Powered by Deep Web Technologies
Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Liquefied Natural Gas for Trucks and Buses  

DOE Green Energy (OSTI)

Liquefied natural gas (LNG) is being developed as a heavy vehicle fuel. The reason for developing LNG is to reduce our dependency on imported oil by eliminating technical and costs barriers associated with its usage. The U.S. Department of Energy (DOE) has a program, currently in its third year, to develop and advance cost-effective technologies for operating and refueling natural gas-fueled heavy vehicles (Class 7-8 trucks). The objectives of the DOE Natural Gas Vehicle Systems Program are to achieve market penetration by reducing vehicle conversion and fuel costs, to increase consumer acceptance by improving the reliability and efficiency, and to improve air quality by reducing tailpipe emissions. One way to reduce fuel costs is to develop new supplies of cheap natural gas. Significant progress is being made towards developing more energy-efficient, low-cost, small-scale natural gas liquefiers for exploiting alternative sources of natural gas such as from landfill and remote gas sites. In particular, the DOE program provides funds for research and development in the areas of; natural gas clean up, LNG production, advanced vehicle onboard storage tanks, improved fuel delivery systems and LNG market strategies. In general, the program seeks to integrate the individual components being developed into complete systems, and then demonstrate the technology to establish technical and economic feasibility. The paper also reviews the importance of cryogenics in designing LNG fuel delivery systems.

James Wegrzyn; Michael Gurevich

2000-06-19T23:59:59.000Z

2

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air  

E-Print Network (OSTI)

2005. [FTA 2006] U.S. Non-Rail Vehicle Market ViabilityWelding BART’s Aluminum Rail Transit Cars, Welding JournalAutomobiles, Buses, Light Rail, Heavy Rail and Air Mikhail

Chester, Mikhail; Horvath, Arpad

2007-01-01T23:59:59.000Z

3

Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail  

E-Print Network (OSTI)

Buses, and Metropolitan Rail  Mikhail Chester and Arpad Buses, and Metropolitan Rail  Mikhail Chester and Arpad 2005, Metra (2005)]  Metra Rail, 2005.  Available Daily 

Chester, Mikhail; Horvath, Arpad

2009-01-01T23:59:59.000Z

4

Texas AgriLife Research Procedure 21.01.08.A1.03 Vehicle Use Reports: Automobiles/Trucks Page 1 of 2 Texas AgriLife Research Procedures  

E-Print Network (OSTI)

Texas AgriLife Research Procedure 21.01.08.A1.03 Vehicle Use Reports: Automobiles/Trucks Page 1 of 2 Texas AgriLife Research Procedures 21.01.08.A1.03 VEHICLE USE REPORTS: AUTOMOBILES/TRUCKS Approved To comply with the provisions of the applicable civil statutes of the State of Texas, Texas Agri

5

Texas AgriLife Extension Service Procedure 21.01.08.X1.03 Vehicle Use Reports: Automobiles/Trucks Page 1 of 2 Texas AgriLife Extension Service Procedures  

E-Print Network (OSTI)

Texas AgriLife Extension Service Procedure 21.01.08.X1.03 Vehicle Use Reports: Automobiles/Trucks Page 1 of 2 Texas AgriLife Extension Service Procedures 21.01.08.X1.03 VEHICLE USE REPORTS: AUTOMOBILES STATEMENT To comply with the provisions of the applicable civil statutes of the State of Texas, Texas Agri

6

Technologies and policies for controlling greenhouse gas emissions from the U. S. automobile and light truck fleet.  

DOE Green Energy (OSTI)

The message conveyed by the above discussion is that there are no shortages of technologies available to improve the fuel efficiency of the U.S. fleet of autos and light trucks. It clearly is technically feasible to improve greatly the fuel economy of the average new light-duty vehicle. Many of these technologies require tradeoffs, however, that manufacturers are unwilling or (as yet) unable to make in today's market and regulatory environment. These tradeoffs involve higher costs (that might be reduced substantially over time with learning and economies of scale), technical risk and added complexity, emissions concerns (especially for direct injection engines, and especially with respect to diesel engine technology), and customer acceptance issues. Even with current low U.S. oil prices, however, many of these technologies may find their way into the U.S. market, or increase their market share, as a consequence of their penetration of European and Japanese markets with their high gasoline prices. Automotive technology is ''fungible'' that is, it can be easily transported from one market to another. Nevertheless, it probably is unrealistic to expect substantial increases in the average fuel economy of the U.S. light-duty fleet without significant changes in the market. Without such changes, the technologies that do penetrate the U.S. market are more likely to be used to increase acceleration performance or vehicle structures or enable four wheel drive to be included in vehicles without a net mpg penalty. In other words, technology by itself is not likely to be enough to raise fleet fuel economy levels - this was the conclusion of the 1995 Ailomar Conference on Energy and Sustainable Transportation, organized by the Transportation Research Board's Committees on Energy and Alternative Fuels, and it is one I share.

Plotkin, S.

1999-01-01T23:59:59.000Z

7

Climate VISION: Private Sector Initiatives: Automobile Manufacturers...  

Office of Scientific and Technical Information (OSTI)

The Alliance of Automobile Manufacturers, Inc. is a trade association composed of 10 car and light truck manufacturers with about 600,000 employees at more than 250 facilities...

8

COMPARISON OF CLEAN DIESEL BUSES TO CNG BUSES  

Science Conference Proceedings (OSTI)

Using previously published data on regulated and unregulated emissions, this paper will compare the environmental performance of current generation transit buses operated on compressed natural gas (CNG) to current generation transit buses operated on ultra low sulfur diesel fuel (ULSD) and incorporating diesel particulate filters (DPF). Unregulated emissions evaluated include toxic compounds associated with adverse health effects (carbonyl, PAH, NPAH, benzene) as well as PM particle count and size distribution. For all regulated and unregulated emissions, both technologies are shown to be comparable. DPF equipped diesel buses and CNG buses have virtually identical levels of PM mass emissions and particle number emissions. DPF-equipped diesel buses have lower HC and CO emissions and lower emissions of toxic substances such as benzene, carbonyls and PAHs than CNG buses. CNG buses have lower NOx emissions than DPF-equipped buses, though CNG bus NOx emissions are shown to be much more variable. In addition, this paper will compare the capital and operating costs of CNG and DPF-equipped buses. The cost comparison is primarily based on the experience of MTA New York City Transit in operating CNG buses since 1995 and DPF-equipped buses fueled with ULSD since 2001. Published data on the experience of other large transit agencies in operating CNG buses is used to validate the NYCT experience. The incremental cost (compared to ''baseline'' diesel) of operating a typical 200-bus depot is shown to be six times higher for CNG buses than for ''clean diesel'' buses. The contributors to this increased cost for CNG buses are almost equally split between increased capital costs for purchase of buses and installation of fueling infrastructure, and increased operating costs for purchase of fuel, bus maintenance, and fuel station maintenance.

Lowell, D.; Parsley, W.; Bush,C; Zupo, D.

