Powered by Deep Web Technologies
Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Zhenhong Lin - Research Staff - Center for Transportation Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Zhenhong Lin Zhenhong Lin Zhenhong Lin Zhenhong Lin Ph.D., Civil and Environmental Engineering (T) 865.946.1308 (F) 865.946.1541 linz@ornl.gov Specialty Research Areas: Energy and Environmental Policy Analysis Modeling, Optimization and Simulation Data, Statistical Analysis and Information Tools Vehicle Technologies and Infrastructure Current or Recent Work: Modeling Transportation Energy Transitions Demand Analysis for Plug-in Hybrid Electric Vehicles Optimization of Refueling Station Locations China Motorization Journal Articles: Lin, Zhenhong, J. Dong, C. Liu, and D. Greene (2012). "PHEV Energy Use Estimation: Validating the Gamma Distribution for Representing the Random Daily Driving Distance," Transportation Research Record, (Accepted). Lin, Zhenhong (2012). "Optimizing and Diversifying the Electric Range of

2

Vehicle Technologies Office: Graduate Automotive Technology Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) to someone by E-mail Share Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Facebook Tweet about Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Twitter Bookmark Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Google Bookmark Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Delicious Rank Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Digg Find More places to share Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on AddThis.com...

3

Graduate Automotive Technology Education (GATE) Initiative Awards |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Graduate Automotive Technology Education (GATE) Initiative Awards Graduate Automotive Technology Education (GATE) Initiative Awards Graduate Automotive Technology Education (GATE) Initiative Awards September 8, 2011 - 11:46am Addthis Graduate Automotive Technology Education (GATE) Initiative Awards DOE's Graduate Automotive Technology Education (GATE) initiative will award $6.4 million over the course of five years to support seven Centers of Excellence at American colleges, universities, and university-affiliated research institutions. The awardees will focus on three critical automotive technology areas: hybrid propulsion, energy storage, and lightweight materials. By funding curriculum development and expansion as well as laboratory work, GATE allows higher education institutions to develop multidisciplinary training. As a result, GATE promotes the development of a

4

Graduate Automotive Technology Education (GATE) Initiative Awards |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Graduate Automotive Technology Education (GATE) Initiative Awards Graduate Automotive Technology Education (GATE) Initiative Awards Graduate Automotive Technology Education (GATE) Initiative Awards September 8, 2011 - 11:46am Addthis Graduate Automotive Technology Education (GATE) Initiative Awards DOE's Graduate Automotive Technology Education (GATE) initiative will award $6.4 million over the course of five years to support seven Centers of Excellence at American colleges, universities, and university-affiliated research institutions. The awardees will focus on three critical automotive technology areas: hybrid propulsion, energy storage, and lightweight materials. By funding curriculum development and expansion as well as laboratory work, GATE allows higher education institutions to develop multidisciplinary training. As a result, GATE promotes the development of a

5

Vehicle Technologies Office: FY 2005 Progress Report for Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Progress Report 5 Progress Report for Automotive Lightweighting Materials to someone by E-mail Share Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Facebook Tweet about Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Twitter Bookmark Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Google Bookmark Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Delicious Rank Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on Digg Find More places to share Vehicle Technologies Office: FY 2005 Progress Report for Automotive Lightweighting Materials on AddThis.com...

6

Vehicle Technologies Office: FY 2003 Progress Report for Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Progress Report 3 Progress Report for Automotive Lightweighting Materials to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for Automotive Lightweighting Materials on AddThis.com...

7

Vehicle Technologies Office: FY 2006 Progress Report for Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Progress Report 6 Progress Report for Automotive Lightweighting Materials to someone by E-mail Share Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Facebook Tweet about Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Twitter Bookmark Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Google Bookmark Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Delicious Rank Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on Digg Find More places to share Vehicle Technologies Office: FY 2006 Progress Report for Automotive Lightweighting Materials on AddThis.com...

8

Vehicle Technologies Office: Fact #352: December 27, 2004 Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

2: December 27, 2: December 27, 2004 Automotive Industry Material Usage to someone by E-mail Share Vehicle Technologies Office: Fact #352: December 27, 2004 Automotive Industry Material Usage on Facebook Tweet about Vehicle Technologies Office: Fact #352: December 27, 2004 Automotive Industry Material Usage on Twitter Bookmark Vehicle Technologies Office: Fact #352: December 27, 2004 Automotive Industry Material Usage on Google Bookmark Vehicle Technologies Office: Fact #352: December 27, 2004 Automotive Industry Material Usage on Delicious Rank Vehicle Technologies Office: Fact #352: December 27, 2004 Automotive Industry Material Usage on Digg Find More places to share Vehicle Technologies Office: Fact #352: December 27, 2004 Automotive Industry Material Usage on AddThis.com...

9

Graduate Automotive Technology Education (GATE) Center  

DOE Green Energy (OSTI)

The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its sixth year of operation. During this period the Center has involved thirteen GATE Fellows and ten GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the center's focus area: hybrid drive trains and control systems. Eighteen GATE students have graduated, and three have completed their course work requirements. Nine faculty members from three departments in the College of Engineering have been involved in the GATE Center. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as internships, equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $4,000,000. Problem areas are discussed in the hope that future activities may benefit from the operation of the current program.

Jeffrey Hodgson; David Irick

2005-09-30T23:59:59.000Z

10

Final report: U.S. competitive position in automotive technologies  

DOE Green Energy (OSTI)

Patent data are presented and analyzed to assess the U.S. competitive position in eleven advanced automotive technology categories, including automotive fuel cells, hydrogen storage, advanced batteries, hybrid electric vehicles and others. Inventive activity in most of the technologies is found to be growing at a rapid pace, particularly in advanced batteries, automotive fuel cells and ultracapacitors. The U.S. is the clear leader in automotive fuel cells, on-board hydrogen storage and light weight materials. Japan leads in advanced batteries, hybrid electric vehicles, ultracapacitors, and appears to be close to overtaking the U.S. in other areas of power electronics.

Albert, Michael B.; Cheney, Margaret; Thomas, Patrick; Kroll, Peter

2002-09-30T23:59:59.000Z

11

Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University  

DOE Green Energy (OSTI)

This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

Nigle N. Clark

2006-12-31T23:59:59.000Z

12

Advanced Automotive Technologies annual report to Congress, fiscal year 1996  

DOE Green Energy (OSTI)

This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy`s Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation.

NONE

1998-03-01T23:59:59.000Z

13

Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Automotive and MHE Automotive and MHE Fuel Cell System Cost Analysis (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Google Bookmark Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Delicious Rank Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on AddThis.com...

14

DOE Provides $4.7 Million to Support Excellence in Automotive Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4.7 Million to Support Excellence in Automotive 4.7 Million to Support Excellence in Automotive Technology Education DOE Provides $4.7 Million to Support Excellence in Automotive Technology Education August 29, 2005 - 2:47pm Addthis WASHINGTON, DC - The U.S. Department of Energy today announced the selection of eight universities that will receive $4.7 million to be Graduate Automotive Technology Education (GATE) Centers of Excellence. The goal of GATE is to train a future workforce of automotive engineering professionals to overcome technology barriers preventing the development and production of cost-effective, high-efficiency vehicles for the U.S. market. "GATE Centers of Excellence are an exciting opportunity to equip a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies," said Douglas L. Faulkner, Acting

15

Direct Injection Compressed Ignition Diesel Automotive Technology Education GATE Program  

DOE Green Energy (OSTI)

The underlying goal of this project was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome technological barriers preventing the development and production of cost-effective high-efficiency vehicles for the US. market. Further, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive technologies. Eight objectives were defined to accomplish this goal: (1) Develop an interdisciplinary internal combustion engine curriculum emphasizing direct injected combustion ignited diesel engines. (2) Encourage and promote interdisciplinary interaction of the faculty. (3) Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary curriculum. (4) Promote strong interaction with industry, develop a sense of responsibility with industry and pursue a self sustaining program. (5) Establish collaborative arrangements and network universities active in internal combustion engine study. (6) Further Enhance a First Class educational facility. (7) Establish ''off-campus'' M.S. and Ph.D. engine programs of study at various industrial sites. (8) Extend and Enhance the Graduate Experience.

Carl L. Anderson

2006-09-25T23:59:59.000Z

16

Design & optimization of automotive power electronics utilizing FITMOS MOSFET technology  

E-Print Network (OSTI)

Power electronics are essential to many automotive applications, and their importance continues to grow as more vehicle functions incorporate electronic controls. MOSFETs are key elements in automotive power electronic ...

Li, Wei, Ph. D. Massachusetts Institute of Technology. Department. of Electrical Engineering and Computer Science.

2009-01-01T23:59:59.000Z

17

Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer  

Open Energy Info (EERE)

Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model Jump to: navigation, search Tool Summary Name: Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model Agency/Company /Organization: Oak Ridge National Laboratory OpenEI Keyword(s): EERE tool, Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model, MA3T Project U.S. consumer demand for plug-in hybrid electric vehicles (PHEV) in competition among various light-duty vehicle technologies for hundreds of market segments based and multiple regions. For more information, contact the ORNL Energy and Transportation Science Division at http://www.ornl.gov/sci/ees/etsd/contactus.shtml References Retrieved from

18

The impact of manufacturing offshore on technology development paths in the automotive and optoelectronics industries  

E-Print Network (OSTI)

This dissertation presents a two-case study of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks in particular at the automotive and optoelectronics industries. The ...

Fuchs, Erica R. H. (Erica Renee H.), 1977-

2006-01-01T23:59:59.000Z

19

Third annual report to Congress on the automotive technology development program  

DOE Green Energy (OSTI)

The Automotive Propulsion Research and Development Act of 1978 focused on advancing the technology of automotive propulsion systems. In formulating the Act, Congress found that: (1) existing automobiles do not meet the Nation's long-term environmental and energy goals; (2) insufficient resources are being devoted to research and development (R and D) on advanced automobile propulsion systems; (3) with sufficient R and D, alternatives to existing systems could meet long-term goals at reasonable cost; and (4) expanded R and D would complement and stimulate corresponding private sector efforts. Because of the Nation's energy problems, Congress felt that advanced automobile propulsion system technology should be developed quickly. Through the Act, Congress expressed its intent for the Department of Energy (DOE) to: (1) make R and D contracts and grants for development of advanced automobile propulsion systems within five years, or within the shortest practicable time consistent with appropriate R and D techniques; (2) evaluate and disseminate information about advanced automobile propulsion system technology; (3) preserve, enhance, and facilitate competition in R and D of existing and alternative automotive propulsion systems; and (4) supplement, but neither supplant nor duplicate, private industry R and D efforts. Summaries of the status of conventional powertrain technology, automotive technology development program, and the management plan and policy transition are given. Tables on contracts and grant procurement for advanced gas turbine engine systems, advanced Stirling engine systems, and the vehicle systems project are given. (WHK)

Not Available

1982-03-01T23:59:59.000Z

20

Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies  

DOE Green Energy (OSTI)

Beginning the fall semester of 1999, The University of Maryland, Departments of Mechanical and Electrical Engineering and the Institute for Systems Research served as a U.S. Department of Energy (USDOE) Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies. A key goal was to produce a graduate level education program that educated and prepared students to address the technical challenges of designing and developing hybrid electric vehicles, as they progressed into the workforce. A second goal was to produce research that fostered the advancement of hybrid electric vehicles, their controls, and other related automotive technologies. Participation ended at the University of Maryland after the 2004 fall semester. Four graduate courses were developed and taught during the course of this time, two of which evolved into annually-taught undergraduate courses, namely Vehicle Dynamics and Control Systems Laboratory. Five faculty members from Mechanical Engineering, Electrical Engineering, and the Institute for Systems Research participated. Four Ph.D. degrees (two directly supported and two indirectly supported) and seven Master's degrees in Mechanical Engineering resulted from the research conducted. Research topics included thermoelectric waste heat recovery, fuel cell modeling, pre- and post-transmission hybrid powertrain control and integration, hybrid transmission design, H{sub 2}-doped combustion, and vehicle dynamics. Many of the participating students accepted positions in the automotive industry or government laboratories involved in automotive technology work after graduation. This report discusses the participating faculty, the courses developed and taught, research conducted, the students directly and indirectly supported, and the publication list. Based on this collection of information, the University of Maryland firmly believes that the key goal of the program was met and that the majority of the participating students are now contributing to the advancement of automotive technology in this country.

David Holloway

2005-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Progress Report for Advanced Automotive Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Energy Energy Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 1999 FY 1999 FY 1999 FY 1999 Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies Office of Transportation Technologies Office of Transportation Technologies Office of Transportation Technologies Office of Advanced Automotive Technologies Office of Advanced Automotive Technologies Office of Advanced Automotive Technologies Office of Advanced Automotive Technologies

22

Automotive electronics business  

E-Print Network (OSTI)

In the automotive industry, due to the trend to introduce active safety systems, concerns about protecting the environment, and advances in information technology, key automotive manufacturers are eager to acquire new ...

Hase, Yoshiko, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

23

Evaluation of Power Line Carrier Technologies for Automotive Smart Charging Applications  

Science Conference Proceedings (OSTI)

In support of the Society of Automotive Engineers (SAE) Hybrid J2836J2847J2931 Committee, EPRI has undertaken evaluation of a set of power line carrier (PLC) technologies. This report documents Phase I activity, where vendor hardware evaluation kits were operated and tested in the EPRI lab. This initial activity lays the groundwork for in-depth PLC testing to occur in the near future. The primary focus of this report is to provide an overview of the vendor evaluation hardware and software and to report r...

2010-12-14T23:59:59.000Z

24

Managing the Proliferation of Digital Technology in the Automotive Industry A Systems Engineering Approach to Embedded Software  

E-Print Network (OSTI)

1 Managing the Proliferation of Digital Technology in the Automotive Industry A Systems Engineering (1993) Submitted to the System Design and Management Program in Partial Fulfillment of the Requirements. Signature of Author Dawn R. Paluszny System Design and Management Program Certified by Nancy G. Leveson

de Weck, Olivier L.

25

Fiber optic sensing technology for measuring in-cylinder pressure in automotive engines  

E-Print Network (OSTI)

A new fiber optic sensing technology for measuring in-cylinder pressure in automotive engines was investigated. The optic sensing element consists of two mirrors in an in-line single mode fiber that are separated by some distance. To withstand the harsh conditions inside an engine, the Fiber Fabry-Perot Interferometer (FFPI) element was coated with gold and copper. The metal-protected fiber sensor was embedded into a small cut in the metal casing of the spark plug. At first, the sensing element was dipped in liquid gold and cured. Then the gold-coated fiber sensor was electroplated with copper. Finally, the metal-coated fiber sensor was embedded in the spark plug. The spark-plug-embedded FFPI sensor was monitored using a signal conditioning unit. Field tests were carried out in a 3-cylinder automotive engine with a piezoelectric pressure sensor as a reference transducer up to about 3500 rpm. The fiber optic sensor data generally matched those measured by the piezoelectric reference sensor. The use of a Vertical Cavity Surface Emitting Laser (VCSEL) diode as a light source in an FFPI optic sensor system was investigated. Reflected light from the FFPI sensing element was used to measure the optical path difference. With a 1550nm VCSEL as the light source in a 12mm cavity length Fiber Fabry-Perot Interferometer, spectral characteristics were examined to determine the proper combination of dc bias current, modulation current amplitude and modulation frequency. Single VCSEL operation and regular fringe patterns were achieved. The laser tuning was -41.2 GHz/mA and was determined from measurements of the shift in the spectral peak of the VCSEL diode output as a function of dc bias current. By testing the fringe movement as the FFPI sensor was heated, the temperature tuning coefficient for the optical length was determined to be 11 x 10-6 �ºC. The results of these experiments indicate that the use of VCSEL diode as a light source for the FFPI sensor offers a viable alternative to the use of Distributed Feedback (DFB) laser diodes for monitoring at a lower bias current and modulating current amplitude.

Bae, Taehan

2006-08-01T23:59:59.000Z

26

Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

Science Conference Proceedings (OSTI)

We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem, and integration costs into the material selection criteria in order to balance various materials, module and subsystem design, and vehicle integration options. Our work on advanced TE materials development and on TEG system design, assembly, vehicle integration, and testing proceeded in parallel efforts. Results from our two preliminary prototype TEGs using only Bi-Te TE modules allowed us to solve various mechanical challenges and to finalize and fine tune aspects of the design and implementation. Our materials research effort led us to quickly abandon work on PbTe and focus on the skutterudite materials due to their superior mechanical performance and suitability at automotive exhaust gas operating temperatures. We synthesized a sufficiently large quantity of skutterudite material for module fabrication for our third and final prototype. Our TEG#3 is the first of its kind to contain state-of-the-art skutterudite-based TE modules to be installed and tested on a production vehicle. The design, which consisted of 24 skutterudite modules and 18 Bi-Te modules, attempted to optimize electrical power generation by using these two kinds of TE modules that have their peak performance temperatures matched to the actual temperature profile of the TEG during operation. The performance of TEG#3 was limited by the maximum temperature allowable for the Bi-Te TE modules located in the colder end of the TEG, resulting in the operating temperature for the skutterudite modules to be considerably below optimum. We measured the power output for (1) the complete TEG (25 Watts) and (2) an individual TE module series string (1/3 of the TEG) operated at a 60°C higher temperature (19 Watts). We estimate that under optimum operating temperature conditions, TEG#3 will generate about 235 Watts. With additional improvements in thermal and electrical interfaces, temperature homogeneity, and power conditioning, we estimate TEG#3 could deliver a power output of about 425 Watts.

Gregory Meisner

2011-08-31T23:59:59.000Z

27

DOE Provides $4.7 Million to Support Excellence in Automotive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Automotive Technology Education (GATE) Centers of Excellence. The goal of GATE is to train a future workforce of automotive engineering professionals to overcome technology...

28

AISI/DOE Technology Roadmap Program: Improved Surface Quality of Exposed Automotive Sheet Steels  

Science Conference Proceedings (OSTI)

Surface quality of sheet steels is an important economic and technical issue for applications such as critical automotive surfaces. This project was therefore initiated to develop a more quantitative methodology for measuring surface imperfections, and to assess their response to forming and painting, particularly with respect to their visibility or invisibility after painting. The objectives were met, and included evaluation of a variety of imperfections present on commercial sheet surfaces or simulated using methods developed in the laboratory. The results are expected to have significant implications with respect to the methodology for assessing surface imperfections, development of quantitative criteria for surface inspection, and understanding and improving key painting process characteristics that influence the perceived quality of sheet steel surfaces.

John G. Speer; David K. Matlock; Noel Meyers; Young-Min Choi

2002-10-10T23:59:59.000Z

29

Technology development goals for automotive fuel cell power systems. Final report  

Science Conference Proceedings (OSTI)

This report determines cost and performance requirements for Proton Exchange Membrane (PEM) fuel cell vehicles carrying pure H{sub 2} fuel, to achieve parity with internal combustion engine (ICE) vehicles. A conceptual design of a near term FCEV (fuel cell electric vehicle) is presented. Complete power system weight and cost breakdowns are presented for baseline design. Near term FCEV power system weight is 6% higher than ICE system, mid-term FCEV projected weights are 29% lower than ICE`s. There are no inherently high-cost components in FCE, and at automotive production volumes, near term FCEV cost viability is closer at hand than at first thought. PEM current vs voltage performance is presented for leading PEM manufacturers and researchers. 5 current and proposed onboard hydrogen storage techniques are critically compared: pressurized gas, cryogenic liquid, combined pressurized/cryogenic, rechargeable hydride, adsorption. Battery, capacitor, and motor/controller performance is summarized. Fuel cell power system component weight and cost densities (threshold and goal) are tabulated.

James, B.D.; Baum, G.N.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

1994-08-01T23:59:59.000Z

30

Automotive Lightweight Materials Assessment  

E-Print Network (OSTI)

and manufacturing energy by lower energy use and cost during the vehicle operation life cycle stage. It is estimated -1500 -1000 -500 0 500 1000 1500 2000 2500 LifeCycleEnergySavings(MJ/vehicle) Manufacturing Use Recycle's (DOE's) Office of FreedomCAR and Vehicle Technologies Program (FCVT), Automotive Lightweighting

31

The Market Acceptance of Advanced Automotive Technologies (MA3T) Model  

E-Print Network (OSTI)

to be learned about how consumers will evaluate novel vehicle technologies, such as plug-in hybrid electric vehicles (PHEV), extended-range electric vehicle (EREV), battery electric vehicles (BEV) and fuel cell-- passenger cars and light-duty trucks. MA3 T considers the U.S. household users of light- duty vehicles (LDV

32

An Analysis of Energy Savings Possible Through Advances in Automotive Tooling Technology  

SciTech Connect

The use of lightweight and highly formable advanced materials in automobile and truck manufacturing has the potential to save fuel. Advances in tooling technology would promote the use of these materials. This report describes an energy savings analysis performed to approximate the potential fuel savings and consequential carbon-emission reductions that would be possible because of advances in tooling in the manufacturing of, in particular, non-powertrain components of passenger cars and heavy trucks. Separate energy analyses are performed for cars and heavy trucks. Heavy trucks are considered to be Class 7 and 8 trucks (trucks rated over 26,000 lbs gross vehicle weight). A critical input to the analysis is a set of estimates of the percentage reductions in weight and drag that could be achieved by the implementation of advanced materials, as a consequence of improved tooling technology, which were obtained by surveying tooling industry experts who attended a DOE Workshop, Tooling Technology for Low-Volume Vehicle Production, held in Seattle and Detroit in October and November 2003. The analysis is also based on 2001 fuel consumption totals and on energy-audit component proportions of fuel use due to drag, rolling resistance, and braking. The consumption proportions are assumed constant over time, but an allowance is made for fleet growth. The savings for a particular component is then the product of total fuel consumption, the percentage reduction of the component, and the energy audit component proportion. Fuel savings estimates for trucks also account for weight-limited versus volume-limited operations. Energy savings are assumed to be of two types: (1) direct energy savings incurred through reduced forces that must be overcome to move the vehicle or to slow it down in braking. and (2) indirect energy savings through reductions in the required engine power, the production and transmission of which incur thermodynamic losses, internal friction, and other inefficiencies. Total savings for an energy use component are estimated by scaling up the direct savings with an approximate total-to-direct savings ratio. Market penetration for new technology vehicles is estimated from projections about scrappage. Retrofit savings are assumed negligible, but savings are also assumed to accrue with increases in the fleet size, based on economic growth forecasts. It is assumed that as vehicles in the current fleet are scrapped, they are replaced with advanced-technology vehicles. Saving estimates are based on proportions of new vehicles, rather than new-vehicle mileages. In practice, of course, scrapped vehicles are often replaced with used vehicles, and used vehicles are replaced with new vehicles. Because new vehicles are typically driven more than old, savings estimates based on count rather than mileage proportions tend to be biased down (i.e., conservative). Savings are expressed in terms of gallons of fuel saved, metric tons of CO2 emissions reductions, and percentages relative to 2001 levels of fuel and CO2. The sensitivity of the savings projections to inputs such as energy-audit proportions of fuel consumed for rolling resistance, drag, braking, etc. is assessed by considering different scenarios. Though based on many approximations, the estimates approximate the potential energy savings possible because of improvements in tooling. For heavy trucks, annual diesel savings of 2.4-6.8 percent, and cumulative savings on the order of 54-154 percent, of 2001 consumption could accrue by 2050. By 2050, annual gasoline savings of 2.8-12 percent, and cumulative savings on the order of 83-350 percent of 2001 consumption could accrue for cars.

Rick Schmoyer, RLS

2004-12-03T23:59:59.000Z

33

HYDROGEN GENERATION FROM PLASMATRON REFORMERS: A PROMISING TECHNOLOGY FOR NOX ADSORBER REGENERATION AND OTHER AUTOMOTIVE APPLICATIONS  

DOE Green Energy (OSTI)

Plasmatron reformers are being developed at MIT and ArvinMeritor [1]. In these reformers a special low power electrical discharge is used to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The partial oxidation reaction of this very fuel rich mixture is difficult to initiate. The plasmatron provides continuous enhanced volume initiation. To minimize electrode erosion and electrical power requirements, a low current, high voltage discharge with wide area electrodes is used. The reformers operate at or slightly above atmospheric pressure. Plasmatron reformers provide the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels, such as diesel and bio-oils. These advantages facilitate use of onboard hydrogen-generation technology for diesel exhaust after-treatment. Plasma-enhanced reformer technology can provide substantial conversion even without the use of a catalyst. Recent progress includes a substantial decrease in electrical power consumption (to about 200 W), increased flow rate (above 1 g/s of diesel fuel corresponding to approximately 40 kW of chemical energy), soot suppression and improvements in other operational features.. Plasmatron reformer technology has been evaluated for regeneration of NOx adsorber after-treatment systems. At ArvinMeritor tests were performed on a dual-leg NOx adsorber system using a Cummins 8.3L diesel engine both in a test cell and on a vehicle. A NOx adsorber system was tested using the plasmatron reformer as a regenerator and without the reformer i.e., with straight diesel fuel based regeneration as the baseline case. The plasmatron reformer was shown to improve NOx regeneration significantly compared to the baseline diesel case. The net result of these initial tests was a significant decrease in fuel penalty, roughly 50% at moderate adsorber temperatures. This fuel penalty improvement is accompanied by a dramatic drop in slipped hydrocarbon emissions, which decreased by 90% or more. Significant advantages are demonstrated across a wide range of engine conditions and temperatures. The study also indicated the potential to regenerate NOx adsorbers at low temperatures where diesel fuel based regeneration is not effective, such as those typical of idle conditions. Two vehicles, a bus and a light duty truck, have been equipped for plasmatron reformer NOx adsorber regeneration tests.

Bromberg, L.; Crane, S; Rabinovich, A.; Kong, Y; Cohn, D; Heywood, J; Alexeev, N.; Samokhin, A.

2003-08-24T23:59:59.000Z

34

Hybrid Electric Power Train and Control Strategies Automotive Technology Education (GATE) Program  

Science Conference Proceedings (OSTI)

Plug-in hybrid electric vehicles (PHEV) offer societal benefits through their ability to displace the use of petroleum fuels. Petroleum fuels represent a polluting and politically destabilizing energy carrier. PHEV technologies can move transportation away from petroleum fuel sources by enabling domestically generated electricity and liquids bio-fuels to serve as a carrier for transportation energy. Additionally, the All-Electric-Range (AER) offered by PHEVs can significantly reduce demand for expensive and polluting liquid fuels. The GATE funding received during the 1998 through 2004 funding cycle by the UC Davis Hybrid Electric Vehicle Center (HEVC) was used to advance and train researchers in PHEV technologies. GATE funding was used to construct a rigorous PHEV curriculum, provide financial support for HEVC researchers, and provide material support for research efforts. A rigorous curriculum was developed through the UC Davis Mechanical and Aeronautical Engineering Department to train HEVC researchers. Students' research benefited from this course work by advancing the graduate student researchers' understanding of key PHEV design considerations. GATE support assisted HEVC researchers in authoring technical articles and producing patents. By supporting HEVC researchers multiple Master's theses were written as well as journal articles and publications. The topics from these publications include Continuously Variable Transmission control strategies and PHEV cross platform controls software development. The GATE funding has been well used to advance PHEV systems. The UC Davis Hybrid Electric Vehicle Center is greatly appreciative for the opportunities GATE funding provided. The goals and objectives for the HEVC GATE funding were to nourish engineering research in PHEV technologies. The funding supplied equipment needed to allow researchers to investigate PHEV design sensitivities and to further optimize system components. Over a dozen PHEV researchers benefited from the GATE funding and produced journal articles and intellectual property as a result. The remainder of this document outlines the productivity resulting from GATE funds. The topics include the following: GATE Hybrid Vehicle Systems Related Courses; Students Supported; Publications; and Patents. A discussion regarding the HEVC accomplishments with respect to the GATE funding goals is provided in the conclusion.

Andrew Frank

2006-05-31T23:59:59.000Z

35

Technology development goals for automotive fuel cell power systems. Final report, Appendix B-2  

DOE Green Energy (OSTI)

Directed Technologies, Inc. has previously submitted a detailed technical assessment and concept design for a mid-size, five-passenger fuel cell electric vehicle (FCEV), under contract to the Argonne National Laboratory. As a supplement to that contract, DTI has reviewed the literature and conducted a preliminary evaluation of two energy carriers for the FCEV: hydrogen and methanol. This report compares the estimated fuel efficiency, cost of producing and delivering the fuel, and the resultant life cycle costs of the FCEV when fueled directly by hydrogen and when fueled by methanol with on-board reforming to produce the required hydrogen-rich gas for the fuel cell. This work will be supplemented and expanded under the Ford contract with the Department of Energy to develop the FCEV and its fuel infrastructure.

Thomas, C.E.; James, B.D.

1995-07-01T23:59:59.000Z

36

Technologies - Lawrence Livermore National Laboratory  

Technology Search. Subscribe to our technology RSS feed. Browse by Industry. Automotive & Transportation; Biotechnology, Medical, & Health ...

37

Reclamation of automotive batteries: Assessment of health impacts and recycling technology. Task 1: Assessment of recycling technology. Final report  

SciTech Connect

Approximately ten different candidate EV battery technologies were examined based on their performance and recyclability, and were ranked based on these examinations. The batteries evaluated were lead-acid (all types), nickel-cadmium, nickel-iron, nickel-metal hydride, sodium-sulfur, sodium-nickel chloride, lithium-iron disulfide, lithium-ion, lithium polymer, and zinc (zinc-air and zinc-bromine). Locations of present recycling facilities were identified. Markets for recycled products were assessed: the value of recycled materials were found too unstable to fully support recycling efforts. All these batteries exhibit the characteristic of hazardous waste in California, and are therefore subject to strict regulations (finalization of the new EPA Universal Waste Rule could change this).

Unnasch, S.; Montano, M.; Franklin, P.; Nowell, G.; Martin, C.

1995-03-01T23:59:59.000Z

38

Warm Bending Magnesium Sheet for Automotive Closure Panels  

Science Conference Proceedings (OSTI)

For automotive production, hemming equipment would be augmented with a rapid heating technology to locally heat the bend region, complete the hem and ...

39

Autonomie Automotive Simulation Tool | Open Energy Information  

Open Energy Info (EERE)

Autonomie Automotive Simulation Tool Autonomie Automotive Simulation Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Autonomie Automotive Simulation Tool Agency/Company /Organization: Argonne National Laboratory Focus Area: Economic Development, Vehicles Phase: Create a Vision Topics: Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.transportation.anl.gov/modeling_simulation/PSAT/autonomie.html OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: Autonomie[1] Rapidly evaluate new powertrain and propulsion technologies for improving fuel economy through virtual design and analysis in a math-based simulation environment. Argonne has developed a new tool, called Autonomie, to accelerate the

40

AUTOMOTIVE ALLOYS: III: Castings  

Science Conference Proceedings (OSTI)

Coal fly ash, an industrial waste by-product, is produced during combustion of ... DIE CASTING FOR AUTOMOTIVE APPLICATIONS--A Status Report: Hubert ...

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Non-thermal plasma based technologies for the after-treatment of automotive exhaust particulates and marine diesel exhaust NOx  

DOE Green Energy (OSTI)

The trend in environmental legislation is such that primary engine modifications will not be sufficient to meet all future emissions requirements and exhaust aftertreatment technologies will need to be employed. One potential solution that is well placed to meet those requirements is non-thermal plasma technology. This paper will describe our work with some of our partners in the development of a plasma based diesel particulate filter (DPF) and plasma assisted catalytic reduction (PACR) for NOx removal. This paper describes the development of non-thermal plasma technology for the aftertreatment of particulates from a passenger car engine and NOx from a marine diesel exhaust application.

McAdams, R; Beech, P; Gillespie, R; Guy, C; Jones,S; Liddell, T; Morgan, R; Shawcross, J; Weeks, D; Hughes, D; Oesterle, J; Eberspdcher,

2003-08-24T23:59:59.000Z

42

Integrity Automotive | Open Energy Information  

Open Energy Info (EERE)

Automotive Jump to: navigation, search Name Integrity Automotive Place Kentucky Product Joint venture between Kentucky businessman Randal Waldman of Integrity Manufacturing and...

43

Coda Automotive | Open Energy Information  

Open Energy Info (EERE)

Name Coda Automotive Place Santa Monica, California Zip 90403 Product California-based electric vehicle company which builds its cars in China. References Coda Automotive1...

44

Reclamation of automotive batteries: Assessment of health impacts and recycling technology. Task 2: Assessment of health impacts; Final report  

SciTech Connect

The task 2 report compares the relative health and hazard impacts of EV battery recycling technologies. Task 2 compared the relative impact of recycling EV batteries in terms of cancer, toxicity, and ecotoxicological potential, as well as leachability, flammability, and corrosivity/reactivity hazards. Impacts were evaluated for lead-acid, nickel-cadmium, nickel-metal hydride, sodium sulfur, sodium-nickel chloride, lithium-iron sulfide and disulfide, lithium-polymer, lithium-ion, and zinc-air batteries. Health/hazard impacts were evaluated for recycling methods including smelting, electrowinning, and other appropriate techniques that apply to different battery technologies.

Unnasch, S.

1999-04-01T23:59:59.000Z

45

A Consortium of the United States Council for Automotive Research Nondestructive Evaluation Steering Committee  

E-Print Network (OSTI)

Automotive Industry September 6, 2006 United States Automotive Materials Partnership, A Consortium. This material is based on work supported by the U.S. Department of Energy (DoE), National Energy Technology .....................................................................................................11 Chapter 2 The Expanding Role of NDE in the Automotive Industry.................................13

Knowles, David William

46

Racing Ahead in Automotive Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Racing Ahead in Automotive Education Racing Ahead in Automotive Education Racing Ahead in Automotive Education February 18, 2011 - 4:52pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? Helps develop the next generation of innovative auto engineers Where will the next generation of automotive innovation come from? That's a question that's driving discussion throughout the auto industry at the moment, and many hope that the answer lies in the next generation of engineers. Unfortunately, while many young engineers are eager to put their talents to work developing breakthrough transportation technologies, not many U.S. universities have multidisciplinary instructional programs that focus on cutting-edge automotive technologies.

47

Slide 1  

U.S. Energy Information Administration (EIA) Indexed Site

Managed by UT-Battelle Managed by UT-Battelle for the Department of Energy Presented to EIA Consumer Choice Models and Markets Technical Workshop Southfield, MI, on Jan 25 2013 The MA 3 T model: Market Adoption of Advanced Automotive Technologies Zhenhong Lin, David Greene Oak Ridge National Laboratory 2 Managed by UT-Battelle for the Department of Energy The MA3T model: Market Acceptance of Advanced Automotive Technologies Dr. David Greene, Dr.Zhenhong Lin Outline * Purpose of Model * Framework, Theory and Implementation * Calibration and Validation * Features and Capabilities * Selected Results * Areas for Improvement * Conclusions 3 Managed by UT-Battelle for the Department of Energy MA3T was developed to allow DOE to analyze the transition of U.S. LDV powertrain mix and relevant policies.

