National Library of Energy BETA

Sample records for automotive technologies zhenhong

  1. Vehicle Technologies Office: Graduate Automotive Technology Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Workforce Development Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology ...

  2. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D ...

  3. Automotive Turbocharging: Industrial Requirements and Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharging: Industrial Requirements and Technology Developments Automotive Turbocharging: Industrial Requirements and Technology Developments Significant improvements in ...

  4. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop ...

  5. Innovative Drivetrains in Electric Automotive Technology Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drivetrains in Electric Automotive Technology Education (IDEATE) Innovative Drivetrains in Electric Automotive Technology Education (IDEATE) 2012 DOE Hydrogen and Fuel Cells ...

  6. Thermoelectrics: The New Green Automotive Technology | Department...

    Broader source: Energy.gov (indexed) [DOE]

    (5.35 MB) More Documents & Publications Automotive Thermoelectric Generators and HVAC Vehicular Thermoelectrics: A New Green Technology Thermoelectrics: The New Green Automotive

  7. Graduate Automotive Technology Education (GATE) Initiative Awards |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Graduate Automotive Technology Education (GATE) Initiative Awards Graduate Automotive Technology Education (GATE) Initiative Awards September 8, 2011 - 11:46am Addthis Graduate Automotive Technology Education (GATE) Initiative Awards DOE's Graduate Automotive Technology Education (GATE) initiative will award $6.4 million over the course of five years to support seven Centers of Excellence at American colleges, universities, and university-affiliated research

  8. Vehicle Technologies Office: Graduate Automotive Technology Education (GATE)

    Broader source: Energy.gov [DOE]

    DOE established the Graduate Automotive Technology Education (GATE) Centers of Excellence to provide future generations of engineers and scientists with knowledge and skills in advanced automotive...

  9. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Electrical ...

  10. PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR 2009 DOE Hydrogen Program and ...

  11. Penn State DOE Graduate Automotive Technology Education (Gate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Penn State DOE Graduate Automotive Technology Education (Gate) Program for In-Vehicle, High-Power Energy Storage Systems Penn State DOE Graduate Automotive Technology Education ...

  12. Fact #868: April 13, 2015 Automotive Technology Has Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles - Dataset Fact 868: April 13, 2015 Automotive Technology Has Improved ...

  13. Looking From A Hilltop: Automotive Propulsion System Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Looking From A Hilltop: Automotive Propulsion System Technology Looking From A Hilltop: Automotive Propulsion System Technology Outlook for global fuel economy requirements and ...

  14. Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive Inverter with New 900 Volt ...

  15. Development of Thermoelectric Technology for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement. deer08_gundlach.pdf (1 MB) More Documents & Publications Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry Develop Thermoelectric

  16. Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inverter with New 900 Volt Silicon Carbide MOSFET Technology | Department of Energy 88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Presentation given by Cree at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about 88 kilowatt automotive inverter with new

  17. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy ... Engineering and Materials for Automotive Thermoelectric Applications Electrical and ...

  18. Graduate Automotive Technology Education (GATE) Center

    SciTech Connect (OSTI)

    Jeffrey Hodgson; David Irick

    2005-09-30

    The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its sixth year of operation. During this period the Center has involved thirteen GATE Fellows and ten GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the center's focus area: hybrid drive trains and control systems. Eighteen GATE students have graduated, and three have completed their course work requirements. Nine faculty members from three departments in the College of Engineering have been involved in the GATE Center. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as internships, equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $4,000,000. Problem areas are discussed in the hope that future activities may benefit from the operation of the current program.

  19. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ace_45_yang.pdf (1.15 MB) More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Solid-State Energy Conversion Overview

  20. Final report: U.S. competitive position in automotive technologies

    SciTech Connect (OSTI)

    Albert, Michael B.; Cheney, Margaret; Thomas, Patrick; Kroll, Peter

    2002-09-30

    Patent data are presented and analyzed to assess the U.S. competitive position in eleven advanced automotive technology categories, including automotive fuel cells, hydrogen storage, advanced batteries, hybrid electric vehicles and others. Inventive activity in most of the technologies is found to be growing at a rapid pace, particularly in advanced batteries, automotive fuel cells and ultracapacitors. The U.S. is the clear leader in automotive fuel cells, on-board hydrogen storage and light weight materials. Japan leads in advanced batteries, hybrid electric vehicles, ultracapacitors, and appears to be close to overtaking the U.S. in other areas of power electronics.

  1. Vehicle Technologies Office Merit Review 2016: 88 Kilowatt Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inverter with New 900 Volt Silicon Carbide MOSFET Technology | Department of Energy 88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Vehicle Technologies Office Merit Review 2016: 88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Presentation given by Cree at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Electric Drive Systems

  2. PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ti_01_anstrom.pdf (1.33 MB) More Documents & Publications IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS Vehicle Technologies Office Merit Review 2015: Penn State DOE Graduate

  3. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    SciTech Connect (OSTI)

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  4. Market Acceptance of Advanced Automotive Technologies (MA3T) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acceptance of Advanced Automotive Technologies (MA3T) Model (Oak Ridge National Laboratory) Objectives Forecasts sales of competing vehicle technologies among consumer segments. Analyzes how technology, infrastructure, consumer behavior, and policy affect sales of new technologies and determines the resulting societal, environmental and economic impacts. Key Attributes & Strengths MA3T can be used to investigate the societal benefits, costs, and employment impacts of market transitions

  5. Advanced Automotive Technologies annual report to Congress, fiscal year 1996

    SciTech Connect (OSTI)

    1998-03-01

    This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy`s Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation.

  6. DOE Provides $4.7 Million to Support Excellence in Automotive Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education | Department of Energy $4.7 Million to Support Excellence in Automotive Technology Education DOE Provides $4.7 Million to Support Excellence in Automotive Technology Education August 29, 2005 - 2:47pm Addthis WASHINGTON, DC - The U.S. Department of Energy today announced the selection of eight universities that will receive $4.7 million to be Graduate Automotive Technology Education (GATE) Centers of Excellence. The goal of GATE is to train a future workforce of automotive

  7. Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Relevant to DOE Power Electronics Cost Targets | Department of Energy Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ape032_whaling_2013_o.pdf (1.3 MB) More Documents & Publications

  8. Technology Roadmap for Energy Reduction in Automotive Manufacturing

    SciTech Connect (OSTI)

    none,

    2008-09-01

    U.S. Department of Energy’s (DOE) Industrial Technologies Program (ITP), in collaboration with the United States Council for Automotive Research LLC (USCAR), hosted a technology roadmap workshop in Troy, Michigan in May 2008. The purpose of the workshop was to explore opportunities for energy reduction, discuss the challenges and barriers that might need to be overcome, and identify priorities for future R&D. The results of the workshop are presented in this report.

  9. Thermoelectrics: The New Green Automotive Technology | Department...

    Broader source: Energy.gov (indexed) [DOE]

    (2.09 MB) More Documents & Publications Vehicular Thermoelectrics: A New Green Technology Vehicular Thermoelectrics: A New Green Technology Vehicular Thermoelectrics: The New Green

  10. Advanced Thermoelectric Materials and Generator Technology for Automotive

    Broader source: Energy.gov (indexed) [DOE]

    Waste Heat at GM | Department of Energy Overview of design, fabrication, integration, and test of working prototype TEG for engine waste heat recovery on Suburban test vehicle, and continuing investigation of skutterudite materials systems meisner.pdf (1.94 MB) More Documents & Publications Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical and Thermal

  11. Thermoelectric Technology for Automotive Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  12. Fourth annual report to Congress on the Automotive Technology Development Program

    SciTech Connect (OSTI)

    Not Available

    1983-11-01

    Program implementation and management are described. The status of conventional power-train technology is described with respect to uniform charge reciprocating Otto engine, stratified charge reciprocating Otto engine, rotary Otto engine, diesel engine, and transmissions. The three tasks of the Automotive Technology Development Program are discussed as follows; automotive gas turbine project, automotive Stirling engine development project, and the heavy duty transport technology project.

  13. Vehicle Technologies Office Merit Review 2015: Automotive Low Temperature Gasoline Combustion Engine Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about automotive low...

  14. Vehicle Technologies Office Merit Review 2014: Automotive Low Temperature Gasoline Combustion Engine Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about automotive low...

  15. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles – Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles

  16. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry On Thermoelectric Properties of p-Type Skutterudites Development of Thermoelectric ...

  17. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Broader source: Energy.gov (indexed) [DOE]

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Development of Cost-Competitive ...

  18. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies | Lightweight Automotive Materials Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweight Automotive Materials Chapter 8: Technology Assessments Introduction to the Technology/System Overview of vehicle lightweighting Reducing vehicle weight affects transportation energy consumption by improving efficiency. Upwards of 85% of the energy in fuel is lost to thermal and mechanical inefficiency in the drivetrain 1 while the remaining 12-15% is used to overcome the tractive forces that resist forward motion. 2 Of these tractive forces, vehicle weight most significantly affects

  19. Update and Expansion of the Center of Automotive Technology Excellence Under the Graduate Automotive Technology Education (GATE) Program at the University of Tennessee, Knoxville

    SciTech Connect (OSTI)

    Irick, David

    2012-08-30

    The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its seventh year of operation under this agreement, its thirteenth year in total. During this period the Center has involved eleven GATE Fellows and three GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the centers focus area: Advanced Hybrid Propulsion and Control Systems. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $2,000,000.