2003-08-24T23:59:59.000Z

9

Charter Buses | Staff Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Charter Buses for Tours and Special Events Charter Buses for Tours and Special Events Bus Request: Requests for tours and special events may be made by contacting the Transportation Office at 631-344-2535. Cancellation Policy: All cancellations must be made by phone to 631-344-2535 only during BNL business hours. Reservation must be canceled ten (10) business days prior to avoid penalty. Cancel two (2) to nine (9) business days prior - $150.00 penalty. Cancel within 24 hours - full fee will be charged. Staff Services maintains a contract that includes drivers for the rental of coaches, school buses, and vans for on-site tours and the transportation of large numbers of employees and visitors off-site. Our contract bus service rates are shown below: Hampton Jitney - Coaches Equipment Rates 8 Hour Day 4 Hour

10

Alternative fuel transit buses  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) is a U.S. Department of Energy (DOE) national laboratory; this project was funded by DOE. One of NREL`s missions is to objectively evaluate the performance, emissions, and operating costs of alternative fuel vehicles so fleet managers can make informed decisions when purchasing them. Alternative fuels have made greater inroads into the transit bus market than into any other. Each year, the American Public Transit Association (APTA) surveys its members on their inventory and buying plans. The latest APTA data show that about 4% of the 50,000 transit buses in its survey run on an alternative fuel. Furthermore, 1 in 5 of the new transit buses that members have on order are alternative fuel buses. This program was designed to comprehensively and objectively evaluate the alternative fuels in use in the industry.

Motta, R.; Norton, P.; Kelly, K. [and others

1996-10-01T23:59:59.000Z

11

Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bodman Showcases Advanced Clean Diesel and Hybrid Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses Energy Secretary Bodman Showcases Advanced Clean Diesel and Hybrid Trucks, Buses May 10, 2005 - 12:45pm Addthis Says Energy Bill Essential to Develop Clean Diesel Technology WASHINGTON, D.C. - Highlighting the promise of alternative fuel trucks and buses, Secretary of Energy Samuel W. Bodman today opened an exhibition of energy-efficient, clean diesel and advanced hybrid commercial vehicles at a press conference in Washington, D.C. Secretary Bodman also underscored the need to pass an energy bill that encourages the use of renewable fuels and new technologies to provide the United States with greater energy independence. "Industry and government are working hand-in-hand to develop technologies

12

Company Adds Commercial Trucks to List of Hybrids | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Company Adds Commercial Trucks to List of Hybrids Company Adds Commercial Trucks to List of Hybrids Company Adds Commercial Trucks to List of Hybrids August 30, 2010 - 10:00am Addthis Allison’s bus hybrid drive unit for transit buses can be found in 164 cities around the world. The company will use similar technology in the commercial truck hybrid system. | Photo courtesy of Allison Transmission Allison's bus hybrid drive unit for transit buses can be found in 164 cities around the world. The company will use similar technology in the commercial truck hybrid system. | Photo courtesy of Allison Transmission Lindsay Gsell Allison Transmission uses $62.8 million in Recovery Act funding for commercial truck hybrid system Project will create or retain close to 100 manufacturing-related jobs in Indiana Hybrid systems could reduce diesel consumption by 35 percent in

13

Alternative Fuel Transit Buses  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

35th St. Craig Ave. Alt Blvd. Colucci Pkwy. Final Results from the National Renewable Energy Laboratory Vehicle Evaluation Program Final Results from the National Renewable Energy Laboratory Vehicle Evaluation Program N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Produced for the U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), a U.S. DOE national laboratory Transit Buses Alternative Fuel Alternative Fuel Final Results from the National Renewable Energy Laboratory (NREL) Vehicle Evaluation Program by Robert Motta, Paul Norton, and Kenneth Kelly, NREL Kevin Chandler, Battelle Leon Schumacher, University of Missouri Nigel Clark,West Virginia University October 1996 The authors wish to thank all the transit agencies that participated in this program.

14

Occult Trucking and Storage  

E-Print Network (OSTI)

At least we used to. We are Occult Trucking and Storage andNOTHING. FLASHBACK -- OCCULT TRUCKING AND STORAGE DEPOT --I saw him. FLASHBACK - OCCULT TRUCKING AND STORAGE DEPOT -

Eyres, Jeffrey Paul

2011-01-01T23:59:59.000Z

15

Lift truck safety review  

SciTech Connect

This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

Cadwallader, L.C.

1997-03-01T23:59:59.000Z

16

Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities Ann Arbor's New Recycling Trucks Get an 'Assist' from Clean Cities August 18, 2010 - 2:22pm Addthis Peterbilt Model 320 Hybrid HLAs are being put to use in Ann Arbor, MI, where they will serve as recycling trucks. | Photo Courtesy of Peterbilt Motors Company Peterbilt Model 320 Hybrid HLAs are being put to use in Ann Arbor, MI, where they will serve as recycling trucks. | Photo Courtesy of Peterbilt Motors Company Joshua DeLung Hydraulics in vehicles - best known for bouncing cars and kneeling buses - are getting a serious look in Ann Arbor, Mich. The reasons - saving fuel and increasing the life of heavy-use vehicles. With the support of a $120,000 Recovery Act grant, Ann Arbor, Mich., deployed four recycling trucks with hydraulic hybrid power systems

17

Boise Buses Running Strong with Clean Cities  

Energy.gov (U.S. Department of Energy (DOE))

A local Clean Cities coalition helped Idaho's Valley Regional Transit switch to compressed natural gas buses, allowing the transit authority to maintain its service while reducing harmful emissions.

18

Vehicle Modeling and Verification of CNG-Powered Transit Buses  

E-Print Network (OSTI)

Modeling and Verification of CNG-Powered Transit BusesModeling and Verification of CNG-Powered Transit Buses.Modeling and Veri?cation of CNG-Powered Transit Buses J.K.

Hedrick, J. K.; Ni, A.

2004-01-01T23:59:59.000Z

19

Information for Automobile Dealers  

NLE Websites -- All DOE Office Websites (Extended Search)

Information for Automobile Dealers Information for Automobile Dealers Automobile dealers are encouraged to download and print copies of the Fuel Economy Guide for their customers. An electronic version of the guide is available below. To ensure that you will receive a new model year Fuel Economy Guide via e-mail in the future, please provide your e-mail address to us by sending an email to: fueleconomy@ornl.gov. Fuel Economy Guide Cover The Current Guide 2014 Fuel Economy Guide Adobe Acrobat Icon 2014 Letter to Automobile Dealers Adobe Acrobat Icon 2014 Order Card Adobe Acrobat Icon To order printed copy of the 2012-2014 Fuel Economy Guide Online: http://www.afdc.energy.gov/feguide-order By mail: NREL -- Fuel Economy Guide 15013 Denver West Parkway Golden, CO 80401 By phone: 1-800-254-6735 Automobile dealers are also encouraged to promote the Fuel Economy Guide

20

Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership  

DOE Green Energy (OSTI)

The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

None

2000-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Inspection of compressed natural gas cylinders on school buses  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) is sponsoring compressed natural gas (CNF)-powered school bus demonstrations in various locations around the country. Early in 1994, two non-DOE-sponsored CNG pickup trucks equipped with composite-reinforced-aluminum fuel cylinders experienced cylinder ruptures during refueling. As reported by the Gas Research Institute (GRI): ...analysis of the cylinder ruptures on the pickup trucks revealed that they were due to acid-induced stress corrosion cracking (SCC) of the overwrap. The overwrap that GRI refers to is a resin-impregnated fiber that is wrapped around the outside of the gas cylinder for added strength. Because ensuring the safety of the CNG vehicles it sponsors is of paramount concern to DOE, the Department, through the National Renewable Energy Laboratory (NREL), conducted inspections of DOE-sponsored vehicles nationwide. The work had three objectives: inspection, documentation, and education. First, inspectors visited sites where CNG-powered school buses sponsored by DOE are based, and inspected the CNG cylinders for damage. Second, information learned during the inspections was collected for DOE. Third, the inspections found that the education and awareness of site personnel, in terms of cylinder damage detection, needed to be increased.