48

Automotive Stirling Engine Development Program: A success  

SciTech Connect

The original 5 y Automotive Stirling Engine Development Program has been stretched to a 10 y program due to reduced annual funding levels. With an estimated completion date of April 1988, the technical achievements and the prospectives of meeting the original program objectives are reviewed. Various other applications of this developed Stirling engine technology are also discussed.

Tabata, W.K.

1987-01-01T23:59:59.000Z

49

Spot Welding of Automotive Steels and Light Metals by Friction Bit ...  

Science Conference Proceedings (OSTI)

... and light metals in automotive manufacturing is difficult, because of incompatibility of these alloys during fusion. ... Recent Trends in Cold Spray Technology.

50

Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Vehicle Workshop Light Duty Vehicle Workshop On July 26, 2010, the U.S. Department of Energy (DOE) sponsored a Light Duty Vehicle Workshop in Washington, D.C. Presentations from this workshop appear below as Adobe Acrobat PDFs. Download Adobe Reader. Presentations Overview of Light-Duty Vehicle Studies (PDF 562 KB), Sam Baldwin, Chief Technology Officer, Office of Energy Efficiency and Renewable Energy (EERE), DOE Light Duty Vehicle Pathways (PDF 404 KB), Tien Nguyen, Fuel Cell Technologies Office, EERE, DOE Hydrogen Transition Study (PDF 2.6 MB), Paul N. Leiby, David Greene, Zhenhong Lin, David Bowman, and Sujit Das, Oak Ridge National Laboratory Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles (PDF 123 KB), Joan Ogden and Mike Ramage, National Research Council

51

Lightweight Steel Solutions for Automotive Industry  

Science Conference Proceedings (OSTI)

Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho [Technical Research Laboratories, POSCO, 699, Gumho-dong, Gwangyang-si, Jeonnam, 545-090 (Korea, Republic of)

2010-06-15T23:59:59.000Z

52

Green Racing's Impact on the Automotive World | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Racing's Impact on the Automotive World Green Racing's Impact on the Automotive World Green Racing's Impact on the Automotive World April 16, 2012 - 4:52pm Addthis One of the competitors from the Michelin Green X Challenge. | Photo courtesy of Green Racing. One of the competitors from the Michelin Green X Challenge. | Photo courtesy of Green Racing. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager What does this project do? Green Racing uses motorsports competition to help educate and promote alternative fuels and advanced vehicle technologies that can be transferred from the race track to the consumer market. The automotive racing world has a long history of moving the car industry forward through the development and use of new technology. Seeing racing's tremendous promise, the Energy Department, U.S. Environmental

53

Green Racing's Impact on the Automotive World | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Racing's Impact on the Automotive World Racing's Impact on the Automotive World Green Racing's Impact on the Automotive World April 16, 2012 - 4:52pm Addthis One of the competitors from the Michelin Green X Challenge. | Photo courtesy of Green Racing. One of the competitors from the Michelin Green X Challenge. | Photo courtesy of Green Racing. Patrick B. Davis Patrick B. Davis Vehicle Technologies Program Manager What does this project do? Green Racing uses motorsports competition to help educate and promote alternative fuels and advanced vehicle technologies that can be transferred from the race track to the consumer market. The automotive racing world has a long history of moving the car industry forward through the development and use of new technology. Seeing racing's tremendous promise, the Energy Department, U.S. Environmental

54

FY2003 Progress Report for Automotive Propulsion Materials Program  

NLE Websites -- All DOE Office Websites (Extended Search)

FreedomCAR and Vehicle Technologies FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2003 Progress Report for Automotive Propulsion Materials Program Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Edward Wall Program Manager December 2003 U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2003 Progress Report for Automotive Propulsion Materials Program Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Edward Wall Program Manager December 2003 CONTENTS 1. INTRODUCTION ........................................................................................................... 1

55

Automotive materials usage trends  

SciTech Connect

The materials composition of US passenger cars is traced from 1960 and projected into 1990's. Sales-weighted average vehicle-weight trends are analyzed in terms of shifts in the large/small car mix, downsizing, and downweighting. The growth in the usage of lightweight materials: -high strength steels, cast/wrought aluminum, plastics and composites - are examined in detail. Usage trends in a host of other materials such as alloy steels, zinc, lead, copper, etc. are also discussed. An approximate quantitative analysis of changes in the usage of steel by the automotive industry worldwide show that about 10% of total decline in Western-World steel consumption is accounted for by the automotive industry. An assessment is presented for automotive industry use of critical materials such as chromium in alloy steels/cast irons and the platinum group metals in exhaust-gas catalysts. 10 references, 13 figures, 9 tables.

Gjostein, N.A.

1986-01-01T23:59:59.000Z

56

Building the Next Generation of Automotive Industry Leaders | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building the Next Generation of Automotive Industry Leaders Building the Next Generation of Automotive Industry Leaders Building the Next Generation of Automotive Industry Leaders December 7, 2010 - 4:23pm Addthis Zach Heir , a recent hire in the electric vehicle field Zach Heir , a recent hire in the electric vehicle field Dennis A. Smith Director, National Clean Cities It's no secret that when it comes to advanced vehicle technologies, the Department of Energy is kicking into high gear. We're investing more than $12 billion in grants and loans for research, development and deployment of advanced technology vehicles. These investments are helping to create a clean energy workforce. If we want to continue a leadership role in the global automotive industry, it is crucial that we take the long view and invest heavily in the next generation of innovators and critical thinkers

57

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative Summary This EA evaluates the environmental impacts of a proposal to provide a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (ARRA) to Delphi Automotive Systems, Limited Liability Corporation (LLC) (Delphi). Delphi proposes to construct a laboratory referred to as the "Delphi Kokomo, IN Corporate Technology Center" (Delphi CTC Project) and retrofit a manufacturing facility. The project would advance DOE's Vehicle Technology Program through manufacturing and testing of electric-drive vehicle components as well as assist in the

58

The status of ceramic turbine component fabrication and quality assurance relevant to automotive turbine needs  

DOE Green Energy (OSTI)

This report documents a study funded by the U.S. Department of Energy (DOE) Office of Transportation Technologies (OTT) with guidance from the Ceramics Division of the United States Automotive Materials Partnership (USAMP). DOE and the automotive companies have funded extensive development of ceramic materials for automotive gas turbine components, the most recent effort being under the Partnership for a New Generation of Vehicles (PNGV) program.

Richerson, D.W.

2000-02-01T23:59:59.000Z

59

Comparative analysis of automotive powertrain choices for the near to mid-term future  

E-Print Network (OSTI)

This thesis attempts a technological assessment of automotive powertrain technologies for the near to mid term future. The powertrain types to be assessed include naturally aspirated gasoline engines, turbocharged gasoline ...

Kasseris, Emmanuel P

2006-01-01T23:59:59.000Z

60

United States Automotive Materials Partnership LLC (USAMP)  

Science Conference Proceedings (OSTI)

The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunities for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly developed materials and technologies, and have resulted in significant technical successes to date, as discussed in the individual project summary final reports. Over 70 materials-focused projects have been established by USAMP, in collaboration with participating suppliers, academic/non-profit organizations and national laboratories, and executed through its original three divisions: the Automotive Composites Consortium (ACC), the Automotive Metals Division (AMD), and Auto/Steel Partnership (A/SP). Two new divisions were formed by USAMP in 2006 to drive research emphasis on integration of structures incorporating dissimilar lightweighting materials, and on enabling technology for nondestructive evaluation of structures and joints. These new USAMP divisions are: Multi-Material Vehicle Research and Development Initiative (MMV), and the Non-Destructive Evaluation Steering Committee (NDE). In cooperation with USAMP and the FreedomCAR Materials Technical Team, a consensus process has been established to facilitate the development of projects to help move leveraged research to targeted development projects that eventually migrate to the original equipment manufacturers (OEMs) as application engineering projects. Research projects are assigned to one of three phases: concept feasibility, technical feasibility, and demonstration feasibility. Projects are guided through ongoing monitoring and USAMP offsite reviews, so as to meet the requirements of each phase before they are allowed to move on to the next phase. As progress is made on these projects, the benefits of lightweight construction and enabling technologies will be transferred to the supply base and implemented in production vehicles. The single greatest barrier to automotive use of lightweight materials is their high cost; therefore, priority is given to activities aimed at reducing costs through development of new materials, forming technologies, and manufacturing processes. The emphasis of the research projects reported in this document was largely on applied research and evaluation of mass savings opportunities thro

United States Automotive Materials Partnership

2011-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

TODAY: Secretary Chu and Senator Stabenow to Announce Advanced Automotive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TODAY: Secretary Chu and Senator Stabenow to Announce Advanced TODAY: Secretary Chu and Senator Stabenow to Announce Advanced Automotive Technology Loan for Michigan Manufacturer TODAY: Secretary Chu and Senator Stabenow to Announce Advanced Automotive Technology Loan for Michigan Manufacturer July 13, 2011 - 12:00am Addthis Washington, D.C. - Today, U.S. Energy Secretary Steven Chu will join U.S. Senators Carl Levin and Debbie Stabenow on a conference call to make an announcement regarding an advanced automotive technology loan that is expected to create jobs in Michigan, increase manufacturing, and make American automakers more competitive. WHO: Secretary of Energy Steven Chu Senator Carl Levin Senator Debbie Stabenow WHAT: Press Conference Call WHEN: Wednesday, July 13, 2011 at 11:30 AM EDT RSVP: Please contact Karissa Marcum at karissa.marcum@hq.doe.gov to receive call-in

62

Available Technologies: Improvements to High Power Impulse ...  

APPLICATIONS OF TECHNOLOGY: Semiconductors, superconductors; Flat panel displays for computers, cell phones, PDAs ; Tools and automotive parts

63

AISI/DOE Technology Roadmap Program: Characterization of Fatigue and Crash Performance of New Generation High Strength Steels for Automotive Applications  

SciTech Connect

A 2-year project (2001-2002) to generate fatigue and high strain data for a new generation of high strength steels (HSS) has been completed in December 2002. The project tested eleven steel grades, including Dual Phase (DP) steels, Transformation-Induced Plasticity (TRIP) steels, Bake Hardenable (BH) steels, and conventional High Strength Low Alloy (HSLA) steels. All of these steels are of great interest in automotive industry due to the potential benefit in weight reduction, improved fuel economy, enhanced crash energy management and total system cost savings. Fatigue behavior includes strain controlled fatigue data notch sensitivity for high strength steels. High strain rate behavior includes stress-strain data for strain rates from 0.001/s to 1000/s, which are considered the important strain rate ranges for crash event. The steels were tested in two phases, seven were tested in Phase 1 and the remaining steels were tested in Phase. In a addition to the fatigue data and high st rain rate data generated for the steels studied in the project, analyses of the testing results revealed that Advanced High Strength Steels (AHSS) exhibit significantly higher fatigue strength and crash energy absorption capability than conventional HSS. TRIP steels exhibit exceptionally better fatigue strength than steels of similar tensile strength but different microstructure, for conditions both with or without notches present

Brenda Yan; Dennis Urban

2003-04-21T23:59:59.000Z

64

GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications  

SciTech Connect

This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.

None

2011-07-31T23:59:59.000Z

65

FY2001 Progress Report for Automotive Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

AUTOMOTIVE PROPULSION AUTOMOTIVE PROPULSION MATERIALS 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory, Computer Systems Management, Inc., and Oak Ridge National Laboratory, for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Advanced Automotive Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2001 Progress Report for Propulsion Materials

66

AUTOMOTIVE ALLOYS: I: Fundamental Studies  

Science Conference Proceedings (OSTI)

In the present work, we have analyzed the tensile behavior of a series candidate .... This analysis provides information which can be used in the die and process ... of aluminum alloys and composite materials used in the automotive market.

67

Practical evaluations of real user company needs for visualization technologies  

Science Conference Proceedings (OSTI)

The use of visualization technologies by the automotive industry is primarily aimed at increasing competitive advantage. Within the VIEW of the Future project (IST-2000-26089), two automotive companies, PSA Peugeot Citroen and Volvo Technology Corporation, ...

Harshada Patel; Sarah Sharples; Séverine Letourneur; Emma Johansson; Hilko Hoffmann; Jean Lorisson; Dennis Saluäär; Oliver Stefani

2006-03-01T23:59:59.000Z

68

Ceramic Automotive Stirling Engine Program  

SciTech Connect

The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

Not Available

1986-08-01T23:59:59.000Z

69

A design strategy applied to sulfur resistant lean NOx̳ automotive catalysts  

E-Print Network (OSTI)

Catalyst poisoning due to sulfur compounds derived from fuel sulfur presents a major challenge, intractable thus far, to development of many advanced technologies for automotive catalysts such as the lean NOx, trap. Under ...

Tang, Hairong

2005-01-01T23:59:59.000Z

70

Battery Aging, Diagnosis, and Prognosis of Lead-Acid Batteries for Automotive Application.  

E-Print Network (OSTI)

??New battery technologies have been emerging into today’s market and frequenting headlines; however, the lead-acid battery overwhelmingly remains the most common automotive battery. Because of… (more)

Picciano, Nicholas I.

2009-01-01T23:59:59.000Z

71

Predictive algorithm to determine the suitable time to change automotive engine oil  

Science Conference Proceedings (OSTI)

Recently, emerging technologies related to various sensors, product identification, and wireless communication give us new opportunities for improving the efficiency of automotive maintenance operations, in particular, implementing predictive maintenance. ... Keywords: Degradation, Engine oil, Mission profile data, Predictive maintenance, Statistical methods

Hong-Bae Jun; Dimitris Kiritsis; Mario Gambera; Paul Xirouchakis

2006-12-01T23:59:59.000Z

72

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities  

Fuel Cell Technologies Publication and Product Library (EERE)

Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several

73

Gas Mileage of 2013 Vehicles by CODA Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

3 CODA Automotive Vehicles EPA MPG MODEL City Comb Hwy 2013 CODA Automotive CODA Automatic (A1), Electricity Compare 2013...

74

Gas Mileage of 2012 Vehicles by CODA Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

2 CODA Automotive Vehicles EPA MPG MODEL City Comb Hwy 2012 CODA Automotive CODA Automatic (A1), Electricity Compare 2012...

75

Superplastic forming of stainless steel automotive components  

DOE Green Energy (OSTI)

Exhaust emission standards are governmentally controlled standards, which are increasingly stringent, forcing alternate strategies to meet these standards. One approach to improve the efficiency of the exhaust emission equipment is to decrease the time required to get the catalytic converter to optimum operating temperature. To accomplish this, automotive manufacturers are using double wall stainless steel exhaust manifolds to reduce heat loss of the exhaust gases to the converter. The current method to manufacture double wall stainless steel exhaust components is to use a low-cost alloy with good forming properties and extensively form, cut, assemble, and weld the pieces. Superplastic forming (SPF) technology along with alloy improvements has potential at making this process more cost effective. Lockheed Martin Energy Systems (LMES), Lawrence Livermore National Laboratory (LLNL) and USCAR Low Emission Partnership (LEP) worked under a Cooperative Research And Development Agreement (CRADA) to evaluate material properties, SPF behavior, and welding behavior of duplex stainless steel alloy for automotive component manufacturing. Battelle Pacific Northwest National Laboratory (PNNL) has a separate CRADA with the LEP to use SPF technology to manufacture a double wall stainless steel exhaust component. As a team these CRADAs developed and demonstrated a technical plan to accomplish making double wall stainless steel exhaust manifolds.

Bridges, B. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Elmer, J. [Lawrence Livermore National Lab., CA (United States); Carol, L. [AC Delco Systems World Headquarters, Flint, MI (United States). USCAR Low Emissions Technology Research and Development Partnership

1997-02-06T23:59:59.000Z

76

Potential automotive uses of wrought magnesium alloys  

DOE Green Energy (OSTI)

Vehicle weight reduction is one of the major means available to improve automotive fuel efficiency. High-strength steels, aluminum (Al), and polymers are already being used to reduce weight significantly, but substantial additional reductions could be achieved by greater use of low-density magnesium (Mg) and its alloys. Mg alloys are currently used in relatively small quantities for auto parts, generally limited to die castings (e.g., housings). Argonne National Laboratory`s Center for Transportation Research has performed a study for the Lightweight Materials Program within DOE`s Office of Transportation Materials to evaluate the suitability of wrought Mg and its alloys to replace steel/aluminum for automotive structural and sheet applications. Mg sheet could be used in body nonstructural and semi-structural applications, while extrusions could be used in such structural applications as spaceframes. This study identifies high cost as the major barrier to greatly increased Mg use in autos. Two technical R and D areas, novel reduction technology and better hot-forming technology, could enable major cost reductions.

Gaines, L.; Cuenca, R.; Wu, S. [Argonne National Lab., IL (United States); Stodolsky, F. [Argonne National Lab., IL (United States)]|[Argonne National Lab., Washington, DC (United States)

1996-06-01T23:59:59.000Z

77

Integrated automotive exhaust engineering : uncertainty management  

E-Print Network (OSTI)

The global automotive industry has entered a stagnating period. Automotive OEMs and their tier suppliers are struggling for business growth. One of the most important strategies is to improve the engineering efficiency in ...

Fang, Xitian, 1963-

2006-01-01T23:59:59.000Z

78

G. Uniform Engine Fuels and Automotive Lubricants ...  

Science Conference Proceedings (OSTI)

... dherence to automotive manufacturers' recommended requirements ... in Flexible Fuel Vehicles (FFV) Only ... states, “Consult Vehicle Manufacturer Fuel ...

2013-10-25T23:59:59.000Z

79

GATE Center for Automotive Fuel Cell Systems at Virginia Tech  

SciTech Connect

The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: â?¢ Expanded and updated fuel cell and vehicle technologies education programs; â?¢ Conducted industry directed research in three thrust areas â?? development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; â?¢ Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; â?¢ Published research results that provide industry with new knowledge which contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Techâ??s comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.

Nelson, Douglas

2011-05-31T23:59:59.000Z

80

Crashworthiness simulation of composite automotive structures  

DOE Green Energy (OSTI)

In 1990 the Automotive Composites Consortium (ACC) began the investigation of crash worthiness simulation methods for composite materials. A contract was given to Livermore Software Technology Corporation (LSTC) to implement a new damage model in LS-DYNA3DTM specifically for composite structures. This model is in LS-DYNA3DTM and is in use by the ACC partners. In 1994 USCAR, a partnership of American auto companies, entered into a partnership called SCAAP (Super Computing Automotive Applications Partnership) for the express purpose of working with the National Labs on computational oriented research. A CRADA (Cooperative Research and Development Agreement) was signed with Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratory, Argonne National Laboratory, and Los Alamos National Laboratory to work in three distinctly different technical areas, one of which was composites material modeling for crash worthiness. Each Laboratory was assigned a specific modeling task. The ACC was responsible for the technical direction of the composites project and provided all test data for code verification. All new models were to be implemented in DYNA3D and periodically distributed to all partners for testing. Several new models have been developed and implemented. Excellent agreement has been shown between tube crush simulation and experiments.

Botkin, M E; Johnson, N L; Simunovic, S; Zywicz, E

1998-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Status of Automotive Fuel Cell Development: Applicability to Stationary Fuel Cell Generators  

Science Conference Proceedings (OSTI)

Developers of polymer electrolyte membrane fuel cell (PEMFC) technology -- targeting the automotive as well as the stationary markets -- are making significant strides in performance improvements and cost reductions. In concept, PEMFC systems could either replace internal combustion engine drivetrains or power auxiliary loads that would otherwise be powered by propulsion power plants. This report describes how automotive PEMFC development and stationary power PEMFC development will complement each other.

2002-03-05T23:59:59.000Z

82

Automotive Component Product Development Enhancement  

E-Print Network (OSTI)

Optimization In an Integrated Concurrent Engineering Framework by Massimo Usan M. S. Aeronautical Engineering of the Requirements for the Degree of Master of Science in Engineering and Management at the Massachusetts Institute Engineering Systems Division #12;Automotive Component Product Development Enhancement Through Multi

83

Automotive Powertrain Control - A Survey  

E-Print Network (OSTI)

This paper surveys recent and historical publications on automotive powertrain control. Controloriented models of gasoline and diesel engines and their aftertreatment systems are reviewed, and challenging control problems for conventional engines, hybrid vehicles and fuel cell powertrains are discussed. Fundamentals are revisited and advancements are highlighted. A comprehensive list of references is provided. 1

Jeffrey A. Cook; Jing Sun; Julia H. Buckl; Ilya V. Kolmanovsky; Huei Peng; Jessy W. Grizzle

2006-01-01T23:59:59.000Z

84

The Progressive Insurance Automotive X PRIZE Education Program  

DOE Green Energy (OSTI)

The Progressive Insurance Automotive X PRIZE Education Program conducted education and outreach activities and used the competition's technical goals and vehicle demonstrations as a means of attracting students and the public to learn more about advanced vehicle technologies, energy efficiency, climate change, alternative fuels, and the science and math behind efficient vehicle development. The Progressive Insurance Automotive X PRIZE Education Program comprised three integrated components that were designed to educate the general public and create a multi-tiered initiative to engage students and showcase the 21st century skills students will need to compete in our global economy: teamwork, creativity, strong literacy, math and science skills, and innovative thinking. The elements included an Online Experience, a National Student Contest, and in person education events and activites. The project leveraged online connections, strategic partnerships, in-classroom, and beyond-the-classroom initiatives, as well as mainstream media. This education program supported by the U.S. Department of Energy (DOE) also funded the specification of vehicle telemetry and the full development and operation of an interactive online experience that allowed internet users to follow the Progressive Insurance Automotive X PRIZE vehicles as they performed in real-time during the Progressive Insurance Automotive X PRIZE competition events.

Robyn Ready

2011-12-31T23:59:59.000Z

85

Automotive Stirling Engine Development Program Mod I Stirling engine development  

SciTech Connect

The Automotive Stirling Engine (ASE) Development Program was established to enable research and development of alternate propulsion systems. The program was awarded to Mechanical Technology Incorporated (MTI) for the purpose of developing an automotive Stirling engine, and transferring Stirling-engine technology to the United States. MTI has fabricated and tested four Mod I engines that have accumulated over 1900 test hours to date. The engines evaluated in the test cell have achieved an average of 34.5% efficiency at their maximum efficiency point (2000 rpm), and have developed an average maximum output power (power available to the drive train) level of 54.4 kW (73.2 bhp). All engines are still operating, and are being used to develop components and control strategy for the Upgraded Mod I engine design (predicted to increase maximum power output and efficiency while reducing total engine system weight).

Simetkosky, M.A.

1983-08-01T23:59:59.000Z

86

Present and Future Automotive Composite Materials Research Efforts at DOE  

DOE Green Energy (OSTI)

Automobiles of the future will be forced to travel fi.uther on a tank of fuel while discharging lower levels of pollutants. Currently, the United States uses in excess of 16.4 million barrels of petroleum per day. Sixty-six percent of that petroleum is used in the transportation of people and goods. Automobiles currently account for just under two-thirds of the nation's gasoline consumptio~ and about one-third of the total United States energy usage. [1] By improving transportation related fiel efficiency, the United States can lessen the impact that emissions have on our environment and provide a cleaner environment for fiture generations. In 1992, The Department of Energy's (DOE) Office of Transportation Materials completed a comprehensive program plan entitled, The Lightweight MateriaIs (LWko Multi-Year Program Plan, for the development of technologies aimed at reducing vehicle mass [2]. This plan was followed in 1997 by the more comprehensive Office of Advanced Automotive Technologies research and development plan titled, Energy Eficient Vehicles for a Cleaner Environment [3] which outlines the department's plans for developing more efficient vehicles during the next ~een years. Both plans identi~ potential applications, technology needs, and R&D priorities. The goal of the Lightweight Materials Program is to develop materials and primary processing methods for the fabrication of lighter weight components which can be incorporated into automotive systems. These technologies are intended to reduce vehicle weight, increase fuel efficiency and decrease emissions. The Lightweight Materials program is jointly managed by the Department of Energy(DOE) and the United States Automotive Materials Partnership (USAMP). Composite materiak program work is coordinated by cooperative research efforts between the DOE and the Automotive Composites Consortium (ACC).

Warren, C.D.

1999-07-03T23:59:59.000Z

87

Market Acceptance of Advanced Automotive Technologies Model ...  

Open Energy Info (EERE)

of market segments based and multiple regions. For more information, contact the ORNL Energy and Transportation Science Division at http:www.ornl.govscieesetsd...

88

PNNL: Available Technologies: Automotive & Transportation Industry  

Smart Grid Devices. Grid Friendly™ Charger Controller; SOFC. Gas-Tight Sealing Method; Glass Fiber Mesh Method of Joining; Glass-Ceramic Seal for ...

89

Recycling Automotive Scrap  

NLE Websites -- All DOE Office Websites (Extended Search)

Today's automobiles contain more plastic and less metal than ever. The metal from junked vehicles is easily recovered for Today's automobiles contain more plastic and less metal than ever. The metal from junked vehicles is easily recovered for reuse, but the remaining materials, called shredder residue, is creating new challenges for the vehicle recycling industry. Argonne National Laboratory is meeting these challenges head-on with innovative, award-winning solutions. With its on-site recycling pilot plant, Argonne is able to test actual materials, benchmark technologies, and demonstrate working

90

Korean Automotive Research Instituiton | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Korean Automotive Research Instituiton Place Korea Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

91

G. Uniform Engine Fuels, Petroleum Products, and Automotive ...  

Science Conference Proceedings (OSTI)

... 1.33. Liquefied Natural Gas (LNG). ... LNG automotive fuel shall be labeled with its automotive fuel rating in accordance with 16 CFR Part 306. ...

2011-08-30T23:59:59.000Z

92

DOE Hydrogen Analysis Repository: Automotive System Cost Model...  

NLE Websites -- All DOE Office Websites (Extended Search)

Automotive System Cost Model (ASCM) Project Summary Full Title: Automotive System Cost Model (ASCM) Project ID: 118 Principal Investigator: Sujit Das Purpose Estimate current and...

93

US Council for Automotive Research USCAR | Open Energy Information  

Open Energy Info (EERE)

US Council for Automotive Research USCAR Jump to: navigation, search Name US Council for Automotive Research (USCAR) Place Southfield, Michigan Zip 48075 - Product Umbrella...

94

EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative EA-1851: Delphi Automotive Systems Electric...

95

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DELPHI AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF DELPHI AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF PATENT RIGHTS TO INVENTIONS MADE UNDER SUBCONTRACT QZ001 UNDER COOPERATIVE AGREEMENT DE-NT0003894; W(A)-09-061 ; CH1525 Delphi Automotive Systems LLC (Delphi), requests an advance waiver of domestic and foreign patent rights for all subject inventions made under the above subcontract. Delphi is a subcontractor to United Technologies under the referenced cooperative agreement. The purpose of the cooperative agreement is the development of solid oxide fuel (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas, (syngas). According to its response to question 2 of the petition, Delphi states that development of this technology will significantly advance the nation's

96

A global modular framework for automotive diagnosis  

Science Conference Proceedings (OSTI)

The automotive after-sales dealers lack solutions for accurate, comprehensive and efficient fault localization. However, such services in the after-sales networks are crucial to the brand value of automotive manufacturers and for client satisfaction. ... Keywords: Causal dependency graph, Diagnosis, Diagnostic algorithm, Heuristic diagnosis, Knowledge management, Model-based diagnosis

A. Azarian; A. Siadat

2012-01-01T23:59:59.000Z

97

Architecting automotive product lines: industrial practice  

Science Conference Proceedings (OSTI)

This paper presents an in-depth view of how architects work with maintaining product line architectures in the automotive industry. The study has been performed at two internationally well-known companies, one car manufacture and one commercial vehicle ... Keywords: architecting, automotive industry, case study, process

Håkan Gustavsson; Ulrik Eklund

2010-09-01T23:59:59.000Z

98

Aluminum R&D for Automotive Uses And the Department of Energy's Role  

NLE Websites -- All DOE Office Websites (Extended Search)

157 157 ENERGY DIVISION Aluminum R&D for Automotive Uses And the Department of Energy's Role S.W. Hadley S. Das J.W. Miller March 2000 Prepared for the Office of Advanced Automotive Technologies Office of Transportation Technologies U.S. Department of Energy Washington, D.C. Prepared by the Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6205 managed by LOCKHEED MARTIN ENERGY RESEARCH CORPORATION for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR22464 ii iii TABLE OF CONTENTS List of Tables................................................................................................................................... v List of Figures .................................................................................................................................

99

Maintenance-free automotive battery  

SciTech Connect

Two types of maintenance-free automotive batteries were developed by Japan Storage Battery Co. to obtain a maintenance-free battery for practical use and to prevent deterioration of the battery during long storage and/or shipment. Design considerations included a special grid alloy, the separator, plate surface area, vent structure, and electrolyte. Charge characteristics, overcharge characteristics, life characteristics under various conditions, and self-discharge characteristics are presented. The characteristics of the maintenance-free battery with a Pb-Ca alloy grid are superior to those of a conventional battery. 10 figures, 1 table. (RWR)

Kano, S.; Ando, K.

1978-01-01T23:59:59.000Z

100

Downsizing assessment of automotive Stirling engines  

SciTech Connect

A 67 kW (90 hp) Stirling engine design, sized for use in a 1984 1440 kg (3170 lb) automobile has been serving as the focal point for developing automotive Stirling engine technology under a current DOE/NASA R and D program. Since recent trends are towards lighter vehicles, an assessment was made of the appicability of the Stirling technology being developed for smaller, lower power engines. Using both the Philips scaling laws and a Lewis Research Center (Lewis) Stirling engine performance code, dimensional and performance characteristics were determined for a 26 kW (35 hp) and a 37 kW (50 hp) engine for use in a nominal 907 kg (2000 lb) vehicle. Key engine elements were sized and stressed and mechanical layouts were made to ensure mechanical fit and integrity of the engines. Fuel economy estimates indicated that the Stirling engine would maintain a 30 to 45 percent fuel economy advantage over comparable spark ignition and diesel powered vehicles in the 1984 time period. In order to maintain the performance advantage, particular attention must be paid to the Stirling engine mechanical losses and, although evaluated in this report, the cold start penalties.

Knoll, R.H.; Tew, R.C. Jr.; Klann, J.L.

1983-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Analysis of the potential for new automotive uses of magnesium  

DOE Green Energy (OSTI)

This paper describes the scope of a new project, just initiated, for the Lightweight Materials Program within the Office of Transportation Materials. The Center for Transportation Research and the Energy Technology Division at Argonne National Laboratory will assess the feasibility and technical potential of using magnesium and its alloys in place of steel or aluminum for automotive structural and sheet applications in order to enable more energy-efficient, lightweight passenger vehicles. The analysis will provide an information base to help guide magnesium research and development in the most promising directions.

Stodolsky, F.; Gaines, L.; Cuenca, R.; Wu, S.

1994-12-31T23:59:59.000Z

102

Oscar Automotive Ltd | Open Energy Information  

Open Energy Info (EERE)

Oscar Automotive Ltd Oscar Automotive Ltd Jump to: navigation, search Name Oscar Automotive Ltd Place London, Greater London, United Kingdom Sector Hydro, Hydrogen Product OSCar Automotive is working towards the commercialisation of hydrogen fuel cells in the transport sector. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

Strategic frameworks in automotive systems architecting  

E-Print Network (OSTI)

More often than not, large-scale engineering concepts such as those used by creative automotive manufacturing companies require the incorporation of significant capital outlays and resources for the purposes of implementation ...

Tampi, Mahesh

2012-01-01T23:59:59.000Z

104

Software Engineering for Automotive Systems: A Roadmap  

Science Conference Proceedings (OSTI)

The first pieces of software were introduced into cars in 1976. By 2010, premium class vehicles are expected to contain one gigabyte of on-board software. We present research challenges in the domain of automotive software engineering.

Alexander Pretschner; Manfred Broy; Ingolf H. Kruger; Thomas Stauner

2007-05-01T23:59:59.000Z

105

Detection of arcs in automotive electrical systems  

E-Print Network (OSTI)

At the present time, there is no established method for the detection of DC electric arcing. This is a concern for forthcoming advanced automotive electrical systems which consist of higher DC electric power bus voltages, ...

Mishrikey, Matthew David

2005-01-01T23:59:59.000Z

106

Hybrid and Hydrogen Vehicle Research Laboratory 21st Century Automotive Challenge April 17-19, 2009  

E-Print Network (OSTI)

electric and hybrid cars in the American consumer marketplace." Competition participants included teams vehicle technology you need to match your lifestyle ­ electric, solar electric, hybrid, pluggable hybrid the electric utility grid. Sound impossible, or eons in the future? As part of the 21st Century Automotive

Lee, Dongwon

107

Future Automotive Aftertreatment Solutions: The 150°C Challenge Workshop Report  

SciTech Connect

With future fuel economy standards enacted, the U.S. automotive manufacturers (OEMs) are committed to pursuing a variety of high risk/highly efficient stoichiometric and lean combustion strategies to achieve superior performance. In recognition of this need, the U.S. Department of Energy (DOE) has partnered with domestic automotive manufacturers through U.S. DRIVE to develop these advanced technologies. However, before these advancements can be introduced into the U.S. market, they must also be able to meet increasingly stringent emissions requirements. A significant roadblock to this implementation is the inability of current catalyst and aftertreatment technologies to provide the required activity at the much lower exhaust temperatures that will accompany highly efficient combustion processes and powertrain strategies. Therefore, the goal of this workshop and report is to create a U.S. DRIVE emission control roadmap that will identify new materials and aftertreatment approaches that offer the potential for 90% conversion of emissions at low temperature (150°C) and are consistent with highly efficient combustion technologies currently under investigation within U.S. DRIVE Advanced Combustion and Emission Control (ACEC) programs.

Zammit, Michael; DiMaggio, Craig L.; Kim, Chang H.; Lambert, Christine; Muntean, George G.; Peden, Charles HF; Parks, James E.; Howden, Ken

2013-10-15T23:59:59.000Z

108

LOW-COST COMPOSITES IN VEHICLE MANUFACTURE - Natural-fiber-reinforced polymer composites in automotive applications.  

