OSTI)

    Accepted Manuscript: Integrated digital inverters based on two-dimensional anisotropic ReS field-effect transistors Prev Next Title: Integrated digital inverters based on ...

  5. Integration of Novel Flux Coupling Motor and Current Source Inverter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current Source Inverters for HEVs and FCVs Vehicle Technologies Office Merit Review 2014: Wireless Charging Integration of Novel Flux Coupling Motor and Current Source Inverter...

  6. Automotive Deployment Option Projection Tool (ADOPT) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Deployment Option Projection Tool (ADOPT) Model (National Renewable Energy Laboratory) Objectives Estimate the petroleum use impacts of alternative technologies and policies. Estimate future vehicle market share based on infrastructure constraints, consumer preferences, and vehicle attributes. Analyze policy options by considering factors such as vehicle incentives and energy prices. Key Attributes & Strengths The model validates in many relevant dimensions with historical vehicle

  7. Performance of Utility Interconnected Photovoltaic Inverters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Utility Interconnected Photovoltaic Inverters Operating Beyond Typical Modes of Operation Sigifredo Gonzalez 1 , Joshua Stein 1 , Armando Fresquez 1 , Michael Ropp 2 , Dustin Schutz 2 1-Sandia National Laboratories, Albuquerque, New Mexico 87185 2-Northern Plains Power Technologies, Brookings, South Dakota 57006 Abstract - The high penetration of utility interconnected photovoltaic (PV) inverters can affect the utility at the point of common coupling. Today's utility interconnection standards

  8. Electric Drive Inverter R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Inverter R&D Madhu Chinthavali Email: chinthavalim@ornl.gov Phone: 865-946-1411 This presentation does not contain any proprietary, confidential, or otherwise restricted information U.S. DOE Vehicle Technologies Office 2015 Annual Merit Review and Peer Evaluation Meeting Oak Ridge National Laboratory June10, 2015 Project ID: EDT053 2 Overview * Start - FY15 * Finish - FY17 * 17% complete * Availability and the cost of the WBG devices for the inverter will be barriers for

  9. Automotion of domain walls for spintronic interconnects

    SciTech Connect (OSTI)

    Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2014-06-07

    We simulate “automotion,” the transport of a magnetic domain wall under the influence of demagnetization and magnetic anisotropy, in nanoscale spintronic interconnects. In contrast to spin transfer driven magnetic domain wall motion, the proposed interconnects operate without longitudinal charge current transfer, with only a transient current pulse at domain wall creation and have favorable scaling down to the 20 nm dimension. Cases of both in-plane and out-of-plane magnetization are considered. Analytical dependence of the velocity of domain walls on the angle of magnetization are compared with full micromagnetic simulations. Deceleration, attenuation and disappearance, and reflection of domain walls are demonstrated through simulation. Dependences of the magnetization angle on the current pulse parameters are studied. The energy and delay analysis suggests that automotion is an attractive option for spintronic logic interconnects.

  10. Lightweight Steel Solutions for Automotive Industry

    SciTech Connect (OSTI)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-06-15

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  11. Current Source Inverters for HEVs and FCVs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current Source Inverters for HEVs and FCVs Current Source Inverters for HEVs and FCVs 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_02_su.pdf More Documents & Publications Inverter Using Current Source Topology A Segmented Drive Inverter Topology with a Small DC Bus Capacitor Integration of Novel Flux Coupling Motor and Current Source Inverter

  12. Automotive Turbocharging: Industrial Requirements and Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developments | Department of Energy Turbocharging: Industrial Requirements and Technology Developments Automotive Turbocharging: Industrial Requirements and Technology Developments Significant improvements in turbocharger performance will be difficult to achieve requires a proper understanding of the trade-offs and engine effects and impacts must be part of turbocharger development PDF icon deer09_baines.pdf More Documents & Publications Advanced Boost System Development for Diesel

  13. ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1999) | Department of Energy Aluminum Industry Roadmap for the Automotive Market (May 1999) ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999) PDF icon autoroadmap.pdf More Documents & Publications Vehicle Technologies Office: US DRIVE Materials Technical Team Roadmap Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications Enabling Production of Lightweight Magnesium Parts for Near-Term Automotive Applications ITP Aluminum:

  14. Innovative Drivetrains in Electric Automotive Technology Education (IDEATE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Drivetrains in Electric Automotive Technology Education (IDEATE) Innovative Drivetrains in Electric Automotive Technology Education (IDEATE) 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ti021_plett_2012_p.pdf More Documents & Publications Innovative Drivetrains in Electric Automotive Technology Education (IDEATE) Vehicle Technologies Office Merit Review 2015: Innovative

  15. Looking From A Hilltop: Automotive Propulsion System Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Looking From A Hilltop: Automotive Propulsion System Technology Looking From A Hilltop: Automotive Propulsion System Technology Outlook for global fuel economy requirements and advanced automotive propulsion technology strategy PDF icon deer12_brown.pdf More Documents & Publications Advanced Engine Trends, Challenges and Opportunities Diesel Emission Control Review Catalyst Design for Urea-less Passive Ammonia SCR Lean-Burn SIDI Aftertreatment System

  16. HIGH INTEGRITY MAGNESIUM AUTOMOTIVE COMPONENTS (HIMAC) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy HIGH INTEGRITY MAGNESIUM AUTOMOTIVE COMPONENTS (HIMAC) HIGH INTEGRITY MAGNESIUM AUTOMOTIVE COMPONENTS (HIMAC) 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon lm_17_quinn.pdf More Documents & Publications FY 2009 Progress Report for Lightweighting Materials - 3. Automotive Metals - Cast Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet FY 2008 Progress Report

  17. Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion to Electricity | Department of Energy Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity Working to expand the usage of thermoelectric technology beyond seat heating and cooling and in doing so reduce CO2 emissions and conserve energy. PDF icon lagrandeur.pdf More Documents & Publications Automotive Waste Heat Conversion to Power Program Automotive Waste

  18. TODAY: Secretary Chu and Senator Stabenow to Announce Advanced Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Loan for Michigan Manufacturer | Department of Energy Senator Stabenow to Announce Advanced Automotive Technology Loan for Michigan Manufacturer TODAY: Secretary Chu and Senator Stabenow to Announce Advanced Automotive Technology Loan for Michigan Manufacturer July 13, 2011 - 12:00am Addthis Washington, D.C. - Today, U.S. Energy Secretary Steven Chu will join U.S. Senators Carl Levin and Debbie Stabenow on a conference call to make an announcement regarding an advanced automotive

  19. NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Recovery | Department of Energy Thermoelectrics for Automotive Waste Heat Recovery NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery Development for commercialization of automotive thermoelectric generators from high-ZT TE materials with using low-cost, widely available materials, system design and modeling to maximize temperature differential across TE modules and maximize power output PDF icon xu.pdf More Documents & Publications NSF/DOE

  20. FY 2008 Progress Report for Lightweighting Materials - 6. Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metals-Crosscutting | Department of Energy 6. Automotive Metals-Crosscutting FY 2008 Progress Report for Lightweighting Materials - 6. Automotive Metals-Crosscutting Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies to reduce automobile weight without compromising other attributes. PDF icon 6_automotive_metals-crosscutting.pdf More Documents & Publications FY 2009 Progress Report for Lightweighting Materials - 6.

  1. CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion Project CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion Project Categorical Determination Alcoa Tennessee Automotive Sheet Expansion Project CX(s) Applied: B1.31 Date: 05/06/2014 Location(s): Alcoa, Tennessee Offices(s): Loan Programs Office More Documents & Publications CX-012188: Categorical Exclusion Determination CX-012189: Categorical Exclusion

  2. Thermoelectric Technology for Automotive Waste Heat Recovery | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Technology for Automotive Waste Heat Recovery Thermoelectric Technology for Automotive Waste Heat Recovery Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_yang.pdf More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery

  3. Table I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive Table I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive Technical targets for fuel cell CCMs in automotive applications defined by the High Temperature Working Group (February 2003). PDF icon technical_targets_ccms_auto.pdf More Documents & Publications Table III: Technical Targets for Catalyst Coated Membranes (CCMs): Stationary R&D Plan for the High Temperature Membrane

  4. Racing Ahead in Automotive Education | Department of Energy

    Energy Savers [EERE]

    Racing Ahead in Automotive Education Racing Ahead in Automotive Education February 18, 2011 - 4:52pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Helps develop the next generation of innovative auto engineers Where will the next generation of automotive innovation come from? That's a question that's driving discussion throughout the auto industry at the moment, and many hope that the answer lies in the next generation of

  5. Membrane Performance and Durability Overview for Automotive Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Membrane Performance and Durability Overview for Automotive Fuel Cell Applications Presented by Tom Greszler of General Motors at the High Temperature Membrane Working Group ...

  6. Economic and Environmental Tradeoffs in New Automotive Painting...

    Office of Scientific and Technical Information (OSTI)

    Conference: Economic and Environmental Tradeoffs in New Automotive Painting Technologies Citation Details In-Document Search Title: Economic and Environmental Tradeoffs in New ...

  7. FY 2009 Progress Report for Lightweighting Materials - 5. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications FY 2008 Progress Report for Lightweighting Materials - 5. Automotive Metals-Steel AutoSteel Partnership: AHSS Stamping, Strain Rate Characterization, ...

  8. FY 2008 Progress Report for Lightweighting Materials - 5. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications FY 2009 Progress Report for Lightweighting Materials - 5. Automotive Metals - Steel AutoSteel Partnership: AHSS Stamping, Strain Rate ...

  9. Sandia Energy - ECIS-Automotive Fuel Cell Corporation: Hydrocarbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles Home Energy Transportation Energy CRF Partnership Energy Efficiency...

  10. Final report: U.S. competitive position in automotive technologies

    SciTech Connect (OSTI)

    Albert, Michael B.; Cheney, Margaret; Thomas, Patrick; Kroll, Peter

    2002-09-30

    Patent data are presented and analyzed to assess the U.S. competitive position in eleven advanced automotive technology categories, including automotive fuel cells, hydrogen storage, advanced batteries, hybrid electric vehicles and others. Inventive activity in most of the technologies is found to be growing at a rapid pace, particularly in advanced batteries, automotive fuel cells and ultracapacitors. The U.S. is the clear leader in automotive fuel cells, on-board hydrogen storage and light weight materials. Japan leads in advanced batteries, hybrid electric vehicles, ultracapacitors, and appears to be close to overtaking the U.S. in other areas of power electronics.

  11. Engaging the Next Generation of Automotive Engineers through...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (AVTC), Graduate Research Assistants (GRAs), and Clean Cities University Workforce Development Program (CCUWDP) EcoCAR 2 Plugging into the Future GATE Center for Automotive ...

  12. US Council for Automotive Research USCAR | Open Energy Information

    Open Energy Info (EERE)

    for Automotive Research (USCAR) Place: Southfield, Michigan Zip: 48075 - Product: Umbrella organization of DaimlerChrysler, Ford and General Motors, formed to conduct research....

  13. Development of Computer-Aided Design Tools for Automotive Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) ... Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries

  14. Automotive Energy Supply Corporation AESC | Open Energy Information

    Open Energy Info (EERE)

    search Name: Automotive Energy Supply Corporation (AESC) Place: Zama, Kanagawa, Japan Product: JV formed for development and marketing of advanced lithium-ion batteries for...

  15. The Automotive X Prize rolls into Washington, DC 09/16/10 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Automotive X Prize rolls into Washington, DC 091610 The Automotive X Prize rolls into Washington, DC 091610 Addthis ProgressiveXPrizeEventSeptember162010Peraves187mpg...

  16. Sources of UHC and CO in Low Temperature Automotive Diesel Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UHC and CO in Low Temperature Automotive Diesel Combustion Systems Sources of UHC and CO in Low Temperature Automotive Diesel Combustion Systems Presentation given at the 16th...

  17. Electrohydraulic Forming of Near Net Shape Automotive Panels

    SciTech Connect (OSTI)

    2009-01-01

    This factsheet describes a research project whose goal is to develop the electrohydraulic forming (EHF) process as a near net shape automotive panel manufacturing technology that simultaneously reduces the energy embedded in vehicles and the energy consumed while producing automotive structures.

  18. Automotive Waste Heat Conversion to Power Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_47_lagrandeur.pdf More Documents & Publications Automotive Waste Heat Conversion to Power Program Automotive Waste Heat Conversion to Power Program Development of a 100-Watt High Temperature Thermoelectric Generator

  19. Thermoelectrics: The New Green Automotive Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace00e_fairbanks_2012_o.pdf More Documents & Publications Automotive Thermoelectric Generators and HVAC Vehicular Thermoelectrics: A New Green Technology Thermoelectrics: The New Green Automotive

  20. Waste audit study: Automotive paint shops

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This report presents the results of a waste-audit study of automotive paint shops. The study focuses on the types and quantities of wastes generated, treatment and disposal alternatives, and the potential for reducing the amount and/or toxicity of waste generated. The analysis of solvent waste minimization focused primarily on in-plant modifications (e.g., source reduction) to reduce the generation of solvent waste. Strict inventory control is the most-readily implementable approach. While in-house recycling is viable, it is usually only cost-effective for larger firms. Specific recommendations for waste reduction were made.

  1. Novel 3-D Printed Inverters for Electric Vehicles Can Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency April...

  2. Pulse width modulation inverter with battery charger

    DOE Patents [OSTI]

    Slicker, James M. (Union Lake, MI)

    1985-01-01

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  3. Crashworthiness simulation of composite automotive structures

    SciTech Connect (OSTI)

    Botkin, M E; Johnson, N L; Simunovic, S; Zywicz, E

    1998-06-01

    In 1990 the Automotive Composites Consortium (ACC) began the investigation of crash worthiness simulation methods for composite materials. A contract was given to Livermore Software Technology Corporation (LSTC) to implement a new damage model in LS-DYNA3DTM specifically for composite structures. This model is in LS-DYNA3DTM and is in use by the ACC partners. In 1994 USCAR, a partnership of American auto companies, entered into a partnership called SCAAP (Super Computing Automotive Applications Partnership) for the express purpose of working with the National Labs on computational oriented research. A CRADA (Cooperative Research and Development Agreement) was signed with Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Argonne National Laboratory, and Los Alamos National Laboratory to work in three distinctly different technical areas, one of which was composites material modeling for crash worthiness. Each Laboratory was assigned a specific modeling task. The ACC was responsible for the technical direction of the composites project and provided all test data for code verification. All new models were to be implemented in DYNA3D and periodically distributed to all partners for testing. Several new models have been developed and implemented. Excellent agreement has been shown between tube crush simulation and experiments.

  4. Understanding Fault Characteristics of Inverter-Based Distributed Energy Resources

    SciTech Connect (OSTI)

    Keller, J.; Kroposki, B.

    2010-01-01

    This report discusses issues and provides solutions for dealing with fault current contributions from inverter-based distributed energy resources.

  5. Smart Grid Ready PV Inverters with Utility Communication | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Smart Grid Ready PV Inverters with Utility Communication Smart Grid Ready PV Inverters with Utility Communication EPRI logo.jpg Electric Power Research Institute (EPRI) will develop, implement, and demonstrate smart-grid ready inverters with grid support functionality and required communication links to capture the full value of distributed photovoltaic (PV). APPROACH epri segis summary poster.png This project will develop, implement, and demonstrate smart-grid ready inverters with

  6. Advanced Soft Switching Inverter for Reducing Switching and Power Losses

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Soft Switching Inverter for Reducing Switching and Power Losses Jason Lai Virginia Polytechnic Institute and State University June 10, 2010 This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID: APE011 2 Outline * Overview * Objectives * Milestones * Approaches * Accomplishments * Future Work * Summary 3 Overview * Start - Sep 2007 * Finish - Sep 2010 * 75% Complete * Barriers addressed - Inverter Cost - Inverter Weight and

  7. A high performance inverter-fed drive system of an interior permanent magnet synchronous machine

    SciTech Connect (OSTI)

    Bose, B.K.

    1987-01-01

    A high performance fully operational four-quadrant control scheme of an interior permanent magnet synchronous machine is described. The machine operates smoothly with full performance in constant-torque region as well as in flux-weakening constant-power region in both the directions of motion. The transition between constant-torque region and constant-power region is very smooth at all conditions of operation. The control in constant-torque region is based on vector or field-oriented technique with the direct-axis aligned to the total stator flux, whereas the constant-power region control is implemented by orientation of torque angle of the impressed square-wave voltage through the feedforward vector rotator. The control system is implemented digitally using distributed microcomputer system and all the essential feedback signals, such as torque, flux, etc., are estimated with precision. The control has been described with an outer torque control loop primarily for traction type applications, but speed and position control loops can be easily added to extend its application to other industrial drives. A 70 hp drive system using a Neodymium-Iron-Boron PM machine and transistor PWM inverter has been designed and extensively tested in laboratory on a dynamometer, and performances are found to be excellent.

  8. Tractionseparation relationships for hydrogen induced grain boundary embrittlement in nickel via molecular dynamics simulations

    SciTech Connect (OSTI)

    Barrows, Wesley; Dingreville, Rmi; Spearot, Douglas

    2015-10-19

    A statistical approach combined with molecular dynamics simulations is used to study the influence of hydrogen on intergranular decohesion. This methodology is applied to a Ni ?3(112)[110] symmetric tilt grain boundary. Hydrogenated grain boundaries with different H concentrations are constructed using an energy minimization technique with initial H atom positions guided by Monte Carlo simulation results. Decohesion behavior is assessed through extraction of a tractionseparation relationship during steady-state crack propagation in a statistically meaningful approach, building upon prior work employing atomistic cohesive zone volume elements (CZVEs). A sensitivity analysis is performed on the numerical approach used to extract the tractionseparation relationships, clarifying the role of CZVE size, threshold parameters necessary to differentiate elastic and decohesion responses, and the numerical averaging technique. Results show that increasing H coverage at the Ni ?3(112)[110] grain boundary asymmetrically influences the crack tip velocity during propagation, leads to a general decrease in the work of separation required for crack propagation, and provides a reduction in the peak stress in the extracted tractionseparation relationship. Furthermore the present framework offers a meaningful vehicle to pass atomistically derived interfacial behavior to higher length scale formulations for intergranular fracture.

  9. United States Automotive Materials Partnership LLC (USAMP)

    SciTech Connect (OSTI)

    United States Automotive Materials Partnership

    2011-01-31

    The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunities for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly developed materials and technologies, and have resulted in significant technical successes to date, as discussed in the individual project summary final reports. Over 70 materials-focused projects have been established by USAMP, in collaboration with participating suppliers, academic/non-profit organizations and national laboratories, and executed through its original three divisions: the Automotive Composites Consortium (ACC), the Automotive Metals Division (AMD), and Auto/Steel Partnership (A/SP). Two new divisions were formed by USAMP in 2006 to drive research emphasis on integration of structures incorporating dissimilar lightweighting materials, and on enabling technology for nondestructive evaluation of structures and joints. These new USAMP divisions are: Multi-Material Vehicle Research and Development Initiative (MMV), and the Non-Destructive Evaluation Steering Committee (NDE). In cooperation with USAMP and the FreedomCAR Materials Technical Team, a consensus process has been established to facilitate the development of projects to help move leveraged research to targeted development projects that eventually migrate to the original equipment manufacturers (OEMs) as application engineering projects. Research projects are assigned to one of three phases: concept feasibility, technical feasibility, and demonstration feasibility. Projects are guided through ongoing monitoring and USAMP offsite reviews, so as to meet the requirements of each phase before they are allowed to move on to the next phase. As progress is made on these projects, the benefits of lightweight construction and enabling technologies will be transferred to the supply base and implemented in production vehicles. The single greatest barrier to automotive use of lightweight materials is their high cost; therefore, priority is given to activities aimed at reducing costs through development of new materials, forming technologies, and manufacturing processes. The emphasis of the research projects reported in this document was largely on applied research and evaluation of mass savings opportunities through the aggressive application of lightweight materials, advanced computational methods, and the demonstration of production capable manufacturing processes intended for high-volume applications, all directed towards the FreedomCAR Program goals. Priority lightweighting materials include advanced high-strength steels (AHSS), aluminum, magnesium, titanium, and composites such as metal-matrix materials, and glass- and carbon-fiber-reinforced thermosets and thermoplastics. Besides developing valuable new design and material property information, several projects have extensively used computer-based product modeling and simulation technologies to optimize designs and materials usage while addressing the cost-performance issues. The purpose of this Summary Final Closeout Report is to document the successes, degree of progress, technology dissemination efforts, and lessons learned.

  10. CX-006974: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fully-Integrated Automotive Traction Inverter with Real-Time Switching OptimizationCX(s) Applied: B3.6Date: 09/26/2011Location(s): Colorado, Massachusetts, Michigan, Pennsylvania, Vermont, WisconsinOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  11. Electromagnetic interference filter for automotive electrical systems

    DOE Patents [OSTI]

    Herron, Nicholas Hayden; Carlson, Douglas S; Tang, David; Korich, Mark D

    2013-07-02

    A filter for an automotive electrical system includes a substrate having first and second conductive members. First and second input terminals are mounted to the substrate. The first input terminal is electrically connected to the first conductive member, and the second input terminal is electrically connected to the second conductive member. A plurality of capacitors are mounted to the substrate. Each of the capacitors is electrically connected to at least one of the first and second conductive members. First and second power connectors are mounted to the substrate. The first power connector is electrically connected to the first conductive member, and the second power connector is electrically connected to the second conductive member. A common mode choke is coupled to the substrate and arranged such that the common mode choke extends around at least a portion of the substrate and the first and second conductive members.

  12. SCIENCE ON SATURDAY- "From Robot Soccer to Automotive Safety...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16, 2013, 9:30am Science On Saturday MBG Auditorium SCIENCE ON SATURDAY- "From Robot Soccer to Automotive Safety: An Optical Tour" Professor R. Andrew Hicks Department of...

  13. Automotive Waste Heat Conversion to Electric Power using Skutterudites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power using Skutterudites, TAGS, PbTe and Bi2Te3 Automotive Waste Heat Conversion to Electric Power using Skutterudites, TAGS, PbTe and Bi2Te3 Presentation given at DEER...

  14. PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ti_01_anstrom.pdf More Documents & Publications IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS Vehicle Technologies Office Merit Review 2015: Penn State DOE Graduate

  15. Penn State DOE Graduate Automotive Technology Education (Gate) Program for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-Vehicle, High-Power Energy Storage Systems | Department of Energy Penn State DOE Graduate Automotive Technology Education (Gate) Program for In-Vehicle, High-Power Energy Storage Systems Penn State DOE Graduate Automotive Technology Education (Gate) Program for In-Vehicle, High-Power Energy Storage Systems 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ti006_anstrom_2011_o.pdf More Documents & Publications

  16. Low-Temperature Automotive Diesel Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature Automotive Diesel Combustion Low-Temperature Automotive Diesel Combustion 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace002_miles_2012_o.pdf More Documents & Publications Mixture Formation in a Light-Duty Diesel Engine Light-Duty Diesel Combustion Vehicle Technologies Office Merit Review 2014: Light-Duty Diesel Combuston

  17. High Efficiency Full Expansion (FEx) Engine for Automotive Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Full Expansion (FEx) Engine for Automotive Applications High Efficiency Full Expansion (FEx) Engine for Automotive Applications Large increases in engine thermal efficiency result from a new method of large reductions in both heat energy normally lost to the cooling medium and in heat energy in the exhaust system. PDF icon p-18_taylor.pdf More Documents & Publications Two-Stroke Engines: New Frontier in Engine Efficiency Two-Stroke Uniflow Turbo-Compound IC Engine

  18. Economic and Environmental Tradeoffs in New Automotive Painting

    Office of Scientific and Technical Information (OSTI)

    Technologies (Conference) | SciTech Connect Conference: Economic and Environmental Tradeoffs in New Automotive Painting Technologies Citation Details In-Document Search Title: Economic and Environmental Tradeoffs in New Automotive Painting Technologies Painting is the most expensive unit operation in automobile manufacturing and the source of over 90 percent of the air, water and solid waste emissions at the assembly plant. While innovative paint technologies such as waterborne or powder

  19. Enhancement of automotive exhaust heat recovery by thermoelectric devices

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Enhancement of automotive exhaust heat recovery by thermoelectric devices Citation Details In-Document Search Title: Enhancement of automotive exhaust heat recovery by thermoelectric devices In an effort to improve automobile fuel economy, an experimental study is undertaken to explore practical aspects of implementing thermoelectric devices for exhaust gas energy recovery. A highly instrumented apparatus consisting of a hot (exhaust gas)

  20. Advanced Thermoelectric Materials and Generator Technology for Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat at GM | Department of Energy Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Overview of design, fabrication, integration, and test of working prototype TEG for engine waste heat recovery on Suburban test vehicle, and continuing investigation of skutterudite materials systems PDF icon meisner.pdf More Documents & Publications Advanced Thermoelectric

  1. Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were fabricated and assembled into prototype thermoelectric generators (TEGs), then installed on a standard GM production vehicle and tested for performance PDF icon meisner.pdf More Documents & Publications Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Development of

  2. Membrane Performance and Durability Overview for Automotive Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Membrane Performance and Durability Overview for Automotive Fuel Cell Applications Membrane Performance and Durability Overview for Automotive Fuel Cell Applications Presented by Tom Greszler of General Motors at the High Temperature Membrane Working Group Meeting, San Francisco, September 14, 2006. PDF icon htmwg_greszler.pdf More Documents & Publications High Temperature Membrane Working Group, Minutes of Meeting on September 14, 2006 Some durability

  3. Engaging the Next Generation of Automotive Engineers through Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Competition | Department of Energy Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition The Advanced Vehicle Technology Competition (AVTC) program is an engineering education program managed by Argonne National Laboratory for the U.S. Department of Energy in partnership with Natural Resources Canada and the U.S. and Canadian

  4. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_yang.pdf More Documents & Publications Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry On Thermoelectric Properties of p-Type Skutterudites Development of Thermoelectric Technology for Automotive Waste Heat Recovery

  5. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_45_yang.pdf More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites

  6. Shear Rolling of Magnesium Sheet for Automotive, Defense, and Energy

    Office of Scientific and Technical Information (OSTI)

    Applications (Technical Report) | SciTech Connect Shear Rolling of Magnesium Sheet for Automotive, Defense, and Energy Applications Citation Details In-Document Search Title: Shear Rolling of Magnesium Sheet for Automotive, Defense, and Energy Applications Authors: Muralidharan, Govindarajan [1] ; Muth, Thomas R [1] ; Peter, William H [1] ; Watkins, Thomas R [1] ; Randman, David [2] ; Davis, Dr. Bruce [2] ; Alderman, Dr. Martyn [2] ; Romanoski, Chris [3] + Show Author Affiliations ORNL

  7. Thermoelectric Materials for Automotive Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Automotive Applications Thermoelectric Materials for Automotive Applications Discusses the background information on what makes a good thermoelectric material, then the findings of three recent ORNL field report studies focused at PbSe, Bi2Se3, CrSi2, respectively PDF icon parker.pdf More Documents & Publications Thermoelectrics Theory and Structure Thermoelectrics Theory and Structure Utilizing Bacteria for Sustainable Manufacturing of Low-Cost Nanoparticles

  8. Pushing America's Automotive Industry Forward | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pushing America's Automotive Industry Forward Pushing America's Automotive Industry Forward January 12, 2015 - 4:12pm Addthis Infographic courtesy of the White House. Infographic courtesy of the White House. Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy Made in America Learn how advanced composites are building a more competitive American manufacturing industry. The auto industry is back -- and the Department of Energy has helped to make it even stronger. Since 2009, the Energy

  9. Multilevel cascade voltage source inverter with seperate DC sources

    DOE Patents [OSTI]

    Peng, Fang Zheng (Oak Ridge, TN); Lai, Jih-Sheng (Knoxville, TN)

    1997-01-01

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  10. Multilevel cascade voltage source inverter with seperate DC sources

    DOE Patents [OSTI]

    Peng, Fang Zheng; Lai, Jih-Sheng

    2001-04-03

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  11. Multilevel cascade voltage source inverter with seperate DC sources

    DOE Patents [OSTI]

    Peng, Fang Zheng (Knoxville, TN); Lai, Jih-Sheng (Blacksburg, VA)

    2002-01-01

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  12. Multilevel cascade voltage source inverter with separate DC sources

    DOE Patents [OSTI]

    Peng, F.Z.; Lai, J.S.

