Sample records for automotive technologies zhenhong

  1. Development of Thermoelectric Technology for Automotive Waste...

    Energy Savers [EERE]

    Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Presentation from the U.S....

  2. Vehicle Technologies Office: Graduate Automotive Technology Education...

    Broader source: Energy.gov (indexed) [DOE]

    Centers of Excellence to provide future generations of engineers and scientists with knowledge and skills in advanced automotive technologies. By funding curriculum...

  3. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat...

  4. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications...

  5. Innovative Drivetrains in Electric Automotive Technology Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review 2014: Innovative Drivetrains in Electric Automotive Technology Education (IDEATE) Center for Electric Drive Transportation at the University of Michigan - Dearborn...

  6. Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive Inverter with New 900 Volt...

  7. Penn State DOE Graduate Automotive Technology Education (Gate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State DOE Graduate Automotive Technology Education (Gate) Program for In-Vehicle, High-Power Energy Storage Systems Penn State DOE Graduate Automotive Technology Education...

  8. PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR 2009 DOE Hydrogen Program and...

  9. Fact #868: April 13, 2015 Automotive Technology Has Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles Fact 868: April 13, 2015 Automotive Technology Has Improved Performance and...

  10. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct...

  11. The certificate in automotive technology provides students with the education and training needed to become an entry level automotive

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    and training needed to become an entry level automotive technician. The automotive service industry is one. The certificate qualifies students for entry-level positions within the automotive service and repair industryAUTOMOTIVE TECHNOLOGY The certificate in automotive technology provides students with the education

  12. Low Cost PM Technology for Particle Reinforced Titanium Automotive...

    Broader source: Energy.gov (indexed) [DOE]

    10 - Low Cost PM Technology for Particle Reinforced Titanium Automotive Components edm2@chrysler.com February 28, 2008 Low Cost PM Technology for Particle Reinforced Titanium...

  13. Low Cost PM Technology for Particle Reinforced Titanium Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PM Technology for Particle Reinforced Titanium Automotive Components: Manufacturing Process Feasibility StudyAMD 310 Low Cost PM Technology for Particle Reinforced Titanium...

  14. AutoMotive technology College of Rural and Community Development

    E-Print Network [OSTI]

    Hartman, Chris

    to become an entry-level automotive tech- nician. The automotive service industry is constantly changingAutoMotive technology College of Rural and Community Development Community and Technical College 907-455-2932 www.ctc.uaf.edu/programs/Automotive/ certificate Minimum Requirements for Certificate: 34

  15. Automotive and fuel technologies: current and future options

    SciTech Connect (OSTI)

    Price, R.; Stamets, L.

    1984-03-01T23:59:59.000Z

    The purpose of this work is to assess the likely commercial timeframe of a broad range of automotive and fuel technologies. The report assesses the status of existing and alternative engine technologies, associated fuels, and problems which may retard their introduction and use. It estimates, where possible, the earliest time of general commercial use for each developing automotive technology and fuel.

  16. Final report: U.S. competitive position in automotive technologies

    SciTech Connect (OSTI)

    Albert, Michael B.; Cheney, Margaret; Thomas, Patrick; Kroll, Peter

    2002-09-30T23:59:59.000Z

    Patent data are presented and analyzed to assess the U.S. competitive position in eleven advanced automotive technology categories, including automotive fuel cells, hydrogen storage, advanced batteries, hybrid electric vehicles and others. Inventive activity in most of the technologies is found to be growing at a rapid pace, particularly in advanced batteries, automotive fuel cells and ultracapacitors. The U.S. is the clear leader in automotive fuel cells, on-board hydrogen storage and light weight materials. Japan leads in advanced batteries, hybrid electric vehicles, ultracapacitors, and appears to be close to overtaking the U.S. in other areas of power electronics.

  17. Graduate Automotive Technology Education (GATE) Center

    SciTech Connect (OSTI)

    Jeffrey Hodgson; David Irick

    2005-09-30T23:59:59.000Z

    The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its sixth year of operation. During this period the Center has involved thirteen GATE Fellows and ten GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the center's focus area: hybrid drive trains and control systems. Eighteen GATE students have graduated, and three have completed their course work requirements. Nine faculty members from three departments in the College of Engineering have been involved in the GATE Center. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as internships, equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $4,000,000. Problem areas are discussed in the hope that future activities may benefit from the operation of the current program.

  18. automotive technology excellence: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    automotive technology excellence First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Does Automotive...

  19. US DOE Sponsored Graduate Automotive Technology Education (GATE) Program at Penn State Emphasizing

    E-Print Network [OSTI]

    Lee, Dongwon

    US DOE Sponsored Graduate Automotive Technology Education (GATE) Program at Penn State Emphasizing in the automotive industry and academia. Develop relationships between GATE students, faculty, employers

  20. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement. deer08gundlach.pdf More...

  1. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    SciTech Connect (OSTI)

    Nigle N. Clark

    2006-12-31T23:59:59.000Z

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  2. Advanced Automotive Technologies annual report to Congress, fiscal year 1996

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy`s Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation.

  3. automotive tooling technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    automotive tooling technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Industrial motivations:...

  4. 3TU. STAN ACKERMANS INSTITUTESchool for Technological Design Automotive Systems Design

    E-Print Network [OSTI]

    Franssen, Michael

    enables me to network actively with automotive partners, as I work on industry assignments from various;The automotive industry is rapidly changing into a high-tech sector facing huge challenges in terms. Eindhoven University of Technology (TU/e) plays an important role in the high-tech automotive industry

  5. The Impact of Manufacturing Offshore on Technology Development Paths in the Automotive and Optoelectronics Industries

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Development Paths in the Automotive and Optoelectronics Industries by Erica R.H. Fuchs Submitted in particular at the automotive and optoelectronics industries. The dissertation uses an innovative combinationThe Impact of Manufacturing Offshore on Technology Development Paths in the Automotive

  6. Thermoelectrics: The New Green Automotive Technology

    Broader source: Energy.gov (indexed) [DOE]

    C 18 H 30 Methanol CH 3 OH Ethanol C 2 H 5 OH Natural Gas (Primarily Methane, CH 4 ) Propane C 3 H 8 Combustion of Hydrocarbon Fuels Releases Carbon 9 | Vehicle Technologies...

  7. Vehicle Technologies Office Merit Review 2014: Automotive Low Temperature Gasoline Combustion Engine Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about automotive low...

  8. Vehicle Technologies Office Merit Review 2015: Automotive Low Temperature Gasoline Combustion Engine Research

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about automotive low...

  9. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles – Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles

  10. Earth Observations for rapid response to large earthquakes Supervisors: Dr Zhenhong Li and Prof Trevor Hoey

    E-Print Network [OSTI]

    Guo, Zaoyang

    Earth Observations for rapid response to large earthquakes Supervisors: Dr Zhenhong Li and Prof Trevor Hoey School of Geographical and Earth Sciences, University of Glasgow, UK Earthquakes, together of the earth system; they are messengers of the fundamental processes that shape the surface of the Earth

  11. automotive technologies annual: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 427 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  12. Managing the Proliferation of Digital Technology in the Automotive Industry A Systems Engineering Approach to Embedded Software

    E-Print Network [OSTI]

    de Weck, Olivier L.

    1 Managing the Proliferation of Digital Technology in the Automotive Industry A Systems Engineering it through to completion. #12;3 Managing the Proliferation of Digital Technology in the Automotive Industry, automotive firms have turned to new technologies to create profit in the industry through performance

  13. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

  14. automotive technology development: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    due to magnetic saturation and eddy current Grizzle, Jessy W. 247 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  15. The impact of manufacturing offshore on technology development paths in the automotive and optoelectronics industries

    E-Print Network [OSTI]

    Fuchs, Erica R. H. (Erica Renee H.), 1977-

    2006-01-01T23:59:59.000Z

    This dissertation presents a two-case study of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks in particular at the automotive and optoelectronics industries. The ...

  16. advanced automotive technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    costs have been shown to decrease over time due to (a) improvements in production efficiency and the ... Rand-Nash, Thomas 2012-01-01 4 Automotive electronics business MIT...

  17. automotive technology related: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 321 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  18. Smart Mobility Dutch Automotive

    E-Print Network [OSTI]

    Franssen, Michael

    Smart Mobility #12;Dutch Automotive Industry 300 companies 45k employees 17B revenue #12;Dutch Automotive Industry Focus area's: · Vehicle efficiency · Cooperative Mobility #12;Freedom, prosperity, fun;Automotive Technology Car as sustainable zero emission vehicles #12;Automotive Technology Electromagnetic car

  19. Update and Expansion of the Center of Automotive Technology Excellence Under the Graduate Automotive Technology Education (GATE) Program at the University of Tennessee, Knoxville

    SciTech Connect (OSTI)

    Irick, David

    2012-08-30T23:59:59.000Z

    The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its seventh year of operation under this agreement, its thirteenth year in total. During this period the Center has involved eleven GATE Fellows and three GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the center’s focus area: Advanced Hybrid Propulsion and Control Systems. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $2,000,000.

  20. Fiber optic sensing technology for measuring in-cylinder pressure in automotive engines

    E-Print Network [OSTI]

    Bae, Taehan

    2006-10-30T23:59:59.000Z

    A new fiber optic sensing technology for measuring in-cylinder pressure in automotive engines was investigated. The optic sensing element consists of two mirrors in an in-line single mode fiber that are separated by some distance. To withstand...

  1. The Market Acceptance of Advanced Automotive Technologies (MA3T) Model

    E-Print Network [OSTI]

    vehicles (PHEV), extended-range electric vehicle (EREV), battery electric vehicles (BEV) and fuel cell Vehicles by 2015 Using MA3T Model." The 26th International Battery, Hybrid and Fuel Cell Electric Vehicle: Energy Environment Safety Security Vehicle Technologies T he Market Acceptance of Advanced Automotive

  2. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    SciTech Connect (OSTI)

    Anderson, Carl L

    2006-09-25T23:59:59.000Z

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  3. Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies

    SciTech Connect (OSTI)

    David Holloway

    2005-09-30T23:59:59.000Z

    Beginning the fall semester of 1999, The University of Maryland, Departments of Mechanical and Electrical Engineering and the Institute for Systems Research served as a U.S. Department of Energy (USDOE) Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies. A key goal was to produce a graduate level education program that educated and prepared students to address the technical challenges of designing and developing hybrid electric vehicles, as they progressed into the workforce. A second goal was to produce research that fostered the advancement of hybrid electric vehicles, their controls, and other related automotive technologies. Participation ended at the University of Maryland after the 2004 fall semester. Four graduate courses were developed and taught during the course of this time, two of which evolved into annually-taught undergraduate courses, namely Vehicle Dynamics and Control Systems Laboratory. Five faculty members from Mechanical Engineering, Electrical Engineering, and the Institute for Systems Research participated. Four Ph.D. degrees (two directly supported and two indirectly supported) and seven Master's degrees in Mechanical Engineering resulted from the research conducted. Research topics included thermoelectric waste heat recovery, fuel cell modeling, pre- and post-transmission hybrid powertrain control and integration, hybrid transmission design, H{sub 2}-doped combustion, and vehicle dynamics. Many of the participating students accepted positions in the automotive industry or government laboratories involved in automotive technology work after graduation. This report discusses the participating faculty, the courses developed and taught, research conducted, the students directly and indirectly supported, and the publication list. Based on this collection of information, the University of Maryland firmly believes that the key goal of the program was met and that the majority of the participating students are now contributing to the advancement of automotive technology in this country.

  4. Twenty-second automotive technology development contractors' coordination meeting: proceedings

    SciTech Connect (OSTI)

    Not Available

    1985-03-01T23:59:59.000Z

    Fifty-four papers and reviews are arranged under the following session headings: alcohol fuels; liquid hydrocarbon and gaseous fuels; Stirling technology (two sessions); industry perspectives; heavy duty transport technology (two sessions); gas turbine technology; and ceramic technology (two sessions). (DLC)

  5. Innovative Drivetrains in Electric Automotive Technology Education (IDEATE)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Automotive electronics business

    E-Print Network [OSTI]

    Hase, Yoshiko, M.B.A. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    In the automotive industry, due to the trend to introduce active safety systems, concerns about protecting the environment, and advances in information technology, key automotive manufacturers are eager to acquire new ...

  7. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions. deer09yang2.pdf More Documents & Publications...

  8. The ARPA-E Innovation Model: A Glimpse into the Future of Automotive Battery Technology

    SciTech Connect (OSTI)

    Gur, Ilan (Program Director and Senior Advisor, ARPA-E) [Program Director and Senior Advisor, ARPA-E

    2014-03-07T23:59:59.000Z

    The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) focuses on funding game-changing R&D aimed at reducing U.S. foreign energy dependence and emissions. ARPA-E has made a strong commitment to support breakthrough energy storage technologies that can accelerate the mass adoption of electrified vehicles. This presentation will highlight the range of ARPA-E's efforts in this area, offering a glimpse into the ARPA-E innovation model and the future of automotive battery technology.

  9. The ARPA-E Innovation Model: A Glimpse into the Future of Automotive Battery Technology

    ScienceCinema (OSTI)

    Gur, Ilan (Program Director and Senior Advisor, ARPA-E)

    2014-04-11T23:59:59.000Z

    The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) focuses on funding game-changing R&D aimed at reducing U.S. foreign energy dependence and emissions. ARPA-E has made a strong commitment to support breakthrough energy storage technologies that can accelerate the mass adoption of electrified vehicles. This presentation will highlight the range of ARPA-E's efforts in this area, offering a glimpse into the ARPA-E innovation model and the future of automotive battery technology.

  10. Electrochemical Energy Storage Technologies and the Automotive Industry

    ScienceCinema (OSTI)

    Mark Verbrugge

    2010-01-08T23:59:59.000Z

    The first portion of the lecture will relate global energy challenges to trends in personal transportation. Following this introduction, a short overview of technology associated with lithium ion batteries for traction applications will be provided. Last, I shall present new research results that enable adaptive characterization of lithium ion cells. Experimental and modeling results help to clarify the underlying electrochemistry and system performance. Specifically, through chemical modification of the electrodes, it is possible to place markers within the electrodes that signal the state of charge of a battery through abrupt voltage changes during cell operation, thereby allowing full utilization of the battery in applications. In closing, I shall highlight some promising materials research efforts that are expected to lead to substantially improved battery technology

  11. Company Profile Mobileye is the leading provider of automated driver assistance technologies to the automotive industry.

    E-Print Network [OSTI]

    Adler, Joan

    to the automotive industry. Founded in 1999, the company has established itself as the leader in vision systems for intelligent transportation systems (ITS), and has gained recognition from the leading automotive companies computers and at a fraction of the cost. EyeQ meets automotive cabin grade qualification requirements

  12. Automotive Composites Consortium Focal Project 4: Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composites Consortium Focal Project 4: Automotive Components from Structural Composites Automotive Composites Consortium Focal Project 4: Automotive Components from Structural...

  13. Vehicle Technologies Office Merit Review 2015: Innovative Drivetrains in Electric Automotive Technology Education (IDEATE)

    Broader source: Energy.gov [DOE]

    Presentation given by University of Colorado Colorado Springs at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  14. Vehicle Technologies Office Merit Review 2014: Innovative Drivetrains in Electric Automotive Technology Education (IDEATE)

    Broader source: Energy.gov [DOE]

    Presentation given by University of Colorado at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Innovative Drivetrains...

  15. Fiber optic sensing technology for measuring in-cylinder pressure in automotive engines 

    E-Print Network [OSTI]

    Bae, Taehan

    2006-10-30T23:59:59.000Z

    . Field tests were carried out in a 3-cylinder automotive engine with a piezoelectric pressure sensor as a reference transducer up to about 3500 rpm. The fiber optic sensor data generally matched those measured by the piezoelectric reference sensor...

  16. Engaging the Next Generation of Automotive Engineers through...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition Engaging the Next Generation of Automotive Engineers through Advanced Vehicle...

  17. Market Concepts, Competing Technologies and Cost Challenges for Automotive and Stationary Applications

    E-Print Network [OSTI]

    Lipman, Todd; Sperling, Daniel

    2003-01-01T23:59:59.000Z

    concepts, competing technologies and cost challenges forconcepts, competing technologies and cost challenges forconcepts, competing technologies and cost challenges 1319

  18. Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    SciTech Connect (OSTI)

    Gregory Meisner

    2011-08-31T23:59:59.000Z

    We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem, and integration costs into the material selection criteria in order to balance various materials, module and subsystem design, and vehicle integration options. Our work on advanced TE materials development and on TEG system design, assembly, vehicle integration, and testing proceeded in parallel efforts. Results from our two preliminary prototype TEGs using only Bi-Te TE modules allowed us to solve various mechanical challenges and to finalize and fine tune aspects of the design and implementation. Our materials research effort led us to quickly abandon work on PbTe and focus on the skutterudite materials due to their superior mechanical performance and suitability at automotive exhaust gas operating temperatures. We synthesized a sufficiently large quantity of skutterudite material for module fabrication for our third and final prototype. Our TEG#3 is the first of its kind to contain state-of-the-art skutterudite-based TE modules to be installed and tested on a production vehicle. The design, which consisted of 24 skutterudite modules and 18 Bi-Te modules, attempted to optimize electrical power generation by using these two kinds of TE modules that have their peak performance temperatures matched to the actual temperature profile of the TEG during operation. The performance of TEG#3 was limited by the maximum temperature allowable for the Bi-Te TE modules located in the colder end of the TEG, resulting in the operating temperature for the skutterudite modules to be considerably below optimum. We measured the power output for (1) the complete TEG (25 Watts) and (2) an individual TE module series string (1/3 of the TEG) operated at a 60°C higher temperature (19 Watts). We estimate that under optimum operating temperature conditions, TEG#3 will generate about 235 Watts. With additional improvements in thermal and electrical interfaces, temperature homogeneity, and power conditioning, we estimate TEG#3 could deliver a power output of about 425 Watts.

  19. Trends in Automotive Communication Systems Nicolas Navet

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    is given. Next, the current eorts of the automotive industry on middleware technologies which mayTrends in Automotive Communication Systems Nicolas Navet 1 , Françoise Simonot-Lion 2 May 29, 2008 of a large number of automotive networks such as LIN, J1850, CAN, FlexRay, MOST, etc.. This chap- ter rst

  20. MIT and Automotive Industries MIT Industry Brief

    E-Print Network [OSTI]

    Ceder, Gerbrand

    MIT and Automotive Industries MIT Industry Brief MIT's Industrial Liaison Program (ILP) can bring@ilp.mit.edu, or visit http://ilp-www.mit.edu. MIT and Automotive Industries The Massachusetts Institute of Technology (MIT) is a leading center of research and education on topics important to the automotive industry

  1. AISI/DOE Technology Roadmap Program: Improved Surface Quality of Exposed Automotive Sheet Steels

    SciTech Connect (OSTI)

    John G. Speer; David K. Matlock; Noel Meyers; Young-Min Choi

    2002-10-10T23:59:59.000Z

    Surface quality of sheet steels is an important economic and technical issue for applications such as critical automotive surfaces. This project was therefore initiated to develop a more quantitative methodology for measuring surface imperfections, and to assess their response to forming and painting, particularly with respect to their visibility or invisibility after painting. The objectives were met, and included evaluation of a variety of imperfections present on commercial sheet surfaces or simulated using methods developed in the laboratory. The results are expected to have significant implications with respect to the methodology for assessing surface imperfections, development of quantitative criteria for surface inspection, and understanding and improving key painting process characteristics that influence the perceived quality of sheet steel surfaces.

  2. Modeling learning when alternative technologies are learning & resource constrained : cases In semiconductor & advanced automotive manufacturing

    E-Print Network [OSTI]

    Rand-Nash, Thomas

    2012-01-01T23:59:59.000Z

    When making technology choice decisions, firms must consider technology costs over time. In many industries, technology costs have been shown to decrease over time due to (a) improvements in production efficiency and the ...

  3. Automotive Waste Heat Conversion to Power Program

    Broader source: Energy.gov (indexed) [DOE]

    Program Start Date: Oct '04 Program End date: Oct '10 Percent Complete: 80% 2 Automotive Waste Heat Conversion to Power Program- Vehicle Technologies Program Annual Merit...

  4. Technology development goals for automotive fuel cell power systems. Final report

    SciTech Connect (OSTI)

    James, B.D.; Baum, G.N.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1994-08-01T23:59:59.000Z

    This report determines cost and performance requirements for Proton Exchange Membrane (PEM) fuel cell vehicles carrying pure H{sub 2} fuel, to achieve parity with internal combustion engine (ICE) vehicles. A conceptual design of a near term FCEV (fuel cell electric vehicle) is presented. Complete power system weight and cost breakdowns are presented for baseline design. Near term FCEV power system weight is 6% higher than ICE system, mid-term FCEV projected weights are 29% lower than ICE`s. There are no inherently high-cost components in FCE, and at automotive production volumes, near term FCEV cost viability is closer at hand than at first thought. PEM current vs voltage performance is presented for leading PEM manufacturers and researchers. 5 current and proposed onboard hydrogen storage techniques are critically compared: pressurized gas, cryogenic liquid, combined pressurized/cryogenic, rechargeable hydride, adsorption. Battery, capacitor, and motor/controller performance is summarized. Fuel cell power system component weight and cost densities (threshold and goal) are tabulated.