  20. Third annual report to Congress on the automotive technology development program

    SciTech Connect (OSTI)

    Not Available

    1982-03-01

    The Automotive Propulsion Research and Development Act of 1978 focused on advancing the technology of automotive propulsion systems. In formulating the Act, Congress found that: (1) existing automobiles do not meet the Nation's long-term environmental and energy goals; (2) insufficient resources are being devoted to research and development (R and D) on advanced automobile propulsion systems; (3) with sufficient R and D, alternatives to existing systems could meet long-term goals at reasonable cost; and (4) expanded R and D would complement and stimulate corresponding private sector efforts. Because of the Nation's energy problems, Congress felt that advanced automobile propulsion system technology should be developed quickly. Through the Act, Congress expressed its intent for the Department of Energy (DOE) to: (1) make R and D contracts and grants for development of advanced automobile propulsion systems within five years, or within the shortest practicable time consistent with appropriate R and D techniques; (2) evaluate and disseminate information about advanced automobile propulsion system technology; (3) preserve, enhance, and facilitate competition in R and D of existing and alternative automotive propulsion systems; and (4) supplement, but neither supplant nor duplicate, private industry R and D efforts. Summaries of the status of conventional powertrain technology, automotive technology development program, and the management plan and policy transition are given. Tables on contracts and grant procurement for advanced gas turbine engine systems, advanced Stirling engine systems, and the vehicle systems project are given. (WHK)

  1. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    SciTech Connect (OSTI)

    Anderson, Carl L

    2006-09-25

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  2. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generator Development for Automotive Waste Heat Recovery Thermoelectric Generator ... More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat ...

  3. Review and evaluation of automotive fuel conservation technologies. Final report

    SciTech Connect (OSTI)

    Siegel, H.M.; Schwarz, R.; Andon, J.; Kolars, G.; Gerstenberger, T.

    1981-12-01

    To support the Office of Research and Development of the National Highway Traffic Safety Administration with focused studies in areas affecting automotive fuel economy and related safety issues, a series of in-depth studies were carried out: Fuel Consumption Estimates of Stratified Charge Rotary Engines Installed in Five Vehicles; Oldsmobile Omega X Body Baseline Weight Data; GM X Body Material Substitution Weight Reduction/Cost Effectiveness Study; Calspan RSV Restraint System Cost Study; FMVSS No. 208 Extension to Light Trucks, Vans, and MPV's - Cost Lead Time Study; Multipiece Rims for Trucks, Buses, and Trailers; Identifying Design Changes, Cost Impacts and Manufacturing Lead Times to Upgrade FMVSS 114 for Passenger Cars, Trucks, and MPV's; Ford Escort GL Baseline Weight Data.

  4. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions.

  5. Innovative Drivetrains in Electric Automotive Technology Education (IDEATE)

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Innovative Drivetrains in Electric Automotive Technology Education (IDEATE)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review emrgtech06_reedy_040213.pdf (403.24 KB) More Documents & Publications Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review Buildings Performance Database - 2013 BTO Peer Review Department of Energy

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy

  8. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  9. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace050meisner2010o.pdf More...

  10. Electrochemical Energy Storage Technologies and the Automotive Industry

    ScienceCinema (OSTI)

    Mark Verbrugge

    2010-01-08

    The first portion of the lecture will relate global energy challenges to trends in personal transportation. Following this introduction, a short overview of technology associated with lithium ion batteries for traction applications will be provided. Last, I shall present new research results that enable adaptive characterization of lithium ion cells. Experimental and modeling results help to clarify the underlying electrochemistry and system performance. Specifically, through chemical modification of the electrodes, it is possible to place markers within the electrodes that signal the state of charge of a battery through abrupt voltage changes during cell operation, thereby allowing full utilization of the battery in applications. In closing, I shall highlight some promising materials research efforts that are expected to lead to substantially improved battery technology

  11. The ARPA-E Innovation Model: A Glimpse into the Future of Automotive Battery Technology

    SciTech Connect (OSTI)

    Gur, Ilan

    2014-03-07

    The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) focuses on funding game-changing R&D aimed at reducing U.S. foreign energy dependence and emissions. ARPA-E has made a strong commitment to support breakthrough energy storage technologies that can accelerate the mass adoption of electrified vehicles. This presentation will highlight the range of ARPA-E's efforts in this area, offering a glimpse into the ARPA-E innovation model and the future of automotive battery technology.

  12. The ARPA-E Innovation Model: A Glimpse into the Future of Automotive Battery Technology

    ScienceCinema (OSTI)

    Gur, Ilan (Program Director and Senior Advisor, ARPA-E)

    2014-04-11

    The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) focuses on funding game-changing R&D aimed at reducing U.S. foreign energy dependence and emissions. ARPA-E has made a strong commitment to support breakthrough energy storage technologies that can accelerate the mass adoption of electrified vehicles. This presentation will highlight the range of ARPA-E's efforts in this area, offering a glimpse into the ARPA-E innovation model and the future of automotive battery technology.

  13. Vehicle Technologies Office Merit Review 2015: Innovative Drivetrains in Electric Automotive Technology Education (IDEATE)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by University of Colorado Colorado Springs at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  14. Vehicle Technologies Office Merit Review 2014: Innovative Drivetrains in Electric Automotive Technology Education (IDEATE)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by University of Colorado at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Innovative Drivetrains...

  15. Progress Report for Advanced Automotive Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Energy Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 1999 FY 1999 FY 1999 FY 1999 Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Office of

  16. Engaging the Next Generation of Automotive Engineers through...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition Engaging the Next Generation of Automotive Engineers through Advanced Vehicle ...

  17. Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    SciTech Connect (OSTI)

    Gregory Meisner

    2011-08-31

    We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem, and

  18. AISI/DOE Technology Roadmap Program: Improved Surface Quality of Exposed Automotive Sheet Steels

    SciTech Connect (OSTI)

    John G. Speer; David K. Matlock; Noel Meyers; Young-Min Choi

    2002-10-10

    Surface quality of sheet steels is an important economic and technical issue for applications such as critical automotive surfaces. This project was therefore initiated to develop a more quantitative methodology for measuring surface imperfections, and to assess their response to forming and painting, particularly with respect to their visibility or invisibility after painting. The objectives were met, and included evaluation of a variety of imperfections present on commercial sheet surfaces or simulated using methods developed in the laboratory. The results are expected to have significant implications with respect to the methodology for assessing surface imperfections, development of quantitative criteria for surface inspection, and understanding and improving key painting process characteristics that influence the perceived quality of sheet steel surfaces.

  19. Technology development goals for automotive fuel cell power systems. Final report

    SciTech Connect (OSTI)

    James, B.D.; Baum, G.N.; Kuhn, I.F. Jr.

    1994-08-01

    This report determines cost and performance requirements for Proton Exchange Membrane (PEM) fuel cell vehicles carrying pure H{sub 2} fuel, to achieve parity with internal combustion engine (ICE) vehicles. A conceptual design of a near term FCEV (fuel cell electric vehicle) is presented. Complete power system weight and cost breakdowns are presented for baseline design. Near term FCEV power system weight is 6% higher than ICE system, mid-term FCEV projected weights are 29% lower than ICE`s. There are no inherently high-cost components in FCE, and at automotive production volumes, near term FCEV cost viability is closer at hand than at first thought. PEM current vs voltage performance is presented for leading PEM manufacturers and researchers. 5 current and proposed onboard hydrogen storage techniques are critically compared: pressurized gas, cryogenic liquid, combined pressurized/cryogenic, rechargeable hydride, adsorption. Battery, capacitor, and motor/controller performance is summarized. Fuel cell power system component weight and cost densities (threshold and goal) are tabulated.

  20. Center for Lightweighting Automotive Materials and Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center for Lightweighting Automotive Materials and Processing 2008 Annual Merit Review Results Summary - 16. Technology Integration and Education GATE Center of Excellence in ...

  1. Electrifying the Automotive Market | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrifying the Automotive Market Argonne is developing battery technology that extends the range for electric vehicles while increasing safety and decreasing price. PDF icon...

  2. Vehicle Technologies Office Merit Review 2015: Crash Propagation in Automotive Batteries: Simulations and Validation

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about crash...

  3. Vehicle Technologies Office Merit Review 2015: Understanding Protective Film Formation by Magnesium Alloys in Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about understanding...

  4. Vehicle Technologies Office Merit Review 2014: Understanding Protective Film Formation on Magnesium Alloys in Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about understanding...

  5. Vehicle Technologies Office Merit Review 2016: Low Cost, High Capacity Non-Intercalation Chemistry Automotive Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Georgia Tech at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  6. Vehicle Technologies Office Merit Review 2015: High-Strength Electroformed Nanostructured Aluminum for Lightweight Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Xtalic Corporation at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-strength...

  7. Vehicle Technologies Office Merit Review 2016: High-Strength Electroformed Nanostructured Aluminum for Lightweight Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Xtalic Corporation at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Lightweighting

  8. Vehicle Technologies Office Merit Review 2016: Development of Low Cost, High Strength Automotive Aluminum Sheet

    Broader source: Energy.gov [DOE]

    Presentation given by ALCOA at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Lightweighting

  9. Vehicle Technologies Office Merit Review 2014: Permanent Magnet Development for Automotive Traction Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Ames Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about permanent magnet development...

  10. Vehicle Technologies Office Merit Review 2016: New High-Energy Electrochemical Couple for Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  11. Vehicle Technologies Office Merit Review 2014: New High-Energy Electrochemical Couple for Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a new high-energy...

  12. Vehicle Technologies Office Merit Review 2015: New High-Energy Electrochemical Couple for Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about new high-energy...

  13. Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Technology Competition (AVTC) program is an engineering education program managed by Argonne National Laboratory for the U.S. Department of Energy in partnership with Natural Resources Canada and the U.S. and Canadian auto industries.