    1997-06-24

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations. 15 figs.

  13. Advanced Soft Switching Inverter for Reducing Switching and Power Losses |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Soft Switching Inverter for Reducing Switching and Power Losses Advanced Soft Switching Inverter for Reducing Switching and Power Losses 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_06_lai.pdf More Documents & Publications Advanced Soft Switching Inverter for Reducing Switching and Power Losses Electro-thermal-mechanical Simulation and Reliability for

  14. Smart-Grid Ready PV Inverter with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancement of PV system capabilities, communication systems and open standards, operations center visibility and management, and optimized coordination of smart PV inverters with existing distribution control devices. Smart-Grid Ready PV Inverter With Utility Communication BRIAN SEAL / ELECTRIC POWER RESEARCH INSTITUTE The proposed project will develop, implement, and demonstrate smart-grid ready inverters with grid support functionality and required utility communication links to capture the

  15. Inverter testing at Sandia National Laboratories Ginn, J.W.;...

    Office of Scientific and Technical Information (OSTI)

    National Labs., Albuquerque, NM (United States). Photovoltaic System Components Dept. 14 SOLAR ENERGY; INVERTERS; PHOTOVOLTAIC POWER PLANTS; PHOTOVOLTAIC POWER SUPPLIES; POWER...

  16. A multilevel voltage-source inverter with separate dc sources...

    Office of Scientific and Technical Information (OSTI)

    conditioning, series compensation, phase shifting, voltage balancing, fuel cell and photovoltaic utility systems interfacing, etc. The new M-level inverter consists of (M-1)2...

  17. Discharging a superconducting store into an inverting converter

    SciTech Connect (OSTI)

    Andrianov, V.V.; Zenkevich, V.B.; Popkov, O.V.; Sergeyenkov, B.N.; Sukhorukov, A.G.

    1983-11-01

    It is possible to invert the energy stored in a superconducting solenoid with both a constant mean value of the inverted power, and a constant mean value of the voltage in the leads of the solenoid, which is equal to the mean value of the opposing voltage (counter emf) of the inverter. The operation of a superconducting inductive store together with a high speed semiconductor switch and a three phase inverter is considered. Graphs show changes in currents and voltages on the compacitor, the current flowing through the superconducting solenoid, the current flowing through the capacitor, and that flowing through the controlled rectified.

  18. Building America Whole-House Solutions for Existing Homes: Inverted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    system to accommodate ductwork within an inverted insulated bulkhead along the attic floor, which saves energy by placing heating, ventilating, and air-conditioning (HVAC)...

  19. Using Cascade Multilevel Inverters Fang Zheng Peng, Senior Member...

    Office of Scientific and Technical Information (OSTI)

    Inverters Fang Zheng Peng, Senior Member, IEEE University of Tennessee, Knoxville Oak ... with phase Jih-Sheng Lai, Senior Member, IEEE Oak Ridge National Laboratory* Engineering ...

  20. Vehicle Technologies Office Merit Review 2014: Next Generation Inverter

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

  1. Integration of Novel Flux Coupling Motor and Current Source Inverter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ape034hsu2011p.pdf More Documents & Publications Integration of Novel Flux Coupling Motor and Current Source Inverter Novel Flux Coupling Machine without Permanent Magnets John...

  2. Invert/EE-Lab Website | Open Energy Information

    Open Energy Info (EERE)

    www.invert.at Equivalent URI: cleanenergysolutions.orgcontentinvertee-lab-website Language: English Policies: "Deployment Programs,Financial Incentives,Regulations" is not in...

  3. Smart-Grid Ready PV Inverters with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INTEGRATION Smart-Grid Ready PV Inverters with Utility Communication Electric Power ... required utility communication links to capture the full value of distributed PV plants. ...

  4. Vehicle Technologies Office Merit Review 2015: Next Generation Inverter

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

  5. Lightweight PV Inverters: Dual Bi-Directional IGBTs Modules Enables Breakthrough PV Inverter Using Current Modulation Topology

    SciTech Connect (OSTI)

    2012-01-30

    Solar ADEPT Project: PV inverters convert DC power generated by modules into usable AC power. IPCs initial 30kW 94lb. PV inverter reduces the weight of comparable 30kW PV inverters by 90%reducing the cost of materials, manufacturing, shipping, and installation. With ARPA-E support, new bi-directional silicon power switches will be developed, commercialized, and utilized in IPCs next-generation PV inverter. With these components, IPC will produce 100kW inverters that weight less than 100lb., reducing the weight of conventional 3,000lb. 100kW inverters by more than 95%. The new power switches will cut IPCs $/W manufacturing cost in half, as well as further reduce indirect shipping and installation costs.

  6. Advanced Automotive Technologies annual report to Congress, fiscal year 1996

    SciTech Connect (OSTI)

    1998-03-01

    This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy`s Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation.

  7. Development of Cell/Pack Level Models for Automotive Li-Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CellPack Level Models for Automotive Li-Ion Batteries with Experimental Validation Development of CellPack Level Models for Automotive Li-Ion Batteries with Experimental...

  8. Asola Advanced and Automotive Solar Systems GmbH | Open Energy...

    Open Energy Info (EERE)

    Asola Advanced and Automotive Solar Systems GmbH Jump to: navigation, search Name: Asola Advanced and Automotive Solar Systems GmbH Place: Erfurt, Germany Zip: D-99428 Sector:...

  9. Automotive and MHE Fuel Cell System Cost Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive and MHE Fuel Cell System Cost Analysis Automotive and MHE Fuel Cell System Cost Analysis Presentation slides from the Fuel Cell Technologies Office webinar, "Automotive and MHE Fuel Cell System Cost Analysis," held April 16, 2013. Slides include presentations by Battelle and Strategic Analysis. PDF icon Automotive and MHE Fuel Cell System Cost Analysis Webinar Slides More Documents & Publications Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen Polymer

  10. NSF/DOE Thermoelectrics Partnership: Purdue ? GM Partnership on Thermoelectrics for Automotive Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Reviews results in developing commercially viable thermoelectric generators for efficient conversion of automotive exhaust waste heat to electricity

  11. Integration of Novel Flux Coupling Motor and Current Source Inverter |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape034_ozpineci_2012_o.pdf More Documents & Publications Current Source Inverters for HEVs and FCVs Vehicle Technologies Office Merit Review 2014: Wireless Charging Integration of Novel Flux Coupling Motor and Current Source Inverter

  12. Society of Automotive Engineers World Congress | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Society of Automotive Engineers World Congress Society of Automotive Engineers World Congress April 6, 2006 - 10:12am Addthis Remarks Prepared for Energy Secretary Samuel Bodman Thank you, Greg. It's always a pleasure to be in a room full of engineers. As an engineer myself, I know there is nothing our profession likes better than plain talk and solving problems. So, I'm going to serve you up some plain talk and then some assignments. Our nation faces big challenges in the energy and

  13. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Economy of New Light Vehicles | Department of Energy 8: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles Fact #868: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles Despite a 124% increase in horsepower and 47% decrease in 0-60 time from 1980 to 2014, the fuel economy of vehicles improved 27%. All of these data series are sales-weighted averages. The weight of the vehicle appears

  14. 10 Questions for an Automotive Engineer: Thomas Wallner

    Broader source: Energy.gov [DOE]

    Meet Thomas Wallner – automotive engineer extraordinaire, who hails from Argonne National Laboratory’s Center for Transportation Research. He took some time to answer our 10 Questions and share his insight on advanced engine technologies from dual-fuel to biofuels.

  15. The Progressive Insurance Automotive X PRIZE Education Program

    SciTech Connect (OSTI)

    Robyn Ready

    2011-12-31

    The Progressive Insurance Automotive X PRIZE Education Program conducted education and outreach activities and used the competition's technical goals and vehicle demonstrations as a means of attracting students and the public to learn more about advanced vehicle technologies, energy efficiency, climate change, alternative fuels, and the science and math behind efficient vehicle development. The Progressive Insurance Automotive X PRIZE Education Program comprised three integrated components that were designed to educate the general public and create a multi-tiered initiative to engage students and showcase the 21st century skills students will need to compete in our global economy: teamwork, creativity, strong literacy, math and science skills, and innovative thinking. The elements included an Online Experience, a National Student Contest, and in person education events and activites. The project leveraged online connections, strategic partnerships, in-classroom, and beyond-the-classroom initiatives, as well as mainstream media. This education program supported by the U.S. Department of Energy (DOE) also funded the specification of vehicle telemetry and the full development and operation of an interactive online experience that allowed internet users to follow the Progressive Insurance Automotive X PRIZE vehicles as they performed in real-time during the Progressive Insurance Automotive X PRIZE competition events.

  16. Automotive Fuels - The Challenge for Sustainable Mobility | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fuels - The Challenge for Sustainable Mobility Automotive Fuels - The Challenge for Sustainable Mobility Overview of challenges and future fuel options PDF icon deer12_warnecke.pdf More Documents & Publications The Drive for Energy Independence and Fuels of the Future The Drive for Energy Independence and Fuels of the Future Verification of Shell GTL Fuel as CARB Alternative Diesel

  17. Automotive Waste Heat Conversion to Power Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace051_lagrandeur_2010_o.pdf More Documents & Publications Automotive Waste Heat Conversion to Power Program

  18. Automotive X PRIZE Education Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    X PRIZE Education Program Automotive X PRIZE Education Program 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ti_12_german.pdf More Documents & Publications Engaging Students in Energy Webinar Presentation Idea and Innovation Markets Technology Integration

  19. Automotive Stirling Engine Mod I design review report. Volume III

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    This volume, No. 3, of the Automotive Stirling Engine Mod 1 Design Review Report contains a preliminary parts list and detailed drawings of equipment for the basic Stirling engine and for the following systems: vehicular Stirling Engine System; external heat system; hot and cold engine systems; engine drive; controls and auxiliaries; and vehicle integration. (LCL)

  20. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions. PDF icon deer09_yang_2.pdf More Documents & Publications Engineering and Materials for Automotive Thermoelectric Applications Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites

  1. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace050_meisner_2011_o.pdf More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity

  2. Development of Computer-Aided Design Tools for Automotive Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 8_hartridge_2012_o.pdf More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries Review of A123s HEV and PHEV USABC Programs

  3. Development of Computer-Aided Design Tools for Automotive Batteries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 9_han_2012_o.pdf More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries

  4. Center for Lightweighting Automotive Materials and Processing | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ti010_mallick_2011_o.pdf More Documents & Publications Center for Lightweighting Automotive Materials and Processing GATE Center of Excellence in Lightweight Materials and Manufacturing Technologies Vehicle Technologies Office Merit Review 2014: Improving Fatigue Performance of AHSS Welds

  5. Structural Automotive Components from Composite Materials | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm049_berger_2012_o.pdf More Documents & Publications Advanced Materials and Processing of Composites for High Volume Applications Advanced Materials and Processing of Composites for High Volume Applications Structural Automotive Components from Composite Materials

  6. Structural Automotive Components from Composite Materials | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon lm_08_kia.pdf More Documents & Publications Structural Automotive Components from Composite Materials Advanced Materials and Processing of Composites for High Volume Applications Advanced Materials and Processing of Composites for High Volume Applications

  7. Electric machine and current source inverter drive system

    DOE Patents [OSTI]

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  8. Direct Comparison of Inverted and Non-Inverted Growths of GaInP Solar Cells: Preprint

    SciTech Connect (OSTI)

    Steiner, M. A.; Geisz, J. F.; Reedy Jr, R.C.; Kurtz, S.

    2008-05-01

    The inverted growth of III-V solar cells presents some specific challenges that are not present in regular, non-inverted growths. Because the highly doped top contact layer is grown first, followed by the lengthy high-temperature growth of the remainder of the structure, there is ample time for the dopants in the contact layer to diffuse away. This leads to an increase in the contact resistance to the top layer, and a corresponding drop in voltage. The diffusion of dopants in other layers is similarly altered with respect to the non-inverted configuration because of the change in growth sequence. We compare the dopant profiles of inverted and non-inverted structures by using secondary ion mass spectroscopy and correlate the results with the observed performance of the devices. We also describe a technique for growing a GaInAsN contact layer in the inverted configuration and show that it achieves a specific contact resistance comparable to what is normally observed in non-inverted cells.

  9. Inverted Metamorphic Multijunction (IMM) Cell Processing Instructions

    SciTech Connect (OSTI)

    Duda, A.; Ward, S.; Young, M.

    2012-02-01

    This technical report details the processing schedule used to fabricate Inverted Metamorphic Multijunction (IMM) concentrator solar cells at The National Renewable Energy Laboratory (NREL). These devices are used as experimental test structures to support the research at NREL that is focused on increasing the efficiency of photovoltaic power conversion. They are not intended to be devices suitable for deployment in working concentrator systems primarily because of heat sinking issues. The process schedule was developed to be compatible with small sample sizes and to afford relatively rapid turn-around times, in support of research efforts. The report describes the use of electro deposition of gold for both the back and front contacts. Electro-deposition is used because of its rapid turn around time and because it is a benign metallization technique that is seldom responsible for damage to the semiconductors. The layer transfer technique is detailed including the use of a commercially available adhesive and the etching away of the parent gallium arsenide substrate. Photolithography is used to define front contact grids as well as the mesa area of the cell. Finally, the selective wet chemical etchant system is introduced and its use to reveal the back contact is described.

  10. Performance of an inverted ion source

    SciTech Connect (OSTI)

    Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Araujo, W. W. R.; Spirin, R. E.; Oks, E. M.; Brown, I. G.

    2013-02-15

    Whereas energetic ion beams are conventionally produced by extracting ions (say, positive ions) from a plasma that is held at high (positive) potential, with ion energy determined by the potential drop through which the ions fall in the beam formation electrode system, in the device described here the plasma and its electronics are held at ground potential and the ion beam is formed and injected energetically into a space maintained at high (negative) potential. We refer to this configuration as an 'inverted ion source.' This approach allows considerable savings both technologically and economically, rendering feasible some ion beam applications, in particular small-scale ion implantation, that might otherwise not be possible for many researchers and laboratories. We have developed a device of this kind utilizing a metal vapor vacuum arc plasma source, and explored its operation and beam characteristics over a range of parameter variation. The downstream beam current has been measured as a function of extraction voltage (5-35 kV), arc current (50-230 A), metal ion species (Ti, Nb, Au), and extractor grid spacing and beamlet aperture size (3, 4, and 5 mm). The downstream ion beam current as measured by a magnetically-suppressed Faraday cup was up to as high as 600 mA, and with parametric variation quite similar to that found for the more conventional metal vapor vacuum arc ion source.

  11. Triple inverter pierce oscillator circuit suitable for CMOS

    DOE Patents [OSTI]

    Wessendorf; Kurt O. (Albuquerque, NM)

    2007-02-27

    An oscillator circuit is disclosed which can be formed using discrete field-effect transistors (FETs), or as a complementary metal-oxide-semiconductor (CMOS) integrated circuit. The oscillator circuit utilizes a Pierce oscillator design with three inverter stages connected in series. A feedback resistor provided in a feedback loop about a second inverter stage provides an almost ideal inverting transconductance thereby allowing high-Q operation at the resonator-controlled frequency while suppressing a parasitic oscillation frequency that is inherent in a Pierce configuration using a "standard" triple inverter for the sustaining amplifier. The oscillator circuit, which operates in a range of 10 50 MHz, has applications for use as a clock in a microprocessor and can also be used for sensor applications.

  12. "Little Box Challenge" Inverters Arrive at NREL - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Little Box Challenge" Inverters Arrive at NREL Testing begins for the finalists October 21, 2015 Today, 18 finalist teams for the Little Box Challenge, presented by Google and the...

  13. Cost Reductions with Multi-Megawatt Centralized Inverter Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LLC *99.1% Efficient Inverter System *Power Factor Control +- 0.9 *2,500VDC *LowZero Voltage Ride Through *Compact Design *Liquid Cooling *Hot-Swap Capability *Lower Total Cost...

  14. Long-term inverter operation demonstration at Sandia National Laboratories.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Long-term inverter operation demonstration at Sandia National Laboratories. Citation Details In-Document Search Title: Long-term inverter operation demonstration at Sandia National Laboratories. No abstract prepared. Authors: Ellis, Abraham ; Kuszmaul, Scott S. ; Gonzalez, Sigifredo Publication Date: 2009-06-01 OSTI Identifier: 966623 Report Number(s): SAND2009-3488C TRN: US200921%%513 DOE Contract Number: AC04-94AL85000 Resource Type: Conference

  15. Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino

    Office of Scientific and Technical Information (OSTI)

    Hierarchy with Bolometric Detectors (Journal Article) | SciTech Connect Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors Citation Details In-Document Search Title: Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information

  16. Belgium's Red Electrical Devils Win $1 Million for Innovative Inverter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design - News Releases | NREL Belgium's Red Electrical Devils Win $1 Million for Innovative Inverter Design NREL provided critical information to help determine the winner February 29, 2016 Google and IEEE announced today that Belgium's Red Electrical Devils, a team from CE+T Power, has won the Little Box Challenge, a competition to invent a much smaller inverter for interconnecting solar power systems to the power grid. The success earned the team a $1 million prize while proving that

  17. Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hierarchy with Bolometric Detectors (Journal Article) | SciTech Connect Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors Citation Details In-Document Search Title: Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors Neutrinoless double beta decay (0nubb) is one of the most sensitive probes for physics beyond the Standard Model, providing unique information on the nature of

  18. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    SciTech Connect (OSTI)

    Barlow, F.D.; Elshabini, A.

    2006-11-30

    A key issue associated with the wider adoption of hybrid-electric vehicles (HEV) and plug in hybrid-electric vehicles (PHEV) is the implementation of the power electronic systems that are required in these products [1]. To date, many consumers find the adoption of these technologies problematic based on a financial analysis of the initial cost versus the savings available from reduced fuel consumption. Therefore, one of the primary industry goals is the reduction in the price of these vehicles relative to the cost of traditional gasoline powered vehicles. Part of this cost reduction must come through optimization of the power electronics required by these vehicles. In addition, the efficiency of the systems must be optimized in order to provide the greatest range possible. For some drivers, any reduction in the range associated with a potential HEV or PHEV solution in comparison to a gasoline powered vehicle represents a significant barrier to adoption and the efficiency of the power electronics plays an important role in this range. Likewise, high efficiencies are also important since lost power further complicates the thermal management of these systems. Reliability is also an important concern since most drivers have a high level of comfort with gasoline powered vehicles and are somewhat reluctant to switch to a less proven technology. Reliability problems in the power electronics or associated components could not only cause a high warranty cost to the manufacturer, but may also taint these technologies in the consumer's eyes. A larger vehicle offering in HEVs is another important consideration from a power electronics point of view. A larger vehicle will need more horsepower, or a larger rated drive. In some ways this will be more difficult to implement from a cost and size point of view. Both the packaging of these modules and the thermal management of these systems at competitive price points create significant challenges. One way in which significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE) [2]. This change would reduce the complexity of the cooling system which currently relies on two loops to a single loop [3]. However, the current nominal coolant temperature entering these inverters is 65 C [3], whereas a normal ICE coolant temperature would be much higher at approximately 100 C. This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. With this change in mind, significant progress has been made on the use of SiC devices for inverters that can withstand much higher junction temperatures than traditional Si based inverters [4,5,6]. However, a key problem which the single coolant loop and high temperature devices is the effective packaging of these devices and related components into a high temperature inverter. The elevated junction temperatures that exist in these modules are not compatible with reliable inverters based on existing packaging technology. This report seeks to provide a literature survey of high temperature packaging and to highlight the issues related to the implementation of high temperature power electronic modules for HEV and PHEV applications. For purposes of discussion, it will be assumed in this report that 200 C is the targeted maximum junction temperature.

  19. Intergranular fracture in UO2: derivation of traction-separation law from atomistic simulations

    SciTech Connect (OSTI)

    Yongfeng Zhang; Paul C Millett; Michael R Tonks; Xian-Ming Bai; S Bulent Biner

    2013-10-01

    In this study, the intergranular fracture behavior of UO2 was studied by molecular dynamics simulations using the Basak potential. In addition, the constitutive traction-separation law was derived from atomistic data using the cohesive-zone model. In the simulations a bicrystal model with the (100) symmetric tilt E5 grain boundaries was utilized. Uniaxial tension along the grain boundary normal was applied to simulate Mode-I fracture. The fracture was observed to propagate along the grain boundary by micro-pore nucleation and coalescence, giving an overall intergranular fracture behavior. Phase transformations from the Fluorite to the Rutile and Scrutinyite phases were identified at the propagating crack tips. These new phases are metastable and they transformed back to the Fluorite phase at the wake of crack tips as the local stress concentration was relieved by complete cracking. Such transient behavior observed at atomistic scale was found to substantially increase the energy release rate for fracture. Insertion of Xe gas into the initial notch showed minor effect on the overall fracture behavior.

  20. Effect of moisture on the traction-separation behavior of cellulose nanocrystal interfaces

    SciTech Connect (OSTI)

    Sinko, Robert; Keten, Sinan

    2014-12-15

    Interfaces and stress transfer between cellulose nanocrystals (CNCs) dictate the mechanical properties of hierarchical cellulose materials such as neat films and nanocomposites. An interesting question that remains is how the behavior of these interfaces changes due to environmental stimuli, most notably moisture. We present analyses on the traction-separation behavior between I? CNC elementary fibrils, providing insight into how the presence of a single atomic layer of water at these interfaces can drastically change the mechanical behavior. We find that molecular water at the interface between hydrophilic CNC surfaces has a negligible effect on the tensile separation adhesion energy. However, when water cannot hydrogen bond easily to the surface (i.e., hydrophobic surface), it tends to maintain hydrogen bonds with other water molecules across the interface and form a capillary bridge that serves to increase the energy required to separate the crystals. Under shear loading, water lowers the energy barriers to sliding by reducing the atomic friction and consequently the interlayer shear modulus between crystals. Our simulations indicate that these nanoscale interfaces and physical phenomena such as interfacial adhesion, interlayer shear properties, and stick-slip friction behavior can be drastically altered by the presence of water.

  1. Coatings and Process Development for Reduced Energy Automotive OEM Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Furar, PPG Industries, Inc. U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. May 28-29, 2015 1 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  Develop coatings, processes and facility design to reduce energy consumption in automotive OEM paint shops  Technical Barriers  Maintaining coating properties at lower temperature cure  Low temperature cross-link chemistries not commercial

  2. Technology Roadmap for Energy Reduction in Automotive Manufacturing

    SciTech Connect (OSTI)

    none,

    2008-09-01

    U.S. Department of Energy’s (DOE) Industrial Technologies Program (ITP), in collaboration with the United States Council for Automotive Research LLC (USCAR), hosted a technology roadmap workshop in Troy, Michigan in May 2008. The purpose of the workshop was to explore opportunities for energy reduction, discuss the challenges and barriers that might need to be overcome, and identify priorities for future R&D. The results of the workshop are presented in this report.

  3. Market Acceptance of Advanced Automotive Technologies (MA3T) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acceptance of Advanced Automotive Technologies (MA3T) Model (Oak Ridge National Laboratory) Objectives Forecasts sales of competing vehicle technologies among consumer segments. Analyzes how technology, infrastructure, consumer behavior, and policy affect sales of new technologies and determines the resulting societal, environmental and economic impacts. Key Attributes & Strengths MA3T can be used to investigate the societal benefits, costs, and employment impacts of market transitions

  4. Automotive Li-ion Battery Cooling Requirements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Li-ion Battery Cooling Requirements Automotive Li-ion Battery Cooling Requirements Presents thermal management of lithium-ion battery packs for electric vehicles PDF icon cunningham.pdf More Documents & Publications Overview and Progress of the Battery Testing, Analysis, and Design Activity Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Battery Testing, Design and Analysis Activity Overview of Battery R&D Activities

  5. Automotive Stirling Engine Development Program. RESD Summary report

    SciTech Connect (OSTI)

    Not Available

    1984-05-01

    This is the final report compiling a summary of the information presented and discussed at the May 1983 Automotive Stirling Engine (AES) Reference Engine System Design (RESD) review held at the NASA Lewis Research Center. The design of the engine and its auxiliaries and controls is described. Manufacturing costs in production quantity are also presented. Engine system performance predictions are discussed and vehicle integration is developed, along with projected fuel economy levels.

  6. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace050_meisner_2010_o.pdf More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power

  7. Center for Lightweighting Automotive Materials and Processing | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ti_06_mallick.pdf More Documents & Publications Center for Lightweighting Automotive Materials and Processing 2008 Annual Merit Review Results Summary - 16. Technology Integration and Education GATE Center of Excellence in Lightweight Materials and Manufacturing Technologies

  8. Durability-based design criteria for an automotive structural composite

    SciTech Connect (OSTI)

    Corum, J.M.; Battiste, R.L.; Brinkman, C.R.; Ren, W.; Ruggles, M.B.; Yahr, G.T.