  5. Vehicle Technologies Office Merit Review 2015: Crash Propagation in Automotive Batteries: Simulations and Validation

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about crash...

  6. Vehicle Technologies Office Merit Review 2015: Understanding Protective Film Formation by Magnesium Alloys in Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about understanding...

  7. Vehicle Technologies Office Merit Review 2015: High-Strength Electroformed Nanostructured Aluminum for Lightweight Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Xtalic Corporation at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-strength...

  8. Vehicle Technologies Office Merit Review 2014: Permanent Magnet Development for Automotive Traction Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Ames Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about permanent magnet development...

  9. Vehicle Technologies Office Merit Review 2015: Low Cost, High Capacity Non-Intercalation Chemistry Automotive Cells

    Broader source: Energy.gov [DOE]

    Presentation given by Sila Nanotechnologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low cost, high capacity...

  10. Vehicle Technologies Office Merit Review 2014: High Energy Novel Cathode / Alloy Automotive Cell

    Broader source: Energy.gov [DOE]

    Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy novel cathode / alloy...

  11. Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by CD-Adapco at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of computer-aided...

  12. Vehicle Technologies Office Merit Review 2014: New High-Energy Electrochemical Couple for Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a new high-energy...

  13. Vehicle Technologies Office Merit Review 2015: Development of Computer-Aided Design Tools for Automotive Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of computer-aided...

  14. Vehicle Technologies Office Merit Review 2015: New High-Energy Electrochemical Couple for Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about new high-energy...

  15. Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon Fiber Composite Structures

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material models...

  16. Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. An Analysis of Energy Savings Possible Through Advances in Automotive Tooling Technology

    SciTech Connect (OSTI)

    Rick Schmoyer, RLS

    2004-12-03T23:59:59.000Z

    The use of lightweight and highly formable advanced materials in automobile and truck manufacturing has the potential to save fuel. Advances in tooling technology would promote the use of these materials. This report describes an energy savings analysis performed to approximate the potential fuel savings and consequential carbon-emission reductions that would be possible because of advances in tooling in the manufacturing of, in particular, non-powertrain components of passenger cars and heavy trucks. Separate energy analyses are performed for cars and heavy trucks. Heavy trucks are considered to be Class 7 and 8 trucks (trucks rated over 26,000 lbs gross vehicle weight). A critical input to the analysis is a set of estimates of the percentage reductions in weight and drag that could be achieved by the implementation of advanced materials, as a consequence of improved tooling technology, which were obtained by surveying tooling industry experts who attended a DOE Workshop, Tooling Technology for Low-Volume Vehicle Production, held in Seattle and Detroit in October and November 2003. The analysis is also based on 2001 fuel consumption totals and on energy-audit component proportions of fuel use due to drag, rolling resistance, and braking. The consumption proportions are assumed constant over time, but an allowance is made for fleet growth. The savings for a particular component is then the product of total fuel consumption, the percentage reduction of the component, and the energy audit component proportion. Fuel savings estimates for trucks also account for weight-limited versus volume-limited operations. Energy savings are assumed to be of two types: (1) direct energy savings incurred through reduced forces that must be overcome to move the vehicle or to slow it down in braking. and (2) indirect energy savings through reductions in the required engine power, the production and transmission of which incur thermodynamic losses, internal friction, and other inefficiencies. Total savings for an energy use component are estimated by scaling up the direct savings with an approximate total-to-direct savings ratio. Market penetration for new technology vehicles is estimated from projections about scrappage. Retrofit savings are assumed negligible, but savings are also assumed to accrue with increases in the fleet size, based on economic growth forecasts. It is assumed that as vehicles in the current fleet are scrapped, they are replaced with advanced-technology vehicles. Saving estimates are based on proportions of new vehicles, rather than new-vehicle mileages. In practice, of course, scrapped vehicles are often replaced with used vehicles, and used vehicles are replaced with new vehicles. Because new vehicles are typically driven more than old, savings estimates based on count rather than mileage proportions tend to be biased down (i.e., conservative). Savings are expressed in terms of gallons of fuel saved, metric tons of CO2 emissions reductions, and percentages relative to 2001 levels of fuel and CO2. The sensitivity of the savings projections to inputs such as energy-audit proportions of fuel consumed for rolling resistance, drag, braking, etc. is assessed by considering different scenarios. Though based on many approximations, the estimates approximate the potential energy savings possible because of improvements in tooling. For heavy trucks, annual diesel savings of 2.4-6.8 percent, and cumulative savings on the order of 54-154 percent, of 2001 consumption could accrue by 2050. By 2050, annual gasoline savings of 2.8-12 percent, and cumulative savings on the order of 83-350 percent of 2001 consumption could accrue for cars.

  18. HYDROGEN GENERATION FROM PLASMATRON REFORMERS: A PROMISING TECHNOLOGY FOR NOX ADSORBER REGENERATION AND OTHER AUTOMOTIVE APPLICATIONS

    SciTech Connect (OSTI)

    Bromberg, L.; Crane, S; Rabinovich, A.; Kong, Y; Cohn, D; Heywood, J; Alexeev, N.; Samokhin, A.

    2003-08-24T23:59:59.000Z

    Plasmatron reformers are being developed at MIT and ArvinMeritor [1]. In these reformers a special low power electrical discharge is used to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The partial oxidation reaction of this very fuel rich mixture is difficult to initiate. The plasmatron provides continuous enhanced volume initiation. To minimize electrode erosion and electrical power requirements, a low current, high voltage discharge with wide area electrodes is used. The reformers operate at or slightly above atmospheric pressure. Plasmatron reformers provide the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels, such as diesel and bio-oils. These advantages facilitate use of onboard hydrogen-generation technology for diesel exhaust after-treatment. Plasma-enhanced reformer technology can provide substantial conversion even without the use of a catalyst. Recent progress includes a substantial decrease in electrical power consumption (to about 200 W), increased flow rate (above 1 g/s of diesel fuel corresponding to approximately 40 kW of chemical energy), soot suppression and improvements in other operational features.. Plasmatron reformer technology has been evaluated for regeneration of NOx adsorber after-treatment systems. At ArvinMeritor tests were performed on a dual-leg NOx adsorber system using a Cummins 8.3L diesel engine both in a test cell and on a vehicle. A NOx adsorber system was tested using the plasmatron reformer as a regenerator and without the reformer i.e., with straight diesel fuel based regeneration as the baseline case. The plasmatron reformer was shown to improve NOx regeneration significantly compared to the baseline diesel case. The net result of these initial tests was a significant decrease in fuel penalty, roughly 50% at moderate adsorber temperatures. This fuel penalty improvement is accompanied by a dramatic drop in slipped hydrocarbon emissions, which decreased by 90% or more. Significant advantages are demonstrated across a wide range of engine conditions and temperatures. The study also indicated the potential to regenerate NOx adsorbers at low temperatures where diesel fuel based regeneration is not effective, such as those typical of idle conditions. Two vehicles, a bus and a light duty truck, have been equipped for plasmatron reformer NOx adsorber regeneration tests.

  19. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive...

  20. Allgemeine Testverfahren Verfahren im Automotive

    E-Print Network [OSTI]

    Cengarle, María Victoria

    Allgemeine Testverfahren Verfahren im Automotive Hauptseminar Automotive Software Engineering Verfahren im Automotive ¨Uberblick 1 Allgemeine Testverfahren Statischer Test Dynamischer Test 2 Verfahren im Automotive X­in­the­loop Rapid Prototyping #12;Allgemeine Testverfahren Verfahren im Automotive

  1. A Review of Embedded Automotive Protocols Nicolas Navet

    E-Print Network [OSTI]

    Navet, Nicolas

    is given. Next, the current eorts of the automotive industry on middleware technologies which mayA Review of Embedded Automotive Protocols Nicolas Navet 1 , Françoise Simonot-Lion 2 April 14, 2008 of a large number of automotive networks such as LIN, J1850, CAN, FlexRay, MOST, etc.. This pa- per rst

  2. INNOVATION IN AUTOMOTIVE TELEMATICS SERVICES: CHARACTERISTICS OF THE FIELD AND

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    INNOVATION IN AUTOMOTIVE TELEMATICS SERVICES: CHARACTERISTICS OF THE FIELD AND MANAGEMENT is a radical innovation for automotive industry. Therefore traditional design models, such as heavyweight, published in "Int. J. of Automotive Technology et Management 3, 1/2 (2003) 144-159" #12;2 communication

  3. Essays on Automotive Lending, Gasoline Prices, & Automotive Demand

    E-Print Network [OSTI]

    Schulz-Mahlendorf, Wilko Ziggy

    2013-01-01T23:59:59.000Z

    transaction data from a major automotive marketing agency. Iand credit, not gas. ” Automotive News, September 22, 2008.Dieckman, Christian (2008). “Automotive Finance : The Case

  4. New Weld Process Increases Efficiency of Automotive Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Office (VTO) researchers at ORNL developed a non-destructive, infrared thermography-based system for evaluating weld quality. The new process enables automotive...

  5. AMD 405: Improved Automotive Suspension Components Cast with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications AMD 601 High Integrity -Magnesium Automotive Components (HI-MAC) Low Cost PM Technology for Particle Reinforced Titanium...

  6. automotive fuels distribution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    due to the trend to introduce active safety systems, concerns about protecting the environment, and advances in information technology, key automotive manufacturers are eager to...

  7. Advanced Thermoelectric Materials and Generator Technology for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM...

  8. Transportation Perspectives on Automotive Cyber Physical System: Integrating Hardware-in-the-Loop, Software-in-the-Loop and Human-in-the-Loop Simulations

    E-Print Network [OSTI]

    Rajkumar, Ragunathan "Raj"

    1 Transportation Perspectives on Automotive Cyber Physical System: Integrating Hardware and development environment to evaluate automotive cyber physical system (CPS) as well as its components foundation of the automotive CPS for developing and testing vehicular networking and sensing technologies

  9. Automotive vehicle sensors

    SciTech Connect (OSTI)

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01T23:59:59.000Z

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  10. Model-based Control of Automotive Engines and After-treatment Devices

    E-Print Network [OSTI]

    engine technologies. A first keyword celebrated by the automotive industry is the term "downsizingModel-based Control of Automotive Engines and After-treatment Devices N. Petit MINES Paris on automotive vehicle emissions have steadily increased over the last decades, embedded control technology

  11. ORNL/TM-2000/283 THE COST OF AUTOMOTIVE POLYMER COMPOSITES

    E-Print Network [OSTI]

    ORNL/TM-2000/283 THE COST OF AUTOMOTIVE POLYMER COMPOSITES: A REVIEW AND ASSESSMENT OF DOE for the Office of Advanced Automotive Technology Office of Transportation Technologies U. S. Department of Energy of Automotive Polymer Composites ORNL/TM-2000/283 iii TABLE OF CONTENTS LIST OF TABLES

  12. Automotive Component Product Development Enhancement

    E-Print Network [OSTI]

    of Science in Engineering and Management February 2005 ABSTRACT Automotive industry is facing a tough periodAutomotive Component Product Development Enhancement Through Multi-Attribute System Design Engineering Systems Division #12;Automotive Component Product Development Enhancement Through Multi

  13. Non-thermal plasma based technologies for the after-treatment of automotive exhaust particulates and marine diesel exhaust NOx

    SciTech Connect (OSTI)

    McAdams, R; Beech, P; Gillespie, R; Guy, C; Jones,S; Liddell, T; Morgan, R; Shawcross, J; Weeks, D; Hughes, D; Oesterle, J; Eberspdcher,

    2003-08-24T23:59:59.000Z

    The trend in environmental legislation is such that primary engine modifications will not be sufficient to meet all future emissions requirements and exhaust aftertreatment technologies will need to be employed. One potential solution that is well placed to meet those requirements is non-thermal plasma technology. This paper will describe our work with some of our partners in the development of a plasma based diesel particulate filter (DPF) and plasma assisted catalytic reduction (PACR) for NOx removal. This paper describes the development of non-thermal plasma technology for the aftertreatment of particulates from a passenger car engine and NOx from a marine diesel exhaust application.

  14. Automotive Fuel Cell Corporation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automotive Fuel Cell Corporation n SNL researcher Cy Fujimoto demonstrates his new flexible hydrocarbon polymer electrolyte mem- brane, which could be a key factor in realizing a...

  15. DOE Automotive Lightweighting Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    materials for fiber reinforced composites. Until now, they have only been used in the automotive industry with thermoplastics and not as a matrix for fiber reinforced...

  16. Vehicle Technologies Office Merit Review 2015: ICME Guided Development of Advanced Cast Aluminum Alloys for Automotive Engine Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ICME guided development of...

  17. Vehicle Technologies Office Merit Review 2014: ICME Guided Development of Advanced Cast Aluminum Alloys For Automotive Engine Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Ford at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ICME guided development of advanced cast...

  18. Vehicle Technologies Office Merit Review 2014: Efficient Safety and Degradation Modeling of Automotive Li-ion Cells and Pack

    Broader source: Energy.gov [DOE]

    Presentation given by EC Power at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about efficient safety and degradation...

  19. Vehicle Technologies Office Merit Review 2015: Efficient Safety and Degradation Modeling of Automotive Li-ion Cells and Pack

    Broader source: Energy.gov [DOE]

    Presentation given by EC-Power at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about efficient safety and degradation...

  20. Vehicle Technologies Office Merit Review 2015: Validation of Material Models for Crash Simulation of Automotive Carbon Fiber Composite Structures (VMM)

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material...

  1. The Effects of Different Input Excitation on the Dynamic Characterization of an Automotive Shock Absorber

    E-Print Network [OSTI]

    Rao, Mohan

    of an Automotive Shock Absorber Darin Kowalski, Mohan D. Rao Michigan Technological University, Houghton MI 49931 49931 Dave Griffiths Ford Motor Company, Dearborn MI 48121 Copyright © 2001 Society of Automotive Engineers, Inc. ABSTRACT This paper deals with the dynamic characterization of an automotive shock absorber

  2. Reclamation of automotive batteries: Assessment of health impacts and recycling technology. Task 2: Assessment of health impacts; Final report

    SciTech Connect (OSTI)

    Unnasch, S.

    1999-04-01T23:59:59.000Z

    The task 2 report compares the relative health and hazard impacts of EV battery recycling technologies. Task 2 compared the relative impact of recycling EV batteries in terms of cancer, toxicity, and ecotoxicological potential, as well as leachability, flammability, and corrosivity/reactivity hazards. Impacts were evaluated for lead-acid, nickel-cadmium, nickel-metal hydride, sodium sulfur, sodium-nickel chloride, lithium-iron sulfide and disulfide, lithium-polymer, lithium-ion, and zinc-air batteries. Health/hazard impacts were evaluated for recycling methods including smelting, electrowinning, and other appropriate techniques that apply to different battery technologies.

  3. DOE Provides $4.7 Million to Support Excellence in Automotive...

    Energy Savers [EERE]

    Centers of Excellence. The goal of GATE is to train a future workforce of automotive engineering professionals to overcome technology barriers preventing the development and...

  4. City Browser: Developing a Conversational Automotive HMI

    E-Print Network [OSTI]

    seanyliu@mit.edu Shannon Roberts1 MIT ­ AgeLab scr09@mit.edu Jeff Zabel2 BMW Technology Office jeff.zabel@bmw,4], in an automotive environment safety is a key consideration and device operation must not negatively impact

  5. Status and Trend of Automotive Power Packaging

    SciTech Connect (OSTI)

    Liang, Zhenxian [ORNL

    2012-01-01T23:59:59.000Z

    Comprehensive requirements in aspects of cost, reliability, efficiency, form factor, weight, and volume for power electronics modules in modern electric drive vehicles have driven the development of automotive power packaging technology intensively. Innovation in materials, interconnections, and processing techniques is leading to enormous improvements in power modules. In this paper, the technical development of and trends in power module packaging are evaluated by examining technical details with examples of industrial products. The issues and development directions for future automotive power module packaging are also discussed.

  6. Vehicle Technologies Office Merit Review 2014: Development of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Computer-Aided Design Tools for Automotive Batteries Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive...

  7. Vehicle Technologies Office Merit Review 2014: Validation of...

    Broader source: Energy.gov (indexed) [DOE]

    Validation of Material Models for Automotive Carbon Fiber Composite Structures Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon...

  8. Vehicle Technologies Office Merit Review 2015: Penn State DOE Graduate Automotive Technology Education (GATE) Program for In-Vehicle, High-Power Energy Storage Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Pennsylvania State University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Penn State DOE...

  9. Engineering and Materials for Automotive Thermoelectric Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Materials for Automotive Thermoelectric Applications Engineering and Materials for Automotive Thermoelectric Applications Design and optimization of TE exhaust generator,...

  10. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

  11. Novel Nanostructured Interface Solution for Automotive Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application...

  12. Lightweight Steel Solutions for Automotive Industry

    SciTech Connect (OSTI)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho [Technical Research Laboratories, POSCO, 699, Gumho-dong, Gwangyang-si, Jeonnam, 545-090 (Korea, Republic of)

    2010-06-15T23:59:59.000Z

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  13. automotive electrics automotive: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 229 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  14. Why Process-Orientation is Scarce: An Empirical Study of Process-oriented Information Systems in the Automotive Industry

    E-Print Network [OSTI]

    Ulm, Universität

    in the Automotive Industry Bela Mutschler, Johannes Bumiller DaimlerChrysler Research & Technology P.O. Box 2360 the reasons for this drawback, we con- ducted a case study in the automotive domain and a survey among 79 in this context concerns the alignment of information systems (IS) and business processes [6]. In the automotive

  15. Automotive Cyber Physical Systems in the Context of Human Mobility Daniel Work, Alexandre Bayen, and Quinn Jacobson

    E-Print Network [OSTI]

    Automotive Cyber Physical Systems in the Context of Human Mobility Daniel Work, Alexandre Bayen with other technologies. In the larger context of human mobility, the automotive CPS must become more open in the surrounding physical environment. II. FUNDAMENTAL LIMITATIONS OF THE EXISTING AUTOMOTIVE CYBER PHYSICAL SYSTEM

  16. The status of ceramic turbine component fabrication and quality assurance relevant to automotive turbine needs

    SciTech Connect (OSTI)

    Richerson, D.W.

    2000-02-01T23:59:59.000Z

    This report documents a study funded by the U.S. Department of Energy (DOE) Office of Transportation Technologies (OTT) with guidance from the Ceramics Division of the United States Automotive Materials Partnership (USAMP). DOE and the automotive companies have funded extensive development of ceramic materials for automotive gas turbine components, the most recent effort being under the Partnership for a New Generation of Vehicles (PNGV) program.

  17. Comparative analysis of automotive powertrain choices for the near to mid-term future

    E-Print Network [OSTI]

    Kasseris, Emmanuel P

    2006-01-01T23:59:59.000Z

    This thesis attempts a technological assessment of automotive powertrain technologies for the near to mid term future. The powertrain types to be assessed include naturally aspirated gasoline engines, turbocharged gasoline ...

  18. Technology Development and Commercialization at Argonne | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercialization at Argonne Share Topic Operations Technology transfer Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering...

  19. Industrial motivations: Conceptual Automotive Styling Tools (CAST)

    E-Print Network [OSTI]

    Toronto, University of

    Industrial motivations: Conceptual Automotive Styling Tools (CAST) Karan Singh #12;Conceptual. · What makes automotive design unique. · Existing modeling trends. · A proposed workflow for conceptual automotive design. #12;Conceptual design desirables · Abstraction from underlying surface math. · Invite

  20. Vehicle Technologies Office: Graduate Automotive Technology Education

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment(GATE) | Department of Energy DOE

  1. United States Automotive Materials Partnership LLC (USAMP)

    SciTech Connect (OSTI)

    United States Automotive Materials Partnership

    2011-01-31T23:59:59.000Z

    The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunities for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly developed materials and technologies, and have resulted in significant technical successes to date, as discussed in the individual project summary final reports. Over 70 materials-focused projects have been established by USAMP, in collaboration with participating suppliers, academic/non-profit organizations and national laboratories, and executed through its original three divisions: the Automotive Composites Consortium (ACC), the Automotive Metals Division (AMD), and Auto/Steel Partnership (A/SP). Two new divisions were formed by USAMP in 2006 to drive research emphasis on integration of structures incorporating dissimilar lightweighting materials, and on enabling technology for nondestructive evaluation of structures and joints. These new USAMP divisions are: Multi-Material Vehicle Research and Development Initiative (MMV), and the Non-Destructive Evaluation Steering Committee (NDE). In cooperation with USAMP and the FreedomCAR Materials Technical Team, a consensus process has been established to facilitate the development of projects to help move leveraged research to targeted development projects that eventually migrate to the original equipment manufacturers (OEMs) as application engineering projects. Research projects are assigned to one of three phases: concept feasibility, technical feasibility, and demonstration feasibility. Projects are guided through ongoing monitoring and USAMP offsite reviews, so as to meet the requirements of each phase before they are allowed to move on to the next phase. As progress is made on these projects, the benefits of lightweight construction and enabling technologies will be transferred to the supply base and implemented in production vehicles. The single greatest barrier to automotive use of lightweight materials is their high cost; therefore, priority is given to activities aimed at reducing costs through development of new materials, forming technologies, and manufacturing processes. The emphasis of the research projects reported in this document was largely on applied research and evaluation of mass savings opportunities thro

  2. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ace067goodson2011o.pdf More Documents & Publications Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel...