NONE

1995-07-01T23:59:59.000Z

22

Light truck forecasts  

SciTech Connect

The recent dramatic increase in the number of light trucks (109% between 1963 and 1974) has prompted concern about the energy consequences of the growing popularity of the light truck. An estimate of the future number of light trucks is considered to be a reasonable first step in assessing the energy impact of these vehicles. The monograph contains forecasts based on two models and six scenarios. The coefficients for the models have been derived by ordinary least squares regression of national level time series data. The first model is a two stage model. The first stage estimates the number of light trucks and cars (together), and the second stage applies a share's submodel to determine the number of light trucks. The second model is a simultaneous equation model. The two models track one another remarkably well, within about 2%. The scenarios were chosen to be consistent with those used in the Lindsey-Kaufman study Projection of Light Truck Population to Year 2025. Except in the case of the most dismal economic scenario, the number of light trucks is expected to increase from the 1974 level of 0.09 light truck per person to about 0.12 light truck per person in 1995.

Liepins, G.E.

1979-09-01T23:59:59.000Z

23

Empty WIPP truck overturns  

NLE Websites -- All DOE Office Websites (Extended Search)

Office reports that a Waste Isolation Pilot Plant (WIPP) truck carrying three empty TRUPACT-II shipping containers overturned on Interstate 15 near Blackfoot, Idaho, at...

24

Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Buses Shuttle Propane Buses Shuttle Visitors in Maine to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Google Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Delicious Rank Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on AddThis.com... Oct. 13, 2012 Propane Buses Shuttle Visitors in Maine W atch how travelers in Bar Harbor, Maine, rely on propane-powered shuttle buses. For information about this project, contact Maine Clean Communities.

25

Alternative Fuels Data Center: Propane Buses Save Money for Virginia  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Buses Save Propane Buses Save Money for Virginia Schools to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Google Bookmark Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Delicious Rank Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on AddThis.com... Feb. 25, 2010 Propane Buses Save Money for Virginia Schools F ind out how Gloucester County Schools' propane buses are quieter and cost

26

Energy Efficiency I: Automobiles  

SciTech Connect

Most of us probably are not aware of all that's going on to improve the efficiency of energy usage in vehicles, residential climate control, manufacturing, and power management. The bulk of the energy consumption in the US during 2000 was apportioned as 34% for residential and commercial uses, 36.5% for industrial uses, and 26% for transportation. Automobiles in particular are the focus of intense energy conservation efforts. Only a surprising 25% of the fuel consumed by an automobile is converted to useful shalf work. The rest goes to the exhaust gases, coolant, friction and wear.

Martin, Peter M.

2003-11-15T23:59:59.000Z

27

Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Transit Buses: Today's Transit Buses: Today's Pioneers in Fuel Cell Transportation to someone by E-mail Share Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on Facebook Tweet about Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on Twitter Bookmark Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on Google Bookmark Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on Delicious Rank Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on Digg Find More places to share Vehicle Technologies Office: Transit Buses: Today's Pioneers in Fuel Cell Transportation on AddThis.com... Transit Buses: Today's Pioneers in Fuel Cell Transportation

28

Alternative Fuels Data Center: School Buses Go Green in Virginia  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Buses Go Green School Buses Go Green in Virginia to someone by E-mail Share Alternative Fuels Data Center: School Buses Go Green in Virginia on Facebook Tweet about Alternative Fuels Data Center: School Buses Go Green in Virginia on Twitter Bookmark Alternative Fuels Data Center: School Buses Go Green in Virginia on Google Bookmark Alternative Fuels Data Center: School Buses Go Green in Virginia on Delicious Rank Alternative Fuels Data Center: School Buses Go Green in Virginia on Digg Find More places to share Alternative Fuels Data Center: School Buses Go Green in Virginia on AddThis.com... Oct. 1, 2011 School Buses Go Green in Virginia " We've taken some important first steps toward lower emissions and reduced dependence on foreign oil. Everybody needs to be doing everything they can

29

International Truck | Open Energy Information  

Open Energy Info (EERE)

Truck Truck Jump to: navigation, search Name International Truck Place Atlanta, GA Website http://www.internationaltruck. References International Truck[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship Partnering Center within NREL Transportation Technologies and Systems Partnership Year 2007 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! International Truck is a company located in Atlanta, GA. References ↑ "International Truck" Retrieved from "http://en.openei.org/w/index.php?title=International_Truck&oldid=381698" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link

30

Advanced Vehicle Testing Activity: Truck Testing Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Adobe Reader. Norcal Waste Systems, Inc. Liquefied Natural Gas Trucks Norcal Prototype LNG Truck Fleet: Final Data Report, February 2005 (PDF 806 KB) Norcal Prototype LNG Truck...

31

Alternative Fuels Data Center: Clean Transportation Fuels for School Buses  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Transportation Clean Transportation Fuels for School Buses to someone by E-mail Share Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on Facebook Tweet about Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on Twitter Bookmark Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on Google Bookmark Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on Delicious Rank Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on Digg Find More places to share Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean Transportation Fuels for School Buses

32

Alternative Fuels Data Center: Biodiesel Requirement for School Buses  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Requirement Requirement for School Buses to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Requirement for School Buses on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Requirement for School Buses on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Requirement for School Buses on Google Bookmark Alternative Fuels Data Center: Biodiesel Requirement for School Buses on Delicious Rank Alternative Fuels Data Center: Biodiesel Requirement for School Buses on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Requirement for School Buses on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Requirement for School Buses Every school bus that is capable of operating on diesel fuel must be

33

Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Buses Help Propane Buses Help Minnesota Schools Carve out Greener Future to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Google Bookmark Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Delicious Rank Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on AddThis.com...

34

Alternative Fuels Data Center: Biodiesel Use in School Buses  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Use in Biodiesel Use in School Buses to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Use in School Buses on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Use in School Buses on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Use in School Buses on Google Bookmark Alternative Fuels Data Center: Biodiesel Use in School Buses on Delicious Rank Alternative Fuels Data Center: Biodiesel Use in School Buses on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Use in School Buses on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Use in School Buses The South Carolina Department of Education must fuel state school bus fleets with biodiesel when feasible. (Reference South Carolina Code of Laws

35

Tempe Transportation Division: LNG Turbine Hybrid Electric Buses  

SciTech Connect

Fact sheet describes the performance of liquefied natural gas (LNG) turbine hybrid electric buses used in Tempe's Transportation Division.