    1998-11-01

    Before composite structures can be widely used in automotive applications, their long-term durability must be assured. The Durability of Lightweight Composite Structures Project at Oak Ridge National Laboratory was established by the US Department of Energy to help provide that assurance. The project is closely coordinated with the Automotive Composites Consortium. The experimentally-based, durability-driven design criteria described in this paper are the result of the initial project thrust. The criteria address a single reference composite, which is an SRIM (Structural Reaction Injection Molded) polyurethane, reinforced with continuous strand, swirl-mat E-glass fibers. The durability issues addressed include the effects of cyclic and sustained loadings, temperature, automotive fluid environments, and low-energy impacts (e.g., tool drops and roadway kickups) on strength, stiffness, and deformation. The criteria provide design analysis guidance, a multiaxial strength criterion, time-independent and time-dependent allowable stresses, rules for cyclic loading, and damage tolerance design guidance. Environmental degradation factors and the degrading effects of prior loadings are included. Efforts are currently underway to validate the criteria by application to a second random-glass-fiber composite. Carbon-fiber composites are also being addressed.

  9. Chemical hydrogen storage material property guidelines for automotive applications

    SciTech Connect (OSTI)

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.

  10. Fourth annual report to Congress on the Automotive Technology Development Program

    SciTech Connect (OSTI)

    Not Available

    1983-11-01

    Program implementation and management are described. The status of conventional power-train technology is described with respect to uniform charge reciprocating Otto engine, stratified charge reciprocating Otto engine, rotary Otto engine, diesel engine, and transmissions. The three tasks of the Automotive Technology Development Program are discussed as follows; automotive gas turbine project, automotive Stirling engine development project, and the heavy duty transport technology project.

  11. The status of ceramic turbine component fabrication and quality assurance relevant to automotive turbine needs

    SciTech Connect (OSTI)

    Richerson, D.W.

    2000-02-01

    This report documents a study funded by the U.S. Department of Energy (DOE) Office of Transportation Technologies (OTT) with guidance from the Ceramics Division of the United States Automotive Materials Partnership (USAMP). DOE and the automotive companies have funded extensive development of ceramic materials for automotive gas turbine components, the most recent effort being under the Partnership for a New Generation of Vehicles (PNGV) program.

  12. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts

    Energy Savers [EERE]

    of Government Policies and Assessment of Future Opportunities | Department of Energy Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities This report prepared by Oak Ridge National Laboratory examines the progress that has been made in U.S. non-automotive fuel cell

  13. Status and Prospects of the Global Automotive Fuel Cell Industry and Plans

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure | Department of Energy and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure This report by Oak Ridge National Laboratory assesses the current status of automotive fuel cell

  14. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness...

    Office of Environmental Management (EM)

    automotive industry by identifying key trends, cost considerations, and other market and policy developments that inform current competitiveness considerations for LIB production. ...

  15. Vehicle Technologies Office Merit Review 2015: Automotive Low Temperature Gasoline Combustion Engine Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about automotive low...

  16. Vehicle Technologies Office Merit Review 2014: Automotive Low Temperature Gasoline Combustion Engine Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about automotive low...

  17. DOE Provides $4.7 Million to Support Excellence in Automotive Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education | Department of Energy Provides $4.7 Million to Support Excellence in Automotive Technology Education DOE Provides $4.7 Million to Support Excellence in Automotive Technology Education August 29, 2005 - 2:47pm Addthis WASHINGTON, DC - The U.S. Department of Energy today announced the selection of eight universities that will receive $4.7 million to be Graduate Automotive Technology Education (GATE) Centers of Excellence. The goal of GATE is to train a future workforce of automotive

  18. Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications

    Broader source: Energy.gov [DOE]

    Technical report describing the US Department of Energy's (DOE) assessment of the performance and cost of organic liquid based hydrogen storage systems for automotive applications.

  19. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    SciTech Connect (OSTI)

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  20. Factorization method and new potentials from the inverted oscillator

    SciTech Connect (OSTI)

    Bermudez, David Fernndez C, David J.

    2013-06-15

    In this article we will apply the first- and second-order supersymmetric quantum mechanics to obtain new exactly-solvable real potentials departing from the inverted oscillator potential. This system has some special properties; in particular, only very specific second-order transformations produce non-singular real potentials. It will be shown that these transformations turn out to be the so-called complex ones. Moreover, we will study the factorization method applied to the inverted oscillator and the algebraic structure of the new Hamiltonians. -- Highlights: We apply supersymmetric quantum mechanics to the inverted oscillator potential. The complex second-order transformations allow us to build new non-singular potentials. The algebraic structure of the initial and final potentials is analyzed. The initial potential is described by a complex-deformed HeisenbergWeyl algebra. The final potentials are described by polynomial Heisenberg algebras.

  1. PROJECT PROFILE: Additively Manufactured Photovoltaic Inverter (SuNLaMP)

    Broader source: Energy.gov [DOE]

    Integrating hundreds of gigawatts of photovoltaic (PV) solar power onto our country’s electric grid requires transformative power conversion system designs that find a balance between performance, reliability, functionality and cost. The National Renewable Energy Laboratory (NREL) will lead this project to develop a unique PV inverter design that combines the latest wide bandgap high-voltage Silicon Carbide (SiC) semiconductor devices with new technologies, such as additive manufacturing and multi-objective magnetic design optimization. By developing an additively manufactured PV inverter (AMPVI), NREL researchers aim to significantly reduce the cost of PV power electronics.

  2. Inverter power module with distributed support for direct substrate cooling

    DOE Patents [OSTI]

    Miller, David Harold (San Pedro, CA); Korich, Mark D. (Chino Hills, CA); Ward, Terence G. (Redondo Beach, CA); Mann, Brooks S. (Redondo Beach, CA)

    2012-08-21

    Systems and/or methods are provided for an inverter power module with distributed support for direct substrate cooling. An inverter module comprises a power electronic substrate. A first support frame is adapted to house the power electronic substrate and has a first region adapted to allow direct cooling of the power electronic substrate. A gasket is interposed between the power electronic substrate and the first support frame. The gasket is configured to provide a seal between the first region and the power electronic substrate. A second support frame is adapted to house the power electronic substrate and joined to the first support frame to form the seal.

  3. Electrochemical Energy Storage Technologies and the Automotive Industry

    ScienceCinema (OSTI)

    Mark Verbrugge

    2010-01-08

    The first portion of the lecture will relate global energy challenges to trends in personal transportation. Following this introduction, a short overview of technology associated with lithium ion batteries for traction applications will be provided. Last, I shall present new research results that enable adaptive characterization of lithium ion cells. Experimental and modeling results help to clarify the underlying electrochemistry and system performance. Specifically, through chemical modification of the electrodes, it is possible to place markers within the electrodes that signal the state of charge of a battery through abrupt voltage changes during cell operation, thereby allowing full utilization of the battery in applications. In closing, I shall highlight some promising materials research efforts that are expected to lead to substantially improved battery technology

  4. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles

  5. Electrohydraulic Forming of Near-Net Shape Automotive Panels

    SciTech Connect (OSTI)

    Golovaschenko, Sergey F.

    2013-09-26

    The objective of this project was to develop the electrohydraulic forming (EHF) process as a near-net shape automotive panel manufacturing technology that simultaneously reduces the energy embedded in vehicles and the energy consumed while producing automotive structures. Pulsed pressure is created via a shockwave generated by the discharge of high voltage capacitors through a pair of electrodes in a liquid-filled chamber. The shockwave in the liquid initiated by the expansion of the plasma channel formed between two electrodes propagates towards the blank and causes the blank to be deformed into a one-sided die cavity. The numerical model of the EHF process was validated experimentally and was successfully applied to the design of the electrode system and to a multi-electrode EHF chamber for full scale validation of the process. The numerical model was able to predict stresses in the dies during pulsed forming and was validated by the experimental study of the die insert failure mode for corner filling operations. The electrohydraulic forming process and its major subsystems, including durable electrodes, an EHF chamber, a water/air management system, a pulse generator and integrated process controls, were validated to be capable to operate in a fully automated, computer controlled mode for forming of a portion of a full-scale sheet metal component in laboratory conditions. Additionally, the novel processes of electrohydraulic trimming and electrohydraulic calibration were demonstrated at a reduced-scale component level. Furthermore, a hybrid process combining conventional stamping with EHF was demonstrated as a laboratory process for a full-scale automotive panel formed out of AHSS material. The economic feasibility of the developed EHF processes was defined by developing a cost model of the EHF process in comparison to the conventional stamping process.

  6. Welding of Dissimilar Materials Combinations for Automotive Applications

    Broader source: Energy.gov (indexed) [DOE]

    0, 2011 Welding of Dissimilar Materials Combinations for Automotive Applications Jerry E. Gould Technology Leader Resistance and Solid State Welding ph: 614-688-5121 e-mail: jgould@ewi.org Metallurgical Aspects of Joining Aluminum to Steel * Suppression of solidification defects * Suppression of Fe 2 Al 7 * Empirically observed critical cooling times * Process selection to achieve necessary cooling times 0 200 400 600 800 1000 1200 1400 1600 1800 0 0.05 0.1 0.15 0.2 0.25 0.3 Time (sec)

  7. High voltage power supply with modular series resonant inverters

    DOE Patents [OSTI]

    Dreifuerst, Gary R. (Livermore, CA); Merritt, Bernard T. (Livermore, CA)

    1995-01-01

    A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360.degree./n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit.

  8. High voltage power supply with modular series resonant inverters

    DOE Patents [OSTI]

    Dreifuerst, G.R.; Merritt, B.T.

    1995-07-18

    A relatively small and compact high voltage, high current power supply for a laser utilizes a plurality of modules containing series resonant half bridge inverters. A pair of reverse conducting thyristors are incorporated in each series resonant inverter module such that the series resonant inverter modules are sequentially activated in phases 360{degree}/n apart, where n=number of modules for n>2. Selective activation of the modules allows precise output control reducing ripple and improving efficiency. Each series resonant half bridge inverter module includes a transformer which has a cooling manifold for actively circulating a coolant such as water, to cool the transformer core as well as selected circuit elements. Conductors connecting and forming various circuit components comprise hollow, electrically conductive tubes such as copper. Coolant circulates through the tubes to remove heat. The conductive tubes act as electrically conductive lines for connecting various components of the power supply. Where it is desired to make electrical isolation breaks, tubes comprised of insulating material such as nylon are used to provide insulation and continue the fluid circuit. 11 figs.

  9. Building America Whole-House Solutions for Existing Homes: Inverted Attic

    Energy Savers [EERE]

    Bulkhead for HVAC Ductwork | Department of Energy Inverted Attic Bulkhead for HVAC Ductwork Building America Whole-House Solutions for Existing Homes: Inverted Attic Bulkhead for HVAC Ductwork This occupied test home received a modified truss system to accommodate ductwork within an inverted insulated bulkhead along the attic floor, which saves energy by placing heating, ventilating, and air-conditioning (HVAC) ductwork within the home's thermal boundary. PDF icon Inverted Attic Bulkhead for

  10. SunShot Funding Spurs Standardized Testing for "Smart" Solar Inverters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Funding Spurs Standardized Testing for "Smart" Solar Inverters SunShot Funding Spurs Standardized Testing for "Smart" Solar Inverters August 12, 2015 - 1:02pm Addthis Caption: Inverters allow for the electricity produced by solar panels to be converted into electricity. Licensed photo courtesy of Lauren Wellicome. Caption: Inverters allow for the electricity produced by solar panels to be converted into electricity. Licensed photo courtesy of Lauren

  11. Optimized Triple-Junction Solar Cells Using Inverted Metamorphic Approach (Presentation)

    SciTech Connect (OSTI)

    Geisz, J. F.

    2008-11-01

    Record efficiencies with triple-junction inverted metamorphic designs, modeling useful to optimize, and consider operating conditions before choosing design.

  12. Improved current control makes inverters the power sources of choice

    SciTech Connect (OSTI)

    Yamamoto, H.; Harada, S.; Ueyama, T.

    1997-02-01

    It is now generally understood that by increasing the operating or switching frequency of a power source the size of the main transformer and main reactor can be shrunk. Thus, a 300-A DC welding power source weighing well under 100 lb can be produced. This makes the inverter power source an ideal choice for applications requiring equipment maneuverability. It is also generally understood that due to higher switching frequencies, a smoother output is obtained from inverter power sources. In the late 1980s, the company developed a new double-inverter power source by which inverted DC weld output is inverted back to AC weld output. This product was the first of its kind in the world. Again, the small compact size of this product was of great interest. Utilizing current waveform control, it was realized that fast response switching from electrode negative to electrode positive could be accurately controlled, offering benefits such as AC GTA welding with high-frequency start only, even at a low welding current. The primary benefit is the ability to limit the electrode positive half cycle to less than 5%. The electrode positive half cycle is responsible for tungsten erosion, which also creates the balling effect of a tungsten electrode. By limiting the electrode positive portion of the AC cycle to a very low level, a rather sharp point can be maintained on the tungsten, which creates a very concentrated, focused arc column. This ability provides excellent joint penetration in fillet welding of aluminum alloys, especially on thick plate. It also reduces the heat-affected zone in AC GTA welding of aluminum.

  13. Advanced Inverter Functions to Support High Levels of Distributed Solar: Policy and Regulatory Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    This paper explains how advanced inverter functions (sometimes called 'smart inverters') contribute to the integration of high levels of solar PV generation onto the electrical grid and covers the contributions of advanced functions to maintaining grid stability. Policy and regulatory considerations associated with the deployment of advanced inverter functions are also introduced.

  14. Future Automotive Aftertreatment Solutions: The 150C Challenge Workshop Report

    SciTech Connect (OSTI)

    Zammit, Michael; DiMaggio, Craig L.; Kim, Chang H.; Lambert, Christine; Muntean, George G.; Peden, Charles HF; Parks, James E.; Howden, Ken

    2013-10-15

    With future fuel economy standards enacted, the U.S. automotive manufacturers (OEMs) are committed to pursuing a variety of high risk/highly efficient stoichiometric and lean combustion strategies to achieve superior performance. In recognition of this need, the U.S. Department of Energy (DOE) has partnered with domestic automotive manufacturers through U.S. DRIVE to develop these advanced technologies. However, before these advancements can be introduced into the U.S. market, they must also be able to meet increasingly stringent emissions requirements. A significant roadblock to this implementation is the inability of current catalyst and aftertreatment technologies to provide the required activity at the much lower exhaust temperatures that will accompany highly efficient combustion processes and powertrain strategies. Therefore, the goal of this workshop and report is to create a U.S. DRIVE emission control roadmap that will identify new materials and aftertreatment approaches that offer the potential for 90% conversion of emissions at low temperature (150C) and are consistent with highly efficient combustion technologies currently under investigation within U.S. DRIVE Advanced Combustion and Emission Control (ACEC) programs.

  15. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    SciTech Connect (OSTI)

    Anderson, Carl L

    2006-09-25

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  16. Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module

    DOE Patents [OSTI]

    Pitel, Ira J. (Whippany, NJ)

    1987-02-03

    The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage.

  17. Electrical power inverter having a phase modulated, twin-inverter, high frequency link and an energy storage module

    DOE Patents [OSTI]

    Pitel, I.J.

    1987-02-03

    The present invention provides an electrical power inverter method and apparatus, which includes a high frequency link, for converting DC power into AC power. Generally stated, the apparatus includes a first high frequency module which produces an AC voltage at a first output frequency, and a second high frequency inverter module which produces an AC voltage at a second output frequency that is substantially the same as the first output frequency. The second AC voltage is out of phase with the first AC voltage by a selected angular phase displacement. A mixer mixes the first and second output voltages to produce a high frequency carrier which has a selected base frequency impressed on the sidebands thereof. A rectifier rectifies the carrier, and a filter filters the rectified carrier. An output inverter inverts the filtered carrier to produce an AC line voltage at the selected base frequency. A phase modulator adjusts the relative angular phase displacement between the outputs of the first and second high frequency modules to control the base frequency and magnitude of the AC line voltage. 19 figs.

  18. Vehicle Technologies Office Merit Review 2014: Inverter R&D | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Inverter R&D Vehicle Technologies Office Merit Review 2014: Inverter R&D Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about inverter R&D. PDF icon ape053_chinthavali_2014_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: Electric Drive Inverter R&D Inverter R&D Wide Bandgap Power Electroni

  19. Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency April 28, 2015 - 2:02pm Addthis 3-D Printed Inverter 3-D Printed Inverter Plug-in electric vehicle technologies are on their way to being even lighter, more powerful and more efficient with the advent of power inverters created by 3-D printing and novel semiconductors. With $1.45 million

  20. GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications

    SciTech Connect (OSTI)

    2011-07-31

    This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.

  1. PWM Inverter control and the application thereof within electric vehicles

    DOE Patents [OSTI]

    Geppert, Steven (Bloomfield Hills, MI)

    1982-01-01

    An inverter (34) which provides power to an A.C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A.C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A.C. machine is optimized. The control circuit includes a micro-computer and memory element which receive various parametric inputs and calculate optimized machine control data signals therefrom. The control data is asynchronously loaded into the inverter through an intermediate buffer (38). In its preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack (32) and a three-phase induction motor (18).

  2. Inverter-based GTA welding machines improve fabrication

    SciTech Connect (OSTI)

    Sammons, M.

    2000-05-01

    While known as precision process, many fabricators using the gas tungsten arc welding (GTAW) process fight several common problems that hinder quality, slow production, frustrate the operator and otherwise prevent the process from achieving its full potential. These include a limited ability to tailor the weld bead profile, poor control of the arc direction and arc wandering, poor arc starting, unstable or inconsistent arcs in the AC mode, high-frequency interference with electronics and tungsten contamination. Fortunately, new GTA welding technology--made possible by advances with inverter-based power sources and micro-processor controls--can eliminate common productivity gremlins. Further, new AC/DC inverter-based GTA power sources provide advanced arc shaping capabilities. As a result, many fabricators adopting this new technology have experienced phenomenal production increases, taken on new types of projects and reduced costs. Most importantly, the operators enjoy welding more.

  3. An Update on Fisker Automotive and the Energy Department's Loan Portfolio

    Energy Savers [EERE]

    | Department of Energy Fisker Automotive and the Energy Department's Loan Portfolio An Update on Fisker Automotive and the Energy Department's Loan Portfolio September 17, 2013 - 5:20pm Addthis An Update on Fisker Automotive and the Energy Department’s Loan Portfolio Peter W. Davidson Peter W. Davidson Former Executive Director of the Loan Programs Office (LPO) What are the key facts? Thanks to investments made by the Obama Administration, the U.S. auto industry has had three straight

  4. EA-1690: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery

    Office of Environmental Management (EM)

    Production Facilities near Detroit, MI | Department of Energy 0: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery Production Facilities near Detroit, MI EA-1690: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery Production Facilities near Detroit, MI April 1, 2010 EA-1690: Final Environmental Assessment For a Loan and Grant to A123 Systems, Inc., for Vertically Integrated Mass Production of Automotive-Class Lithium-Ion Batteries April 20, 2010 EA-1690: Finding of No

  5. Integration of Novel Flux Coupling Motor and Current Source Inverter |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ape034_hsu_2011_p.pdf More Documents & Publications Integration of Novel Flux Coupling Motor and Current Source Inverter Novel Flux Coupling Machine without Permanent Magnets John Hsu, Oak Ridge National Laboratory, Flux Coupling Machines and Switched Reluctance Motors to Replace Permanent Magnets in Electric Vehicles

  6. Combined Electric Machine and Current Source Inverter Drive System - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Analysis Energy Analysis Advanced Materials Advanced Materials Find More Like This Return to Search Combined Electric Machine and Current Source Inverter Drive System Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00249_ID2505.pdf (764 KB) Technology Marketing SummaryThis technology is a drive system that includes a permanent magnet-less (PM-L) electric motor

  7. ECIS-Princeton Power Systems, Inc.: Demand Response Inverter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Power Systems, Inc.: Demand Response Inverter - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense

  8. When Should Inverter-Duty Motors Be Specified?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Should Inverter-Duty Motors Be Specified? Electronic adjustable speed drives, known as variable frequency drives (VFD), used to be marketed as "usable with any standard motor." However, premature failures of motor insulation systems began to occur as fast-switching, pulse-width-modulated (PWM) VFDs were introduced. The switching rates of modern power semiconductors can lead to voltage overshoots. These voltage spikes can rapidly damage a motor's insulation system, resulting in

  9. Review and evaluation of automotive fuel conservation technologies. Final report

    SciTech Connect (OSTI)

    Siegel, H.M.; Schwarz, R.; Andon, J.; Kolars, G.; Gerstenberger, T.

    1981-12-01

    To support the Office of Research and Development of the National Highway Traffic Safety Administration with focused studies in areas affecting automotive fuel economy and related safety issues, a series of in-depth studies were carried out: Fuel Consumption Estimates of Stratified Charge Rotary Engines Installed in Five Vehicles; Oldsmobile Omega X Body Baseline Weight Data; GM X Body Material Substitution Weight Reduction/Cost Effectiveness Study; Calspan RSV Restraint System Cost Study; FMVSS No. 208 Extension to Light Trucks, Vans, and MPV's - Cost Lead Time Study; Multipiece Rims for Trucks, Buses, and Trailers; Identifying Design Changes, Cost Impacts and Manufacturing Lead Times to Upgrade FMVSS 114 for Passenger Cars, Trucks, and MPV's; Ford Escort GL Baseline Weight Data.

  10. EA-1690: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery...

    Broader source: Energy.gov (indexed) [DOE]

    to A123 Systems, Inc., for Vertically Integrated Mass Production of Automotive-Class Lithium-Ion Batteries April 20, 2010 EA-1690: Finding of No Significant Impact A123 Systems,...

  11. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities Status and Outlook for the U.S....

  12. Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications

    Fuel Cell Technologies Publication and Product Library (EERE)

    In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Program’s Multiyear Re

  13. NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Development for commercialization of automotive thermoelectric generators from high-ZT TE materials with using low-cost, widely available materials, system design and modeling to maximize temperature differential across TE modules and maximize power output

  14. Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications

    Fuel Cell Technologies Publication and Product Library (EERE)

    This technical report describes DOE's assessment of the performance and cost of compressed hydrogen storage tank systems for automotive applications. The on-board performance (by Argonne National Lab)

  15. DOE Materials-Based Hydrogen Storage Summit: Defining Pathways for Onboard Automotive Applications

    Broader source: Energy.gov [DOE]

    Proceedings from the U.S. Department of Energy Materials-Based Hydrogen Storage Summit: Defining Pathways for Onboard Automotive Applications held January 27-28, 2015, at the National Renewable Energy Laboratory in Golden, Colorado.

  16. IR-based Spot Weld NDT in Automotive Applications (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect IR-based Spot Weld NDT in Automotive Applications Citation Details In-Document Search Title: IR-based Spot Weld NDT in Automotive Applications Authors: Chen, Jian [1] ; Feng, Zhili [1] + Show Author Affiliations ORNL Publication Date: 2015-01-01 OSTI Identifier: 1185972 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Conference Resource Relation: Conference: Thermosense XXXVII - 2015, Baltimore, MD, USA, 20150420, 20150424 Research Org: Oak Ridge National Laboratory (ORNL)

  17. Durability-Based Design Criteria for a Chopped-Glass-Fiber Automotive Structural Composite

    SciTech Connect (OSTI)

    Battiste, R.L.; Corum, J.M.; Ren, W.; Ruggles, M.B.

    1999-11-01

    This report provides recommended durability-based design criteria for a chopped-glass-fiber reinforced polymeric composite for automotive structural applications. The criteria closely follow the framework of an earlier criteria document for a continuous-strand-mat (CSM) glass-fiber reference composite. Together these design criteria demonstrate a framework that can be adapted for future random-glass-fiber composites for automotive structural applications.

  18. Argonne, Achates Power and Delphi Automotive to investigate new approach to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engines | Argonne National Laboratory Argonne, Achates Power and Delphi Automotive to investigate new approach to engines By Greg Cunningham * February 15, 2016 Tweet EmailPrint The U.S. Department of Energy's (DOE's) Argonne National Laboratory is working with Achates Power, Inc., and Delphi Automotive to develop an innovative new engine that could yield efficiency gains of up to 50 percent over a comparable conventional engine. The research is being conducted under a three-year project

  19. Quenching and Partitioning Process Development to Replace Hot Stamping of High-Strength Automotive Steel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quenching and Partitioning Process ADVANCED MANUFACTURING OFFICE Quenching and Partitioning Process Development to Replace Hot Stamping of High-Strength Automotive Steel Novel Steel Heat Treatment Process to Produce Third Generation AHSS Allowing Room-Temperature Stamping Operations. The automotive industry is meeting the challenge of improving fuel effciency without compromising vehicle safety in part by using lighter-weight materials such as frst-generation Advanced High-Strength Steels

  20. Sources of UHC and CO in Low Temperature Automotive Diesel Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy UHC and CO in Low Temperature Automotive Diesel Combustion Systems Sources of UHC and CO in Low Temperature Automotive Diesel Combustion Systems Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon deer10_miles.pdf More Documents & Publications Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Sources of CO and UHC Emissions in

  1. Materials, Modules, and Systems: An Atoms to Autos Approach to Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Systems Development | Department of Energy Materials, Modules, and Systems: An Atoms to Autos Approach to Automotive Thermoelectric Systems Development Materials, Modules, and Systems: An Atoms to Autos Approach to Automotive Thermoelectric Systems Development Highlights comprehensive approach tothermoelectric materials, module, and systems development at GM and in collaboration with our R&D partners PDF icon deer12_salvador.pdf More Documents & Publications

  2. Development of Cell/Pack Level Models for Automotive Li-Ion Batteries with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experimental Validation | Department of Energy Cell/Pack Level Models for Automotive Li-Ion Batteries with Experimental Validation Development of Cell/Pack Level Models for Automotive Li-Ion Batteries with Experimental Validation 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es120_shaffer_2012_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Development of Cell/Pack

  3. DOE Issues Request for Information on Automotive Fuel Cells and Hydrogen

    Office of Environmental Management (EM)

    Refueling | Department of Energy Issues Request for Information on Automotive Fuel Cells and Hydrogen Refueling DOE Issues Request for Information on Automotive Fuel Cells and Hydrogen Refueling March 7, 2016 - 1:00pm Addthis The U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office (FCTO) has issued a request for information (RFI) to obtain feedback and opinions from industry, academia, research laboratories, government agencies, and other stakeholders on technical and economic

  4. Advanced Inverter Functions to Support High Levels of Distributed Solar: Policy and Regulatory Considerations (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADVANCED INVERTER FUNCTIONS TO SUPPORT HIGH LEVELS OF DISTRIBUTED SOLAR POLICY AND REGULATORY CONSIDERATIONS The use of advanced inverters in the design of solar photovoltaic (PV) systems can address some of the challenges to the integration of high levels of distributed solar generation on the electricity system. Although the term "advanced inverters" seems to imply a special type of inverter, some of the inverters currently deployed with PV systems can already provide advanced

  5. Utility-scale grid-tied PV inverter reliability workshop summary report.

    SciTech Connect (OSTI)

    Granata, Jennifer E.; Quintana, Michael A.; Tasca, Coryne Adelle; Atcitty, Stanley

    2011-07-01

    A key to the long-term success of the photovoltaic (PV) industry is confidence in the reliability of PV systems. Inverters are the most commonly noted cause of PV system incidents triggered in the field. While not all of these incidents are reliability-related or even necessarily failures, they still result in a loss of generated power. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a Utility-Scale Grid-Tied Inverter Reliability Workshop in Albuquerque, New Mexico, January 27-28, 2011. The workshop addressed the reliability of large (100-kilowatt+) grid-tied inverters and the implications when such inverters fail, evaluated inverter codes and standards, and provided discussion about opportunities to enhance inverter reliability. This report summarizes discussions and presentations from the workshop and identifies opportunities for future efforts.