  3. Sandia National Laboratories: Automotive Fuel Cell Cooperation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automotive Fuel Cell Cooperation ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles On February 14, 2013, in CRF, Energy,...

  4. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Automotive Waste Heat Recovery Thermoelectric Generator Development for Automotive Waste Heat Recovery Presentation given at the 16th Directions in Engine-Efficiency and...

  5. Center for Lightweighting Automotive Materials and Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. ti06mallick.pdf More Documents & Publications Center for Lightweighting Automotive Materials and Processing Center for Lightweighting Automotive Materials and...

  6. Center for Lightweighting Automotive Materials and Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ti010mallick2011o.pdf More Documents & Publications Center for Lightweighting Automotive Materials and Processing Center for Lightweighting Automotive Materials and...

  7. GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications

    SciTech Connect (OSTI)

    None

    2011-07-31T23:59:59.000Z

    This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.

  8. Embedded Automotive System Development Process

    E-Print Network [OSTI]

    Langenwalter, Joachim

    2011-01-01T23:59:59.000Z

    Model based design enables the automatic generation of final-build software from models for high-volume automotive embedded systems. This paper presents a framework of processes, methods and tools for the design of automotive embedded systems. A steer-by-wire system serves as an example.

  9. AISI/DOE Technology Roadmap Program: Characterization of Fatigue and Crash Performance of New Generation High Strength Steels for Automotive Applications

    SciTech Connect (OSTI)

    Brenda Yan; Dennis Urban

    2003-04-21T23:59:59.000Z

    A 2-year project (2001-2002) to generate fatigue and high strain data for a new generation of high strength steels (HSS) has been completed in December 2002. The project tested eleven steel grades, including Dual Phase (DP) steels, Transformation-Induced Plasticity (TRIP) steels, Bake Hardenable (BH) steels, and conventional High Strength Low Alloy (HSLA) steels. All of these steels are of great interest in automotive industry due to the potential benefit in weight reduction, improved fuel economy, enhanced crash energy management and total system cost savings. Fatigue behavior includes strain controlled fatigue data notch sensitivity for high strength steels. High strain rate behavior includes stress-strain data for strain rates from 0.001/s to 1000/s, which are considered the important strain rate ranges for crash event. The steels were tested in two phases, seven were tested in Phase 1 and the remaining steels were tested in Phase. In a addition to the fatigue data and high st rain rate data generated for the steels studied in the project, analyses of the testing results revealed that Advanced High Strength Steels (AHSS) exhibit significantly higher fatigue strength and crash energy absorption capability than conventional HSS. TRIP steels exhibit exceptionally better fatigue strength than steels of similar tensile strength but different microstructure, for conditions both with or without notches present

  10. Exploiting Real-Time FPGA Based Adaptive Systems Technology for Real-Time Sensor Fusion in Next Generation Automotive Safety Systems

    E-Print Network [OSTI]

    Chappell, Steve; Preston, Dan; Olmstead, Dave; Flint, Bob; Sullivan, Chris

    2011-01-01T23:59:59.000Z

    We present a system for the boresighting of sensors using inertial measurement devices as the basis for developing a range of dynamic real-time sensor fusion applications. The proof of concept utilizes a COTS FPGA platform for sensor fusion and real-time correction of a misaligned video sensor. We exploit a custom-designed 32-bit soft processor core and C-based design & synthesis for rapid, platform-neutral development. Kalman filter and sensor fusion techniques established in advanced aviation systems are applied to automotive vehicles with results exceeding typical industry requirements for sensor alignment. Results of the static and the dynamic tests demonstrate that using inexpensive accelerometers mounted on (or during assembly of) a sensor and an Inertial Measurement Unit (IMU) fixed to a vehicle can be used to compute the misalignment of the sensor to the IMU and thus vehicle. In some cases the model predications and test results exceeded the requirements by an order of magnitude with a 3-sigma or ...

  11. Automotive Fuel Cell Corporation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugust August 2015 Events2-7148Automotive Fuel Cell

  12. AUTOMOTIVE INDUSTRY ANALYSIS Submitted by Team A

    E-Print Network [OSTI]

    AUTOMOTIVE INDUSTRY ANALYSIS Submitted by Team A Donald Bradley Morgan Bruns Adam Fleming Jay Ling on the automotive industry, specifically, large-scale manufacturers of automobiles. The automotive industry of the automotive industry. This is followed by an analysis of the industry's structural characteristics using

  13. Automotive 2020 Clarity beyond the chaos

    E-Print Network [OSTI]

    -dimensional change the automotive industry faces today. Credited for providing the foundation for economic transAutomotive 2020 Clarity beyond the chaos Automotive IBM Institute for Business Value IBM Global@us.ibm.com for more information. #12;1 The automotive ecosystem is in the midst of significant change, with increasing

  14. SVG for Automotive User Interfaces Dr. Sbastien Boisgrault

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ................................................................................................................. 1 EDONA and Human-Machine Interface Design for the Automotive Industry1 SVG for Automotive User Interfaces Dr. Sébastien Boisgérault .................................................................................................... 7 SVG standards for automotive HMI modeling

  15. Real-Time Neutron Radiography - Applications For The Automotive Industry

    E-Print Network [OSTI]

    Richards, Wade J; Tuttle, Michael J; Ulowetz, Kirsten; Mcgee, Robert

    2003-01-01T23:59:59.000Z

    Applications For The Automotive Industry Wade J. Richardstechniques for the automotive industry is not new 5 . Theused to assist the automotive industry in new and creative

  16. Energy and Environmental Challenges for the Japanese Automotive Industry

    E-Print Network [OSTI]

    Sperling, Daniel

    2000-01-01T23:59:59.000Z

    for the Japanese Automotive Industry UCD-ITS-RR-00-05 Danieland uncertainty for the automotive industry. The industryissues facing the automotive industry are regulation of

  17. Vehicle Technologies Office Merit Review 2015: New High Energy Electrochemical Couple for Automotive Application: ANL IC3P Research Focus on Diagnostic Studies at BNL

    Broader source: Energy.gov [DOE]

    Presentation given by Brookhaven National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about new high...

  18. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    Fuel Cell Technologies Publication and Product Library (EERE)

    Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several

  19. A design strategy applied to sulfur resistant lean NOx̳ automotive catalysts

    E-Print Network [OSTI]

    Tang, Hairong

    2005-01-01T23:59:59.000Z

    Catalyst poisoning due to sulfur compounds derived from fuel sulfur presents a major challenge, intractable thus far, to development of many advanced technologies for automotive catalysts such as the lean NOx, trap. Under ...

  20. Reinventing the Industrial Heartland: Supply Chain Sustainability and the New Automotive Industry

    E-Print Network [OSTI]

    Sheridan, Jennifer

    1 Report Reinventing the Industrial Heartland: Supply Chain Sustainability and the New Automotive Industry Thursday, October 6, 2011 Room 221 · Fluno Center · 601 University Avenue · Madison · WI industry through supply chain management, public policies and innovative technologies to help

  1. 10 Questions for an Automotive Engineer: Thomas Wallner

    Broader source: Energy.gov [DOE]

    Meet Thomas Wallner – automotive engineer extraordinaire, who hails from Argonne National Laboratory’s Center for Transportation Research. He took some time to answer our 10 Questions and share his insight on advanced engine technologies from dual-fuel to biofuels.

  2. Automotive Research Center (ARC) "The Automotive Research Center (ARC) develops simulation and modeling tools for discovering

    E-Print Network [OSTI]

    Kamat, Vineet R.

    Automotive Research Center (ARC) "The Automotive Research Center (ARC) develops simulation with industry to leverage and transfer the efforts and results http://arc.engin.umich.edu/ #12;

  3. Vehicle Technologies Office: 2010 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    APEEM subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is...

  4. Introduction - AMO Strategic and Technology Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and tooling in automotive applications; fuel cells Ch. 8 - Additive Manufacturing Technology Assessment Scope * Additive technologies including powder bed fusion, directed...

  5. Automotive Power Generation and Control

    E-Print Network [OSTI]

    Caliskan, Vahe

    This paper describes some new developments in the application of power electronics to automotive power generation and control. A new load-matching technique is introduced that uses a simple switched-mode rectifier to achieve ...

  6. Vehicle Technologies Office Merit Review 2015: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit

    Broader source: Energy.gov [DOE]

    Presentation given by University of Alabama Birmingham at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center...

  7. Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit

    Broader source: Energy.gov [DOE]

    Presentation given by University of Alabama at Birmingham at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE...

  8. Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit

    Broader source: Energy.gov [DOE]

    Presentation given by University of Alabama at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center of...

  9. Vehicle Technologies Office Merit Review 2015: High-Throughput Study of Diffusion and Phase Transformation Kinetics of Magnesium-Based Systems For Automotive Cast Magnesium Alloys

    Broader source: Energy.gov [DOE]

    Presentation given by Ohio State University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-throughput study...

  10. Vehicle Technologies Office Merit Review 2014: Development of Cell/Pack Level Models for Automotive Li-Ion Batteries with Experimental Validation

    Broader source: Energy.gov [DOE]

    Presentation given by EC Power at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about evelopment of cell/pack level models...

  11. automotive infotainment electronics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analysis; automotive control system. I. INTRODUCTION In reliability Zachmann, Gabriel 45 Does Automotive Service Excellence (ASE) Certification Enhance Job...

  12. NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery Development for commercialization of...

  13. NSF/DOE Thermoelectics Partnership: Thermoelectrics for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery 2011 DOE...

  14. Upgrading the Center for Lightweighting Automotive Materials and Processing - a GATE Center of Excellence at the University of Michigan-Dearborn

    SciTech Connect (OSTI)

    Mallick, P. K.

    2012-08-30T23:59:59.000Z

    The Center for Lightweighting Materials and Processing (CLAMP) was established in September 1998 with a grant from the Department of Energy’s Graduate Automotive Technology Education (GATE) program. The center received the second round of GATE grant in 2005 under the title “Upgrading the Center for Lightweighting Automotive Materials and Processing”. Using the two grants, the Center has successfully created 10 graduate level courses on lightweight automotive materials, integrated them into master’s and PhD programs in Automotive Systems Engineering, and offered them regularly to the graduate students in the program. In addition, the Center has created a web-based lightweight automotive materials database, conducted research on lightweight automotive materials and organized seminars/symposia on lightweight automotive materials for both academia and industry. The faculty involved with the Center has conducted research on a variety of topics related to design, testing, characterization and processing of lightweight materials for automotive applications and have received numerous research grants from automotive companies and government agencies to support their research. The materials considered included advanced steels, light alloys (aluminum, magnesium and titanium) and fiber reinforced polymer composites. In some of these research projects, CLAMP faculty have collaborated with industry partners and students have used the research facilities at industry locations. The specific objectives of the project during the current funding period (2005 – 2012) were as follows: (1) develop new graduate courses and incorporate them in the automotive systems engineering curriculum (2) improve and update two existing courses on automotive materials and processing (3) upgrade the laboratory facilities used by graduate students to conduct research (4) expand the Lightweight Automotive Materials Database to include additional materials, design case studies and make it more accessible to outside users (5) provide support to graduate students for conducting research on lightweight automotive materials and structures (6) provide industry/university interaction through a graduate certificate program on automotive materials and technology idea exchange through focused seminars and symposia on automotive materials.

  15. Integrated automotive exhaust engineering : uncertainty management

    E-Print Network [OSTI]

    Fang, Xitian, 1963-

    2006-01-01T23:59:59.000Z

    The global automotive industry has entered a stagnating period. Automotive OEMs and their tier suppliers are struggling for business growth. One of the most important strategies is to improve the engineering efficiency in ...

  16. GATE Center for Automotive Fuel Cell Systems at Virginia Tech

    SciTech Connect (OSTI)

    Douglas Nelson

    2011-05-31T23:59:59.000Z

    The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: â?¢ Expanded and updated fuel cell and vehicle technologies education programs; â?¢ Conducted industry directed research in three thrust areas â?? development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; â?¢ Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; â?¢ Published research results that provide industry with new knowledge which contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Techâ??s comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.

  17. Automotive HCCI Engine Research

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. An automotive transmission for automotive gas turbine power plants

    SciTech Connect (OSTI)

    Polak, J.C.

    1980-01-01T23:59:59.000Z

    A joint government-industry program was initiated to investigate the two-shaft gas turbine concept as an alternative to present-day automotive powerplants. Both were examined, compared and evaluated on the basis of the federal automotive driving cycle in terms of specific fuel/power/speed characteristics of the engine and the efficiency and performance of the transmission. The results showed that an optimum match of vehicle, gas turbine engine, and conventional automatic transmission is capable of a significant improvement in fuel economy. This system offers many advantages that should lead to its wide acceptance in future vehicles.

  19. Faculty of Engineering Mechanical, Automotive and

    E-Print Network [OSTI]

    the aerospace industry. 2) Automotive Option - study topics such as vehicle dynamics, internal combustionFaculty of Engineering Mechanical, Automotive and Materials Engineering The field of Mechanical, Automotive and Materials Engineering offers a multi-faceted program where you tackle real-world problems

  20. Automotive EMC Workshop Clemson Vehicular Electronics Laboratory

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    Automotive EMC Workshop Clemson Vehicular Electronics Laboratory Reliable Automotive Electronics Design for Guaranteed EMC Compliance April 29, 2013 Todd Hubing Clemson University #12;EMC Requirements they reviewed/designed would meet all automotive EMC requirements the first time they were tested. #12;Clemson

  1. Automotive friction-induced noises A. Elmaiana

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Automotive friction-induced noises A. Elmaiana , J.-M. Duffala , F. Gautiera , C. Pezeratb and J, France 3143 #12;Friction-induced noises are numerous in the automotive field. They also involve a large friction-induced noises with simple structures and automotive materials. Qualitative sensitivity studies

  2. NONLINEAR MAGNETIC LEVITATION OF AUTOMOTIVE ENGINE VALVES

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    NONLINEAR MAGNETIC LEVITATION OF AUTOMOTIVE ENGINE VALVES K. Peterson, J.W. Grizzle, and A, the controller is designed for and implemented on an electromagnetic valve actuator for use in automotive engines on an electromagnetic valve actuator for use in the actuation of automotive engine valves. 2. ELECTROMAGNETIC VALVE

  3. CFD-based Optimization for Automotive Aerodynamics

    E-Print Network [OSTI]

    Dumas, Laurent

    Chapter 1 CFD-based Optimization for Automotive Aerodynamics Laurent Dumas Abstract The car drag- ments. An overview of the main characteristics of automotive aerodynamics and a detailed presentation.dumas@upmc.fr) 1 #12;2 Laurent Dumas 1.1 Introducing Automotive Aerodynamics 1.1.1 A Major Concern for Car

  4. FRENCH APPROVAL PROCEDURES FOR PYROTECHNICAL AUTOMOTIVE SAFETY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    FRENCH APPROVAL PROCEDURES FOR PYROTECHNICAL AUTOMOTIVE SAFETY EQUIPMENTS Lionel Aufauvre*, Ruddy and that are not excluded of the decree application have to conform to approved types. Pyrotechnical automotive safety appeared in automotive industry and their uses grew rapidly as they showed their efficiency to save lives

  5. The Progressive Insurance Automotive X PRIZE Education Program

    SciTech Connect (OSTI)

    Robyn Ready

    2011-12-31T23:59:59.000Z

    The Progressive Insurance Automotive X PRIZE Education Program conducted education and outreach activities and used the competition's technical goals and vehicle demonstrations as a means of attracting students and the public to learn more about advanced vehicle technologies, energy efficiency, climate change, alternative fuels, and the science and math behind efficient vehicle development. The Progressive Insurance Automotive X PRIZE Education Program comprised three integrated components that were designed to educate the general public and create a multi-tiered initiative to engage students and showcase the 21st century skills students will need to compete in our global economy: teamwork, creativity, strong literacy, math and science skills, and innovative thinking. The elements included an Online Experience, a National Student Contest, and in person education events and activites. The project leveraged online connections, strategic partnerships, in-classroom, and beyond-the-classroom initiatives, as well as mainstream media. This education program supported by the U.S. Department of Energy (DOE) also funded the specification of vehicle telemetry and the full development and operation of an interactive online experience that allowed internet users to follow the Progressive Insurance Automotive X PRIZE vehicles as they performed in real-time during the Progressive Insurance Automotive X PRIZE competition events.

  6. formula society of automotive engineers

    E-Print Network [OSTI]

    Stormo, Gary

    formula society of automotive engineers >> wuracing.com #12;The 2013 season presents a huge and promising time for WUracing. Thank you, Surjan Singh President, Formula SAE, WUracing message to sponsors University comprises a group of enthusiastic students who completely design and fabricate a formula race car

  7. Vehicle Technologies Office Merit Review 2014: Understanding...

    Office of Environmental Management (EM)

    Understanding Protective Film Formation on Magnesium Alloys in Automotive Applications Vehicle Technologies Office Merit Review 2014: Understanding Protective Film Formation on...

  8. Adaptive Rollover Prevention for Automotive Vehicles with Differential Braking

    E-Print Network [OSTI]

    Duffy, Ken

    Adaptive Rollover Prevention for Automotive Vehicles with Differential Braking Selim Solmaz, switching, and tuning (MMST) paradigm [13, 14, 15] for preventing un­tripped rollover in automotive vehicles performance than its fixed robust counterpart. Keywords: Automotive control; Multiple models; Parameter

  9. Time and event triggered communication scheduling for automotive applications

    E-Print Network [OSTI]

    Johansson, Roger

    Time and event triggered communication scheduling for automotive applications ROGER JOHANSSON and event triggered communication scheduling for automotive applications 1 ROGER JOHANSSON Department triggered communication scheduling for automotive applications ROGER JOHANSSON © ROGER JOHANSSON, 2004

  10. Automotive Turbocharging: Industrial Requirements and Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    performance will be difficult to achieve requires a proper understanding of the trade-offs and engine effects and impacts must be part of turbocharger development...

  11. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from 300K to 800K", International Conference of Thermoelectrics (ICT2007) Jeju Island, South Korea, June4-7 2007. 23. H. Wang, "Thermoelectrics Power Generation: A Review of DOE...

  12. Market Acceptance of Advanced Automotive Technologies Model ...

    Open Energy Info (EERE)

    and multiple regions. For more information, contact the ORNL Energy and Transportation Science Division at http:www.ornl.govscieesetsdcontactus.shtml References Retrieved...

  13. Thermoelectrics: The New Green Automotive Technology

    Broader source: Energy.gov (indexed) [DOE]

    Compressed Air Module Supplies compressed air for brakes and ride control Electric Water Pump Higher reliability variable speed faster warm-up less white smoke lower cold...

  14. Graduate Automotive Technology Education (GATE) Initiative Awards |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment of aLogging Systems (December 1983) |The

  15. Automotive Turbocharging: Industrial Requirements and Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof Energy Automation Worldof Energy

  16. NREL: Transportation Research - Future Automotive Systems Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmissionResearch Cutaway

  17. Permanent Magnet Development for Automotive Traction Motors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Permanent Magnet Development for Automotive Traction Motors Includes: Beyond Rare Earth Magnets (BREM) Iver E. Anderson Ames Laboratory (USDOE) Email: andersoni@ameslab.gov Phone:...

  18. Center for Lightweighting Automotive Materials and Processing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2007 Project Title Sponsor Development of Thermoplastic Matrix Composites using Resin Infusion CLAMP Fatigue of Automotive Thermoplastics CLAMP Development of Crush-Resistant...

  19. Structural Automotive Components from Composite Materials

    Broader source: Energy.gov (indexed) [DOE]

    Focal Project 4: Structural Automotive Components from Composite Materials Libby Berger (General Motors) John Jaranson (Ford) Presented by Hamid Kia (General Motors) May 16, 2012...