Not Available

2002-02-01T23:59:59.000Z

36

Transit Users Group Supports Transit Agencies with Natural Gas Buses  

Science Conference Proceedings (OSTI)

Fact sheet describes the benefits of the Transit Users Group, which supports transit groups with compressed natural gas (CNG) buses.

Not Available

2002-04-01T23:59:59.000Z

37

Climate VISION: Private Sector Initiatives: Automobile Manufacturers: Work  

Office of Scientific and Technical Information (OSTI)

Work Plans Work Plans The Alliance of Automobile Manufacturers (Alliance) is a trade association of ten car and light truck manufacturers that account for more than 90 percent of U.S. vehicle sales. Member companies, which include BMW Group, DaimlerChrysler, Ford Motor Company, General Motors, Mazda, Mitsubishi Motors, Nissan, Porsche, Toyota, and Volkswagen, employ about 620,000 people in the United States in 35 states. Read the Alliance Work Plan (PDF 254 KB) Example 2-1: GM - Lighting efficiency plan to implement "green lights" projects at 73 plants (PDF 113 KB) Example 2-2: Ford - Plant-wide assessment to identify opportunities to reduce energy use (PDF 83 KB) Example 2-3: GM - Plant-wide audit to reduce energy use at Janesville truck plant (PDF 105 KB)

38

Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas School Buses Grant and Loan Pilot Program to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas School Buses Grant and Loan Pilot Program on AddThis.com...

39

Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Shuttle Buses Offer Free Rides in Maryland to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on AddThis.com... June 18, 2010

40

Truckstop -- and Truck!-- Electrification  

SciTech Connect

The conclusions of this paper are: 0.5-1.5 G/H and/or BUSG/Y--how much time and money will it take to quantify and WHY BOTHER TO DO SO? No shortage of things to do re truckstop--+ truck!-- electrification; Better that government and industry should put many eggs in lots of baskets vs. all in one or few; Best concepts will surface as most viable; Economic appeal better than regulation or brute force; Launch Ground Freight Partnership and give it a chance to work; Demonstration is an effective means to educate, and learn from, customers--learning is a two way street; Research, Development, Demonstration, and Deployment (RD 3) are all important but only deployment gets results; TSE can start small in numbers of spaces to accommodate economically inspired growth but upfront plans should be made for expansion if meaningful idle reduction is to follow via TE; 110VAC 15A service/ parking space is minimal--if infrastructure starts like this, upfront plans must be made to increase capacity; Increased electrification of truckstop and truck alike will result in much better life on the road; Improved sleep will improve driver alertness and safety; Reduced idling will significantly reduce fuel use and emissions; Universal appeal for DOD, DOE, DOT, EPA, OEMs, and users alike; Clean coal, gas, hydro, nuclear, or wind energy sources are all distinctly American means by which to generate electricity; Nothing can compete with diesel fuel to serve mobile truck needs; stationary trucks are like power plants--they don't move and should NOT be powered by petroleum products whenever possible; Use American fueled power plants--electricity--to serve truck idling needs wherever practical to do so; encourage economic aspect; Create and reward industry initiatives to reduce fuel use; Eliminate FET on new trucks, provide tax credits (non highway fuel use and investment), provide incentives based on results; Encourage newer/ cleaner truck use; solicit BAAs with mandatory OEM/ fleet participation/ lead; and A gallon saved is a gallon earned-- start NOW, not later.

Skip Yeakel

2001-12-13T23:59:59.000Z

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Truckstop -- and Truck!-- Electrification  

DOE Green Energy (OSTI)

The conclusions of this paper are: 0.5-1.5 G/H and/or BUSG/Y--how much time and money will it take to quantify and WHY BOTHER TO DO SO? No shortage of things to do re truckstop--+ truck!-- electrification; Better that government and industry should put many eggs in lots of baskets vs. all in one or few; Best concepts will surface as most viable; Economic appeal better than regulation or brute force; Launch Ground Freight Partnership and give it a chance to work; Demonstration is an effective means to educate, and learn from, customers--learning is a two way street; Research, Development, Demonstration, and Deployment (RD 3) are all important but only deployment gets results; TSE can start small in numbers of spaces to accommodate economically inspired growth but upfront plans should be made for expansion if meaningful idle reduction is to follow via TE; 110VAC 15A service/ parking space is minimal--if infrastructure starts like this, upfront plans must be made to increase capacity; Increased electrification of truckstop and truck alike will result in much better life on the road; Improved sleep will improve driver alertness and safety; Reduced idling will significantly reduce fuel use and emissions; Universal appeal for DOD, DOE, DOT, EPA, OEMs, and users alike; Clean coal, gas, hydro, nuclear, or wind energy sources are all distinctly American means by which to generate electricity; Nothing can compete with diesel fuel to serve mobile truck needs; stationary trucks are like power plants--they don't move and should NOT be powered by petroleum products whenever possible; Use American fueled power plants--electricity--to serve truck idling needs wherever practical to do so; encourage economic aspect; Create and reward industry initiatives to reduce fuel use; Eliminate FET on new trucks, provide tax credits (non highway fuel use and investment), provide incentives based on results; Encourage newer/ cleaner truck use; solicit BAAs with mandatory OEM/ fleet participation/ lead; and A gallon saved is a gallon earned-- start NOW, not later.

Skip Yeakel

2001-12-13T23:59:59.000Z

42

CMVRTC: Medium Truck Duty Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

medium truck duty cycle (MTdc) project medium truck duty cycle (MTdc) project OVERVIEW The Medium Truck Duty Cycle (MTDC) project involves efforts to collect, analyze and archive data related to medium-truck operations in real-world driving environments. Such data and information will be useful to support technology evaluation efforts and to provide a means of accounting for real-world driving performance within medium-class truck analyses. The project involves private industry partners from various truck vocations. The MTDC project is unique in that there currently does not exist a national database of characteristic duty cycles for medium trucks. This project involves the collection of data from multiple vocations (four vocations) and multiple vehicles within these vocations (three vehicles per

43

Hydrogen-Powered Buses Brochure Â… 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Powered by Hydrogen EERE Information Center 1-877-EERE-INFO (1-877-337-3463) eere.energy.gov/informationcenter Prepared by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. October 2010 Source: NREL, Dennis Schroeder Source: NREL, Dennis Schroeder Hydrogen-Powered Buses Showcase Advanced Vehicle Technologies Visitors to federal facilities across the country may now have the opportunity to tour the sites in a hydrogen- powered shuttle bus. The U.S. Department of Energy (DOE) is supporting the demonstration of hydrogen-powered vehicles and hydrogen infrastructure at federal facilities across the country. Nine facilities will receive fourteen hydrogen- powered buses to demonstrate this market-ready advanced technology. Produced by Ford Motor Company, the

44

Fuel for thought: the hydrogen-powered automobile  

SciTech Connect

A new clean and nondepletable fuel must be found to power automobiles if they are to survive as an economically viable mode of transportation. One such fuel is hydrogen, which was first proposed for internal combustion in 1820. The disadvantages of a hydrogen economy stem from its low boiling points, its not being a primary energy source, and the cost of present conversion technology. Its merits include having the highest energy per unit mass of the chemical fuels, water as its only product, and suitability for a range of applications. New interest in hydrogen buses and passenger cars has prompted some experimentation, but economics will ultimately determine their future. Considerations of safety have already led to guidelines and codes. Production methods include catalytic destruction of hydrocarbon fuels, coal gasification, steam-reforming of natural gas, and splitting the water molecule by electrolysis, thermolysis, or photolysis. 60 references. (DCK)

El-Mallakh, R.S.