SciTech Connect

In the last decade, natural fiber composites have experienced rapid growth in the European automotive market, and this trend appears to be global in scale, provided the cost and performance is justified against competing technologies. However, mass reduction, recyclability, and performance requirements can be met today by competing systems such as injection-molded unreinforced thermoplastics; natural fiber composites will continue to expand their role in automotive applications only if such technical challenges as moisture stability, fiber-polymer interface compatibility, and consistent, repeatable fiber sources are available to supply automotive manufacturers. Efforts underway by Tier I and II automotive suppliers to explore hybrid glass-natural fiber systems, as well as applications that exploit such capabilities as natural fiber sound dampening characteristics, could very well have far-reaching effects. In addition, the current development underway of bio-based resins such as Polyhydroxyalkanoate (PHA) biodegradable polyesters and bio-based polyols could provide fully bio-based composite options to future automotive designers. In short, the development of the natural fiber composite market would make a positive impact on farmers and small business owners on a global scale, reduce US reliance on foreign oil, improve environmental quality through the development of a sustainable resource supply chain, and achieve a better CO2 balance over the vehicle?s lifetime with near-zero net greenhouse gas emissions.

Holbery, Jim; Houston, Dan

2006-11-01T23:59:59.000Z

109

System modeling, analysis, and optimization methodology for diesel exhaust after-treatment technologies; Diesel exhaust after-treatment technologies.  

E-Print Network (OSTI)

??Developing new aftertreatment technologies to meet emission regulations for diesel engines is a growing problem for many automotive companies and suppliers. Balancing manufacturing cost, meeting… (more)

Graff, Christopher Dominic

2006-01-01T23:59:59.000Z

110

Motor generator electric automotive vehicle  

SciTech Connect

A motor generator electric automotive vehicle is described comprising in combination, a traction drive motor coupled by a first drive shaft to a differential of an axle of the vehicle, a main battery bank electrically connected by wires to a small electric motor driving a large D.C. generator having a second drive shaft therebetween, an on-off switch in series with one of the wires to the small motor, a speed control unit attached to an accelerator pedal of the vehicle being coupled with a double pole-double throw reverse switch to the traction drive motor, a charger regulator electrically connected to the generator, a bank of solar cells coupled to the charge regulator, an electric extension cord from the charge regulator having a plug on its end for selective connection to an exterior electric power source, a plurality of pulleys on the second drive shaft, a belt unit driven by the pulley, one the belt unit being connected to a present alternator of the vehicle which is coupled to a present battery and present regulator of the vehicle, and other of the units being connected to power brakes and equipment including power steering and an air conditioner.

Weldin, W.

1986-07-29T23:59:59.000Z

111

Life cycle cost modeling of automotive paint systems  

E-Print Network (OSTI)

Vehicle coating is an important component of automotive manufacturing. The paint shop constitutes the plurality of initial investment in an automotive assembly plant, consumes the majority of energy used in the plant's ...

Leitz, Christopher W. (Christopher William), 1976-

2007-01-01T23:59:59.000Z

112

Electrohydraulic Forming of Near-Net Shape Automotive Panels  

SciTech Connect

The objective of this project was to develop the electrohydraulic forming (EHF) process as a near-net shape automotive panel manufacturing technology that simultaneously reduces the energy embedded in vehicles and the energy consumed while producing automotive structures. Pulsed pressure is created via a shockwave generated by the discharge of high voltage capacitors through a pair of electrodes in a liquid-filled chamber. The shockwave in the liquid initiated by the expansion of the plasma channel formed between two electrodes propagates towards the blank and causes the blank to be deformed into a one-sided die cavity. The numerical model of the EHF process was validated experimentally and was successfully applied to the design of the electrode system and to a multi-electrode EHF chamber for full scale validation of the process. The numerical model was able to predict stresses in the dies during pulsed forming and was validated by the experimental study of the die insert failure mode for corner filling operations. The electrohydraulic forming process and its major subsystems, including durable electrodes, an EHF chamber, a water/air management system, a pulse generator and integrated process controls, were validated to be capable to operate in a fully automated, computer controlled mode for forming of a portion of a full-scale sheet metal component in laboratory conditions. Additionally, the novel processes of electrohydraulic trimming and electrohydraulic calibration were demonstrated at a reduced-scale component level. Furthermore, a hybrid process combining conventional stamping with EHF was demonstrated as a laboratory process for a full-scale automotive panel formed out of AHSS material. The economic feasibility of the developed EHF processes was defined by developing a cost model of the EHF process in comparison to the conventional stamping process.

Golovaschenko, Sergey F.

2013-09-26T23:59:59.000Z

113

Aluminum Tailor-welded Blanks for High Volume Automotive ...  

Science Conference Proceedings (OSTI)

High Strength Aluminum Brazing Sheets for Condenser Fins of Automotive Heat Exchangers · High Temperature Creep Characterization of A380 Cast ...

114

greenhouse gas balance of magnesium parts for automotive ...  

Science Conference Proceedings (OSTI)

Jul 20, 2012 ... GREENHOUSE GAS BALANCE OF MAGNESIUM PARTS FOR AUTOMOTIVE APPLICATIONS by Simone Ehrenberger, Horst E. Friedrich ...

115

Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber Automotive Composite  

Science Conference Proceedings (OSTI)

This report provides recommended durability-based design properties and criteria for a quasi-isotropic carbon-fiber composite for possible automotive structural applications. The composite, which was made by a rapid molding process suitable for high-volume automotive applications, consisted of continuous Thornel T300 fibers (6K tow) in a Baydur 420 IMR urethane matrix. The reinforcement was in the form of four {+-}45{sup o} stitch-bonded mats in the following layup: [0/90{sup o}/{+-}45{sup o}]{sub S}. This material is the second in a progression of three candidate thermoset composites to be characterized and modeled as part of an Oak Ridge National Laboratory project entitled Durability of Carbon-Fiber Composites. The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Advanced Automotive Technologies and is closely coordinated with the industry Automotive Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for large automotive structural components. This document is in two parts. Part I provides the design criteria, and Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects on deformation, strength, and stiffness of cyclic and sustained loads, operating temperature, automotive fluid environments, and low-energy impacts (e.g., tool drops and kickups of roadway debris). Guidance is provided for design analysis, time-dependent allowable stresses, rules for cyclic loadings, and damage tolerance design guidance, including the effects of holes. Chapter 6 provides a brief summary of the design criteria.

Corum, J.M.

2002-04-17T23:59:59.000Z

116

Automotive ethernet: in-vehicle networking and smart mobility  

Science Conference Proceedings (OSTI)

This paper discusses novel communication network topologies and components and describes an evolutionary path of bringing Ethernet into automotive applications with focus on electric mobility. For next generation in-vehicle networking, the automotive ... Keywords: EV communication architecture, automotive, domain based commuication, electric vehicle, ethernet, in-vehicle networking, smart grid, vehicle network topology

Peter Hank, Steffen Müller, Ovidiu Vermesan, Jeroen Van Den Keybus

2013-03-01T23:59:59.000Z

117

Fisker Automotive Inc | Open Energy Information  

Open Energy Info (EERE)

Fisker Automotive Inc Fisker Automotive Inc Jump to: navigation, search Name Fisker Automotive Inc Place Irvine, California Zip 92606 Product Irvine-based hybrid vehicle manufacturer. Coordinates 41.837752°, -79.268594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.837752,"lon":-79.268594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

Mod I automotive Stirling engine mechanical development  

SciTech Connect

The Mod I Stirling engine was the first automotive Stirling engine designed specifically for automotive application. Testing of these engines has revealed several deficiencies in engine mechanical integrity which have been corrected by redesign or upgrade. The main deficiencies uncovered during the Mod I program lie in the combustion, auxiliary, main seal, and heater head areas. This paper will address each of the major area deficiencies in detail, and describe the corrective actions taken as they apply to the Mod I and the next Stirling-engine design, the Upgraded Mod I (a redesign to incorporate new materials for cost/weight reduction and improved performance).

Simetkosky, M.

1984-01-01T23:59:59.000Z

119

Past experiences with automotive external combustion engines  

SciTech Connect

GMR (General Motors Research Laboratories, now GM R and D Center) has a history of improving the internal combustion engine, especially as it relates to automotive use. During the quarter century from 1950--75, considerable effort was devoted to evaluating alternative powerplants based on thermodynamic cycles different from those on which the established spark-ignition and diesel engines are founded. Two of these, the steam engine and the Stirling engine, incorporated external combustion. Research on those two alternatives is reviewed. Both were judged to fall short of current needs for commercial success as prime movers for conventional automotive vehicles.

Amann, C.A.

1999-07-01T23:59:59.000Z

120

Tribopolymerization: An advanced lubrication concept for automotive engines and systems of the future  

DOE Green Energy (OSTI)

Advanced lubrication technologies based on the concept of tribopolymerization as a mechanism of boundary lubrication are described. Advantages of this approach as well as potential applications which could have an impact on the design, manufacture, and performance of existing and future automotive engines are presented and discussed. Tribopolymerization, a novel concept of molecular design developed by Furey and Kajdas, involves the continuous formation of thin polymeric films on rubbing surfaces; the protective films formed are self-replenishing. The antiwear compounds developed from this technology are effective with metals as well as ceramics and in the liquid as well as vapor phases. Furthermore, they are ashless and contain no harmful phosphorus or sulfur; and many are biodegradable. Thus, potential applications of this technology are diverse and include a variety of cost/performance/energy/environmental advantages. Examples include the following: (a) machining and cutting applications using thin films to reduce friction and ceramic tool wear; (b) the lubrication of ceramic engines (e.g., low heat rejection diesel engines) or ceramic components; (c) the development of ashless lubricants for existing and future automotive engines to reduce exhaust catalyst poisoning and environmental emissions; (d) ashless antiwear or ``lubricity`` additives for fuels, including gasoline, diesel and jet fuel; (e) vapor phase applications of this technology to high temperature gaseous systems or to fuel injector wear problems associated with the use of natural gas engines; and (f) the use of the concept of tribopolymerization as an enabling technology in the development of new engines and new automotive propulsion systems.

Furey, M.J. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Kajdas, C. [Warsaw Univ. of Technology, Plock (Poland); Kaltenbach, K.W. [Triad Investors Corp., Baltimore, MD (United States)

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

CarMA: towards personalized automotive tuning  

Science Conference Proceedings (OSTI)

Wireless sensing and actuation have been explored in many contexts, but the automotive setting has received relatively little attention. Automobiles have tens of onboard sensors and expose several hundred engine parameters which can be tuned (a ... Keywords: automobile, engine control unit, scanning, tuning

Tobias Flach; Nilesh Mishra; Luis Pedrosa; Christopher Riesz; Ramesh Govindan

2011-11-01T23:59:59.000Z

122

System modeling, analysis, and optimization methodology for diesel exhaust after-treatment technologies  

E-Print Network (OSTI)

Developing new aftertreatment technologies to meet emission regulations for diesel engines is a growing problem for many automotive companies and suppliers. Balancing manufacturing cost, meeting emission performance, ...

Graff, Christopher Dominic

2006-01-01T23:59:59.000Z

123

Table II: Technical Targets for Membranes: Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

II: Technical Targets for Membranes: Automotive II: Technical Targets for Membranes: Automotive All targets must be achieved simultaneously Characteristics Units Calendar year 2000 status a 2005 2010 Membrane conductivity, operating temperature Ω-cm -1 0.1 0.1 0.1 Room temperature Ω-cm -1 -20 o C Ω-cm -1 Oxygen cross-over b mA/cm 2 5 5 2 Hydrogen cross-over b mA/cm 2 5 5 2 Cost $/kW 50 5 Operating Temperature o C 80 120 120 Durability Hours 1000 d >4000 e >5000 f Survivability c o C -20 -30 -40 Thermal cyclability in presence of condensed water yes yes yes Notes: a) Status is present day 80 o C unless otherwise noted; targets are for new membranes/CCMs b) Tested in CCM c) Indicates temperature from which bootstrapping stack must be achieved

124

Ultrahigh carbon steel for automotive applications  

DOE Green Energy (OSTI)

Ultrahigh carbon steels (UHCSs), which contain 1--2.1% carbon, have remarkable structural properties for automotive application when processed to achieve fine ferrite grains with fine spheroidized carbides. When processed for high room temperature ductility, UHCS can have good tensile ductility but significantly higher strength than current automotive high strength steels. The material can also be made superplastic at intermediate temperatures and exhibits excellent die fill capability. Furthermore, they can be made hard with high compression ductility. In wire form it is projected that UHCS can exhibit extremely high strengths (5,000 MPa) for tire cord applications. Examples of structural components that have been formed from fine-grained spheroidized UHCSs are illustrated.

Lesuer, D.R.; Syn, C.K. [Lawrence Livermore National Lab., CA (United States); Sherby, O.D. [Stanford Univ., CA (United States)

1995-12-04T23:59:59.000Z

125

Effect of automotive electrical system changes on fuel consumption using incremental efficiency methodology  

E-Print Network (OSTI)

There has been a continuous increase in automotive electric power usage. Future projections show no sign of it decreasing. Therefore, the automotive industry has a need to either improve the current 12 Volt automotive ...

Hardin, Christopher William

2004-01-01T23:59:59.000Z

126

Program Evaluation - Automotive Lightweighting Materials Program Research and Development Projects Assessment of Benefits - Case Studies No. 2  

SciTech Connect

This report is the second of a series of studies to evaluate research and development (R&D) projects funded by the Automotive Lightweighting Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The objectives of the program evaluation are to assess short-run outputs and long-run outcomes that may be attributable to the ALM R&D projects. The ALM program focuses on the development and validation of advanced technologies that significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. Funded projects range from fundamental materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers. Three ALM R&D projects were chosen for this evaluation: Design and Product Optimization for Cast Light Metals, Durability of Lightweight Composite Structures, and Rapid Tooling for Functional Prototyping of Metal Mold Processes. These projects were chosen because they have already been completed. The first project resulted in development of a comprehensive cast light metal property database, an automotive application design guide, computerized predictive models, process monitoring sensors, and quality assurance methods. The second project, the durability of lightweight composite structures, produced durability-based design criteria documents, predictive models for creep deformation, and minimum test requirements and suggested test methods for establishing durability properties and characteristics of random glass-fiber composites for automotive structural composites. The durability project supported Focal Project II, a validation activity that demonstrates ALM program goals and reduces the lead time for bringing new technology into the marketplace. Focal projects concentrate on specific classes of materials and nonproprietary components and are done jointly by DOE and the Automotive Composites Consortium of U.S. Council for Automotive Research (USCAR). The third project developed a rapid tooling process that reduces tooling time, originally some 48-52 weeks, to less than 12 weeks by means of rapid generation of die-casting die inserts and development of generic holding blocks, suitable for use with large casting applications. This project was conducted by the United States Automotive Materials Partnership, another USCAR consortium.

Das, S.

2003-01-23T23:59:59.000Z

127

Managing the integration of technology into the product development pipeline  

E-Print Network (OSTI)

Managing the integration of technology is a complex task in any industry, but especially so in the highly competitive automotive industry. Automakers seek to develop plans to integrate technology into their products such ...

Barretto, Eduardo F., 1971-

2005-01-01T23:59:59.000Z

128

Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...  

NLE Websites -- All DOE Office Websites (Extended Search)

09242008FCTT Review Sep2008.ppt 2008 TIAX LLC Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications Jayanti Sinha Stephen Lasher Yong Yang Peter...

129

Advanced Cruciform Testing in the Center for Automotive ...  

Science Conference Proceedings (OSTI)

Abstract Scope, A new high capacity cruciform machine has been recently installed and commissioned in the Center for Automotive Lightweighting at NIST.

130

Lean product development for the automotive niche vehicle marketplace.  

E-Print Network (OSTI)

??The automotive low volume niche vehicle marketplace is growing, evidenced by increasing media coverage and fierce competition between original equipment manufacturers. Development of niche vehicles… (more)

Kupczewski, Celeste D., 1974-

2005-01-01T23:59:59.000Z

131

Recycling alloy for structural applications in the automotive industry  

Science Conference Proceedings (OSTI)

High Strength Aluminum Brazing Sheets for Condenser Fins of Automotive ... predictions for the phase formation in a wide range of commercial aluminum alloys.

132

Status and Prospects of the Global Automotive Fuel Cell Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNLTM-2013222 Energy and Transportation Science Division Center for Transportation Analysis STATUS AND PROSPECTS OF THE GLOBAL AUTOMOTIVE FUEL CELL INDUSTRY AND PLANS FOR...

133

Automotive engineering curriculum development: case study for Clemson University  

Science Conference Proceedings (OSTI)

The automotive manufacturing industry has transitioned in the past 20 years from a central technical focus to an integrated and globally distributed supply chain. As car makers outsource not only a greater portion of their manufacturing, but also their ... Keywords: Automotive, Curriculum, Education, Manufacturing, OEM, Supplier

Laine Mears; Mohammed Omar; Thomas R. Kurfess

2011-10-01T23:59:59.000Z

134

Engineering-economic analyses of automotive fuel economy potential in the United States  

SciTech Connect

Over the past 25 years more than 20 major studies have examined the technological potential to improve the fuel economy of passenger cars and light trucks in the US. The majority has used technology/cost analysis, a combination of analytical methods from the disciplines of economics and automotive engineering. In this paper the authors describe the key elements of this methodology, discuss critical issues responsible for the often widely divergent estimates produced by different studies, review the history of its use, and present results from six recent assessments. Whereas early studies tended to confine their scope to the potential of proven technology over a 10-year time period, more recent studies have focused on advanced technologies, raising questions about how best to include the likelihood of technological change. The paper concludes with recommendations for further research.

Greene, D.L.; DeCicco, J.

2000-02-01T23:59:59.000Z

135

Improving Compressed Air Energy Efficiency in Automotive Plants - Practical Examples and Implementation  

SciTech Connect

The automotive industry is the largest industry in the United States in terms of the dollar value of production [1]. U.S. automakers face tremendous pressure from foreign competitors, which have an increasing manufacturing presence in this country. The Big Three North American Original Equipment Manufacturers (OEMs) General Motors, Ford, and Chrysler are reacting to declining sales figures and economic strain by working more efficiently and seeking out opportunities to reduce production costs without negatively affecting the production volume or the quality of the product. Successful, cost-effective investment and implementation of the energy efficiency technologies and practices meet the challenge of maintaining the output of high quality product with reduced production costs. Automotive stamping and assembly plants are typically large users of compressed air with annual compressed air utility bills in the range of $2M per year per plant. This paper focuses on practical methods that the authors have researched, analyzed and implemented to improve compressed air system efficiency in automobile manufacturing facilities. It describes typical compressed air systems in automotive stamping and assembly plants, and compares these systems to best practices. The paper then presents a series of examples, organized using the method of inside-out approach, which strategically identifies the energy savings in the compressed air system by first minimizing end-use demand, then minimizing distribution losses, and finally making improvements to primary energy conversion equipment, the air compressor plant.

Alkadi, Nasr E [ORNL; Kissock, Professor Kelly [University of Dayton, Ohio

2011-01-01T23:59:59.000Z

136

Technologies  

Technologies Materials. Aggregate Spray for Air Particulate; Actuators Made From Nanoporous Materials; Ceramic Filters; Energy Absorbing Material; Diode Arrays for ...

137

Technologies  

Science & Technology. Weapons & Complex Integration. News Center. News Center. Around the Lab. Contacts. For Reporters. Livermore Lab Report. ...

138

Technologies  

Technologies Energy. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor; Modular Electromechanical ...

139

Technologies  

Technologies Energy, Utilities, & Power Systems. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor

140

Technologies  

Technologies Research Tools. Cell-Free Assembly of NanoLipoprotein Particles; Chemical Prism; Lawrence Livermore Microbial Detection Array (LLMDA) ...

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Sensitivity Analysis of H2-Vehicles' Market Prospects, Costs and Benefits - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program David L. Greene (Primary Contact), Zhenhong Lin, Jing Dong Oak Ridge National Laboratory National Transportation Research Center 2360 Cherahala Boulevard Knoxville, TN 37932 Phone: (865) 946-1310 Email: dlgreene@ornl.gov DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@hq.doe.gov Subcontractor: Department of Industrial Engineering, University of Tennessee, Knoxville, TN Project Start Date: October, 2010 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Project market shares of hydrogen fuel cell vehicles * (FCVs) under varying market conditions using the Market Acceptance of Advanced Automotive Technologies (MA3T) model.

142

NREL: Vehicle Systems Analysis - Future Automotive Systems Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

rolling resistance) Powertrain components (engine, motor, battery, and auxiliary loads) Regenerative braking Energy management strategies Battery life estimates Cost estimates...

143

Vehicle Technologies Office: FY 2004 Progress Report for Automotive...  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Next-Generation Programmable Preforming Process (PDF 385 KB) 5. Low-Cost Carbon Fiber 5a. Low-Cost Carbon Fibers from Renewable Resources (PDF 376 KB) 5b. Low-Cost...

144

Electromagnetic interference filter for automotive electrical systems  

DOE Patents (OSTI)

A filter for an automotive electrical system includes a substrate having first and second conductive members. First and second input terminals are mounted to the substrate. The first input terminal is electrically connected to the first conductive member, and the second input terminal is electrically connected to the second conductive member. A plurality of capacitors are mounted to the substrate. Each of the capacitors is electrically connected to at least one of the first and second conductive members. First and second power connectors are mounted to the substrate. The first power connector is electrically connected to the first conductive member, and the second power connector is electrically connected to the second conductive member. A common mode choke is coupled to the substrate and arranged such that the common mode choke extends around at least a portion of the substrate and the first and second conductive members.

Herron, Nicholas Hayden; Carlson, Douglas S; Tang, David; Korich, Mark D

2013-07-02T23:59:59.000Z

145

Technologies  

High Performance Computing (HPC) Technologies; Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) ...

146

10 Questions for an Automotive Engineer: Thomas Wallner | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Questions for an Automotive Engineer: Thomas Wallner 10 Questions for an Automotive Engineer: Thomas Wallner 10 Questions for an Automotive Engineer: Thomas Wallner June 17, 2011 - 3:30pm Addthis Argonne mechanical engineer Thomas Wallner adjusts Argonne's "omnivorous engine," an automobile engine that Wallner and his colleagues have tailored to efficiently run on blends of gasoline, ethanol and butanol. | Courtesy of: Argonne National Laboratory. Argonne mechanical engineer Thomas Wallner adjusts Argonne's "omnivorous engine," an automobile engine that Wallner and his colleagues have tailored to efficiently run on blends of gasoline, ethanol and butanol. | Courtesy of: Argonne National Laboratory. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Meet Thomas Wallner - automotive engineer extraordinaire, who hails from

147

Automotive Energy Supply Corporation AESC | Open Energy Information  

Open Energy Info (EERE)

Automotive Energy Supply Corporation AESC Automotive Energy Supply Corporation AESC Jump to: navigation, search Name Automotive Energy Supply Corporation (AESC) Place Zama, Kanagawa, Japan Product JV formed for development and marketing of advanced lithium-ion batteries for automotive applications. Coordinates 32.974049°, -89.371101° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.974049,"lon":-89.371101,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

148

Improved supplier selection and cost management for globalized automotive production  

E-Print Network (OSTI)

For many manufacturing and automotive companies, traditional sourcing decisions rely on total landed cost models to determine the cheapest supplier. Total landed cost models calculate the cost to purchase a part plus all ...

Franken, Joseph P., II (Joseph Philip)

2012-01-01T23:59:59.000Z

149

FY 2002 Progress Report for Automotive Lightweighting Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tube 7: Vertical Furnace 8: Crucible 9: Slag 10: Platform Disk 11: Insulation Brick 12: Brass Cover Plate 13 Argon Inlet 5 2 1 4 3 6 7 8 9 10 12 5 11 13 Automotive Lightweighting...

150

Green automotive supply chain for an emerging market  

E-Print Network (OSTI)

Green Supply Chain Management (GSCM) within the automotive industry is largely based on combining lean manufacturing with mandated supplier adoption of ISO 14001-compliant Environmental Management Systems (EMS). This ...

Fisch, Gene (Gene Joseph)

2008-01-01T23:59:59.000Z

151

Automotive Battery State-of-Health Monitoring Methods.  

E-Print Network (OSTI)

??Effective vehicular power management requires accurate knowledge of battery state, including state-of-charge (SOC) and state-of-health (SOH). An essential functionality of automotive batteries is delivering high… (more)

Grube, Ryan J.

2008-01-01T23:59:59.000Z

152

Automotive soiling simulation based on massive particle tracing  

Science Conference Proceedings (OSTI)

In the automotive industry Lattice-Boltzmann type flow solvers like PowerFlow from Exa Corporation are becoming increasingly important. In contrast to the traditional finite volume approach PowerFlow utilizes a hierachical cartesian grid for flow simulation. ...

Stefan Roettger; Martin Schulz; Wolf Bartelheimer; Thomas Ertl

2001-05-01T23:59:59.000Z

153

Lean product development for the automotive niche vehicle marketplace  

E-Print Network (OSTI)

The automotive low volume niche vehicle marketplace is growing, evidenced by increasing media coverage and fierce competition between original equipment manufacturers. Development of niche vehicles must be lean and therefore ...

Kupczewski, Celeste D., 1974-

2005-01-01T23:59:59.000Z

154

Modeling and torque estimation of an automotive dual mass flywheel  

Science Conference Proceedings (OSTI)

The Dual Mass Flywheel (DMF) is primarily used for dampening of oscillations in automotive powertrains and to prevent gearbox rattling. This paper explains the DMF mechanics along with its application and components. Afterwards a detailed ab-inltio model ...

Ulf Schaper; Oliver Sawodny; Tobias Mahl; Uli Blessing

2009-06-01T23:59:59.000Z

155

The dynamics of supply chains in the automotive industry  

E-Print Network (OSTI)

This thesis looks at how supply chains in the automotive industry operate from the perspective of the manufacturers. The study includes the industry structure, the top players in the industry, factors that drive the industry, ...

Braese, Niklas

2005-01-01T23:59:59.000Z

156

Enhancing the conceptual design process of automotive exterior systems  

E-Print Network (OSTI)

Product development cycles in the automotive industry are being reduced and competition is more demanding than ever before. To be successful in this environment, Original Equipment Manufacturers need a product development ...

Diaz Dominguez, David

2011-01-01T23:59:59.000Z

157

Electrical build issues in automotive product development : an analysis  

E-Print Network (OSTI)

To be competitive and successful within the automotive industry the Original Equipment Manufacturers (OEMs) have to bring new products with features fast to market. The OEMs need to reduce the Product Development cycle ...

Chacko, John

2008-01-01T23:59:59.000Z

158

Meeting the Embedded Design Needs of Automotive Applications  

E-Print Network (OSTI)

The importance of embedded systems in driving innovation in automotive applications continues to grow. Understanding the specific needs of developers targeting this market is also helping to drive innovation in RISC core design. This paper describes how a RISC instruction set architecture has evolved to better meet those needs, and the key implementation features in two very different RISC cores are used to demonstrate the challenges of designing for real-time automotive systems.

Lyons, Wayne

2011-01-01T23:59:59.000Z

159

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13, 2011 13, 2011 CX-006752: Categorical Exclusion Determination Energy Efficiency Vehicles for Sustainable Mobility - Department of Energy Graduate Automotive Technology Education Center of Excellence CX(s) Applied: A9, A11, B3.6 Date: 09/13/2011 Location(s): Columbus, Ohio Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 13, 2011 CX-006751: Categorical Exclusion Determination University of Alabama at Birmingham Graduate Automotive Technology Education Center for Lightweight Materials and Manufacturing for Automotive Technologies CX(s) Applied: A9, A11, B3.6 Date: 09/13/2011 Location(s): Birmingham, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 13, 2011 CX-006748: Categorical Exclusion Determination

160

Technolog  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Computers and the internet play an increasingly larger role in the lives of students. In this activity, students must use various web sites to locate specific pieces of...

162

Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers  

SciTech Connect

Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

Hale, Steve

2013-09-11T23:59:59.000Z

163

Asola Advanced and Automotive Solar Systems GmbH | Open Energy Information  

Open Energy Info (EERE)

Asola Advanced and Automotive Solar Systems GmbH Asola Advanced and Automotive Solar Systems GmbH Jump to: navigation, search Name Asola Advanced and Automotive Solar Systems GmbH Place Erfurt, Germany Zip D-99428 Sector Solar Product German manufacturer of PV modules and spherical solar sun roofs for the automotive industry. References Asola Advanced and Automotive Solar Systems GmbH[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Asola Advanced and Automotive Solar Systems GmbH is a company located in Erfurt, Germany . References ↑ "Asola Advanced and Automotive Solar Systems GmbH" Retrieved from "http://en.openei.org/w/index.php?title=Asola_Advanced_and_Automotive_Solar_Systems_GmbH&oldid=34237

164

U.S. Department of Energy and the Automotive X PRIZE Foundation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Automotive X PRIZE Foundation to Promote Clean, Energy-Efficient Vehicles U.S. Department of Energy and the Automotive X PRIZE Foundation to Promote Clean, Energy-Efficient...

165

APPLICATION NOTE 4393 Selecting HB LED Drivers for Automotive Lighting Applications  

E-Print Network (OSTI)

Abstract: This application note provides an overview of HB LED driver selection criteria for automotive lighting applications. It reviews HB LED driver topologies and recommends configurations for various automotive lighting applications, including interior lighting, exterior lighting, and display backlighting.

Brian Hedayati

2009-01-01T23:59:59.000Z

166

Separation and recovery process R&D to enhance automotive materials recycling  

SciTech Connect

Since 1976, the sales-weighted curb-weight of cars and light trucks sold in the United States has decreased by almost 800 pounds. Vehicle weight reduction has, of course, provided for a significant increase in US fleet fuel economy, from 17 to 27 miles per gallon. However, achievement of the weight reduction and concomitant increase in fuel economy was brought about, in part, by the substitution of lighter-weight materials, such as thinner-gauge coated sheet-steels replacing heavy-gauge noncoated sheet-steels and new aluminum alloys replacing steel as well as the increased use of plastics replacing metals. Each of these new materials has created the need for new technology for materials recycling. This paper highlights some of the R&D being conducted at Argonne National Laboratory to develop technology that will enhance and minimize the cost of automotive materials recycling.

Daniels, E.J.

1994-05-01T23:59:59.000Z

167

Overview of DOE'S programs on aluminum and magnesium for automotive application  

DOE Green Energy (OSTI)

The U.S. Department of Energy will present an update and review of its programs in aluminum and magnesium for automotive and heavy-duty vehicle applications. While the main programs focused on vehicle materials are in the Office of Transportation Technologies, contributing efforts will be described in the DOE Office of Industrial Technologies and the DOE Office of Energy Research. The presentation will discuss materials for body/chassis and power train, and will highlight the considerable synergy among the efforts. The bulk of the effort is on castings, sheet, and alloys with a smaller focus on metal matrix composites. Cost reduction and energy savings are the overriding themes of the programs.

Carpenter, J.; Diamond, S.; Dillich, S.; Fitzsimmons, T.; Milliken, J.; Sklad, P.

1999-02-28T23:59:59.000Z

168

Fault conditions classification of automotive generator using an adaptive neuro-fuzzy inference system  

Science Conference Proceedings (OSTI)

In this paper, an adaptive neuro-fuzzy inference system (ANFIS) was proposed for condition monitoring and fault diagnosis of an automotive generator. Conventional fault indication of an automotive generator generally uses an indicator to inform the driver ... Keywords: Adaptive neuro-fuzzy inference system, Automotive generator, Discrete wavelet transform, Fault diagnosis system

Jian-Da Wu; Jun-Ming Kuo

2010-12-01T23:59:59.000Z

169

Society of Automotive Engineers World Congress | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Society of Automotive Engineers World Congress Society of Automotive Engineers World Congress Society of Automotive Engineers World Congress April 6, 2006 - 10:12am Addthis Remarks Prepared for Energy Secretary Samuel Bodman Thank you, Greg. It's always a pleasure to be in a room full of engineers. As an engineer myself, I know there is nothing our profession likes better than plain talk and solving problems. So, I'm going to serve you up some plain talk and then some assignments. Our nation faces big challenges in the energy and transportation arena. The President put it plainly in the State of the Union message when he said America is addicted to oil. To start us on the path to recovery from this addiction, he set out the Advanced Energy Initiative which calls for increasing spending on clean energy programs by 22% in next year's budget.

170

Automotive Accessibility and Efficiency Meet in the Innovative MV-1 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Automotive Accessibility and Efficiency Meet in the Innovative MV-1 Automotive Accessibility and Efficiency Meet in the Innovative MV-1 Automotive Accessibility and Efficiency Meet in the Innovative MV-1 March 11, 2011 - 4:03pm Addthis The MV-1, a new wheelchair accessible, fuel-efficient vehicle | Photo Courtesy of Vehicle Production Group The MV-1, a new wheelchair accessible, fuel-efficient vehicle | Photo Courtesy of Vehicle Production Group Daniel B. Poneman Daniel B. Poneman Deputy Secretary of Energy Yesterday, the Department of Energy announced that we've now finalized a loan for nearly $50 million to the Vehicle Production Group - or VPG. The project will support the development and manufacturing of a new wheelchair accessible, fuel-efficient car, the MV-1, that will run on compressed natural gas instead of gasoline, produce low emissions, and create 900 jobs

171

Computing Tools for the Automotive Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

easy way to estimate the impact of future transportation technologies and scenarios on oil use and greenhouse gas (GHG) emissions. For example, VISION can calculate what the oil...

172

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Meso-Machining Meso-Machining PDF format (182 kb) Sandia's Micro-Electro Discharge Machine (Micro-EDM) (above). On the upper right inset is the Micro-EDM electode in copper that was made with the LIGA (electroforming) process. On the lower right inset is a screen fabricated into .006 inch kovar sheet using the Micro-EDM electrode. The walls of the screen are .002 inch wide by .006 inch deep. Meso-machining technologies being developed at Sandia National Laboratories will help manufacturers improve a variety of production processes, tools, and components. Meso-machining will benefit the aerospace, automotive, biomedical, and defense industries by creating feature sizes from the 1 to 50 micron range. Sandia's Manufacturing Science and Technology Center is developing the

173

Multidisciplinary design optimization of an automotive magnetorheological brake design  

Science Conference Proceedings (OSTI)

This paper presents the development of a new electromechanical brake system using magnetorheological (MR) fluid. The proposed brake system consists of rotating disks immersed in a MR fluid and enclosed in an electromagnet, where the yield stress of the ... Keywords: Automotive brake, Computational fluid dynamics, Electric brake actuator, Finite element analysis, Magnetorheological fluid, Multidisciplinary design optimization

Edward J. Park; Luis Falcão da Luz; Afzal Suleman

2008-02-01T23:59:59.000Z

174

Automotive Stirling Engine Mod I design review report. Volume III  

SciTech Connect

This volume, No. 3, of the Automotive Stirling Engine Mod 1 Design Review Report contains a preliminary parts list and detailed drawings of equipment for the basic Stirling engine and for the following systems: vehicular Stirling Engine System; external heat system; hot and cold engine systems; engine drive; controls and auxiliaries; and vehicle integration. (LCL)

Not Available

1982-08-01T23:59:59.000Z

175

Role of Friction in Materials Selection for Automotive Applications  

Science Conference Proceedings (OSTI)

This is an invited article for a special issue of the ASM International monthly magazine that concerns "Automotive Materials and Applications." The article itself overviews frictional considerations in material selection for automobiles. It discusses implications for energy efficiency (engine friction) and safety (brakes) among other topics.