  14. Vehicle Technologies Office Merit Review 2014: High Energy Novel Cathode / Alloy Automotive Cell

    Broader source: Energy.gov [DOE]

    Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy novel cathode / alloy...

  15. Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon Fiber Composite Structures

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material models...

  16. Vehicle Technologies Office Merit Review 2015: Low Cost, High Capacity Non-Intercalation Chemistry Automotive Cells

    Broader source: Energy.gov [DOE]

    Presentation given by Sila Nanotechnologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low cost, high capacity...

  17. Vehicle Technologies Office Merit Review 2015: Development of Computer-Aided Design Tools for Automotive Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of computer-aided...

  18. Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by CD-Adapco at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of computer-aided...

  19. Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of computer-aided...

  20. An Analysis of Energy Savings Possible Through Advances in Automotive Tooling Technology

    SciTech Connect (OSTI)

    Rick Schmoyer, RLS

    2004-12-03

    The use of lightweight and highly formable advanced materials in automobile and truck manufacturing has the potential to save fuel. Advances in tooling technology would promote the use of these materials. This report describes an energy savings analysis performed to approximate the potential fuel savings and consequential carbon-emission reductions that would be possible because of advances in tooling in the manufacturing of, in particular, non-powertrain components of passenger cars and heavy trucks. Separate energy analyses are performed for cars and heavy trucks. Heavy trucks are considered to be Class 7 and 8 trucks (trucks rated over 26,000 lbs gross vehicle weight). A critical input to the analysis is a set of estimates of the percentage reductions in weight and drag that could be achieved by the implementation of advanced materials, as a consequence of improved tooling technology, which were obtained by surveying tooling industry experts who attended a DOE Workshop, Tooling Technology for Low-Volume Vehicle Production, held in Seattle and Detroit in October and November 2003. The analysis is also based on 2001 fuel consumption totals and on energy-audit component proportions of fuel use due to drag, rolling resistance, and braking. The consumption proportions are assumed constant over time, but an allowance is made for fleet growth. The savings for a particular component is then the product of total fuel consumption, the percentage reduction of the component, and the energy audit component proportion. Fuel savings estimates for trucks also account for weight-limited versus volume-limited operations. Energy savings are assumed to be of two types: (1) direct energy savings incurred through reduced forces that must be overcome to move the vehicle or to slow it down in braking. and (2) indirect energy savings through reductions in the required engine power, the production and transmission of which incur thermodynamic losses, internal friction, and other

  1. Technology development goals for automotive fuel cell power systems. Final report, Appendix B-2

    SciTech Connect (OSTI)

    Thomas, C.E.; James, B.D.

    1995-07-01

    Directed Technologies, Inc. has previously submitted a detailed technical assessment and concept design for a mid-size, five-passenger fuel cell electric vehicle (FCEV), under contract to the Argonne National Laboratory. As a supplement to that contract, DTI has reviewed the literature and conducted a preliminary evaluation of two energy carriers for the FCEV: hydrogen and methanol. This report compares the estimated fuel efficiency, cost of producing and delivering the fuel, and the resultant life cycle costs of the FCEV when fueled directly by hydrogen and when fueled by methanol with on-board reforming to produce the required hydrogen-rich gas for the fuel cell. This work will be supplemented and expanded under the Ford contract with the Department of Energy to develop the FCEV and its fuel infrastructure.

  2. Automotive Fuel Cell Corporation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Corporation n SNL researcher Cy Fujimoto demonstrates his new flexible hydrocarbon polymer electrolyte mem- brane, which could be a key factor in realizing a hydrogen car. The close partnership between Sandia and AFCC has resulted in a very unique and promising technology for future automotive applications. Dr. Rajeev Vohra Manager R&D AFCC Hydrocarbon Membrane Fuels the Suc- cess of Future Generation Vehicles While every car manufacturer, such as GM and Ford, has developed their

  3. Permanent Magnet Development for Automotive Traction Motors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Permanent Magnet Development for Automotive Traction Motors Permanent Magnet Development for Automotive Traction Motors 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ape015_anderson_2010_o.pdf (2.46 MB) More Documents & Publications Permanent Magnet Development for Automotive Traction Motors Permanent Magnet Development for Automotive Traction Motors Permanent Magnet Development for

  4. TODAY: Secretary Chu and Senator Stabenow to Announce Advanced Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Loan for Michigan Manufacturer | Department of Energy Senator Stabenow to Announce Advanced Automotive Technology Loan for Michigan Manufacturer TODAY: Secretary Chu and Senator Stabenow to Announce Advanced Automotive Technology Loan for Michigan Manufacturer July 13, 2011 - 12:00am Addthis Washington, D.C. - Today, U.S. Energy Secretary Steven Chu will join U.S. Senators Carl Levin and Debbie Stabenow on a conference call to make an announcement regarding an advanced automotive

  5. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel Nanostructured Interface Solution for Automotive ...

  6. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces

  7. Shear Rolling of Magnesium Sheet for Automotive, Defense, and...

    Office of Scientific and Technical Information (OSTI)

    Shear Rolling of Magnesium Sheet for Automotive, Defense, and Energy Applications Citation ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  8. Economic and Environmental Tradeoffs in New Automotive Painting...

    Office of Scientific and Technical Information (OSTI)

    Title: Economic and Environmental Tradeoffs in New Automotive Painting Technologies Painting is the most expensive unit operation in automobile manufacturing and the source of over ...

  9. Automotive and MHE Fuel Cell System Cost Analysis

    Broader source: Energy.gov [DOE]

    Presentation slides from the Fuel Cell Technologies Office webinar, Automotive and MHE Fuel Cell System Cost Analysis, held April 16, 2013.

  10. Development of Computer-Aided Design Tools for Automotive Batteries...

    Broader source: Energy.gov (indexed) [DOE]

    Progress of Computer-Aided Engineering of Batteries (CAEBAT) Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries ...

  11. AZ Automotive: Presentation

    Broader source: Energy.gov [DOE]

    The role of midsize automotive module suppliers in meeting the goals of the Energy Independence and Security act of 2007

  12. Automotive vehicle sensors

    SciTech Connect (OSTI)

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  13. Thermoelectrics Partnership: Automotive Thermoelectric Modules with

    Broader source: Energy.gov (indexed) [DOE]

    Scalable Thermo- and Electro-Mechanical Interfaces | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace067_goodson_2012_o.pdf (5.6 MB) More Documents & Publications Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces

  14. Thermoelectrics Partnership: Automotive Thermoelectric Modules with

    Broader source: Energy.gov (indexed) [DOE]

    Scalable Thermo- and Electro-Mechanical Interfaces | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace067_goodson_2011_o.pdf (1.89 MB) More Documents & Publications Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application

  15. Vehicle Technologies Office Merit Review 2016: Validation of Material Models for Crash Simulation of Automotive Carbon Fiber Composite Structures (VMM)

    Broader source: Energy.gov [DOE]

    Presentation given by Ford at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Lightweighting

  16. Vehicle Technologies Office Merit Review 2016: ICME Guided Development of Advanced Cast Aluminum Alloys for Automotive Engine Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Ford at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Propulsion Materials

  17. Coda Automotive | Open Energy Information

    Open Energy Info (EERE)

    Coda Automotive Place: Santa Monica, California Zip: 90403 Product: California-based electric vehicle company which builds its cars in China. References: Coda Automotive1...

  18. Vehicle Technologies Office Merit Review 2014: ICME Guided Development of Advanced Cast Aluminum Alloys For Automotive Engine Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Ford at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ICME guided development of advanced cast...

  19. Vehicle Technologies Office Merit Review 2015: ICME Guided Development of Advanced Cast Aluminum Alloys for Automotive Engine Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ICME guided development of...

  20. Vehicle Technologies Office Merit Review 2015: Validation of Material Models for Crash Simulation of Automotive Carbon Fiber Composite Structures (VMM)

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material...

  1. Vehicle Technologies Office Merit Review 2014: Efficient Safety and Degradation Modeling of Automotive Li-ion Cells and Pack

    Broader source: Energy.gov [DOE]

    Presentation given by EC Power at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about efficient safety and degradation...

  2. Vehicle Technologies Office Merit Review 2015: Efficient Safety and Degradation Modeling of Automotive Li-ion Cells and Pack

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by EC-Power at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about efficient safety and degradation...

  3. Electrohydraulic Forming of Near Net Shape Automotive Panels

    SciTech Connect (OSTI)

    2009-01-01

    This factsheet describes a research project whose goal is to develop the electrohydraulic forming (EHF) process as a near net shape automotive panel manufacturing technology that simultaneously reduces the energy embedded in vehicles and the energy consumed while producing automotive structures.

  4. Automotive Thermoelectric Generators and HVAC

    Broader source: Energy.gov [DOE]

    Provides overview of DOE-supported projects in automotive thermoelectric generators and heaters/air conditioners

  5. High Energy Novel Cathode / Alloy Automotive Cell | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es131_choi_2012_p.pdf (1.19 MB) More Documents & Publications High Energy Novel Cathode / Alloy Automotive Cell Vehicle Technologies Office Merit Review 2014: High Energy Novel Cathode / Alloy Automotive Cell Vehicle Technologies Office Merit Review 2016: Advanced High Energy Li-Ion Cell for PHEV and EV Applications

  6. Vehicular Thermoelectrics: A New Green Technology | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (8.06 MB) More Documents & Publications Thermoelectrics: The New Green Automotive Technology Automotive Thermoelectric Generators and HVAC Solid-State Energy Conversion Overview

  7. Automotive Deployment Option Projection Tool (ADOPT) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Deployment Option Projection Tool (ADOPT) Model (National Renewable Energy Laboratory) Objectives Estimate the petroleum use impacts of alternative technologies and policies. Estimate future vehicle market share based on infrastructure constraints, consumer preferences, and vehicle attributes. Analyze policy options by considering factors such as vehicle incentives and energy prices. Key Attributes & Strengths The model validates in many relevant dimensions with historical vehicle

  8. Vehicle Technologies Office Merit Review 2015: Penn State DOE Graduate Automotive Technology Education (GATE) Program for In-Vehicle, High-Power Energy Storage Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Pennsylvania State University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Penn State DOE...