  6. Extreme Cost Reductions with Multi-Megawatt Centralized Inverter Systems

    SciTech Connect (OSTI)

    Schwabe, Ulrich; Fishman, Oleg

    2015-03-20

    The objective of this project was to fully develop, demonstrate, and commercialize a new type of utility scale PV system. Based on patented technology, this includes the development of a truly centralized inverter system with capacities up to 100MW, and a high voltage, distributed harvesting approach. This system promises to greatly impact both the energy yield from large scale PV systems by reducing losses and increasing yield from mismatched arrays, as well as reduce overall system costs through very cost effective conversion and BOS cost reductions enabled by higher voltage operation.

  7. Distributed Control of Inverter-Based Lossy Microgrids for Power Sharing

    Office of Scientific and Technical Information (OSTI)

    and Frequency Regulation Under Voltage Constraints (Journal Article) | SciTech Connect Distributed Control of Inverter-Based Lossy Microgrids for Power Sharing and Frequency Regulation Under Voltage Constraints Citation Details In-Document Search Title: Distributed Control of Inverter-Based Lossy Microgrids for Power Sharing and Frequency Regulation Under Voltage Constraints This paper presents a new distributed control framework to coordinate inverter-interfaced distributed energy resources

  8. Vehicle Technologies Office Merit Review 2015: Electric Drive Inverter R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Electric Drive Inverter R&D Vehicle Technologies Office Merit Review 2015: Electric Drive Inverter R&D Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric drive inverter R&D. PDF icon edt053_chinthavali_2015_o.pdf More Documents & Publications Wide Bandgap Power Electronics Vehicle Technologies Office Merit Review

  9. NREL to Test Inverters for the "Little Box Challenge" Presented by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Google and IEEE - News Releases | NREL to Test Inverters for the "Little Box Challenge" Presented by Google and IEEE September 22, 2014 The Energy Department's National Renewable Energy Laboratory (NREL) will test power inverters submitted to the Little Box Challenge presented by Google and the IEEE Power Electronics Society. The Challenge is an open competition to build smaller power inverters for use in solar power systems. The winner of the $1 million prize will have designed

  10. Microsoft PowerPoint - DETL_long_term_inverter_testing_wcomments.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration under contract DE-AC04-94AL85000. LONG-TERM INVERTER OPERATION DEMONSTRATION SANDIA NATIONAL LABORATORIES Department 6335 Solar Systems Sigifredo Gonzalez, Scott Kuszmaul, Abraham Ellis 34th IEEE PV Specialists Conference Philadelphia, PA 12 June, 2009 LONG-TERM INVERTER OPERATION RE-CHARACTERIZATION REQUIREMENTS Purpose Analyze the effects of long term operation and exposure on the performance of the utility interconnected PV inverter Parameters Identify the influential

  11. Vehicle Technologies Office Merit Review 2015: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives

    Broader source: Energy.gov [DOE]

    Presentation given by APEI Inc. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced low-cost SiC and GaN wide...

  12. Vehicle Technologies Office Merit Review 2014: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives

    Broader source: Energy.gov [DOE]

    Presentation given by APEI Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Advanced low-cost SIC and GaN wide...

  13. EERE Success Story-Novel 3-D Printed Inverters for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with the advent of power inverters created by 3-D printing and novel semiconductors. ... Can Improve EV Power and Efficiency 3D Printed and Semiconductor Technology ...

  14. Predicting the Occurrence of Cosmetic Defects in Automotive Skin Panels

    SciTech Connect (OSTI)

    Hazra, S.; Williams, D.; Roy, R.; Aylmore, R.; Allen, M.; Hollingdale, D.

    2011-05-04

    The appearance of defects such as 'hollows' and 'shock lines' can affect the perceived quality and attractiveness of automotive skin panels. These defects are the result of the stamping process and appear as small, localized deviations from the intended styling of the panels. Despite their size, they become visually apparent after the application of paint and the perceived quality of a panel may become unacceptable. Considerable time is then dedicated to minimizing their occurrence through tool modifications. This paper will investigate the use of the wavelet transform as a tool to analyze physically measured panels. The transform has two key aspects. The first is its ability to distinguish small scale local defects from large scale styling curvature. The second is its ability to characterize the shape of a defect in terms of its wavelength and a 'correlation value'. The two features of the transform enable it to be used as a tool for locating and predicting the severity of defects. The paper will describe the transform and illustrate its application on test cases.

  15. Goodyear Tire Plant Gains Traction on Energy Savings After Completing Save Energy Now Assessment; Industrial Technologies Program (ITP) Save Energy Now Case Study (Brochure)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Goodyear operates more than 60 facilities in 26 countries, including the Union City, Tennessee, plant pictured above. Goodyear Tire Plant Gains Traction on Energy Savings After Completing Save Energy Now Assessment Saves $875,000 in Energy Costs; Reduces Natural Gas Consumption Industrial Technologies Program Case Study Benefits * Implemented approximately $875,000 in annual energy cost savings * Achieves annual natural gas savings of more than 93,000 MMBtu * Reduces No. 6 fuel oil consumption

  16. Emerging Two-Phase Cooling Technologies for Power Electronic Inverters

    SciTech Connect (OSTI)

    Hsu, J.S.

    2005-08-17

    In order to meet the Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FVCT) goals for volume, weight, efficiency, reliability, and cost, the cooling of the power electronic devices, traction motors, and generators is critical. Currently the power electronic devices, traction motors, and generators in a hybrid electric vehicle (HEV) are primarily cooled by water-ethylene glycol (WEG) mixture. The cooling fluid operates as a single-phase coolant as the liquid phase of the WEG does not change to its vapor phase during the cooling process. In these single-phase systems, two cooling loops of WEG produce a low temperature (around 70 C) cooling loop for the power electronics and motor/generator, and higher temperature loop (around 105 C) for the internal combustion engine. There is another coolant option currently available in automobiles. It is possible to use the transmission oil as a coolant. The oil temperature exists at approximately 85 C which can be utilized to cool the power electronic and electrical devices. Because heat flux is proportional to the temperature difference between the device's hot surface and the coolant, a device that can tolerate higher temperatures enables the device to be smaller while dissipating the same amount of heat. Presently, new silicon carbide (SiC) devices and high temperature direct current (dc)-link capacitors, such as Teflon capacitors, are available but at significantly higher costs. Higher junction temperature (175 C) silicon (Si) dies are gradually emerging in the market, which will eventually help to lower hardware costs for cooling. The development of high-temperature devices is not the only way to reduce device size. Two-phase cooling that utilizes the vaporization of the liquid to dissipate heat is expected to be a very effective cooling method. Among two-phase cooling methods, different technologies such as spray, jet impingement, pool boiling and submersion, etc. are being developed. The Oak Ridge National Laboratory (ORNL) is leading the research on a novel floating refrigerant loop that cools high-power electronic devices and the motor/generator with very low cooling energy. The loop can be operated independently or attached to the air conditioning system of the vehicle to share the condenser and other mutually needed components. The ability to achieve low cooling energy in the floating loop is attributable to the liquid refrigerant operating at its hot saturated temperature (around 50 C+). In an air conditioning system, the liquid refrigerant is sub-cooled for producing cool air to the passenger compartment. The ORNL floating loop avoids the sub-cooling of the liquid refrigerant and saves significant cooling energy. It can raise the coefficient of performance (COP) more than 10 fold from that of the existing air-conditioning system, where the COP is the ratio of the cooled power and the input power for dissipating the cooled power. In order to thoroughly investigate emerging two-phase cooling technologies, ORNL subcontracted three university/companies to look into three leading two-phase cooling technologies. ORNL's assessments on these technologies are summarized in Section I. Detailed descriptions of the reports by the three university/companies (subcontractors) are in Section II.

  17. A Segmented Drive Inverter Topology with a Small DC Bus Capacitor |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Inverter Topology with a Small DC Bus Capacitor A Segmented Drive Inverter Topology with a Small DC Bus Capacitor 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape004_su_2010_o.pdf More Documents & Publications A Segmented Drive System

  18. Canola-Based Automotive Oil Research and Development

    SciTech Connect (OSTI)

    Pierce, Ira N.; Kammerman, Steven B.

    2009-12-07

    This research project establishes data on the ability of the bioindustry to provide sufficient production of Canola/rapeseed, functioning as a biolubricant, to replace petroleum-based automotive lubricants at competitive prices. In 2005 total sales for lubricants amounted to 2.5 billion gallons. Research was also conducted to determine the attitudes toward adoption of bioproducts, specifically among industries that are large-scale users of automotive lubricants, including government and private industry users. The green technology industry, or bioindustry, uses a variety of plant- and crop-based resources, known as biomass, to produce energy, fuel and many different bioproducts. Rapeseed is categorized as a lignocellulosic biomass. High erucic acid rapeseed is not intended for human consumption thereby negating the food vs. fuel issue that arose with the increased production of corn as a feedstock for use in ethanol. Key findings show that the oil from Canola/rapeseed provides about twice the yield than soybean oil. These seeds also have significantly higher natural lubricity than petroleum, enabling Canola/rapeseed to function in many different capacities where oxidation issues are critical. It also has the most positive energy balance of all common vegetable oils, making it an excellent potential replacement for petroleum-based fuels as well. As a rotating crop, it enhances farm lands, thereby increasing subsequent yields of barley and wheat, thus increasing profit margins. Petroleum-based bioproducts negatively impact the environment by releasing greenhouse gases, sulfur, heavy metals and other pollutants into the air, ground and water. Replacing these products with bio-alternatives is a significant step toward preserving the countrys natural resources and the environment. Further to this, promoting the growth of the green biotechnology industry will strengthen the nations economy, creating jobs in the agriculture, science and engineering sectors, while reducing dependency on unstable foreign oil products. The result of this research benefits the public by proving that Canola/rapeseed is another viable source from which the government, private industry and consumers can choose to reduce their reliance on petroleum products. Research found that our country is not utilizing our capabilities including, land, labor and equipment to its fullest potential. A commercial-scale fully-integrated biorefinery, such as the one outlined in this research project, produces little to no waste and the by-products are also consumable. This model allows for economies of scale that make it possible to produce biolubricants in sufficient quantities and at prices that are competitive with petroleum products. Integrated biorefinery operations and large-scale production levels are necessary to sustain profitability of the entire biorefinery model. It is a practical solution that can be implemented in less than 18 months, and replicated throughout the country. There is ample, viable land available as acreage from the Conservation Reserve Program will soon be increasing as land is being released from this program, meaning that it no longer will be kept fallow while the owners accept subsidies. The 2008 Farm Bill reduced the total number of acres allowed in the CRP program, leaving several million acres of land available over the next few years. All of the necessary technology exists to operate the farming and production of this type of biorefinery project. This is a here and now project that can serve to create jobs in several locations throughout the country. There are experts ready, willing and able to participate, all of whom have vast knowledge in the areas of chemical and oil product manufacturing, farm production, and marketing. Two of the biggest barriers to advancing a commercial-scale biorefinery project are the need for financial support for green technology producers and financial incentives for industrial and private consumers to convert to bio-based products. The U.S. needs closer cooperation between the producers of agricult

  19. EV drivetrain inverter with V/HZ optimization

    DOE Patents [OSTI]

    Gritter, David J.; O'Neil, Walter K.

    1986-01-01

    An inverter (34) which provides power to an A.C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A.C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A.C. machine is optimized. The control circuit includes a micro-computer which calculates optimized machine control data signals from various parametric inputs and during steady state load conditions, seeks a best V/HZ ratio to minimize battery current drawn (system losses) from a D.C. power source (32). In the preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack and a three-phase induction motor (18).

  20. ELECTROSTATIC MODELING OF THE JEFFERSON LABORATORY INVERTED CERAMIC GUN

    SciTech Connect (OSTI)

    P. Evtushenko ,F.E. Hannon, C. Hernandez-Garcia

    2010-05-01

    Jefferson Laboratory (JLab) is currently developing a new 500kV DC electron gun for future use with the FEL. The design consists of two inverted ceramics which support a central cathode electrode. This layout allows for a load-lock system to be located behind the gun chamber. The electrostatic geometry of the gun has been designed to minimize surface electric field gradients and also to provide some transverse focusing to the electron beam during transit between the cathode and anode. This paper discusses the electrode design philosophy and presents the results of electrostatic simulations. The electric field information obtained through modeling was used with particle tracking codes to predict the effects on the electron beam.

  1. Analysis of the potential for new automotive uses of wrought magnesium

    SciTech Connect (OSTI)

    Gaines, L.; Cuenca, R.; Wu, S.; Stodolsky, F.

    1996-02-01

    The Center for Transportation Research at Argonne National Laboratory has performed a study for the Lightweight Materials Program within the US Department of Energy`s Office of Transportation Materials to evaluate the suitability of wrought magnesium and its alloys to replace steel or aluminum for automotive structural and sheet applications. Vehicle weight reduction is one of the major means available for improving automotive fuel efficiency. Although high-strength steels, Al, and polymers are already being used to achieve significant weight reductions, substantial additional weight reductions could be achieved by increased use of Mg (whose density is less than one-fourth that of steel and only two-thirds that of Al). This study shows that Mg sheet could be used in automotive body nonstructural and semistructural applications, whereas extrusions could be used in such structural applications as spaceframes. The primary barrier to such uses of wrought Mg is high cost.

  2. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber Automotive Composite

    SciTech Connect (OSTI)

    Corum, J.M.

    2002-04-17

    This report provides recommended durability-based design properties and criteria for a quasi-isotropic carbon-fiber composite for possible automotive structural applications. The composite, which was made by a rapid molding process suitable for high-volume automotive applications, consisted of continuous Thornel T300 fibers (6K tow) in a Baydur 420 IMR urethane matrix. The reinforcement was in the form of four {+-}45{sup o} stitch-bonded mats in the following layup: [0/90{sup o}/{+-}45{sup o}]{sub S}. This material is the second in a progression of three candidate thermoset composites to be characterized and modeled as part of an Oak Ridge National Laboratory project entitled Durability of Carbon-Fiber Composites. The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Advanced Automotive Technologies and is closely coordinated with the industry Automotive Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for large automotive structural components. This document is in two parts. Part I provides the design criteria, and Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects on deformation, strength, and stiffness of cyclic and sustained loads, operating temperature, automotive fluid environments, and low-energy impacts (e.g., tool drops and kickups of roadway debris). Guidance is provided for design analysis, time-dependent allowable stresses, rules for cyclic loadings, and damage tolerance design guidance, including the effects of holes. Chapter 6 provides a brief summary of the design criteria.

  3. A New SiC-based DPF for the Automotive Industry | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A New SiC-based DPF for the Automotive Industry A New SiC-based DPF for the Automotive Industry Evaluation and example of performance of a new SiC-based diesel particulate filter made using unique industrial sintering process. PDF icon deer08_tsuneyoshi.pdf More Documents & Publications Diesel Particulate Filters: Market Introducution in Europe Hot Gas Filtration of Fine and Ultra fine Particles with Liquid Phase Sintered SiC Ceramic DPF Development of Acicular Mullite Materials for Diesel

  4. U.S. Department of Energy and the Automotive X PRIZE Foundation to Promote

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean, Energy-Efficient Vehicles | Department of Energy the Automotive X PRIZE Foundation to Promote Clean, Energy-Efficient Vehicles U.S. Department of Energy and the Automotive X PRIZE Foundation to Promote Clean, Energy-Efficient Vehicles March 20, 2008 - 10:52am Addthis DOE to invest $3.5 million in public outreach effort NEW YORK, NY - In an effort to engage students and the public on the significance of increasing the use of more clean, cutting-edge and energy-efficient vehicles to

  5. Development of a Thermoelectric Device for an Automotive Zonal HVAC System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Thermoelectric Device for an Automotive Zonal HVAC System Development of a Thermoelectric Device for an Automotive Zonal HVAC System Presents development of a thermoelectric device using liquid working fluid on the wasteŽ side and air as working fluid on the mainŽ side to enable zonal or distributed heating/cooling systems within a vehicle PDF icon barnhart.pdf More Documents & Publications Thermoelectric HVAC for Light-Duty Vehicle Applications Improving the

  6. Update and Expansion of the Center of Automotive Technology Excellence Under the Graduate Automotive Technology Education (GATE) Program at the University of Tennessee, Knoxville

    SciTech Connect (OSTI)

    Irick, David

    2012-08-30

    The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its seventh year of operation under this agreement, its thirteenth year in total. During this period the Center has involved eleven GATE Fellows and three GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the centers focus area: Advanced Hybrid Propulsion and Control Systems. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $2,000,000.

  7. Upgrading the Center for Lightweighting Automotive Materials and Processing - a GATE Center of Excellence at the University of Michigan-Dearborn

    SciTech Connect (OSTI)

    Mallick, P. K.

    2012-08-30

    The Center for Lightweighting Materials and Processing (CLAMP) was established in September 1998 with a grant from the Department of Energy’s Graduate Automotive Technology Education (GATE) program. The center received the second round of GATE grant in 2005 under the title “Upgrading the Center for Lightweighting Automotive Materials and Processing”. Using the two grants, the Center has successfully created 10 graduate level courses on lightweight automotive materials, integrated them into master’s and PhD programs in Automotive Systems Engineering, and offered them regularly to the graduate students in the program. In addition, the Center has created a web-based lightweight automotive materials database, conducted research on lightweight automotive materials and organized seminars/symposia on lightweight automotive materials for both academia and industry. The faculty involved with the Center has conducted research on a variety of topics related to design, testing, characterization and processing of lightweight materials for automotive applications and have received numerous research grants from automotive companies and government agencies to support their research. The materials considered included advanced steels, light alloys (aluminum, magnesium and titanium) and fiber reinforced polymer composites. In some of these research projects, CLAMP faculty have collaborated with industry partners and students have used the research facilities at industry locations. The specific objectives of the project during the current funding period (2005 – 2012) were as follows: (1) develop new graduate courses and incorporate them in the automotive systems engineering curriculum (2) improve and update two existing courses on automotive materials and processing (3) upgrade the laboratory facilities used by graduate students to conduct research (4) expand the Lightweight Automotive Materials Database to include additional materials, design case studies and make it more accessible to outside users (5) provide support to graduate students for conducting research on lightweight automotive materials and structures (6) provide industry/university interaction through a graduate certificate program on automotive materials and technology idea exchange through focused seminars and symposia on automotive materials.

  8. A SiC MOSFET Based Inverter for Wireless Power Transfer Applications

    SciTech Connect (OSTI)

    Onar, Omer C; Chinthavali, Madhu Sudhan; Campbell, Steven L; Ning, Puqi; White, Cliff P; Miller , John M.

    2014-01-01

    In a wireless power transfer (WPT) system, efficiency of the power conversion stages is crucial so that the WPT technology can compete with the conventional conductive charging systems. Since there are 5 or 6 power conversion stages, each stage needs to be as efficient as possible. SiC inverters are crucial in this case; they can handle high frequency operation and they can operate at relatively higher temperatures resulting in reduces cost and size for the cooling components. This study presents the detailed power module design, development, and fabrication of a SiC inverter. The proposed inverter has been tested at three center frequencies that are considered for the WPT standardization. Performance of the inverter at the same target power transfer level is analyzed along with the other system components. In addition, another SiC inverter has been built in authors laboratory by using the ORNL designed and developed SiC modules. It is shown that the inverter with ORNL packaged SiC modules performs simular to that of the inverter having commercially available SiC modules.

  9. Understanding and managing the effects of battery charger and inverter aging

    SciTech Connect (OSTI)

    Gunther, W. ); Aggarwal, S. )

    1992-01-01

    An aging assessment of battery chargers and inverters was conducted under the auspices of the NRC's Nuclear Plant Aging Research (NPAR) Program. The intentions of this program are to resolve issues related to the aging and service wear of equipment and systems at operating reactor facilities and to assess their impact on safety. Inverters and battery chargers are used in nuclear power plants to perform significant functions related to plant safety and availability. The specific impact of a battery charger or inverter failure varies with plant configuration. Operating experience data have demonstrated that reactor trips, safety injection system actuations, and inoperable emergency core cooling systems have resulted from inverter failures; and dc bus degradation leading to diesel generator inoperability or loss of control room annunication and indication have resulted from battery and battery charger failures. For the battery charger and inverter, the aging and service wear of subcomponents have contributed significantly to equipment failures. This paper summarizes the data and then describes methods that can be used to detect battery charger and inverter degradation prior to failure, as well as methods to minimize the failure effects. In both cases, the managing of battery charger and inverter aging is emphasized. 5 refs.

  10. Understanding and managing the effects of battery charger and inverter aging

    SciTech Connect (OSTI)

    Gunther, W.; Aggarwal, S.

    1992-06-01

    An aging assessment of battery chargers and inverters was conducted under the auspices of the NRC`s Nuclear Plant Aging Research (NPAR) Program. The intentions of this program are to resolve issues related to the aging and service wear of equipment and systems at operating reactor facilities and to assess their impact on safety. Inverters and battery chargers are used in nuclear power plants to perform significant functions related to plant safety and availability. The specific impact of a battery charger or inverter failure varies with plant configuration. Operating experience data have demonstrated that reactor trips, safety injection system actuations, and inoperable emergency core cooling systems have resulted from inverter failures; and dc bus degradation leading to diesel generator inoperability or loss of control room annunication and indication have resulted from battery and battery charger failures. For the battery charger and inverter, the aging and service wear of subcomponents have contributed significantly to equipment failures. This paper summarizes the data and then describes methods that can be used to detect battery charger and inverter degradation prior to failure, as well as methods to minimize the failure effects. In both cases, the managing of battery charger and inverter aging is emphasized. 5 refs.

  11. Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint

    SciTech Connect (OSTI)

    Waye, S. K.; Lustbader, J.; Musselman, M.; King, C.

    2015-05-06

    This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.

  12. A Preliminary Cost Study of the Dual Mode Inverter Controller

    SciTech Connect (OSTI)

    McKeever, J.W.

    2005-01-28

    In 1998, the Power Electronics and Electric Machinery Research Center (PEEMRC) at the Oak Ridge National Laboratory (ORNL) started a program to investigate alternate field weakening schemes for permanent magnet (PM) motors. The adjective ''alternate'' was used because at that time, outside research emphasis was on motors with interior-mounted PMs (IPMs). The PEEMRC emphasis was placed on motors with surface-mounted PMs (SPMs) because of the relative ease of manufacturing SPM motors compared with the IPM motors. Today the PEEMRC is continuing research on SPMs while examining the IPMs that have been developed by industry. Out of this task--the goal of which was to find ways to drive PM motors that inherently have low inductance at high speeds where their back-emf exceeds the supply voltage--ORNL developed and demonstrated the dual mode inverter control (DMIC) [1,2] method of field weakening for SPM motors. The predecessor of DMIC is conventional phase advance (CPA), which was developed by UQM Technologies, Inc. [3]. Fig. 1 shows the three sets of anti-parallel thyristors in the dashed box that comprise the DMIC. If one removes the dashed box by shorting each set of anti-parallel thyristors, the configuration becomes a conventional full bridge inverter on the left driving a three phase motor on the right. CPA may be used to drive this configuration ORNL's initial analyses of CPA and DMIC were based on driving motors with trapezoidal back-emfs [4-6], obtained using double layer lapped stator windings with one slot per pole per phase. A PM motor with a sinusoidal back-emf obtained with two poles per slot per phase has been analyzed under DMIC operation as a University of Tennessee-Knoxville (UTK) doctoral dissertation [7]. In the process of this research, ORNL has completed an analysis that explains and quantifies the role of inductance in these methods of control. The Appendix includes information on the equations for the three components of phase inductance, L{sub gap}, L{sub slot}, and L{sub endturns}. PM motors inherently have a lower inductance because of the increase in effective air gap caused by the magnet, which is in the denominator of the equation for L{sub gap}. L{sub gap} accounts for about half of the phase inductance. Because of the low inductance, there is a propensity for currents to exceed the motor's rated value. DMIC solves this problem for low-inductance PM motors and, in addition, provides a number of safety features that protect against uncontrolled generator mode operation [8,9]; however, the DMIC topology adds a pair of anti-parallel thyristors in each of the three phases, thereby introducing additional silicon costs as well as additional voltage drops during operation. It poses the tradeoff question; under what conditions can the beneficial features of DMIC offset its additional silicon cost and voltage drop losses? The purpose of this report is to address the tradeoff question. Sections of the report will: (1) review the role of self-inductance in performance and control of PM motors, (2) discuss the bounding inductances for motors with trapezoidal back-emfs under CPA control, (3) discuss the bounding inductances for trapezoidal back-emfs under DMIC, (4) discuss the bounding inductances for the PM synchronous motor (PMSM), (5) present the analysis showing how DMIC minimizes current in PMSMs, (6) present the results of a cost study conducted for two motors driven using a CPA inverter and for two motors driven using DMIC, (7) discuss estimating life cycle cost benefits, and (8) present conclusions.