  20. Automotive Waste Heat Conversion to Power Program

    Broader source: Energy.gov (indexed) [DOE]

    confidential or otherwise restricted information Project ID ace47lagrandeur Automotive Waste Heat Conversion to Power Program- 2009 Hydrogen Program and Vehicle...

  1. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Broader source: Energy.gov (indexed) [DOE]

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Gregory P. Meisner General Motors Global Research & Development March 21, 2012 3rd Thermoelectric...

  2. Low-Temperature Automotive Diesel Combustion

    Broader source: Energy.gov (indexed) [DOE]

    Automotive Diesel Combustion Light-Duty Combustion Experiments Paul Miles Sandia National Laboratories Light-Duty Combustion Modeling Rolf Reitz University of Wisconsin June 8,...

  3. automotive control systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy savings can be obtained. Copyright 2003 IFAC Keywords: Automotive Control, Energy Management Systems Johansson, Karl Henrik 128 Create Robust Automotive Designs with...

  4. Sandia National Laboratories: ECIS-Automotive Fuel Cell Corporation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECAbout ECFacilitiesCRFECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles ECIS-Automotive Fuel Cell Corporation:...

  5. ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap for the Automotive Market (May 1999) ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999) autoroadmap.pdf More Documents & Publications Vehicle...

  6. automotive engineering: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to design Subramanian, Venkat 5 Faculty of Engineering Mechanical, Automotive and Physics Websites Summary: Faculty of Engineering Mechanical, Automotive and Materials...

  7. automotive engineers preprint: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fig. 1 Stefanopoulou, Anna 10 ME 374D Automotive Engineering laboratory ABET EC2000 syllabus Engineering Websites Summary: and Automotive Engineering - ME 374C Notes 2010 at...

  8. FY 2008 Progress Report for Lightweighting Materials - 3. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Progress Report for Lightweighting Materials - 3. Automotive Metals-Cast FY 2008 Progress Report for Lightweighting Materials - 3. Automotive Metals-Cast Lightweighting Materials...

  9. FY 2008 Progress Report for Lightweighting Materials - 3. Automotive...

    Broader source: Energy.gov (indexed) [DOE]

    Lightweighting Materials FY 2008 Progress Report 3. AUTOMOTIVE METALS-CAST A. Improved Automotive Suspension Components Cast with B206 Alloy Principal Investigator: Richard...

  10. automotive sampling system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analysis; automotive control system. I. INTRODUCTION In reliability Zachmann, Gabriel 47 System level Analysis of Fault Effect in an Automotive Environment...

  11. automotive quality systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analysis; automotive control system. I. INTRODUCTION In reliability Zachmann, Gabriel 50 System level Analysis of Fault Effect in an Automotive Environment...

  12. Validation of Material Models for Automotive Carbon Fiber Composite...

    Broader source: Energy.gov (indexed) [DOE]

    Validation of Material Models for Automotive Carbon Fiber Composite Structures (VMM) Libby Berger (General Motors), Omar Faruque (Ford) Co-Principal Investigators US Automotive...

  13. Future Automotive Aftertreatment Solutions: The 150 C Challenge

    E-Print Network [OSTI]

    Page 1 Future Automotive Aftertreatment Solutions: The 150° C Challenge Workshop Report ACEC Low...........................................................................................17 Overview Session 3) Industry and Supplier Needs, the U.S. automotive manufacturer

  14. Development of a Thermoelectric Device for an Automotive Zonal...

    Energy Savers [EERE]

    Development of a Thermoelectric Device for an Automotive Zonal HVAC System Development of a Thermoelectric Device for an Automotive Zonal HVAC System Presents development of a...

  15. FY 2009 Progress Report for Lightweighting Materials - 3. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3. Automotive Metals - Cast FY 2009 Progress Report for Lightweighting Materials - 3. Automotive Metals - Cast The primary Lightweight Materials activity goal is to validate a...

  16. CX: Categorical Determination-Alcoa Tennessee Automotive Sheet...

    Office of Environmental Management (EM)

    CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion Project CX: Categorical Determination-Alcoa Tennessee Automotive Sheet Expansion Project Categorical...

  17. Powder Metal Performance Modeling of Automotive Components ?AMD...

    Energy Savers [EERE]

    Powder Metal Performance Modeling of Automotive Components AMD 410 Powder Metal Performance Modeling of Automotive Components AMD 410 Presentation from the U.S. DOE Office of...

  18. FY 2008 Progress Report for Lightweighting Materials - 2. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2. Automotive Metals-Wrought FY 2008 Progress Report for Lightweighting Materials - 2. Automotive Metals-Wrought Lightweighting Materials focuses on the development and validation...

  19. FY 2009 Progress Report for Lightweighting Materials - 2. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2. Automotive Metals - Wrought FY 2009 Progress Report for Lightweighting Materials - 2. Automotive Metals - Wrought The primary Lightweight Materials activity goal is to validate...

  20. FY 2008 Progress Report for Lightweighting Materials - 6. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6. Automotive Metals-Crosscutting FY 2008 Progress Report for Lightweighting Materials - 6. Automotive Metals-Crosscutting Lightweighting Materials focuses on the development and...

  1. FY 2008 Progress Report for Lightweighting Materials - 4. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4. Automotive Metals-Titanium FY 2008 Progress Report for Lightweighting Materials - 4. Automotive Metals-Titanium Lightweighting Materials focuses on the development and...

  2. FY 2009 Progress Report for Lightweighting Materials - 6. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6. Automotive Metals - Crosscutting FY 2009 Progress Report for Lightweighting Materials - 6. Automotive Metals - Crosscutting The primary Lightweight Materials activity goal is to...

  3. Society of Automotive Engineers honors Storey, Wagner, Sluder...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Communications 865.574.4399 Society of Automotive Engineers honors Storey, Wagner, Sluder The Society of Automotive Engineers has honored ORNL researches (from left) Robert Wagner,...

  4. Membrane Performance and Durability Overview for Automotive Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance and Durability Overview for Automotive Fuel Cell Applications Membrane Performance and Durability Overview for Automotive Fuel Cell Applications Presented by Tom...

  5. System level modeling of thermoelectric generators for automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    level modeling of thermoelectric generators for automotive applications System level modeling of thermoelectric generators for automotive applications Uses a model to predict and...

  6. FY 2008 Progress Report for Lightweighting Materials - 5. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5. Automotive Metals-Steel FY 2008 Progress Report for Lightweighting Materials - 5. Automotive Metals-Steel Lightweighting Materials focuses on the development and validation of...

  7. FY 2009 Progress Report for Lightweighting Materials - 5. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5. Automotive Metals - Steel FY 2009 Progress Report for Lightweighting Materials - 5. Automotive Metals - Steel The primary Lightweight Materials activity goal is to validate a...

  8. Understanding Automotive Exhaust Catalysts Using a Surface Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automotive Exhaust Catalysts Using a Surface Science Approach: Model NOx Storage Materials. Understanding Automotive Exhaust Catalysts Using a Surface Science Approach: Model NOx...

  9. High Efficiency Full Expansion (FEx) Engine for Automotive Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Full Expansion (FEx) Engine for Automotive Applications High Efficiency Full Expansion (FEx) Engine for Automotive Applications Large increases in engine thermal efficiency result...

  10. FY 2009 Progress Report for Lightweighting Materials - 4. Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4. Automotive Metals - Titanium FY 2009 Progress Report for Lightweighting Materials - 4. Automotive Metals - Titanium The primary Lightweight Materials activity goal is to...

  11. Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

  12. Compact organizational space and technological catch-up: Comparison of China's

    E-Print Network [OSTI]

    Organizational learning Proximity Shanghai Automotive Industry Corporation Technological capability a b s t r a c Automotive Industry Corporation (SAIC) surpasses its two local rivals in terms of technolog- ical automotive groups* Kyung-Min Nam *Reprinted from Research Policy, online first (doi: 10.1002/2013EF000214

  13. Integrity Automotive | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown,InnofermIntegrity Automotive Jump to:

  14. Digital Styling for Designers: in Prospective Automotive Design

    E-Print Network [OSTI]

    Toronto, University of

    }@vsl.gifu-u.ac.jp Abstract. Although a great part of the new-product development process in automotive industry is already method for professional automotive stylists. 1. Introduction The automotive industry has beenDigital Styling for Designers: in Prospective Automotive Design Seok-Hyung Bae and Ryugo Kijima

  15. Backup strategy for robots' failures in an automotive assembly system

    E-Print Network [OSTI]

    Ben-Gal, Irad E.

    history: Received 23 October 2006 Accepted 16 September 2007 Keywords: Automotive industry Assembly lines in the automotive industry High-volume body-shop systems in the automotive industry often consist of a seriesBackup strategy for robots' failures in an automotive assembly system Tomer Kahan a , Yossi Bukchin

  16. Tools and Techniques for Ensuring Automotive EMC Performance and Reliability

    E-Print Network [OSTI]

    Stuart, Steven J.

    of the future ... 10 #12;Automotive EMC Today #12;Automotive EMC Standards Organizations 12 International Electrotechnical Commission (IEC) International Organization for Standards (IOS) Society of Automotive Engineers (SAE) CISPR, TC77 TC22, SC3, WG3 Surface Vehicle EMC Standards Committee #12;Automotive EMC

  17. Strategies for Burr Minimization and Cleanability in Aerospace and Automotive Manufacturing

    E-Print Network [OSTI]

    Ávila, Miguel C.; Gardner, Joel D.; Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

    2006-01-01T23:59:59.000Z

    the Aerospace and Automotive Industry“, SAE Transactions J.aerospace and automotive industries has become increasinglyaerospace and automotive industries has become increasingly

  18. Keiretsu, Governance, and Learning: Case Studies in Change from the Japanese Automotive Industry

    E-Print Network [OSTI]

    Ahmadjian, Christina L.; Lincoln, James R.

    2000-01-01T23:59:59.000Z

    in the Japanese Automotive Industry. Columbia Universityfrom the Japanese automotive industry Christina L. Ahmadjianchange from the Japanese automotive industry ABSTRACT The “

  19. Strategies for Burr Minimization and Cleanability in Aerospace and Automotive Manufacturing

    E-Print Network [OSTI]

    Avila, Miguel C.; Gardner, Joel D.; Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

    2006-01-01T23:59:59.000Z

    aerospace and automotive industries has become increasinglythe aerospace and automotive industry, only during the pastLMA partners in the automotive industry. formation and crown

  20. Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply

    E-Print Network [OSTI]

    Yuan, Chris; Dornfeld, David

    2009-01-01T23:59:59.000Z

    ABSTRACT The automotive industry consumes a significantINTRODUCTION The automotive industry consumes a significantVOC, PM, and so on. The automotive industry has made a great

  1. Strategies for Burr Minimization and Cleanability in Aerospace and Automotive Manufacturing

    E-Print Network [OSTI]

    Ávila, Miguel C.; Gardner, Joel D.; Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

    2006-01-01T23:59:59.000Z

    in Aerospace and Automotive Manufacturing Author: Avila,in the Aerospace and Automotive Industry“, SAE Transactionsin the aerospace and automotive industries has become

  2. Alternative Representations of Statistical Measures in Computer Tools to Promote Communication between Employees in Automotive Manufacturing

    E-Print Network [OSTI]

    Bakker, Arthur; Kent, Phillip; Noss, Richard; Hoyles, Celia

    2009-01-01T23:59:59.000Z

    and to lower costs. The automotive industry is a leadingcontrol (SPC) in an automotive assembly plant. Assumevery significant for automotive manufacture as the principle

  3. A Decision-Based Analysis of Compressed Air Usage Patterns in Automotive Manufacturing

    E-Print Network [OSTI]

    Yuan, Chris; Zhang, Teresa; Rangarajan, Arvind; Dornfeld, David; Ziemba, Bill; Whitbeck, Rod

    2006-01-01T23:59:59.000Z

    Air Usage Patterns in Automotive Manufacturing Chris Y. Yuanper vehicle built from automotive manufacturing facilities,2004). Compressed Air in Automotive Manufacturing Compressed

  4. Strategies for Burr Minimization and Cleanability in Aerospace and Automotive Manufacturing

    E-Print Network [OSTI]

    Avila, Miguel C.; Gardner, Joel D.; Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

    2006-01-01T23:59:59.000Z

    in Aerospace and Automotive Manufacturing Miguel Ávila, Joelin the aerospace and automotive industries has becomes in the aerospace and automotive industry, only during the

  5. Vehicle Technologies Office: 2009 Propulsion Materials R&D Annual...

    Broader source: Energy.gov (indexed) [DOE]

    09propulsionmaterials.pdf More Documents & Publications Magnetic Material for PM Motors Permanent Magnet Development for Automotive Traction Motors Vehicle Technologies Office:...

  6. air purification technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Infrastructure Technologies FY 2002 Progress Report IV.E Air Management Subsystems Renewable Energy Websites Summary: . Approach Use automotive and aerospace...

  7. air filtration technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Infrastructure Technologies FY 2002 Progress Report IV.E Air Management Subsystems Renewable Energy Websites Summary: . Approach Use automotive and aerospace...

  8. 2011 Annual Merit Review Results Report - Technology Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    activities 2011amr08.pdf More Documents & Publications Penn State DOE Graduate Automotive Technology Education (Gate) Program for In-Vehicle, High-Power Energy Storage...

  9. Vehicle Technologies Office Merit Review 2014: High Speed Joining...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Speed Joining of Dissimilar Alloy Aluminum Tailor Welded Blanks ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999) Vehicle Technologies Office: 2013...

  10. Argonne battery technology confirmed by U.S. Patent Office |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Argonne's suite of cathode technologies licensed to several prominent companies in the automotive and chemical industries, including GM, BASF, LG Chem and Toda Kogyo," said Carl...

  11. APLAIR partners with ORNL to commercialize weld inspection technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology developed by the Department of Energy's Oak Ridge National Laboratory. The automotive industry relies heavily on resistance spot welding in the fabrication and...

  12. Advanced Vehicle Technology Competition: Challenge-X 2008 DOE...

    Energy Savers [EERE]

    More Documents & Publications EcoCAR the Next Generation IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR...

  13. Doing More With Less: Cost-Effective Infrastructure for Automotive Vision Capabilities

    E-Print Network [OSTI]

    Jeffay, Kevin

    recognition, and 360-degree sensing. At the same time, fully autonomous vehicles have been demonstrated is automotive systems. In this domain, a proliferation of advanced sensor technology is being fueled by an expanding range of autonomous capabilities. Driver-assist features, such as blind spot warnings, automatic

  14. Hybrid and Hydrogen Vehicle Research Laboratory 21st Century Automotive Challenge April 17-19, 2009

    E-Print Network [OSTI]

    Lee, Dongwon

    electric and hybrid cars in the American consumer marketplace." Competition participants included teams vehicle technology you need to match your lifestyle ­ electric, solar electric, hybrid, pluggable hybrid the electric utility grid. Sound impossible, or eons in the future? As part of the 21st Century Automotive

  15. Future Automotive Aftertreatment Solutions: The 150°C Challenge Workshop Report

    SciTech Connect (OSTI)

    Zammit, Michael; DiMaggio, Craig L.; Kim, Chang H.; Lambert, Christine; Muntean, George G.; Peden, Charles HF; Parks, James E.; Howden, Ken

    2013-10-15T23:59:59.000Z

    With future fuel economy standards enacted, the U.S. automotive manufacturers (OEMs) are committed to pursuing a variety of high risk/highly efficient stoichiometric and lean combustion strategies to achieve superior performance. In recognition of this need, the U.S. Department of Energy (DOE) has partnered with domestic automotive manufacturers through U.S. DRIVE to develop these advanced technologies. However, before these advancements can be introduced into the U.S. market, they must also be able to meet increasingly stringent emissions requirements. A significant roadblock to this implementation is the inability of current catalyst and aftertreatment technologies to provide the required activity at the much lower exhaust temperatures that will accompany highly efficient combustion processes and powertrain strategies. Therefore, the goal of this workshop and report is to create a U.S. DRIVE emission control roadmap that will identify new materials and aftertreatment approaches that offer the potential for 90% conversion of emissions at low temperature (150°C) and are consistent with highly efficient combustion technologies currently under investigation within U.S. DRIVE Advanced Combustion and Emission Control (ACEC) programs.

  16. Complexity reduction in automotive design and development

    E-Print Network [OSTI]

    Ziegler, Ronald J., 1965-

    2005-01-01T23:59:59.000Z

    Automobiles are complex products. High product complexity drives high levels of design and process complexity and complicatedness. This thesis attempts to reduce complicatedness in the automotive vehicle design and development ...

  17. What engineering courses are there? Automotive Engineering

    E-Print Network [OSTI]

    Sussex, University of

    Electrical and Electronic Engineering Electronic Engineering Mechanical Engineering BEng Automotive Engineering Computer Engineering Electrical and Electronic Engineering Electronic Engineering Mechanical's student perspective `I chose to study Electrical and Electronic Engineering at Sussex because

  18. Detection of arcs in automotive electrical systems

    E-Print Network [OSTI]

    Mishrikey, Matthew David

    2005-01-01T23:59:59.000Z

    At the present time, there is no established method for the detection of DC electric arcing. This is a concern for forthcoming advanced automotive electrical systems which consist of higher DC electric power bus voltages, ...

  19. Strategic frameworks in automotive systems architecting

    E-Print Network [OSTI]

    Tampi, Mahesh

    2012-01-01T23:59:59.000Z

    More often than not, large-scale engineering concepts such as those used by creative automotive manufacturing companies require the incorporation of significant capital outlays and resources for the purposes of implementation ...

  20. Driver expectancy in locating automotive controls 

    E-Print Network [OSTI]

    Francis, Dawn Suzette

    1990-01-01T23:59:59.000Z

    DRIVER EXPECTANCY IN LOCATING AUTOMOTIVE CONTROLS A Thesis by DAWN SUZETTE FRANCIS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1990... Major Subject: Industrial Engineering DRIVER EXPECTANCY IN LOCATING AUTOMOTIVE CONTROLS A Thesis by DAWN SUZETTE FRANCIS Approved as to style and content by: R. Dale Huchi son (Chair of Committee) Rodger . . ppa (Member) Waymon L ohnston (M er...

  1. Driver expectancy in locating automotive controls

    E-Print Network [OSTI]

    Francis, Dawn Suzette

    1990-01-01T23:59:59.000Z

    Major Subject: Industrial Engineering DRIVER EXPECTANCY IN LOCATING AUTOMOTIVE CONTROLS A Thesis by DAWN SUZETTE FRANCIS Approved as to style and content by: R. Dale Huchi son (Chair of Committee) Rodger . . ppa (Member) Waymon L ohnston (M er... assessment of automotive industry practices in 1971 and concluded that only 50% of controls/displays on various models could be said to have a common location. Perel (1974) reviewed prior research and found that it would be difficult to pinpoint...

  2. A Consortium of the United States Council for Automotive Research Nondestructive Evaluation Steering Committee

    E-Print Network [OSTI]

    Knowles, David William

    Automotive Industry September 6, 2006 United States Automotive Materials Partnership, A Consortium .....................................................................................................11 Chapter 2 The Expanding Role of NDE in the Automotive Industry.................................13A Consortium of the United States Council for Automotive Research Nondestructive Evaluation

  3. Advanced thermoelectric materials and systems for automotive applications in the next millennium

    SciTech Connect (OSTI)

    Morelli, D.T.

    1997-07-01T23:59:59.000Z

    A combination of environmental, economic, and technological drivers has led to a reassessment of the potential for using thermoelectric devices in several automotive applications. In order for this technology to achieve its ultimate potential, new materials with enhanced thermoelectric properties are required. Experimental results on the fundamental physical properties of some new thermoelectric materials, including filled skutterudites and 1-1-1 intermetallic semiconductors, are presented.

  4. Life cycle cost modeling of automotive paint systems

    E-Print Network [OSTI]

    Leitz, Christopher W. (Christopher William), 1976-

    2007-01-01T23:59:59.000Z

    Vehicle coating is an important component of automotive manufacturing. The paint shop constitutes the plurality of initial investment in an automotive assembly plant, consumes the majority of energy used in the plant's ...

  5. automotive dealership opens: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 223 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  6. automotive active suspension: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 448 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  7. automotive technician training: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 292 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  8. automotive shredder residue: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 240 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  9. automotive components: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 242 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  10. automotive shredded residues: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 246 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  11. automotive shredder residues: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 240 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  12. automotive assembly workers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 295 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  13. automotive door skins: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 345 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  14. automotive air conditioning: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 365 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  15. automotive damper condition: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 306 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  16. automotive computers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 238 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  17. automotive sensor manufacturing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 427 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  18. automotive medicine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 271 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  19. automotive suspension springs: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 500 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  20. automotive oil filters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 318 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  1. afv automotive technician: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 249 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  2. AMD 601 High Integrity -Magnesium Automotive Components (HI-MAC...