  9. Novel Nanostructured Interface Solution for Automotive Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Electro-Mechanical Interfaces Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Automotive ...

  10. Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Identify a technical and business approach to accelerate the deployment of light-duty automotive TE HVAC technology, maintain occupant comfort, and improve energy efficiency.

  11. Development of Cell/Pack Level Models for Automotive Li-Ion Batteries...

    Broader source: Energy.gov (indexed) [DOE]

    Level Models for Automotive Li-Ion Batteries with Experimental Validation Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Vehicle Technologies Office ...

  12. Permanent Magnet Development for Automotive Traction Motors | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ape015_anderson_2011_o.pdf (1.01 MB) More Documents & Publications Permanent Magnet Development for Automotive Traction Motors Permanent Magnet Development for Automotive Traction Motors Vehicle Technologies Office Merit Review 2015: Development of Radically Enhanced alnico Magnets (DREaM) for Traction Drive

  13. Lightweight Steel Solutions for Automotive Industry

    SciTech Connect (OSTI)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-06-15

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  14. Vehicle Technologies Office Merit Review 2014: Development of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Computer-Aided Design Tools for Automotive Batteries Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries ...

  15. Vehicle Technologies Office: 2015 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will ...

  16. The status of ceramic turbine component fabrication and quality assurance relevant to automotive turbine needs

    SciTech Connect (OSTI)

    Richerson, D.W.

    2000-02-01

    This report documents a study funded by the U.S. Department of Energy (DOE) Office of Transportation Technologies (OTT) with guidance from the Ceramics Division of the United States Automotive Materials Partnership (USAMP). DOE and the automotive companies have funded extensive development of ceramic materials for automotive gas turbine components, the most recent effort being under the Partnership for a New Generation of Vehicles (PNGV) program.

  17. Integrity Automotive | Open Energy Information

    Open Energy Info (EERE)

    Product: Joint venture between Kentucky businessman Randal Waldman of Integrity Manufacturing and California-based electric car maker Zap. References: Integrity Automotive1...

  18. Automotive Energy Storage Systems 2015

    Broader source: Energy.gov [DOE]

    Automotive Energy Storage Systems 2015, the ITB Group’s 16th annual technical conference, was held from March 4–5, 2015, in Novi, Michigan.

  19. Bluebird Automotive | Open Energy Information

    Open Energy Info (EERE)

    Sector: Vehicles Product: Producer of electric vehicles for the delivery market and other cars, specialising in making fast electric vehicles. References: Bluebird Automotive1...

  20. Bright Automotive Inc | Open Energy Information

    Open Energy Info (EERE)

    Automotive Inc Jump to: navigation, search Name: Bright Automotive, Inc. Place: Anderson, Indiana Zip: 46013 Product: Designer and OEM for the IDEA PHEV. References: Bright...

  1. Korean Automotive Research Instituiton | Open Energy Information

    Open Energy Info (EERE)

    Korean Automotive Research Instituiton Jump to: navigation, search Name: Korean Automotive Research Instituiton Place: Korea Information About Partnership with NREL Partnership...

  2. Fisker Automotive Inc | Open Energy Information

    Open Energy Info (EERE)

    Fisker Automotive Inc Jump to: navigation, search Name: Fisker Automotive Inc Place: Irvine, California Zip: 92606 Product: Irvine-based hybrid vehicle manufacturer. Coordinates:...

  3. Green Automotive Company Inc | Open Energy Information

    Open Energy Info (EERE)

    Company Inc Jump to: navigation, search Name: Green Automotive Company Inc Place: Texas Zip: 75001 Product: Texas-based electric vehicle manufacturer. References: Green Automotive...

  4. Oscar Automotive Ltd | Open Energy Information

    Open Energy Info (EERE)

    Oscar Automotive Ltd Place: London, Greater London, United Kingdom Sector: Hydro, Hydrogen Product: OSCar Automotive is working towards the commercialisation of hydrogen fuel...

  5. AISI/DOE Technology Roadmap Program: Characterization of Fatigue and Crash Performance of New Generation High Strength Steels for Automotive Applications

    SciTech Connect (OSTI)

    Brenda Yan; Dennis Urban

    2003-04-21

    A 2-year project (2001-2002) to generate fatigue and high strain data for a new generation of high strength steels (HSS) has been completed in December 2002. The project tested eleven steel grades, including Dual Phase (DP) steels, Transformation-Induced Plasticity (TRIP) steels, Bake Hardenable (BH) steels, and conventional High Strength Low Alloy (HSLA) steels. All of these steels are of great interest in automotive industry due to the potential benefit in weight reduction, improved fuel economy, enhanced crash energy management and total system cost savings. Fatigue behavior includes strain controlled fatigue data notch sensitivity for high strength steels. High strain rate behavior includes stress-strain data for strain rates from 0.001/s to 1000/s, which are considered the important strain rate ranges for crash event. The steels were tested in two phases, seven were tested in Phase 1 and the remaining steels were tested in Phase. In a addition to the fatigue data and high st rain rate data generated for the steels studied in the project, analyses of the testing results revealed that Advanced High Strength Steels (AHSS) exhibit significantly higher fatigue strength and crash energy absorption capability than conventional HSS. TRIP steels exhibit exceptionally better fatigue strength than steels of similar tensile strength but different microstructure, for conditions both with or without notches present

  6. Vehicle Technologies Program Educational Activities

    SciTech Connect (OSTI)

    2011-12-13

    Description of educational activities including: EcoCAR2: Plugging In to the Future, EcoCAR: The NeXt Challenge, Green Racing, Automotive X Prize, Graduate Technology Automotive Education (GATE), and Hydrogen Education.

  7. GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications

    SciTech Connect (OSTI)

    2011-07-31

    This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.

  8. Vehicle Technologies Office Merit Review 2016: Predictive Models for Integrated Manufacturing and Structural Performance of Carbon Fiber Composites for Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors (GM) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Lightweighting

  9. Vehicle Technologies Office Merit Review 2015: New High Energy Electrochemical Couple for Automotive Application: ANL IC3P Research Focus on Diagnostic Studies at BNL

    Broader source: Energy.gov [DOE]

    Presentation given by Brookhaven National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about new high...

  10. Vehicle Technologies Office Merit Review 2016: Development and Validation of a Simulation tool to Predict the Combined Structural, Electrical, Electrochemical, and Thermal Responses of Automotive Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Ford at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  11. Automotive Thermoelectric Generator Design Issues

    Office of Energy Efficiency and Renewable Energy (EERE)

    Mechanical, electrical, thermal engineering, and durability issues related to use of TEGs in the challenging automotive environment need to be resolved as they affect warranty cost and customer acceptance.

  12. Ceramic Automotive Stirling Engine Program

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  13. Vehicle Technologies Office Merit Review 2014: Development of Cell/Pack Level Models for Automotive Li-Ion Batteries with Experimental Validation

    Broader source: Energy.gov [DOE]

    Presentation given by EC Power at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about evelopment of cell/pack level models...

  14. Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit

    Broader source: Energy.gov [DOE]

    Presentation given by University of Alabama at Birmingham at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE...

  15. Vehicle Technologies Office Merit Review 2015: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit

    Broader source: Energy.gov [DOE]

    Presentation given by University of Alabama Birmingham at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center...

  16. Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit

    Broader source: Energy.gov [DOE]

    Presentation given by University of Alabama at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center of...

  17. 10 Questions for an Automotive Engineer: Thomas Wallner

    Broader source: Energy.gov [DOE]

    Meet Thomas Wallner – automotive engineer extraordinaire, who hails from Argonne National Laboratory’s Center for Transportation Research. He took some time to answer our 10 Questions and share his insight on advanced engine technologies from dual-fuel to biofuels.

  18. Development of Computer-Aided Design Tools for Automotive Batteries |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 9_han_2012_o.pdf (3.61 MB) More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries

  19. Structural Automotive Components from Composite Materials | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting lm049_berger_2012_o.pdf (4.04 MB) More Documents & Publications Advanced Materials and Processing of Composites for High Volume Applications Advanced Materials and Processing of Composites for High Volume Applications Structural Automotive Components from Composite Materials

  20. NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrics for Automotive Waste Heat Recovery Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces

  1. NSF/DOE Thermoelectics Partnership: Thermoelectrics for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery 2011 DOE ...

  2. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    Fuel Cell Technologies Publication and Product Library (EERE)

    Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several

  3. Superplastic forming of stainless steel automotive components

    SciTech Connect (OSTI)

    Bridges, B.; Elmer, J.; Carol, L.