1981-04-01T23:59:59.000Z

45

School Buses Get Greener in Bluegrass State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

School Buses Get Greener in Bluegrass State School Buses Get Greener in Bluegrass State School Buses Get Greener in Bluegrass State September 10, 2010 - 11:45am Addthis Ed McNeel, superintendent of Corbin's school district, poses aboard the district's new hybrid-diesel bus. | Photo Courtesy of Susie Hart. Ed McNeel, superintendent of Corbin's school district, poses aboard the district's new hybrid-diesel bus. | Photo Courtesy of Susie Hart. Lindsay Gsell What are the key facts? Kentucky will receive 213 hybrid diesel buses in the next year. The project is funded with nearly $13 million in Clean Cities Recovery Act funding. The new buses will be more than 60% more fuel efficient than traditional vehicles. It's September and traditional school buses are once again on the roads in large numbers. However, throughout Kentucky, a new type of school bus will hit the road

46

Experiences from Ethanol Buses and Fuel Station Report - Nanyang | Open  

Open Energy Info (EERE)

Experiences from Ethanol Buses and Fuel Station Report - Nanyang Experiences from Ethanol Buses and Fuel Station Report - Nanyang Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Ethanol Buses and Fuel Station Report - Nanyang Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report This report addresses the experience of introducing ethanol buses and fuel stations in Nanyang (China). Though the demonstration met initial obstacles, significant data and information was collected. The responses from drivers and passengers show that the ethanol buses were well accepted, and the function and performance of the ethanol buses was satisfactory. How to Use This Tool

47

Alternative Fuels Data Center: Biodiesel Use in School Buses...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Louisiana Legislature. The Board will consider the environmental and economic advantages and disadvantages of using biodiesel in school buses. (Reference House Resolution 72, 201...

48

Case Study: Ebus Hybrid Electric Buses and Trolleys  

DOE Green Energy (OSTI)

Evaluation focuses on the demonstration of hybrid electric buses and trolleys produced by Ebus Inc. at the Indianapolis Transportation Corporation and the Knoxville Area Transit.

Barnitt, R.

2006-07-01T23:59:59.000Z

49

The Hybrid Automobile and the Atkinson Cycle  

Science Conference Proceedings (OSTI)

The hybrid automobile is a strikingly new automobile technology with a number of new technological features that dramatically improve energy efficiency. This paper will briefly describe how hybrid automobiles work; what are these new technological features; why the Toyota Prius hybrid internal combustion engine operates on the Atkinson cycle instead of the Otto cycle; and what are the advantages and disadvantages of the hybrid automobile. This is a follow-up to my two previous papers on the physics of automobile engines.1

Bernard J. Feldman

2008-01-01T23:59:59.000Z

50

Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Preliminary Evaluation Results  

DOE Green Energy (OSTI)

This report provides an evaluation of three prototype fuel cell-powered transit buses operating at AC Transit in Oakland, California, and six baseline diesel buses similar in design to the fuel cell buses.

Chandler, K.; Eudy, L.

2007-03-01T23:59:59.000Z

51

Vehicle Technologies Office: 21st Century Truck  

NLE Websites -- All DOE Office Websites (Extended Search)

for 21st Century Truck Partnership. Partial outline of three various size medium to heavy-duty trucks followed by the words, 21st Century Truck Partnership. Medium-duty and...

52

Alternative Fuels in Trucking Volume 5, Number 3  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

lmost 50% of the petroleum lmost 50% of the petroleum consumed in the United States is imported. By the year 2000, 73% of total petroleum demand will be imported, making America vulnerable to a cutoff in our energy lifeline. Transportation, which is 98% dependent on petroleum, uses two-thirds of the oil consumed in the United States. If we instead used American-produced natural gas to power our vehicles, we could become energy independent. Natural gas could also solve some of our toughest environmental prob- lems. Gasoline- and diesel-fueled cars, trucks, and buses produce half of all air pollution in the United States. Natural gas would cut emis- sions to zero. Congress has recognized the opportunity and enacted legislation to provide incentives for or mandate the production of alternative fuel

53

Climate VISION: Private Sector Initiatives: Automobile Manufacturers...  

Office of Scientific and Technical Information (OSTI)

State Programs Technical Information Plant Assessments Training Calendar Software Tools Energy Management Results Technology Pathways Automobile Manufacturers - Results No...

54

The Effect of Fuel Economy on Automobile Safety: A Reexamination  

NLE Websites -- All DOE Office Websites (Extended Search)

TRB 05-1336 TRB 05-1336 The Effect of Fuel Economy on Automobile Safety: A Reexamination November 16, 2004 Word Count: 5,966 (including 3 tables and 1 figure) Sanjana Ahmad Research Assistant The University of Tennessee, Knoxville 2360 Cherahala Boulevard Knoxville, Tennessee 37932 Phone: (865) 946-1311 Fax: (865) 946-1314 Email: sahmad2@utk.edu David L. Greene Corporate Research Fellow Oak Ridge National Laboratory National Transportation Research Center 2360 Cherahala Boulevard Knoxville, Tennessee 37932 Phone: (865) 946-1310 Fax: (865) 946-1314 Email: dlgreene@ornl.gov Ahmad and Greene 1 ABSTRACT Since 1975, the fuel economy of passenger cars and light trucks has been regulated by the Corporate Average Fuel Economy (CAFE) standards, established during the energy crises of the 1970s. Calls to

55

Medium Truck Duty Cycle (MTDC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Routes Data Acquisition System Setup Routes Data Acquisition System Setup Medium Truck Duty Cycle (MTDC) Objective This Department of Energy project focuses on the collection and analysis medium truck (Class-6 and -7) duty cycle data from real-world operations. Analysis of this data will provide information pertaining to the fuel efficiencies and performance of medium trucks in several vocations. Outcomes Rich source of data and information that can contribute to the development of new tools Sound basis upon which DOE can make technology investment decisions A national archive of real-world-based medium-truck operational data that will support medium-duty vehicle energy efficiency research Collected Data Speed & Acceleration Fuel Consumption GPS Location Road Grade

56

CMVRTC: Heavy Truck Duty Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

heavy truck duty cycle (HTDC) project heavy truck duty cycle (HTDC) project OVERVIEW The Heavy Truck Duty Cycle (HTDC) Project was initiated in 2004 and is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies Program. ORNL designed the research program to generate real-world-based duty cycle data from trucks operating in long-haul operations and was designed to be conducted in three phases: identification of parameters to be collected, instrumentation and pilot testing, identification of a real-world fleet, design of the data collection suite and fleet instrumentation, and data collection, analysis, and development of a duty cycle generation tool (DCGT). ANL logo dana logo michelin logo Schrader logo This type of data will be useful for supporting energy efficiency