    Energy Savers [EERE]

    601 High Integrity -Magnesium Automotive Components (HI-MAC) AMD 601 High Integrity -Magnesium Automotive Components (HI-MAC) Presentation from the U.S. DOE Office of Vehicle...

  3. Interim Update: Global Automotive Power Electronics R&D Relevant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interim Update: Global Automotive Power Electronics R&D Relevant To DOE 2015 and 2020 Cost Targets Interim Update: Global Automotive Power Electronics R&D Relevant To DOE 2015 and...

  4. Automotive Repair by Number Theory Bart Snapp and Chris Snapp

    E-Print Network [OSTI]

    Snapp, Bart

    Automotive Repair by Number Theory Bart Snapp and Chris Snapp While repairing the ignition switch on a 1981 Fiat Spider, we discovered the following connection between number theory and automotive repair

  5. Electrohydraulic Forming of Near-Net Shape Automotive Panels

    SciTech Connect (OSTI)

    Golovaschenko, Sergey F.

    2013-09-26T23:59:59.000Z

    The objective of this project was to develop the electrohydraulic forming (EHF) process as a near-net shape automotive panel manufacturing technology that simultaneously reduces the energy embedded in vehicles and the energy consumed while producing automotive structures. Pulsed pressure is created via a shockwave generated by the discharge of high voltage capacitors through a pair of electrodes in a liquid-filled chamber. The shockwave in the liquid initiated by the expansion of the plasma channel formed between two electrodes propagates towards the blank and causes the blank to be deformed into a one-sided die cavity. The numerical model of the EHF process was validated experimentally and was successfully applied to the design of the electrode system and to a multi-electrode EHF chamber for full scale validation of the process. The numerical model was able to predict stresses in the dies during pulsed forming and was validated by the experimental study of the die insert failure mode for corner filling operations. The electrohydraulic forming process and its major subsystems, including durable electrodes, an EHF chamber, a water/air management system, a pulse generator and integrated process controls, were validated to be capable to operate in a fully automated, computer controlled mode for forming of a portion of a full-scale sheet metal component in laboratory conditions. Additionally, the novel processes of electrohydraulic trimming and electrohydraulic calibration were demonstrated at a reduced-scale component level. Furthermore, a hybrid process combining conventional stamping with EHF was demonstrated as a laboratory process for a full-scale automotive panel formed out of AHSS material. The economic feasibility of the developed EHF processes was defined by developing a cost model of the EHF process in comparison to the conventional stamping process.

  6. Automotive Thermoelectric Generators and HVAC

    Broader source: Energy.gov (indexed) [DOE]

    technologies including nanostructured interfaces, filled skutterudites, cold-side microfluidics. Practical TE characterization including interface effects and thermal...

  7. Automotive Thermoelectric Generators and HVAC

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. The Challenges for PEMFC Catalysts in Automotive Applications

    Broader source: Energy.gov [DOE]

    Presentation by Stephen Campbell for the 2013 DOE Catalysis Working Group Meeting on PEMFC catalysts in automotive applications.

  9. Electrocatalysts for Automotive Fuel Cells: Status and Challenges

    Broader source: Energy.gov [DOE]

    Presentation by Nilesh Dale for the 2013 DOE Catalyst Working Group Meeting on electrocatalysts for automotive fuel cells.

  10. High Assurance Aerospace CPS & Implications for the Automotive Industry

    E-Print Network [OSTI]

    Poovendran, Radha

    High Assurance Aerospace CPS & Implications for the Automotive Industry Scott A. Lintelman1 assurance CPS can mutually benefit aerospace and automotive industries. I. INTRODUCTION Commercial aviation]. In the automotive industry, recent trends in intelligent transportation systems can be evidently mapped to e

  11. Model-based Quality Assurance of Automotive Software

    E-Print Network [OSTI]

    Jurjens, Jan

    CASE tool by ETAS · Used in automotive industry · Event-driven operational model #12;Jan Jürjens et alModel-based Quality Assurance of Automotive Software Jan Jürjens1 , Daniel Reiss2 , David (Germany) #12;Jan Jürjens et al.: Model-based Quality Assurance of Automotive Software 2 The Problem (Meta

  12. Complex Embedded Automotive Control Systems DaimlerChrysler

    E-Print Network [OSTI]

    Duffy, Ken

    of the industrial partner and the automotive industry in general; this will enable an efficient industrialComplex Embedded Automotive Control Systems CEMACS DaimlerChrysler SINTEF Glasgow University results in in peer review journals, at major automotive conferences in Europe and at a project workshop

  13. Reliability and Throughput in Future Automotive Communication Networks

    E-Print Network [OSTI]

    Rajkumar, Ragunathan "Raj"

    Star. This action created a new industry called automotive telematics, helping to save lives and providing, the automotive telematics industry has experienced a healthy growth in North America. During the current economic downturn, the automotive telematics industry has grown worldwide surprisingly faster than prediction

  14. STATISTICAL SIGNAL PROCESSING FOR AUTOMOTIVE SAFETY SYSTEMS Fredrik Gustafsson

    E-Print Network [OSTI]

    Gustafsson, Fredrik

    - cessing area. 1. INTRODUCTION Henry Ford revolutionized the automotive industry more than 100 years ago in many ways. The automotive industry has always been dominated by mechanical engi- neers, but today weSTATISTICAL SIGNAL PROCESSING FOR AUTOMOTIVE SAFETY SYSTEMS Fredrik Gustafsson Department

  15. Analysis and Clustering of Model Clones: An Automotive Industrial Experience

    E-Print Network [OSTI]

    Cordy, James R.

    Analysis and Clustering of Model Clones: An Automotive Industrial Experience Manar H. Alalfi, James similarity in industrial automotive models. We apply our model clone detection tool, SIMONE, to identify and suggests better ways to maintain them. I. INTRODUCTION In todays automotive industry, models are widely

  16. Flexibility in Aerospace and Automotive Component Manufacturing Systems

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Traditionally, parts fabrication in the aerospace and automotive industries has been associated with a number for the aerospace and automotive industries. The thesis lays out a set of generic flexibility strategies and sets I could receive an impression of manufacturing in today's automotive and aerospace industry

  17. Holistic Data-Driven Diagnosis for Dependable Automotive Systems

    E-Print Network [OSTI]

    Rajkumar, Ragunathan "Raj"

    The automotive industry has become steadily more reliant on software- intensive distributed systems to impleHolistic Data-Driven Diagnosis for Dependable Automotive Systems Patrick E. Lanigan Carnegie Mellon, emer- gent behavior will still appear at runtime in dependable automotive systems. Such behavior occurs

  18. The Economic Impact of South Carolina's Automotive Cluster

    E-Print Network [OSTI]

    Almor, Amit

    or industry. Significant investments in the automotive and ground transportation industry began in 1973The Economic Impact of South Carolina's Automotive Cluster Developed by: Division of Research Moore's Automotive Cluster 1 Study Prepared by: Dr. Douglas P. Woodward Director, Division of Research woodward

  19. TEACHING DURABILITY IN AUTOMOTIVE APPLICATIONS USING A RELIABILITY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , initially developed in the automotive industry and since extended to the aeronautical and mechanical a probabilistic method, initially developed in the automotive industry and since extended to the aeronautical1 TEACHING DURABILITY IN AUTOMOTIVE APPLICATIONS USING A RELIABILITY APPROACH Anne Morel (1), André

  20. Fostering Innovation and Investment In Ontario's Automotive Industry

    E-Print Network [OSTI]

    Haykin, Simon

    Fostering Innovation and Investment In Ontario's Automotive Industry Presentation to The First Development and Trade - Ontario #12;Ontario Automotive Industry · The auto industry has been in Ontario Ontario-US MidWest automotive region: 1 in 6 vehicles built in NA · Approximately 133,000 workers

  1. Tackling Automotive Challenges with an Integrated RE & Design Artifact Model

    E-Print Network [OSTI]

    Boltzmannstr. 3, 85748 Garching, Germany {penzenst}@in.tum.de Abstract. The automotive industry faces the needTackling Automotive Challenges with an Integrated RE & Design Artifact Model Birgit Penzenstadler, Documentation, Automotive, Em- bedded Systems 1 Introduction A well-known fact is that the complexity

  2. Towards Characterizing and Classifying Communication-based Automotive Applications

    E-Print Network [OSTI]

    Perrig, Adrian

    Towards Characterizing and Classifying Communication-based Automotive Applications from a Wireless opportunity to develop various types of communication-based automotive applications. To date, many applications have been identified by the automotive community. Given the large number and diverse nature

  3. Design Automation Challenges in Automotive CPS Sayan Mitra

    E-Print Network [OSTI]

    Rajkumar, Ragunathan "Raj"

    Design Automation Challenges in Automotive CPS Sayan Mitra mitras@illinois.edu In principle, best theorem proving. Unfortunately, a stan- dardized open repository of benchmarks for automotive CPS-up companies, in which each play a role and the automotive CPS community flourishes. A good benchmark

  4. Platform Based Design for Automotive Sensor Conditioning L. Fanucci1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Platform Based Design for Automotive Sensor Conditioning L. Fanucci1 , A. Giambastiani2 , F. Iozzi3 kinds of sensors for automotive applications is presented. A platform based design approach is pursued prototyping. A case study is presented concerning the conditioning of a Gyro yaw rate sensor for automotive

  5. WE -ADKWindows Embedded Automotive Development Kit Benefits to the developer

    E-Print Network [OSTI]

    Narasayya, Vivek

    WE -ADKWindows Embedded Automotive Development Kit Benefits to the developer: The Official-ADK, Microsoft Auto 4.1 installs on top of Windows® Embedded CE 6.0 R3 and adds automotive -specific an Automotive Infotainment Solution with Microsoft Auto 4.1 and Qualnetics WE

  6. Model based dependability evaluation for automotive control functions

    E-Print Network [OSTI]

    Schlingloff, Holger

    Model based dependability evaluation for automotive control functions Sasa Vulinovic 1 , Bernd@informatik.hu-berlin.de Abstract In this paper, we study the evaluation of reliability for embedded functions in automotive. In order to assess fault tolerant designs for automotive software it is essential to be able to predict

  7. A Driving Simulator for Teaching Embedded Automotive Control Applications

    E-Print Network [OSTI]

    Gillespie, Brent

    A Driving Simulator for Teaching Embedded Automotive Control Applications Paul G. Griffiths component uses a typical automotive power- train micro-controller and teaches topics in system dynamics students build a fixed-based driving simulator to test advanced automotive control system designs

  8. Design of automotive X-by-Wire systems Cdric Wilwert

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Design of automotive X-by-Wire systems Cédric Wilwert PSA Peugeot - Citroën 92000 La Garenne Phone : +33 3 83 58 17 62 simonot@loria.fr CONTENTS Design of automotive X-by-Wire systems ................................................................................................................................ 9 3.2 Main time-triggered protocols for automotive industry

  9. A rubber mount model. Application to automotive equipment suspension

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A rubber mount model. Application to automotive equipment suspension B. Thomas1, 2 , L. Manin1.manin@insa-lyon.fr Abstract In order to predict the nonlinear dynamic response of automotive equipment supported by rubber identification of the model. The application concerns the suspension of an automotive engine cooling module. 1

  10. Service-Oriented Modelling of Automotive Systems Laura Bocchi

    E-Print Network [OSTI]

    Bocchi, Laura

    Service-Oriented Modelling of Automotive Systems Laura Bocchi Department of Computer Science@di.fc.ul.pt ABSTRACT We discuss the suitability of service-oriented computing for the automotive domain. We present a formal high-level language in which complex automotive activities can be modelled in terms of core

  11. Automotive Powertrain Control: A Survey Jeffrey A. Cook, Jing Sun

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    Automotive Powertrain Control: A Survey Jeffrey A. Cook, Jing Sun Julia H. Buckland, Ilya V recent and historical publications on automotive powertrain control. Control- oriented models of gasoline, hybrid electric powertrains and automotive fuel cells. In each case, fundamental models are discussed

  12. Multimedia Systems as Immune System to Improve Automotive Security?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Multimedia Systems as Immune System to Improve Automotive Security? Jana Dittmann1 , Tobias Hoppe1 and environment. Especially in the field of automotive security, producers are seek- ing cost efficient- using resources. Initially, working in automotive security, it was easy to see that a wide variety

  13. Master Thesis Defining Materials in an Automotive Environment to Support

    E-Print Network [OSTI]

    Assarsson, Ulf

    Master Thesis ­ Defining Materials in an Automotive Environment to Support Realistic Virtual will decrease project time and cost. In the automotive industry, virtual evaluation is of special importance to material library in RD&T. · Demonstration on an automotive case in RD&T. Prior knowledge Knowledge

  14. Model-Based Quality Assurance of Automotive Software

    E-Print Network [OSTI]

    Jurjens, Jan

    Model-Based Quality Assurance of Automotive Software Jan Jürjens1 , Daniel Reiß2 , and David, Germany Abstract. Software in embedded (e.g. automotive) systems requires a high level of reliability to the automotive sector, characterized by strict safety requirements to com- ponents of a motor vehicle (see [5, 16

  15. Measurement of Dynamic Parameters of Automotive Exhaust Mohan D. Rao

    E-Print Network [OSTI]

    Rao, Mohan

    1 01NVC-121 Measurement of Dynamic Parameters of Automotive Exhaust Hangers Mohan D. Rao ME Copyright © 2001 Society of Automotive Engineers, Inc. ABSTRACT Different methodologies to test and analyze the dynamic stiffness (K) and damping (C) properties of several silicone and EPDM rubber automotive exhaust

  16. Secure Embedded Platform for Networked Automotive M. Gomathisankaran

    E-Print Network [OSTI]

    Rajkumar, Ragunathan "Raj"

    Secure Embedded Platform for Networked Automotive Systems M. Gomathisankaran Dept. of Computer University of North Texas 1 Introduction Modern automotive systems contain numerous electronic sensors automotive systems, is a challenge for our generation. Our focus in this position paper is on the security

  17. Automatic Parallelization of Hand Written Automotive Engine Control

    E-Print Network [OSTI]

    Kasahara, Hironori

    Automatic Parallelization of Hand Written Automotive Engine Control Codes Using OSCAR Compiler Dan approach to realize the next- generation automobiles integrated control system. However, automotive-core processors for a long time. This paper proposes to parallelize an automotive engine crankshaft control

  18. Computer Graphic Tools for Automotive Paint Engineering Gary W. Meyer

    E-Print Network [OSTI]

    Minnesota, University of

    Computer Graphic Tools for Automotive Paint Engineering Gary W. Meyer University of Minnesota graphics programs that can be used to solve automotive paint engineering problems. New surface reflection models have been created for simulating the appearance of automotive paint, and the hardware available

  19. The Marginalized Particle Filter for Automotive Tracking Applications

    E-Print Network [OSTI]

    Schön, Thomas

    The Marginalized Particle Filter for Automotive Tracking Applications Andreas Eidehall Thomas B surroundings (lane geometry and the position of other vehicles), which is needed for intelligent automotive in a nonlinear estimation problem. For automotive tracking systems, these problems are traditionally handled

  20. Complex Embedded Automotive Control Systems DaimlerChrysler

    E-Print Network [OSTI]

    Duffy, Ken

    Complex Embedded Automotive Control Systems CEMACS DaimlerChrysler SINTEF Glasgow University Description The high level of complexity in automotive systems requires a new approach to design. Moreover, to achieve higher performance and increased safety a coordination of different automotive control systems

  1. Nonlinear Control for Magnetic Levitation of Automotive Engine Valves

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    1 Nonlinear Control for Magnetic Levitation of Automotive Engine Valves Katherine Peterson, Member for and implemented on an electromagnetic valve actuator for use in automotive engines, the control methodology, it is experimentally eval- uated on an electromagnetic valve actuator designed for use in the actuation of automotive

  2. The Marginalized Particle Filter for Automotive Tracking Applications

    E-Print Network [OSTI]

    Gustafsson, Fredrik

    1 The Marginalized Particle Filter for Automotive Tracking Applications Andreas Eidehall Thomas Sch surroundings (lane geometry and the position of other vehicles), which is needed for intelligent automotive in a nonlinear estimation problem. For automotive tracking systems, these problems are traditionally handled

  3. Challenges for Qualitative Electrical Reasoning in Automotive Circuit Simulation

    E-Print Network [OSTI]

    Snooke, Neal

    Challenges for Qualitative Electrical Reasoning in Automotive Circuit Simulation Neal Snooke it to be used for applications on realistic automotive circuits. The type of circuits for which it is most automotive circuits with more complex overall behaviour can be approximated using this type of modelling

  4. 2011 Automotive Industry Seminar -"Challenges after the Earthquake" In recent years, the automotive industry has experienced a severe economic depression led by

    E-Print Network [OSTI]

    2011 Automotive Industry Seminar - "Challenges after the Earthquake" In recent years, the automotive industry has experienced a severe economic depression led by subprime loan issues, recalls Automotive Industry Seminar "Challenges after the Earthquake" in cooperation with the Consulate

  5. System modeling, analysis, and optimization methodology for diesel exhaust after-treatment technologies

    E-Print Network [OSTI]

    Graff, Christopher Dominic

    2006-01-01T23:59:59.000Z

    Developing new aftertreatment technologies to meet emission regulations for diesel engines is a growing problem for many automotive companies and suppliers. Balancing manufacturing cost, meeting emission performance, ...

  6. Vehicle Technologies Office Merit Review 2014: Electric PCM Assisted Thermal Heating System

    Broader source: Energy.gov [DOE]

    Presentation given by Delphi Automotive at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric PCM assisted...

  7. Vehicle Technologies Office Merit Review 2015: Unitary Thermal Energy Management for Propulsion Range Augmentation (UTEMPRA)

    Broader source: Energy.gov [DOE]

    Presentation given by Delphi Automotive Systems, LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Unitary...

  8. NONLINEAR MAGNETIC LEVITATION OF AUTOMOTIVE ENGINE VALVES

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    NONLINEAR MAGNETIC LEVITATION OF AUTOMOTIVE ENGINE VALVES K. Peterson, J.W. Grizzle, and A.G. Stefanopoulou £ ½ £ University of Michigan, Ann Arbor Abstract: Position regulation of a magnetic levitation the region of attraction. The effects of magnetic saturation are included in the model, and accounted

  9. Managing the integration of technology into the product development pipeline

    E-Print Network [OSTI]

    Barretto, Eduardo F., 1971-

    2005-01-01T23:59:59.000Z

    Managing the integration of technology is a complex task in any industry, but especially so in the highly competitive automotive industry. Automakers seek to develop plans to integrate technology into their products such ...

  10. Effect of automotive electrical system changes on fuel consumption using incremental efficiency methodology

    E-Print Network [OSTI]

    Hardin, Christopher William

    2004-01-01T23:59:59.000Z

    There has been a continuous increase in automotive electric power usage. Future projections show no sign of it decreasing. Therefore, the automotive industry has a need to either improve the current 12 Volt automotive ...

  11. Cumulative belief degrees approach for analyzing the competitiveness of the automotive industry

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    Cumulative belief degrees approach for analyzing the competitiveness of the automotive industry: Available online xxxx Keywords: Competitiveness Automotive industry Cumulative belief degree Casual the competitiveness of the automotive industry from a national competitiveness perspective, using a three

  12. Response-Time Minimization of Automotive-Inspired Dataflows on Multicore Platforms

    E-Print Network [OSTI]

    Anderson, James

    Response-Time Minimization of Automotive-Inspired Dataflows on Multicore Platforms Glenn A Abstract Dataflow software architectures are prevalent in prototypes of advanced automotive systems guarantees in these systems. Many existing automotive prototypes ensure such constraints through over

  13. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation

    E-Print Network [OSTI]

    Xu, Xianfan

    Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation been proposed to model thermoelectric generators (TEGs) for automotive waste heat recovery. Details: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites INTRODUCTION In part I

  14. In Proceedings of the Automotive Software Workshop on Future Generation Software Architectures in the Automotive Domain, San Diego, CA, Jan. 10-12, 2004.

    E-Print Network [OSTI]

    Garlan, David

    In Proceedings of the Automotive Software Workshop on Future Generation Software Architectures in the Automotive Domain, San Diego, CA, Jan. 10-12, 2004. Two-tiered Architectural Design for Automotive Control two-tiered design methods for automotive control systems at Ford Motor Company. Currently, Ford has

  15. Platform Based Design for Automotive Sensor Conditioning

    E-Print Network [OSTI]

    Fanucci, L; Iozzi, F; Marino, C; Rocchi, A

    2011-01-01T23:59:59.000Z

    In this paper a general architecture suitable to interface several kinds of sensors for automotive applications is presented. A platform based design approach is pursued to improve system performance while minimizing time-to-market.. The platform is composed by an analog front-end and a digital section. The latter is based on a microcontroller core (8051 IP by Oregano) plus a set of dedicated hardware dedicated to the complex signal processing required for sensor conditioning. The microcontroller handles also the communication with external devices (as a PC) for data output and fast prototyping. A case study is presented concerning the conditioning of a Gyro yaw rate sensor for automotive applications. Measured performance results outperform current state-of-the-art commercial devices.