Blau, Peter Julian [ORNL

2013-01-01T23:59:59.000Z

176

Tools and Techniques for Ensuring Automotive EMC Performance and Reliability  

E-Print Network (OSTI)

they generate and store significant amounts of electric energy. Cars in the future ... 8 #12;9 Lighter More Systems 3 Current automotive electronics design and integration strategies are not sustainable. Cars and wireless communication Cars in the future will have ONE reliable, low-cost, lightweight network that serves

Stuart, Steven J.

177

A roadmap for parametric CAD efficiency in the automotive industry  

Science Conference Proceedings (OSTI)

3D CAD systems are used in product design for simultaneous engineering and to improve productivity. CAD tools can substantially enhance design performance. Although 3D CAD is a widely used and highly effective tool in mechanical design, mastery of CAD ... Keywords: Automotive industry, CAD training strategy, Collaboration, Knowledge integration, PLM, Parametric CAD efficiency

Yannick Bodein, Bertrand Rose, Emmanuel Caillaud

2013-10-01T23:59:59.000Z

178

Analysis of automotive telematics industry in Japan  

E-Print Network (OSTI)

A major element of mobile multimedia, telematics is the convergence of telecommunication and information technology which provides various services to and from the vehicle or mobile communication devices. Telematics is ...

Shimizu, Norihito, 1971-

2004-01-01T23:59:59.000Z

179

Automotive features : mass impact and deployment characterization  

E-Print Network (OSTI)

Passenger car use is a major driver of greenhouse gas (GHG) emissions and fossil fuel consumption in the United States. Vehicles continue to incorporate increasing levels of technology, these advances do not translate ...

Zoepf, Stephen M

2011-01-01T23:59:59.000Z

180

Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

ANL-10/24 ANL-10/24 Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications Nuclear Engineering Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Production Cost Estimation for Direct H 2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update March 26, 2009 v.30.2021.052209 Prepared by: Brian D. James & Jeffrey A. Kalinoski One Virginia Square 3601 Wilson Boulevard, Suite 650 Arlington, Virginia 22201 703-243-3383 Prepared for: Contract No. GS-10F-0099J to the U.S. Department of Energy Energy Efficiency and Renewable Energy Office Hydrogen, Fuel Cells & Infrastructure Technologies Program Foreword Energy security is fundamental to the mission of the U.S. Department of Energy (DOE) and hydrogen fuel cell vehicles have the potential to eliminate the need for oil in the transportation sector. Fuel cell vehicles can operate on hydrogen, which can be produced domestically, emitting less greenhouse gas and pollutants than

182

Automotive System Cost Modeling Tool (ASCM)  

E-Print Network (OSTI)

technology vehicles (i.e., diesel, hybrid, and fuel cell) developed for improved fuel economy remains either be done through Argonne National laboratory's hybrid vehicle cost model algorithm (adapted the Tool Can Help Answer · What is the life cycle cost of today's midsize hybrid vehicle? · How does

183

Power Modulation Investigation for High Temperature (175-200 degrees Celcius) Automotive Application  

Science Conference Proceedings (OSTI)

Hybrid electric vehicles were re-introduced in the late 1990s after a century dominated by purely internal combustion powered engines[1]. Automotive players, such as GM, Ford, DaimlerChrysler, Honda, and Toyota, together with major energy producers, such as BPAmoco, were the major force in the development of hybrid electric vehicles. Most notable was the development by Toyota of its Prius, which was launched in Japan in 1997 and worldwide in 2001. The shift to hybrids was driven by the fact that the sheer volume of vehicles on the road had begun to tax the ability of the environment to withstand the pollution of the internal combustion engine and the ability of the fossil fuel industry to produce a sufficient amount of refined gasoline. In addition, the number of vehicles was anticipated to rise exponentially with the increasing affluence of China and India. Over the last fifteen years, major advances have been made in all the technologies essential to hybrid vehicle success, including batteries, motors, power control and conditioning electronics, regenerative braking, and power sources, including fuel cells. Current hybrid electric vehicles are gasoline internal combustion--electric motor hybrids. These hybrid electric vehicles range from micro-hybrids, where a stop/start system cuts the engine while the vehicle is stopped, and mild hybrids where the stop/start system is supplemented by regenerative braking and power assist, to full hybrids where the combustion motor is optimized for electric power production, and there is full electric drive and full regenerative braking. PSA Peugeot Citroen estimates the increased energy efficiency will range from 3-6% for the micro-hybrids to 15-25% for the full hybrids.[2] Gasoline-electric hybrids are preferred in US because they permit long distance travel with low emissions and high gasoline mileage, while still using the existing refueling infrastructure. One of the most critical areas in which technology has been advancing has been the development of electronics that can operate in the high temperature environments present in hybrid vehicles. The temperatures under the hood for a gasoline-electric hybrid vehicle are comparable to those for traditional internal combustion engines. This is known to be a difficult environment with respect to commercial-grade electronics, as there are surface and ambient temperatures ranging from 125 C to 175 C. In addition, some hybrid drive electronics are placed in even harsher environments, such as on or near the brakes, where temperatures can reach 250 C. Furthermore, number of temperature cycles experienced by electronics in a hybrid vehicle is different from that experienced in a traditional vehicle. A traditional internal combustion vehicle will have the engine running for longer periods, whereas a mild or micro-hybrid engine will experience many more starts and stops.[3] This means that hybrid automotive electronics will undergo more cycles of a potential wider temperature cycle than standard automotive electronics, which in turn see temperature cycles of 2 to 3 times the magnitude of the {Delta}T = 50 C-75 C experienced by commercial-grade electronics. This study will discuss the effects of these harsh environments on the failure mechanisms and ultimate reliability of electronic systems developed for gasoline-electric hybrid vehicles. In addition, it will suggest technologies and components that can reasonably be expected to perform well in these environments. Finally, it will suggest areas where further research is needed or desirable. Areas for further research will be highlighted in bold, italic type. It should be noted that the first area where further research is desirable is in developing a clearer understanding of the actual hybrid automotive electronics environment and how to simulate it through accelerated testing, thus: Developing specific mission profiles and accelerated testing protocols for the underhood environment for hybrid cars, as has previously been done for gasoline-powered vehicles, is an important area for further st

McCluskey, F. P.

2007-04-30T23:59:59.000Z

184

REQUEST BY MERIDIAN AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement of Considerations Statement of Considerations REQUEST BY MERIDIAN AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER A SUBTIER CONTRACT UNDER UT-BATTELLE, LLC SUBCONTRACT NO. 4000010928, UNDER DOE PRIME CONTRACT DE-AC05- 00OR22725; DOE WAIVER DOCKET W(A)-2003-037; [ORO-780] Meridian Automotive Systems, Inc. (Meridian) has made a request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under a subtier contract under UT-Battelle, LLC Subcontract No. 4000010928 with Volvo Trucks North America under Department of Energy (DOE) Contract DE-AC05-00OR22725. The scope of work of this project is for the utilization of Carbon Fiber Sheet Molding Compound (SMC) Materials for

185

Sustainability and Energy Efficiency in the Automotive Sector  

E-Print Network (OSTI)

Since this year there can be no doubt that "sustainability" has become the top issue in the automotive sector. Volkswagen's CEO Prof. Dr. Martin Winterkorn attacked incumbents like BMW Group (so far the "most sustainable car manufacturer" for the 8th consecutive year) or Toyota (producer of the famous "Prius") head-on by boldly stating to become "the most profitable and most sustainable car manufacturer worldwide by 2018" . This announcement clearly shows that "sustainability" and "profitability" no longer are considered as conflicting targets. On the contrary, to Prof. Dr. Winterkorn : "climate protection is a driver for economic growth". To prime discussions, the plenary talk will give a brief overview of the entire range of energy efficiency in the automotive sector: based on the multiple drivers behind energy efficiency, practical examples are presented along the entire life-cycle of cars (R&D, production, usage and recycling). These "cases" include big automobile producers as well as their respectiv...

CERN. Geneva

2013-01-01T23:59:59.000Z

186

Demonstration of dissociated methanol as an automotive fuel: system performance  

DOE Green Energy (OSTI)

The results are presented of system performance testing of an automotive system devised to provide hydrogen-rich gases to an internal combustion engine by dissociating methanol on board the vehicle. The dissociation of methanol absorbs heat from the engine exhaust and increases the lower heating value of the fuel by 22%. The engine thermal efficiency is increased by raising the compression ratio and burning with excess air.

Finegold, J. G.; Karpuk, M. E.; McKinnon, J. T.; Passamaneck, R.

1981-04-01T23:59:59.000Z

187

Automotive Stirling Engine Development Program. RESD Summary report  

SciTech Connect

This is the final report compiling a summary of the information presented and discussed at the May 1983 Automotive Stirling Engine (AES) Reference Engine System Design (RESD) review held at the NASA Lewis Research Center. The design of the engine and its auxiliaries and controls is described. Manufacturing costs in production quantity are also presented. Engine system performance predictions are discussed and vehicle integration is developed, along with projected fuel economy levels.

Not Available

1984-05-01T23:59:59.000Z

188

Automotive batteries. (Bibliography from the Global Mobility database). Published Search  

SciTech Connect

The bibliography contains citations concerning the design, manufacture, and marketing of automotive batteries. Included are nickel-cadmium, nickel metal hydride, sodium sulfur, zinc-air, lead-acid, and polymer batteries. Testing includes life-cycling, performance and peak-power characteristics, and vehicle testing of near-term batteries. Also mentioned are measurement equipment, European batteries, and electric vehicle battery development. (Contains a minimum of 76 citations and includes a subject term index and title list.)

NONE

1995-03-01T23:59:59.000Z

189

Automotive batteries. (Bibliography from the Global Mobility database). Published Search  

SciTech Connect

The bibliography contains citations concerning the design, manufacture, and marketing of automotive batteries. Included are nickel-cadmium, nickel metal hydride, sodium sulfur, zinc-air, lead-acid, and polymer batteries. Testing includes life-cycling, performance and peak-power characteristics, and vehicle testing of near-term batteries. Also mentioned are measurement equipment, European batteries, and electric vehicle battery development.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-02-01T23:59:59.000Z

190

Automotive batteries. (Bibliography from the Global Mobility database). Published Search  

SciTech Connect

The bibliography contains citations concerning the design, manufacture, and marketing of automotive batteries. Included are nickel-cadmium, nickel metal hydride, sodium sulfur, zinc-air, lead-acid, and polymer batteries. Testing includes life-cycling, performance and peak-power characteristics, and vehicle testing of near-term batteries. Also mentioned are measurement equipment, European batteries, and electric vehicle battery development. (Contains a minimum of 71 citations and includes a subject term index and title list.)

Not Available

1994-06-01T23:59:59.000Z

191

Durability-based design criteria for an automotive structural composite  

DOE Green Energy (OSTI)

Before composite structures can be widely used in automotive applications, their long-term durability must be assured. The Durability of Lightweight Composite Structures Project at Oak Ridge National Laboratory was established by the US Department of Energy to help provide that assurance. The project is closely coordinated with the Automotive Composites Consortium. The experimentally-based, durability-driven design criteria described in this paper are the result of the initial project thrust. The criteria address a single reference composite, which is an SRIM (Structural Reaction Injection Molded) polyurethane, reinforced with continuous strand, swirl-mat E-glass fibers. The durability issues addressed include the effects of cyclic and sustained loadings, temperature, automotive fluid environments, and low-energy impacts (e.g., tool drops and roadway kickups) on strength, stiffness, and deformation. The criteria provide design analysis guidance, a multiaxial strength criterion, time-independent and time-dependent allowable stresses, rules for cyclic loading, and damage tolerance design guidance. Environmental degradation factors and the degrading effects of prior loadings are included. Efforts are currently underway to validate the criteria by application to a second random-glass-fiber composite. Carbon-fiber composites are also being addressed.

Corum, J.M.; Battiste, R.L.; Brinkman, C.R.; Ren, W.; Ruggles, M.B.; Yahr, G.T.

1998-11-01T23:59:59.000Z

192

ENERGY REDUCTION IN AUTOMOTIVE PAINT SHOPS A REVIEW OF HYBRID/ELECTRIC VEHICLE BATTERY MANUFACTURING.  

E-Print Network (OSTI)

??Automotive industry is facing fundamental challenges due to the rapid depletion of fossil fuels, energy saving and environmental concerns. The need of sustainable energy development… (more)

Arenas Guerrero, Claudia Patricia

2010-01-01T23:59:59.000Z

193

Requirements and concepts for future automotive electronic architectures from the view of integrated safety.  

E-Print Network (OSTI)

??In this dissertation, concepts of the electronic architecture of automotive Integrated Safety System are developed as a cooperative approach of engineering process, dependable hardware architecture… (more)

Chen, Xi

2008-01-01T23:59:59.000Z

194

The design of an automotive cockpit module for European urban electric vehicles for 2015.:.  

E-Print Network (OSTI)

??This graduation project focuses on identifying how the development of new electric vehicle (EV) archetypes could affect automotive engineering and design. Changes will occur throughout… (more)

Buskermolen, S.P.S.

2010-01-01T23:59:59.000Z

195

An Experimental Study of Power Losses of an Automotive Manual Transmission.  

E-Print Network (OSTI)

??In this study, the influence of a variety of operating conditions on the power losses and efficiency of an automotive manual transmission was investigated experimentally.… (more)

Szweda, Timothy Andrew

2008-01-01T23:59:59.000Z

196

DEVELOPMENT OF AN AIR?CYCLE ENVIRONMENTAL CONTROL SYSTEM FOR AUTOMOTIVE APPLICATIONS.  

E-Print Network (OSTI)

??An air?cycle air conditioning system, using a typical automotive turbocharger as the core of the system, was designed and tested. Effects on engine performance were… (more)

Forster, Christopher James

2009-01-01T23:59:59.000Z

197

Science & Technology Highlights ZEBRAlliance Campaign Under Way  

E-Print Network (OSTI)

, fossil and nuclear power plants. The electric power has been carried long distances by high theory and nonlinear dynamics to energy technologies, including gas-flu- idized beds, internal combustion. SpaciMS takes gaseous samples inside the confined spaces of chemical reactors, such as automotive

198

Method Based on OSEK/VDX Platform Using Model-based and Autocode Technology for Diesel ECU Software Development  

Science Conference Proceedings (OSTI)

Recently, model-based and autocode technology has become mature and brings many advantages in automotive software development. In order to take advantage of these changes, organization must adjust development process. This paper proposes a "V+v" method, ...

MU Chunyang; SUN Lining; DU Zhijiang

2007-07-01T23:59:59.000Z

199

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities  

DOE Green Energy (OSTI)

Fuel cells (FCs) are considered essential future energy technologies by developed and developing economies alike. Several countries, including the United States, Japan, Germany, and South Korea have established publicly funded R&D and market transformation programs to develop viable domestic FC industries for both automotive and non-automotive applications. Important non-automotive applications include large scale and small scale distributed combined heat and electrical power, backup and uninterruptible power, material handling and auxiliary power units. The U.S. FC industry is in the early stages of development, and is working to establish sustainable markets in all these areas. To be successful, manufacturers must reduce costs, improve performance, and overcome market barriers to new technologies. U.S. policies are assisting via research and development, tax credits and government-only and government-assisted procurements. Over the past three years, the industry has made remarkable progress, bringing both stack and system costs down by more than a factor of two while improving durability and efficiency, thanks in part to government support. Today, FCs are still not yet able to compete in these markets without continued policy support. However, continuation or enhancement of current policies, such as the investment tax credit and government procurements, together with continued progress by the industry, appears likely to establish a viable domestic industry within the next decade.

Greene, David L [ORNL; Duleep, K. G. [ICF International; Upreti, Girish [ORNL

2011-06-01T23:59:59.000Z

200

DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 4: Low Temperature Fuel Cell System BOP & FUEL Processors For Stationary and Automotive  

NLE Websites -- All DOE Office Websites (Extended Search)

BREAKOUT GROUP 4: LOW TEMPERATURE FUEL CELL SYSTEM BOP & FUEL PROCESSORS FOR STATIONARY AND AUTOMOTIVE BREAKOUT GROUP 4: LOW TEMPERATURE FUEL CELL SYSTEM BOP & FUEL PROCESSORS FOR STATIONARY AND AUTOMOTIVE PARTICIPANTS O NAME RGANIZATION Shabbir Ahmed Argonne National Laboratory Chris Ainscough NUVERA Rod Borup Los Alamos National Laboratory Vince Contini Battelle Rick Cutright PlugPower LLC David Frank Hydrogenics Jamie Holladay Pacific Northwest National Laboratory Terry Johnson Sandia National Laboratory Sridhas Kanuri UTC Power Ted Krause Argonne National Laboratory Michael McCarthy Protonex Technology Corporation Pinakin Patel FuelCell Energy Inc. Dennis Rapodios Argonne National Laboratory Eric Simpkins IdaTech LLC Anna Stefanopoulou University of Michigan Ken Stroh Los Alamos National Laboratory Olivier Verdu HELION Doug Wheeler National Renewable Energy Laboratory

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

PROPELLED EXTINGUISHING AGENT TECHNOLOGIES ...  

Science Conference Proceedings (OSTI)

... Boiler rooms Armored vehicles (engine compartment) Automotive (LPG /LNG) Navy ships (large engine rooms) Cable tunnels ...

2011-11-01T23:59:59.000Z

202

A simulation study of the transmission case line in an automotive factory  

Science Conference Proceedings (OSTI)

A transmission is a major component of a car that transmits mechanical power from the engine to the wheels. The transmission shop of an automotive factory consists of five sub-lines. They are the machining line of gears, sleeves, shaft, case and the ... Keywords: automotive, discrete event simulation, manufacturing system design, transmission case

Dug Hee Moon; Te Xu; Seung Geun Baek; Jun Seok Lee; Woo Young Shin

2007-03-01T23:59:59.000Z

203

Integrated model-based control and diagnostic monitoring for automotive catalyst systems  

Science Conference Proceedings (OSTI)

An integrated model-based automotive catalyst control and diagnostic monitoring system is presented. This system incorporates a simplified dynamic catalyst model that describes oxygen storage and release in the catalyst and predicts the post-catalyst ... Keywords: automotive catalyst, model predictive control, on-board diagnostic monitoring

Kenneth R. Muske; James C. Peyton Jones

2007-11-01T23:59:59.000Z

204

Standardizing model-based in-vehicle infotainment development in the German automotive industry  

Science Conference Proceedings (OSTI)

Based on the analysis of existing HMI development processes in the automotive domain, a reference process for software engineering has been developed. This process was used to develop a domain data model and a model-based specification language in order ... Keywords: HMI, automotive, domain data model, interaction design, model-based language, specification, user interface design

Steffen Hess; Anne Gross; Andreas Maier; Marius Orfgen; Gerrit Meixner

2012-10-01T23:59:59.000Z

205

Cylindrical model of transient heat conduction in automotive fuse using conservative averaging method  

Science Conference Proceedings (OSTI)

Cylindrical mathematical model of automotive fuse is considered in this paper. Initially, partial differential equations of the transient heat conduction are given to describe heat-up process in the fuse. Conservative averaging method is used to obtain ... Keywords: analytical approximation, automotive fuse, conservative averaging, heat transfer, quasi-linear, transient process

Raimonds Vilums; Hans-Dieter Liess; Andris Buikis; Andis Rudevics

2008-12-01T23:59:59.000Z

206

Towards improving dependability of automotive systems by using the EAST-ADL architecture description language  

Science Conference Proceedings (OSTI)

The complexity of embedded automotive systems calls for a more rigorous approach to system development compared to current state of practice. A critical issue is the management of the engineering information that defines the embedded system. Development ... Keywords: architecture description language, automotive systems, systems engineering

Philippe Cuenot; DeJiu Chen; Sébastien Gérard; Henrik Lönn; Mark-Oliver Reiser; David Servat; Ramin Tavakoli Kolagari; Martin Törngren; Matthias Weber

2007-01-01T23:59:59.000Z

207

Vehicle Technologies Office: Educational Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Educational Activities to someone by E-mail Share Vehicle Technologies Office: Educational Activities on Facebook Tweet about Vehicle Technologies Office: Educational Activities on Twitter Bookmark Vehicle Technologies Office: Educational Activities on Google Bookmark Vehicle Technologies Office: Educational Activities on Delicious Rank Vehicle Technologies Office: Educational Activities on Digg Find More places to share Vehicle Technologies Office: Educational Activities on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Graduate Automotive Technology Education (GATE) Educational Activities EcoCAR 2: Plugging In to the Future EcoCAR 2: Plugging In to the Future is the successor to EcoCAR: The NeXt

208

An Update on Fisker Automotive and the Energy Department's Loan Portfolio  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Update on Fisker Automotive and the Energy Department's Loan An Update on Fisker Automotive and the Energy Department's Loan Portfolio An Update on Fisker Automotive and the Energy Department's Loan Portfolio September 17, 2013 - 5:20pm Addthis An Update on Fisker Automotive and the Energy Department’s Loan Portfolio Peter W. Davidson Peter W. Davidson Executive Director of the Loan Program Office (LPO) What are the key facts? Thanks to investments made by the Obama Administration, the U.S. auto industry has had three straight years of rapid growth after seven straight years of decline. Despite Fisker Automotive's bankruptcy setback, the DOE loan portfolio remains very strong -- and is playing a crucial role in helping America's auto industry thrive, innovate and compete. When the President took office, America's auto industry was on the brink

209

DOE PLANT-WIDE ENERGY ASSESSMENT RESULTS RELATED TO THE U. S. AUTOMOTIVE INDUSTRY  

SciTech Connect

Forty-nine plant-wide energy efficiency assessments have been undertaken under sponsorship of the U.S. Department of Industrial Technologies Program. Plant-wide assessments are comprehensive, systematic investigations of plant energy efficiency, including plant utility systems and process operations. Assessments in industrial facilities have highlighted opportunities for implementing best practices in industrial energy management, including the adoption of new, energy-efficient technologies and process and equipment improvements. Total annual savings opportunities of $201 million have been identified from the 40 completed assessments. Many of the participating industrial plants have implemented efficiency-improvement projects and already have realized total cost savings of more than $81 million annually. This paper provides an overview of the assessment efforts undertaken and presents a summary of the major energy and cost savings identified to date. The paper also discusses specific results from assessments conducted at four plants in the automotive manufacturing operations and supporting industries. These particular assessments were conducted at facilities that produce engine castings, plastic films used for glass laminates, forged components, and at a body spray painting plant.

Kelly Kissock, Arvind Thekdi, Len Bishop

2006-01-05T23:59:59.000Z

210

Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber-Reinforced Thermoplastic Automotive Composite  

DOE Green Energy (OSTI)

This report provides recommended durability-based design properties and criteria for a quais-isotropic carbon-fiber thermoplastic composite for possible automotive structural applications. The composite consisted of a PolyPhenylene Sulfide (PPS) thermoplastic matrix (Fortron's PPS - Ticona 0214B1 powder) reinforced with 16 plies of carbon-fiber unidirectional tape, [0?/90?/+45?/-45?]2S. The carbon fiber was Hexcel AS-4C and was present in a fiber volume of 53% (60%, by weight). The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Freedom Car and Vehicle Technologies and is closely coordinated with the Advanced Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for automotive structural applications. This document is in two parts. Part 1 provides design data and correlations, while Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects of short-time, cyclic, and sustained loadings; temperature; fluid environments; and low-energy impacts (e.g., tool drops and kickups of roadway debris) on deformation, strength, and stiffness. Guidance for design analysis, time-independent and time-dependent allowable stresses, rules for cyclic loadings, and damage-tolerance design guidance are provided.

Naus, Dan J [ORNL; Corum, James [ORNL; Klett, Lynn B [ORNL; Davenport, Mike [ORNL; Battiste, Rick [ORNL; Simpson, Jr., William A [ORNL

2006-04-01T23:59:59.000Z

211

The California greenhouse gas initiative and its implications to the automotive industry  

SciTech Connect

CAR undertook this investigation to better understand the costs and challenges of a local (state) regulation necessitating the implementation of alternative or advanced powertrain technology. CAR will attempt to add insight into the challenges that local regulations present to the automotive industry, and to contribute further to the discussion of how advanced powertrain technology may be used to meet such regulation. Any local law that (directly or indirectly) affects light duty motor vehicle fuel economy creates what in effect is a specialty market for powertrain technology. As such these small markets present significant challenges for automotive manufacturers. First, a small market with unique standards presents significant challenges to an industry that has sustained growth by relying on large volumes to achieve scale economies and deliver products at a cost acceptable to the consumer. Further, the challenges of the additional technology make it likely that any powertrain capable of meeting the stringent emissions standards will include costly additional components, and thus will be more costly to manufacture. It is likely that manufacturers would consider the following actions as steps to deliver products to meet the pending California regulatory requirements anticipated as a result of prior California legislation: (1) Substituting more fuel efficient vehicles: Bring in more efficient vehicles from global operations, while likely dropping existing domestic products. (2) Substituting powertrains: Add existing downsized engines (i.e. turbocharged versions, etc.) into California market-bound vehicles. (3) Powertrain enhancements: Add technology to current engine and transmission offerings to improve efficiency and reduce emissions. (4) Incorporating alternative powertrains into existing vehicle platforms: Develop a hybrid or other type of powertrain for an existing vehicle. (5) New powertrains and new platforms: Develop vehicles specifically intended to incorporate new powertrain technologies, materials and/or design (e.g. the General Motors EV1 or the Toyota Prius). These five actions represent the gamut from the least complicated solution to the most complex. They also generally represent the least expensive response to the most expensive. It is possible that the least expensive responses may be least likely to meet market demands while achieving required GHG emission limits. At the same time, the most expensive option may produce a vehicle that satisfies the GHG reduction requirements and meets some consumer requirements, but is far too costly to manufacture and sell profitably. The response of a manufacturer would certainly have to take market size, consumer acceptance, technology implication and cost, as well as internal capacities and constraints, into consideration. It is important to understand that individual companies may respond differently in the short term. However, it is probable that there would be a more consistent industry-wide response in the longer term. Options 1 and 2 present the simplest responses. A company may reach into its global portfolio to deliver vehicles that are more fuel-efficient. These vehicles are usually much smaller and significantly less powerful than current U.S. offerings. Industry respondents indicated that such a strategy may be possible but would likely be met with less than positive reaction from the buying public. A general estimate for the cost to homologize a vehicle--that is, to prepare an existing vehicle for entry into the United States provided all business conditions were met (reasonable product, capacity availability, etc.), would be approximately $50 million. Assuming an estimated cost for homologation to meet U.S. standards of $50 million and a 20,000 vehicle per year sales volume in California, the company would then incur a $2,500 per-vehicle cost to bring them into the market. A manufacturer may also choose to incorporate a more efficient powertrain into a vehicle already sold in the market. The costs associated with such a strategy would include reengineering

Smith, B. C.; Miller, R. T.; Center for Automotive Research

2006-05-31T23:59:59.000Z

212

Ceramic Technology Project  

DOE Green Energy (OSTI)

The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

Not Available

1992-03-01T23:59:59.000Z

213

Vehicle Technologies Office: 2008 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Archive to someone 8 Archive to someone by E-mail Share Vehicle Technologies Office: 2008 Archive on Facebook Tweet about Vehicle Technologies Office: 2008 Archive on Twitter Bookmark Vehicle Technologies Office: 2008 Archive on Google Bookmark Vehicle Technologies Office: 2008 Archive on Delicious Rank Vehicle Technologies Office: 2008 Archive on Digg Find More places to share Vehicle Technologies Office: 2008 Archive on AddThis.com... 2008 Archive #551 Truck Stop Electrification Sites December 29, 2008 #550 Clean Cities Coalitions December 22, 2008 #549 Biofuels Corridor extends from the Great Lakes to the Gulf of Mexico December 15, 2008 #548 Number of Gasoline Stations Continues to Decline in 2007 December 8, 2008 #547 Research and Development (R&D) Spending in the Automotive Industry December 1, 2008

214

Vehicle Technologies Office: 2004 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Archive to someone 4 Archive to someone by E-mail Share Vehicle Technologies Office: 2004 Archive on Facebook Tweet about Vehicle Technologies Office: 2004 Archive on Twitter Bookmark Vehicle Technologies Office: 2004 Archive on Google Bookmark Vehicle Technologies Office: 2004 Archive on Delicious Rank Vehicle Technologies Office: 2004 Archive on Digg Find More places to share Vehicle Technologies Office: 2004 Archive on AddThis.com... 2004 Archive #352 Automotive Industry Material Usage December 27, 2004 #351 Gasohol Use Is Up December 20, 2004 #350 U.S. Oil Imports: Top Ten Countries of Origin December 13, 2004 #349 Crude Oil Production: OPEC, the Persian Gulf, and the United States December 6, 2004 #348 U.S. Trade Deficit, 2001-2003 November 29, 2004 #347 The Relationship of VMT and GDP November 22, 2004

215

Vehicle Technologies Office: Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine, transmission, fuel system, and exhaust after-treatment systems. Electric drive vehicles use propulsion materials in their electric motors and power electronics. Developing advanced propulsion materials is essential to commercializing new, highly efficient automotive technologies that have technical requirements that existing powertrain materials cannot meet. The Vehicle Technology Office's (VTO) research in propulsion materials focuses on four areas: Materials for hybrid and electric drive systems Materials for high efficiency combustion engines Materials to enable energy recovery systems and control exhaust gases

216

Can Automotive Battery recycling Help Meet Lithium Demand?  

NLE Websites -- All DOE Office Websites (Extended Search)

Gaines, Jennifer B. Dunn, and Christine James Gaines, Jennifer B. Dunn, and Christine James Center for Transportation Research Argonne National Laboratory Can Automotive Battery Recycling Help Meet Lithium Demand? ACS Meeting New Orleans, LA April 7-11, 2013 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly

217

Energy and Environmental Impacts of Lithium Production for Automotive Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

B. Dunn and Linda Gaines B. Dunn and Linda Gaines Center for Transportation Research Argonne National Laboratory Energy and Environmental Impacts of Lithium Production for Automotive Batteries American Chemical Society New Orleans, LA April 7-11, 2013 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly

218

U.S. Department of Energy and the Automotive X PRIZE Foundation to Promote  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Automotive X PRIZE Foundation to the Automotive X PRIZE Foundation to Promote Clean, Energy-Efficient Vehicles U.S. Department of Energy and the Automotive X PRIZE Foundation to Promote Clean, Energy-Efficient Vehicles March 20, 2008 - 10:52am Addthis DOE to invest $3.5 million in public outreach effort NEW YORK, NY - In an effort to engage students and the public on the significance of increasing the use of more clean, cutting-edge and energy-efficient vehicles to help transform our nation's transportation sector, the U.S. Department of Energy (DOE) today announced plans to award nearly $3.5 million in a grant to the X PRIZE Foundation for the national education and outreach component of the Automotive X PRIZE (AXP) Education Program. The AXP, officially launched today, will award at least $10

219

Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications  

Fuel Cell Technologies Publication and Product Library (EERE)

In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Program’s Multiyear Re

220

Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications  

Fuel Cell Technologies Publication and Product Library (EERE)

This technical report describes DOE's assessment of the performance and cost of compressed hydrogen storage tank systems for automotive applications. The on-board performance (by Argonne National Lab)

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Managing novelty at the interfaces between concept and product : case studies for the automotive industry  

E-Print Network (OSTI)

Appearance of the product is a discerning factor for the consumers purchase decisions. Time from concept to product creation is a critical factor in the competitive automotive industry. The period to develop a product is ...

Zarewych, Lara Daniv, 1972-

2005-01-01T23:59:59.000Z

222

Adaptive control of time delay systems and applications to automotive control problems  

E-Print Network (OSTI)

This thesis is about the adaptive control of time delay systems with applications to automotive control problems. The stabilization of systems involving time delays is a difficult problem since the existence of a delay may ...

Yildiz, Yildiray

2009-01-01T23:59:59.000Z

223

Investigation of Polymer Resin/Fiber Compatibility in Natural Fiber Reinforced Composite Automotive Materials  

DOE Green Energy (OSTI)

Natural fibers represent a lower density and potentially lower cost alternative to glass fibers for reinforcement of polymers in automotive composites. The high specific modulus and strength of bast fibers make them an attractive option to replace glass not only in non-structural automotive components, but also in semi-structural and structural components. Significant barriers to insertion of bast fibers in the fiber reinforced automotive composite market include the high moisture uptake of this lignocellulosic material relative to glass and the weak inherent interface between natural fibers and automotive resins. This work seeks to improve the moisture uptake and resin interfacing properties of natural fibers through improved fundamental understanding of fiber physiochemical architecture and development of tailored fiber surface modification strategies.

Fifield, Leonard S.; Huang, Cheng; Simmons, Kevin L.

2010-01-01T23:59:59.000Z

224

Lean principle application in an automotive product development process with special emphasis on peer reviews  

E-Print Network (OSTI)

Global Automotive, a large US based, global manufacturer of automobiles, has made significant gains in manufacturing competitiveness, in part through application of a lean manufacturing approach to high volume assembly. A ...

Boren, Michael S. (Michael Stuart)

2009-01-01T23:59:59.000Z

225

A survey of front end modularity as an automotive architecture and its ability to deliver value  

E-Print Network (OSTI)

The partitioning of a system can and will dictate the creative space for a designer or engineer. This thesis will analyze how using a new automotive architecture known as a Front End Module (FEM) can affect a limited ...

Mahé, Vincent R. (Vincent Robert)

2008-01-01T23:59:59.000Z

226

ATTAP: Advanced Turbine Technology Applications Project. Annual report, 1991  

DOE Green Energy (OSTI)

Purpose of ATTAP is to bring the automotive gas turbine engine to a technology state at which industry can make commercialization decisions. Activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing.