57

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

58

Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station |  

Open Energy Info (EERE)

Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report Ethanol buses were demonstrated within BioEthanol for Sustainable Transport (BEST). This report describes the problems at the sites and how they were solved. The aim of the report is to guide other local transport authorities on how to deal with the questions raised when a bus demonstration begins. How to Use This Tool This tool is most helpful when using these strategies:

59

The BEST Experiences with Bioethanol Buses | Open Energy Information  

Open Energy Info (EERE)

The BEST Experiences with Bioethanol Buses The BEST Experiences with Bioethanol Buses Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The BEST Experiences with Bioethanol Buses Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report This report summarizes the results of the BioEthanol for Sustainable Transport (BEST) demonstration of bioethanol buses. The conclusion is that bioethanol is a suitable fuel for public transport. Bioethanol has a potential to replace diesel in compression engines. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

60

Enterprise converting buses to biodiesel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enterprise converting buses to biodiesel Enterprise converting buses to biodiesel Enterprise converting buses to biodiesel April 1, 2010 - 6:48pm Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Rental car customers may be able to breathe a little easier during their next trip to the airport. Alamo Rent A Car, Enterprise Rent-A-Car, and National Car Rental, all brands operated by the subsidiaries of Enterprise Holdings, are converting their airport shuttle buses to run on biodiesel fuel. The move is a good one for the environment, and will ultimately reduce the company's carbon emissions. "We are saving 420,000 gallons of petroleum diesel," says Lee Broughton, director of corporate identity and sustainability for Enterprise Holdings. Hydrocarbon and particulate matter emissions will plummet, making the air

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alternative fuel transit buses: The Pierce Transit Success Story  

DOE Green Energy (OSTI)

The Pierce transit program for operating mass transit buses on compressed natural gas (CNG) is described. Cost, reliability, fuel efficiency, emission of combustion products, and future trends are discussed.

NONE

1996-10-01T23:59:59.000Z

62

King County Metro Transit Hybrid Articulated Buses: Final Evaluation Results  

DOE Green Energy (OSTI)

Final technical report compares and evaluates new diesel and diesel hybrid-electric articulated buses operated as part of the King County Metro Transit (KC Metro) fleet in Seattle, Washington. The evaluation lasted 12 months.

Chandler, K.; Walkowicz, K.

2006-12-01T23:59:59.000Z

63

New Yellow School Buses Harness the Sun in Wisconsin | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to the charge gained from the solar array, the buses also recharge their batteries using regenerative braking, just like traditional hybrid vehicles. The school bus-with the need...

64

NYCT Diesel Hybrid-Electric Buses Program Status Update  

DOE Green Energy (OSTI)

Program status update focuses on the experiences gathered during New York City Transit's deployment of hybrid electric buses in its fleet. This report is part of an ongoing Department of Energy (DOE), Office of Heavy Vehicle Technologies program to study heavy-duty alternative fuel and advanced technology vehicles in the United States. DOE's National Renewable Energy Laboratory (NREL) is conducting the Transit Bus Evaluation Project to compare alternative fuel or advanced technology and diesel fuel buses. Information for the comparison comes from data collected on the operational, maintenance, performance, and emissions characteristics of alternative fuel or advanced technology buses currently being used in vehicle fleets and comparable diesel fuel buses serving as controls within the same fleet. This report highlights the New York City Transit (NYCT) alternative fuel and advanced technology programs including its diesel hybrid-electric buses. As part of the NREL Transit Bus Evaluation Project, data collection and evaluation of the Orion VI diesel hybrid-electric buses at NYCT are nearly complete. Final reports from the evaluation are being prepared by NREL and Battelle (NREL's support contractor for the project) and will be available in early 2002. If you want to know more about this transit bus program, its components, advanced technology vehicles, or incentive programs, contact any of the following personnel or visit the Web sites listed.

Not Available

2002-03-01T23:59:59.000Z

65

Evaluation of Orion/BAE Hybrid Buses and Orion CNG Buses at New York City Transit: Preprint  

DOE Green Energy (OSTI)

This paper prepared for the 2005 American Public Transportation Association Bus & Paratransit Conference discusses the NREL/DOE evaluation of hybrid electric transit buses operated by New York City Transit.

Eudy, L.; Barnitt, R.; Chandler, K.

2005-05-01T23:59:59.000Z

66

Heavy Truck Engine Program  

DOE Green Energy (OSTI)

The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine system was capable of meeting 2010 emissions requirements through the application of NOx and particulate matter reduction techniques proven earlier in the program.

Nelson, Christopher

2009-01-08T23:59:59.000Z

67

Raley's LNG Truck Site Final Data Report  

DOE Green Energy (OSTI)

Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

Battelle

1999-07-01T23:59:59.000Z

68

Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Glacier-Waterton Park Glacier-Waterton Park Powers Buses With Propane to someone by E-mail Share Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Facebook Tweet about Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Twitter Bookmark Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Google Bookmark Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Delicious Rank Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on Digg Find More places to share Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With Propane on AddThis.com... Dec. 31, 2004 Glacier-Waterton Park Powers Buses With Propane F ind out how Glacier-Waterton International Peace Park uses propane buses.

69

Energy Department, Volvo Partnership Builds More Efficient Trucks...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the United States. Volvo Truck Corporation is one of the leading heavy truck and engine manufacturers in the world. Volvo Trucks manufactures a line of Class 8 trucks, and is...

70

King County Metro Transit Hybrid Articulated Buses: Interim Evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

CA Peterbilt378, Class 8 truck Cummins Westport ISXG high-pressure direct injection LNG and diesel Completed in 2004 Note: CNG compressed natural gas; LNG liquefied...

71

King County Metro Transit Hybrid Articulated Buses: Final Evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

CA Peterbilt378, Class 8 truck Cummins Westport ISXG high-pressure direct injection LNG and diesel Completed in 2004 Note: CNG compressed natural gas; LNG liquefied...

72

Norcal Prototype LNG Truck Fleet: Final Results  

SciTech Connect

U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

Not Available

2004-07-01T23:59:59.000Z

73

Non-CFC air conditioning for transit buses  

SciTech Connect

In the United Sates, more than 80% of transit city buses are air conditioned. Vapor compression refrigeration systems are standard for air conditioning buses and account for up to 25% of fuel consumption in the cooling season. Vapor compression devices use chlorofluorocarbons (CFCs), chemicals that contributes to Earths`s ozone depletion and to global warming. Currently, evaporative cooling is an economical alternative to CFC vapor compression refrigeration for air conditioning buses. It does not use CFCs but is restricted in use to arid climates. This limitation can be eliminated by dehumidifying the supply air using desiccants. We studied desiccant systems for cooling transit buses and found that the use of a desiccant-assisted evaporative cooling system is feasible and can deliver the required cooling. The weight and the size of the desiccant system though larger than vapor compression systems, can be easily accommodated within a bus. Fuel consumption for naming desiccant systems was about 70% less than CFC refrigeration system, resulting in payback periods of less than 2.5 years under most circumstances. This preliminary study indicated that desiccant systems combined with evaporative cooling is a CFC-free option to vapor compression refrigeration for air conditioning of transit buses. The concept is ready to be tested in a fun prototype scale in a commercial bus.