  16. automotive torque converter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Ford Motor Company. Currently, Ford has Garlan, David 123 Analysis of Automotive Turbocharger Nonlinear Response Including Bifurcations. Open Access Theses and Dissertations...

  17. automotive engine seat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using 3-D Computer-Aided Design (CAD) software to design Subramanian, Venkat 5 Faculty of Engineering Mechanical, Automotive and Physics Websites Summary: Faculty of Engineering...

  18. automotive hydrogen supply: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on an elec- tromagnetic valve actuator, designed for use in the actuation of automotive engine valves. 2. ELECTROMAGNETIC VALVE ACTUATOR The electromagnetic valve actuator (EVA),...

  19. automotive exhaust emission: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hybrid electric powertrains and automotive fuel cells. In each case, fundamental models are discussed requirements and mandates on greenhouse gas emissions such as CO2,...

  20. automotive engine oils: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    entered a stagnating period. Automotive OEMs and their tier suppliers are struggling for business growth. One of the most important strategies is to improve the engineering...

  1. automotive emissions control: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analysis; automotive control system. I. INTRODUCTION In reliability Zachmann, Gabriel 25 Research on Calculation Method of Period and Deadline of Frame in...

  2. automotive emission control: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analysis; automotive control system. I. INTRODUCTION In reliability Zachmann, Gabriel 25 Research on Calculation Method of Period and Deadline of Frame in...

  3. automotive propulsion system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analysis; automotive control system. I. INTRODUCTION In reliability Zachmann, Gabriel 49 Mini-Micro Thrusters, LOX Hydrocarbon Propulsion, and Attitude Control...

  4. automotive propulsion systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analysis; automotive control system. I. INTRODUCTION In reliability Zachmann, Gabriel 49 Mini-Micro Thrusters, LOX Hydrocarbon Propulsion, and Attitude Control...

  5. STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS...

    Broader source: Energy.gov (indexed) [DOE]

    waiver petition and in subsequent discussions with DOE Patent Counsel, Delphi Automotive Systems, L.L.C (Delphi) has requested an advance waiver of domestic and foreign...

  6. AMD 601 High Integrity -Magnesium Automotive Components (HI-MAC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Neutral or Less Than Current Aluminum Components USAMP AMD 601 - High Integrity Magnesium Automotive Components (HI-MAC) edm2@chrysler.com February 28, 2008 Approach Scientific...

  7. Webinar: Automotive and MHE Fuel Cell System Cost Analysis

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled, Automotive and MHE Fuel Cell System Cost Analysis, originally presented on April 16, 2013.

  8. Status and Prospects of the Global Automotive Fuel Cell Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORNLTM-2013222 Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure Revised July...

  9. Automotive Fuel Efficiency Improvement via Exhaust Gas Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity Working...

  10. Status and Prospects of the Global Automotive Fuel Cell Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure Status and Prospects of the...

  11. Membrane Performance and Durability Overview for Automotive Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    September 14, 2006 Membrane Performance and Durability Overview for Automotive Fuel Cell Applications Tom Greszler General Motors Corporation Fuel Cell Activities Honeoye...

  12. automotive product development: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    due to magnetic saturation and eddy current Grizzle, Jessy W. 234 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  13. automotive structural applications: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AUTOMOTIVE ACCESSORIES: RETHINKING DESIGN MATERIALS THROUGH CORNSTARCH, SUGARCANE AND HEMP CiteSeer Summary: Current bioproducts or bio-based products do not only require less...

  14. automotive applications final: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AUTOMOTIVE ACCESSORIES: RETHINKING DESIGN MATERIALS THROUGH CORNSTARCH, SUGARCANE AND HEMP CiteSeer Summary: Current bioproducts or bio-based products do not only require less...

  15. automotive industry: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AUTOMOTIVE ACCESSORIES: RETHINKING DESIGN MATERIALS THROUGH CORNSTARCH, SUGARCANE AND HEMP CiteSeer Summary: Current bioproducts or bio-based products do not only require less...

  16. automotive traction applications: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AUTOMOTIVE ACCESSORIES: RETHINKING DESIGN MATERIALS THROUGH CORNSTARCH, SUGARCANE AND HEMP CiteSeer Summary: Current bioproducts or bio-based products do not only require less...

  17. automotive industry current: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AUTOMOTIVE ACCESSORIES: RETHINKING DESIGN MATERIALS THROUGH CORNSTARCH, SUGARCANE AND HEMP CiteSeer Summary: Current bioproducts or bio-based products do not only require less...

  18. automotive accessories: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AUTOMOTIVE ACCESSORIES: RETHINKING DESIGN MATERIALS THROUGH CORNSTARCH, SUGARCANE AND HEMP CiteSeer Summary: Current bioproducts or bio-based products do not only require less...

  19. automotive vehicles uso: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AUTOMOTIVE ACCESSORIES: RETHINKING DESIGN MATERIALS THROUGH CORNSTARCH, SUGARCANE AND HEMP CiteSeer Summary: Current bioproducts or bio-based products do not only require less...

  20. alternative automotive power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AUTOMOTIVE ACCESSORIES: RETHINKING DESIGN MATERIALS THROUGH CORNSTARCH, SUGARCANE AND HEMP CiteSeer Summary: Current bioproducts or bio-based products do not only require less...

  1. automotive applications processamento: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AUTOMOTIVE ACCESSORIES: RETHINKING DESIGN MATERIALS THROUGH CORNSTARCH, SUGARCANE AND HEMP CiteSeer Summary: Current bioproducts or bio-based products do not only require less...

  2. automotive condensed solution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AUTOMOTIVE ACCESSORIES: RETHINKING DESIGN MATERIALS THROUGH CORNSTARCH, SUGARCANE AND HEMP CiteSeer Summary: Current bioproducts or bio-based products do not only require less...

  3. Automotive Thermoelectric Moduleswith Scalable Thermo- andElectro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moduleswith Scalable Thermo- and Electro-Mechanical Interfaces Automotive Thermoelectric Moduleswith Scalable Thermo- and Electro-Mechanical Interfaces Interface materials based on...

  4. automotive lubricants astm: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in cartilaginous joints. J. M. Skotheim; L. Mahadevan 2004-04-04 3 COASTAL HOUSEHOLD AIR TRAVEL SPORTS & RECREATION MANUFACTURING AUTOMOTIVE PUBLIC SAFETY MEDICAL...

  5. 2006-2010 GATE program at Ohio State University Center for Automotive...

    Energy Savers [EERE]

    Ohio State University Center for Automotive Research: Modeling, control and system integration of advanced automotive propulsion systems 2006-2010 GATE program at Ohio State...

  6. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness...

    Office of Environmental Management (EM)

    Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations This Clean...

  7. Sources of UHC and CO in Low Temperature Automotive Diesel Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UHC and CO in Low Temperature Automotive Diesel Combustion Systems Sources of UHC and CO in Low Temperature Automotive Diesel Combustion Systems Presentation given at the 16th...

  8. Millimeter-wave radar sensor for automotive intelligent cruise control (ICC)

    SciTech Connect (OSTI)

    Russell, M.E.; Crain, A.; Curran, A.; Campbell, R.A.; Drubin, C.A.; Miccioli, W.F. [Raytheon, Tewksbury, MA (United States)] [Raytheon, Tewksbury, MA (United States)

    1997-12-01T23:59:59.000Z

    If automotive intelligent cruise-control (ICC) systems are to be successful in the marketplace, they must provide robust performance in a complex roadway environment. Inconveniences caused by reduced performance during inclement weather, interrupted performance due to dropped tracks, and annoying nuisance alarms will not be tolerated by the consumer, and would likely result in the rejection of this technology in the marketplace. An all-weather automotive millimeter-wave (MMW) radar sensor is described that uses a frequency-modulation coplanar-wave (FMCW) radar design capable of acquiring and tracking all obstacles in its field of view. Design tradeoffs are discussed and radar-sensor test results are presented along with the applicability of the radar to collision-warning systems.

  9. OPTIMIZATION OF AUTOMOTIVE VALVE TRAIN COMPONENTS WITH IMPLICT FILTERING \\Lambda

    E-Print Network [OSTI]

    OPTIMIZATION OF AUTOMOTIVE VALVE TRAIN COMPONENTS WITH IMPLICT FILTERING \\Lambda T. D. CHOI y , O identification and optimization in automotive valve train design. We extend our previous work by using a more refined model of the valve train and exploiting parallelism in a new way. We apply the parameter

  10. Automated Verification of Model Transformations in the Automotive Industry

    E-Print Network [OSTI]

    Cordy, James R.

    Automated Verification of Model Transformations in the Automotive Industry Gehan M. K. Selim1] transformation developed for the automotive industry [29]. More specifically, we check the correctness reported on such industrial expe- riences by discussing the effects of MDD and the issues that still need

  11. Hybrid method for aerodynamic shape optimization in automotive industry

    E-Print Network [OSTI]

    Dumas, Laurent

    Hybrid method for aerodynamic shape optimization in automotive industry Freedeerique Muyl April 2003; accepted 4 June 2003 Abstract An aerodynamic shape optimization tool for complex industrial precisely the reduction of their drag coefficient, becomes one of the main topics of the automotive research

  12. ME 374D Automotive Engineering laboratory ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    . Awareness of contemporary issues in engineering practice, including economic, social, political the ability to: A. Apply principles of engineering, basic science, and mathematics (including multivariateME 374D ­ Automotive Engineering laboratory Page 1 ABET EC2000 syllabus ME 374D ­ Automotive

  13. Directions in automotive engine research and development

    SciTech Connect (OSTI)

    Samuels, G.

    1980-01-01T23:59:59.000Z

    The advent of high fuel costs and automotive fuel economy and emission regulations has cast doubt on the economic superiority and even the technical feasibility of conventional spark ignition and diesel engines, and has opened the field to other concepts. The emission regulations and their effect on the design and efficiency of conventional engines are reviewed, the research and development effort to improve the performance of conventional engines and to develop advanced engines is discussed, and the current status of these engines is presented.

  14. Autonomie Automotive Simulation Tool | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria Power CorporationAutonomie Automotive

  15. Automotive is the domain of `self propelled, motorised vehicles'. Hence, although the car is dominant, the

    E-Print Network [OSTI]

    context, it widens even further. The automotive industry is one of the most complex ones, in terms Automotive Design "I believe, the most significant thing happening in the global car design industry of the automotive industry and automotive industry standards. Programme This minor consists out of an introduction

  16. Atmospheric Environment 41 (2007) 49084919 Particle size and composition distribution analysis of automotive

    E-Print Network [OSTI]

    Short, Daniel

    2007-01-01T23:59:59.000Z

    of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter Akihiro

  17. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Broader source: Energy.gov (indexed) [DOE]

    4 K to room temperature * High temperature transport property measurements (ORNL) * Neutron scattering for phonon DOS and phonon mode analysis (NCNR) * Computational research...

  18. automotive technology education: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    understanding of life-limiting and performance-limiting phenomena, improve relevant engineering science and design, and insure a high level Kwak, Juhyoun 14 Company Profile...

  19. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Broader source: Energy.gov (indexed) [DOE]

    with adhesion promoting heat treatment (failure is in bulk material.) * Designed tooling for fabricating ceramic headers for TE modules. * Synthesized several n-type PbTe...

  20. PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE...

    Broader source: Energy.gov (indexed) [DOE]

    - Donald Streit (ME) followed by Joel Anstrom (PA Transportation Institute, Systems) - Battery storage - Chao-Yang Wang (ME, ECEC) - Ultra-capacitors - Michael Lanagan (ES&M,...

  1. Penn State DOE Graduate Automotive Technology Education (Gate...

    Broader source: Energy.gov (indexed) [DOE]

    - Donald Streit (ME) followed by Joel Anstrom (PA Transportation Institute, Systems) - Battery storage - Chao-Yang Wang (ME, ECEC) - Ultra-capacitors - Michael Lanagan (ES&M,...

  2. automotive technology status: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the environment and legislation introduced to reduce greenhouse gas emissions and improve resource efficiency, eco product design and manufacturing strategies have to be developed...

  3. Looking From A Hilltop: Automotive Propulsion System Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Valve Lift, Active Fuel Management Spark Ignition Direct Injection Downsized SIDI Turbo Boosting Advanced Combustion 6 DOWNSIZED TURBO GASOLINE ENGINE Diesel Particulate...

  4. Looking From A Hilltop: Automotive Propulsion System Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms Loan TermsLong

  5. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartmentLast TenPrice of Gasolineand Fuel Economy

  6. PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreachDepartment ofProgram49, thePAGEPARTPEMFC

  7. Penn State DOE Graduate Automotive Technology Education (Gate) Program for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 TermoelectricaPaving the path forIn-Vehicle, High-Power Energy

  8. Market Acceptance of Advanced Automotive Technologies (MA3T) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketingSmartManufacturingMarch8,ofMarkAcceptance of

  9. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermal *abuse |DepartmentDepartment

  10. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermal *abuse

  11. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermal *abuseDepartment of

  12. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermal *abuseDepartment ofDepartment

  13. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermal *abuseDepartment

  14. Development of Thermoelectric Technology for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S HBatteries with WideNOxSi-based| Department of

  15. Development of Thermoelectric Technology for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S HBatteries with WideNOxSi-based| Department of|

  16. Low Cost PM Technology for Particle Reinforced Titanium Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLos AngelesGuillermo Garcia,Cost

  17. Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUEValidationAdvanced

  18. Thermoelectric Technology for Automotive Waste Heat Recovery | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department ofDepartment of Energy2forinHighof

  19. Thermoelectrics: The New Green Automotive Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department ofDepartmentScalable Thermo-22 DOE

  20. Thermoelectrics: The New Green Automotive Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department ofDepartmentScalable Thermo-22 DOE1

  1. Advanced Thermoelectric Materials and Generator Technology for Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartmentDepartment ofBenchmarkControlWaste Heat at GM

  2. Innovative Drivetrains in Electric Automotive Technology Education (IDEATE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIANManagement1, 2010|InnovativeEnergyin||

  3. The Least-cost Hydrogen for Southern California Zhenhong Lin*

    E-Print Network [OSTI]

    Fan, Yueyue

    of hydrogen infrastructure build-up in Southern California during 2010-2060. Given an exogenous demand, the model generates temporal and spatial decisions for building a hydrogen infrastructure, in terms of when emissions, and oil dependence [1]-[3]. Although a hydrogen refueling infrastructure does not currently exist

  4. Electromagnetic interference filter for automotive electrical systems

    DOE Patents [OSTI]

    Herron, Nicholas Hayden; Carlson, Douglas S; Tang, David; Korich, Mark D

    2013-07-02T23:59:59.000Z

    A filter for an automotive electrical system includes a substrate having first and second conductive members. First and second input terminals are mounted to the substrate. The first input terminal is electrically connected to the first conductive member, and the second input terminal is electrically connected to the second conductive member. A plurality of capacitors are mounted to the substrate. Each of the capacitors is electrically connected to at least one of the first and second conductive members. First and second power connectors are mounted to the substrate. The first power connector is electrically connected to the first conductive member, and the second power connector is electrically connected to the second conductive member. A common mode choke is coupled to the substrate and arranged such that the common mode choke extends around at least a portion of the substrate and the first and second conductive members.

  5. 16th Automotive Research Center Conference16th Automotive Research Center Conference May 10-11, 2010May 10-11, 2010

    E-Print Network [OSTI]

    Papalambros, Panos

    16th Automotive Research Center Conference16th Automotive Research Center Conference May 10-11, 2010May 10-11, 2010 Sponsored by the U.S. Army TARDEC- National Automotive Center 7:30 am Check:05 Plenary: Maj. Gen. Kurt J. Stein, Commanding General, TACOM 8:35 Keynote: ARC & Industry Mr. Paul Skalny

  6. automotive catalytic converter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 121 Analysis of Automotive Turbocharger Nonlinear Response Including Bifurcations Texas A&M University - TxSpace Summary:...

  7. automotive catalytic converters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 121 Analysis of Automotive Turbocharger Nonlinear Response Including Bifurcations Texas A&M University - TxSpace Summary:...

  8. Energy Conservation Measures at an Automotive Instructional Facility 

    E-Print Network [OSTI]

    Godsey, F. W.

    1989-01-01T23:59:59.000Z

    Energy consumption and costs to operate an automotive technical training facility at Texas State Technical Institute in Waco have been significantly reduced through implementation of several energy conservation measures. This paper reviews building...

  9. Case Study- Steam System Improvements at Dupont Automotive Marshall Laboratory 

    E-Print Network [OSTI]

    Larkin, A.

    2002-01-01T23:59:59.000Z

    Dupont's Marshall Laboratory is an automotive paint research and development facility in Philadelphia, Pennsylvania. The campus is comprised of several buildings that are served by Trigen-Philadelphia Energy Corporation's district steam loop...

  10. Enhancing the conceptual design process of automotive exterior systems

    E-Print Network [OSTI]

    Diaz Dominguez, David

    2011-01-01T23:59:59.000Z

    Product development cycles in the automotive industry are being reduced and competition is more demanding than ever before. To be successful in this environment, Original Equipment Manufacturers need a product development ...

  11. Electrical build issues in automotive product development : an analysis

    E-Print Network [OSTI]

    Chacko, John

    2008-01-01T23:59:59.000Z

    To be competitive and successful within the automotive industry the Original Equipment Manufacturers (OEMs) have to bring new products with features fast to market. The OEMs need to reduce the Product Development cycle ...

  12. Improved supplier selection and cost management for globalized automotive production

    E-Print Network [OSTI]

    Franken, Joseph P., II (Joseph Philip)

    2012-01-01T23:59:59.000Z

    For many manufacturing and automotive companies, traditional sourcing decisions rely on total landed cost models to determine the cheapest supplier. Total landed cost models calculate the cost to purchase a part plus all ...

  13. automotive control vol: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analysis; automotive control system. I. INTRODUCTION In reliability Zachmann, Gabriel First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20...

  14. Analysis of Automotive Turbocharger Nonlinear Response Including Bifurcations

    E-Print Network [OSTI]

    Vistamehr, Arian

    2010-10-12T23:59:59.000Z

    Automotive turbochargers (TCs) increase internal combustion engine power and efficiency in passenger and commercial vehicles. TC rotors are usually supported on floating ring bearings (FRBs) or semi-floating ring bearings (SFRBs), both of which...

  15. STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS...

    Broader source: Energy.gov (indexed) [DOE]

    DELPHI AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF PATENT RIGHTS TO INVENTIONS MADE UNDER SUBCONTRACT QZ001 UNDER COOPERATIVE AGREEMENT DE-NT0003894; W(A)-09-061 ; CH1525 Delphi...

  16. STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS...

    Broader source: Energy.gov (indexed) [DOE]

    UGCP-HO P.04,-07 * * STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS, LLC FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC36-...

  17. Next Generation Bipolar Plates for Automotive PEM Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    Bipolar Plates for Automotive PEM Fuel Cells (Topic 4) GrafTech International, Ltd. * Funding DOE Cost Share Recipient Cost Share TOTAL 2,325,943 581,486 2,907,429 80% 20% 100%...

  18. Expansion of Automotive Industries to Boost the Global Synthetic...

    Open Energy Info (EERE)

    to the increase in the usage of synthetic and bio-based lubricants in the rampant global automotive industry, is expected to drive the global synthetic and bio-based lubricants...

  19. Implications of two-sided advertising in the automotive industry

    E-Print Network [OSTI]

    Luke, Jeffrey O. (Jeffrey Oliver), 1967-

    2004-01-01T23:59:59.000Z

    The extreme competition in the automotive industry results in razor-thin profit margins as original equipment manufacturers (OEMs) compete for market share and profits which increase shareholder value. Product differentiation ...

  20. The dynamics of supply chains in the automotive industry

    E-Print Network [OSTI]

    Braese, Niklas

    2005-01-01T23:59:59.000Z

    This thesis looks at how supply chains in the automotive industry operate from the perspective of the manufacturers. The study includes the industry structure, the top players in the industry, factors that drive the industry, ...

  1. Automotive Waste Heat Conversion to Electric Power using Skutterudites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power using Skutterudites, TAGS, PbTe and Bi2Te3 Automotive Waste Heat Conversion to Electric Power using Skutterudites, TAGS, PbTe and Bi2Te3 Presentation given at DEER...

  2. automotive radar systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L. 10 Detection of arcs in automotive electrical systems MIT - DSpace Summary: At the present time, there is no established method for the detection of DC electric arcing. This is...

  3. Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Automotive Applications Jayanti Sinha Stephen Lasher Yong Yang Peter Kopf Fuel Cell Tech Team Review September 24, 2008 TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390...