  13. Materials selection for automotive engines. (Latest citations from Metadex). Published Search

    SciTech Connect (OSTI)

    1995-12-01

    The bibliography contains citations concerning material selection and substitution for automobile engines. Mechanical properties, including dimensional stability, are reviewed. Machined parts, castings, forgings, and extrusions are examined. Citations concerning automotive bodies, frames, and structures are presented in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Materials selection for automotive engines. (Latest citations from Metadex). Published Search

    SciTech Connect (OSTI)

    1997-04-01

    The bibliography contains citations concerning material selection and substitution for automobile engines. Mechanical properties, including dimensional stability, are reviewed. Machined parts, castings, forgings, and extrusions are examined. Citations concerning automotive bodies, frames, and structures are presented in a separate bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. Materials selection for automotive engines. (Latest citations from Metadex). NewSearch

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The bibliography contains citations concerning material selection and substitution for automobile engines. Mechanical properties, including dimensional stability, are reviewed. Machined parts, castings, forgings, and extrusions are examined. Citations concerning automotive bodies, frames, and structures are presented in a separate bibliography. (Contains a minimum of 165 citations and includes a subject term index and title list.)

  16. Third annual report to Congress on the automotive technology development program

    SciTech Connect (OSTI)

    Not Available

    1982-03-01

    The Automotive Propulsion Research and Development Act of 1978 focused on advancing the technology of automotive propulsion systems. In formulating the Act, Congress found that: (1) existing automobiles do not meet the Nation's long-term environmental and energy goals; (2) insufficient resources are being devoted to research and development (R and D) on advanced automobile propulsion systems; (3) with sufficient R and D, alternatives to existing systems could meet long-term goals at reasonable cost; and (4) expanded R and D would complement and stimulate corresponding private sector efforts. Because of the Nation's energy problems, Congress felt that advanced automobile propulsion system technology should be developed quickly. Through the Act, Congress expressed its intent for the Department of Energy (DOE) to: (1) make R and D contracts and grants for development of advanced automobile propulsion systems within five years, or within the shortest practicable time consistent with appropriate R and D techniques; (2) evaluate and disseminate information about advanced automobile propulsion system technology; (3) preserve, enhance, and facilitate competition in R and D of existing and alternative automotive propulsion systems; and (4) supplement, but neither supplant nor duplicate, private industry R and D efforts. Summaries of the status of conventional powertrain technology, automotive technology development program, and the management plan and policy transition are given. Tables on contracts and grant procurement for advanced gas turbine engine systems, advanced Stirling engine systems, and the vehicle systems project are given. (WHK)

  17. Bay Area national labs team to tackle long-standing automotive hydrogen

    National Nuclear Security Administration (NNSA)

    storage challenge | National Nuclear Security Administration national labs team to tackle long-standing automotive hydrogen storage challenge | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library

  18. Beta Test Plan for Advanced Inverters Interconnecting Distributed Resources with Electric Power Systems

    SciTech Connect (OSTI)

    Hoke, A.; Chakraborty, S.; Basso, T.; Coddington, M.

    2014-01-01

    This document provides a preliminary (beta) test plan for grid interconnection systems of advanced inverter-based DERs. It follows the format and methodology/approach established by IEEE Std 1547.1, while incorporating: 1. Upgraded tests for responses to abnormal voltage and frequency, and also including ride-through. 2. A newly developed test for voltage regulation, including dynamic response testing. 3. Modified tests for unintentional islanding, open phase, and harmonics to include testing with the advanced voltage and frequency response functions enabled. Two advanced inverters, one single-phase and one three-phase, were tested under the beta test plan. These tests confirmed the importance of including tests for inverter dynamic response, which varies widely from one inverter to the next.

  19. Commercialization of a 2.5kW Utility Interactive Inverter for Distributed Generation

    SciTech Connect (OSTI)

    Torrey, David A.

    2006-05-26

    Through this project, Advanced Energy Conversion (AEC) has developed, tested, refined and is preparing to commercialize a 2.5kW utility-interactive inverter system for distributed generation. The inverter technology embodies zero-voltage switching technology that will ultimately yield a system that is smaller, less expensive and more efficient than existing commercial technologies. This program has focused on commercial success through careful synthesis of technology, market-focus and business development. AEC was the primary participant. AEC is utilizing contract manufacturers in the early stages of production, allowing its technical staff to focus on quality control issues and product enhancements. The objective of this project was to bring the AEC inverter technology from its current pre-production state to a commercial product. Federal funds have been used to build and test production-intent inverters, support the implementation of the commercialization plan and bring the product to the point of UL certification.

  20. SunShot-funded Advanced Inverter Testing Enables 2,500 Solar...

    Broader source: Energy.gov (indexed) [DOE]

    Hawaiian Electric, SolarCity, and the University of Hawaii demonstrated smart inverters in ... how NREL has teamed up with SolarCity to maximize solar power on electrical grids here. ...

  1. Inverted Metamorphic Cell Development: Cooperative Research and Development Final Report, CRADA Number CRD-05-156

    SciTech Connect (OSTI)

    Wanlass, M.

    2012-05-01

    This CRADA targeted technology transfer of the inverted metamorphic multi-junction (IMM) solar cell innovation from NREL to Emcore Photovoltaics. The technology transfer was successfully completed. Additionally, NREL provided materials characterization of solar cell structures produced at Emcore.

  2. Low cost, compact high efficiency, traction motor for electric vehicles/hybrid electric vehicles. Final report for the period September 1998 - December 1999

    SciTech Connect (OSTI)

    Mitchell, Jerry; Kessinger, Roy

    2000-04-28

    This final report details technical accomplishments for Phase I of the ''Low Cost, Compact High Efficiency, Traction Motor for Electric Vehicles/Hybrid Electric Vehicles'' program. The research showed that the segmented-electromagnetic array (SEMA) technology combined with an Integrated Motion Module (IMM) concept is highly suited for electric vehicles. IMMs are essentially mechatronic systems that combine the motor, sensing, power electronics, and control functions for a single axis of motion into a light-weight modular unit. The functional integration of these components makes possible significant reductions in motor/alternator size, weight, and cost, while increasing power density and electromechanical conversion efficiency.

  3. Microsoft PowerPoint - Update on IEC Inverter Standards Activity - Sandia Wkshp 2013.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greg Ball DNV KEMA Renewables (formerly BEW Engineering) Sandia Inverter Reliability Workshop Santa Clara, CA May 1, 2013 Update on IEC Inverter Standards Activity IEC Technical Committee (TC) 82 Solar photovoltaic energy systems  IEC = International Electrotechnical Commission, founded 1906  Prepares and publishes International Standards for all electrical, electronic and related technologies. These are known collectively as "electrotechnology".  ~174 TCs and SCs

  4. Traction Drive System Modeling

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Traction Drive Systems Breakout

    Broader source: Energy.gov (indexed) [DOE]

    Ridge National Laboratory Facilitator July 24, 2012 EV Everywhere Grand Challenge Vehicle Technologies Program - Advanced Power Electronics and Electric Motors eere.energy.gov EV...

  6. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications: 2010 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct‐hydrogen proton ex

  7. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

  8. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2009 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exch

  9. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.

    2008-02-29

    This report estimates fuel cell system cost for systems produced in the years 2007, 2010, and 2015, and is the first annual update of a comprehensive automotive fuel cell cost analysis.

  10. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2008 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.

    2009-03-26

    This report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

  11. Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications

    SciTech Connect (OSTI)

    Ahluwalia, R. K.; Hua, T. Q.; Peng, J. -K; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J.

    2011-06-21

    In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Programs Multiyear Research, Development, and Demonstration Plan. This joint performance (ANL) and cost analysis (TIAX) report summarizes the results of this assessment. These results should be considered only in conjunction with the assumptions used in selecting, evaluating, and costing the systems discussed here and in the Appendices.

  12. Bay-Area National Labs Team to Tackle Long-Standing Automotive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen-Storage Challenge Bay-Area National Labs Team to Tackle Long-Standing Automotive Hydrogen-Storage Challenge - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering

  13. Quenching and Partitioning Process Development to Replace Hot Stamping of High Strength Automotive Steel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 28-29, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  Develop high strength sheet steels for the automotive industry that can be formed at room temperature  Lean alloying to reduce cost  Practice today: Hot Stamping Process  Reheating to > 900 C and forming, quenching in die  Energy consumption associated with

  14. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies | Lightweight Automotive Materials Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweight Automotive Materials Chapter 8: Technology Assessments Introduction to the Technology/System Overview of vehicle lightweighting Reducing vehicle weight affects transportation energy consumption by improving efficiency. Upwards of 85% of the energy in fuel is lost to thermal and mechanical inefficiency in the drivetrain 1 while the remaining 12-15% is used to overcome the tractive forces that resist forward motion. 2 Of these tractive forces, vehicle weight most significantly affects

  15. Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)

    SciTech Connect (OSTI)

    Fezzler, Raymond

    2011-03-01

    Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to meet the targets. The interviews were supplemented with information from past Oak Ridge National Laboratory (ORNL) reports, previous assessments that were conducted in 2004, and literature on magnet technology. The results of the assessment validated the DOE strategy involving three parallel paths: (1) there is enough of a possibility that RE magnets will continue to be available, either from sources outside China or from increased production in China, that development of IPM motors using RE magnets should be continued with emphasis on meeting the cost target. (2) yet the possibility that RE magnets may become unavailable or too expensive justifies efforts to develop innovative designs for permanent magnet (PM) motors that do not use RE magnets. Possible other magnets that may be substituted for RE magnets include samarium-cobalt (Sm-Co), Alnico, and ferrites. Alternatively, efforts to develop motors that do not use PMs but offer attributes similar to IPM motors also are encouraged. (3) New magnet materials using new alloys or processing techniques that would be less expensive or have comparable or superior properties to existing materials should be developed if possible. IPM motors are by far the most popular choice for hybrid and EVs because of their high power density, specific power, and constant power-speed ratio (CPSR). Performance of these motors is optimized when the strongest possible magnets - i.e., RE neodymium-iron-boron (NdFeB) magnets - are used.

  16. Industry Perspectives on Advanced Inverters for U.S. Solar Photovoltaic Systems. Grid Benefits, Deployment Challenges, and Emerging Solutions

    SciTech Connect (OSTI)

    Reiter, Emerson; Ardani, Kristen; Margolis, Robert; Edge, Ryan

    2015-09-01

    To clarify current utility strategies and other considerations related to advanced inverter deployment, we interviewed 20 representatives from 11 leading organizations closely involved with advanced inverter pilot testing, protocols, and implementation. Included were representatives from seven utilities, a regional transmission operator, an inverter manufacturer, a leading solar developer, and a consortium for grid codes and standards. Interview data represent geographically the advanced inverter activities identified in SEPA's prior survey results--most interviewed utilities serve California, Arizona, and Hawaii, though we also interviewed others from the Northeast, Mid-Atlantic, and Southeast.

  17. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    Fuel Cell Technologies Publication and Product Library (EERE)

    Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several

  18. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    SciTech Connect (OSTI)

    Ushimaru, Kenji.

    1990-08-01

    Since 1983, technological advances and market growth of inverter- driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries-- microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices--were able to direct the development and market success of inverter-driven heat pumps. As a result, leading US variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales. 54 refs., 47 figs., 1 tab.

  19. Testing and Development of a 30-kVA Hybrid Inverter: Lessons Learned and Reliability Implications

    SciTech Connect (OSTI)

    Ginn, J.W.

    1998-12-21

    A 30-kVA Trace Technologies hybrid power processor was specified and tested at the Sandia inverter test facility. Trace Technologies involving the control system, in response to suggestions made modifications, primarily by Sandia and Arizona Public Service (APS) personnel. The modifications should make the inverter more universally applicable and less site-specific so that it can be applied in various sites with minimal field interaction required from the design engineer. The project emphasized the importance of battery management, generator selection, and site load management to the performance and reliability of hybrid power systems.

  20. SunShot-funded Advanced Inverter Testing Enables 2,500 Solar Energy Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Connect to Hawaii's Electric Grid | Department of Energy SunShot-funded Advanced Inverter Testing Enables 2,500 Solar Energy Systems to Connect to Hawaii's Electric Grid SunShot-funded Advanced Inverter Testing Enables 2,500 Solar Energy Systems to Connect to Hawaii's Electric Grid January 22, 2015 - 3:45pm Addthis Thanks to a SunShot collaboration at the Energy Department's National Renewable Energy Laboratory (NREL) more than 2,500 Hawaiian Electric customers will connect solar power to

  1. EERE Success Story-SunShot-funded Advanced Inverter Testing Enables 2,500

    Office of Environmental Management (EM)

    Solar Energy Systems to Connect to Hawaii's Electric Grid | Department of Energy SunShot-funded Advanced Inverter Testing Enables 2,500 Solar Energy Systems to Connect to Hawaii's Electric Grid EERE Success Story-SunShot-funded Advanced Inverter Testing Enables 2,500 Solar Energy Systems to Connect to Hawaii's Electric Grid January 22, 2015 - 3:45pm Addthis Thanks to a SunShot collaboration at the Energy Department's National Renewable Energy Laboratory (NREL) more than 2,500 Hawaiian

  2. Advanced, High-Reliability, System-Integrated 500kW PV Inverter Development: Final Subcontract Report, 29 September 2005 - 31 May 2008

    SciTech Connect (OSTI)

    West, R.

    2008-08-01

    Xantrex Technology accomplished subcontract goals of reducing parts cost, weight, and size of its 500-kW inverter by 25% compared to state-of-the-art PV inverters, while extending reliability by 25%.

  3. Fundamental Frequency Switching Control of Seven-Level Hybrid Cascaded H-bridge Multilevel Inverter

    SciTech Connect (OSTI)

    Du, Zhong; Chiasson, John N; Ozpineci, Burak; Tolbert, Leon M

    2009-01-01

    This paper presents a cascaded H-bridge multilevel inverter that can be implemented using only a single dc power source and capacitors. Standard cascaded multilevel inverters require n dc sources for 2n + 1 levels. Without requiring transformers, the scheme proposed here allows the use of a single dc power source (e.g., a battery or a fuel cell stack) with the remaining n-1 dc sources being capacitors, which is referred to as hybrid cascaded H-bridge multilevel inverter (HCMLI) in this paper. It is shown that the inverter can simultaneously maintain the dc voltage level of the capacitors and choose a fundamental frequency switching pattern to produce a nearly sinusoidal output. HCMLI using only a single dc source for each phase is promising for high-power motor drive applications as it significantly decreases the number of required dc power supplies, provides high-quality output power due to its high number of output levels, and results in high conversion efficiency and low thermal stress as it uses a fundamental frequency switching scheme. This paper mainly discusses control of seven-level HCMLI with fundamental frequency switching control and how its modulation index range can be extended using triplen harmonic compensation.

  4. Inverter Load Rejection Over-Voltage Testing: SolarCity CRADA Task 1a Final Report

    SciTech Connect (OSTI)

    Nelson, A.; Hoke, A.; Chakraborty, S.; Chebahtah, J.; Wang, T.; Zimmerly, B.

    2015-02-01

    Various interconnection challenges exist when connecting distributed PV into the electrical distribution grid in terms of safety, reliability, and stability of electric power systems. One of the urgent areas for additional research - as identified by inverter manufacturers, installers, and utilities - is the potential for transient over-voltage from PV inverters. In one stage of a cooperative tests were repeated a total of seven times. The maximum over-voltage measured in any test did not exceed 200% of nominal, and typical over-voltage levels were significantly lower. The total voltage duration and the maximum continuous time above each threshold are presented here, as well as the time to disconnect for each test. Finally, we present a brief investigation into the effect of DC input voltage as well as a series of no-load tests. This report describes testing conducted at NREL to determine the duration and magnitude of transient over-voltages created by several commercial PV inverters during load-rejection conditions. For this work, a test plan that is currently under development by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Through a cooperative research and development agreement, NREL is working with SolarCity to address two specific types of transient overvoltage: load rejection overvoltage (LRO) and ground fault overvoltage (GFO). Additional partners in this effort include the Hawaiian Electric Companies, Northern Plains Power Technologies, and the Electric Power Research Institute.

  5. Technology Solutions Case Study: Field Performance of Inverter-Driven Heat Pumps in Cold Climates

    SciTech Connect (OSTI)

    J. Williamson and R. Aldrich

    2015-09-01

    To better understand and characterize heating performance, the U.S. Department of Energy Building America team, Consortium for Advanced Residential Buildings (CARB), monitored seven inverter-driven ASHPs across the northeast United States during the winter of 20132014.

  6. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    SciTech Connect (OSTI)

    Greene, David L.; Duleep, K. G.; Upreti, Girish

    2011-05-15

    Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several countries, including the United States, Japan, Germany,and South Korea have established publicly funded R&D and market transformation programs to develop viable domestic FC industries for both automotive and nonautomotive applications.

  7. Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications

    SciTech Connect (OSTI)

    Hua, Thanh; Ahluwalia, Rajesh; Peng, J. -K; Kromer, Matt; Lasher, Stephen; McKenney, Kurtis; Law, Karen; Sinha, Jayanti

    2010-09-01

    This technical report describes DOE's assessment of the performance and cost of compressed hydrogen storage tank systems for automotive applications. The on-board performance (by Argonne National Lab) and high-volume manufacturing cost (by TIAX LLC) were estimated for compressed hydrogen storage tanks. The results were compared to DOE's 2010, 2015, and ultimate full fleet hydrogen storage targets. The Well-to-Tank (WTT) efficiency as well as the off-board performance and cost of delivering compressed hydrogen were also documented in the report.

  8. The ARPA-E Innovation Model: A Glimpse into the Future of Automotive Battery Technology

    SciTech Connect (OSTI)

    Gur, Ilan

    2014-03-07

    The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) focuses on funding game-changing R&D aimed at reducing U.S. foreign energy dependence and emissions. ARPA-E has made a strong commitment to support breakthrough energy storage technologies that can accelerate the mass adoption of electrified vehicles. This presentation will highlight the range of ARPA-E's efforts in this area, offering a glimpse into the ARPA-E innovation model and the future of automotive battery technology.

  9. The ARPA-E Innovation Model: A Glimpse into the Future of Automotive Battery Technology

    ScienceCinema (OSTI)

    Gur, Ilan (Program Director and Senior Advisor, ARPA-E)

    2014-04-11

    The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) focuses on funding game-changing R&D aimed at reducing U.S. foreign energy dependence and emissions. ARPA-E has made a strong commitment to support breakthrough energy storage technologies that can accelerate the mass adoption of electrified vehicles. This presentation will highlight the range of ARPA-E's efforts in this area, offering a glimpse into the ARPA-E innovation model and the future of automotive battery technology.

  10. Webinar: Automotive and MHE Fuel Cell System Cost Analysis | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Automotive and MHE Fuel Cell System Cost Analysis," originally presented on April 16, 2013. In addition to this text version of the audio, you can access the presentation slides. Alli Aman: Thanks for joining today's call. Just a few housekeeping items before we get started. Today's webinar is being recorded, so the recording along with slides will be posted to our website in about ten days. You'll get an email from myself, Alli Aman, once those are posted. I also encourage you

  11. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications. 2010 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.; Baum, Kevin N.

    2010-09-30

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane fuel cell systems suitable for powering light-duty automobiles.

  12. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2009 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.; Baum, Kevin N.

    2010-01-01

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exchange membrane fuel cell systems suitable for powering light duty automobiles.

  13. Fabrication and Evaluation of a High Performance SiC Inverter for Wireless Power Transfer Applications

    SciTech Connect (OSTI)

    Onar, Omer C; Campbell, Steven L; Ning, Puqi; Miller, John M; Liang, Zhenxian

    2013-01-01

    In this study, a high power density SiC high efficiency wireless power transfer converter system via inductive coupling has been designed and developed. The detailed power module design, cooling system design and power stage development are presented. The successful operation of rated power converter system demonstrates the feasible wireless charging plan. One of the most important part of this study is the wind bandgap devices packaged at the Oak Ridge National Laboratory (ORNL) using the in-house packaging technologies by employing the bare SiC dies acquired from CREE, which are rated at 50 A / 1200 V each. These packaged devices are also inhouse tested and characterized using ORNL s Device Characterization Facility. The successful operation of the proposed inverter is experimentally verified and the efficiency and operational characteristics of the inverter are also revealed.

  14. Dynamic Model Validation of PV Inverters Under Short-Circuit Conditions: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Bravo, R.; Gevorgian, V.

    2013-03-01

    Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of photovoltaic deployment. Residential and commercial rooftop installations are connected to the distribution network; large-scale installation PV power plants (PVPs) have benefited from tax incentives and the low cost of PV modules. As the level penetration of PV generation increases, the impact on power system reliability will also be greater. Utility power system planners must consider the role of PV generation in power systems more realistically by representing PV generation in dynamic stability analyses. Dynamic models of PV inverters have been developed in the positive sequence representation. NREL has developed a PV inverter dynamic model in PSCAD/EMTDC. This paper validates the dynamic model with an actual hardware bench test conducted by Southern California Edison's Distributed Energy Resources laboratory. All the fault combinations -- symmetrical and unsymmetrical -- were performed in the laboratory. We compare the simulation results with the bench test results.

  15. Policy Strategies and Paths to promote Sustainable Energy Systems- The dynamic Invert Simulation Tool

    SciTech Connect (OSTI)

    Stadler, Michael; Kranzl, Lukas; Huber, Claus; Haas, Reinhard; Tsioliaridou, Elena

    2006-05-01

    The European Union has established a number of targetsregarding energy efficiency, Renewable Energy Sources (RES) and CO2reductions as the 'GREEN PAPER on Energy Efficiency', the Directive for'promotion of the use of bio-fuels or other renewable fuels fortransport' or 'Directive of the European Parliament of the Council on thepromotion of cogeneration based on a useful heat demand in the internalenergy market'. A lot of the according RES and RUE measures are notattractive for investors from an economic point of view. Thereforegovernmentsall over the world have to spend public money to promotethese technologies/measures to bring them into market. These expenditureshave to be adjusted to budget concerns and should be spent mostefficiently. Therefore, the spent money has to be dedicated totechnologies and efficiency measures with the best yield in CO2 reductionwithout wasting money. The core question: "How can public money - forpromoting sustainable energy systems - be spent most efficiently toreduce GHG-emissions?" has been well investigated by the European projectInvert. In course of this project a simulation tool has been designed toanswer this core question. This paper describes the modelling with theInvert simulation tool and shows the key features necessary forsimulating the energy system. A definition of 'Promotion SchemeEfficiency' is given which allows estimating the most cost effectivetechnologies and/or efficiency measures to reduce CO2 emissions.Investigations performed with the Invert simulation tool deliver anoptimum portfolio mix of technologies and efficiency measures for eachselected region. Within Invert seven European regions were simulated andfor the Austrian case study the detailed portfolio mix is shown andpolitical conclusions are derived.

  16. Kick-Off Meeting Smart Grid Ready Inverters DOE Project DE-EE0005337

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Grid Integration Workshop April 19, 2012 Tucson, AZ 2 © 2012 Electric Power Research Institute, Inc. All rights reserved. Our work program has been to: * Better understand PV output variability * Apply feeder modeling and analysis tools * Consider screening method for connection * Promote a standard communication btw inverter and distribution * Investigate distribution "Hosting Capacity" for variable generation * Provide a forecast to grid operators 3 © 2012 Electric Power

  17. System and method for single-phase, single-stage grid-interactive inverter

    DOE Patents [OSTI]

    Liu, Liming; Li, Hui

    2015-09-01

    The present invention provides for the integration of distributed renewable energy sources/storages utilizing a cascaded DC-AC inverter, thereby eliminating the need for a DC-DC converter. The ability to segment the energy sources and energy storages improves the maintenance capability and system reliability of the distributed generation system, as well as achieve wide range reactive power compensation. In the absence of a DC-DC converter, single stage energy conversion can be achieved to enhance energy conversion efficiency.

  18. Advanced Photovoltaic Inverter Functionality using 500 kW Power Hardware-in-Loop Complete System Laboratory Testing: Preprint

    SciTech Connect (OSTI)

    Mather, B. A.; Kromer, M. A.; Casey, L.

    2013-01-01

    With the increasing penetration of distribution connected photovoltaic (PV) systems, more and more PV developers and utilities are interested in easing future PV interconnection concerns by mitigating some of the impacts of PV integration using advanced PV inverter controls and functions. This paper describes the testing of a 500 kW PV inverter using Power Hardware-in-Loop (PHIL) testing techniques. The test setup is described and the results from testing the inverter in advanced functionality modes, not commonly used in currently interconnected PV systems, are presented. PV inverter operation under PHIL evaluation that emulated both the DC PV array connection and the AC distribution level grid connection are shown for constant power factor (PF) and constant reactive power (VAr) control modes. The evaluation of these modes was completed under varying degrees of modeled PV variability.

  19. EERE Success Story—Novel 3-D Printed Inverters for Electric Vehicles Can Improve EV Power and Efficiency

    Broader source: Energy.gov [DOE]

    Plug-in electric vehicle technologies are on their way to being even lighter, more powerful and more efficient with the advent of power inverters created by 3-D printing and novel semiconductors.

  20. AISI/DOE Technology Roadmap Program: Improved Surface Quality of Exposed Automotive Sheet Steels

    SciTech Connect (OSTI)

    John G. Speer; David K. Matlock; Noel Meyers; Young-Min Choi

    2002-10-10

    Surface quality of sheet steels is an important economic and technical issue for applications such as critical automotive surfaces. This project was therefore initiated to develop a more quantitative methodology for measuring surface imperfections, and to assess their response to forming and painting, particularly with respect to their visibility or invisibility after painting. The objectives were met, and included evaluation of a variety of imperfections present on commercial sheet surfaces or simulated using methods developed in the laboratory. The results are expected to have significant implications with respect to the methodology for assessing surface imperfections, development of quantitative criteria for surface inspection, and understanding and improving key painting process characteristics that influence the perceived quality of sheet steel surfaces.

  1. The future of automotive lithium-ion battery recycling: Charting a sustainable course

    SciTech Connect (OSTI)

    Gaines, Linda

    2014-12-01

    This paper looks ahead, beyond the projected large-scale market penetration of vehicles containing advanced batteries, to the time when the spent batteries will be ready for final disposition. It describes a working system for recycling, using leadacid battery recycling as a model. Recycling of automotive lithium-ion (Li-ion) batteries is more complicated and not yet established because few end-of-life batteries will need recycling for another decade. There is thus the opportunity now to obviate some of the technical, economic, and institutional roadblocks that might arise. The paper considers what actions can be started now to avoid the impediments to recycling and ensure that economical and sustainable options are available at the end of the batteries' useful life.