Not Available

1992-12-01T23:59:59.000Z

227

Costs and benefits of automotive fuel economy improvement: A partial analysis  

SciTech Connect

This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

Greene, D.L. (Oak Ridge National Lab., TN (United States)); Duleep, K.G. (Energy and Environmental Analysis, Inc., Arlington, VA (United States))

1992-03-01T23:59:59.000Z

228

Costs and benefits of automotive fuel economy improvement: A partial analysis  

SciTech Connect

This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer`s surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer`s surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

Greene, D.L. [Oak Ridge National Lab., TN (United States); Duleep, K.G. [Energy and Environmental Analysis, Inc., Arlington, VA (United States)

1992-03-01T23:59:59.000Z

229

Costs and benefits of automotive fuel economy improvement: A partial analysis  

SciTech Connect

This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

Greene, D.L. (Oak Ridge National Lab., TN (United States)); Duleep, K.G. (Energy and Environmental Analysis, Inc., Arlington, VA (United States))

1992-03-01T23:59:59.000Z

230

Technology@TMS: Online Article  

Science Conference Proceedings (OSTI)

... markets, including electronics, solar energy, telecommunications, pharmaceuticals, building and renovation, appliances, automotive, household furnishings, ...

231

Modular PM Motor Drives for Automotive Traction Applications  

DOE Green Energy (OSTI)

This paper presents modular permanent magnet (PM) motor drives for automotive traction applications. A partially modularized drive system consisting of a single PM motor and multiple inverters is described. The motor has multiple three-phase stator winding sets and each winding set is driven with a separate three-phase inverter module. A truly modularized inverter and motor configuration based on an axial-gap PM motor is then introduced, in which identical PM motor modules are mounted on a common shaft and each motor module is powered by a separate inverter module. The advantages of the modular approach for both inverter and motor include: (1) power rating scalability--one design meets different power requirements by simply stacking an adequate number of modules, thus avoiding redesigning and reducing the development cost, (2) increased fault tolerance, and (3) easy repairing. A prototype was constructed by using two inverters and an axial-gap PM motor with two sets of three-phase stat or windings, and it is used to assist the diesel engine in a hybrid electric vehicle converted from a Chevrolet Suburban. The effect of different pulse-width-modulation strategies for both motoring and regenerative modes on current control is analyzed. Torque and regenerative control algorithms are implemented with a digital signal processor. Analytical and initial testing results are included in the paper.

Su, G.J.

2001-10-29T23:59:59.000Z

232

Fatigue behavior and recommended design rules for an automotive composite  

DOE Green Energy (OSTI)

Fatigue curves (stress vs cycles to failure) were generated under a variety of conditions (temperatures, fluid environments, mean stresses, block loadings) for a candidate automotive structural composite. The results were used to (1) develop observations regarding basic fatigue behavioral characteristics and (2) establish fatigue design rules. The composite was a structural reaction injection-molded polyurethane reinforced with continuous strand, swirl-mat E-glass fibers. Tensile fatigue tests on specimens from a single plaque at {minus}40 F, room temperature, and 250 F provided the basic behavioral characteristics. It was found that when stress was normalized by the at-temperature ultimate tensile strength, the fatigue curves at the three temperatures collapsed into a single master curve. An assessment of the individual stress-strain loops throughout each test showed a progressive loss in stiffness and an increase in permanent strain, both of which are indicative of increasing damage. Fatigue tests on specimens from several plaques were used to develop a design fatigue curve, which was established by using a reduction factor of 20 on average cycles to failure. This factor assures that the stiffness loss during the design life is no greater than 10 percent. Fatigue reduction factors were established to account for various fluids. Reversed stress fatigue tests allowed a mean stress rule to be validated, and block loading tests were used to demonstrate the adequacy of Miner`s rule for cumulative fatigue damage.

Corum, J.M.; Battiste, R.L.; Ruggles, M.B.

1998-11-01T23:59:59.000Z

233

FY2000 Progress Report for the Advanced Technology Development Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Advanced Automotive Technologies 1000 Independence Avenue S.W. Washington, D.C. 20585-0121 FY 2000 Progress Report for the Advanced Technology Development Program Energy Efficiency and Renewable Energy Office of Transportation Technologies Office of Advanced Automotive Technologies Energy Management Team Raymond A. Sutula Energy Management Team Leader December 2000 This document highlights work sponsored by agencies of the U.S. Government. Neither the U.S. Government nor any agency, thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

234

Materials review for improved automotive gas-turbine engine. Final report  

DOE Green Energy (OSTI)

Advanced materials are the key to achieving the performance and fuel economy goals of improved automotive gas turbine engines. The potential role of superalloys, refractory alloys, and ceramics in the hottest sections of future engines that may be required to operate with turbine inlet temperatures as high as 1370/sup 0/C (2500/sup 0/F) is examined. These high temperature materials are reviewed. The characteristics of the best modern conventional superalloys, directionally solidified eutectics, oxide dispersion strengthened alloys, and tungsten fiber reinforced superalloys are reviewed; and the most promising alloys in each system are compared on the basis of maximum turbine blade temperature capability. The requirements for improved high temperature protective coatings and special fabrication techniques for these advanced alloys are discussed. Chromium, columbium, molybdenum, tantalum, and tungsten alloys are reviewed. On the basis of properties, cost, availability, and strategic importance, molybdenum alloys are found to be the most suitable refractory material for turbine wheels for mass produced engines. Ceramic material candidates are reviewed and ranked according to their probability of success in particular applications. Various forms of, and fabrication processes for both silicon nitride and silicon carbide, along with SiAlON's are investigated for use in high-stress and medium-stress high temperature environments. Low-stress glass-ceramic regenerator materials are also investigated. Treatment is given to processing requirements, such as coatings for oxidation/corrosion protection, joining methods, and machining technology. Economics of ceramic raw materials, and of various processing methods are discussed. Conclusions are drawn, and recommendations for areas of further research are proposed for consideration and/or adoption.

Belleau, C.; Ehlers, W.L.; Hagen, F.A.

1978-04-01T23:59:59.000Z

235

Damage tolerance design procedures for an automotive composite  

DOE Green Energy (OSTI)

Among the durability issues of concern in the use of composites in automobile structures is the damaging effects that low-energy impacts (e.g., tool drops and roadway kickups) might have on strength and stiffness. This issue was experimentally investigated, and recommended design evaluation procedures were developed for a candidate automotive structural composite--a structural reaction injection-molded polyurethane reinforced with continuous strand, swirl-mat E-glass fibers. Two test facilities were built to cover the range of impacts of interest--a pendulum device to characterize the effects of relative heavy objects at low velocities and an air gun to characterize the effects of relatively light objects at higher velocities. In all cases, the test specimen was a 9 x 9 x 1/8-in.-thick plate clamped on an 8-in.-diam circle. Sixty-five impact tests were performed. Included were tests using various impactor sizes and weights, tests at {minus}40 F, and tests on specimens that has been presoaked in water or exposed to battery acid. Damage areas were determined using ultrasonic C-scans, and the resulting areas were found to correlate with the quantity impactor mass to a power times velocity. A design curve was derived from the correlation and validated using dropped brick tests. To evaluate strength and stiffness reductions, the impacted plate specimens were cut into tensile, compressive, and fatigue test specimens that were used to determine reductions as a function of damage area. It was found that for design purposes, the strength reduction could be determined by representing the damage area by a circular hole of equivalent area.

Corum, J.M.; Battiste, R.L.

1998-11-01T23:59:59.000Z

236

REQUEST BY UNITED STATES AUTOMOTIVE MATERIALS PARTNERSHIP (USAMP) FOR AN ADVANCE WAIVER OF DOMESTIC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STATES AUTOMOTIVE MATERIALS STATES AUTOMOTIVE MATERIALS PARTNERSHIP (USAMP) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE PERFORMANCE OF DEPARTMENT OF ENERGY COOPERATIVE AGREEMENT NUMBER DE-FC05-960R22363 AND FOR SUBJECT INVENTIONS MADE UNDER ITS SUBCONTRACTS WITH LARGE, FOR- PROFIT BUSINESSES; DOE WAIVER DOCKET W(A)-95-001 [ORO- 593] USAMP has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the performance of cooperative agreement DE-FC05-950R22363 and Subject Inventions made under its subcontracts with large, for-profit businesses. Background The award of this cooperative agreement has been made in response to an unsolicited proposal from USAMP entitled "Automotive Lightweight Materials Program" whose objectives are closely

237

Durability of a continuous strand mat polymeric composite for automotive structural applications  

DOE Green Energy (OSTI)

A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their durability. Major durability issues are the effects of cyclic loadings, creep, automotive environments, and low-energy impacts on dimensional stability, strength, and stiffness. The U.S. Department of Energy is sponsoring a project at Oak Ridge National Laboratory to address these issues and to develop, in cooperation with the Automotive Composites Consortium, experimentally based, durability driven, design guidelines. The initial reference material is an isocyanurate reinforced with a continuous strand, swirl glass mat. This paper describes the basic deformation and failure behavior of the reference material, and it presents test results illustrating the property degradations caused by loading, time, and environmental effects. The importance of characterizing and understanding damage and how it leads to failure is also discussed. The results presented are from the initial phases of an ongoing project. The ongoing effort and plans are briefly described.

Corum, J.M.; McCoy, H.E. Jr.; Ruggles, M.B.; Simpson, W.A. Jr.

1995-12-31T23:59:59.000Z

238

Analysis of the potential for new automotive uses of wrought magnesium  

DOE Green Energy (OSTI)

The Center for Transportation Research at Argonne National Laboratory has performed a study for the Lightweight Materials Program within the US Department of Energy`s Office of Transportation Materials to evaluate the suitability of wrought magnesium and its alloys to replace steel or aluminum for automotive structural and sheet applications. Vehicle weight reduction is one of the major means available for improving automotive fuel efficiency. Although high-strength steels, Al, and polymers are already being used to achieve significant weight reductions, substantial additional weight reductions could be achieved by increased use of Mg (whose density is less than one-fourth that of steel and only two-thirds that of Al). This study shows that Mg sheet could be used in automotive body nonstructural and semistructural applications, whereas extrusions could be used in such structural applications as spaceframes. The primary barrier to such uses of wrought Mg is high cost.

Gaines, L.; Cuenca, R.; Wu, S. [Argonne National Lab., IL (United States); Stodolsky, F. [Argonne National Lab., IL (United States)]|[Argonne National Lab., Washington, DC (United States)

1996-02-01T23:59:59.000Z

239

Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report  

DOE Green Energy (OSTI)

This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

NONE

1998-12-01T23:59:59.000Z

240

Compatibility of alternative fuels with advanced automotive gas-turbine and Stirling engines. A literature survey  

DOE Green Energy (OSTI)

The application of alternative fuels in advanced automotive gas turbine and Stirling engines is discussed on the basis of a literature survey. These alternative engines are briefly described, and the aspects that will influence fuel selection are identified. Fuel properties and combustion properties are discussed, with consideration given to advanced materials and components. Alternative fuels from petroleum, coal, oil shale, alcohol, and hydrogen are discussed, and some background is given about the origin and production of these fuels. Fuel requirements for automotive gas turbine and Stirling engines are developed, and the need for certain research efforts is discussed. Future research efforts planned at Lewis are described. 52 references.

Cairelli, J.; Horvath, D.

1981-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

impact on competition as there are a variety of competing technologies in the domestic SOFC market. This advance waiver of the Government's rights in inventions is subject to...

242

Low Emission AMTEC Automotive Power System. Final report for Department of Energy Contract DE-FG02-94ER81696  

DOE Green Energy (OSTI)

This program investigated the potential for Alkali Metal Thermal to Electric Converter (AMTEC) technology to be useful in automotive power system applications. AMTEC, a thermally regenerative electrochemical energy conversion system, converts heat into electricity from a heat source at 750 C to 850 C and a radiator at 200 C to 350 C. AMTEC uses external combustion with correspondingly low emission of NO{sub x} and hydrocarbons, and can tolerate essentially any hydrocarbon fuel. Efficiencies of 20% to 30% are projected to be feasible for systems of 25 kWe to 40 kWe peak output. The research program has shown that there are significant advantages to be achieved if AMTEC systems can be made cost effective for vehicle applications. Among these are (1) higher efficiency at part load than IC engines can yield, (2) omnifuel capability, and (3) low noise and low emission of pollutants. Demonstrated lifetimes already above 12,000 hours should be adequate for most vehicle applications. In major production, AMTEC costs are projected to reach $1/Watt, a value still too high for widespread automotive main power application. AMTEC's unique capabilities for low emissions, all-fuel operation, and insensitivity to ambient temperature, however, do make it a potential option for specialized vehicle applications needing these properties.

Hunt, Thomas K.

2001-04-17T23:59:59.000Z

243

Managing the implementation of automotive emission control technologies using systems engineering principles  

E-Print Network (OSTI)

In the 1940s and 1950s poor air quality in major metropolitan areas throughout the United States started to negatively influence the health of citizens throughout the country. After numerous studies the government concluded ...

Penney, John, 1974-

2004-01-01T23:59:59.000Z

244

The Market Acceptance of Advanced Automotive Technologies (MA3T) Model  

E-Print Network (OSTI)

on campus pedestrian walkways. 3. DEFINITIONS Motorized vehicle: Electric or gas powered cars, trucks.15 AREA: Risk Management SUBJECT: Pedestrian Safety May 25, 2011 Page 1 of 3 1. PURPOSE This document between motorized vehicles and pedestrians. This policy applies to all System employees, students

245

Market Concepts, Competing Technologies and Cost Challenges for Automotive and Stationary Applications  

E-Print Network (OSTI)

2000). 13. Allied Business Intelligence, ‘Stationary Fuelthis market. Allied Business Intelligence has forecast that

Lipman, Todd; Sperling, Daniel

2003-01-01T23:59:59.000Z

246

ESTIMATING THE IMPACT OF DEMOGRAPHICS AND AUTOMOTIVE TECHNOLOGIES ON GREENHOUSE GAS  

E-Print Network (OSTI)

). The Toyota Prius has a reported EPA fuel consumption rate of #12;R. McNally and B. Hellinga 2 4.5L/100km (Toyota Prius and Honda Insignt) are lower than similarly sized cars, powered by conventional gasoline

Hellinga, Bruce

247

Market Concepts, Competing Technologies and Cost Challenges for Automotive and Stationary Applications  

E-Print Network (OSTI)

solid-oxide fuel cell (SOFC) and molten carbonate fuelfuel cell systems or more, SOFC and MCFC systems are beingin the higher temperature SOFC and MCFC types, and is the

Lipman, Todd; Sperling, Daniel

2003-01-01T23:59:59.000Z

248

INTRODUCTION The U.S. Department of Energy's (DOE) Office of Advanced Automotive Technologies conducts research  

E-Print Network (OSTI)

conducts research and development on advanced rechargeable batteries for application in electric vehicles (EVs) and hybrid electric vehicle (HEV) systems. Problems impeding the development of high), which develops advanced batteries for EVs, and the Partnership for a New Generation of Vehicles (PNGV

Kwak, Juhyoun

249

US DOE Sponsored Graduate Automotive Technology Education (GATE) Program at Penn State Emphasizing  

E-Print Network (OSTI)

- power in-vehicle energy storage for hybrid electric and fuel cell vehicles covering the fundamental into energy storage curriculum including vehicle topologies, advanced combustion, fuel cells, power from DOE. ME 597F HIL Advanced Vehicles (3) Contact: Joel R. Anstrom Director of Penn State GATE Center

Lee, Dongwon

250

Case Study- Steam System Improvements at Dupont Automotive Marshall Laboratory  

E-Print Network (OSTI)

Dupont's Marshall Laboratory is an automotive paint research and development facility in Philadelphia, Pennsylvania. The campus is comprised of several buildings that are served by Trigen-Philadelphia Energy Corporation's district steam loop. In 1996 Dupont management announced that it was considering moving the facility out of Philadelphia primarily due to the high operating cost compared to where they were considering relocating. The city officials responded by bringing the local electric and gas utilities to the table to negotiate better rates for Dupont. Trigen also requested the opportunity to propose energy savings opportunities, and dedicated a team of engineers to review Dupont's steam system to determine if energy savings could be realized within the steam system infrastructure. As part of a proposal to help Dupont reduce energy costs while continuing to use Trigen's steam, Trigen recommended modifications to increase energy efficiency, reduce steam system maintenance costs and implement small scale cogeneration. These recommendations included reducing the medium pressure steam distribution to low pressure, eliminating the medium pressure to low pressure reducing stations, installing a back pressure steam turbine generator, and preheating the domestic hot water with the condensate. Dupont engineers evaluated these recommended modifications and chose to implement most of them. An analysis of Dupont's past steam consumption revealed that the steam distribution system sizing was acceptable if the steam pressure was reduced from medium to low. After a test of the system and a few modifications, Dupont reduced the steam distribution system to low pressure. Energy efficiency is improved since the heat transfer losses at the low pressure are less than at the medium pressure distribution. Additionally, steam system maintenance will be significantly reduced since 12 pressure reducing stations are eliminated. With the steam pressure reduction now occurring at one location, the opportunity existed to install a backpressure turbine generator adjacent to the primary pressure reducing station. The analysis of Dupont's steam and electric load profiles demonstrated that cost savings could be realized with the installation of 150 kW of self-generation. There were a few obstacles, including meeting the utility's parallel operation requirements, that made this installation challenging. Over two years have passed since the modifications were implemented, and although cost savings are difficult to quantify since process steam use has increased, the comparison of steam consumption to heating degree days shows a reducing trend. Dupont's willingness to tackle energy conservation projects without adversely affecting their process conditions can be an example to other industrial steam users.

Larkin, A.

2002-04-01T23:59:59.000Z

251

Reinventing the Industrial Heartland: Supply Chain Sustainability and the New Automotive Industry  

E-Print Network (OSTI)

for a new mobility infrastructure. In this strategy, the auto is a sustainably built, high tech component1 Report Reinventing the Industrial Heartland: Supply Chain Sustainability and the New Automotive in mobility and the auto of the future, through the German experience Background This conference for 50

Sheridan, Jennifer

252

A high-voltage low-power DC-DC buck regulator for automotive applications  

Science Conference Proceedings (OSTI)

This work presents a High-Voltage Low-Power CMOS DC-DC buck regulator for automotive applications. The overall system, including the high and low voltage analog devices, the power MOS and the low voltage digital devices, was realized in the Austriamicrosystems ... Keywords: DC-DC regulator, buck converter, current control, low quiscent current, pulse frequency modulation

G. Pasetti; L. Fanucci; R. Serventi

2010-03-01T23:59:59.000Z

253

Aero?acoustic predictions of automotive dashboard HVAC (heating, ventilating, and air?conditioning ducts).  

Science Conference Proceedings (OSTI)

The flow?induced noisegenerated by automotive climate control systems is today emerging as one of the main noisesources in a vehicle interior. Numerical simulation offers a good way to analyze these mechanisms and to identify the aerodynamic noisesources in an industrial context driven by permanent reduction in programs timing and development costs

Stephane Detry; Julien Manera; Yves Detandt; Diego d'Udekem

2010-01-01T23:59:59.000Z

254

An observer looks at the cell temperature in automotive battery packs  

E-Print Network (OSTI)

An observer looks at the cell temperature in automotive battery packs Maxime Deberta , Guillaume.bloch@univ-lorraine.fr Abstract The internal temperature of Li-ion batteries for electric or hybrid vehicles is an important measurement and a model. This paper presents the simplified modelling of heat transfers in a battery module

Paris-Sud XI, Université de

255

Acoustic Survey of a 3/8-Scale Automotive Wind Tunnel  

Science Conference Proceedings (OSTI)

An acoustic survey that consists of insertion loss and flow noise measurements was conducted at key locations around the circuit of a 3/8-scale automotive acoustic wind tunnel. Descriptions of the test, the instrumentation, and the wind tunnel facility ...

Jr Earl R. Booth; Romberg Gary; Hansen Larry; Lutz Ron

1996-10-01T23:59:59.000Z

256

Durability of polymer matrix composites for automotive structural applications: A state-of-the-art review  

DOE Green Energy (OSTI)

A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their known durability. Major durability issues are the effects that cyclic loadings, creep, automotive fluid environments, and low-energy impacts have on dimensional stability, strength, and stiffness throughout the required life of a composite component. This report reviews the current state of understanding in each of these areas. It also discusses the limited information that exists on one of the prime candidate materials for automotive structural applications--an isocyanurate reinforced with a continuous strand, swirl mat. Because of the key role that nondestructive evaluations must play in understanding damage development and progression, a chapter is included on ultrasonic techniques. A final chapter then gives conclusions and recommendations for research needed to resolve the various durability issues. These recommendations will help provide a sound basis for program planning for the Durability of Lightweight Composite Structures Project sponsored by the US Department of Energy in cooperation with the Automotive Composites Consortium of Chrysler, Ford, and General Motors.

Corum, J.M.; Simpson, W.A. Jr.; Sun, C.T.; Talreja, R.; Weitsman, Y.J.

1995-07-01T23:59:59.000Z

257

Social media in the product development process of the automotive industry: a new approach  

Science Conference Proceedings (OSTI)

This paper introduces a new methodology for implementing social media monitoring into an important stage of the innovation process within the automotive industry -- the prototype stage. The information gathered on social media channels was used for project ... Keywords: electric mobility, electric vehicles, product development, social media monitoring, social networking sites

Andreas Klein, Götz Spiegel

2013-07-01T23:59:59.000Z

258

Fourth international symposium on automotive propulsion systems. Volume I. [Eighteen papers  

DOE Green Energy (OSTI)

A pre-conference draft is given (in five volumes) of the proceedings of the 4th International Symposium on Automotive Propulsion Systems, held April 18-22, 1977, in Washington, D.C. Volume I contains eighteen papers; a separate abstract was prepared for each for ERDA Energy Research Abstracts (ERA).

Not Available

1977-01-01T23:59:59.000Z

259

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Biofuels Biofuels Biotechnology and Medecine Biotechnology & Medicine Chemistry Developing World Energy Efficient Technologies Energy Environmental Technologies...

260

Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) ceramic design manual  

SciTech Connect

This ceramic component design manual was an element of the Advanced Turbine Technology Applications Project (ATTAP). The ATTAP was intended to advance the technological readiness of the ceramic automotive gas turbine engine as a primary power plant. Of the several technologies requiring development before such an engine could become a commercial reality, structural ceramic components represented the greatest technical challenge, and was the prime focus of the program. HVTE-TS, which was created to support the Hybrid Electric Vehicle (HEV) program, continued the efforts begun in ATTAP to develop ceramic components for an automotive gas turbine engine. In HVTE-TS, the program focus was extended to make this technology applicable to the automotive gas turbine engines that form the basis of hybrid automotive propulsion systems consisting of combined batteries, electric drives, and on-board power generators as well as a primary power source. The purpose of the ceramic design manual is to document the process by which ceramic components are designed, analyzed, fabricated, assembled, and tested in a gas turbine engine. Interaction with ceramic component vendors is also emphasized. The main elements of the ceramic design manual are: an overview of design methodology; design process for the AGT-5 ceramic gasifier turbine rotor; and references. Some reference also is made to the design of turbine static structure components to show methods of attaching static hot section ceramic components to supporting metallic structures.

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Ceramic Technology for Advanced Heat Engines Project  

DOE Green Energy (OSTI)

The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

Not Available

1990-08-01T23:59:59.000Z

262

Ceramic Technology Project. Semiannual progress report for April 1993 through September 1993  

DOE Green Energy (OSTI)

The Ceramic Technology Project was originally developed by the Department of Energy`s Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS`s Materials Development Program, was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. During the course of the Ceramic Technology Project, remarkable progress has been made in the development of reliable structural ceramics. However, further work is needed to reduce the cost of ceramics to facilitate their commercial introduction, especially in the highly cost-sensitive automotive market. The work described in this report is organized according to the following WBS project elements: Project Management and Coordination; Materials and Processing; Materials Design Methodology; Data Base and Life Prediction; and Technology Transfer. This report includes contributions from all currently active project participants. Separate abstracts were prepared for the 47 projects reported here.

Not Available

1994-04-01T23:59:59.000Z

263

Conservation and renewable energy technologies for transportation  

DOE Green Energy (OSTI)

The Office of Transportation Technologies (OTT) is charged with long-term, high-risk, and potentially high-payoff research and development of promising transportation technologies that are unlikely to be undertaken by the private sector alone. OTT activities are designed to develop an advanced technology base within the US transportation industry for future manufacture of more energy-efficient, fuel-flexible, and environmentally sound transportation systems. OTT operations are focused on three areas: advanced automotive propulsion systems including gas turbines, low heat rejection diesel, and electric vehicle technologies; advanced materials development and tribology research; and research, development, demonstration, test, and evaluation (including field testing in fleet operations) of alternative fuels. Five papers describing the transportation technologies program have been indexed separately for inclusion on the data base.

Not Available

1990-11-01T23:59:59.000Z

264

Technology Partnerships Office  

Science Conference Proceedings (OSTI)

... Mechanical engines Quantifies noise and vibration in automotive and airplane ... and compensated by means of a voltage-controlled oscillator driving ...

265

Automotive component product development enhancement through multi-attribute system design optimization in an integrated concurrent engineering framework  

E-Print Network (OSTI)

Automotive industry is facing a tough period. Production overcapacity and high fixed costs constrain companies' profits and challenge the very same existence of some corporations. Strangulated by the reduced cash availability ...

Usan, Massimo, 1967-

2005-01-01T23:59:59.000Z

266

Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications: 2010 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct?hydrogen proton ex

267

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report estimates fuel cell system cost for systems produced in the years 2007, 2010, and 2015, and is the first annual update of a comprehensive automotive fuel cell cost analysis.

268

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

269

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2009 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exch

270

What matters most : researching the critical factors for maximizing automotive innovation profitability, and their implications of systems-based innovations  

E-Print Network (OSTI)

It is predicted by many in the industry that over the next decade automotive OEM's will look more and more like "vehicle-brand owners," focusing efforts on branding, marketing, and building a stronger retail channel. This ...

Clark, Nathan A. (Nathan Allen), 1972-

2004-01-01T23:59:59.000Z

271

2173333115 Modeling of an Automotive Air Conditioning Compressor  

E-Print Network (OSTI)

Center was founded in 1988 with a grant from the estate of Richard W. Kritzer, the founder of Peerless of America Inc. A State of Illinois Technology Challenge Grant helped build the laboratory facilities. The ACRC receives continuing support from the Richard W. Kritzer Endowment and the National Science Foundation. Thefollowing organizations have also become sponsors of the Center. Acustar Division of Chrysler

J. H. Darr; R. R. Crawford; Air Conditioning; R. R. Crawford; Principal Investigator; The Air Conditioning; Joseph Hale Darr

1992-01-01T23:59:59.000Z

272

Ceramic Technology Project semiannual progress report, October 1992--March 1993  

Science Conference Proceedings (OSTI)

This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.

Johnson, D.R.

1993-09-01T23:59:59.000Z

273

Materials Development Program: Ceramic Technology Project bibliography, 1984--1992  

DOE Green Energy (OSTI)

The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

Not Available

1994-03-01T23:59:59.000Z

274

ME EET Seminar: Real-time Predictive Control: From Automotive Systems to  

NLE Websites -- All DOE Office Websites (Extended Search)

Real-time Predictive Control: From Automotive Systems to Real-time Predictive Control: From Automotive Systems to Energy Efficient Buildings Speaker(s): Francesco Borrelli Date: February 10, 2010 - 12:00pm Location: 90-3122 Hybrid systems are heterogeneous systems that exhibit both continuous and discrete dynamics. Over the last eight years we have focused on the development of systematic, real-time, predictive controller synthesis techniques for hybrid systems with constraints. In this talk I will first summarize our theoretical efforts starting from constrained optimal control design for hybrid systems with constraints. Then, I will show how these results can be used in order to develop a theory for distributed predictive control for large-scale systems. The second part of the talk presents a range of applications where the proposed techniques were used with great

275

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS, LLC FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UGCP-HO P.04,-07 UGCP-HO P.04,-07 * * STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS, LLC FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC36- 04G014319 ENTITLED "SOLID OXIDE FUEL CELL DEVELOPMENT FOR AUXILLARY POWER IN HEAVY DUTY VEHICLE APPLICATIONS"; W(A)-04-082; CH-1261 As set out in the attached waiver petition and in subsequent discussions with DOE patent counsel, Delphi Automotive Systems, LLC (Delphi) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above-identified cooperative agreement by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L.

276

Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications R. K. Ahluwalia, T. Q. Hua, and J-K Peng Argonne National Laboratory, Argonne, IL 60439 M. Kromer, S. Lasher, K. McKenney, K. Law, and J. Sinha TIAX LLC, Lexington, MA 02421 June 21, 2011 Executive Summary In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Program's Multiyear Research, Development, and Demonstration Plan. This joint performance (ANL) and cost analysis (TIAX) report summarizes the results of this assessment. These results should be considered only in conjunction with the assumptions used in selecting, evaluating, and

277

Experimental hydrogen-fueled automotive engine design data-base project. Volume 1. Executive summary report  

DOE Green Energy (OSTI)

A preliminary hydrogen-fueled automotive piston engine design data-base now exists as a result of a research project at the University of Miami. The effort, which is overviewed here, encompassed the testing of 19 different configurations of an appropriately-modified, 1.6-liter displacement, light-duty automotive piston engine. The design data base includes engine performance and exhaust emissions over the entire load range, generally at a fixed speed (1800 rpm) and best efficiency spark timing. This range was sometimes limited by intake manifold backfiring and lean-limit restrictions; however, effective measures were demonstrated for obviating these problems. High efficiency, competitive specific power, and low emissions were conclusively demonstrated.

Swain, M.R.; Adt, R.R. Jr.; Pappas, J.M.

1983-05-01T23:59:59.000Z

278

Design and development of a continuously variable ratio transmission for automotive vehicles. Final report  

DOE Green Energy (OSTI)

Work accomplished between July 1974 and October 1978 in a program directed toward the design and development of a continuously variable ratio transmission (CVT) for an automotive vehicle is reported. The following major accomplishments were achieved: the laboratory and mathematical projections establishing the viability of the program and the predicted attainment of the primary goal of fuel economy were verified; the proposed Concept Demonstration prototype hydromechanical transmission (HMT) was completed from design to operation; the HMT was thoroughly tested in the laboratory and on the road and its in-vehicle performance was verified by independent testing laboratories; and design of a second generation Pre-Production HMT has proceeded to the point of confirming the practicality of the automotive HMT size and weight; most of the necessary information has been generated which could permit its production cost/competitiveness to be evaluated. (LCL)

None

1978-09-30T23:59:59.000Z

279

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network (OSTI)

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four origin, gender, age, marital status, sexual orientation, status as a Vietnam-era veteran, or disability

280

Technology Transfer: Available Technologies  

Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you ...

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

09-33 09-33 Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications Nuclear Engineering Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne

282

Laser welding of automotive aluminum alloys to achieve defect-free, structurally sound and reliable welds  

SciTech Connect

The objective of this program was to seek improved process control and weldment reliability during laser welding of automotive aluminum alloys while retaining the high speed and accuracy of the laser beam welding process. The effects of various welding variables on the loss of alloying elements and the formation of porosity and other geometric weld defects such as underfill and overfill were studied both experimentally and theoretically.

DebRoy, T.

2000-11-17T23:59:59.000Z

283

Pollution prevention assessment for a manufacturer of automotive battery separators. Environmental research brief  

SciTech Connect

The WMAC team at the University of Louisville performed an assessment at a plant that manufactures automotive battery separators. Two types of separators-polyethylene/silica sheet and vinyl rib-are produced. The team`s report, detailing findings and recommendations, indicated that waste spill absorbents are generated in large quantities and at a significant waste management cost, and that waste reduction could result from using wringable, reusable aborbents.

Fleischman, M.; Schmidt, P.; Roberts, D.; Looby, G.P.

1995-08-01T23:59:59.000Z

284

Digital Innovation and the Division of Innovative Labor: Digital Controls in the Automotive Industry  

Science Conference Proceedings (OSTI)

In this study of the U.S. automobile industry, we highlight the way the division of innovative labor across firms in the supply chain can be influenced by a particular form of digital innovation known as “digital control systems.” Digital ... Keywords: automotive industry, digital control hierarchy, digital controls, digital innovation, division of innovative labor, dual-product hierarchy, inclusionary hierarchy, mirroring hypothesis, systems integration

Jaegul Lee; Nicholas Berente

2012-09-01T23:59:59.000Z

285

Ceramic technology for advanced heat engines project  

DOE Green Energy (OSTI)

The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

Not Available

1990-09-01T23:59:59.000Z

286

The Automotive X Prize rolls into Washington, DC 09/16/10 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Automotive X Prize rolls into Washington, DC 09/16/10 The Automotive X Prize rolls into Washington, DC 09/16/10 The Automotive X Prize rolls into Washington, DC 09/16/10 Addthis ProgressiveXPrizeEvent_September_16_2010_Peraves_187mpg 1 of 39 ProgressiveXPrizeEvent_September_16_2010_Peraves_187mpg IMG_8811 2 of 39 IMG_8811 IMG_8894 3 of 39 IMG_8894 IMG_8918 4 of 39 IMG_8918 X Prize 003 5 of 39 X Prize 003 X Prize 004 6 of 39 X Prize 004 X Prize 005 7 of 39 X Prize 005 X Prize 014 8 of 39 X Prize 014 X Prize 015 9 of 39 X Prize 015 X Prize 016 10 of 39 X Prize 016 X Prize 018 11 of 39 X Prize 018 X Prize 021 12 of 39 X Prize 021 X Prize 022 13 of 39 X Prize 022 X Prize 023 14 of 39 X Prize 023 X Prize 026 15 of 39 X Prize 026 X Prize 027 16 of 39 X Prize 027 X Prize 029 17 of 39 X Prize 029 X Prize 035 18 of 39 X Prize 035 X Prize 039 19 of 39 X Prize 039

287

Evaluation of Power Line Carrier Technologies for Plug-In Electric Vehicle Communications  

Science Conference Proceedings (OSTI)

In support of the Society of Automotive Engineers (SAE) efforts to develop standard means of communication with plug-in electric vehicles (PEVs), EPRI conducted an evaluation of several power line carrier (PLC) technologies. Evaluation of the technologies was based on a test plan developed in the SAE Hybrid Task Force. Direct PEV communication enables signaling of grid conditions to the PEV allowing for remote, intelligent management of vehicle charging. The interface can also support the use of ...

2012-12-12T23:59:59.000Z

288

Emerging Technology and Architecture Approaches for Plug-in Electric Vehicles to Smart Grid Connectivity  

Science Conference Proceedings (OSTI)

This report provides an overview of the latest advances in technologies evolving to facilitate plug-in electric vehicles (PEVs) to Smart Grid integration. It reiterates applicable requirements based on fundamental principles as well as provides a status on the evolving relevant standards space. Multiple technological approaches are presented, compared, and contrasted; and an update on the status of each is provided. The document concludes with early recommendations for utility and automotive industry pra...