    1997-02-06

    Exhaust emission standards are governmentally controlled standards, which are increasingly stringent, forcing alternate strategies to meet these standards. One approach to improve the efficiency of the exhaust emission equipment is to decrease the time required to get the catalytic converter to optimum operating temperature. To accomplish this, automotive manufacturers are using double wall stainless steel exhaust manifolds to reduce heat loss of the exhaust gases to the converter. The current method to manufacture double wall stainless steel exhaust components is to use a low-cost alloy with good forming properties and extensively form, cut, assemble, and weld the pieces. Superplastic forming (SPF) technology along with alloy improvements has potential at making this process more cost effective. Lockheed Martin Energy Systems (LMES), Lawrence Livermore National Laboratory (LLNL) and USCAR Low Emission Partnership (LEP) worked under a Cooperative Research And Development Agreement (CRADA) to evaluate material properties, SPF behavior, and welding behavior of duplex stainless steel alloy for automotive component manufacturing. Battelle Pacific Northwest National Laboratory (PNNL) has a separate CRADA with the LEP to use SPF technology to manufacture a double wall stainless steel exhaust component. As a team these CRADAs developed and demonstrated a technical plan to accomplish making double wall stainless steel exhaust manifolds.

  4. Automotive HCCI Engine Research

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  5. Automotive HCCI Engine Research

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Automotive HCCI Engine Research

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Bannon Automotive LLC | Open Energy Information

    Open Energy Info (EERE)

    Name: Bannon Automotive LLC Place: New York Product: New York-based manufacturer of electric cars. References: Bannon Automotive LLC1 This article is a stub. You can help...

  8. United States Automotive Materials Partnership LLC (USAMP)

    SciTech Connect (OSTI)

    United States Automotive Materials Partnership

    2011-01-31

    The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunities for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly developed

  9. Vertically Integrated Mass Production of Automotive Class Lithium Ion

    Broader source: Energy.gov (indexed) [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10_fairbanks.pdf (3.36 MB) More Documents & Publications Thermoelectrics: The New Green Automotive Technology Vehicular Thermoelectrics: A New Green Technology Vehicular Thermoelectrics: A Fleets | Department of Energy

    With their presence in almost every neighborhood and community, refuse trucks, like the one shown above, can benefit from

  10. Upgrading the Center for Lightweighting Automotive Materials and Processing - a GATE Center of Excellence at the University of Michigan-Dearborn

    SciTech Connect (OSTI)

    Mallick, P. K.

    2012-08-30

    The Center for Lightweighting Materials and Processing (CLAMP) was established in September 1998 with a grant from the Department of Energy’s Graduate Automotive Technology Education (GATE) program. The center received the second round of GATE grant in 2005 under the title “Upgrading the Center for Lightweighting Automotive Materials and Processing”. Using the two grants, the Center has successfully created 10 graduate level courses on lightweight automotive materials, integrated them into master’s and PhD programs in Automotive Systems Engineering, and offered them regularly to the graduate students in the program. In addition, the Center has created a web-based lightweight automotive materials database, conducted research on lightweight automotive materials and organized seminars/symposia on lightweight automotive materials for both academia and industry. The faculty involved with the Center has conducted research on a variety of topics related to design, testing, characterization and processing of lightweight materials for automotive applications and have received numerous research grants from automotive companies and government agencies to support their research. The materials considered included advanced steels, light alloys (aluminum, magnesium and titanium) and fiber reinforced polymer composites. In some of these research projects, CLAMP faculty have collaborated with industry partners and students have used the research facilities at industry locations. The specific objectives of the project during the current funding period (2005 – 2012) were as follows: (1) develop new graduate courses and incorporate them in the automotive systems engineering curriculum (2) improve and update two existing courses on automotive materials and processing (3) upgrade the laboratory facilities used by graduate students to conduct research (4) expand the Lightweight Automotive Materials Database to include additional materials, design case studies and make it more

  11. Automotive HCCI Engine Research

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  12. Automotive HCCI Engine Research

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  13. GATE Center for Automotive Fuel Cell Systems at Virginia Tech

    SciTech Connect (OSTI)

    Nelson, Douglas

    2011-09-30

    The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: Expanded and updated fuel cell and vehicle technologies education programs; Conducted industry directed research in three thrust areas development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; Published research results that provide industry with new knowledge which contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Tech's comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.

  14. Crashworthiness simulation of composite automotive structures

    SciTech Connect (OSTI)

    Botkin, M E; Johnson, N L; Simunovic, S; Zywicz, E

    1998-06-01

    In 1990 the Automotive Composites Consortium (ACC) began the investigation of crash worthiness simulation methods for composite materials. A contract was given to Livermore Software Technology Corporation (LSTC) to implement a new damage model in LS-DYNA3DTM specifically for composite structures. This model is in LS-DYNA3DTM and is in use by the ACC partners. In 1994 USCAR, a partnership of American auto companies, entered into a partnership called SCAAP (Super Computing Automotive Applications Partnership) for the express purpose of working with the National Labs on computational oriented research. A CRADA (Cooperative Research and Development Agreement) was signed with Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Argonne National Laboratory, and Los Alamos National Laboratory to work in three distinctly different technical areas, one of which was composites material modeling for crash worthiness. Each Laboratory was assigned a specific modeling task. The ACC was responsible for the technical direction of the composites project and provided all test data for code verification. All new models were to be implemented in DYNA3D and periodically distributed to all partners for testing. Several new models have been developed and implemented. Excellent agreement has been shown between tube crush simulation and experiments.

  15. Actron Technology Corporation | Open Energy Information

    Open Energy Info (EERE)

    Actron Technology Corporation Jump to: navigation, search Name: Actron Technology Corporation Place: Taoyuan, Taiwan Product: Taiwan-based automotive diode manufacturer. Actron...

  16. Predictive Technology Development and Crash Energy Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Predictive Technology Development and Crash Energy Management Predictive Technology ... Merit Review 2015: Validation of Material Models for Crash Simulation of Automotive Carbon ...

  17. Vehicular Thermoelectrics: A New Green Technology | Department...

    Broader source: Energy.gov (indexed) [DOE]

    (3.68 MB) More Documents & Publications Thermoelectrics: The New Green Automotive Technology Vehicular Thermoelectrics: A New Green Technology Vehicular Thermoelectrics: The

  18. The Progressive Insurance Automotive X PRIZE Education Program

    SciTech Connect (OSTI)

    Robyn Ready

    2011-12-31

    The Progressive Insurance Automotive X PRIZE Education Program conducted education and outreach activities and used the competition's technical goals and vehicle demonstrations as a means of attracting students and the public to learn more about advanced vehicle technologies, energy efficiency, climate change, alternative fuels, and the science and math behind efficient vehicle development. The Progressive Insurance Automotive X PRIZE Education Program comprised three integrated components that were designed to educate the general public and create a multi-tiered initiative to engage students and showcase the 21st century skills students will need to compete in our global economy: teamwork, creativity, strong literacy, math and science skills, and innovative thinking. The elements included an Online Experience, a National Student Contest, and in person education events and activites. The project leveraged online connections, strategic partnerships, in-classroom, and beyond-the-classroom initiatives, as well as mainstream media. This education program supported by the U.S. Department of Energy (DOE) also funded the specification of vehicle telemetry and the full development and operation of an interactive online experience that allowed internet users to follow the Progressive Insurance Automotive X PRIZE vehicles as they performed in real-time during the Progressive Insurance Automotive X PRIZE competition events.

  19. NREL: Transportation Research - Future Automotive Systems Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    At what battery prices do PHEVs and EVs become cost effective? On average, how much fuel does a PHEV with a 30-mile electric range save? How much fuel savings does an HEV provide ...

  20. Automotive Turbocharging: Industrial Requirements and Technology Developments

    Broader source: Energy.gov [DOE]

    Significant improvements in turbocharger performance will be difficult to achieve requires a proper understanding of the trade-offs and engine effects and impacts must be part of turbocharger development

  1. Market Acceptance of Advanced Automotive Technologies Model ...

    Open Energy Info (EERE)

    and multiple regions. For more information, contact the ORNL Energy and Transportation Science Division at http:www.ornl.govscieesetsdcontactus.shtml References Retrieved...

  2. Autonomie: Automotive System Design | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Autonomie: Automotive System Design Autonomie: Automotive System Design Argonne's Autonomie is a MATLAB©-based software environment and framework for automotive control system design, simulation and analysis. Autonomie is capable of Model-in-the-Loop (MIL), Software-in-the-Loop (SIL), Hardware-in-the-Loop (HIL) and Rapid-Control-Prototyping (RCP) Integrating math-based engineering activities through all stages of development Mixing and matching models of different levels of abstraction with

  3. Autonomie Automotive Simulation Tool | Open Energy Information

    Open Energy Info (EERE)

    industrial, aerospace, and automotive applications. It provides an efficient methodology that includes four key elements in the development process: modeling a plant (from...

  4. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application: 2009 Update

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis conducted by Directed Technologies (DTI), under contract to the US Department of Energy (DOE).

  5. Can Automotive Battery Recycling Help Meet Lithium Demand? |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can Automotive Battery Recycling Help Meet Lithium Demand? Title Can Automotive Battery Recycling Help Meet Lithium Demand? Publication Type Presentation Year of Publication 2013...

  6. W.E.T. Automotive Systems | Open Energy Information

    Open Energy Info (EERE)

    E.T. Automotive Systems Jump to: navigation, search Name: W.E.T. Automotive Systems Place: Odelzhausen, Germany Information About Partnership with NREL Partnership with NREL Yes...

  7. FY 2008 Progress Report for Lightweighting Materials - 4. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4. Automotive Metals-Titanium FY 2008 Progress Report for Lightweighting Materials - 4. Automotive Metals-Titanium Lightweighting Materials focuses on the development and ...

  8. FY 2008 Progress Report for Lightweighting Materials - 2. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2. Automotive Metals-Wrought FY 2008 Progress Report for Lightweighting Materials - 2. Automotive Metals-Wrought Lightweighting Materials focuses on the development and validation ...