  4. Applications of color powder paint in the automotive industry

    E-Print Network [OSTI]

    Barberich, Bevin, 1975-

    2004-01-01T23:59:59.000Z

    Both color keyed and color specific liquid primers have been used successfully in automotive paint application, reducing the use of costly topcoat materials. Generally, color keyed primer is close in color to the topcoat ...

  5. Energy Conservation Measures at an Automotive Instructional Facility

    E-Print Network [OSTI]

    Godsey, F. W.

    1989-01-01T23:59:59.000Z

    Energy consumption and costs to operate an automotive technical training facility at Texas State Technical Institute in Waco have been significantly reduced through implementation of several energy conservation measures. This paper reviews building...

  6. AUTOMOTIVE AND HIGH-TECH MEET IN SMART MOBILITY

    E-Print Network [OSTI]

    Franssen, Michael

    systems, automatic transmission push belts, etc. Seventy per cent of products are shipped to Germa- ny, which produces 700 million chips for the automotive industry every year. This eco- system is attractive

  7. Green automotive supply chain for an emerging market

    E-Print Network [OSTI]

    Fisch, Gene (Gene Joseph)

    2008-01-01T23:59:59.000Z

    Green Supply Chain Management (GSCM) within the automotive industry is largely based on combining lean manufacturing with mandated supplier adoption of ISO 14001-compliant Environmental Management Systems (EMS). This ...

  8. The investigation of exhaust powered, automotive air cycle air conditioning 

    E-Print Network [OSTI]

    Holley, James Andrew

    1978-01-01T23:59:59.000Z

    TEE INVESTIGATION OF EXHAUST POWERED, AUTOMOTIVE AIR CYCLE AIR CONDITIONING A Thesis James Andrew Holley Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... August 1978 Major SubJect: Mechanical Engineering THE INVESTIGATION OF EXHAUST POWERED, AUTOMOTIVE AIR CYCLE AIR CONDITIONING A Thesis hy James Andrew Holley Approved as to style and content by: Chairman of Committee) (Head of Departm nt) Memb e...

  9. Meeting the Embedded Design Needs of Automotive Applications

    E-Print Network [OSTI]

    Lyons, Wayne

    2011-01-01T23:59:59.000Z

    The importance of embedded systems in driving innovation in automotive applications continues to grow. Understanding the specific needs of developers targeting this market is also helping to drive innovation in RISC core design. This paper describes how a RISC instruction set architecture has evolved to better meet those needs, and the key implementation features in two very different RISC cores are used to demonstrate the challenges of designing for real-time automotive systems.

  10. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    SciTech Connect (OSTI)

    Hale, Steve

    2013-09-11T23:59:59.000Z

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  11. Paper title: A practical model-based statistical approach for generating functional test cases: application in the automotive

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    : application in the automotive industry Authors: Roy AWEDIKIAN (Corresponding Author) Affiliation 1 Affiliation 2 : Johnson Controls Automotive Electronics Electronics Division Europe Parc Saint Christophe. This approach was tested on two representative case studies from the automotive industry. The experiment

  12. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology A

  13. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology

  14. Signal Analysis of Automotive Engine Spark Ignition System using Case-Based Reasoning (CBR) and Case-based Maintenance (CBM)

    SciTech Connect (OSTI)

    Huang, H.; Vong, C. M. [Department of Computer and Information Science, FST, University of Macau (China); Wong, P. K. [Department of Electromechanical Engineering, FST, University of Macau (China)

    2010-05-21T23:59:59.000Z

    With the development of modern technology, modern vehicles adopt electronic control system for injection and ignition. In traditional way, whenever there is any malfunctioning in an automotive engine, an automotive mechanic usually performs a diagnosis in the ignition system of the engine to check any exceptional symptoms. In this paper, we present a case-based reasoning (CBR) approach to help solve human diagnosis problem. Nevertheless, one drawback of CBR system is that the case library will be expanded gradually after repeatedly running the system, which may cause inaccuracy and longer time for the CBR retrieval. To tackle this problem, case-based maintenance (CBM) framework is employed so that the case library of the CBR system will be compressed by clustering to produce a set of representative cases. As a result, the performance (in retrieval accuracy and time) of the whole CBR system can be improved.

  15. Design with Uncertain Technology Evolution

    E-Print Network [OSTI]

    Arendt, Jonathan Lee

    2012-10-19T23:59:59.000Z

    of an automotive manufacturing firm entering the electric vehicle market deciding which battery technology to include in their new line of electric cars is used to demonstrate the decision-making method. Another scenario of a wind turbine energy company deciding...

  16. EUROSPF Conference APPLICATION TECHNOLOGY OF ALUMINUM BLOW

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    6th EUROSPF Conference APPLICATION TECHNOLOGY OF ALUMINUM BLOW FORMING FOR AUTOMOTIVE CLOSURE PANEL Replacement by aluminum for the closure panels is one of the common methods for lightening car body. However. As a solution to cover the low stamping formability of aluminum, Blow forming technology of aluminum which

  17. EA-1690: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery...

    Office of Environmental Management (EM)

    0: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery Production Facilities near Detroit, MI EA-1690: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery Production...

  18. automotive tailor-welded blank: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 285 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

  19. New Mobility Solutions for a Changing Automotive Landscape: Development of a Shared Transportation Web Application

    E-Print Network [OSTI]

    Sekhon, Jasjeet S.

    New Mobility Solutions for a Changing Automotive Landscape: Development of a Shared Transportation.funginstitute.berkeley.edu #12;New Mobility Solutions for a Changing Automotive Landscape: Development of a Shared Transportation

  20. Development of Cell/Pack Level Models for Automotive Li-Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CellPack Level Models for Automotive Li-Ion Batteries with Experimental Validation Development of CellPack Level Models for Automotive Li-Ion Batteries with Experimental...

  1. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling

    E-Print Network [OSTI]

    Xu, Xianfan

    Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling (TEG) designed for automotive waste heat recovery systems. This model is capable of computing bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from

  2. High Energy Novel Cathode / Alloy Automotive Cell

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Permanent Magnet Development for Automotive Traction Motors

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Separation and recovery process R&D to enhance automotive materials recycling

    SciTech Connect (OSTI)

    Daniels, E.J.

    1994-05-01T23:59:59.000Z

    Since 1976, the sales-weighted curb-weight of cars and light trucks sold in the United States has decreased by almost 800 pounds. Vehicle weight reduction has, of course, provided for a significant increase in US fleet fuel economy, from 17 to 27 miles per gallon. However, achievement of the weight reduction and concomitant increase in fuel economy was brought about, in part, by the substitution of lighter-weight materials, such as thinner-gauge coated sheet-steels replacing heavy-gauge noncoated sheet-steels and new aluminum alloys replacing steel as well as the increased use of plastics replacing metals. Each of these new materials has created the need for new technology for materials recycling. This paper highlights some of the R&D being conducted at Argonne National Laboratory to develop technology that will enhance and minimize the cost of automotive materials recycling.

  5. EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (ARRA) to Delphi Automotive Systems, Limited Liability Corporation (LLC) (Delphi). Delphi proposes to construct a laboratory referred to as the “Delphi Kokomo, IN Corporate Technology Center” (Delphi CTC Project) and retrofit a manufacturing facility. The project would advance DOE’s Vehicle Technology Program through manufacturing and testing of electric-drive vehicle components as well as assist in the nation’s economic recovery by creating manufacturing jobs in the United States. The Delphi CTC Project would involve the construction and operation of a 10,700 square foot (ft2) utilities building containing boilers and heaters and a 70,000 ft2 engineering laboratory, as well as site improvements (roads, parking, buildings, landscaping,and lighting).

  6. Development of Educational System for Automotive Engineering based on Augmented Reality

    E-Print Network [OSTI]

    Ryu, Jee-Hwan

    Development of Educational System for Automotive Engineering based on Augmented Reality Ildar for automotive engineering education is introduced. Main objective of the system is teaching disassemble/assemble procedure of automatic transmission of a vehicle to students, who study automotive engineering. System

  7. Meeting the Embedded Design Needs of Automotive Applications Wayne Lyons, ARM

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Meeting the Embedded Design Needs of Automotive Applications Wayne Lyons, ARM Abstract The importance of embedded systems in driving innovation in automotive applications continues to grow to demonstrate the challenges of designing for real-time automotive systems. 1 Introduction The dominant trend

  8. Robotics and Computer Integrated Manufacturing 19 (2003) 7987 Vision-guided fixtureless assembly of automotive components

    E-Print Network [OSTI]

    Bone, Gary

    of automotive components Gary M. Bonea, *, David Capsonb a Department of Mechanical Engineering, Mc with sensor-guided robots. In this paper, the development of a vision-guided RFA workcell for automotive automotive body components. r 2003 Elsevier Science Ltd. All rights reserved. Keywords: Automated assembly

  9. Planning of Low-Cost 77-GHz Radar Transceivers for Automotive Applications

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Moghavvemi University ofMalaya INTRODUCTION The use of electronics in the automotive industry will reach (or the position and speed as with other components used in the automotive industry, radars will find widespreadPlanning of Low-Cost 77-GHz Radar Transceivers for Automotive Applications H. Ameri, A. Attaran & M

  10. Robotic Tracking and Marking of Surface Shape Defects on Moving Automotive Panels

    E-Print Network [OSTI]

    Payeur, Pierre

    defects for quality control in the automotive industry. In order to integrate a defects detection station. INTRODUCTION Quality control in the automotive industry is essential in order to ensure that the products meet of the automotive panels, the pose and motion estimator (PME) needs to be robust to the complexity of industrial

  11. Measuring the Intangible Aspects of the Manufacturing Strategy A Case study from the Automotive Industry

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    on principles from different paradigms. From our case in the automotive industry we see that the company should, manufacturing strategy, automotive industry 1 Introduction The network- and knowledge-based economy. This is illustrated through a case from a supplier in the automotive industry. The case is based on documents

  12. A Screening Model to Explore Planning Decisions in Automotive Manufacturing Systems under Demand Uncertainty

    E-Print Network [OSTI]

    de Weck, Olivier L.

    In White assembly systems in the automotive industry by applying the developed screening model. It shows3 A Screening Model to Explore Planning Decisions in Automotive Manufacturing Systems under Demand engineering systems, as for automotive manufacturing, often require significant capital investment

  13. Complying with Law for RE in the Automotive Domain Birgit Penzenstadler

    E-Print Network [OSTI]

    , Germany Abstract The automotive industry is concerned with develop- ing large and complex embedded systems the automotive industry performs require- ments engineering in order to comply with government lawsComplying with Law for RE in the Automotive Domain Birgit Penzenstadler penzenst

  14. Multi-source software on multicore automotive ECUs -Combining runnable sequencing with task

    E-Print Network [OSTI]

    Navet, Nicolas

    in the automotive industry. One of the main reasons being that car manufacturers want to reduce the A. Monot mechanisms. Another crucial evolution in the automotive industry is that chip manufacturers are reachingMulti-source software on multicore automotive ECUs - Combining runnable sequencing with task

  15. Alternative powertrains for automotive applications aim at improving emissions and fuel economy. Lack of

    E-Print Network [OSTI]

    Papalambros, Panos

    and corporate recognition of public con- sciousness. Nevertheless, the automotive industry widely recognizes), and proprietary software used by the U.S. automotive industry. These simulations are integrated with highAbstract Alternative powertrains for automotive applications aim at improving emissions and fuel

  16. Journal of Embedded Computing 2 (2006) 93102 93 Frame packing algorithms for automotive

    E-Print Network [OSTI]

    Navet, Nicolas

    2006-01-01T23:59:59.000Z

    design is a standard procedure in the automotive industry. The second reason to minimize the bandwidthJournal of Embedded Computing 2 (2006) 93­102 93 IOS Press Frame packing algorithms for automotive Vandoeuvre-l `es-Nancy, France Abstract. The set of frames exchanged in automotive applications must meet two

  17. Hierarchical Modelling of Automotive Sensor Front-Ends For Structural Diagnosis of Aging Faults

    E-Print Network [OSTI]

    Wieringa, Roel

    h.g.kerkhoff@utwente.nl Abstract: The semiconductor industry for automotive applications is growingHierarchical Modelling of Automotive Sensor Front-Ends For Structural Diagnosis of Aging Faults, dependability, reliability, aging models, hierarchical interfacing, analogue automotive front-ends. I

  18. Issues in Performance Certification for High-Level Automotive Control Software Bruce W. Weide1

    E-Print Network [OSTI]

    on the front lines of the automotive industry. We were struck by the fact that there seems to be one widelyIssues in Performance Certification for High-Level Automotive Control Software Bruce W. Weide1 Clemson University Clemson, SC USA murali@cs.clemson.edu 3 Center for Automotive Research Mechanical

  19. Kinetic Part-Feeding Models for Assembly Lines in Automotive Industries

    E-Print Network [OSTI]

    Noelle, Sebastian

    Kinetic Part-Feeding Models for Assembly Lines in Automotive Industries Michael Herty, Lena.ziegler@daimler.com. #12;KINETIC PART­FEEDING MODELS FOR ASSEMBLY LINES IN AUTOMOTIVE INDUSTRIES MICHAEL HERTY, LENA in automotive industries by models based on partial differential equations.The basic idea consists

  20. Comparative Application of Real-Time Verification Methods to an Automotive Architecture

    E-Print Network [OSTI]

    Ulm, Universität

    to compare these tools in an appropriate way we have applied them to an automotive industry state of the art of these systems. Beyond that, the automotive industry has economical constraints. As a re- sult, the numberComparative Application of Real-Time Verification Methods to an Automotive Architecture Steffen

  1. Towards Verified Automotive Software J. Botaschanjan, L. Kof, C. Kuhnel, M. Spichkova

    E-Print Network [OSTI]

    technique in the automotive industry. However, testing can only exemplarily demonstrate the absenceTowards Verified Automotive Software J. Botaschanjan, L. Kof, C. K¨uhnel, M. Spichkova Institut f Automotive software is one of the most challenging fields of software engineering: it must meet real time

  2. Computer Aided Design of Automotive Finishes Gary Meyer and Clement Shimizu

    E-Print Network [OSTI]

    Minnesota, University of

    of the paint. A designer from the automotive industry was invited to use the program to create three new paints measurement system used in the automotive industry.1,2 The program gives the user several different waysComputer Aided Design of Automotive Finishes Gary Meyer and Clement Shimizu Department of Computer

  3. Crossing innovation & product projects management: A comparative analysis in automotive industry

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Crossing innovation & product projects management: A comparative analysis in automotive industry in automotive industry INTRODUCTION Projectification and platform approaches have been two main transformation in the automotive industry. This sector provides an interesting empirical opportunity to study this question, since

  4. Industrial motivation for interactive shape modeling: a case study in conceptual automotive design

    E-Print Network [OSTI]

    Toronto, University of

    Industrial motivation for interactive shape modeling: a case study in conceptual automotive design illus- trated within the space of conceptual automotive design. Automo- tive design provides a unique but automotive designers almost exclusively work with sketches, clay and other traditional media. Design

  5. Comparison of Global Optimization Methods for Drag Reduction in the Automotive Industry

    E-Print Network [OSTI]

    Dumas, Laurent

    Comparison of Global Optimization Methods for Drag Reduction in the Automotive Industry Laurent reduction problems in the automotive industry. All the methods consist in improving classical genetic of a GA is reduced by a factor up to 7. 1 Introduction The topic of drag reduction in the automotive

  6. An approach for improving Fault-Tolerance in Automotive Modular Embedded Software*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , brought by new customer services (i.e. chassis control), motivate the automotive industry to search and control mechanisms provided by current standard in the automotive industry. 1. Introduction ImprovingAn approach for improving Fault-Tolerance in Automotive Modular Embedded Software* * This work has

  7. Localization of objects in automotive scenes with spatial and temporal information

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Localization of objects in automotive scenes with spatial and temporal information Capucine LEGRAND 1,2, Vincent FREMONT 2 and Fr´ed´eric LARGE 1 Abstract-- In the context of automotive driving compatible with automotive application computation times. The remainder of this paper is as follows: section

  8. Features Extraction from Point Clouds for Automated Detection of Deformations on Automotive Body Parts

    E-Print Network [OSTI]

    Payeur, Pierre

    Features Extraction from Point Clouds for Automated Detection of Deformations on Automotive Body with the problem of detecting unwanted deformations on automotive body part in mind, where feature line detection, surface map analysis, deformation detection, pattern recognition, quality control, automotive body parts

  9. HW Componentizing Kernel: A New Approach to address the Mega Complexity of Future Automotive CPS

    E-Print Network [OSTI]

    Rajkumar, Ragunathan "Raj"

    HW Componentizing Kernel: A New Approach to address the Mega Complexity of Future Automotive CPS of CPS (Cyber Physical System). However, current software development process in the automotive industry automotive software devel- opment process in the perspective of CPS and proposes a new kernel-based approach

  10. A co-simulation framework for design of time-triggered automotive cyber physical systems

    E-Print Network [OSTI]

    Koutsoukos, Xenofon D.

    A co-simulation framework for design of time-triggered automotive cyber physical systems Zhenkai Automotive control system SystemC a b s t r a c t Designing cyber-physical systems (CPS) is challenging due to the tight interactions between software, network/platform, and physical components. Automotive control sys

  11. A novel taxonomy for gestural interaction techniques: considerations for automotive environments

    E-Print Network [OSTI]

    A novel taxonomy for gestural interaction techniques: considerations for automotive environments to analyze the applicability of these techniques on automotive environment. The taxon- omy plots a gestural into automotive environment rise the necessity to analyze gestural interaction technique from their cognitive load

  12. CTMCONTROL: Addressing the MC/DC Objective for Safety-Critical Automotive Software

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CTMCONTROL: Addressing the MC/DC Objective for Safety-Critical Automotive Software Anila Mjeda.mjeda,mike.hinchey}@lero.ie Abstract. We propose a method tailored to the requirements of safety-critical embedded automotive software/DC) objective for automotive safety-critical software. CTMCONTROL is validated via a controlled experiment which

  13. AUTOMOTIVE POWERTRAIN CONTROL A SURVEY Jeffrey A. Cook, Jing Sun, Julia H. Buckland, Ilya V. Kolmanovsky,

    E-Print Network [OSTI]

    Peng, Huei

    AUTOMOTIVE POWERTRAIN CONTROL A SURVEY Jeffrey A. Cook, Jing Sun, Julia H. Buckland, Ilya V, Michigan, 48109, U.S.A. (e-mail: jingsun@umich.edu). AUTOMOTIVE POWERTRAIN CONTROL A SURVEY Jeffrey A This paper surveys recent and historical publications on automotive powertrain control. Control

  14. Pricing Innovation: State of the Art and Automotive Applications Professor Jean-Jacques CHANARON*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Pricing Innovation: State of the Art and Automotive Applications Professor Jean-Jacques CHANARON as Tongji University in Shanghai, China. He is a well-recognized expert in the automotive industry. He manufacturers. He is a member of the French Society of Automotive Engineers (SIA) and the GERPISA International

  15. Taming Uncertainties in Wireless Messaging for Automotive Cyber-Physical-Systems

    E-Print Network [OSTI]

    Rajkumar, Ragunathan "Raj"

    Taming Uncertainties in Wireless Messaging for Automotive Cyber-Physical-Systems Hongwei Zhang Wireless networking for automotive CPS Today's vehicles are much more than a mechanical device, and complex to the scalability of vehicular communication system, which is a basic element of automotive cyber-physical systems

  16. Automatic Parameter Identification in FlexRay based Automotive Communication Networks

    E-Print Network [OSTI]

    Automatic Parameter Identification in FlexRay based Automotive Communication Networks Eric-Triggered Architectures are being introduced in safety-critical automotive systems ("X-by-wire") to cope with the growing and explore its limitations. I. INTRODUCTION Nowadays most automotive innovations stem from elec- tronic

  17. Trends in Automotive Communication Systems NICOLAS NAVET, YEQIONG SONG, FRANOISE SIMONOT-LION, AND CDRIC WILWERT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Trends in Automotive Communication Systems NICOLAS NAVET, YEQIONG SONG, FRANÇOISE SIMONOT imposed on the commu- nication systems. Then, a comprehensive review of the most widely used automotive networks, as well as the emerging ones, is given. Next, the current efforts of the automotive industry

  18. Domain Controlled Architecture A New Approach for Large Scale Software Integrated Automotive Systems

    E-Print Network [OSTI]

    Kühnhauser, Winfried

    Domain Controlled Architecture A New Approach for Large Scale Software Integrated Automotive Scale Software Integration, LSSI, Automotive Real Time, Multi-core, Many-core, Embedded Automo- tive mobility domain. The automotive in- dustry is confronted with a rising system complexity and several

  19. Fine-grained Simulation in the Design of Automotive Communication Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Fine-grained Simulation in the Design of Automotive Communication Systems Aurélien Monot1 and di- mensioning automotive embedded networks are worst-case schedulability analysis and simulation architectures in the automotive domain are defined years in advance and their real- time properties need

  20. Multi-source and multicore automotive ECUs -OS protection mechanisms and scheduling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Multi-source and multicore automotive ECUs - OS protection mechanisms and scheduling Nicolas Navet,{firstname.name}@realtimeatwork.com Abstract--As the demand for computing power is quickly increasing in the automotive domain, car the respect of the safety requirements such as the ISO 26262 and the implementation of other automotive use

  1. Analysis of the Durability of PEM FC Membrane Electrode Assemblies in Automotive Applications

    E-Print Network [OSTI]

    g y Analysis of the Durability of PEM FC Membrane Electrode Assemblies in Automotive Applications materials degradation mechanisms under automotive conditions that can lead to recommendations for mitigation, to better understand the durability at low relative humidity and during automotive cycling operation

  2. A Hybrid Feedback Regulator Approach to Control an Automotive Suspension System

    E-Print Network [OSTI]

    Koutsoukos, Xenofon D.