2011-12-21T23:59:59.000Z

289

Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems  

DOE Green Energy (OSTI)

The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

Nuvera Fuel Cells

2005-04-15T23:59:59.000Z

290

Trends and new developments in automotive fuel economy  

Science Conference Proceedings (OSTI)

The significant improvements in passenger car fuel economy that have been achieved up to the present time are identified, and the changes that have produced these improvements are examined in detail. Included are several comparisons of domestic versus foreign vehicles. The potential for further increases in fuel economy is then reviewed by examining the technological, marketing/economic, and other significant factors that will affect future fuel economy levels. Special attention is given to the effect that changing market mix has on corporate average fuel economy and to the future benefits that may be realized through the use of continuously variable transmissions, adiabatic diesel engines, and improved lubricants.

Simpson, B.H.

1985-01-01T23:59:59.000Z

291

EERE: Vehicle Technologies Office Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home Events Fact of the Week Features News About the Program Budget Mission, Vision, and Goals National Laboratories Organization and Contacts Partnerships U.S. DRIVE Partnership Roadmap and Other Documents 21st Century Truck Partners Technical Goals and Teams Plans, Implementation, and Results Deployment Clean Cities Educational Activities Graduate Automotive Technology Education (GATE) Energy Policy Act (EPAct) EV Everywhere Grand Challenge Goals Research & Development Testing and Analysis Workplace Charging Benefits of Joining Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Financial Opportunities Information Resources Analysis Annual Progress Reports Awards and Patents Conferences Directions in Engine-Efficiency and Emissions Research (DEER) Conference

292

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 15, NO. 3, MARCH 2007 403 Special Issue on Control  

E-Print Network (OSTI)

, traction control, and active safety systems that have the potential to decrease the number and severity powerplants (such as fuel cells), to issues in transmission, driveline, and integrated pow- ertrain control researched alternative powerplant technology for automotive vehicles, which holds promise for positive

Brennan, Sean

293

Fuel Cell Technologies Office: Accomplishments and Progress  

NLE Websites -- All DOE Office Websites (Extended Search)

Accomplishments and Progress Accomplishments and Progress The U.S. Department of Energy's (DOE's) efforts have greatly advanced the state of the art of hydrogen and fuel cell technologies-making significant progress toward overcoming many of the key challenges to widespread commercialization. DOE has also made major advances by demonstrating and validating the technologies under real-world conditions, supporting early markets through Recovery Act deployments, and leveraging domestic and international partnerships to advance the pace of commercialization. See the Fuel Cell Technologies Office's accomplishments fact sheet. Reducing the Cost and Improving the Durability and Performance of Fuel Cells Chart showing the cost of the automotive fuel cell system, which is projected to a high-volume manufacturing of 500,000 units per year. In 2002, the cost of the automotive fuel cell system (including balance of plant and stack) was $275/kW. The cost decreased to $108/kW in 2006, to $94/kW in 2007, to $73/kW in 2008, $61/kW in 2009, to $51/kW in 2010, and to $49/kW in 2011. The target cost for 2017 is $30/kW.

294

Automotive and MHE Fuel Cell System Cost Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Vince Contini, Kathya Mahadevan, Fritz Eubanks, Vince Contini, Kathya Mahadevan, Fritz Eubanks, Jennifer Smith, Gabe Stout and Mike Jansen Battelle April 16, 2013 Manufacturing Cost Analysis of Fuel Cells for Material Handling Applications 2 Presentation Outline * Background * Approach * System Design * Fuel Cell Stack Design * Stack, BOP and System Cost Models * System Cost Summary * Results Summary 3 * 10 and 25 kW PEM Fuel Cells for Material Handling Equipment (MHE) applications Background 5-year program to provide feedback to DOE on evaluating fuel cell systems for stationary and emerging markets by developing independent models and cost estimates * Applications - Primary (including CHP) power, backup power, APU, and material handling * Fuel Cell Types - 80°C PEM, 180°C PEM, SOFC technologies

295

STATEMENT OF CONSIDERATIONS REQUEST BY ADVANCED TECHNOLOGY MATERIALS, INC.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(ATMI) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS TO INVENTIONS MADE UNDER COOPERATIVE AGREEMENT NUMBER DE-FC04-02AL67616, DOE WAIVER NO. W(A) 02-054. The Petitioner, ATMI, has requested a waiver of all domestic and foreign patent rights to inventions that may be conceived or first actually reduced to practice in the course of ATMI's subcontract work for United Technologies Corporation Fuel Cells (UTCFC) under Cooperative Agreement Number DE-FC04-02AL67616 entitled "The Development of Sensors for Automotive Fuel Cell Systems" with the U.S. Department of Energy (DOE). The work to be done under the cooperative agreement will be the development of gas sensors for use in automotive fuel cell systems. The work to be done under the subcontract will be the design and development of a novel micro-machined hydrogen

296

Next Generation Bipolar Plates for Automotive PEM Fuel Cells  

DOE Green Energy (OSTI)

The results of a successful U.S. Department of Energy (DoE) funded two-year $2.9 MM program lead by GrafTech International Inc. (GrafTech) are reported and summarized. The program goal was to develop the next generation of high temperature proton exchange membrane (PEM) fuel cell bipolar plates for use in transportation fuel cell applications operating at temperatures up to 120 °C. The bipolar plate composite developed during the program is based on GrafTech’s GRAFCELL? resin impregnated flexible graphite technology and makes use of a high temperature Huntsman Advanced Materials resin system which extends the upper use temperature of the composite to the DoE target. High temperature performance of the new composite is achieved with the added benefit of improvements in strength, modulus, and dimensional stability over the incumbent resin systems. Other physical properties, including thermal and electrical conductivity of the new composite are identical to or not adversely affected by the new resin system. Using the new bipolar plate composite system, machined plates were fabricated and tested in high temperature single-cell fuel cells operating at 120 °C for over 1100 hours by Case Western Reserve University. Final verification of performance was done on embossed full-size plates which were fabricated and glued into bipolar plates by GrafTech. Stack testing was done on a 10-cell full-sized stack under a simulated drive cycle protocol by Ballard Power Systems. Freeze-thaw performance was conducted by Ballard on a separate 5-cell stack and shown to be within specification. A third stack was assembled and shipped to Argonne National Laboratory for independent performance verification. Manufacturing cost estimate for the production of the new bipolar plate composite at current and high volume production scenarios was performed by Directed Technologies Inc. (DTI). The production cost estimates were consistent with previous DoE cost estimates performed by DTI for the DoE on metal plates. The final result of DTI’s analysis for the high volume manufacturing scenario ($6.85 /kW) came in slightly above the DoE target of $3 to $5/kW. This estimate was derived using a “Best Case Scenario” for many of the production process steps and raw material costs with projections to high volumes. Some of the process improvements assumed in this “Best Case Scenario” including high speed high impact forming and solvent-less resins, have not yet been implemented, but have a high probability of potential success.

Orest Adrianowycz; Julian Norley; David J. Stuart; David Flaherty; Ryan Wayne; Warren Williams; Roger Tietze; Yen-Loan H. Nguyen; Tom Zawodzinski; Patrick Pietrasz

2010-04-15T23:59:59.000Z

297

Technology Search  

home \\ technologies \\ search. Technologies: Ready-to-Sign Licenses: Software: Patents: Technology Search. ... Operated by Lawrence Livermore National Security, LLC, ...

298

STATEMENT OF CONSIDERATIONS ADVANCE CLASS WAIVER OF PATENT RIGHTS FOR TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRANSPORTATION ELECTRIFICATION AND ADVANCED AUTOMOTIVE TRANSPORTATION ELECTRIFICATION AND ADVANCED AUTOMOTIVE BATTERIES; DOE FUNDING OPPORTUNITY ANNOUNCMENT DE-FOA- 0000028; W(C)-09-003; CH1509 The Department of Energy Vehicle Technologies (VT) Program anticipates providing federal assistance in the form of grants for research and development to establish development, demonstration, evaluation, and education projects to accelerate the market introduction and penetration of advanced electric drive vehicles. The vehicles and electric technologies should then realize a fast market introduction and reach high volume production. A key objective of the VT program is to accelerate the development and production of various electric drive vehicle systems to substantially reduce petroleum consumption, and on~ of the electric drive technologies that will be

299

DOE Fuel Cell Technologies Program Record 12020: Fuel Cell System Cost - 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Record Record Record #: 12020 Date: August 21, 2012 Title: Fuel Cell System Cost - 2012 Update to: Record 11012 Originator: Jacob Spendelow and Jason Marcinkoski Approved by: Sunita Satyapal Date: September 14, 2012 Item: The cost of an 80-kW net automotive polymer electrolyte membrane (PEM) fuel cell system based on 2012 technology 1 and operating on direct hydrogen is projected to be $47/kW when manufactured at a volume of 500,000 units/year. Rationale: The DOE Fuel Cell Technologies Program supports analysis projects that perform detailed analysis to estimate cost status of fuel cell systems, updated on an annual basis [1]. In fiscal year 2012, Strategic Analysis, Inc. (SA) updated their 2011 cost analysis of an 80-kW net direct hydrogen PEM automotive fuel cell system, based on 2012 technology and projected to a

300

Hybrid vehicle turbine engine technology support (HVTE-TS) project. 1995--1996 annual report  

DOE Green Energy (OSTI)

This report presents a summary of technical work accomplished on the Hybrid Vehicle Turbine Engine--Technology Support (HVTE-TS) Project during calendar years 1995 and 1996. Work was performed under an initial National Aeronautics and Space Administration (NASA) contract DEN3-336. As of September 1996 the contract administration was transferred to the US Department of Energy (DoE) Chicago Operations Office, and renumbered as DE-AC02-96EE50553. The purpose of the HVTE-TS program is to develop gas turbine engine technology in support of DoE and automotive industry programs exploring the use of gas turbine generator sets in hybrid-electric automotive propulsion systems. The program focus is directed to the development of four key technologies to be applied to advanced turbogenerators for hybrid vehicles: Structural ceramic materials and processes; Low emissions combustion systems; Regenerators and seals systems; and Insulation systems and processes. 60 figs., 9 tabs.

NONE

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Building Technologies Office: Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies Printable Version Share this resource Send a link to Building Technologies Office: Emerging Technologies to someone by E-mail Share Building Technologies Office: Emerging Technologies on Facebook Tweet about Building Technologies Office: Emerging Technologies on Twitter Bookmark Building Technologies Office: Emerging Technologies on Google Bookmark Building Technologies Office: Emerging Technologies on Delicious Rank Building Technologies Office: Emerging Technologies on Digg Find More places to share Building Technologies Office: Emerging Technologies on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Technology Research, Standards, & Codes Popular Links Success Stories Previous Next Lighten Energy Loads with System Design.

302

Actron Technology Corporation | Open Energy Information  

Open Energy Info (EERE)

Actron Technology Corporation Actron Technology Corporation Jump to: navigation, search Name Actron Technology Corporation Place Taoyuan, Taiwan Product Taiwan-based automotive diode manufacturer. Actron invests in an upgraded metallurgical-grade silicon plant in Russia. Coordinates 25.001909°, 121.304977° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.001909,"lon":121.304977,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

303

Three way conversion catalysts for automotive pollution abatement  

Science Conference Proceedings (OSTI)

The revisions to the Clean Air Act of 1990 and recent regulatory actions taken by the California Air Resources Board mandate the development of automobiles with much lower tailpipe emissions. For the original equipment manufacturers (OEM`s) to meet the target fleet emissions numbers for automobiles defined in California`s Low Emission Vehicle program, the OEM`s must qualify each model into one of the emissions categories defined in Table 1. The emissions are calculated using the Federal Test Procedure (FTP) protocol wherein a test vehicle fitted with a catalytic converter is driven on a chassis rolls over a tightly defined driving cycle. A key feature of the evaluation is that the FTP is conducted after the catalyst has dealt with 50,000 - 100,000 miles of raw engine exhaust. During the FTP, 50 - 90% of the total pollutants emitted to the atmosphere by the vehicle occurs immediately following the startup of the engine when the engine block and manifold am cold, and the catalytic converter has not reached high conversion efficiencies, and are known as {open_quotes}cold start{close_quotes} emissions. The stringency of the regulations becomes evident when to qualify for either Low Emission Vehicle (LEV) or Ultra Low Emission Vehicle (ULEV) status, the hydrocarbon engine out emissions of 2.0 g/mile, typical for a six cylinder vehicle, must be reduced over the entire FTP by 970/9 and 99%, respectively. These regulations spurred a variety of new technology thrusts aimed at attacking the cold start hydrocarbons including electrically heated catalysts, hydrocarbon traps, exhaust gas burners, and close coupled catalysts. This report describes the performance of palladium catalysts for the air pollution control of nitrogen oxides.

Burk, P.L.; Zhicheng Hu; Rabinowitz, H.N.; Tauster, S.J.; Chen, Shau-Lin F. [Engelhard Corp., Iselin, NJ (United States)

1996-12-31T23:59:59.000Z

305

Technology Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Homeland Security & Defense Homeland Security & Defense Information Technology & Communications Information Technology & Communications Sensors, Electronics &...

306

Design and development of an automotive propulsion system utilizing a Rankine cycle engine (water based fluid). Final report  

DOE Green Energy (OSTI)

Under EPA and ERDA sponsorship, SES successfully designed, fabricated and tested the first federally sponsored steam powered automobile. The automobile - referred to as the simulator - is a 1975 Dodge Monaco standard size passenger car with the SES preprototype Rankine cycle automotive propulsion system mounted in the engine compartment. In the latter half of 1975, the simulator successfully underwent test operations at the facilities of SES in Watertown, Massachusetts and demonstrated emission levels below those of the stringent federally established automotive requirements originally set for implementation by 1976. The demonstration was accomplished during testing over the Federal Driving Cycle on a Clayton chassis dynamometer. The design and performance of the vehicle are described.

Demler, R.L.

1977-09-01T23:59:59.000Z

307

Creep and creep-rupture behavior of a continuous strand, swirl mat reinforced polymer composite in automotive environments  

DOE Green Energy (OSTI)

Creep and creep-rupture behavior of an isocyanurate based polyurethane matrix with a continuous strand, swirl mat E-glass reinforcement was investigated for automotive applications. The material under stress was exposed to various automobile service environments. Results show that environment has substantial effects on its creep and creep-rupture properties. Proposed design guide lines and stress reduction factors were developed for various automotive environments. These composites are considered candidate structural materials for light weight and fuel efficient automobiles of the future.

Ren, W.; Brinkman, C.R. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

1998-12-31T23:59:59.000Z

308

Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply  

E-Print Network (OSTI)

A new metric for energy technology. ” Proc. of 15ththree alternative energy technologies, including solarselect the alternative energy technologies mainly based on

Yuan, Chris; Dornfeld, David

2009-01-01T23:59:59.000Z

309

The role of rare-earth dopants in nanophase zirconia catalysts for automotive emission control.  

DOE Green Energy (OSTI)

Rare earth (RE) modification of automotive catalysts (e.g., ZrO{sub 2}) for exhaust gas treatment results in outstanding improvement of the structural stability, catalytic functions and resistance to sintering at high temperatures. Owing to the low redox potential of nonstoichiometric CeO{sub 2}, oxygen release and intake associated with the conversion between the 3+ and 4+ oxidation states of the Ce ions in Ce-doped ZrO{sub 2} provide the oxygen storage capacity that is essentially to effective catalytic functions under dynamic air-to-fuel ratio cycling. Doping tripositive RE ions such as La and Nd in ZrO{sub 2}, on the other hand, introduces oxygen vacancies that affect the electronic and ionic conductivity. These effects, in conjunction with the nanostructure and surface reactivity of the fine powders, present a challenging problem in the development of better ZrO{sub 2}-containing three-way catalysts. We have carried out in-situ small-to-wide angle neutron diffraction at high temperatures and under controlled atmospheres to study the structural phase transitions, sintering behavior, and Ce{sup 3+} {leftrightarrow} Ce{sup 4+} redox process. We found substantial effects due to RE doping on the nature of aggregation of nanoparticles, defect formation, crystal phase transformation, and metal-support interaction in ZrO{sub 2} catalysts for automotive emission control.

Loong, C.-K.; Ozawa, M.

1999-07-16T23:59:59.000Z

310

Electrical signature analysis applications for non-intrusive automotive alternator diagnostics  

DOE Green Energy (OSTI)

Automotive alternators are designed to supply power for automobile engine ignition systems as well as charge the storage battery. This product is used in a large market where consumers are concerned with acoustic noise and vibration that comes from the unit. as well as overall quality and dependability. Alternators and generators in general are used in industries other than automotive, such as transportation and airline industries and in military applications. Their manufacturers are interested in pursuing state-of-the-art methods to achieve higher quality and reduced costs. Preliminary investigations of non-intrusive diagnostic techniques utilizing the inherent voltage signals of alternators have been performed with promising results. These techniques are based on time and frequency domain analyses of specially conditioned signals taken from several alternators under various test conditions. This paper discusses investigations that show correlations of the alternator output voltage to airborne noise production. In addition these signals provide insight into internal magnetic characteristics that relate to design and/or assembly problems.

Ayers, C.W.

1996-03-01T23:59:59.000Z

311

Evaluation of dissociated and steam-reformed methanol as automotive engine fuels  

SciTech Connect

Dissociated and steam reformed methanol were evaluated as automotive engine fuels. Advantages and disadvantages in using methanol in the reformed rather than liquid state are discussed. Engine dynamometer tests were conducted with a four cylinder, 2.3 liter, spark ignition automotive engine to determine performance and emission characteristics operating on simulated dissociated and steam reformed methanol (2H/sub 2/ + CO and 3H/sub 2/ + CO/sub 2/ respectively), and liquid methanol. Results are presented for engine performance and emissions as functions of equivalence ratio, at various throttle settings and engine speeds. Operation on dissociated and steam reformed methanol was characterized by flashback (violent propagation of a flame into the intake manifold) which limited operation to lower power output than was obtainable using liquid methanol. It was concluded that: an automobile could not be operated solely on dissociated or steam reformed methanol over the entire required power range - a supplementary fuel system or power source would be necessary to attain higher powers; the use of reformed methanol, compared to liquid methanol, may result in a small improvement in thermal efficiency in the low power range; dissociated methanol is a better fuel than steam reformed methanol for use in a spark ignition engine; and use of dissociated or steam reformed methanol may result in lower exhaust emissions compared to liquid methanol. 36 references, 27 figures, 3 tables.

Lalk, T.R.; McCall, D.M.; McCanlies, J.M.

1984-05-01T23:59:59.000Z

312

Vehicle Technologies Office: Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Glossary A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Adsorption: The adhesion of the molecules of gases, dissolved substances, or liquids in more or less concentrated form to the surface of solids or liquids with which they are in contact. Commercial adsorbent materials have enormous internal surfaces. AEMD (Automotive Electric Drive Motor): A U.S. Department of Energy program to develop low-cost traction drive motors for automotive applications. Aerosol: A cloud consisting of particles dispersed in a gas or gases. AIPM (Automotive Integrated Power Module) A U.S. Department of Energy program to integrate the power devices, control electronics, and thermal management of a vehicle into a single low-cost package that will meet all requirements for automotive motor control applications.

313

Available Technologies: Gasless Magnetron Sputtering for ...  

Optical films on flat panel displays for computers, cell phones, PDAs ; Tools and automotive parts; Medical implants;

314

Vendor / Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Brake Assessment Tools Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor...

315

Vendor / Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor...

316

Faience Technology  

E-Print Network (OSTI)

by Joanne Hodges. Faience Technology, Nicholson, UEE 2009Egyptian materials and technology, ed. Paul T. Nicholson,Nicholson, 2009, Faience Technology. UEE. Full Citation:

Nicholson, Paul

2009-01-01T23:59:59.000Z

317

Vehicle Technologies Office: U.S. DRIVE  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. DRIVE U.S. DRIVE Logo for U.S. DRIVE - Driving Research and Innovation for Vehicle efficiency and Energy sustainability. U.S. DRIVE stands for Driving Research and Innovation for Vehicle efficiency and Energy sustainability. It is a non-binding and voluntary government-industry partnership focused on advanced automotive and related infrastructure technology research and development (R&D). Specifically, the Partnership is a forum for pre-competitive technical information exchange among partners to discuss R&D needs, develop joint goals and technology roadmaps, and evaluate R&D progress for a broad range of technical areas. By providing a framework for frequent and regular interaction among technical experts in a common area of expertise, the Partnership -

318

2011 Vehicle Technologies Market Report  

DOE Green Energy (OSTI)

This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 58 through 61) and fuel use (Figures 64 through 66). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 68 through 77), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Cash for Clunkers program (Figures 87 and 88) and the Corporate Automotive Fuel Economy standard (Figures 90 through 99) and. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

Davis, Stacy Cagle [ORNL; Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL

2012-02-01T23:59:59.000Z

319

THE PERFORMANCE OF SMDS DIESEL FUEL MANUFACTURED BY SHELL'S GtL TECHNOLOGY  

DOE Green Energy (OSTI)

The Royal Dutch/Shell Group's (Shell's) Gas to Liquids (GtL) technology, better known as the Shell Middle Distillate Synthesis (SMDS) process, converts natural gas into diesel and other products via a modem improved Fisher-Tropsch synthesis. The diesel cut has very good cetane quality, low density, and virtually no sulphur and aromatics; such properties make it valuable as a diesel fuel with lower emissions than conventional automotive gas oil.

Clark, Richard H.

2000-08-20T23:59:59.000Z

320

Automotive autonomy  

Science Conference Proceedings (OSTI)

Self-driving cars are inching closer to the assembly line, thanks to promising new projects from Google and the European Union.

Alex Wright

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Technology Search Results | Brookhaven Technology ...  

There are no technology records available that match the search query. Find a Technology. Search our technologies by categories or by keywords.

322

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

test test Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Energy ENERGY EFFICIENT TECHNOLOGIES Aerosol Sealing Aerosol Remote Sealing System Clog-free Atomizing and Spray Drying Nozzle Air-stable Nanomaterials for Efficient OLEDs Solvent Processed Nanotube Composites OLEDS with Air-stable Structured Electrodes APIs for Online Energy Saving Tools: Home Energy Saver and EnergyIQ Carbon Dioxide Capture at a Reduced Cost Dynamic Solar Glare Blocking System Electrochromic Device Controlled by Sunlight Electrochromic Windows with Multiple-Cavity Optical Bandpass Filter Electrochromic Window Technology Portfolio Universal Electrochromic Smart Window Coating

323

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1NT41022; W(A)-03-022; CH-1146 1NT41022; W(A)-03-022; CH-1146 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Delphi Automotive Systems, L.L.C (Delphi) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above subject cooperative agreement. The waiver will apply to inventions made by Delphi employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L. 96-517, as amended, and National Laboratories. Referring to item 2 of Delphi's petition, the purpose of this agreement is the development of interconnects for solid oxide fuel cell systems. Delphi will investigate materials for the metal

324

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS (DELPHII) FOR AN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DELPHII) FOR AN DELPHII) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS TO INVENTIONS MADE UNDER COOPERATIVE AGREEMENT NUMBER DE-FC04-02AL67633, DOE WAIVER NO. W(A) 01-040. The Petitioner, Delphi, a subcontractor to Electricore, Inc (Electricore), has requested a waiver of all domestic and foreign patent rights to inventions that it may conceive or first reduce to practice in the course of work under Cooperative Agreement Number DE- FC04-02L67633 entitled "Lower Cost Wide Range Oxygen Sensor" with the U S. Department of Energy (DOE). The work to be done will be the development of a robust oxygen sensor for use in direct injection light duty diesel engines. The program goal is to create a low cost, wide range oxygen sensor compatible with high volume automotive use. Such sensors would be a

325

Evaluation of the Benefits Attributable to Automotive Lightweight Materials Program Research and Development Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

-237 -237 Evaluation of the Benefits Attributable to Automotive Lightweight Materials Program Research and Development Projects November 2001 Prepared by Sujit Das Oak Ridge National Laboratory Jean H. Peretz The University of Tennessee Bruce Tonn Oak Ridge National Laboratory DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: info@ntis.fedworld.gov Web site: http://www.ntis.gov/support/ordernowabout.htm

326

STATEMENT OF CONSIDERATIONS REQUEST BY DELPHI AUTOMOTIVE SYSTEMS FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2NT41246; W(A) 03-021 ; CH-1147 2NT41246; W(A) 03-021 ; CH-1147 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Delphi Automotive Systems, L.L.C (Delphi) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above subject cooperative agreement. The waiver will apply to inventions made by Delphi employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L. 96-517, as amended, and National Laboratories. Referring to item 2 of Delphi's petition, the purpose of this agreement is to develop 5 kW Solid Oxide Fuel Cell (SOFC) power systems for a range of fuels and applications. These

327

Integration Of The Security Sub-Modules Elements In The Automotive Industry  

Science Conference Proceedings (OSTI)

This study is addressed to obtain a design methodology for integrated security sub-modules (constituting the suspension and steering modules) in the car manufacturing industry. The sub-modules are made up of a steel structure and anchorage elements (rubber-metal or plastic-metal), which undergo separate surface treatments to prevent corrosion. Afterwards, the elements are traditionally joined by means of adhesives and screws. This process involves a great number of stages, low quality union methods and generation of corrosion areas that shorten its useful life.This methodology provides automotive suppliers an additional added value and cost reduction, allowing them to increase its competitiveness in a sector that faces the transition from the traditional supply chain to a strategic value chain.

Gallego, C.; Fernandez, M.; Caires, A. S. [CIDAUT, Research and Development in Transport and Energy (Spain); Canibano, E. [CIDAUT, Research and Development in Transport and Energy (Spain); Escuela Universitaria Politecnica de Valladolid, Dpto. de Construcciones Arquitectonicas, Ingenieria del Terreno y Mecanica de los Medios Continuos y Teoria de Estructuras (Spain)

2007-05-17T23:59:59.000Z

328

Use of infra-red thermography for automotive climate control analysis  

DOE Green Energy (OSTI)

In this paper, several automotive climate control applications for IR thermography are described. Some of these applications can be performed using conventional IR techniques. Others, such as visualizing the air temperature distribution within the cabin, at duct exits, and at heater and evaporator faces, require new experimental methods. In order to capture the temperature distribution within an airstream, a 0.25-mm-thick (0.01 inch) fiberglass screen is used. This screen can be positioned perpendicular or parallel to the flow to obtain three-dimensional spatial measurements. In many cases, the air flow pattern can be inferred from the resulting temperature distribution, allowing improved air distribution designs. In all cases, significant improvement in the speed, ease, and quantity of temperature distribution information can be realized with thermography as compared to conventional thermocouple array techniques. Comparisons are presented between IR thermography images and both thermocouple measurements and computational fluid dynamics (CFD) predictions.

Burch, S.D.; Hassani, V.; Penney, T.R.

1994-03-01T23:59:59.000Z

329

Automotive Stirling Engine Development Program. Quarterly technical progress report, October--December 1977  

DOE Green Energy (OSTI)

This report covers the first 3 months effort of the Ford/DOE Automotive Stirling Engine Development Program, specifically Task I which is Fuel Economy Assessment. At the beginning of this contract effort the projected fuel economy of the 4-215 Stirling engine was 21.16 MPG with a confidence level of 29 percent. Since that date, the fuel economy improvement projection of the 4-215 Stirling engine has been increased to 22.11 MPG, with a confidence level of 29 percent. Collection of fuel economy improvement data is directly related to engine durability. Engine durability has been limited. Since September 19, 1977 a total of 47.7 hours of engine running time has been accumulated using two engine builds. Progress is reported in sub-task studies of burners, preheaters, engine drive, blower system, power control, air-fuel ratio control, cooling system, and cycle control. (LCL)

Kitzner, E.W.

1978-01-01T23:59:59.000Z

330

Hydrogen storage via metal hydrides for utility and automotive energy storage applications. [HCl electrolysis for H/sub 2/--Cl/sub 2/ fuel cells  

DOE Green Energy (OSTI)

Brookhaven National Laboratory is currently supported by ERDA to develop the technology and techniques for storing hydrogen via metal hydrides. Hydrogen is able to react with a wide variety of metal and metal alloy materials to form hydride compounds of hydrogen and metals. These compounds differ in stability--some are relatively unstable and can be readily formed and decomposed at low temperatures. The use of these systems for hydrogen storage involves the design of heat exchanger and mass transfer systems, i.e., removal of heat during the charging reaction and addition of heat during the discharge reaction. The most notable example of a metal hydride material is iron titanium which shows promise of being economical for a number of near term hydrogen storage applications. Recent work and progress on the development of metal hydrides for hydrogen storage connected with utility energy storage applications and natural gas supplementation are discussed and electric-to-electric storage system is described in some detail. A system of energy storage involving the electrolysis of hydrochloric acid is described which would utilize metal hydrides to store the hydrogen. In addition, the use of metal hydrides for hydrogen storage in automotive systems is described.

Salzano, F J; Braun, C; Beaufrere, A; Srinivasan, S; Strickland, G; Reilly, J J; Waide, C

1976-08-01T23:59:59.000Z

331

The influence of surface topography on the forming friction of automotive aluminum sheet  

DOE Green Energy (OSTI)

Interest in utilizing aluminum alloys in automobiles has increased in recent years as a result of the desire to lower automobile weight and, consequently, increase fuel economy. While aluminum alloy use in cast parts has increased, outer body panel applications are still being investigated. The industry is interested in improving the formability of these sheet alloys by a combination of alloy design and processing. A different avenue of improving the formability of these alloys may be through patterning of the sheet surface. Surface patterns hold the lubricant during the forming process, with a resulting decrease in the sheet-die surface contact. While it has been speculated that an optimum surface pattern would consist of discrete cavities, detailed investigation into the reduction of forming friction by utilizing discrete patterns is lacking. A series of discrete patterns were investigated to determine the dependence of the forming friction of automotive aluminum alloys on pattern lubricant carrying capacity and on material strength. Automotive aluminum alloys used in outer body panel applications were rolled on experimental rolls that had been prepared with a variety of discrete patterns. All patterns for each alloy were characterized before and after testing both optically and, to determine pattern lubricant capacity, using three dimensional laser profilometry. A draw bead simulation (DBS) friction tester was designed and fabricated to determine the forming friction of the patterned sheets. Tensile testing and frictionless DBS testing were performed to ascertain the material properties of each sheet. The most striking result of this work was the inversely linear dependence of forming friction on the lubricant carrying capacity of the discrete patterns.

Kramer, P.A. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley National Lab., CA (United States)

1998-05-01T23:59:59.000Z

332

Technology Search Results | Brookhaven Technology ...  

Staff Directory; BNL People Technology Commercialization & Partnerships. Home; For BNL Inventors; ... a nonprofit applied science and technology organization. ...

333

Technology Search Results | Brookhaven Technology ...  

Non-Noble Metal Water Electrolysis Catalysts; Find a Technology. Search our technologies by categories or by keywords. Search ...

334

Technology Search Results | Brookhaven Technology ...  

BSA 08-04: High Temperature Interfacial Superconductivity; Find a Technology. Search our technologies by categories or by keywords. Search ...

335

Technology Search Results | Brookhaven Technology ...  

Receive Technology Updates. Get email notifications about new or improved technologies in your area of interest. Subscribe »

336

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Please refer to the list of technologies below for licensing and research Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Biotechnology and Medicine DIAGNOSTICS AND THERAPEUTICS CANCER CANCER PROGNOSTICS 14-3-3 Sigma as a Biomarker of Basal Breast Cancer ANXA9: A Therapeutic Target and Predictive Marker for Early Detection of Aggressive Breast Cancer Biomarkers for Predicting Breast Cancer Patient Response to PARP Inhibitors Breast Cancer Recurrence Risk Analysis Using Selected Gene Expression Comprehensive Prognostic Markers and Therapeutic Targets for Drug-Resistant Breast Cancers Diagnostic Test to Personalize Therapy Using Platinum-based Anticancer Drugs Early Detection of Metastatic Cancer Progenitor Cells

337

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Software and Information Technologies Software and Information Technologies Algorithm for Correcting Detector Nonlinearites Chatelet: More Accurate Modeling for Oil, Gas or Geothermal Well Production Collective Memory Transfers for Multi-Core Processors Energy Efficiency Software EnergyPlus:Energy Simulation Software for Buildings Tools, Guides and Software to Support the Design and Operation of Energy Efficient Buildings Flexible Bandwidth Reservations for Data Transfer Genomic and Proteomic Software LABELIT - Software for Macromolecular Diffraction Data Processing PHENIX - Software for Computational Crystallography Vista/AVID: Visualization and Allignment Software for Comparative Genomics Geophysical Software Accurate Identification, Imaging, and Monitoring of Fluid Saturated Underground Reservoirs

338

Advanced Modular Inverter Technology Development  

DOE Green Energy (OSTI)

Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

Adam Szczepanek

2006-02-04T23:59:59.000Z

339

Advanced Modular Inverter Technology Development  

SciTech Connect

Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

Adam Szczepanek

2006-02-04T23:59:59.000Z

340

Design and development of a continuously variable ratio transmission for an automotive vehicle. Phase IV. Quarterly progress report  

DOE Green Energy (OSTI)

Progress in the design and development of a continuously variable ratio transmission for an automotive vehicle is reported. The Major automotive hydromechanical transmission development problem continues to be the reduction of hydrostatic noise and the project plan, therefore, concentrated on the new hydrostatic module. The potential for achieving acceptably low noise levels in the second generation hydromechanical transmission is to be assessed by comparing the noise levels of the hydrostatic modules for the first and second generation transmissions. A set of twelve test points was selected comprising of road load steady state and wide-open-throttle acceleration at 10, 20, 30, 40, 50 and 60 mph. The module operating conditions for the two transmissions at each of these twelve points were calculated. Baseline noise data was measured on the first generation module. The results are given testing of co-axial hydrostatic module for second generation hydromechanical transmission will be emphasized. (LCL)

None

1978-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Ceramic Technology Project. Semiannual progress report, April 1991--September 1991  

DOE Green Energy (OSTI)

The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS`s Materials Development Program, was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

Not Available

1992-03-01T23:59:59.000Z

342

Ceramic Technology For Advanced Heat Engines Project  

DOE Green Energy (OSTI)

Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.

Not Available

1990-12-01T23:59:59.000Z

343

Tools & Technologies  

Energy.gov (U.S. Department of Energy (DOE))

We provide leadership for transforming workforce development through the power of technology. It develops corporate educational technology policy and enables the use of learning tools and...