  2. Power Modulation Investigation for High Temperature (175-200 degrees Celcius) Automotive Application

    SciTech Connect (OSTI)

    McCluskey, F. P.

    2007-04-30

    Hybrid electric vehicles were re-introduced in the late 1990s after a century dominated by purely internal combustion powered engines[1]. Automotive players, such as GM, Ford, DaimlerChrysler, Honda, and Toyota, together with major energy producers, such as BPAmoco, were the major force in the development of hybrid electric vehicles. Most notable was the development by Toyota of its Prius, which was launched in Japan in 1997 and worldwide in 2001. The shift to hybrids was driven by the fact that the sheer volume of vehicles on the road had begun to tax the ability of the environment to withstand the pollution of the internal combustion engine and the ability of the fossil fuel industry to produce a sufficient amount of refined gasoline. In addition, the number of vehicles was anticipated to rise exponentially with the increasing affluence of China and India. Over the last fifteen years, major advances have been made in all the technologies essential to hybrid vehicle success, including batteries, motors, power control and conditioning electronics, regenerative braking, and power sources, including fuel cells. Current hybrid electric vehicles are gasoline internal combustion--electric motor hybrids. These hybrid electric vehicles range from micro-hybrids, where a stop/start system cuts the engine while the vehicle is stopped, and mild hybrids where the stop/start system is supplemented by regenerative braking and power assist, to full hybrids where the combustion motor is optimized for electric power production, and there is full electric drive and full regenerative braking. PSA Peugeot Citroen estimates the increased energy efficiency will range from 3-6% for the micro-hybrids to 15-25% for the full hybrids.[2] Gasoline-electric hybrids are preferred in US because they permit long distance travel with low emissions and high gasoline mileage, while still using the existing refueling infrastructure. One of the most critical areas in which technology has been advancing has been the development of electronics that can operate in the high temperature environments present in hybrid vehicles. The temperatures under the hood for a gasoline-electric hybrid vehicle are comparable to those for traditional internal combustion engines. This is known to be a difficult environment with respect to commercial-grade electronics, as there are surface and ambient temperatures ranging from 125 C to 175 C. In addition, some hybrid drive electronics are placed in even harsher environments, such as on or near the brakes, where temperatures can reach 250 C. Furthermore, number of temperature cycles experienced by electronics in a hybrid vehicle is different from that experienced in a traditional vehicle. A traditional internal combustion vehicle will have the engine running for longer periods, whereas a mild or micro-hybrid engine will experience many more starts and stops.[3] This means that hybrid automotive electronics will undergo more cycles of a potential wider temperature cycle than standard automotive electronics, which in turn see temperature cycles of 2 to 3 times the magnitude of the {Delta}T = 50 C-75 C experienced by commercial-grade electronics. This study will discuss the effects of these harsh environments on the failure mechanisms and ultimate reliability of electronic systems developed for gasoline-electric hybrid vehicles. In addition, it will suggest technologies and components that can reasonably be expected to perform well in these environments. Finally, it will suggest areas where further research is needed or desirable. Areas for further research will be highlighted in bold, italic type. It should be noted that the first area where further research is desirable is in developing a clearer understanding of the actual hybrid automotive electronics environment and how to simulate it through accelerated testing, thus: Developing specific mission profiles and accelerated testing protocols for the underhood environment for hybrid cars, as has previously been done for gasoline-powered vehicles, is an important area for further study.

  3. Engineering-economic analyses of automotive fuel economy potential in the United States

    SciTech Connect (OSTI)

    Greene, D.L.; DeCicco, J.

    2000-02-01

    Over the past 25 years more than 20 major studies have examined the technological potential to improve the fuel economy of passenger cars and light trucks in the US. The majority has used technology/cost analysis, a combination of analytical methods from the disciplines of economics and automotive engineering. In this paper the authors describe the key elements of this methodology, discuss critical issues responsible for the often widely divergent estimates produced by different studies, review the history of its use, and present results from six recent assessments. Whereas early studies tended to confine their scope to the potential of proven technology over a 10-year time period, more recent studies have focused on advanced technologies, raising questions about how best to include the likelihood of technological change. The paper concludes with recommendations for further research.

  4. EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (ARRA) to Delphi Automotive Systems, Limited Liability Corporation (LLC) (Delphi). Delphi proposes to construct a laboratory referred to as the Delphi Kokomo, IN Corporate Technology Center (Delphi CTC Project) and retrofit a manufacturing facility. The project would advance DOEs Vehicle Technology Program through manufacturing and testing of electric-drive vehicle components as well as assist in the nations economic recovery by creating manufacturing jobs in the United States. The Delphi CTC Project would involve the construction and operation of a 10,700 square foot (ft2) utilities building containing boilers and heaters and a 70,000 ft2 engineering laboratory, as well as site improvements (roads, parking, buildings, landscaping,and lighting).

  5. Automotive Stirling engine Mod I design-review report. Volume II

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    Volume No. 2 of the Automotive Stirling Engine Mod I Design Review Report contains descriptions of the operating principles, performance requirements and design details of the auxiliaries and control systems for the MOD I Stirling engine system. These components and sub-systems have the following main functions: provide the required fuel and air flows for a well controlled combustion process, generating heat to the Stirling cycle; provide a driver acceptable method for controlling the power output of the engine; provide adequate lubrication and cooling water circulation; generate the electric energy required for engine and vehicle operation; provide a driver acceptable method for starting, stopping and monitoring the engine; and provide a guard system, that protects the engine at component or system malfunction.

  6. Review of alternate automotive engine fuel economy. Final report January-October 78

    SciTech Connect (OSTI)

    Cole, D.; Bolt, J.A.; Huber, P.; Taylor, T. Jr.

    1980-11-01

    This study assessed the potential of alternate automotive engines to meet the fuel economy goals and emission levels of the 1980-1990 period. As part of NHTSA's continuing research in support of the Department of Transportation fuel economy activities, this study reviewed those developments offering viable substitutes for the current spark ignition engine systems. Categories assessed included stratified charge, diesels, turbo charging, rotary/Wankel engines, and the developmental gas turbine and Stirling cycle engines. Results of past and on-going research through 1978 were reviewed along with the development and production status of various alternate engine technologies proposed for automobiles and light trucks through the 1980s. Assessment was then made of the potential fuel economy improvement as a percentage of 1978 baseline data.

  7. The future of automotive lithium-ion battery recycling: Charting a sustainable course

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaines, Linda

    2014-12-01

    This paper looks ahead, beyond the projected large-scale market penetration of vehicles containing advanced batteries, to the time when the spent batteries will be ready for final disposition. It describes a working system for recycling, using leadacid battery recycling as a model. Recycling of automotive lithium-ion (Li-ion) batteries is more complicated and not yet established because few end-of-life batteries will need recycling for another decade. There is thus the opportunity now to obviate some of the technical, economic, and institutional roadblocks that might arise. The paper considers what actions can be started now to avoid the impediments to recycling andmoreensure that economical and sustainable options are available at the end of the batteries' useful life.less

  8. CRADA Final Report: Application of Dual-Mode Inverter Control to Commercially Available Radial-Gap Mermanent Magnet Motors - Vol. I

    SciTech Connect (OSTI)

    McKeever, John W; Lawler, Jack; Downing, Mark; Stahlhut, Ronnie D; Bremmer, R.; Shoemaker, J. M.; Seksarian, A. K.; Poore, B.; Lutz, Jon F

    2006-05-01

    John Deere and Company (Deere), their partner, UQM Technologies, Inc. (UQM), and the Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center (PEEMRC) recently completed work on the cooperative research and development agreement (CRADA) Number ORNL 04-0691 outlined in this report. CRADA 04-0691 addresses two topical issues of interest to Deere: (1) Improved characterization of hydrogen storage and heat-transfer management; and (2) Potential benefits from advanced electric motor traction-drive technologies. This report presents the findings of the collaborative examination of potential operational and cost benefits from using ORNL/PEEMRC dual-mode inverter control (DMIC) to drive permanent magnet (PM) motors in applications of interest to Deere. DMIC was initially developed and patented by ORNL to enable PM motors to be driven to speeds far above base speed where the back-electromotive force (emf) equals the source voltage where it is increasingly difficult to inject current into the motor. DMIC is a modification of conventional phase advance (CPA). DMIC's dual-speed modes are below base speed, where traditional pulse-width modulation (PWM) achieves maximum torque per ampere (amp), and above base speed, where six-step operation achieves maximum power per amp. The modification that enables DMIC adds two anti-parallel thyristors in each of the three motor phases, which consequently adds the cost of six thyristors. Two features evaluated in this collaboration with potential to justify the additional thyristor cost were a possible reduction in motor cost and savings during operation because of higher efficiency, both permitted because of lower current. The collaborative analysis showed that the reduction of motor cost and base cost of the inverter was small, while the cost of adding six thyristors was greater than anticipated. Modeling the DMIC control displayed inverter efficiency gains due to reduced current, especially under light load and higher speed. This current reduction, which is the salient feature of DMIC, may be significant when operating duty cycles have low loads at high frequencies. Reduced copper losses make operation more efficient thereby reducing operating costs. In the Deere applications selected for this study, the operating benefit was overshadowed by the motor's rotational losses. Rotational losses of Deere 1 and Deere 2 dominate the overall drive efficiency so that their reduction has the greatest potential to improve performance. A good follow-up project would be to explore cost erective ways to reduce the rotational losses buy 66%. During this analysis it has been shown that, for a PM synchronous motor (PMSM), the DMIC's salient feature is its ability to minimize the current required to deliver a given power. The root-mean-square (rms) current of a motor is determined by the speed, power, motor drive parameters, and controls as I{sub rms} = (n, P, motor drive parameters, controls), where n is the relative speed, {omega}/{omega}{sub base} = {Omega}/{Omega}{sub base}, {omega} is the mechanical frequency, {Omega} is the electrical frequency, and P is the power. The characteristic current is the rms current at infinite speed, when all resistance and rotational losses are neglected. Expressions have been derived for the characteristic currents of PMSMs when the motor is controlled by CPA and by DMIC. The expression for CPA characteristic current is I{sub n{yields}{infinity}}{sup CPA} = nE{sub base}/X = nE{sub base}/n{Omega}{sub b}L = E{sub base}/{Omega}{sub b}L, which is strictly a function of the machine parameters, back-emf at base speed, base speed electrical frequency, and inductance. At high speeds, the rms current tends to remain constant even when the load-power requirements are reduced. The expression for DMIC characteristic current is I{sub n{yields}{infinity}}{sup DMIC} = P/3V{sub max} = P{pi}/3{radical}2V{sub dc}, which has nothing to do with machine parameters. This interesting result shows that at high speeds under DMIC control, the rms current diminis

  9. Self-Propagating Molecular Assemblies as Interlayers for Efficient Inverted Build-Heterojunction Solar Cells

    SciTech Connect (OSTI)

    Motiei, L.; Yao, Y.; Choudhury, J.; Yan, Hao; Marks, Tobin J.; Van de Boom, M. E.; Facchetti, Antonio

    2010-09-15

    Here we report the first use of self-propagating molecule-based assemblies (SPMAs) as efficient electron-transporting layers for inverted organic photovoltaic (OPV) cells. P3HT-PCBM cells functionalized with optimized SPMAs exhibit power conversion efficiencies approaching 3.6% (open circuit voltage = 0.6 V) vs 1.5% and 2.4% for the bare ITO and Cs{sub 2}CO{sub 3}-coated devices, respectively. The dependence of cell response parameters on interlayer thickness is investigated, providing insight into how to further optimize device performance.

  10. Highly efficient inverted organic solar cells using amino acid modified indium tin oxide as cathode

    SciTech Connect (OSTI)

    Li, Aiyuan; Nie, Riming; Deng, Xianyu; Wei, Huaixin; Li, Yanqing; Tang, Jianxin; Zheng, Shizhao; Wong, King-Young

    2014-03-24

    In this paper, we report that highly efficient inverted organic solar cells were achieved by modifying the surface of indium tin oxide (ITO) using an amino acid, Serine (Ser). With the modification of the ITO surface, device efficiency was significantly enhanced from 0.63% to 4.17%, accompanied with an open circuit voltage (Voc) that was enhanced from 0.30?V to 0.55?V. Ultraviolet and X-ray photoelectron spectroscopy studies indicate that the work function reduction induced by the amino acid modification resulting in the decreased barrier height at the ITO/organic interface played a crucial role in the enhanced performances.

  11. Inverter Load Rejection Over-Voltage Testing: SolarCity CRADA Task 1a Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inverter Load Rejection Over-Voltage Testing SolarCity CRADA Task 1a Final Report A. Nelson, A. Hoke, and S. Chakraborty National Renewable Energy Laboratory J. Chebahtah, T. Wang, and B. Zimmerly SolarCity Corporation Technical Report NREL/TP-5D00-63510 February 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable

  12. Emission in a SnS{sub 2} inverted opaline photonic crystal

    SciTech Connect (OSTI)

    Romanov, S. G.; Maka, T.; Sotomayor Torres, C. M.; Mueller, M.; Zentel, R.

    2001-08-06

    The photoluminescence of a dye embedded in the three-dimensional SnS{sub 2} inverted opal has been studied. Changes of the emission spectrum compared with the free-space dye emission was observed in the stop-band frequency range in accord with reflectance/transmission spectra of this photonic crystal. The angular-dependent component, due to the Bragg stop band, and the angular-independent component, which is, possibly, related to the minimum in the density of photon states, have been distinguished in the dye emission spectrum. {copyright} 2001 American Institute of Physics.

  13. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    SciTech Connect (OSTI)

    Hale, Steve

    2013-09-11

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: 2016 CAF standards. Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: Functionality of new lightweighting materials to meet present safety requirements. Manufacturability using new lightweighting materials. Cost reduction for the development and use of new lightweighting materials. The automotive industrys future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: Establish design criteria methodology to identify the best materials for lightweighting. Employ state-of-the-art design tools for optimum material development for their specific applications. Match new manufacturing technology to production volume. Address new process variability with new production-ready processes.

  14. All auto shredding: evaluation of automotive shredder residue generated by shredding only vehicles.

    SciTech Connect (OSTI)

    Duranceau, C. M.; Spangenberger, J. S.

    2011-09-26

    A well developed infrastructure exists for the reuse and recycling of automotive parts and materials. At the end of a vehicle's useful life many parts are removed and sold for reuse and fluids are recovered for recycling or proper disposal. What remains is shredded, along with other metal bearing scrap such as home appliances, demolition debris and process equipment, and the metals are separated out and recycled. The remainder of the vehicle materials is call shredder residue which ends up in the landfill. As energy and natural resources becomes more treasured, increased effort has been afforded to find ways to reduce energy consumption and minimize the use of our limited resources. Many of the materials found in shredder residue could be recovered and help offset the use of energy and material consumption. For example, the energy content of the plastics and rubbers currently landfilled with the shredder residue is equivalent to 16 million barrels of oil per year. However, in the United States, the recovered materials, primarily polymers, cannot be recycled due to current regulatory barriers which preclude the re-introduction into commerce of certain materials because of residual contamination with substances of concern (SOCs) such as polychlorinated biphenyls (PCBs). The source of the PCBs is not well understood. Old transformers, capacitors, white goods and ballasts from lighting fixtures are likely contributing factors. The project was designed to evaluate whether vehicles of varying age and manufacturing origin contribute to the PCB content in shredder residue. Additionally, the project was designed to determine if there are any trends in material composition of the shredder residue from varied age and manufacturing groups. This information would aid in future material recovery facility strategy and design. The test utilized a newly installed shredder plant to shred four categories of automobiles. The categories were defined by vehicle age and the manufacturing company and location. Each category of vehicles was processed individually through the shredder plant and the resulting shredder residue was analyzed for its materials composition and presence of PCBs and leachable metals. The results show that shredder residue from all vehicle categories tested are not significant contributors of PCBs and leachable metals. It was evident that leachable cadmium levels have decreased in newer vehicles. The composition of the shredder residue from each of the four categories is similar to the others. In addition, these compositions are approximately equal to the composition of typical shredder residues, not limited to automotive materials.

  15. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems

    SciTech Connect (OSTI)

    Schauder, C.

    2014-03-01

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

  16. On the dispersion relation of the transit time instability in inverted fireballs

    SciTech Connect (OSTI)

    Gruenwald, J.

    2014-08-15

    Recently discovered inverted fireballs are non-linear plasma phenomena, which are formed in hollow grid anodes with high transparency in an existing background plasma. If a sufficiently large potential is applied, accelerated electrons from the bulk start to oscillate through the grid. Experimental investigations have shown that they produce different types of plasma instabilities. One of those oscillations is a transit time instability which originates from strong electron beams that travel through the inverted fireball. This type of instability is similar to vircator reflex oscillations and produces radio frequency waves. Hence, it is suitable to convert DC signals into signals oscillating in the MHz range. This paper analyses the dispersion relation of the transit time instability for three different plasma regimes. The regimes can be divided into a collision less regime, a regime with high collisionality and one in between those former two. It is demonstrated that the plasma properties of the surrounding background plasma have a strong influence on the behavior of the instability itself.

  17. Theoretical Study of the Inverting Mechanism in a Processive Cellobiohydrolase with Quantum Mechanical Calculations

    SciTech Connect (OSTI)

    Kim, S.; Payne, C. M.; Himmel, M. E.; Crowley, M. F.; Paton, R. S.; Beckham, G. T.

    2012-01-01

    The Hypocrea jecorina Family 6 cellobiohydrolase (Cel6A) is one of most efficient enzymes for cellulose deconstruction to soluble sugars and is thus of significant current interest for the growing biofuels industry. Cel6A is known to hydrolyze b(1,4)-glycosidic linkages in cellulose via an inverting mechanism, but there are still questions that remain regarding the role of water and the catalytic base. Here we study the inverting, single displacement, hydrolytic reaction mechanism in Cel6A using density functional theory (DFT) calculations. The computational model used to follow the reaction is a truncated active site model with several explicit waters based on structural studies of H. jecorina Cel6A. Proposed mechanisms are evaluated with several density functionals. From our calculations, the role of the water in nucleophilic attack on the anomeric carbon, and the roles of several residues in the active site loops are elucidated explicitly for the first time. We also apply quantum mechanical calculations to understand the proton transfer reaction which completes the catalytic cycle.

  18. Accelerating development of advanced inverters : evaluation of anti-islanding schemes with grid support functions and preliminary laboratory demonstration.

    SciTech Connect (OSTI)

    Neely, Jason C.; Gonzalez, Sigifredo; Ropp, Michael; Schutz, Dustin

    2013-11-01

    The high penetration of utility interconnected photovoltaic (PV) systems is causing heightened concern over the effect that variable renewable generation will have on the electrical power system (EPS). These concerns have initiated the need to amend the utility interconnection standard to allow advanced inverter control functionalities that provide: (1) reactive power control for voltage support, (2) real power control for frequency support and (3) better tolerance of grid disturbances. These capabilities are aimed at minimizing the negative impact distributed PV systems may have on EPS voltage and frequency. Unfortunately, these advanced control functions may interfere with island detection schemes, and further development of advanced inverter functions requires a study of the effect of advanced functions on the efficacy of antiislanding schemes employed in industry. This report summarizes the analytical, simulation and experimental work to study interactions between advanced inverter functions and anti-islanding schemes being employed in distributed PV systems.

  19. A comparative study of inverted-opal titania photonic crystals made from polymer and silica colloidal crystal templates

    SciTech Connect (OSTI)

    Kuai, S.-L.; Truong, V.-V.; Hache, Alain; Hu, X.-F.

    2004-12-01

    Photonic crystals with an inverted-opal structure using polymer and silica colloidal crystal templates were prepared and compared. We show that the behaviors of the template during the removal process and heat treatment are determinant factors on the crystal formation. While both templates result in ordered macroporous structures, the optical quality in each case is quite different. The removal of the polymer template by sintering causes a large shrinkage of the inverted framework and produces a high density of cracks in the sample. With a silica template, sintering actually improves the quality of the inverted structure by enhancing the template's mechanical stability, helping increase the filling fraction, and consolidating the titania framework. The role of the other important factors such as preheating and multiple infiltrations is also investigated.

  20. Use of High Magnetic Fields to Improve Material Properties for Hydraulics, Automotive and Truck Components

    SciTech Connect (OSTI)

    Ludtka, Gerard Michael; Ludtka, Gail Mackiewicz-; Wilgen, John B; Kisner, Roger A; Ahmad, Aquil

    2010-08-01

    In this CRADA, research and development activities were successfully conducted on magnetic processing effects for the purpose of manipulating microstructure and the application specific performance of three alloys provided by Eaton (alloys provided were: carburized steel, plain low carbon steel and medium carbon spring steel). Three specific industrial/commercial application areas were considered where HMFP can be used to provide significant energy savings and improve materials performance include using HMFP to: 1.) Produce higher material strengths enabling higher torque bearing capability for drive shafts and other motor components; 2.) Increase the magnetic response in an iron-based material, thereby improving its magnetic permeability resulting in improved magnetic coupling and power density, and 3.) Improve wear resistance. The very promising results achieved in this endeavor include: 1.) a significant increase in tensile strength and a major reduction in volume percent retained austenite for the carburized alloy, and 2.) a substantial improvement in magnetic perm respect to a no-field processed sample (which also represents a significant improvement over the nominal conventional automotive condition of no heat treatment). The successful completion of these activities has resulted in the current 3-year CRADA No. NFE-09-02522 Prototyping Energy Efficient ThermoMagnetic and Induction Hardening for Heat Treat and Net Shape Forming Applications .

  1. Technical assessment of compressed hydrogen storage tank systems for automotive applications.

    SciTech Connect (OSTI)

    Hua, T. Q.; Ahluwalia, R. K.; Peng, J. K.; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J.

    2011-02-09

    The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar ({approx}5000 psi) and 700 bar ({approx}10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%. These results are summarized.

  2. Design of experiments and springback prediction for AHSS automotive components with complex geometry

    SciTech Connect (OSTI)

    Asgari, A.; Pereira, M.; Rolfe, B.; Dingle, M.; Hodgson, P.

    2005-08-05

    With the drive towards implementing Advanced High Strength Steels (AHSS) in the automotive industry; stamping engineers need to quickly answer questions about forming these strong materials into elaborate shapes. Commercially available codes have been successfully used to accurately predict formability, thickness and strains in complex parts. However, springback and twisting are still challenging subjects in numerical simulations of AHSS components. Design of Experiments (DOE) has been used in this paper to study the sensitivity of the implicit and explicit numerical results with respect to certain arrays of user input parameters in the forming of an AHSS component. Numerical results were compared to experimental measurements of the parts stamped in an industrial production line. The forming predictions of the implicit and explicit codes were in good agreement with the experimental measurements for the conventional steel grade, while lower accuracies were observed for the springback predictions. The forming predictions of the complex component with an AHSS material were also in good correlation with the respective experimental measurements. However, much lower accuracies were observed in its springback predictions. The number of integration points through the thickness and tool offset were found to be of significant importance, while coefficient of friction and Young's modulus (modeling input parameters) have no significant effect on the accuracy of the predictions for the complex geometry.

  3. Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.

    SciTech Connect (OSTI)

    Ahluwalia, R.; Hua, T.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Gardiner, M.; Nuclear Engineering Division; TIAX LLC; U.S. DOE

    2010-05-01

    On-board and off-board performance and cost of cryo-compressed hydrogen storage are assessed and compared to the targets for automotive applications. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm. The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) or by central electrolysis. The main conclusions are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity, mid-term target for system volumetric capacity, and the target for hydrogen loss during dormancy under certain conditions of minimum daily driving. However, the high-volume manufacturing cost and the fuel cost for the SMR hydrogen production scenario are, respectively, 2-4 and 1.6-2.4 times the current targets, and the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

  4. DOE PLANT-WIDE ENERGY ASSESSMENT RESULTS RELATED TO THE U. S. AUTOMOTIVE INDUSTRY

    SciTech Connect (OSTI)

    Kelly Kissock, Arvind Thekdi, Len Bishop

    2006-01-05

    Forty-nine plant-wide energy efficiency assessments have been undertaken under sponsorship of the U.S. Department of Industrial Technologies Program. Plant-wide assessments are comprehensive, systematic investigations of plant energy efficiency, including plant utility systems and process operations. Assessments in industrial facilities have highlighted opportunities for implementing best practices in industrial energy management, including the adoption of new, energy-efficient technologies and process and equipment improvements. Total annual savings opportunities of $201 million have been identified from the 40 completed assessments. Many of the participating industrial plants have implemented efficiency-improvement projects and already have realized total cost savings of more than $81 million annually. This paper provides an overview of the assessment efforts undertaken and presents a summary of the major energy and cost savings identified to date. The paper also discusses specific results from assessments conducted at four plants in the automotive manufacturing operations and supporting industries. These particular assessments were conducted at facilities that produce engine castings, plastic films used for glass laminates, forged components, and at a body spray painting plant.

  5. Control studies of an automotive turbocharged diesel engine with variable geometry turbine

    SciTech Connect (OSTI)

    Winterbone, D.E.; Jai In, S.

    1988-01-01

    Major advances are being made in engine hardware, control theories and microcomputer technology. The application of advanced control and monitoring techniques to engines should enable them to meet all the restrictions imposed upon them while they operate to their full potential. Variable geometry turbocharging of automotive diesel engines is a good example of a case where the control implications need to be considered carefully. This paper reports a technique for developing the dynamic characteristics of turbocharged diesel engines with variable geometry turbine and compares the results with measurements obtained on an engine. It is the first step in the design process for a true, dynamic, multivariable controller. Most current systems are simply scheduling devices with little understanding or consideration of possible interactions between various control loops. A non-linear simulation model for a turbocharged diesel engine was used to investigate the performance of the engine. Major features of the program, aspects of constructing a model for control purposes and identification procedures of the engine dynamic are discussed.

  6. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    SciTech Connect (OSTI)

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.; Chun, Jaehun; Ronnebro, Ewa

    2015-09-01

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonication in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.