  9. FY 2009 Progress Report for Lightweighting Materials - 3. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3. Automotive Metals - Cast FY 2009 Progress Report for Lightweighting Materials - 3. Automotive Metals - Cast The primary Lightweight Materials activity goal is to validate a ...

  10. High Efficiency Full Expansion (FEx) Engine for Automotive Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Full Expansion (FEx) Engine for Automotive Applications High Efficiency Full Expansion (FEx) Engine for Automotive Applications Large increases in engine thermal efficiency result ...

  11. FY 2008 Progress Report for Lightweighting Materials - 5. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5. Automotive Metals-Steel FY 2008 Progress Report for Lightweighting Materials - 5. Automotive Metals-Steel Lightweighting Materials focuses on the development and validation of ...

  12. FY 2009 Progress Report for Lightweighting Materials - 2. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2. Automotive Metals - Wrought FY 2009 Progress Report for Lightweighting Materials - 2. Automotive Metals - Wrought The primary Lightweight Materials activity goal is to validate ...

  13. FY 2009 Progress Report for Lightweighting Materials - 5. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5. Automotive Metals - Steel FY 2009 Progress Report for Lightweighting Materials - 5. Automotive Metals - Steel The primary Lightweight Materials activity goal is to validate a ...

  14. FY 2009 Progress Report for Lightweighting Materials - 6. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6. Automotive Metals - Crosscutting FY 2009 Progress Report for Lightweighting Materials - 6. Automotive Metals - Crosscutting The primary Lightweight Materials activity goal is to ...

  15. CX: Categorical Determination-Alcoa Tennessee Automotive Sheet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion Project CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion Project Categorical ...

  16. FY 2009 Progress Report for Lightweighting Materials - 4. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4. Automotive Metals - Titanium FY 2009 Progress Report for Lightweighting Materials - 4. Automotive Metals - Titanium The primary Lightweight Materials activity goal is to ...

  17. FY 2008 Progress Report for Lightweighting Materials - 6. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6. Automotive Metals-Crosscutting FY 2008 Progress Report for Lightweighting Materials - 6. Automotive Metals-Crosscutting Lightweighting Materials focuses on the development and ...

  18. FY 2008 Progress Report for Lightweighting Materials - 3. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3. Automotive Metals-Cast FY 2008 Progress Report for Lightweighting Materials - 3. Automotive Metals-Cast Lightweighting Materials focuses on the development and validation of ...

  19. Electrocatalysts for Automotive Fuel Cells: Status and Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrocatalysts for Automotive Fuel Cells: Status and Challenges Electrocatalysts for Automotive Fuel Cells: Status and Challenges Presentation by Nilesh Dale for the 2013 DOE ...

  20. Xiamien King Long United Automotive Industry Suzhou | Open Energy...

    Open Energy Info (EERE)

    Xiamien King Long United Automotive Industry Suzhou Jump to: navigation, search Name: Xiamien King Long United Automotive Industry (Suzhou) Place: Suzhou, Fujian Province, China...

  1. Zap Youngman Automotive Group JV | Open Energy Information

    Open Energy Info (EERE)

    search Name: Zap & Youngman Automotive Group JV Place: China Sector: Vehicles Product: Joint Venture between ZAP (OTCBB: ZAAP) and Youngman Automotive Group (China) to develop,...

  2. Reva Electric Bannon Automotive JV | Open Energy Information

    Open Energy Info (EERE)

    & Bannon Automotive JV Place: New York Product: New York-based JV, manufacturer of electric cars. References: Reva Electric & Bannon Automotive JV1 This article is a stub....

  3. ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum Industry Roadmap for the Automotive Market (May 1999) ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999) autoroadmap.pdf (481.39 KB) More ...

  4. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    SciTech Connect (OSTI)

    Greene, David L.; Duleep, K. G.; Upreti, Girish

    2011-05-15

    Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several countries, including the United States, Japan, Germany,and South Korea have established publicly funded R&D and market transformation programs to develop viable domestic FC industries for both automotive and nonautomotive applications.

  5. Advanced vehicle technology analysis and evaluation activities

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    FY 2007 annual progress report evaluating the technologies and performance characteristics of advanced automotive powertrain components and subsystems in an integrated vehicle systems context.

  6. Vehicle Technologies Office Merit Review 2014: Understanding...

    Energy Savers [EERE]

    Automotive Applications Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and...

  7. Controlled Power Technologies Ltd | Open Energy Information

    Open Energy Info (EERE)

    Technologies Ltd Place: Essex, United Kingdom Zip: SS15 6TP Product: Essex-based automotive component supply company involved in powertrain engineering, power electronics and...

  8. Vehicle Technologies Office: Federal Laboratory Consortium Excellence...

    Energy Savers [EERE]

    ... used in proton-exchange membrane (PEM) fuel cells. Porvair Fuel Cell Technology, a Hendersonville, North ... On the production lines at Delphi Automotive Systems, workers fitted ...

  9. Electrohydraulic Forming of Near Net Shape Automotive Panels

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Development of Advancing Automotive Panel Manufacturing for Increased Energy and Material Savings

  10. Automotive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  11. Automotive Fuel Cell Research and Development Needs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USCAR / FreedomCAR Fuel Cell Tech Team Industry Members Craig Gittleman, David Masten and Scott Jorgensen General Motors James Waldecker, Shinichi Hirano and Mark Mehall Ford Motor Company Tarek Abdel-Baset Chrysler LLC Automotive Fuel Cell R&D Needs DOE Fuel Cell Pre-Solicitation Workshop March 16, 2010 Golden, CO General Motors - Ford - Chrysler Overview * Purpose: To provide automotive OEM perspective on topics recommended for study in the DOE Fuel Cell Subprogram * Categories described

  12. Low Temperature Automotive Diesel Combustion

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  13. Automotive Thermoelectric Generators and HVAC

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Interim Update: Global Automotive Power Electronics R&D Relevant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interim Update: Global Automotive Power Electronics R&D Relevant To DOE 2015 and 2020 Cost Targets Interim Update: Global Automotive Power Electronics R&D Relevant To DOE 2015 and ...

  15. Fact #921: April 18, 2016 Japan Produced the Most Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2016 Japan Produced the Most Automotive Lithium-ion Batteries by Capacity in 2014 - Dataset Fact 921: April 18, 2016 Japan Produced the Most Automotive Lithium-ion Batteries by ...

  16. Automotive Accessibility and Efficiency Meet in the Innovative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Accessibility and Efficiency Meet in the Innovative MV-1 Automotive Accessibility and Efficiency Meet in the Innovative MV-1 March 11, 2011 - 4:03pm Addthis The MV-1, a ...

  17. RAPID FREEFORM SHEET METAL FORMING: TECHNOLOGY DEVELOPMENT AND...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RAPID FREEFORM SHEET METAL FORMING: TECHNOLOGY DEVELOPMENT AND SYSTEM VERIFICATION RAPID ... typically required as part of the prototyping process in automotive and aerospace design. ...

  18. Fact #658: January 17, 2011 Increasing Use of Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Source: Environmental Protection Agency, Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 Through 2010. Supporting Information Leases as a ...

  19. Q Tech Quality Technology Korea Inc | Open Energy Information

    Open Energy Info (EERE)

    Product: Manufacturer of components for electronic, telecommunications and automotive industries. References: Q&Tech (Quality & Technology Korea Inc)1 This article is a...

  20. Vehicle Technologies Office: Quarterly Analysis Review June 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Quarterly Analysis Review (QAR) surveys both work supported by the Vehicle Technologies Office Analysis Program within the broader context of energy and automotive U.S. and ...

  1. Vehicle Technologies Office Merit Review 2015: Validation of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon lm084berger2015o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon Fiber Composite ...

  2. Electrocatalysts for Automotive Fuel Cells: Status and Challenges

    Broader source: Energy.gov [DOE]

    Presentation by Nilesh Dale for the 2013 DOE Catalyst Working Group Meeting on electrocatalysts for automotive fuel cells.

  3. Table II: Technical Targets for Membranes: Automotive | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy II: Technical Targets for Membranes: Automotive Table II: Technical Targets for Membranes: Automotive Technical targets for fuel cell membranes in automotive applications defined by the High Temperature Working Group (February 2003). technical_targets_membr_auto.pdf (99.62 KB) More Documents & Publications Table IV: Technical Targets for Membranes: Stationary Table I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive R&D Plan for the High Temperature Membrane

  4. Fact #570: May 11, 2009 Automotive Manufacturing Employment Declining |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0: May 11, 2009 Automotive Manufacturing Employment Declining Fact #570: May 11, 2009 Automotive Manufacturing Employment Declining The number of people employed by automotive manufacturing has been decreasing since 2000. Although nearly three times as many people are employed by motor vehicle parts manufacturing as motor vehicle manufacturing, parts manufacturing has experienced a sharper decline in employment since 2000. Automotive Manufacturing Employment, 1990-2008

  5. Electrohydraulic Forming of Near-Net Shape Automotive Panels

    SciTech Connect (OSTI)

    Golovaschenko, Sergey F.