344

Available Technologies  

The technology’s subnanometer resolution is a result of superior ... Additional R&D will be required ... U.S. DEPARTMENT OF ENERGY • OFFICE OF SCIENCE ...

345

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Sources and Beam Technologies Ion Sources and Beam Technologies GENERATORS AND DETECTORS Compact, Safe and Energy Efficient Neutron Generator Fast Pulsed Neutron Generator High Energy Gamma Generator Lithium-Drifted Silicon Detector with Segmented Contacts Low Power, High Energy Gamma Ray Detector Calibration Device Nested Type Coaxial Neutron Generator Neutron and Proton Generators: Cylindrical Neutron Generator with Nested Option, IB-1764 Neutron-based System for Nondestructive Imaging, IB-1794 Mini Neutron Tube, IB-1793a Ultra-short Ion and Neutron Pulse Production, IB-1707 Mini Neutron Generator, IB-1793b Compact Spherical Neutron Generator, IB-1675 Plasma-Driven Neutron/Gamma Generators Portable, Low-cost Gamma Source for Active Interrogation ION SOURCES WITH ANTENNAS External Antenna for Ion Sources

346

Vehicle Technologies Office: Vehicle Technologies Office Organization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization and Contacts Organization Chart for the Vehicle Technologies Program Fuel Technologies and Deployment, Technology Managers Advanced Combustion Engines, Technology...

347

Fuel Cell Technologies Office: Technology Validation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Technology Validation Search Search Help Technology Validation EERE Fuel Cell Technologies Office Technology Validation Printable Version Share this resource...

348

All auto shredding: evaluation of automotive shredder residue generated by shredding only vehicles.  

SciTech Connect

A well developed infrastructure exists for the reuse and recycling of automotive parts and materials. At the end of a vehicle's useful life many parts are removed and sold for reuse and fluids are recovered for recycling or proper disposal. What remains is shredded, along with other metal bearing scrap such as home appliances, demolition debris and process equipment, and the metals are separated out and recycled. The remainder of the vehicle materials is call shredder residue which ends up in the landfill. As energy and natural resources becomes more treasured, increased effort has been afforded to find ways to reduce energy consumption and minimize the use of our limited resources. Many of the materials found in shredder residue could be recovered and help offset the use of energy and material consumption. For example, the energy content of the plastics and rubbers currently landfilled with the shredder residue is equivalent to 16 million barrels of oil per year. However, in the United States, the recovered materials, primarily polymers, cannot be recycled due to current regulatory barriers which preclude the re-introduction into commerce of certain materials because of residual contamination with substances of concern (SOCs) such as polychlorinated biphenyls (PCBs). The source of the PCBs is not well understood. Old transformers, capacitors, white goods and ballasts from lighting fixtures are likely contributing factors. The project was designed to evaluate whether vehicles of varying age and manufacturing origin contribute to the PCB content in shredder residue. Additionally, the project was designed to determine if there are any trends in material composition of the shredder residue from varied age and manufacturing groups. This information would aid in future material recovery facility strategy and design. The test utilized a newly installed shredder plant to shred four categories of automobiles. The categories were defined by vehicle age and the manufacturing company and location. Each category of vehicles was processed individually through the shredder plant and the resulting shredder residue was analyzed for its materials composition and presence of PCBs and leachable metals. The results show that shredder residue from all vehicle categories tested are not significant contributors of PCBs and leachable metals. It was evident that leachable cadmium levels have decreased in newer vehicles. The composition of the shredder residue from each of the four categories is similar to the others. In addition, these compositions are approximately equal to the composition of typical shredder residues, not limited to automotive materials.

Duranceau, C. M.; Spangenberger, J. S. (Energy Systems); (Vehicle Recycling Partnership, LLC); (American Chemistry Counsel, Plastics Division)

2011-09-26T23:59:59.000Z

349

Bob Jaffe, Massachusetts Institute of Technology, Insights from the Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Bob Jaffe, Massachusetts Institute of Technology, Insights from the Bob Jaffe, Massachusetts Institute of Technology, Insights from the Energy Critical Elements Policy Study by the American Physical Society and Material Research Society Bob Jaffe, Massachusetts Institute of Technology, Insights from the Energy Critical Elements Policy Study by the American Physical Society and Material Research Society Session_A5_Jaffe_MIT.pdf More Documents & Publications Trans-Atlantic Workshop on Rare Earth Elements and Other Critical Materials for a Clean Energy Future Steve Duclos, Chief Scientist, GE Global Research, Research Priorities for More Efficient Use of Critical Materials from a U.S. Corporate Perspective Michael Heine, SGL Group - The Carbon Company, Carbon Fibers in Lightweight Systems for Wind Energy and Automotive Applications: Availability and

350

Ceramic Technology Project semiannual progress report, April 1992--September 1992  

DOE Green Energy (OSTI)

This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

Johnson, D.R.

1993-07-01T23:59:59.000Z

351

Chemistry - Technology Transfer: Available Technologies  

Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you ...

352

Technology Analysis - Heavy Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

the GPRA benefits estimates for EERE's Vehicle Technologies Program's heavy vehicle technology research activities. Argonne researchers develop the benefits analysis using four...

353

Available Technologies  

APPLICATIONS OF TECHNOLOGY: Thermal management for: microelectronic devices; solar cells and solar energy management systems ; refrigerators

354

Available Technologies  

Energy Storage and Recovery; Renewable Energy; Environmental Technologies. Monitoring and Imaging; Remediation; Modeling; Imaging & Lasers.

355

Ceramic Technology Project semiannual progress report for October 1991--March 1992  

DOE Green Energy (OSTI)

Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work is organized into the following elements: materials and processing (monolithics [SiC, SiN], ceramic composites, thermal and wear coatings, joining), materials design methodology, data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, NDE), and technology transfer. Individual abstracts were prepared for the individual contributions.

Not Available

1992-09-01T23:59:59.000Z

356

Automotive storage of hydrogen as a mixture of methanol and water. Final report  

SciTech Connect

The concept of steam-reforming methanol on-board an automobile was evaluated as a candidate method of storing fuel for the hydrogen engine. This method uses low-temperature, engine waste heat to evaporate a 1:1 molar water-methanol mixture at 373/sup 0/K (212/sup 0/F) and to provide endothermic reaction heat at 505/sup 0/K (450/sup 0/F) to convert this mixture to hydrogen and carbon dioxide. By using engine waste heat, a fuel combustion enrichment of 8% (LHV) or 18% (HHV) is obtained when the reactor effluents are compared with those from the tanked fuel. Defining system efficiency as the product of the generator chemical efficiency (108%) and the engine thermal efficiency (assumed to be 30%) yields a value of 32.4%. Conservative estimates indicate that an additional volume of 44 to 49 liters and an additional weight of 110 to 140 kg would be required, compared with a conventional 20 gal gasoline tank. A 500 hour endurance test of this system with a Girdler G-66B catalyst was conducted at 505/sup 0/K (450/sup 0/F), atmospheric pressure, and low space velocity--compared with automotive requirements--at wide-open-throttle conditions with laboratory-grade methanol; there was no loss of activity. However, when fuel-grade methanol containing small amounts of higher alcohols was substituted for the laboratory-grade methanol, significant catalyst deactivation occurred. (auth)

Kester, F.L.; Konopka, A.J.; Camara, E.

1975-11-01T23:59:59.000Z

357

Technical assessment of compressed hydrogen storage tank systems for automotive applications.  

DOE Green Energy (OSTI)

The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar ({approx}5000 psi) and 700 bar ({approx}10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%. These results are summarized.

Hua, T. Q.; Ahluwalia, R. K.; Peng, J. K.; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J. (Nuclear Engineering Division); (TIAX, LLC)

2011-02-09T23:59:59.000Z

358

Static properties and multiaxial strength criterion for design of composite automotive structures  

DOE Green Energy (OSTI)

The Durability of Lightweight Composite Structures Project was established at Oak Ridge National Laboratory (ORNL) by the US Department of Energy to provide the experimentally-based, durability-driven design guidelines necessary to assure long-term structural integrity of automotive composite components. The initial focus of the ORNL Durability Project was on one representative reference material -- an isocyanurate (polyurethane) reinforced with continuous strand, swirl-mat E-glass. The present paper describes tensile, compressive, flexure, and shear testing and results for the reference composite. Behavioral trends and proportional limit are established for both tension and compression. Damage development due to tensile loading, strain rate effects, and effects of temperature are discussed. Furthermore, effects on static properties of various fluids, including water at room and elevated temperatures, salt water, antifreeze, windshield washer fluid, used motor oil, battery acid, gasoline, and brake fluid, were investigated. Effects of prior loading were evaluated as well. Finally, the effect of multiaxial loading on strength was determined, and the maximum shear strength criterion was identified for design.

Ruggles, M.B.; Yahr, G.T.; Battiste, R.L.

1998-11-01T23:59:59.000Z

359

Thermally-induced microstructural changes in a three-way automotive catalyst  

DOE Green Energy (OSTI)

The use of advanced electron microscopy techniques to characterize both the bulk and near-atomic level microstructural evolution of catalyst materials during different dynamometer/vehicle aging cycles is an integral part of understanding catalyst deactivation. The study described here was undertaken to evaluate thermally-induced microstructural changes which caused the progressive loss of catalyst performance in a three-way automotive catalyst. Several different catalyst processing variables, for example changing the washcoat ceria content, were also evaluated as a function of aging cycle and thermal history. A number of thermally-induced microstructural changes were identified using high resolution electron microscopy techniques that contributed to the deactivation of the catalyst, including sintering of all washcoat constituents, {gamma}-alumina transforming to {alpha}-, {beta}-, and {delta}-alumina, precious metal redistribution, and constituent encapsulation. The data accumulated in this study have been used to correlate microstructural evolution with thermal history and catalyst performance during various aging cycles and to subsequently evaluate different washcoat formulations for increased thermal stability.

More, K.L.; Kenik, E.A.; Coffey, D.W.; Geer, T.S. [Oak Ridge National Lab., TN (United States); Theis, J.; LaBarge, W.; Beckmeyer, R. [Delphi Automotive Systems, Flint, MI (United States)

1997-12-01T23:59:59.000Z

360

Control of Two Permanent Magnet Machines Using a Five-Leg Inverter for Automotive Applications  

SciTech Connect

This paper presents digital control schemes for control of two permanent magnet (PM) machines in an integrated traction and air-conditioning compressor drive system for automotive applications. The integrated drive system employs a five-leg inverter to power a three-phase traction PM motor and a two-phase compressor PM motor by tying the common terminal of the two-phase motor to the neutral point of the three-phase motor. Compared to a three-phase or a standalone two-phase inverter, it eliminates one phase leg and shares the control electronics between the two drives, thus significantly reducing the component count of the compressor drive. To demonstrate that the speed and torque of the two PM motors can be controlled independently, a control strategy was implemented in a digital signal processor, which includes a rotor flux field orientation based control (RFOC) for the three-phase motor, a similar RFOC and a position sensorless control in the brushless dc (BLDC) mode for the two-phase motor. Control implementation issues unique to a two-phase PM motor are also discussed. Test results with the three-phase motor running in the ac synchronous (ACS) mode while the two-phase motor either in the ACS or the BLDC mode are included to verify the independent speed and torque control capability of the integrated drive.

Su, Gui-Jia [ORNL; Tang, Lixin [ORNL; Huang, Xianghui [GE Global Research

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Electrostatic coalescence of used automotive crankcase oil as an alternative to other separation processes  

E-Print Network (OSTI)

This thesis presents an initial investigation of using electrostatic coalescence as an alternative to conventional separation processes to purify used automotive crankcase oil. Specific emphasis of this study was the feasibility of this approach, verified by separating and analyzing a used oil emulsion. The metal removal efficiency was compared to that of a five day gravity settling. Separation experiments were performed in a 2.26 L coalescer with a flat parallel insulated electrode configuration. The used oil emulsion, composed of used oil, Isopar M, and water (no noticeable phase separation for 12 hours) followed the electrostatic coalescence characteristic of higher applied voltages or frequencies allowing higher feed rates. Metal removal efficiencies for iron, calcium and zinc were 3.57, 47.1, and 46.7 %, respectively, using Nalco 7715 at a peak a.c. voltage of 7 kV/cm and a frequency of 1000 Hz at the maximum rate of coalescence. For gravity settlement, metal removal efficiencies for iron, calcium and zinc were 11.2, 15.6, and 57.1 %, respectively. Considering the residence time of a moderate emulsion feed rate is a fraction of an hour, electrostatic coalescence offers an advantage over gravity settling. Oil phase water content varied between 0.05 and 7.2 wt %.

Dixon, John Leslie

1998-01-01T23:59:59.000Z

362

Advanced computational simulation for design and manufacturing of lightweight material components for automotive applications  

DOE Green Energy (OSTI)

Computational vehicle models for the analysis of lightweight material performance in automobiles have been developed through collaboration between Oak Ridge National Laboratory, the National Highway Transportation Safety Administration, and George Washington University. The vehicle models have been verified against experimental data obtained from vehicle collisions. The crashed vehicles were analyzed, and the main impact energy dissipation mechanisms were identified and characterized. Important structural parts were extracted and digitized and directly compared with simulation results. High-performance computing played a key role in the model development because it allowed for rapid computational simulations and model modifications. The deformation of the computational model shows a very good agreement with the experiments. This report documents the modifications made to the computational model and relates them to the observations and findings on the test vehicle. Procedural guidelines are also provided that the authors believe need to be followed to create realistic models of passenger vehicles that could be used to evaluate the performance of lightweight materials in automotive structural components.

Simunovic, S.; Aramayo, G.A.; Zacharia, T. [Oak Ridge National Lab., TN (United States); Toridis, T.G. [George Washington Univ., Washington, DC (United States); Bandak, F.; Ragland, C.L. [Dept. of Transportation, Washington, DC (United States)

1997-04-01T23:59:59.000Z

363

Feasibility test on compounding the internal combustion engine for automotive vehicles, Task II. Final report  

DOE Green Energy (OSTI)

The organic Rankine bottoming cycle can be considered for various automobile and truck applications. The most attractive use, however, is in large, heavy-duty diesel trucks for long distance hauling. Here, the engine load and speed requirements are nearly constant over a large portion of the operating hours, and high mileages are accumulated. Thus, the potential fuel savings are sufficient to justify the added cost of a bottoming cycle system. A conceptual design study of compounding the diesel truck engine with an ORCS was made and the results of the study are presented. Based on the results of the conceptual design study which showed a 15 percent fuel economy improvement potential over the duty cycle, an early feasibility demonstration test of the system was initiated. The demonstration system uses a Mack ENDT 676 diesel engine with existing but nonoptimum ORCS hardware made available from an earlier automotive Rankine-cycle program. The results of these feasibility demonstration tests, both steady-state and transient, over the operating range of the diesel engine, are presented.

Not Available

1976-01-01T23:59:59.000Z

364

Automotive stirling engine development program. Quarterly technical progress report, April 1978--June 1978  

DOE Green Energy (OSTI)

The report covers the third quarter (April--June, 1978) effort of the Ford/DOE Automotive Stirling Engine Development Program, specifically Task I of that effort which is Fuel Economy Assessment. At the end of the previous quarter (March 31, 1978) the total fourth generation fuel economy projection was 23.7 mpg with a confidence level of 40%. At the end of this quarter (June 30, 1978) the total fourth generation fuel economy projection was 26.12 mpg with a confidence level of 44%. This represents an improvement of 66.4% over the baseline M-H fuel economy of 15.7 mpg. The confidence level for the original 20.6 mpg goal has been increased from 53 to 57%. Engine 3X17 has now accumulated a total of 213 h of variable speed running. A summary of the individual sub-tasks of Task I is presented. The sub-tasks are grouped into two categories: Category 1 consists of those sub-tasks which are directly related to fuel economy and Category 2 consists of those sub-tasks which are not directly related to fuel economy but are an integral part of the Task I effort.

Not Available

1978-01-01T23:59:59.000Z

365

Technical assessment of compressed hydrogen storage tank systems for automotive applications.  

Science Conference Proceedings (OSTI)

The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar ({approx}5000 psi) and 700 bar ({approx}10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%.

Hua, T.; Ahluwalia, R.; Peng, J. K.; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J. (Nuclear Engineering Division); (TIAX LLC)

2011-02-01T23:59:59.000Z

366

Survey Evidence on the Willingness of U.S. Consumers to Pay for Automotive Fuel Economy  

Science Conference Proceedings (OSTI)

Prospect theory, which was awarded the Nobel Prize in Economics in 2002, holds that human beings faced with a risky bet will tend to value potential losses about twice as much as potential gains. Previous research has demonstrated that prospect theory could be sufficient to explain an energy paradox in the market for automotive fuel economy. This paper analyzes data from four random sample surveys of 1,000 U.S. households each in 2004, 2011, 2012 and 2013. Households were asked about willingness to pay for future fuel savings as well as the annual fuel savings necessary to justify a given upfront payment. Payback periods inferred from household responses are consistent over time and across different formulations of questions. Mean calculated payback periods are short, about 3 years, but there is substantial dispersion among individual responses. Calculated payback periods do not appear to be correlated with the attributes of respondents. Respondents were able to quantitatively describe their uncertainty about both vehicle fuel economy and future fuel prices. Simulation of loss averse behavior based on this stated uncertainty illustrate how loss aversion could lead consumers to substantially undervalue future fuel savings relative to their expected value.

Greene, David L [ORNL; Evans, David H [Sewanee, The University of the South; Hiestand, John [Indiana University

2013-01-01T23:59:59.000Z

367

Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.  

Science Conference Proceedings (OSTI)

On-board and off-board performance and cost of cryo-compressed hydrogen storage are assessed and compared to the targets for automotive applications. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm. The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) or by central electrolysis. The main conclusions are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity, mid-term target for system volumetric capacity, and the target for hydrogen loss during dormancy under certain conditions of minimum daily driving. However, the high-volume manufacturing cost and the fuel cost for the SMR hydrogen production scenario are, respectively, 2-4 and 1.6-2.4 times the current targets, and the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

Ahluwalia, R.; Hua, T.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Gardiner, M.; Nuclear Engineering Division; TIAX LLC; U.S. DOE

2010-05-01T23:59:59.000Z

368

Fuel Cell Technologies Office: Technology Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office: Technology Validation to someone by E-mail Share Fuel Cell Technologies Office: Technology Validation on Facebook Tweet about Fuel Cell Technologies...

369

Exploring an open-loop RFID implementation in the automotive industry  

Science Conference Proceedings (OSTI)

This paper explores and describes the impact of radio frequency identification (RFID) technology on inventory accuracy within a production and assembly plant, and proposes a model for assessing the impact of the technology on inventory accuracy. The ...

Daniel Hellström; Mathias Wiberg

2009-09-01T23:59:59.000Z

370

Processing Technology  

Science Conference Proceedings (OSTI)

Aug 5, 2013... relevant polymers and hybrid nanocomposite material systems. ... technology to perform lightweight manufacturing of car components.

371

Technology Transfer  

A new search feature has been implemented, which allows searching of technology transfer information across the Department of Energy Laboratories.

372

Technology Transfer  

Science Conference Proceedings (OSTI)

... get started on understanding accessibility in elections and voting technology. ... bibliography was created by the Georgia Tech Research Institute ...

2013-09-17T23:59:59.000Z

373

Vehicle Technologies Office: Other Awards and Recognition  

NLE Websites -- All DOE Office Websites (Extended Search)

of Automotive Engineers (SAE). The award recognizes individuals who have received SAE's Oral Presentation Award more than twice. It honors the late Lloyd L. Withrow, former head...

374

Available Technologies: Inventions for Advancing Solid ...  

Overcomes brazing limitations without cost increases ... such as auxiliary automotive power or the use of related electrochemical gas ... 350 mW per ...

375

Technology Strategies  

Science Conference Proceedings (OSTI)

From the Book:PrefaceTechnology as the Strategic AdvantageWhen I began writing this book I struggled with the direction I wanted it to take. Is this book to be about business, technology, or even the business of technology? I ...

Cooper Smith

2001-07-01T23:59:59.000Z

376

Automotive storage of hydrogen using modified magnesium hydrides. Final report, March 1976-March 1978  

DOE Green Energy (OSTI)

Metal hydrides can store more hydrogen per unit volume than normal high pressure or cryogenic techniques. Little energy is required to store the hydrogen in the hydride, and high stability at room temperature ensures low losses over long storage periods. Safety features of metal hydride storage are favorable. Because of its low weight and high hydrogen storage densities, modified magnesium hydride offers the greatest potential for automotive storage of hydrogen. Experimental and analytical work in this program has been directed toward the optimization of this storage system. Due to the relative stability of MgH/sub 2/, modifications of the MgMH/sub x/ (M = metal ion) have been made to decrease the dissociation temperature while retaining high hydrogen capacity. This parameter is crucial since vehicle exhaust will supply the thermal energy to dissociate the hydride in an automobile. System studies indicate that hydride dissociation temperature (T/sub D/) should be 200/sup 0/C to ensure uninterrupted fuel flow at all driving and idle conditions. From experimental data developed in this four task study, we conclude that alloys comprised of Mg, Cu and Ni have come closest to meeting the dissociation temperature goal. Small additions of rare-earth elements to the basic alloy also contribute to a reduction of T/sub D/. The best alloy developed in this program exhibits a T/sub D/ = 223/sup 0/C and a hydrogen capacity near four weight percent compared to a theoretical 7.65 percent for MgH/sub 2/. That alloy has been characterized for dissociation temperature, hydrogen capacity, kinetics, and P-C-T relationships. Dissociation temperature, hydrogen capacity and material cost are reported for each alloy tested in this program.

Rohy, D. A.; Nachman, J. F.; Hammer, A. N.; Duffy, T. E.

1979-01-01T23:59:59.000Z

377

Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.  

DOE Green Energy (OSTI)

On-board and off-board performance and cost of cryo-compressed hydrogen storage has been assessed and compared to the DOE 2010, 2015 and ultimate targets for automotive applications. The Gen-3 prototype system of Lawrence Livermore National Laboratory was modeled to project the performance of a scaled-down 5.6-kg usable hydrogen storage system. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers 1.5 kg/min of liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm (4000 psi). The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) and by central electrolysis using electricity from renewable sources. The main conclusions from the assessment are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity and the 2015 target for system volumetric capacity (see Table I). The system compares favorably with targets for durability and operability although additional work is needed to understand failure modes for combined pressure and temperature cycling. The system may meet the targets for hydrogen loss during dormancy under certain conditions of minimum daily driving. The high-volume manufacturing cost is projected to be 2-4 times the current 2010 target of $4/kWh. For the reference conditions considered most applicable, the fuel cost for the SMR hydrogen production and liquid H{sub 2} delivery scenario is 60%-140% higher than the current target of $2-$3/gge while the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

Ahluwalia, R. K.; Hua, T. Q.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Nuclear Engineering Division; TIAX LLC

2010-03-03T23:59:59.000Z

378

Oxidation of automotive primary reference fuels in a high pressure flow reactor  

DOE Green Energy (OSTI)

Automotive engine knock limits the maximum operating compression ratio and ultimate thermodynamic efficiency of spark-ignition (SI) engines. In compression-ignition (CI) or diesel cycle engines the premixed urn phase, which occurs shortly after injection, determines the time it takes for autoignition to occur. In order to improve engine efficiency and to recommend more efficient, cleaner-burning alternative fuels, we must understand the chemical kinetic processes which lead to autoignition in both SI and CI engines. These engines burn large molecular-weight blended fuels, a class to which the primary reference fuels (PRF), n-heptane and isooctane belong. In this study, experiments were performed under engine-like conditions in a high pressure flow reactor using both the pure PRF fuels and their mixtures in the temperature range 550-880 K and at 12.5 atm pressure. These experiments not only provide information on the reactivity of each fuel but also identify the major intermediate products formed during the oxidation process. A detailed chemical kinetic mechanism is used to simulate these experiments and comparisons of experimentally measures and model predicted profiles for O{sub 2}, CO, CO{sub 2}, H{sub 2}O and temperature rise are presented. Intermediates identified in the flow reactor are compared with those present in the computations, and the kinetic pathways leading to their formation are discussed. In addition, autoignition delay times measured in a shock tube over the temperature range 690- 1220 K and at 40 atm pressure were simulated. Good agreement between experiment and simulation was obtained for both the pure fuels and their mixtures. Finally, quantitative values of major intermediates measured in the exhaust gas of a cooperative fuels research engine operating under motored engine conditions are presented together with those predicted by the detailed method.

Curran, H.J.; Pitz, W.J.; Westbrook, C.K. [Lawrence Livermore National Lab., CA (United States); Callahan, C.V.; Dryer, F.L. [Princeton Univ., Areospace Engineering. NJ (United States)

1998-01-01T23:59:59.000Z

379

Use of microPCM fluids as enhanced liquid coolants in automotive EV and HEV vehicles. Final report  

DOE Green Energy (OSTI)

Proof-of-concept experiments using a specific microPCM fluid that potentially can have an impact on the thermal management of automotive EV and HEV systems have been conducted. Samples of nominally 20-micron diameter microencapsulated octacosane and glycol/water coolant were prepared for testing. The melting/freezing characteristics of the fluid, as well as the viscosity, were determined. A bench scale pumped-loop thermal system was used to determine heat transfer coefficients and wall temperatures in the source heat exchanged. Comparisons were made which illustrate the enhancements of thermal performance, reductions of pumping power, and increases of heat transfer which occur with the microPCM fluid.

Mulligan, James C.; Gould, Richard D.

2001-10-31T23:59:59.000Z

380

Battery Technology Life Verification Test Manual Revision 1  

SciTech Connect

The purpose of this Technology Life Verification Test (TLVT) Manual is to help guide developers in their effort to successfully commercialize advanced energy storage devices such as battery and ultracapacitor technologies. The experimental design and data analysis discussed herein are focused on automotive applications based on the United States Advanced Battery Consortium (USABC) electric vehicle, hybrid electric vehicle, and plug-in hybrid electric vehicle (EV, HEV, and PHEV, respectively) performance targets. However, the methodology can be equally applied to other applications as well. This manual supersedes the February 2005 version of the TLVT Manual (Reference 1). It includes criteria for statistically-based life test matrix designs as well as requirements for test data analysis and reporting. Calendar life modeling and estimation techniques, including a user’s guide to the corresponding software tool is now provided in the Battery Life Estimator (BLE) Manual (Reference 2).

Jon P. Christophersen

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Advanced Turbine Technology Applications Project (ATTAP). 1944 Annual report  

DOE Green Energy (OSTI)

This report summarizes work performed in development and demonstration of structural ceramics technology for automotive gas turbine engines. At the end of this period, the project name was changed to ``Ceramic Turbine Engine Demonstration Project``, effective Jan. 1995. Objectives are to provide early field experience demonstrating the reliability and durability of ceramic components in a modified, available gas turbine engine application, and to scale up and improve the manufacturing processes for ceramic turbine engine components and demonstrate the application of these processes in the production environment. The 1994 ATTAP activities emphasized demonstration and refinement of the ceramic turbine nozzles in the AlliedSignal/Garrett Model 331-200[CT] engine test bed in preparation for field testing; improvements in understanding the vibration characteristics of the ceramic turbine blades; improvements in critical ceramics technologies; and scaleup of the process used to manufacture ceramic turbine components.

NONE

1995-06-01T23:59:59.000Z

382

Development of precision machining and inspection technology for structural ceramics  

SciTech Connect

Finish machining operations contribute the majority of the costs associated with fabricating high quality ceramic products. These components are typically used in harsh environments such as diesel engines, the defense industry, and automotive applications. The required finishing operations involve a variety of technology areas including process controls, process analysis, product certification, etc. and are not limited only to component grinding methods. The broad range of manufacturing problem solving expertise available in Oak Ridge provided resources that were far beyond what is available to the Coors manufacturing sites. Coors contributed equipment, such as the computer controls and part handling mechanisms associated with a state-of-the-art inspection machine plus operation-specific experience base. In addition, addressing these challenging tasks enabled Oak Ridge personnel to maintain familarity with rapidly advancing technologies, such as those associated with machine vision equipment, process monitoring techniques, and computer control systems.

Barkman, W.E.

1997-03-06T23:59:59.000Z

383

Battery Technology Life Verification Testing and Analysis  

DOE Green Energy (OSTI)

A critical component to the successful commercialization of batteries for automotive applications is accurate life prediction. The Technology Life Verification Test (TLVT) Manual was developed to project battery life with a high level of statistical confidence within only one or two years of accelerated aging. The validation effort that is presently underway has led to several improvements to the original methodology. For example, a newly developed reference performance test revealed a voltage path dependence effect on resistance for lithium-ion cells. The resistance growth seems to depend on how a target condition is reached (i.e., by a charge or a discharge). Second, the methodology for assessing the level of measurement uncertainty was improved using a propagation of errors in the fundamental measurements to the derived response (e.g., resistance). This new approach provides a more realistic assessment of measurement uncertainty. Third, the methodology for allocating batteries to the test matrix has been improved. The new methodology was developed to assign batteries to the matrix such that the average of each test group would be representative of the overall population. These changes to the TLVT methodology will help to more accurately predict a battery technology’s life capability with a high degree of confidence.

Jon P. Christophersen; Gary L. Hunt; Ira Bloom; Ed Thomas; Vince Battaglia

2007-12-01T23:59:59.000Z

384

Ceramic technology for advanced heat engines  

DOE Green Energy (OSTI)

The Ceramic Technology Project was initiated in 1983 for the purpose of developing highly reliable structural ceramics for applications in advanced heat engines, such as automotive gas turbines and advanced heavy duty diesel engines. The reliability problem was determined to be a result of uncontrolled populations of processing flaws in the brittle, flaw-sensitive materials, along with microstructural features, such as grain boundary phases, that contribute to time dependent strength reduction in service at high temperatures. The approaches taken to develop high reliability ceramics included the development of tougher materials with greater tolerance to microstructural flaws, the development of advanced processing technology to minimize the size and number of flaws, and the development of mechanical testing methodology and the characterization of time dependent mechanical behavior, leading to a life prediction methodology for structural ceramics. The reliability goals of the program were largely met by 1993, but commercial implementation of ceramic engine components has been delayed by the high cost of the components. A new effort in Cost Effective Ceramics for Heat Engines was initiated in 1993 and is expected to develop the manufacturing technology leading to an order of magnitude cost reduction. The program has been planned for a five year period.

Johnson, D.R. [Oak Ridge National Lab., TN (United States); Schulz, R.B. [Dept. of Energy, Washington, DC (United States)

1994-10-01T23:59:59.000Z

385

Advanced Thermal Control Enabling Cost Reduction for Automotive Power Electronics (Presentation)  

DOE Green Energy (OSTI)

Describes NREL's work on next-generation vehicle cooling technologies (jets, sprays, microchannels) and novel packaging topologies to reduce costs and increase performance and reliability.

Abraham, T.; Kelly, K.; Bennion, K.; Vlahinos, A.

2008-09-01T23:59:59.000Z

386

Electric and Hybrid Vehicle Technology: TOPTEC  

DOE Green Energy (OSTI)

Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

Not Available

1992-01-01T23:59:59.000Z

387

Electric and Hybrid Vehicle Technology: TOPTEC  

DOE Green Energy (OSTI)

Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

Not Available

1992-12-01T23:59:59.000Z

388

Technology '90  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

Not Available

1991-01-01T23:59:59.000Z

389

Building Technologies Office: Technology Research, Standards...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Building Technologies Office: Technology Research, Standards, and Codes in Emerging Technologies on Facebook Tweet about Building Technologies...

390

A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells  

SciTech Connect

Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at some point. With the same two exceptions, all processes require water-gas shift reactors of significant size. All processes require low-sulfur or zero-sulfur fuels, and this may add cost to some of them. Fuels produced by steam reforming contain {approximately}70-80% hydrogen, those by partial oxidation {approximately}35-45%. The lower percentages may adversely affect cell performance. Theoretical input energies do not differ markedly among the various processes for generating hydrogen from organic-chemical fuels. Pure hydrogen has severe distribution and storage problems. As a result, the steam reforming of methanol is the leading candidate process for on-board generation of hydrogen for automotive propulsion. If methanol unavailability or a high price demands an alternative process, steam reforming appears preferable to partial oxidation for this purpose.

Brown, L.F.

1996-03-01T23:59:59.000Z

391

Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

6 News Stories (and older) 6 News Stories (and older) 12.21.2005___________________________________________________________________ Genzyme acquires gene therapy technology invented at Berkeley Lab. Read more here. 07.19.2005 _________________________________________________________________ Symyx, a start up company using Berkeley Lab combinatorial chemistry technology licensed by the Technology Transfer Department and developed by Peter Schultz and colleagues in the Materials Sciences Division, will be honored with Frost & Sullivan's 2005 Technology Leadership Award at their Excellence in Emerging Technologies Awards Banquet for developing enabling technologies and methods to aid better, faster and more efficient R&D. Read more here. 07.11.2005 _________________________________________________________________ Nanosys, Inc., a Berkeley Lab startup, is among the solar nanotech companies investors along Sand Hill Road in Menlo Park hope that thinking small will translate into big profits. Read more here.

392

NETL: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

projects are designed to: enhance domestic oil and natural gas supplies through advanced exploration and production technology; examine water related concerns; investigate...

393

Technology Update  

Science Conference Proceedings (OSTI)

A Novel Solvent Extraction Process With Bottom Gas Injection for Liquid Waste ... Membrane Technology for Treatment of Wastes Containing Dissolved Metals: ...

394

Microwave Technology  

Science Conference Proceedings (OSTI)

Oct 20, 2011 ... These wastes are found in the market. ... Cherian1; Michael Kirksey1; Sandwip Dey2; 1Spheric Technologies Inc; 2Arizona State University

395

Transmission Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

electronically (shift-by-wire) and performed by a hydraulic system or electric motor. In addition, technologies can be employed to make the shifting process smoother than...

396

DOE Announces Up to $5 Million to Support the Next Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a future workforce of automotive engineering professionals who will gain experience in developing and commercializing advanced automotive technologies. Today's announcement...

397

Full length article: Comparative analysis of single-channel direction finding algorithms for automotive applications at 2400 MHz in a complex reflecting environment  

Science Conference Proceedings (OSTI)

This paper presents an amplitude-based single-channel direction finding system for automotive applications and compares its performance against two different phase-based single-channel direction finding algorithms in a complex reflecting environment ... Keywords: Angle of arrival, Antenna array, Direction finding, Pseudo-Doppler, Signal propagation

Daniel N. Aloi; Mohammad S. Sharawi

2010-03-01T23:59:59.000Z

398

Metering Technology  

Science Conference Proceedings (OSTI)

Utilities are looking to replace meters that only measure kilowatt-hours with advanced meters with greater features and functions. This White Paper describes the smart metering technology that is already available or will be available in the near future. It also provides a high-level overview of the wired and wireless communication technologies used in the metering industry.