  7. Device characterization for design optimization of 4 junction inverted metamorphic concentrator solar cells

    SciTech Connect (OSTI)

    Geisz, John F.; France, Ryan M.; Steiner, Myles A.; Friedman, Daniel J.; Garca, Ivn

    2014-09-26

    Quantitative electroluminescence (EL) and luminescent coupling (LC) analysis, along with more conventional characterization techniques, are combined to completely characterize the subcell JV curves within a fourjunction (4J) inverted metamorphic solar cell (IMM). The 4J performance under arbitrary spectral conditions can be predicted from these subcell JV curves. The internal radiative efficiency (IRE) of each junction has been determined as a function of current density from the external radiative efficiency using optical modeling, but this required the accurate determination of the individual junction current densities during the EL measurement as affected by LC. These measurement and analysis techniques can be applied to any multijunction solar cell. The 4J IMM solar cell used to illustrate these techniques showed excellent junction quality as exhibited by high IRE and a one-sun AM1.5D efficiency of 36.3%. This device operates up to 1000 suns without limitations due to any of the three tunnel junctions.

  8. Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.

    SciTech Connect (OSTI)

    Ahluwalia, R. K.; Hua, T. Q.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Nuclear Engineering Division; TIAX LLC

    2010-03-03

    On-board and off-board performance and cost of cryo-compressed hydrogen storage has been assessed and compared to the DOE 2010, 2015 and ultimate targets for automotive applications. The Gen-3 prototype system of Lawrence Livermore National Laboratory was modeled to project the performance of a scaled-down 5.6-kg usable hydrogen storage system. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers 1.5 kg/min of liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm (4000 psi). The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) and by central electrolysis using electricity from renewable sources. The main conclusions from the assessment are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity and the 2015 target for system volumetric capacity (see Table I). The system compares favorably with targets for durability and operability although additional work is needed to understand failure modes for combined pressure and temperature cycling. The system may meet the targets for hydrogen loss during dormancy under certain conditions of minimum daily driving. The high-volume manufacturing cost is projected to be 2-4 times the current 2010 target of $4/kWh. For the reference conditions considered most applicable, the fuel cost for the SMR hydrogen production and liquid H{sub 2} delivery scenario is 60%-140% higher than the current target of $2-$3/gge while the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

  9. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect (OSTI)

    Greene, D.L. ); Duleep, K.G. )

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  10. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect (OSTI)

    Greene, D.L.; Duleep, K.G.

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer`s surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer`s surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  11. A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells

    SciTech Connect (OSTI)

    Brown, L.F.

    1996-03-01

    Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at some point. With the same two exceptions, all processes require water-gas shift reactors of significant size. All processes require low-sulfur or zero-sulfur fuels, and this may add cost to some of them. Fuels produced by steam reforming contain {approximately}70-80% hydrogen, those by partial oxidation {approximately}35-45%. The lower percentages may adversely affect cell performance. Theoretical input energies do not differ markedly among the various processes for generating hydrogen from organic-chemical fuels. Pure hydrogen has severe distribution and storage problems. As a result, the steam reforming of methanol is the leading candidate process for on-board generation of hydrogen for automotive propulsion. If methanol unavailability or a high price demands an alternative process, steam reforming appears preferable to partial oxidation for this purpose.

  12. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials

    SciTech Connect (OSTI)

    Beale, Andrew M.; Gao, Feng; Lezcano-Gonzalez, Ines; Peden, Charles HF; Szanyi, Janos

    2015-10-05

    The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx. Among the number of lean-NOx reduction technologies, selective catalytic reduction (SCR) of NOx by NH3 over Cu- and Fe-ion exchanged zeolite catalysts has been extensively studied over the past 30+ years. Despite the significant advances in developing a viable practical zeolite-based catalyst for lean NOx reduction, the insufficient hydrothermal stabilities of the zeolite structures considered cast doubts about their real-world applicability. During the past decade a renewed interest in zeolite-based lean NOx reduction was spurred by the discovery of the very high activity of Cu-SSZ-13 (and the isostructural Cu-SAPO-34) in the NH3 SCR of NOx. These new, small-pore zeolite-based catalysts not only exhibited very high NOx conversion and N2 selectivity, but also exhibited exceptional high hydrothermal stability at high temperatures. In this review we summarize the key discoveries of the past ~5 years that lead to the introduction of these catalysts into practical application. The review first briefly discusses the structure and preparation of the CHA structure-based zeolite catalysts, and then summarizes the key learnings of the rather extensive (but not complete) characterisation work. Then we summarize the key findings of reaction kinetics studies, and provide some mechanistic details emerging from these investigations. At the end of the review we highlight some of the issues that are still need to be addressed in automotive exhaust control catalysis. Funding A.M.B. and I.L.G. would like to thank EPSRC for funding. F.G., C.H.F.P. and J.Sz. gratefully acknowledge financial support from the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program.

  13. InGaP/GaAs Inverted Dual Junction Solar Cells For CPV Applications Using Metal-Backed Epitaxial Lift-Off

    SciTech Connect (OSTI)

    Bauhuis, Gerard J.; Mulder, Peter; Haverkamp, Erik J.; Schermer, John J.; Nash, Lee J.; Fulgoni, Dominic J. F.; Ballard, Ian M.; Duggan, Geoffrey

    2010-10-14

    The epitaxial lift-off (ELO) technique has been combined with inverted III-V PV cell epitaxial growth with the aim of employing thin film PV cells in HCPV systems. In a stepwise approach to the realization of an inverted triple junction on a MELO platform we have first grown a GaAs single junction PV cell to establish the basic layer release process and cell processing steps followed by the growth, fabrication and test of an inverted InGaP/GaAs dual junction structure.

  14. The California greenhouse gas initiative and its implications to the automotive industry

    SciTech Connect (OSTI)

    Smith, B. C.; Miller, R. T.; Center for Automotive Research

    2006-05-31

    CAR undertook this investigation to better understand the costs and challenges of a local (state) regulation necessitating the implementation of alternative or advanced powertrain technology. CAR will attempt to add insight into the challenges that local regulations present to the automotive industry, and to contribute further to the discussion of how advanced powertrain technology may be used to meet such regulation. Any local law that (directly or indirectly) affects light duty motor vehicle fuel economy creates what in effect is a specialty market for powertrain technology. As such these small markets present significant challenges for automotive manufacturers. First, a small market with unique standards presents significant challenges to an industry that has sustained growth by relying on large volumes to achieve scale economies and deliver products at a cost acceptable to the consumer. Further, the challenges of the additional technology make it likely that any powertrain capable of meeting the stringent emissions standards will include costly additional components, and thus will be more costly to manufacture. It is likely that manufacturers would consider the following actions as steps to deliver products to meet the pending California regulatory requirements anticipated as a result of prior California legislation: (1) Substituting more fuel efficient vehicles: Bring in more efficient vehicles from global operations, while likely dropping existing domestic products. (2) Substituting powertrains: Add existing downsized engines (i.e. turbocharged versions, etc.) into California market-bound vehicles. (3) Powertrain enhancements: Add technology to current engine and transmission offerings to improve efficiency and reduce emissions. (4) Incorporating alternative powertrains into existing vehicle platforms: Develop a hybrid or other type of powertrain for an existing vehicle. (5) New powertrains and new platforms: Develop vehicles specifically intended to incorporate new powertrain technologies, materials and/or design (e.g. the General Motors EV1 or the Toyota Prius). These five actions represent the gamut from the least complicated solution to the most complex. They also generally represent the least expensive response to the most expensive. It is possible that the least expensive responses may be least likely to meet market demands while achieving required GHG emission limits. At the same time, the most expensive option may produce a vehicle that satisfies the GHG reduction requirements and meets some consumer requirements, but is far too costly to manufacture and sell profitably. The response of a manufacturer would certainly have to take market size, consumer acceptance, technology implication and cost, as well as internal capacities and constraints, into consideration. It is important to understand that individual companies may respond differently in the short term. However, it is probable that there would be a more consistent industry-wide response in the longer term. Options 1 and 2 present the simplest responses. A company may reach into its global portfolio to deliver vehicles that are more fuel-efficient. These vehicles are usually much smaller and significantly less powerful than current U.S. offerings. Industry respondents indicated that such a strategy may be possible but would likely be met with less than positive reaction from the buying public. A general estimate for the cost to homologize a vehicle--that is, to prepare an existing vehicle for entry into the United States provided all business conditions were met (reasonable product, capacity availability, etc.), would be approximately $50 million. Assuming an estimated cost for homologation to meet U.S. standards of $50 million and a 20,000 vehicle per year sales volume in California, the company would then incur a $2,500 per-vehicle cost to bring them into the market. A manufacturer may also choose to incorporate a more efficient powertrain into a vehicle already sold in the market. The costs associated with such a strategy would include reengineering the vehicle engine compartment to accept the new powertrain, and developing, engineering and manufacturing those parts unique to the vehicle. Costs would also be incurred to achieve emission certification. Total costs per vehicle, if sold only in California would be similar to nationally averaged costs per vehicle when bringing a new vehicle into the national market. While companies may consider the importation of a more fuel-efficient vehicle from their current global portfolio, or the addition of a powertrain from another market, it is likely that these would be seen as stop-gap responses to the legislation. Many of the candidate vehicles and powertrains would likely not meet California consumer expectations, and may not provide enough fuel savings to achieve more severe emission regulations, thus offering only a step toward any solution.

  15. New Switches for Utility-Scale Inverters: First In-Class Demonstration of a Completely New Type of SiC Bipolar Switch (15kV-20kV) for Utility-Scale Inverters

    SciTech Connect (OSTI)

    2011-12-31

    Solar ADEPT Project: The SiCLAB is developing a new power switch for utility-scale PV inverters that would improve the performance and significantly reduce the size, weight, and energy loss of PV systems. A power switch controls the electrical energy flowing through an inverter, which takes the electrical current from a PV solar panel and converts it into the type and amount of electricity that is compatible with the electric grid. SiCLAB is using silicon carbide (SiC) semiconductors in its new power switches, which are more efficient than the silicon semiconductors used to conduct electricity in most conventional power switches today. Switches with SiC semiconductors can operate at much higher temperatures, as well as higher voltage and power levels than silicon switches. SiC-based power switches are also smaller than those made with silicon alone, so they result in much smaller and lighter electrical devices. In addition to their use in utility-scale PV inverters, SiCLABs new power switches can also be used in wind turbines, railways, and other smart grid applications.

  16. Three-Phase Modular Cascaded H-Bridge Multilevel Inverter with Individual MPPT for Grid-Connected Photovoltaic Systems

    SciTech Connect (OSTI)

    Xiao, Bailu; Hang, Lijun; Riley, Cameron; Tolbert, Leon M; Ozpineci, Burak

    2013-01-01

    A three-phase modular cascaded H-bridge multilevel inverter for a grid-connected photovoltaic (PV) system is presented in this paper. To maximize the solar energy extraction of each PV string, an individual maximum power point tracking (MPPT) control scheme is applied, which allows the independent control of each dc-link voltage. PV mismatches may introduce unbalanced power supplied to the three-phase system. To solve this issue, a control scheme with modulation compensation is proposed. The three-phase modular cascaded multilevel inverter prototype has been built. Each H-bridge is connected to a 185 W solar panel. Simulation and experimental results are presented to validate the proposed ideas.

  17. Real Time Selective Harmonic Minimization for Multilevel Inverters Connected to Solar Panels Using Artificial Neural Network Angle Generation

    SciTech Connect (OSTI)

    Tolbert, Leon M; Ozpineci, Burak; Filho, Faete; Cao, Yue

    2011-01-01

    This work approximates the selective harmonic elimination problem using artificial neural networks (ANNs) to generate the switching angles in an 11-level full-bridge cascade inverter powered by five varying dc input sources. Each of the five full bridges of the cascade inverter was connected to a separate 195-W solar panel. The angles were chosen such that the fundamental was kept constant and the low-order harmonics were minimized or eliminated. A nondeterministic method is used to solve the system for the angles and to obtain the data set for the ANN training. The method also provides a set of acceptable solutions in the space where solutions do not exist by analytical methods. The trained ANN is a suitable tool that brings a small generalization effect on the angles' precision and is able to perform in real time (50-/60-Hz time window).

  18. CUORE and beyond: Bolometric techniques to explore inverted neutrino mass hierarchy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Artusa, D. R.; Avignone, F. T.; Azzolini, O.; Balata, M.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; et al

    2015-03-24

    The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of 130Te. With 741 kg of TeO2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, CUORE will be one of the most competitive neutrinoless double beta decay experiments on the horizon. With five years of live time, CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6 × 1026 y at 1σ (9.5 × 1025 y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40–100 meVmore » (50–130 meV). Further background rejection with auxiliary light detector can significantly improve the search sensitivity and competitiveness of bolometric detectors to fully explore the inverted neutrino mass hierarchy with 130Te and possibly other double beta decay candidate nuclei.« less

  19. Temperature-Dependent Measurements of an Inverted Metamorphic Multijunction (IMM) Solar Cell: Preprint

    SciTech Connect (OSTI)

    Steiner, M. A.; Geisz, J. F.; Friedman, D. J.; Olavarria, W. J.; Duda, A.; Moriarty, T. E.

    2011-07-01

    The inverted metamorphic multijunction (IMM) solar cell has demonstrated efficiencies as high as 40.8% at 25 degrees C and 326 suns concentration. The actual operating temperature in a commercial module, however, is likely to be as much as 50-70 degrees C hotter, reaching as high as 100 degrees C. In order to be able to evaluate the cell performance under these real-world operating conditions, we have measured the open-circuit voltage, short-circuit current density and efficiency at temperatures up to 125 degrees C and concentrations up to 1000 suns, as well as the temperature coefficients of these parameters. Spectral response and one-sun current-voltage characteristics were measured by carefully adjusting the incident spectrum to selectively current-limit the different subcells. Concentrator measurements were taken on a pulsed solar simulator to minimize any additional heating due to the high intensity illumination. We compare our measured values to predictions based on detailed models of various triple junction solar cells. By choosing the optimum bandgaps for high temperature operation, the IMM can potentially result in greater energy production and lower temperature sensitivity under real operating conditions than a Ge-based solar cell.

  20. Photo annealing effect on p-doped inverted organic solar cell

    SciTech Connect (OSTI)

    Lafalce, Evan; Toglia, Patrick; Lewis, Jason E.; Jiang, Xiaomei

    2014-06-28

    We report the transient positive photo annealing effect in which over 600% boost of power conversion efficiency was observed in inverted organic photovoltaic devices (OPV) made from P3HT/PCBM by spray method, after 2?hrs of constant solar AM 1.5 irradiation at low temperature. This is opposite to usual photodegradation of OPV, and cannot be explained by thermal activation alone since the mere temperature effect could only account for 30% of the enhancement. We have investigated the temperature dependence, cell geometry, oxygen influence, and conclude that, for p-doped active layer at room temperature, the predominant mechanism is photo-desorption of O{sub 2}, which eliminates electron traps and reduces space charge screening. As temperature decreases, thermal activation and deep trap-state filling start to show noticeable effect on the enhancement of photocurrent at intermediate low temperature (T?=?125?K). At very low temperature, the dominant mechanism for photo annealing is trap-filling, which significantly reduces recombination between free and trapped carriers. At all temperature, photo annealing effect depends on illumination direction from cathode or anode. We also explained the large fluctuation of photocurrent by the capture/reemit of trapped electrons from shallow electron traps of O{sub 2}{sup -} generated by photo-doping. Our study has demonstrated the dynamic process of photo-doping and photo-desorption, and shown that photo annealing in vacuum can be an efficient method to improve OPV device efficiency.

  1. Field Performance of Inverter-Driven Heat Pumps in Cold Climates

    SciTech Connect (OSTI)

    Williamson, James; Aldrich, Robb

    2015-08-19

    Traditionally, air-source heat pumps (ASHPs) have been used more often in warmer climates; however, some new ASHPs are gaining ground in colder areas. These systems operate at subzero (Fahrenheit) temperatures and many do not include backup electric resistance elements. There are still uncertainties, however, about capacity and efficiency in cold weather. Also, questions such as how cold is too cold? do not have clear answers. These uncertainties could lead to skepticism among homeowners; poor energy savings estimates; suboptimal system selection by heating, ventilating, and air-conditioning contractors; and inconsistent energy modeling. In an effort to better understand and characterize the heating performance of these units in cold climates, the U.S. Department of Energy Building America team, Consortium for Advanced Residential Buildings (CARB), monitored seven inverter-driven, ductless ASHPs across the Northeast. Operating data were collected for three Mitsubishi FE18 units, three Mitsubishi FE12 units, and one Fujitsu 15RLS2 unit. The intent of this research was to assess heat output, electricity consumption, and coefficients of performance (COPs) at various temperatures and load conditions. This assessment was accomplished with long- and short-term tests that measured power consumption; supply, return, and outdoor air temperatures; and airflow through the indoor fan coil.

  2. Integrated digital inverters based on two-dimensional anisotropic ReS₂ field-effect transistors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Erfu; Fu, Yajun; Wang, Yaojia; Feng, Yanqing; Liu, Huimei; Wan, Xiangang; Zhou, Wei; Wang, Baigeng; Shao, Lubin; Ho, Ching -Hwa; et al

    2015-05-07

    Semiconducting two-dimensional transition metal dichalcogenides are emerging as top candidates for post-silicon electronics. While most of them exhibit isotropic behaviour, lowering the lattice symmetry could induce anisotropic properties, which are both scientifically interesting and potentially useful. Here we present atomically thin rhenium disulfide (ReS₂) flakes with unique distorted 1T structure, which exhibit in-plane anisotropic properties. We fabricated monolayer and few-layer ReS₂ field-effect transistors, which exhibit competitive performance with large current on/off ratios (~10⁷) and low subthreshold swings (100 mV per decade). The observed anisotropic ratio along two principle axes reaches 3.1, which is the highest among all known two-dimensional semiconductingmore » materials. Furthermore, we successfully demonstrated an integrated digital inverter with good performance by utilizing two ReS₂ anisotropic field-effect transistors, suggesting the promising implementation of large-scale two-dimensional logic circuits. Our results underscore the unique properties of two-dimensional semiconducting materials with low crystal symmetry for future electronic applications.« less

  3. Temperature-Dependent Measurements of an Inverted Metamorphic Multijunction (IMM) Solar Cell

    SciTech Connect (OSTI)

    Steiner, M. A.; Geisz, J. F.; Friedman, D. J.; Olavarria, W. J.; Duda, A.; Moriarty, T. E.

    2011-01-01

    The inverted metamorphic multijunction (IMM) solar cell has demonstrated efficiencies as high as 40.8% at 25 C and 326 suns concentration. The actual operating temperature in a commercial module, however, is likely to be as much as 50-70 C hotter, reaching as high as 100 C. In order to be able to evaluate the cell performance under these real-world operating conditions, we have measured the open-circuit voltage, short-circuit current density and efficiency at temperatures up to 125 C and concentrations up to 1000 suns, as well as the temperature coefficients of these parameters. Spectral response and one-sun current-voltage characteristics were measured by carefully adjusting the incident spectrum to selectively current-limit the different subcells. Concentrator measurements were taken on a pulsed solar simulator to minimize any additional heating due to the high intensity illumination. We compare our measured values to predictions based on detailed models of various triple junction solar cells. By choosing the optimum bandgaps for high temperature operation, the IMM can potentially result in greater energy production and lower temperature sensitivity under real operating conditions than a Ge-based solar cell.

  4. Thermal emission and absorption of radiation in finite inverted-opal photonic crystals

    SciTech Connect (OSTI)

    Florescu, Marian; Stimpson, Andrew J.; Lee, Hwang; Dowling, Jonathan

    2005-09-15

    We study theoretically the optical properties of a finite inverted-opal photonic crystal. The light-matter interaction is strongly affected by the presence of the three-dimensional photonic crystal and the alterations of the light emission and absorption processes can be used to suppress or enhance the thermal emissivity and absorptivity of the dielectric structure. We investigate the influence of the absorption present in the system on the relevant band edge frequencies that control the optical response of the photonic crystal. Our study reveals that the absorption processes cause spectral broadening and shifting of the band edge optical resonances, and determine a strong reduction of the photonic band gap spectral range. Using the angular and spectral dependence of the band edge frequencies for stop bands along different directions, we argue that by matching the blackbody emission spectrum peak with a prescribed maximum of the absorption coefficient, it is possible to achieve an angle-sensitive enhancement of the thermal emission/absorption of radiation. This result opens a way to realize a frequency-sensitive and angle-sensitive photonic crystal absorbers/emitters.

  5. An inverted AlGaAs/GaAs patterned-Ge tunnel junction cascade concentrator solar cell

    SciTech Connect (OSTI)

    Venkatasubramanian, R. )

    1993-01-01

    This report describes work to develop inverted-grown Al[sub 0.34]Ga[sub 0.66]As/GaAs cascades. Several significant developments are reported on as follows: (1) The AM1.5 1-sun total-area efficiency of the top Al[sub 0.34]Ga[sub 0.66]As cell for the cascade was improved from 11.3% to 13.2% (NREL measurement [total-area]). (2) The cycled'' organometallic vapor phase epitaxy growth (OMVPE) was studied in detail utilizing a combination of characterization techniques including Hall-data, photoluminescence, and secondary ion mass spectroscopy. (3) A technique called eutectic-metal-bonding (EMB) was developed by strain-free mounting of thin GaAs-AlGaAs films (based on lattice-matched growth on Ge substrates and selective plasma etching of Ge substrates) onto Si carrier substrates. Minority-carrier lifetime in an EMB GaAs double-heterostructure was measured as high as 103 nsec, the highest lifetime report for a freestanding GaAs thin film. (4) A thin-film, inverted-grown GaAs cell with a 1-sun AM1.5 active-area efficiency of 20.3% was obtained. This cell was eutectic-metal-bonded onto Si. (5) A thin-film inverted-grown, Al[sub 0.34]Ga[sub 0.66]As/GaAs cascade with AM1.5 efficiency of 19.9% and 21% at 1-sun and 7-suns, respectively, was obtained. This represents an important milestone in the development of an AlGaAs/GaAs cascade by OMVPE utilizing a tunnel interconnect and demonstrates a proof-of-concept for the inverted-growth approach.

  6. U.S. DEPARTMENT OF ENERGY / SANDIA NATIONAL LABORATORIES UTILITY-SCALE GRID-TIED PV INVERTER RELIABILITY WORKSHOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    / SANDIA NATIONAL LABORATORIES UTILITY-SCALE GRID-TIED PV INVERTER RELIABILITY WORKSHOP JANUARY 27 & 28, 2011 Organizations in Attendance Arizona State University Electric Power Research Institute INGETEAM SMA Siemens American Superconductor AVX Corporation BEW Engineering CALCE - Univ of Maryland Eaton Inc EPRI First Solar First Solar infiniRel Corporation National Renewable Energy Laboratory New Mexico State University Powerex, Inc. Ridgetop Group Inc. Sandia National Laboratories Satcon

  7. Test report on the Abacus 30 kW bimode{reg_sign} inverter and maximum power tracker (MPT)

    SciTech Connect (OSTI)

    Bonn, R.; Ginn, J.; Zirzow, J.

    1995-06-01

    Sandia National Laboratories conducts the photovoltaic balance of systems (BOS) program, which is sponsored by the US Department of Energy`s Office of Energy Management. Under this program, SNL lets commercialization contracts and conducts a laboratory program designed to advance BOS technology, improve BOS component reliability, and reduce the BOS life-cycle-cost. This report details the testing of the first large US manufactured hybrid inverter and its associated maximum power tracker.

  8. Industry Perspectives on Advanced Inverters for U.S. Solar Photovoltaic Systems: Grid Benefits, Deployment Challenges, and Emerging Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Perspectives on Advanced Inverters for U.S. Solar Photovoltaic Systems: Grid Benefits, Deployment Challenges, and Emerging Solutions Emerson Reiter, Kristen Ardani, and Robert Margolis National Renewable Energy Laboratory Ryan Edge Solar Electric Power Association Technical Report NREL/TP-7A40-65063 September 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This

  9. PROJECT PROFILE: Stabilizing the Power System in 2035 and Beyond: Evolving from Grid-Following to Grid-Forming Distributed Inverter Controllers (SuNLaMP)

    Broader source: Energy.gov [DOE]

    Adding large amounts of photovoltaic (PV) solar energy onto the grid creates significant challenges for future grid operations, since the electric power grid currently operates with rotational inertia from fossil fuel-driven machines. However, PV inverters are power-electronic devices with no inherent inertia. This project will develop a suite of inverter controllers to ensure the long-term viability of electric power grid infrastructure and address the large reductions in system-wide inertia with high penetrations of PV. These grid-forming inverter controllers will allow each inverter to act as a controllable voltage source that dynamically adjusts its output to ensure system-level stability, synchronization, and voltage regulation.

  10. High gain, low noise, fully complementary logic inverter based on bi-layer WSe{sub 2} field effect transistors

    SciTech Connect (OSTI)

    Das, Saptarshi; Roelofs, Andreas; Dubey, Madan

    2014-08-25

    In this article, first, we show that by contact work function engineering, electrostatic doping and proper scaling of both the oxide thickness and the flake thickness, high performance p- and n-type WSe{sub 2} field effect transistors (FETs) can be realized. We report record high drive current of 98??A/?m for the electron conduction and 110 ?A/?m for the hole conduction in Schottky barrier WSe{sub 2} FETs. Then, we combine high performance WSe{sub 2} PFET with WSe{sub 2} NFET in double gated transistor geometry to demonstrate a fully complementary logic inverter. We also show that by adjusting the threshold voltages for the NFET and the PFET, the gain and the noise margin of the inverter can be significantly enhanced. The maximum gain of our chemical doping free WSe{sub 2} inverter was found to be ?25 and the noise margin was close to its ideal value of ?2.5?V for a supply voltage of V{sub DD}?=?5.0?V.

  11. Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    SciTech Connect (OSTI)

    Gregory Meisner

    2011-08-31

    We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem, and integration costs into the material selection criteria in order to balance various materials, module and subsystem design, and vehicle integration options. Our work on advanced TE materials development and on TEG system design, assembly, vehicle integration, and testing proceeded in parallel efforts. Results from our two preliminary prototype TEGs using only Bi-Te TE modules allowed us to solve various mechanical challenges and to finalize and fine tune aspects of the design and implementation. Our materials research effort led us to quickly abandon work on PbTe and focus on the skutterudite materials due to their superior mechanical performance and suitability at automotive exhaust gas operating temperatures. We synthesized a sufficiently large quantity of skutterudite material for module fabrication for our third and final prototype. Our TEG#3 is the first of its kind to contain state-of-the-art skutterudite-based TE modules to be installed and tested on a production vehicle. The design, which consisted of 24 skutterudite modules and 18 Bi-Te modules, attempted to optimize electrical power generation by using these two kinds of TE modules that have their peak performance temperatures matched to the actual temperature profile of the TEG during operation. The performance of TEG#3 was limited by the maximum temperature allowable for the Bi-Te TE modules located in the colder end of the TEG, resulting in the operating temperature for the skutterudite modules to be considerably below optimum. We measured the power output for (1) the complete TEG (25 Watts) and (2) an individual TE module series string (1/3 of the TEG) operated at a 60°C higher temperature (19 Watts). We estimate that under optimum operating temperature conditions, TEG#3 will generate about 235 Watts. With additional improvements in thermal and electrical interfaces, temperature homogeneity, and power conditioning, we estimate TEG#3 could deliver a power output of about 425 Watts.