Pesaran, A.A.; Parent, Y.O.; Bharathan, D.

1992-11-01T23:59:59.000Z

74

Non-CFC air conditioning for transit buses  

Science Conference Proceedings (OSTI)

In the United Sates, more than 80% of transit city buses are air conditioned. Vapor compression refrigeration systems are standard for air conditioning buses and account for up to 25% of fuel consumption in the cooling season. Vapor compression devices use chlorofluorocarbons (CFCs), chemicals that contributes to Earths's ozone depletion and to global warming. Currently, evaporative cooling is an economical alternative to CFC vapor compression refrigeration for air conditioning buses. It does not use CFCs but is restricted in use to arid climates. This limitation can be eliminated by dehumidifying the supply air using desiccants. We studied desiccant systems for cooling transit buses and found that the use of a desiccant-assisted evaporative cooling system is feasible and can deliver the required cooling. The weight and the size of the desiccant system though larger than vapor compression systems, can be easily accommodated within a bus. Fuel consumption for naming desiccant systems was about 70% less than CFC refrigeration system, resulting in payback periods of less than 2.5 years under most circumstances. This preliminary study indicated that desiccant systems combined with evaporative cooling is a CFC-free option to vapor compression refrigeration for air conditioning of transit buses. The concept is ready to be tested in a fun prototype scale in a commercial bus.

Pesaran, A.A.; Parent, Y.O.; Bharathan, D.

1992-11-01T23:59:59.000Z

75

Truck Thermoacoustic Generator and Chiller  

DOE Green Energy (OSTI)

This Final Report describes the accomplishments of the US Department of Energy (DOE) cooperative agreement project DE-FC26-04NT42113 - Truck Thermoacoustic Generator and Chiller - whose goal is to design, fabricate and test a thermoacoustic piezoelectric generator and chiller system for use on over-the-road heavy-duty-diesel trucks, driven alternatively by the waste heat of the main diesel engine exhaust or by a burner integrated into the thermoacoustic system. The thermoacoustic system would utilize engine exhaust waste heat to generate electricity and cab air conditioning, and would also function as an auxiliary power unit (APU) for idle reduction. The unit was to be tested in Volvo engine performance and endurance test cells and then integrated onto a Class 8 over-the-road heavy-duty-diesel truck for further testing on the road. The project has been a collaboration of The Pennsylvania State University Applied Research Laboratory, Los Alamos National Laboratory, Clean Power Resources Inc., and Volvo Powertrain (Mack Trucks Inc.). Cost share funding was provided by Applied Research Laboratory, and by Clean Power Resources Inc via its grant from Innovation Works - funding that was derived from the Commonwealth of Pennsylvania. Los Alamos received its funding separately through DOE Field Work Proposal 04EE09.

Robert Keolian

2011-03-31T23:59:59.000Z

76

Climate VISION: Private Sector Initiatives: Automobile Manufacturers...  

Office of Scientific and Technical Information (OSTI)

Us AUTOMOBILE MANUFACTURERS Letters of IntentAgreements Work Plans GHG Information Energy Footprints Resources & Links Industry Associations FederalState Programs Technical...

77

Boise Buses Running Strong with Clean Cities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boise Buses Running Strong with Clean Cities Boise Buses Running Strong with Clean Cities Boise Buses Running Strong with Clean Cities May 28, 2013 - 12:05pm Addthis Working with Republic Services, the city of Boise and Valley Regional Transit, Treasure Valley Clean Cities built four compressed natural gas (CNG) fueling stations that allowed all three organizations to transition to CNG vehicles. | Photo courtesy of Valley Regional Transit. Working with Republic Services, the city of Boise and Valley Regional Transit, Treasure Valley Clean Cities built four compressed natural gas (CNG) fueling stations that allowed all three organizations to transition to CNG vehicles. | Photo courtesy of Valley Regional Transit. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts?

78

Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Third Evaluation Report and Appendices  

DOE Green Energy (OSTI)

This report describes operations at Alameda-Contra Costa Transit district for three protoype fuel cell buses and six diesel buses operating from the same location.

Chandler, K.; Eudy, L.

2008-07-01T23:59:59.000Z

79

Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Pennsylvania School Pennsylvania School Buses Run on Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas on Google Bookmark Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas on Delicious Rank Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas on AddThis.com... Feb. 16, 2013 Pennsylvania School Buses Run on Natural Gas F ind out how schools in Pennsylvania transport students in compressed

80

Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas School Natural Gas School Buses Help Kansas City Save Money to someone by E-mail Share Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on Facebook Tweet about Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on Twitter Bookmark Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on Google Bookmark Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on Delicious Rank Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on Digg Find More places to share Alternative Fuels Data Center: Natural Gas School Buses Help Kansas City Save Money on AddThis.com... Nov. 12, 2011 Natural Gas School Buses Help Kansas City Save Money

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses  

DOE Green Energy (OSTI)

An evaluation of emissions of natural gas and diesel buses operated by the Washington Metro Area Transit Authority.

Melendez, M.; Taylor, J.; Wayne, W. S.; Smith, D.; Zuboy, J.

2005-12-01T23:59:59.000Z

82

New York City Transit Hybrid and CNG Transit Buses: Final Evaluation Results  

DOE Green Energy (OSTI)

This report describes the evaluation results for new Orion VII buses at NYCT with CNG propulsion and new hybrid propulsion.

Barnitt, R.; Chandler, K.

2006-11-01T23:59:59.000Z

83

Trucking | OpenEI Community  

Open Energy Info (EERE)

36 36 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142235336 Varnish cache server Trucking Home Jessi3bl's picture Submitted by Jessi3bl(15) Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation Partnerships Technology Innovation & Solutions Transportation Trucking Syndicate content 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

84

Lower Merion a Key Player in Alternative Fuel Buses  

DOE Green Energy (OSTI)

This 2-page Clean Cities fact sheet describes the use of natural gas power in buses by the Lower Merion School District, located in the western suburbs of Philadelphia, PA. It includes information on the history of the program, along with contact information for the local Clean Cities Coordinator and Lower Merion School District.