2008-06-20T23:59:59.000Z

399

Technology Search Results | Brookhaven Technology ...  

BSA 11-30: Enhanced Alkane production by Aldehyde Decarbonylase Fusion Constructs; BSA 12-36: Oil Accumulation in Plant Leaves; Find a Technology.

400

Technology Search Results | Brookhaven Technology ...  

There are 9 technologies tagged "cancer". BSA 01-02: ... a limited-liability company founded by the Research Foundation for the State University of ...

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Courtesy of ZCorp The Rapid Prototyping Laboratory (RPL) supports internal design, manufacturing, and process development with three rapid prototyping (RP) technologies:...

402

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

parts Brazing large complex parts The joining and heat-treating technologies in the Thin Film, Vacuum, & Packaging department include brazing, heat-treating, diffusion...

403

Building Technologies Office: Emerging Technologies Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies Activities to someone by E-mail Share Building Technologies Office: Emerging Technologies Activities on Facebook Tweet about Building Technologies Office: Emerging Technologies Activities on Twitter Bookmark Building Technologies Office: Emerging Technologies Activities on Google Bookmark Building Technologies Office: Emerging Technologies Activities on Delicious Rank Building Technologies Office: Emerging Technologies Activities on Digg Find More places to share Building Technologies Office: Emerging Technologies Activities on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research

404

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

405

FUEL CELL TECHNOLOGIES PROGRAM Technologies  

E-Print Network (OSTI)

.eere.energy.gov/informationcenter hydrogen and electricity for fuel cell and plug-in hybrid electric vehicles while using proven stationary vehicles with its own fuel cell technology. Currently, advanced vehicle technologies are being evalu- ated and fuel cells offer great promise for our energy future. Fuel cell vehicles are not yet commercially

406

Building Technologies Office: Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Creating the Next Generation of Energy Efficient Technology Creating the Next Generation of Energy Efficient Technology The Emerging Technologies team partners with national laboratories, industry, and universities to advance research, development, and commercialization of energy efficient and cost effective building technologies. These partnerships help foster American ingenuity to develop cutting-edge technologies that have less than 5 years to market readiness, and contribute to the goal to reduce energy consumption by at least 50%. Sandia Cooler's innovative, compact design combines a fan and a finned metal heat sink into a single element, efficiently transferring heat in microelectronics and reducing energy use. Supporting Innovative Research to Help Reduce Energy Use and Advance Manufacturing Learn More

407

Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

* Heavy Vehicle Technologies * Heavy Vehicle Technologies * Multi-Path Transportation Futures * Idling Studies * EDrive Vehicle Monthly Sales Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Technology Analysis truck Heavy vehicle techologies are one subject of study. Research Reducing Greenhouse Gas Emissions from U.S. Transportation Heavy Vehicle Technologies Multi-Path Transportation Futures Study Idling Studies Light Duty Electric Drive Vehicles Monthly Sales Updates Lithium-Ion Battery Recycling and Life Cycle Analysis Reports Propane Vehicles: Status, Challenges, and Opportunities (pdf; 525 kB) Natural Gas Vehicles: Status, Barriers, and Opportunities (pdf; 696 kB) Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles (pdf; 1.02 MB)

408

Fabrication Technology  

SciTech Connect

The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.

Blaedel, K.L.

1993-03-01T23:59:59.000Z

409

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Production Cost Estimation for Direct H 2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update September 30, 2010 Prepared by: Brian D. James, Jeffrey A. Kalinoski & Kevin N. Baum One Virginia Square 3601 Wilson Boulevard, Suite 650 Arlington, Virginia 22201 703-243-3383 Prepared under: Subcontract No. AGB-0-40628-01 to the National Renewable Energy Laboratory (NREL) under Prime Contract No. DE-AC36-08GO28308 to the U.S. Department of Energy Foreword Energy security is fundamental to the mission of the U.S. Department of Energy (DOE) and hydrogen fuel cell vehicles have the potential to eliminate the need for oil in the transportation sector. Fuel cell vehicles can operate on hydrogen, which can be produced domestically, emitting less greenhouse gasses and pollutants than

410

Retrofitting an automotive air conditioner with HFC-134a, additive, and mineral oil. Final report, October 1992-May 1994  

Science Conference Proceedings (OSTI)

The paper gives results of an evaluation of a lubricant additive developed for use in retrofitting motor vehicle air conditioners. The additive was designed to enable HFC-134a to be used as a retrofit refrigerant with the existing mineral oil in CFC-12 systems. The goal of the project was to provide preliminary feasibility testing of the additive. The cooling effect of the test system retrofitted with HFC-134a and the oil additive was nearly the same as that of the original system with CFC 12 refrigerant. If lubricant additives prove to be successful, miscible lubricants may not be needed for retrofitting some automotive systems. The retrofitting procedure might be simplified and the cost to consumers might be reduced. It has not been determined if retrofitting systems with HFC-134a and oil additives is feasible for a wider range of operating conditions and types of equipment, including the applicability of orifice tube/suction accumulator systems.

Jetter, J.J.; Delafield, F.R.

1994-05-01T23:59:59.000Z

411

Development of a Hybrid Compressor/Expander Module for Automotive Fuel Cell Applications  

DOE Green Energy (OSTI)

In this program TIAX LLC conducted the development of an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The overall objective of this program was to develop a hybrid compressor/expander module, based on both scroll and high-speed turbomachinery technologies, which will combine the strengths of each technology to create a concept with superior performance at minimal size and cost. The resulting system was expected to have efficiency and pressure delivery capability comparable to that of a scroll-only machine, at significantly reduced system size and weight when compared to scroll-only designs. Based on the results of detailed designs and analyses of the critical system elements, the Hybrid Compressor/Expander Module concept was projected to deliver significant improvements in weight, volume and manufacturing cost relative to previous generation systems.

McTaggart, Paul

2004-12-31T23:59:59.000Z

412

Building Technologies Office: 2013 DOE Building Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 DOE Building Technologies Office Program Review to someone by E-mail Share Building Technologies Office: 2013 DOE Building Technologies Office Program Review on Facebook Tweet...

413

National Energy Technology Laboratory Technology Marketing ...  

National Energy Technology Laboratory Technology Marketing Summaries. Here you’ll find marketing summaries for technologies available for licensing from the ...

414

Assessment of the magnesium primary production technology. Final report  

SciTech Connect

At current production levels, direct energy savings achievable in primary magnesium production are 1.2 milliquads of energy per annum. Were magnesium to penetrate the automotive market to an average level of 50 pounds per vehicle, the resultant energy savings at the production stage would be somewhat larger, but the resulting savings in gasoline would conserve an estimated 325 milliquads of energy per year. The principal barrier to more widespread use of magnesium in the immediate future is its price. A price reduction of magnesium of 10% would lead to widespread conversion of aluminum die and permanent mold castings to magnesium. This report addresses the technology of electrolytic and thermic magnesium production and the economics of expanded magnesium production and use.

Flemings, M.C.; Kenney, G.B.; Sadoway, D.R.; Clark, J.P.; Szekely, J.

1981-02-01T23:59:59.000Z

415

Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications  

Science Conference Proceedings (OSTI)

Innovations in the area of vehicle electronics, sensing technologies and wireless communication (including both vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2X)) are resulting in a rapid change of the driving context. Over the last few years, a ...

Jacques Terken

2013-10-01T23:59:59.000Z

416

Performance and Reliability of Interface Materials for Automotive Power Electronics (Presentation)  

DOE Green Energy (OSTI)

Thermal management and reliability are important because excessive temperature can degrade the performance, life, and reliability of power electronics and electric motors. Advanced thermal management technologies enable keeping temperature within limits; higher power densities; and lower cost materials, configurations and systems. Thermal interface materials, bonded interface materials and the reliability of bonded interfaces are discussed in this presentation.

Narumanchi, S.; DeVoto, D.; Mihalic, M.; Paret, P.

2013-07-01T23:59:59.000Z

417

NREL: Geothermal Technologies - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Projects The NREL...

418

NREL: Geothermal Technologies - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Capabilities The...

419

NREL: Geothermal Technologies - News  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Geothermal News...

420

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies...

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Building Technologies Office: About  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: About on Twitter Bookmark Building Technologies Office: About on Google Bookmark Building Technologies Office: About on Delicious Rank Building Technologies...

422

FY2001 Progress Report for the Batteries for Advanced Transportation Technologies (High-Energy Battery)  

NLE Websites -- All DOE Office Websites (Extended Search)

FOR ADVANCED FOR ADVANCED TRANSPORTATION TECHNOLOGIES (HIGH-ENERGY BATTERY) 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Lawrence Berkeley National Laboratory, to Argonne National Laboratory, and to Sentech, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2001 Progress Report for the

423

Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency & Renewable and Energy - Commercialization Energy Efficiency & Renewable and Energy - Commercialization Deployment SBIR/STTR - Small Business Innovation Research and Small Business Technology Transfer USEFUL LINKS Contract Opportunities: FBO.gov FedConnect.net Grant Opportunities DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Licensing Guide and Sample License The Technology Transfer Working Group (TTWG), made up of representatives from each DOE Laboratory and Facility, recently created a Licensing Guide and Sample License [762-KB PDF]. The Guide will serve to provide a general understanding of typical contract terms and provisions to help reduce both

424

Manufacturing technology  

SciTech Connect

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

425

PNNL: Available Technologies - Browse Technologies by Portfolio  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Browse Technologies by Portfolio. Select a technology portfolio to view ...

426

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Fossil Energy; Information Technology; Manufacturing ; Materials; National Security; Non-Nuclear ...

427

Geothermal Technologies Office: Geothermal Electricity Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

428

Geothermal Technologies Office: Enhanced Geothermal Systems Technologi...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

429

NETL: Technology Transfer - Available Technologies for Partnership  

Technology Transfer Available Technologies for Partnership Software and Modeling. Month Posted. Partnership Opportunity. Patent Information. 12/2011: ...

430

Healthy technology  

Science Conference Proceedings (OSTI)

One of the biggest struggles user experience teams face is breaking through traditional notions of product strategy, planning and development to bring actionable awareness to the bigger picture around delivering full experiences that people really care ... Keywords: design management, design process, ethnography, experience, healthy technology, industry, lifecycle, metaphor, platform, reliability, research, security, strategy, sustainability

Ashwini Asokan; Michael .J. Payne

2008-04-01T23:59:59.000Z

431

Technologies Applications  

E-Print Network (OSTI)

evaporation systems n Potential mining applications (produced water) nIndustry applications for which silicaLicensable Technologies Applications: n Cooling tower systems n Water treatment systems n Water needed n Decreases the amount of makeup water and subsequent discharged water (blowdown) n Enables

432

Manufacturing technologies  

SciTech Connect

The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

NONE

1995-09-01T23:59:59.000Z

433

Vacuum Technology  

SciTech Connect

The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

Biltoft, P J

2004-10-15T23:59:59.000Z

434

Process demonstration and cost analysis of a mass production forging technique for automotive turbine wheels: Phase II. Final report, January 1975--March 1977  

SciTech Connect

Low cost fabrication of integrally-bladed automotive turbine wheels utilizing the GATORIZING forging process was demonstrated. The capability of the forging process was characterized as to blade shape, and the effect of the blade shape on Chrysler baseline engine turbine efficiency was analytically defined. Actual baseline engine turbine wheels were fabricated from IN100 and AF2-1DA for evaluation. A mass production cost estimate was generated for manufacturing large production quantities.

Allen, M.M.; Larson, K.J.; Walker, B.H.

1977-07-01T23:59:59.000Z

435

Pervasive Information Technology Homepage  

Science Conference Proceedings (OSTI)

Pervasive Information Technology. Pervasive information technology is the trend towards increasingly ubiquitous connected ...

2011-07-05T23:59:59.000Z

436

Assessment of methane-related fuels for automotive fleet vehicles: technical, supply, and economic assessments  

DOE Green Energy (OSTI)

The use of methane-related fuels, derived from a variety of sources, in highway vehicles is assessed. Methane, as used here, includes natural gas (NG) as well as synthetic natural gas (SNG). Methanol is included because it can be produced from NG or the same resources as SNG, and because it is a liquid fuel at normal ambient conditions. Technological, operational, efficiency, petroleum displacement, supply, safety, and economic issues are analyzed. In principle, both NG and methanol allow more efficient engine operation than gasoline. In practice, engines are at present rarely optimized for NG and methanol. On the basis of energy expended from resource extraction to end use, only optimized LNG vehicles are more efficient than their gasoline counterparts. By 1985, up to 16% of total petroleum-based highway vehicle fuel could be displaced by large fleets with central NG fueling depots. Excluding diesel vehicles, which need technology advances to use NG, savings of 8% are projected. Methanol use by large fleets could displace up to 8% of petroleum-based highway vehicle fuel from spark-ignition vehicles and another 9% from diesel vehicles with technology advances. The US NG supply appears adequate to accommodate fleet use. Supply projections, future price differential versus gasoline, and user economics are uncertain. In many cases, attractive paybacks can occur. Compressed NG now costs on average about $0.65 less than gasoline, per energy-equivalent gallon. Methanol supply projections, future prices, and user economics are even more uncertain. Current and projected near-term methanol supplies are far from adequate to support fleet use. Methanol presently costs more than gasoline on an equal-energy basis, but is projected to cost less if produced from coal instead of NG or petroleum.

Not Available

1982-02-01T23:59:59.000Z

437

TECHNOLOGY TRANSFER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

404-NOV. 1, 2000 404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT TITLE. This Act may be cited as the ''Technology Transfer Commer- cialization Act of 2000''. SEC. 2. FINDINGS. The Congress finds that- (1) the importance of linking our unparalleled network of over 700 Federal laboratories and our Nation's universities with United States industry continues to hold great promise

438

Manufacturing technology  

SciTech Connect

This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L. [eds.

1993-08-01T23:59:59.000Z

439

Biomass Technologies  

Energy.gov (U.S. Department of Energy (DOE))

There are many types of biomass—organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes—that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007.

440

TECHNOLOGY ADMINISTRATION  

E-Print Network (OSTI)

This report originated in the authors ’ participation in a multi-country study of national innovation systems and their impact on new technology development, sponsored by the Organization for Economic Cooperation and Development (OECD). Our task was to look at the U.S. national innovation system’s impact on the commercial development of Proton Exchange Membrane (PEM) fuel cells for residential power applications. Early drivers of PEM fuel cell innovation were the aerospace and defense programs, in particular the National Aeronautics and Space Administration (NASA), which used fuel cells on its spacecraft. In the early 1990s, deregulation hit the electric utility industry, which made utilities and entrepreneurs see the potential in generating electricity from distributed power. Throughout the 1990s, the Department of Energy funded a significant portion of civilian fuel cell research, while the Department of Defense and NASA funded more esoteric military and space applications. In 1998, the Department of Commerce’s Advanced Technology Program (ATP) awarded the first of 25 fuel cell projects, as prospects for adoption and commercialization of fuel cell technologies improved.

John M. Nail; Gary Anderson; Gerald Ceasar; Christopher J. Hansen; John M. Nail; Gerald Ceasar; Christopher J. Hansen; Carlos M. Gutierrez; Hratch G. Samerjian; Acting Director; Marc G. Stanley; Director Abstract

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Technology disrupted  

SciTech Connect

Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

Papatheodorou, Y. [CH2M Hill (United States)

2007-02-15T23:59:59.000Z

442

International Assessment of Electric-Drive Vehicles: Policies, Markets, and Technologies  

E-Print Network (OSTI)

Electric-Drive Vehicles In the very early years of the automotive industry,electric-drive vehicles, especially battery-powered EVs The programs are almost aU in countries with major automotive manufacturing industries.

Sperling, Daniel; Lipman, Timothy

2003-01-01T23:59:59.000Z

443

Vehicle Technologies Office: 2002 Success Stories  

NLE Websites -- All DOE Office Websites (Extended Search)

of Aluminum Sheet Metal for Automotive Applications (PDF 245 KB) TracGlide(tm) Top-of-Rail Lubrication System (PDF 72 KB) Contacts | Web Site Policies | U.S. Department of Energy...

444

Building Technologies Office: About Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies The Emerging Technologies team funds the research and development of cost-effective, energy-efficient building technologies within five years of commercialization. Learn more about the: Key Technologies Benefits Results Key Technologies Specific technologies pursued within the Emerging Technologies team include: Lighting: advanced solid-state lighting systems, including core technology research and development, manufacturing R&D, and market development Heating, ventilation, and air conditioning (HVAC): heat pumps, heat exchangers, and working fluids Building Envelope: highly insulating and dynamic windows, cool roofs, building thermal insulation, façades, daylighting, and fenestration Water Heating: heat pump water heaters and solar water heaters

445

STATEMENT OF CONSIDERATIONS REQUEST BY UNITED TECHNOLOGIES CORPORATION...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

waiver petition, UTC has successfully developed a variety of materials relating to the thermoelectric materials. Specifically, UTC has developed automotive, engine, elevator,...

446

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

LTCC multi-chip module LTCC multi-chip module A high density LTCC multi-chip module Electronic Packaging PDF format (150 kb) The Electronic Packaging technologies in the Thin Film, Vacuum, & Packaging Department are a resource for all aspects of microelectronic packaging. From design and layout to fabrication of prototype samples, the staff offers partners the opportunity for concurrent engineering and development of a variety of electronic packaging concepts. This includes assistance in selecting the most appropriate technology for manufacturing, analysis of performance characteristics and development of new and unique processes. Capabilities: Network Fabrication Low Temperature Co-Fired Ceramic (LTCC) Thick Film Thin Film Packaging and Assembly Chip Level Packaging MEMs Packaging

447

California's Hydrogen Highway: The Case for a Clean Energy Science and Technology Initiative  

E-Print Network (OSTI)

and Policy (TTP) program have obtained positions within the automotive and energy industries, academia, environmental NGOs, and government.

Sperling, Dan

2004-01-01T23:59:59.000Z

448

California 's Hydrogen Highway: The Case for a Clean Energy Science and Technology Initiative  

E-Print Network (OSTI)

and Policy (TTP) program have obtained positions within the automotive and energy industries, academia, environmental NGOs, and government.

Sperling, Dan

2004-01-01T23:59:59.000Z

449

Hearing on the Use of Hydrogen Fuel Cell Technology in the National Park Service  

E-Print Network (OSTI)

and Policy (TTP) program have obtained positions within the automotive and energy industries, academia, environmental NGOs, and government.

Eggert, Anthony

2004-01-01T23:59:59.000Z

450

Offshore Technology  

E-Print Network (OSTI)

This report, and the roadmapping exercise that produced it, is the result of a series of transparent workshops held across the nation. A wealth of information was produced to compliment internal sources like the Energy Information Administration. The active participation of the Department's stakeholders is greatly appreciated. Walter Rosenbusch, Director of the Minerals Management Service (MMS) deserves special recognition. His partnership, participation and input were instrumental to the success of this effort. I also would like to thank my friend Governor Mark White for his participation and support of this effort. In addition, I thank the following workshop chairs and moderators for their participation and contribution to the roadmapping efforts: Mary Jane Wilson, WZI, Inc.; Ron Oligney, Dr. Michael Economides, and Jim Longbottom, University of Houston; John Vasselli, Houston Advanced Research Center; and Art Schroeder, Energy Valley. This report, however, does not represent the end of such long-range planning by the Department, its national labs, and its stakeholders. Rather it is a roadmap for accelerating the journey into the ultradeepwater Western Gulf of Mexico. The development of new technologies and commercialization paths, discoveries by marine biologists, and the fluctuations of international markets will continue to be important influences. With that in mind, let the journey begin. Emil Pea Deputy Assistant Secretary for Natural Gas and Petroleum Technology OFFSHORE TECHNOLOGY ROADMAP FOR THE ULTRA-DEEPWATER GULF OF MEXICO U.S. Department of Energy Maximumhistm,183 oil product,0 ratd for Gulf of Mexico wells. Taller barsindicat higherproduct44 ratdu The dat show numerous deepwat, oil wells producedat significant2 higherrate tt ever seen in t, Gulf of ...

Roadmap For The; Deepwater Gulf; Of Mexico

2000-01-01T23:59:59.000Z

451

Testing technology  

SciTech Connect

This bulletin from Sandia National Laboratories presents current research highlights in testing technology. Ion microscopy offers new nondestructive testing technique that detects high resolution invisible defects. An inexpensive thin-film gauge checks detonators on centrifuge. Laser trackers ride the range and track helicopters at low-level flights that could not be detected by radar. Radiation transport software predicts electron/photon effects via cascade simulation. Acoustic research in noise abatement will lead to quieter travelling for Bay Area Rapid Transport (BART) commuters.

Not Available

1993-10-01T23:59:59.000Z

452

Running out of steam. Part III. Development blues. [Alternatives to automotive internal combustion engines  

SciTech Connect

The history is given of systems that have been looked upon alternately as either strong competitors or engineering curiosities in the revived search to replace the Otto-cycle power plant with a cleaner, more efficient, and equally reliable passenger car engine. These recent efforts are largely attempts to polish up old technologies that were around long before a single model-T rolled off Henry Ford's first assembly line. The first steam vehicle, for example, hit the road more than 200 years ago and over the years has undergone considerable refinement. But, in spite of this long history and with the exception of short bursts of enthusiasm, the development of a steam-powered passenger car has never been high on the automobile industry's list of priorities. Some clues are given as to why this is true and why a number of ''think tank'' reports published over the past few years on the future role of steam-driven cars have ranged from mildly optimistic to forthrightly pessimistic. Electric vehicles have had a somewhat parallel history. They were early competitors with the Otto engine, but, unlike the steam cars, they have never completely disappeared. Indeed, for some special uses, they have outperformed all varieties of internal combustion engines (I.C.E.). Further inroads into the Otto-cycle car market, however, depend upon improved car design and the advancement of battery technology, an area of research that has been painfully slow in yielding results. Were it not for the wide public interest in environmental and resource issues that has been translated into new laws dealing with air pollution and resource management, the auto industry would have been content to sit on its I.C.E. for some time to come.

Reitze, A.W. Jr.

1977-01-01T23:59:59.000Z

453

FEMP/NTDP Technology Focus New Technology  

E-Print Network (OSTI)

FEMP/NTDP Technology Focus New Technology Demonstration Program Technology Focus FEMPFederal Energy their decision making process relative to energy management systems design, specification, procurement. Future topics will concentrate on more practical aspects including applications software, product

454

Hydrogen Technologies Group  

DOE Green Energy (OSTI)

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

455

Emerging Technologies Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov How ET Fits into BTO Research & Development * Develop technology roadmaps *...

456

Technology and the Box  

E-Print Network (OSTI)

its explorations of technology in partnership with radicalcrowd our daily life. “Technology,” like the term “box,” cancommon understanding of “technology” though, is not as a “

Maitland, Padma

2013-01-01T23:59:59.000Z

457

Technology acceptance in organizations.  

E-Print Network (OSTI)

??New technology has changed how people do business. With rapid development of technology, it has been difficult for businesses and organizations to successfully implement technology… (more)

Stewart, Laurie

2013-01-01T23:59:59.000Z

458

Building Technologies Office: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Events on Twitter Bookmark Building Technologies Office: Events on Google Bookmark Building Technologies Office: Events on Delicious Rank Building Technologies...

459

DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Record Office Record Record #: 13012 Date: September 18, 2013 Title: Fuel Cell System Cost - 2013 Update to: Record 12020 Originator: Jacob Spendelow and Jason Marcinkoski Approved by: Sunita Satyapal Date: October 16, 2013 Item: The cost of an 80-kW net automotive polymer electrolyte membrane (PEM) fuel cell system based on 2013 technology 1 and operating on direct hydrogen is projected to be $67/kW when manufactured at a volume of 100,000 units/year, and $55/kW at 500,000 units/year. Rationale: The DOE Fuel Cell Technologies (FCT) Office supports projects that perform detailed analysis to estimate cost status of fuel cell systems, updated on an annual basis [1]. In fiscal year 2013, Strategic Analysis, Inc. (SA) updated their 2012 cost analysis of an 80-kW

460

Hybrid electric vehicle technology assessment : methodology, analytical issues, and interim results.  

DOE Green Energy (OSTI)

This report presents the results of the first phase of Argonne National Laboratory's (ANL's) examination of the costs and energy impacts of light-duty hybrid electric vehicles (HEVs). We call this research an HEV Technology Assessment, or HEVTA. HEVs are vehicles with drivetrains that combine electric drive components (electric motor, electricity storage) with a refuelable power plant (e.g., an internal combustion engine). The use of hybrid drivetrains is widely considered a key technology strategy in improving automotive fuel efficiency. Two hybrid vehicles--Toyota's Prius and Honda's Insight--have been introduced into the U.S. market, and all three auto industry participants in the Partnership for a New Generation of Vehicles (PNGV) have selected hybrid drivetrains for their prototype vehicles.

Plotkin, S.; Santini, D.; Vyas, A.; Anderson, J.; Wang, M.; Bharathan, D.; He, J.

2002-03-13T23:59:59.000Z

Note: This page contains sample records for the topic "automotive technologies zhenhong" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Zero-emission vehicle technology assessment. Final report  

DOE Green Energy (OSTI)

This is the final report in the Zero-Emission Vehicle (ZEV) Technology Assessment, performed for NYSERDA by Booz-Allen & Hamilton Inc. Booz-Allen wrote the final report, and performed the following tasks as part of the assessment: assembled a database of key ZEV organizations, their products or services, and plans; described the current state of ZEV technologies; identified barriers to widespread ZEV deployment and projected future ZEV technical capabilities; and estimated the cost of ZEVs from 1998 to 2004. Data for the ZEV Technology Assessment were obtained from several sources, including the following: existing ZEV industry publications and Booz-Allen files; major automotive original equipment manufacturers; independent electric vehicle manufacturers; battery developers and manufacturers; infrastructure and component developers and manufacturers; the U.S. Department of Energy, the California Air Resources Board, and other concerned government agencies; trade associations such as the Electric Power Research Institute and the Electric Transportation Coalition; and public and private consortia. These sources were contacted by phone, mail, or in person. Some site visits of manufacturers also were conducted. Where possible, raw data were analyzed by Booz-Allen staff and/or verified by independent sources. Performance data from standardized test cycles were used as much as possible.

Woods, T.

1995-08-01T23:59:59.000Z

462

Technology Transfer: Success Stories: Licensed Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Licensed Technologies Licensed Technologies Here are some of our licensees and the technologies they are commercializing; see our Start-Up Company page for more of our technology licenses. Company (Licensee) Technology Life Technologies Corp. Cell lines for breast cancer research Bristol Myers Squibb; Novartis; Plexxikon Inc.; Wyeth Research; GlaxoSmithKline; Johnson & Johnson; Boehringer Ingelheim Pharmaceuticals, Inc.; Genzyme Software for automated macromolecular crystallography Shell International Exploration and Production; ConnocoPhillips Company; StatOil ASA; Schlumburger Technology Corportation; BHP Billiton Ltd.; Chevron Energy Technology Company; EniTecnologie S.p.A. Geo-Hydrophysical modeling software Microsoft Home Energy Saver software distribution Kalinex Colorimetric bioassay

463

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Environmental Flow-Through Reactor for the In Situ Assessment of Remediation Technologies in Vadose ...

464

Solar Energy Technologies Program Technology Overview  

Science Conference Proceedings (OSTI)

New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

Not Available

2001-11-01T23:59:59.000Z

465

NETL: Technology Transfer - History of Technology Transfer  

History of Technology Transfer Technology transfer differs from providing services or products (e.g., acquisition) and financial assistance (e.g., ...

466

Model based design of an automotive-scale, metal hydride hydrogen storage system.  

SciTech Connect

Sandia and General Motors have successfully designed, fabricated, and experimentally operated a vehicle-scale hydrogen storage system using the complex metal hydride sodium alanate. Over the 6 year project, the team tackled the primary barriers associated with storage and delivery of hydrogen including mass, volume, efficiency and cost. The result was the hydrogen storage demonstration system design. The key technologies developed for this hydrogen storage system include optimal heat exchange designs, thermal properties enhancement, a unique catalytic hydrogen burner and energy efficient control schemes. The prototype system designed, built, and operated to demonstrate these technologies consists of four identical hydrogen storage modules with a total hydrogen capacity of 3 kg. Each module consists of twelve stainless steel tubes that contain the enhanced sodium alanate. The tubes are arranged in a staggered, 4 x 3 array and enclosed by a steel shell to form a shell and tube heat exchanger. Temperature control during hydrogen absorption and desorption is accomplished by circulating a heat transfer fluid through each module shell. For desorption, heat is provided by the catalytic oxidation of hydrogen within a high efficiency, compact heat exchanger. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to the circulating heat transfer fluid. The demonstration system module design and the system control strategies were enabled by experiment-based, computational simulations that included heat and mass transfer coupled with chemical kinetics. Module heat exchange systems were optimized using multi-dimensional models of coupled fluid dynamics and heat transfer. Chemical kinetics models were coupled with both heat and mass transfer calculations to design the sodium alanate vessels. Fluid flow distribution was a key aspect of the design for the hydrogen storage modules and computational simulations were used to balance heat transfer with fluid pressure requirements. An overview of the hydrogen storage system will be given, and examples of these models and simulation results will be described and related to component design. In addition, comparisons of demonstration system experimental results to model predictions will be reported.

Johnson, Terry Alan; Kanouff, Michael P.; Jorgensen, Scott W. (General Motors R& D); Dedrick, Daniel E.; Evans, Gregory Herbert

2010-11-01T23:59:59.000Z

467

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin Films Thin Films PDF format (189 kb) Multi Layer Thin Films Multi Layer Thin Films Planetary Sputtering SystemsPlanetary Sputtering Systems Planetary Sputtering Systems The Thin Film laboratory within Manufacturing Science & Technology provides a variety of vapor deposition processes and facilities for cooperative research and development. Available capabilities include electron beam evaporation, sputter deposition, reactive deposition processes, atomic layer deposition (ALD) and specialized techniques such as focused ion beam induced chemical vapor deposition. Equipment can be reconfigured for prototyping or it can be dedicated to long-term research, development and manufacturing. Most sputter and evaporative deposition systems are capable of depositing multiple materials.

468

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Molding, Thermoforming & Compounding Molding, Thermoforming & Compounding PDF format (89 kb) The Manufacturing Science & Technology Center helps customers choose the best materials and techniques for their product by providing a variety of conformal coatings, thermoforming, and compounding materials using established or custom designed processes. The department provides consulting services for injection molding and rubber compounding projects. Capabilities: Thermoforming: Processing thermoplastics such as polycarbonate, polymethyl methacrylate, polypropylene polystyrene, and ABS; producing holding trays, protective caps, and custom covers Injection Molding Consultation: Designing your part to be injection molded, helping you choose the best material for your application, and supporting your interface with injection molding companies

469

Ethanol production for automotive fuel usage. Final technical report, July 1979-August 1980  

DOE Green Energy (OSTI)

Production of ethanol from potatoes, sugar beets, and wheat using geothermal resources in the Raft River area of Idaho was evaluated. The south-central region of Idaho produces approximately 18 million bushels of wheat, 1.3 million tons of sugar beets, and 27 million cwt potatoes annually. A 20-million-gallon-per-year ethanol facility has been selected as the largest scale plant that can be supported with the current agricultural resources. The conceptual plant was designed to operate on each of these three feedstocks for a portion of the year, but could operate year-round on any of them. The processing facility uses conventional alcohol technology and uses geothermal energy for all process heating. There are three feedstock preparation sections, although the liquefaction and saccharification steps for potatoes and wheat involve common equipment. The fermentation, distillation, and by-product handling sections are common to all three feedstocks. Maximum geothermal fluid requirements are approximately 6000 gpm. It is anticipated that this flow will be supplied by nine production wells located on private and BLM lands in the Raft River KGRA. The geothermal fluid will be flashed from 280/sup 0/F in three stages to supply process steam at 250/sup 0/F, 225/sup 0/F, and 205/sup 0/F for various process needs. Steam condensate plus liquid remaining after the third flash will be returned to receiving strata through six injection wells.

Stenzel, R.A.; Yu, J.; Lindemuth, T.E.; Soo-Hoo, R.; May, S.C.; Yim, Y.J.; Houle, E.H.

1980-08-01T23:59:59.000Z

470

Technology Name  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Development DE-EM0000598 D&D KM-IT For the deployment of Information Technology for D&D knowledge management Page 1 of 2 Florida International University Florida D&D Knowledge Management Information Tool Challenge Deactivation and decommissioning (D&D) work is a high priority across the DOE Complex. The D&D community associated with the various DOE sites has gained extensive knowledge and experience over the years. To prevent the D&D knowledge and expertise from being lost over time an approach is needed to capture and maintain this valuable information in a universally available and easily usable system. Technical Solution The D&D KM-IT serves as a centralized repository

471

Technology Commercialization and Partnerships |  

Staff Directory; BNL People Technology Commercialization & Partnerships. Home; For BNL Inventors; ... a nonprofit applied science and technology organization. ...

472

Magnesium Technology 2009  

Science Conference Proceedings (OSTI)

Feb 1, 2009 ... Print Book and CD-ROM: Magnesium Technology 2007. Hardcover book and CD set: Magnesium Technology 2008 ...

473

Engineering Science & Technology Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Technologies Cooling, Heating and Power Technologies Electronics and Communications Industrial Energy Efficiency Robotics and Energetic Systems Sensors & Signal...

474

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Mar 3, 2010 ... This program focuses on developing energy storage technologies to ... Ultimately , technologies developed through this program will be ...

475

Technology Ventures Corporation  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventures Corporation Technology Ventures Corporation (TVC) identifies technologies with commercial potential, coordinates the development of business and management capabilities,...

476

Magnesium Technology Symposium  

Science Conference Proceedings (OSTI)

Conference Tools for Materials Science & Technology 2013 ... Scope, The magnesium technology symposium will cover a broad spectrum of theoretical and ...

477

Building Technologies Office: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Contacts on Twitter Bookmark Building Technologies Office: Contacts on Google Bookmark Building Technologies Office: Contacts on Delicious Rank Building...

478

Building Technologies Office: Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Webmaster on Twitter Bookmark Building Technologies Office: Webmaster on Google Bookmark Building Technologies Office: Webmaster on Delicious Rank Building...

479

SRNL - Technology Transfer - Home  

Technology Transfer. Research and Development Savannah River Nuclear Solutions, LLC (SRNS) scientists and engineers develop technologies designed to improve ...

480

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Electrochemical Impedance Spectroscopy. Related Patents: 7088115