    2013-09-26

    The objective of this project was to develop the electrohydraulic forming (EHF) process as a near-net shape automotive panel manufacturing technology that simultaneously reduces the energy embedded in vehicles and the energy consumed while producing automotive structures. Pulsed pressure is created via a shockwave generated by the discharge of high voltage capacitors through a pair of electrodes in a liquid-filled chamber. The shockwave in the liquid initiated by the expansion of the plasma channel formed between two electrodes propagates towards the blank and causes the blank to be deformed into a one-sided die cavity. The numerical model of the EHF process was validated experimentally and was successfully applied to the design of the electrode system and to a multi-electrode EHF chamber for full scale validation of the process. The numerical model was able to predict stresses in the dies during pulsed forming and was validated by the experimental study of the die insert failure mode for corner filling operations. The electrohydraulic forming process and its major subsystems, including durable electrodes, an EHF chamber, a water/air management system, a pulse generator and integrated process controls, were validated to be capable to operate in a fully automated, computer controlled mode for forming of a portion of a full-scale sheet metal component in laboratory conditions. Additionally, the novel processes of electrohydraulic trimming and electrohydraulic calibration were demonstrated at a reduced-scale component level. Furthermore, a hybrid process combining conventional stamping with EHF was demonstrated as a laboratory process for a full-scale automotive panel formed out of AHSS material. The economic feasibility of the developed EHF processes was defined by developing a cost model of the EHF process in comparison to the conventional stamping process.

  6. Automotive Perspective on PEM Evaluation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PEM Evaluation Automotive Perspective on PEM Evaluation Presented at the 2009 High Temperature Membrane Working Group Meeting held May 18, 2009, in Arlington, Virginia htmwg_may09_automotive_perspective.pdf (2.8 MB) More Documents & Publications Membrane Performance and Durability Overview for Automotive Fuel Cell Applications New Membranes for PEM Fuel Cells Membrane and MEA Accelerated Stress Test Protocols

  7. NSF/DOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste

    Broader source: Energy.gov (indexed) [DOE]

    Heat Recovery | Department of Energy 4_xu_2011_p.pdf (2.97 MB) More Documents & Publications NSF/DOE Thermoelectrics Partnership: Purdue … GM Partnership on Thermoelectrics for Automotive Waste Heat Recovery NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery

  8. Past experiences with automotive external combustion engines

    SciTech Connect (OSTI)

    Amann, C.A.

    1999-07-01

    GMR (General Motors Research Laboratories, now GM R and D Center) has a history of improving the internal combustion engine, especially as it relates to automotive use. During the quarter century from 1950--75, considerable effort was devoted to evaluating alternative powerplants based on thermodynamic cycles different from those on which the established spark-ignition and diesel engines are founded. Two of these, the steam engine and the Stirling engine, incorporated external combustion. Research on those two alternatives is reviewed. Both were judged to fall short of current needs for commercial success as prime movers for conventional automotive vehicles.

  9. Mod I automotive Stirling engine mechanical development

    SciTech Connect (OSTI)

    Simetkosky, M.

    1984-01-01

    The Mod I Stirling engine was the first automotive Stirling engine designed specifically for automotive application. Testing of these engines has revealed several deficiencies in engine mechanical integrity which have been corrected by redesign or upgrade. The main deficiencies uncovered during the Mod I program lie in the combustion, auxiliary, main seal, and heater head areas. This paper will address each of the major area deficiencies in detail, and describe the corrective actions taken as they apply to the Mod I and the next Stirling-engine design, the Upgraded Mod I (a redesign to incorporate new materials for cost/weight reduction and improved performance).

  10. Automotive X PRIZE Education Program

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  11. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber Automotive Composite

    SciTech Connect (OSTI)

    Corum, J.M.

    2002-04-17

    This report provides recommended durability-based design properties and criteria for a quasi-isotropic carbon-fiber composite for possible automotive structural applications. The composite, which was made by a rapid molding process suitable for high-volume automotive applications, consisted of continuous Thornel T300 fibers (6K tow) in a Baydur 420 IMR urethane matrix. The reinforcement was in the form of four {+-}45{sup o} stitch-bonded mats in the following layup: [0/90{sup o}/{+-}45{sup o}]{sub S}. This material is the second in a progression of three candidate thermoset composites to be characterized and modeled as part of an Oak Ridge National Laboratory project entitled Durability of Carbon-Fiber Composites. The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Advanced Automotive Technologies and is closely coordinated with the industry Automotive Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for large automotive structural components. This document is in two parts. Part I provides the design criteria, and Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects on deformation, strength, and stiffness of cyclic and sustained loads, operating temperature, automotive fluid environments, and low-energy impacts (e.g., tool drops and kickups of roadway debris). Guidance is provided for design analysis, time-dependent allowable stresses, rules for cyclic loadings, and damage tolerance design guidance, including the effects of holes. Chapter 6 provides a brief summary of the design criteria.

  12. Automotive frames of stainless steel

    SciTech Connect (OSTI)

    Emmons, J.B.; Douthett, J.

    1996-08-01

    A lightweight, stainless steel vehicle modular frame that meets the requirements of the Partnership for a New Generation of Vehicles (PNGV) is being jointly developed by Armco and Autokinetics. Reaching the long-term goal of the program known as the Supercar will require technology that is capable of significantly reducing mass, while holding the cost of the finished vehicle to current levels. The structure should reduce mass by at least 50%, and must be high in performance, practical to manufacture, and conceptually simple compared to current practice. Another key PNGV goal is the development of a manufacturing infrastructure to attain cost and production levels consistent with auto industry norms. A third goal is to spin off as much of the resulting advanced technology as possible to conventional vehicles, enabling them to benefit from advances in mass reduction, aerodynamics, and materials technologies. All of these benefits can be realized with the stainless steel modular frame.

  13. Automotion of domain walls for spintronic interconnects

    SciTech Connect (OSTI)

    Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2014-06-07

    We simulate “automotion,” the transport of a magnetic domain wall under the influence of demagnetization and magnetic anisotropy, in nanoscale spintronic interconnects. In contrast to spin transfer driven magnetic domain wall motion, the proposed interconnects operate without longitudinal charge current transfer, with only a transient current pulse at domain wall creation and have favorable scaling down to the 20 nm dimension. Cases of both in-plane and out-of-plane magnetization are considered. Analytical dependence of the velocity of domain walls on the angle of magnetization are compared with full micromagnetic simulations. Deceleration, attenuation and disappearance, and reflection of domain walls are demonstrated through simulation. Dependences of the magnetization angle on the current pulse parameters are studied. The energy and delay analysis suggests that automotion is an attractive option for spintronic logic interconnects.

  14. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mass Production Cost Estimation for Direct H 2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update March 26, 2009 v.30.2021.052209 Prepared by: Brian D. James & Jeffrey A. Kalinoski One Virginia Square 3601 Wilson Boulevard, Suite 650 Arlington, Virginia 22201 703-243-3383 Prepared for: Contract No. GS-10F-0099J to the U.S. Department of Energy Energy Efficiency and Renewable Energy Office Hydrogen, Fuel Cells & Infrastructure Technologies Program Foreword Energy security is

  15. Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ANL-10/24 Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications Nuclear Engineering Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of

  16. Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ANL/09-33 Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications Nuclear Engineering Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov.

  17. Friction of Materials for Automotive Applications

    SciTech Connect (OSTI)

    Blau, Peter Julian

    2013-01-01

    This brief overview of friction-related issues in materials for automobiles is invited for a special issue on automotive materials in the ASM journal AM&P. It describes a range of areas in a ground vehicle in which friction must be controlled or minimized. Applications range from piston rings to tires, and from brakes to fuel injector components. A perspective on new materials and lubricants, and the need for validation testing is presented.

  18. CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion Project CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion Project Categorical Determination Alcoa Tennessee Automotive Sheet Expansion Project CX(s) Applied: B1.31 Date: 05/06/2014 Location(s): Alcoa, Tennessee Offices(s): Loan Programs Office More Documents & Publications CX-012188: Categorical Exclusion Determination CX-012189: Categorical Exclusion

  19. The Challenges for PEMFC Catalysts in Automotive Applications | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy The Challenges for PEMFC Catalysts in Automotive Applications The Challenges for PEMFC Catalysts in Automotive Applications Presentation by Stephen Campbell for the 2013 DOE Catalysis Working Group Meeting on PEMFC catalysts in automotive applications. cwg_may2013_campbell.pdf (1.34 MB) More Documents & Publications FCTO Consortia Overview (HyMARC and FC-PAD) Webinar FCTO Consortia Overview (HyMARC and FC-PAD) Webinar Durability Improvements Through Degradation Mechanism

  20. Automotive Perspective on Membrane Evaluation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Membrane Evaluation Automotive Perspective on Membrane Evaluation Presentation at the 2008 High Temperature Membrane Working Group Meeting held June 9, 2008, in Washington, DC waldecker_htmwg_2008.pdf (86.19 KB) More Documents & Publications Transportation Fuel Cell R&D Needs (Presentation) Automotive Fuel Cell Research and Development Needs Analysis of the Durability of PEM FC Membrane Electrode Assemblies in Automotive Applications

  1. Table I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive Table I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive Technical targets for fuel cell CCMs in automotive applications defined by the High Temperature Working Group (February 2003). technical_targets_ccms_auto.pdf (117.61 KB) More Documents & Publications Table III: Technical Targets for Catalyst Coated Membranes (CCMs): Stationary R&D Plan for the High Temperature

  2. Racing Ahead in Automotive Education | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Racing Ahead in Automotive Education Racing Ahead in Automotive Education February 18, 2011 - 4:52pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Helps develop the next generation of innovative auto engineers Where will the next generation of automotive innovation come from? That's a question that's driving discussion throughout the auto industry at the moment, and many hope that the answer lies in the next generation of

  3. Automotive Thermoelectric Moduleswith Scalable Thermo- andElectro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moduleswith Scalable Thermo- and Electro-Mechanical Interfaces Automotive Thermoelectric Moduleswith Scalable Thermo- and Electro-Mechanical Interfaces Interface materials based on ...