    A Hybrid Feedback Regulator Approach to Control an Automotive Suspension System Xenofon D synthe- sis approach using an automotive suspension system. Discrete abstrac- tions are used control synthesis is presented and an example of an automotive suspension system is used to illus- trate

  3. Towards Managing Variability in the Safety Design of an Automotive Hall Effect Sensor

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Towards Managing Variability in the Safety Design of an Automotive Hall Effect Sensor Dimitri Van) as the main devel- opment process for an automotive Hall Effect sensor. This versatile component is integrated for every automotive application in which the sensor is to be used. In addition, no support is given

  4. A Software-Oriented Floating-Point Format for Enhancing Automotive Control Systems

    E-Print Network [OSTI]

    Hwu, Wen-mei W.

    A Software-Oriented Floating-Point Format for Enhancing Automotive Control Systems Daniel A, yamada, hwug@crhc.uiuc.edu August 11, 1999 In recent years, the software of automotive control sys- tems- ber computation in automotive control systems by design- ing a new software-oriented floating

  5. Date: 30 Octobre 2014........ PAGE 1 OF 2 CONFIDENTIEL CONTINENTAL Automotive S.A.

    E-Print Network [OSTI]

    Dobigeon, Nicolas

    Date: 30 Octobre 2014........ PAGE 1 OF 2 CONFIDENTIEL CONTINENTAL Automotive S.A. Proposition de 2015 Rémunération : 800 par mois (montant brut mensuel) Lieu: Continental Automotive France, 1 avenue.daurenjou@continental-corporation.com #12;Date: 30 Octobre 2014........ PAGE 2 OF 2 CONFIDENTIEL CONTINENTAL Automotive S.A. Internship

  6. Signal-based Automotive Communication Security and Its Interplay with Safety Requirements

    E-Print Network [OSTI]

    Ning, Peng

    Signal-based Automotive Communication Security and Its Interplay with Safety Requirements Benjamin--Recently, demonstrated attacks on automotive com- munication systems have made security a necessary requirement mechanisms for highly constrained automotive (internal) network environments, such as for example the CAN bus

  7. Haptic Models of an Automotive Turn-Signal Switch: Identification and Playback Results

    E-Print Network [OSTI]

    Hollerbach, John M.

    Haptic Models of an Automotive Turn-Signal Switch: Identification and Playback Results Mark B of virtual environments. This paper addresses the problem of modeling the feel of an automotive turn- signal would require accurate models of the primary automotive controls, including the steering wheel, gear

  8. Incremental Development for Automotive Software in AutoMoDe Andreas Bauer1

    E-Print Network [OSTI]

    Braun, Peter

    Incremental Development for Automotive Software in AutoMoDe Andreas Bauer1 Jan Romberg1 Bernhard Validas AG 3 ETAS GmbH 4 PMSF IT Consulting 5 Robert Bosch GmbH Abstract Automotive software development. To facilitate the design and evolution of heterogeneous automotive software, suitable views for each level

  9. Security for Downloadable Automotive Services Stephan Merk*, Kathrin Scheidemann*, Michael Rudorfer*, Thomas Stauner*,

    E-Print Network [OSTI]

    Cengarle, María Victoria

    Security for Downloadable Automotive Services Stephan Merk*, Kathrin Scheidemann*, Michael Rudorfer-based automotive software systems. The central idea is to use abstract threat trees which are instantiated such as the automotive world and in such mission critical environments security plays an extremely important role

  10. Security of embedded automotive networks: state of the art and a research proposal

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Security of embedded automotive networks: state of the art and a research proposal Ivan Studnia1 intrusion detection system for CAN-based automotive networks. 1 Introduction The embedding of electronic) is the most used protocol in automotive networks, existing in several standards according to one's needs

  11. Verification of automotive networks -what to expect (and not expect) from each

    E-Print Network [OSTI]

    Navet, Nicolas

    Verification of automotive networks - what to expect (and not expect) from each technique Nicolas NAVET ­ nicolas.navet@uni.lu "Automotive Bus systems + Ethernet" Stuttgart, Germany, December 9-11, 2013. December 09, 2013 #12;1 Outline - 212/11/2013Automotive Bus systems + Ethernet Early-stage timing

  12. Verifiable Active Safety for Automotive Cyber-Physical Systems with Humans in the Loop

    E-Print Network [OSTI]

    Rajkumar, Ragunathan "Raj"

    Verifiable Active Safety for Automotive Cyber-Physical Systems with Humans in the Loop Francesco-6925 A recent trend in the automotive industry is the rapid inclusion of electronics, computers and controls that focus entirely on improved functionality and overall system robustness. This makes the automotive sector

  13. WABCO Automotive UK Ltd is part of American Standard Companies Inc. As

    E-Print Network [OSTI]

    Berzins, M.

    WABCO Automotive UK Ltd is part of American Standard Companies Inc. As one of the world's premier automotive products companies, it supplies braking and other control systems to the commercial vehicle and de-sorb moisture. They also discovered that contamination from the vehicle WABCO AUTOMOTIVE UK LTD

  14. Application of Aspect-based Modeling and Weaving for Complexity Reduction in Development of Automotive

    E-Print Network [OSTI]

    Schmidt, Douglas C.

    of Automotive Distributed Real-time Embedded System Andrey Nechypurenko, Egon Wuchner Siemens AG, Corporate the stringent resource and costs constraints in de- veloping modern automotive embedded electronic systems collaboration model, and timing models. An emerging trend in automotive sys- tems is to apply Model

  15. Online Center of Gravity Estimation in Automotive Vehicles using Multiple Models and Switching

    E-Print Network [OSTI]

    Duffy, Ken

    Online Center of Gravity Estimation in Automotive Vehicles using Multiple Models and Switching and switching for realtime estimation of center of gravity (CG) position in automotive vehicles. The method utilizes simple linear vehicle models and assumes availability of standard stock automotive sensors. We

  16. AUSTIN: A tool for Search Based Software Testing for the C Language and its Evaluation on Deployed Automotive Systems

    E-Print Network [OSTI]

    Singer, Jeremy

    ' to real industrial code from the automotive industry (see Section V) as well as a number of open source the automotive and communications industry. Three case studies from the automotive industry, provided by Berner the automotive industry is subject to testing standards that mandate structural coverage criteria [10] and so

  17. Automotive Research Center A U.S. Army RDECOM Center of Excellence for Modeling and Simulation of Ground

    E-Print Network [OSTI]

    Papalambros, Panos

    Automotive Research Center A U.S. Army RDECOM Center of Excellence for Modeling and Simulation by the Automotive Research Center Sponsored by U.S. Army Research, Development and Engineering Command (RDECOM) U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) National Automotive Center

  18. DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System Cost – 2013

    Broader source: Energy.gov [DOE]

    This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about the cost of automotive polymer electrolyte membrane (PEM) fuel cell systems.

  19. Vehicle Technologies Office Merit Review 2015: ePATHS- electrical PCM Assisted Thermal Heating System

    Broader source: Energy.gov [DOE]

    Presentation given by Delphi Automotive at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ePATHS - electrical PCM...

  20. Conceptual study of the potential for automotive-derived and free-piston Stirling engines in 30- to 400-kilowatt stationary power applications. Final Report

    SciTech Connect (OSTI)

    Vatsky, A.; Chen, H.S.; Dineen, J.

    1982-05-01T23:59:59.000Z

    The technical feasibility of applying automotive-derived kinematic and free-piston Stirling engine concepts for stationary applications was explored. Automotive-derived engines offer cost advantages by providing a mature and developed engine technology base with downrating and parts commonality options for specific applications. Two engine sizes (30 and 400 kW), two Stirling engine configurations (kinematic and free-piston), and two output systems (crankshaft and hydraulic pump) were studied. The study includes the influences of using either hydrogen or helium as the working gas. The first kinematic configuration selects an existing Stirling engine design from an automotive application and adapts it to stationary requirements. A 50,000-hour life requirement was established by downrating the engine to 40 kW and reducing auxiliary loads. Efficiency improvements were gained by selective material and geometric variations and peak brake efficiency of 36.8 percent using helium gas was achieved. The second design was a four-cylinder, 400 kW engine, utilizing a new output drive system known as the z-crank, which provides lower friction losses and variable stroke power control. Three different material and working gas combinations were considered. Brake efficiency levels varied from 40.5 percent to 45.6 percent. A 37.5 kW single-cycle, free-piston hydraulic output design was generated by scaling one cylinder of the original automotive engine and mating it to a counterbalanced reciprocal hydraulic pump. Metallic diaphragms were utilized to transmit power.

  1. Occupant Classification System for Automotive Airbag Suppression Michael E. Farmer

    E-Print Network [OSTI]

    Occupant Classification System for Automotive Airbag Suppression Michael E. Farmer§ and Anil K@cse.msu.edu Abstract The introduction of airbags into automobiles has significantly improved the safety of the occupants. Unfortunately, airbags can also cause fatal injuries if the occupant is a child smaller (in

  2. automotive lightweighting materials: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    automotive lightweighting materials First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Materials Flow...

  3. automotive materials: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    automotive materials First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Master Thesis Defining Materials...

  4. automotive composite materials: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    automotive composite materials First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 ORNLTM-2000283 THE...

  5. automotive absorption air: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    automotive absorption air First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 The investigation of exhaust...

  6. Automotive features : mass impact and deployment characterization

    E-Print Network [OSTI]

    Zoepf, Stephen M

    2011-01-01T23:59:59.000Z

    Passenger car use is a major driver of greenhouse gas (GHG) emissions and fossil fuel consumption in the United States. Vehicles continue to incorporate increasing levels of technology, these advances do not translate ...

  7. Analysis of automotive telematics industry in Japan

    E-Print Network [OSTI]

    Shimizu, Norihito, 1971-

    2004-01-01T23:59:59.000Z

    A major element of mobile multimedia, telematics is the convergence of telecommunication and information technology which provides various services to and from the vehicle or mobile communication devices. Telematics is ...

  8. Review of alternate automotive engine fuel economy. Final report January-October 78

    SciTech Connect (OSTI)

    Cole, D.; Bolt, J.A.; Huber, P.; Taylor, T. Jr.

    1980-11-01T23:59:59.000Z

    This study assessed the potential of alternate automotive engines to meet the fuel economy goals and emission levels of the 1980-1990 period. As part of NHTSA's continuing research in support of the Department of Transportation fuel economy activities, this study reviewed those developments offering viable substitutes for the current spark ignition engine systems. Categories assessed included stratified charge, diesels, turbo charging, rotary/Wankel engines, and the developmental gas turbine and Stirling cycle engines. Results of past and on-going research through 1978 were reviewed along with the development and production status of various alternate engine technologies proposed for automobiles and light trucks through the 1980s. Assessment was then made of the potential fuel economy improvement as a percentage of 1978 baseline data.

  9. Power Modulation Investigation for High Temperature (175-200 degrees Celcius) Automotive Application

    SciTech Connect (OSTI)

    McCluskey, F. P.

    2007-04-30T23:59:59.000Z

    Hybrid electric vehicles were re-introduced in the late 1990s after a century dominated by purely internal combustion powered engines[1]. Automotive players, such as GM, Ford, DaimlerChrysler, Honda, and Toyota, together with major energy producers, such as BPAmoco, were the major force in the development of hybrid electric vehicles. Most notable was the development by Toyota of its Prius, which was launched in Japan in 1997 and worldwide in 2001. The shift to hybrids was driven by the fact that the sheer volume of vehicles on the road had begun to tax the ability of the environment to withstand the pollution of the internal combustion engine and the ability of the fossil fuel industry to produce a sufficient amount of refined gasoline. In addition, the number of vehicles was anticipated to rise exponentially with the increasing affluence of China and India. Over the last fifteen years, major advances have been made in all the technologies essential to hybrid vehicle success, including batteries, motors, power control and conditioning electronics, regenerative braking, and power sources, including fuel cells. Current hybrid electric vehicles are gasoline internal combustion--electric motor hybrids. These hybrid electric vehicles range from micro-hybrids, where a stop/start system cuts the engine while the vehicle is stopped, and mild hybrids where the stop/start system is supplemented by regenerative braking and power assist, to full hybrids where the combustion motor is optimized for electric power production, and there is full electric drive and full regenerative braking. PSA Peugeot Citroen estimates the increased energy efficiency will range from 3-6% for the micro-hybrids to 15-25% for the full hybrids.[2] Gasoline-electric hybrids are preferred in US because they permit long distance travel with low emissions and high gasoline mileage, while still using the existing refueling infrastructure. One of the most critical areas in which technology has been advancing has been the development of electronics that can operate in the high temperature environments present in hybrid vehicles. The temperatures under the hood for a gasoline-electric hybrid vehicle are comparable to those for traditional internal combustion engines. This is known to be a difficult environment with respect to commercial-grade electronics, as there are surface and ambient temperatures ranging from 125 C to 175 C. In addition, some hybrid drive electronics are placed in even harsher environments, such as on or near the brakes, where temperatures can reach 250 C. Furthermore, number of temperature cycles experienced by electronics in a hybrid vehicle is different from that experienced in a traditional vehicle. A traditional internal combustion vehicle will have the engine running for longer periods, whereas a mild or micro-hybrid engine will experience many more starts and stops.[3] This means that hybrid automotive electronics will undergo more cycles of a potential wider temperature cycle than standard automotive electronics, which in turn see temperature cycles of 2 to 3 times the magnitude of the {Delta}T = 50 C-75 C experienced by commercial-grade electronics. This study will discuss the effects of these harsh environments on the failure mechanisms and ultimate reliability of electronic systems developed for gasoline-electric hybrid vehicles. In addition, it will suggest technologies and components that can reasonably be expected to perform well in these environments. Finally, it will suggest areas where further research is needed or desirable. Areas for further research will be highlighted in bold, italic type. It should be noted that the first area where further research is desirable is in developing a clearer understanding of the actual hybrid automotive electronics environment and how to simulate it through accelerated testing, thus: Developing specific mission profiles and accelerated testing protocols for the underhood environment for hybrid cars, as has previously been done for gasoline-powered vehicles, is an important area for further st

  10. Self Healing Coatings | Polymer Coatings | Automotive Paints | Hea... http://living.oneindia.in/automobiles/auto-news/2008/polymer-coati... 1 of 2 2/6/09 10:29 AM

    E-Print Network [OSTI]

    Braun, Paul

    Self Healing Coatings | Polymer Coatings | Automotive Paints | Hea... http Ring #12;Self Healing Coatings | Polymer Coatings | Automotive Paints | Hea... http.gtglass.com Automotive Paints Guaranteed Color Match. Brush or Spray. In Stock Now. Order Today! www.Automotive

  11. Used oil generation and management in the automotive industries

    E-Print Network [OSTI]

    Jhanani S; Kurian Joseph

    Used oil has been classified as hazardous wastes by the Ministry of Environment and Forests, Government of India which demands its proper management to avoid serious threat to the environment and for economic gains. Used oil could be recovered or reprocessed and reused as base oil thus saving the use of virgin oil. This paper presents an assessment of the used oil generation and management practices by the automotive industries located in Chennai and Kancheepuram in Tamilnadu. Used oil generation and management in eight automotive industries in this area were studied by means of questionnaires, direct observations and interviews. Studies were also undertaken for specific used oil generation from the most common process – reaming and rolling. The specific used oil generation rate varies from 93-336 L/cubic metre of metal cut depending on whether the industries use online centrifuging system for re-refining. Suggestions for the improvement of the used oil management practices are included in this paper.

  12. Development of Sensors for Automotive PEM-based Fuel Cells

    E-Print Network [OSTI]

    FC Series 200 - 50 kW PEM #12;2 Development of Sensors for Automotive PEM-based Fuel Cells ­ Program Thermal Management System Cabin safety / H2 sensor Fuel Cell Stack / CO, H2 , RH, O2 , pressure sensors streams: before, in, and after reformer, before and in fuel cell stack: CO, H2, O2, H2S, NH3. ­Safety [H2

  13. Chemical Kinetic Modeling of Combustion of Automotive Fuels

    SciTech Connect (OSTI)

    Pitz, W J; Westbrook, C K; Silke, E J

    2006-11-10T23:59:59.000Z

    The objectives of this report are to: (1) Develop detailed chemical kinetic reaction models for components of fuels, including olefins and cycloalkanes used in diesel, spark-ignition and HCCI engines; (2) Develop surrogate mixtures of hydrocarbon components to represent real fuels and lead to efficient reduced combustion models; and (3) Characterize the role of fuel composition on production of emissions from practical automotive engines.

  14. Waste-audit study: Automotive repairs. Final report

    SciTech Connect (OSTI)

    Toy, W.M.

    1987-05-01T23:59:59.000Z

    This document reports on a waste audit study which investigated and analyzed the automotive-repair industry in California. It assessed current waste-management practices and developed specific on-site and off-site waste-treatment recycling alternatives. The conclusions identify and address illegal disposal practices. Recommendations include the segregation of specific wastes for proper disposal and economic analysis of on-site waste-recycling equipment.

  15. automotive small brush-type: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    entered a stagnating period. Automotive OEMs and their tier suppliers are struggling for business growth. One of the most important strategies is to improve the engineering...

  16. A screening model to explore planning decisions in automotive manufacturing systems under demand uncertainty

    E-Print Network [OSTI]

    Yang, Yingxia

    2009-01-01T23:59:59.000Z

    Large-scale, complex engineering systems, as for automotive manufacturing, often require significant capital investment and resources for systems configuration. Furthermore, these systems operate in environments that are ...

  17. Reinventing the Industrial Heartland: Supply Chain Sustainability and the New Automotive Industry

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Reinventing the Industrial Heartland: Supply Chain Sustainability and the New Automotive Industry Swindall, VP, Business & Industry Development, WI Economic Development Corporation Manuel Sattig, BMW Group

  18. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    SciTech Connect (OSTI)

    Greene, David L [ORNL; Duleep, K. G. [ICF International; Upreti, Girish [ORNL

    2011-06-01T23:59:59.000Z

    Fuel cells (FCs) are considered essential future energy technologies by developed and developing economies alike. Several countries, including the United States, Japan, Germany, and South Korea have established publicly funded R&D and market transformation programs to develop viable domestic FC industries for both automotive and non-automotive applications. Important non-automotive applications include large scale and small scale distributed combined heat and electrical power, backup and uninterruptible power, material handling and auxiliary power units. The U.S. FC industry is in the early stages of development, and is working to establish sustainable markets in all these areas. To be successful, manufacturers must reduce costs, improve performance, and overcome market barriers to new technologies. U.S. policies are assisting via research and development, tax credits and government-only and government-assisted procurements. Over the past three years, the industry has made remarkable progress, bringing both stack and system costs down by more than a factor of two while improving durability and efficiency, thanks in part to government support. Today, FCs are still not yet able to compete in these markets without continued policy support. However, continuation or enhancement of current policies, such as the investment tax credit and government procurements, together with continued progress by the industry, appears likely to establish a viable domestic industry within the next decade.

  19. Abstract--The development of power electronics in the field of transportations (automotive, aeronautics) requires the use of

    E-Print Network [OSTI]

    1 Abstract-- The development of power electronics in the field of transportations (automotive and safety of complex systems (automotive, aeronautics, space) [15], [1]. Particularly, in the case of transportations systems (automotive and aeronautics for example), the large number of loads requires the use

  20. A Case Study on the Model-Based Design and Integration of Automotive Cyber-Physical Systems

    E-Print Network [OSTI]

    Koutsoukos, Xenofon D.

    A Case Study on the Model-Based Design and Integration of Automotive Cyber-Physical Systems Di--Cyber-physical systems (CPS), such as automotive systems, are very difficult to design due to the tight interactions of an integrated automotive control system. The system is composed of two independently designed controllers