  12. Measurements of carbonyl sulfide in automotive emissions and an assessment of its importance to the global sulfur cycle

    SciTech Connect (OSTI)

    Fried, A.; Henry, B. [National Center for Atmospheric Research, Boulder, CO (United States); Ragazzi, R.A.; Merrick, M.; Stokes, J.; Pyzdrowski, T. [Colorado Dept. of Health, Denver, CO (United States); Sams, R. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1992-09-20

    Carbonyl sulfide (OCS) is thought to be the major precursor to the background stratospheric aerosol sulfate layer during nonvolcanic time periods. Long-term perturbations to this layer from increased OCS emissions could significantly influence the Earth`s radiation budget, climate, and ozone levels. The present study was carried out in an effort to determine mass emission rates of OCS from automobiles, a potentially important global source of this gas. Studies were carried out on a variety of gasoline vehicles including those without catalytic converters, vehicles with older oxidation catalysts, and vehicles employing newer three-way catalysts. Preliminary measurements were also carried out on four diesel fuel cars and one medium-duty diesel fuel truck. Measurements of OCS were acquired by tunable diode laser absorption spectroscopy, and in most cases, measurements of CO were also acquired. Gasoline vehicles, which included some of the lowest and some of the highest CO emitters on the road today, revealed very high correlation between OCS and CO mass emission rates. The OCS-CO linear regression resulted in a slope of (5.8 {+-} 1.6) x 10{sup {minus}6} (gOCS/gCO) and a correlation coefficient of 0.92. The preliminary diesel fuel measurements resulted in a corresponding slope 34.5 times larger. On the basis of these results the authors calculated a global OCS source strength for gasoline and diesel fuel vehicles of 0.0008 to 0.008 Tg yr{sup {minus}1}. The upper limit is a factor of 100 to 600 times less important than the sum of all OCS sources. In contrast to the global scale, automotive emissions of OCS may be important on a local scale, particularly when attempting to measure background concentration and associated small secular trends. These OCS-CO ratios have been shown to be very useful in helping to delineate automotive sources from other sources. 32 refs., 6 figs., 3 tabs.

  13. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    101 Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities May 2011 Prepared by: David L. Greene Oak Ridge National Laboratory K.G. Duleep ICF International Girish Upreti University of Tennessee DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1,

  14. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    SciTech Connect (OSTI)

    Greene, David L; Duleep, K. G.; Upreti, Girish

    2011-06-01

    Fuel cells (FCs) are considered essential future energy technologies by developed and developing economies alike. Several countries, including the United States, Japan, Germany, and South Korea have established publicly funded R&D and market transformation programs to develop viable domestic FC industries for both automotive and non-automotive applications. Important non-automotive applications include large scale and small scale distributed combined heat and electrical power, backup and uninterruptible power, material handling and auxiliary power units. The U.S. FC industry is in the early stages of development, and is working to establish sustainable markets in all these areas. To be successful, manufacturers must reduce costs, improve performance, and overcome market barriers to new technologies. U.S. policies are assisting via research and development, tax credits and government-only and government-assisted procurements. Over the past three years, the industry has made remarkable progress, bringing both stack and system costs down by more than a factor of two while improving durability and efficiency, thanks in part to government support. Today, FCs are still not yet able to compete in these markets without continued policy support. However, continuation or enhancement of current policies, such as the investment tax credit and government procurements, together with continued progress by the industry, appears likely to establish a viable domestic industry within the next decade.

  15. NREL/SCE High-Penetration PV Integration Project: Report on Field Demonstration of Advanced Inverter Functionality in Fontana, CA

    SciTech Connect (OSTI)

    Mather, B.

    2014-08-01

    The National Renewable Energy Laboratory/Southern California Edison High-Penetration PV Integration Project is (1) researching the distribution system level impacts of high-penetration photovoltaic (PV) integration, (2) determining mitigation methods to reduce or eliminate those impacts, and (3) seeking to demonstrate these mitigation methods on actual high-penetration PV distribution circuits. This report describes a field demonstration completed during the fall of 2013 on the Fontana, California, study circuit, which includes a total of 4.5 MW of interconnected utility-scale rooftop PV systems. The demonstration included operating a 2-MW PV system at an off-unity power factor that had been determined during previously completed distribution system modeling and PV impact assessment analyses. Data on the distribution circuit and PV system operations were collected during the 2-week demonstration period. This demonstration reinforces the findings of previous laboratory testing that showed that utility-scale PV inverters are capable of operating at off-unity power factor to mitigate PV impacts; however, because of difficulties setting and retaining PV inverter power factor set points during the field demonstration, it was not possible to demonstrate the effectiveness of off-unity power factor operation to mitigate the voltage impacts of high-penetration PV integration. Lessons learned from this field demonstration are presented to inform future field demonstration efforts.

  16. A water-processable organic electron-selective layer for solution-processed inverted organic solar cells

    SciTech Connect (OSTI)

    Chen, Dongcheng; Zhou, Hu; Cai, Ping; Sun, Shi; Ye, Hua; Su, Shi-Jian Cao, Yong

    2014-02-03

    A triazine- and pyridinium-containing water-soluble material of 1,1?,1?-(4,4?,4?-(1,3,5-triazine-2,4,6-triyl)tris(benzene-4,1-diyl)) tris(methylene)tripyridinium bromide (TzPyBr) was developed as an organic electron-selective layer in solution-processed inverted organic solar cells due to its strong anti-erosion capacity against non-polar organic solvents commonly used for the active layer. Ohmic-like contact with the adjacent active materials like fullerene derivatives is speculated to be formed, as confirmed by the work-function measurements with scanning Kelvin probe and ultraviolet photoelectron spectroscopy techniques. Besides, considering the deep highest occupied molecular orbital energy level of TzPyBr, excellent hole-blocking property of the electron-selective layer is also anticipated. The inverted organic photovoltaic devices based on the TzPyBr/ITO (indium tin oxide) bilayer cathode exhibit dramatically enhanced performance compared to the control devices with bare ITO as the cathode and even higher efficiency than the conventional type devices with ITO and Al as the electrodes.

  17. Electrical system for pulse-width modulated control of a power inverter using phase-shifted carrier signals and related operating methods

    DOE Patents [OSTI]

    Welchko, Brian A. (Torrance, CA)

    2012-02-14

    Systems and methods are provided for pulse-width modulated control of power inverter using phase-shifted carrier signals. An electrical system comprises an energy source and a motor. The motor has a first set of windings and a second set of windings, which are electrically isolated from each other. An inverter module is coupled between the energy source and the motor and comprises a first set of phase legs coupled to the first set of windings and a second set of phase legs coupled to the second set of windings. A controller is coupled to the inverter module and is configured to achieve a desired power flow between the energy source and the motor by modulating the first set of phase legs using a first carrier signal and modulating the second set of phase legs using a second carrier signal. The second carrier signal is phase-shifted relative to the first carrier signal.

  18. PHIL Inverter Test Report: Analysis of High-Penetration Levels of PV into the Distribution Grid in California, March 12 - March 16, 2012

    SciTech Connect (OSTI)

    Kromer, M.

    2013-06-01

    This report describes power hardware-in-the-loop simulation testing of a 500 kW Satcon photovoltaic inverter, conducted at the Center for Advanced Power Systems at Florida State University from March 12th through March 16th, 2012. Testing was led by a team from the National Renewable Energy Laboratory. The report reviews the results of data captured during the course of testing. The tests were used to demonstrate operation of and gather data from the inverter in a simulated operational environment. Testing demonstrated the ability of the inverter to operate in either a Power Factor Control Mode or a Reactive Power Command Mode, and to respond to real power limits.

  19. Modifications for use of methanol or methanol-gasoline blends in automotive vehicles, September 1976-January 1980

    SciTech Connect (OSTI)

    Patterson, D.J.; Bolt, J.A.; Cole, D.E.

    1980-01-01

    Methanol or blends of methanol and gasoline as automotive fuels may be attractive means for extending the nation's petroleum reserves. The present study was aimed at identifying potential problems and solutions for this use of methanol. Retrofitting of existing vehicles as well as future vehicle design have been considered. The use of ethanol or higher alcohols was not addressed in this study but will be included at a later date. Several potentially serious problems have been identified with methanol use. The most attractive solutions depend upon an integrated combination of vehicle modifications and fuel design. No vehicle problems were found which could not be solved with relatively minor developments of existing technology providing the methanol or blend fuel was itself engineered to ameliorate the solution. Research needs have been identified in the areas of lubrication and materials. These, while apparently solvable, must precede use of methanol or methanol-gasoline blends as motor fuels. Because of the substantial costs and complexities of a retrofitting program, use of methanol must be evaluated in relation to other petroleum-saving alternatives. Future vehicles can be designed initially to operate satisfactorily on these alternate fuels. However a specific fuel composition must be specified around which the future engines and vehicles can be designed.

  20. Henry's law constants for paint solvents and their implications on volatile organic compound emissions from automotive painting

    SciTech Connect (OSTI)

    Kim, B.R.; Kalis, E.M.; DeWulf, T.; Andrews, K.M.

    2000-02-01

    This paper describes experimental results of equilibrium partitioning of several significant paint solvents and formaldehyde between air and water to quantify the potential for capturing and retaining the constituents in spraybooth scrubber water during automotive painting. The compounds studied are toluene, n-butanol, methyl ethyl ketone methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone, butyl cellosolve, butyl cellosolve acetate, butyl carbitol, and n-methyl-2-pyrrolidinone. A set of field data collected at a Ford Motor Company assembly plant was also analyzed to determine whether data were consistent with the equilibrium phenomenon. The primary findings include: (a) There were more than six orders of magnitude difference in the Henry's law constants among the solvents studied. A solvent with a smaller constant is less easily stripped from water. The Henry's law constants decrease in the following order: toluene and xylenes > methyl ethyl ketone > n-butanol > butyl cellosolve acetate > butyl cellosolve > formaldehyde > butyl carbitol > n-methyl-2-pyrrolidinone. (b) Field data showed accumulation of n-methyl-2-pyrrolidinone and stable concentrations of butyl carbitol, butyl cellosolve, and n-butanol in the paint-sludge pit water during a 2-month period. Stable concentrations indicate a continuous, balanced capture and stripping of the solvents. Data were consistent with measured Henry's law constants. (c) The low Henry's law constant for formaldehyde is the result of the fact that it is hydrated when dissolved in water.

  1. Fabrication and characterization of inverted organic solar cells using shuttle cock-type metal phthalocyanine and PCBM:P3HT

    SciTech Connect (OSTI)

    Suzuki, Atsushi Furukawa, Ryo Akiyama, Tsuyoshi Oku, Takeo

    2015-02-27

    Inverted organic solar cells using shuttle cock-type phthalocyanine, semiconducting polymer and fullerenes were fabricated and characterized. Photovoltaic and optical properties of the solar cells with inverted structures were investigated by optical absorption, current density-voltage characteristics. The photovoltaic properties of the tandem organic solar cell using titanyl phthalocyanine, vanadyl phthalocyanine, poly(3-hexylthiophene) (P3HT) and [6, 6]-phenyl C{sub 61}-butyric acid methyl ester (PCBM) were improved. Effect of annealing and solvent treatment on surface morphologies of the active layer was investigated. The photovoltaic mechanisms, energy levels and band gap of active layers were discussed for improvement of the photovoltaic performance.

  2. FY2011 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, Mitchell

    2011-10-01

    The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. DOE's continuing R&D into advanced vehicle technologies for transportation offers the possibility of reducing the nation's dependence on foreign oil and the negative economic impacts of crude oil price fluctuations. It also supports the Administration's goal of deploying 1 million PHEVs by 2015.

  3. Aging Management Guideline for commercial nuclear power plants: Battery chargers, inverters and uninterruptible power supplies. Final report

    SciTech Connect (OSTI)

    Berg, R.; Stroinski, M.; Giachetti, R.

    1994-02-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant battery chargers, inverters and uninterruptible power supplies important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already, experienced) and aging management program activities to the more generic results and recommendations presented herein.

  4. Highly efficient inverted top emitting organic light emitting diodes using a transparent top electrode with color stability on viewing angle

    SciTech Connect (OSTI)

    Kim, Jung-Bum; Lee, Jeong-Hwan; Moon, Chang-Ki; Kim, Jang-Joo, E-mail: jjkim@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-02-17

    We report a highly efficient phosphorescent green inverted top emitting organic light emitting diode with excellent color stability by using the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile/indium zinc oxide top electrode and bis(2-phenylpyridine)iridium(III) acetylacetonate as the emitter in an exciplex forming co-host system. The device shows a high external quantum efficiency of 23.4% at 1000?cd/m{sup 2} corresponding to a current efficiency of 110?cd/A, low efficiency roll-off with 21% at 10?000?cd/m{sup 2} and low turn on voltage of 2.4?V. Especially, the device showed very small color change with the variation of ?x?=?0.02, ?y?=?0.02 in the CIE 1931 coordinates as the viewing angle changes from 0 to 60. The performance of the device is superior to that of the metal/metal cavity structured device.

  5. Optical spectroscopic study of inverted cylindrical magnetron sputtering of YBa sub 2 Cu sub 3 O sub 7 minus x

    SciTech Connect (OSTI)

    Xi, X.X.; Wu, X.D.; Inam, A.; Li, Q.; Hemmick, D.; Findikoglu, A. ); Venkatesan, T.; Chang, C.C. ); Howard, R. )

    1990-07-02

    Optical spectroscopic studies of the plasma generated by inverted cylindrical magnetron sputtering of the high-temperature superconductor YBa{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}} reveal strong ionic emissions from cation elements as well as from the sputter gases. The emissions of cationic ions are weakened drastically when O{sub 2} is added into the sputter gas indicating the dominating role of ions in the reaction with oxygen to form gas phase oxides. The formation of gas phase oxides is proposed to be an important precursor step for the {ital in} {ital situ} deposition of YBa{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}} thin films.

  6. PV String to 3-Phase Inverter with Highest Voltage Capabilities, Highest Efficiency and 25 Year Lifetime: Final Technical Report, November 7, 2011 - November 6, 2012

    SciTech Connect (OSTI)

    West, R.

    2012-12-01

    Final report for Renewable Power Conversion. The overall objective of this project was to develop a prototype PV inverter which enables a new utility-scale PV system approach where the cost, performance, reliability and safety benefits of this new approach have the potential to make all others obsolete.

  7. Building America Case Study: Field Performance of Inverter-Driven Heat Pumps in Cold Climates - Connecticut, Massachusetts, and Vermont

    SciTech Connect (OSTI)

    2015-09-01

    New inverter-driven ASHPs are gaining ground in colder climates. These systems operate at sub-zero temperatures without the use of electric resistance backup. There are still uncertainties, however, about cold-climate capacity and efficiency in cold weather and questions such as measuring: power consumption, supply, return, and outdoor air temperatures, and air flow through the indoor fan coil. CARB observed a wide range of operating efficiencies and outputs from site to site. Maximum capacities were found to be generally in line with manufacturer's claims as outdoor temperatures fell to -10 degrees F. The reasons for the wide range in heating performance likely include: low indoor air flow rates, poor placement of outdoor units, relatively high return air temperatures, thermostat set back, integration with existing heating systems, and occupants limiting indoor fan speed. Even with lower efficiencies than published in other studies, most of the heat pumps here still provide heat at lower cost than oil, propane, or certainly electric resistance systems.

  8. An inverted AlGaAs/GaAs patterned-Ge tunnel junction cascade concentrator solar cell. Final subcontract report, 1 January 1991--31 August 1992

    SciTech Connect (OSTI)

    Venkatasubramanian, R.

    1993-01-01

    This report describes work to develop inverted-grown Al{sub 0.34}Ga{sub 0.66}As/GaAs cascades. Several significant developments are reported on as follows: (1) The AM1.5 1-sun total-area efficiency of the top Al{sub 0.34}Ga{sub 0.66}As cell for the cascade was improved from 11.3% to 13.2% (NREL measurement [total-area]). (2) The ``cycled`` organometallic vapor phase epitaxy growth (OMVPE) was studied in detail utilizing a combination of characterization techniques including Hall-data, photoluminescence, and secondary ion mass spectroscopy. (3) A technique called eutectic-metal-bonding (EMB) was developed by strain-free mounting of thin GaAs-AlGaAs films (based on lattice-matched growth on Ge substrates and selective plasma etching of Ge substrates) onto Si carrier substrates. Minority-carrier lifetime in an EMB GaAs double-heterostructure was measured as high as 103 nsec, the highest lifetime report for a freestanding GaAs thin film. (4) A thin-film, inverted-grown GaAs cell with a 1-sun AM1.5 active-area efficiency of 20.3% was obtained. This cell was eutectic-metal-bonded onto Si. (5) A thin-film inverted-grown, Al{sub 0.34}Ga{sub 0.66}As/GaAs cascade with AM1.5 efficiency of 19.9% and 21% at 1-sun and 7-suns, respectively, was obtained. This represents an important milestone in the development of an AlGaAs/GaAs cascade by OMVPE utilizing a tunnel interconnect and demonstrates a proof-of-concept for the inverted-growth approach.

  9. Inverted Attic Bulkhead for HVAC Ductwork, Roseville, California (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Inverted Attic Bulkhead for HVAC Ductwork Roseville, California PROJECT INFORMATION Project Name: Long-Term Monitoring of Occupied Test House Location: Roseville, CA Partners: K. Hovnanian® Homes®, www.khov.com IBACOS www.ibacos.com Building Component: Envelope, structural, HVAC ducts Construction: New Application: New; single and/or multifamily Year Tested: 2012 Applicable Climate Zone(s): Hot-dry climate PERFORMANCE DATA HERS Index: 52 Projected Energy Savings: 11 million Btu/year heating

  10. Inverted Attic Bulkhead for HVAC Ductwork, Roseville, California (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Inverted Attic Bulkhead for HVAC Ductwork Roseville, California PROJECT INFORMATION Project Name: Long-Term Monitoring of Occupied Test House Location: Roseville, CA Partners: K. Hovnanian® Homes®, www.khov.com IBACOS www.ibacos.com Building Component: Envelope, structural, HVAC ducts Construction: New Application: New; single and/or multifamily Year Tested: 2012 Applicable Climate Zone(s): Hot-dry climate PERFORMANCE DATA HERS Index: 52 Projected Energy Savings: 11 million Btu/year heating

  11. Influence of fuel variables on the operation of automotive open and pre-chamber diesel and spark ignited stratified charge engines: a literature study covering petroleum and syncrude derived fuels

    SciTech Connect (OSTI)

    Needham, J.R.

    1980-09-01

    A literature study has been carried out to ascertain the influence of fuels and fuel variables on the operation of automotive diesel and spark ignited stratified charge engines with a view to understanding the impact of future fuels derived from Syncrude. The findings from the search are presented and discussed in detail, conclusions reached and recommendations made.

  12. Solar Energy Grid Integration Systems. Final Report of the Princeton Power Systems Development of the 100kW Demand Response Inverter.

    SciTech Connect (OSTI)

    Bower, Ward Isaac; Heavener, Paul; Sena-Henderson, Lisa; Hammell, Darren; Holveck, Mark; David, Carolyn; Akhil, Abbas Ali; Gonzalez, Sigifredo

    2012-01-01

    Initiated in 2008, the Solar Energy Grid Integration (SEGIS) program is a partnership involving the U.S. Department of Energy, Sandia National Laboratories, electric utilities, academic institutions and the private sector. Recognizing the need to diversify the nation's energy portfolio, the SEGIS effort focuses on specific technologies needed to facilitate the integration of large-scale solar power generation into the nation's power grid Sandia National Laboratories (SNL) awarded a contract to Princeton Power Systems, Inc., (PPS) to develop a 100kW Advanced AC-link SEGIS inverter prototype under the Department of Energy Solar Energy Technologies Program for near-term commercial applications. This SEGIS initiative emphasizes the development of advanced inverters, controllers, communications and other balance-of-system components for photovoltaic (PV) distributed power applications. The SEGIS Stage 3 Contract was awarded to PPS on July 28, 2010. PPS developed and implemented a Demand Response Inverter (DRI) during this three-stage program. PPS prepared a 'Site Demonstration Conference' that was held on September 28, 2011, to showcase the cumulative advancements. This demo of the commercial product will be followed by Underwriters Laboratories, Inc., certification by the fourth quarter of 2011, and simultaneously the customer launch and commercial production sometime in late 2011 or early 2012. This final report provides an overview of all three stages and a full-length reporting of activities and accomplishments in Stage 3.

  13. Automotive HCCI Engine Research

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  14. Automotive HCCI Engine Research

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Automotive HCCI Engine Research

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  16. Automotive HCCI Engine Research

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  17. Building America Case Study: Field Performance of Inverter-Driven Heat Pumps in Cold Climates - Connecticut, Massachusetts, and Vermont (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of Inverter-Driven Heat Pumps in Cold Climates Connecticut, Massachusetts, and Vermont PROJECT INFORMATION Project Name: Field Performance of Inverter-Driven Heat Pumps in Cold Climates Location: CT, MA, and VT Partners: Efficiency Vermont, efficiencyvermont.com Consortium for Advanced Residential Buildings, carb-swa.com Building Component: Heating, ventilating, and air conditioning Application: New and retrofit; single- family and multifamily Year Tested: 2013-2014 Climate Zone(s):

  18. Development of an IR-transparent, inverted-grown, thin-film, Al[sub 0. 34]Ga[sub 0. 66]As/GaAs cascade solar cell

    SciTech Connect (OSTI)

    Venkatasubramanian, R.; Timmons, M.L.; Sharps, P.R.; Colpitts, T.S.; Hills, J.S.; Hancock, J.; Hutchby, J.A. )

    1992-12-01

    Inverted growth and the development of associated cell processing, are likely to offer a significant degree of freedom for improving the performance of many III-V multijunction cascades and open new avenues for advanced multijunction concepts. This is especially true for the development of high-efficiency Al[sub 0.37]Ga[sub 0.63]As/GaAs cascades where the high growth temperatures required for the AlGaAs top cell growth can cause the deterioration of the tunnel junction interconnect. In the approach of inverted-grown AlGaAs/GaAs cascade cells, the AlGaAs top cell is grown first at 780 [degree]C and the GaAs tunnel junction and bottom cell are grown at 675 [degree]C. After the inverted growth, the AlGaAs/GaAs cascade structure is selectively removed from the parent substrate. The feasibility of inverted growth is demonstrated by a fully-processed, inverted-grown, thin film GaAs cell with a 1-sun AM1.5 efficiency of 20.3%. Also, an inverted-grown, thin-film, Al[sub 0.34]Ga[sub 0.66]As/GaAs cascade with AM1.5 efficiencies of 19.9% and 21% at 1-sun and 7-suns, respectively, has been obtained.

  19. Correlating High Power Conversion Efficiency of PTB7:PC71BM Inverted Organic Solar Cells with Nanoscale Structures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Das, Sanjib; Keum, Jong Kahk; Browning, Jim; Gu, Gong; Yang, Bin; Do, Changwoo; Chen, Wei; Chen, Jihua; Ivanov, Ilia N; Hong, Kunlun; et al

    2015-07-16

    Advances in materials design and device engineering led to inverted organic solar cells (i-OSCs) with superior power conversion efficiencies (PCEs) to their conventional counterparts, in addition to the well-known better ambient stability. Despite the significant progress, however, it has so far been unclear how the morphologies of the photoactive layer and its interface with the cathode modifying layer impact device performance. Here, we report an in-depth morphology study of the i-OSC active and cathode modifying layers, employing a model system with the well-established bulk-heterojunction, PTB7:PC71BM as the active layer and poly-[(9,9-bis(3 -(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) as the cathode surface modifying layer. Wemore » have also identified the role of a processing additive, 1,8-diiodooctane (DIO), used in the spin-casting of the active layer to increase PCE. Using a variety of characterization techniques, we demonstrate that the high PCEs of i-OSCs are due to the smearing (diffusion) of electron-accepting PC71BM into the PFN layer, resulting in improved electron transport. The PC71BM diffusion occurs after spin-casting the active layer onto the PFN layer, when residual solvent molecules act as a plasticizer. The DIO additive, with a higher boiling point than the host solvent, has a longer residence time in the spin-cast active layer, resulting in more PC71BM smearing and therefore more efficient electron transport. This work provides important insight and guidance to further enhancement of i-OSC performance by materials and interface engineering.« less

  20. Correlating High Power Conversion Efficiency of PTB7:PC71BM Inverted Organic Solar Cells to Nanoscale Structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Das, Sanjib; Keum, Jong Kahk; Browning, Jim; Gu, Gong; Yang, Bin; Do, Changwoo; Chen, Wei; Chen, Jihua; Ivanov, Ilia N; Hong, Kunlun; et al

    2015-07-16

    Advances in materials design and device engineering led to inverted organic solar cells (i-OSCs) with superior power conversion efficiencies (PCEs) to their conventional counterparts, in addition to the well-known better ambient stability. Despite the significant progress, however, it has so far been unclear how the morphologies of the photoactive layer and its interface with the cathode modifying layer impact device performance. Here, we report an in-depth morphology study of the i-OSC active and cathode modifying layers, employing a model system with the well-established bulk-heterojunction, PTB7:PC71BM as the active layer and poly-[(9,9-bis(3 -(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) as the cathode surface modifying layer. Wemorehave also identified the role of a processing additive, 1,8-diiodooctane (DIO), used in the spin-casting of the active layer to increase PCE. Using a variety of characterization techniques, we demonstrate that the high PCEs of i-OSCs are due to the smearing (diffusion) of electron-accepting PC71BM into the PFN layer, resulting in improved electron transport. The PC71BM diffusion occurs after spin-casting the active layer onto the PFN layer, when residual solvent molecules act as a plasticizer. The DIO additive, with a higher boiling point than the host solvent, has a longer residence time in the spin-cast active layer, resulting in more PC71BM smearing and therefore more efficient electron transport. This work provides important insight and guidance to further enhancement of i-OSC performance by materials and interface engineering.less