  4. ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Sandia researcher Cy Fujimoto demonstrates his new flexible hydrocarbon polymer electrolyte membrane, which could be a key factor in realizing a hydrogen car. Current automotive ...

  5. Shear Rolling of Magnesium Sheet for Automotive, Defense, and...

    Office of Scientific and Technical Information (OSTI)

    Title: Shear Rolling of Magnesium Sheet for Automotive, Defense, and Energy Applications Authors: Muralidharan, Govindarajan 1 ; Muth, Thomas R 1 ; Peter, William H 1 ; ...

  6. Membrane Performance and Durability Overview for Automotive Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Membrane Performance and Durability Overview for Automotive Fuel Cell Applications Presented by Tom Greszler of General Motors at the High Temperature Membrane Working Group ...

  7. Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application

    Broader source: Energy.gov [DOE]

    Presents nanostructured thermal/electrical interface tapeŽ concept involving carbon nanotube and metal nanowire films to improve thermomechanical cycling behavior of automotive TEGs

  8. Automotive Energy Supply Corporation AESC | Open Energy Information

    Open Energy Info (EERE)

    search Name: Automotive Energy Supply Corporation (AESC) Place: Zama, Kanagawa, Japan Product: JV formed for development and marketing of advanced lithium-ion batteries for...

  9. Automotive Fuels - The Challenge for Sustainable Mobility | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels - The Challenge for Sustainable Mobility Automotive Fuels - The Challenge for Sustainable Mobility Overview of challenges and future fuel options deer12warnecke.pdf (1.72 ...

  10. US Council for Automotive Research USCAR | Open Energy Information

    Open Energy Info (EERE)

    for Automotive Research (USCAR) Place: Southfield, Michigan Zip: 48075 - Product: Umbrella organization of DaimlerChrysler, Ford and General Motors, formed to conduct research....

  11. Vehicle Technologies Office Merit Review 2015: Unitary Thermal Energy Management for Propulsion Range Augmentation (UTEMPRA)

    Broader source: Energy.gov [DOE]

    Presentation given by Delphi Automotive Systems, LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Unitary...

  12. Vehicle Technologies Office Merit Review 2014: Electric PCM Assisted Thermal Heating System

    Broader source: Energy.gov [DOE]

    Presentation given by Delphi Automotive at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric PCM assisted...

  13. 2011 Annual Merit Review Results Report - Technology Integration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technology Integration 2011 Annual Merit Review Results Report - Technology Integration Merit review of DOE Vehicle Technologies research activities 2011_amr_08.pdf (2.31 MB) More Documents & Publications Penn State DOE Graduate Automotive Technology Education (Gate) Program for In-Vehicle, High-Power Energy Storage Systems PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR EcoCAR the Next Generation

  14. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations This Clean ...

  15. The Automotive X Prize rolls into Washington, DC 09/16/10 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Automotive X Prize rolls into Washington, DC 091610 The Automotive X Prize rolls into Washington, DC 091610 Addthis ProgressiveXPrizeEventSeptember162010Peraves187mpg...

  16. Sources of UHC and CO in Low Temperature Automotive Diesel Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UHC and CO in Low Temperature Automotive Diesel Combustion Systems Sources of UHC and CO in Low Temperature Automotive Diesel Combustion Systems Presentation given at the 16th ...

  17. Millimeter-wave radar sensor for automotive intelligent cruise control (ICC)

    SciTech Connect (OSTI)

    Russell, M.E.; Crain, A.; Curran, A.; Campbell, R.A.; Drubin, C.A.; Miccioli, W.F.

    1997-12-01

    If automotive intelligent cruise-control (ICC) systems are to be successful in the marketplace, they must provide robust performance in a complex roadway environment. Inconveniences caused by reduced performance during inclement weather, interrupted performance due to dropped tracks, and annoying nuisance alarms will not be tolerated by the consumer, and would likely result in the rejection of this technology in the marketplace. An all-weather automotive millimeter-wave (MMW) radar sensor is described that uses a frequency-modulation coplanar-wave (FMCW) radar design capable of acquiring and tracking all obstacles in its field of view. Design tradeoffs are discussed and radar-sensor test results are presented along with the applicability of the radar to collision-warning systems.

  18. Waste audit study: Automotive paint shops

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This report presents the results of a waste-audit study of automotive paint shops. The study focuses on the types and quantities of wastes generated, treatment and disposal alternatives, and the potential for reducing the amount and/or toxicity of waste generated. The analysis of solvent waste minimization focused primarily on in-plant modifications (e.g., source reduction) to reduce the generation of solvent waste. Strict inventory control is the most-readily implementable approach. While in-house recycling is viable, it is usually only cost-effective for larger firms. Specific recommendations for waste reduction were made.

  19. Table II: Technical Targets for Membranes: Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II: Technical Targets for Membranes: Automotive All targets must be achieved simultaneously Characteristics Units Calendar year 2000 status a 2005 2010 Membrane conductivity, operating temperature Ω-cm -1 0.1 0.1 0.1 Room temperature Ω-cm -1 -20 o C Ω-cm -1 Oxygen cross-over b mA/cm 2 5 5 2 Hydrogen cross-over b mA/cm 2 5 5 2 Cost $/kW 50 5 Operating Temperature o C 80 120 120 Durability Hours 1000 d >4000 e >5000 f Survivability c o C -20 -30 -40 Thermal cyclability in presence of

  20. Vehicle Technologies Office: 2014 Electric Drive Technologies Annual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Report | Department of Energy Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The Electric Drive Technologies research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system

  1. Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review

    Broader source: Energy.gov [DOE]

    This presentation reports on direct hydrogen PEMFC manufacturing cost estimation for automotive applications.

  2. Engineering-economic analyses of automotive fuel economy potential in the United States

    SciTech Connect (OSTI)

    Greene, D.L.; DeCicco, J.

    2000-02-01

    Over the past 25 years more than 20 major studies have examined the technological potential to improve the fuel economy of passenger cars and light trucks in the US. The majority has used technology/cost analysis, a combination of analytical methods from the disciplines of economics and automotive engineering. In this paper the authors describe the key elements of this methodology, discuss critical issues responsible for the often widely divergent estimates produced by different studies, review the history of its use, and present results from six recent assessments. Whereas early studies tended to confine their scope to the potential of proven technology over a 10-year time period, more recent studies have focused on advanced technologies, raising questions about how best to include the likelihood of technological change. The paper concludes with recommendations for further research.

  3. Electromagnetic interference filter for automotive electrical systems

    DOE Patents [OSTI]

    Herron, Nicholas Hayden; Carlson, Douglas S; Tang, David; Korich, Mark D

    2013-07-02

    A filter for an automotive electrical system includes a substrate having first and second conductive members. First and second input terminals are mounted to the substrate. The first input terminal is electrically connected to the first conductive member, and the second input terminal is electrically connected to the second conductive member. A plurality of capacitors are mounted to the substrate. Each of the capacitors is electrically connected to at least one of the first and second conductive members. First and second power connectors are mounted to the substrate. The first power connector is electrically connected to the first conductive member, and the second power connector is electrically connected to the second conductive member. A common mode choke is coupled to the substrate and arranged such that the common mode choke extends around at least a portion of the substrate and the first and second conductive members.

  4. Fact #868: April 13, 2015 Automotive Technology Has Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Time 1980 100 100 100 100 1981 107 99 98 100 1982 110 99 99 107 1983 109 101 103 96 1984 110 101 105 95 1985 111 101 110 90 1986 114 100 110 86 1987 115 100 113 86 1988 114 102 ...

  5. Penn State DOE Graduate Automotive Technology Education (Gate) Program for

    Broader source: Energy.gov (indexed) [DOE]

    of Patricia Hoffman Assistant Secretary for Electricity Delivery and Energy Reliability U.S. Department of Energy Before the United States House of Representatives Appropriations Subcommittee on Energy and Water Development March 17, 2015 Mr. Chairman and Members of the Committee, thank you for the opportunity to appear before you today to discuss the President's Fiscal Year (FY) 2016 budget for the Department of Energy's Office of Electricity Delivery and Energy Reliability. At the end of 2013,

  6. PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    hybrids - electric and hybrid vehicle configurations - vehicle modeling (Autonomie) - fuel cells - hardwaresoftwarecomponent in loop - power electronics - combustion -...

  7. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  8. Automotive Thermoelectric Moduleswith Scalable Thermo- and Electro-Mechanical Interfaces

    Broader source: Energy.gov [DOE]

    Interface materials based on carbon nanotubes and metallic alloys, scalable p- and n-type thermoelectrics, materials compatibility for improved reliability, and performance targets for automotive applications are discussed

  9. Automotive Fuel Cell Research and Development Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Research and Development Needs Automotive Fuel Cell Research and Development Needs Presentation by USCAR FreedomCARFuel Cell Tech Team Industry for DOE Fuel Cell Pre-Solicitation Workshop - March 16, 2010 Golden, CO fuelcell_pre-solicitation_wkshop_mar10_gittleman.pdf (235.45 KB) More Documents & Publications Automotive Perspective on Membrane Evaluation Transportation Fuel Cell R&D Needs (Presentation) DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 2: MEAs,

  10. Next Generation Bipolar Plates for Automotive PEM Fuel Cells | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Next Generation Bipolar Plates for Automotive PEM Fuel Cells Next Generation Bipolar Plates for Automotive PEM Fuel Cells Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. 4_graftech.pdf (23.01 KB) More Documents & Publications WA_07_040_GRAFTECH_INTERNATIONAL_LTD_Waiver_of_Patent_Rights.pdf Advance Patent Waiver W(A)2008-004 Metallic Bipolar Plates with Composite Coatings