Not Available

2004-04-01T23:59:59.000Z

85

Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel and Propane Biodiesel and Propane Fuel Buses for Dallas County Schools to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Google Bookmark Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Delicious Rank Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on Digg Find More places to share Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas County Schools on AddThis.com... Oct. 2, 2009

86

New Buses Transport Students and Savings in Texas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buses Transport Students and Savings in Texas Buses Transport Students and Savings in Texas New Buses Transport Students and Savings in Texas July 29, 2010 - 6:27pm Addthis Students look underneath one of Fort Worth Independent School District's new hybrid diesel buses. | Photo courtesy of FWISD Students look underneath one of Fort Worth Independent School District's new hybrid diesel buses. | Photo courtesy of FWISD Lindsay Gsell This fall, when students in Texas' Fort Worth Independent School District (FWISD) board school buses, some of them will be riding on the district's new hybrid electric diesel vehicles. Thanks to Recovery Act funding from the U.S. Department of Energy's Clean Cities program, the district was able to purchase 25 buses-enough to transport 1,800 students to school while saving the district 12,000 gallons

87

Vehicle Technologies Office: Fact #555: January 26, 2009 Transit Buses are  

NLE Websites -- All DOE Office Websites (Extended Search)

5: January 26, 5: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel to someone by E-mail Share Vehicle Technologies Office: Fact #555: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel on Facebook Tweet about Vehicle Technologies Office: Fact #555: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel on Twitter Bookmark Vehicle Technologies Office: Fact #555: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel on Google Bookmark Vehicle Technologies Office: Fact #555: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel on Delicious Rank Vehicle Technologies Office: Fact #555: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel on Digg Find More places to share Vehicle Technologies Office: Fact #555: January 26, 2009 Transit Buses are Relying Less on Diesel Fuel on

88

Heavy Duty Truck Engine Advancement Adoption  

NLE Websites -- All DOE Office Websites (Extended Search)

petroleum consumption. According to the DOE Energy Information Administration's Annual Energy Outlook (AEO) 2009, U.S. heavy truck fuel consumption will increase 23 percent between...

89

DOE SuperTruck Program Benefits Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

in the project's technical scope development, information collection, and analysis. He also served as the key technical contact point for the SuperTruck development...

90

Reducing Bodybuilder Waste on SCANIA Trucks.  

E-Print Network (OSTI)

?? In a world of fierce competition that is the reality for heavy truck manufacturers, it is important to optimize every step of production to… (more)

Dahlberg, Carl

2011-01-01T23:59:59.000Z

91

Design of wireless sensors for automobiles  

Science Conference Proceedings (OSTI)

Automobile manufacturers require sense data to analyse and improve the driving experience. Currently, sensors are physically wired to both data collectors and the car battery, thus the number of wires scale linearly with sensors. We design alternative ...

Olga L. Diaz–Gutierrez; Richard Hall

2005-12-01T23:59:59.000Z

92

Evaluation of Alternative Field Buses for Lighting Control Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Field Buses Alternative Field Buses for Lighting Control Applications Prepared By: Ed Koch, Akua Controls Francis Rubinstein, Lawrence Berkeley National Laboratory Prepared For: Broadata Communications Torrence, CA May 15, 2005 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name,

93

King County Metro Transit Hybrid Articulated Buses: Interim Evaluation Results  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

King County Metro Transit King County Metro Transit Hybrid Articulated Buses: Interim Evaluation Results K. Chandler Battelle K. Walkowicz National Renewable Energy Laboratory Technical Report NREL/TP-540-39742 April 2006 King County Metro Transit Hybrid Articulated Buses: Interim Evaluation Results K. Chandler Battelle K. Walkowicz National Renewable Energy Laboratory Prepared under Task No. FC06.3000 Technical Report NREL/TP-540-39742 April 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

94

Un-Regulated Emissions from CRT-Equipped Transit Buses  

DOE Green Energy (OSTI)

Demonstrate applicability of the CRT TM to both new 4-stroke and older 2-stroke diesel engines Document the emissions reductions available using CRT TM retrofits in conjunction with reduced sulfur diesel fuel Evaluate the durability of CRTs in rigorous New York City bus service Apply new measurement and monitoring technologies for PM and toxic emissions Compare diesel-CRTTM with CNG and diesel-electric hybrid buses

Gibbs, Richard

2000-08-20T23:59:59.000Z

95

Waste Management's LNG Truck Fleet: Final Results  

DOE Green Energy (OSTI)

Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Laboratory (US); Clark, N. [West Virginia University (US)

2001-01-25T23:59:59.000Z

96

Alternative Fuels Data Center: Commercial Electric Truck Vouchers  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Commercial Electric Truck Vouchers to someone by E-mail Share Alternative Fuels Data Center: Commercial Electric Truck Vouchers on Facebook Tweet about Alternative Fuels Data...

97

Vehicle Technologies Office: 21st Century Truck Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Inc. BAE Systems plc Caterpillar Inc. Cummins Inc. Daimler Trucks North America LLC Detroit Diesel Corporation Eaton Honeywell International Mack Trucks Meritor, Inc. Navistar,...

98

Manhattan Project truck unearthed at landfill cleanup site  

NLE Websites -- All DOE Office Websites (Extended Search)

Phonebook Calendar Video Newsroom News Releases News Releases - 2011 April Manhattan project truck Manhattan Project truck unearthed at landfill cleanup site A LANL...

99

Oak Ridge Leadership Computing Facility User Update: SmartTruck...  

NLE Websites -- All DOE Office Websites (Extended Search)

Leadership Computing Facility User Update: SmartTruck Systems Startup zooms to success improving fuel efficiency of long-haul trucks by more than 10 percent Supercomputing...

100

UPS CNG Truck Fleet Final Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

® ® ® ® ® ® ® ® Clean Air Natural Gas Vehicle This is a Clean Air Natural Gas Vehicle This is a UPS CNG Truck Fleet UPS CNG Truck Fleet UPS CNG Truck Fleet Final results Final Results Produced for the U.S. Department of Energy (DOE) by the National Renewable Energy Laboratory (NREL), a DOE national laboratory Alternative Fuel Trucks DOE/NREL Truck Evaluation Project By Kevin Chandler, Battelle Kevin Walkowicz, National Renewable Energy Laboratory Nigel Clark, West Virginia University Acknowledgments This evaluation would not have been possible without the cooperation, support, and responsiveness of the staff at UPS in Hartford and Atlanta. Thanks are due to the following UPS personnel: On-Site Headquarters Tom Robinson Ken Henrie Bill Jacob Rick Rufolo

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NREL: Fleet Test and Evaluation - Truck Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Efficiency The Fleet Test and Evaluation team is working with industry partners to evaluate truck efficiency technologies in long-haul truck cabs. To keep their cabs at a comfortable temperature, heavy-duty truck drivers idle their engines an average of 1,400 hours annually, using more than 800 million gallons of fuel each year. With diesel prices at an all-time high, carrier companies are looking into ways to incorporate truck efficiency technologies to eliminate engine idling. By doing so, they not only save money on fuel but reduce tailpipe emissions. To find ways trucks can be more efficient without idling, the Fleet Test and Evaluation team is researching: Thermal Load Reduction Idle Reduction Printable Version Fleet Test and Evaluation Home Research & Development

102

POST 10/Truck Inspection Station (Map 3  

NLE Websites -- All DOE Office Websites (Extended Search)

POST 10/Truck Inspection Station (Map 3) POST 10/Truck Inspection Station (Map 3) Changes Effective January 11, 2010 Pajarito Corridor Deliveries: Drivers of commercial delivery trucks headed to the Pajarito Corridor (Pajarito Road bounded by NM Highway 4 and Diamond Drive) must stop at Post 10 for truck inspections. Drivers will then need to present time-stamped inspection passes from Post 10 to protective force officers stationed at the Pajarito Corridor. (Drivers exiting Post 10 should (1) turn right and proceed west on the Truck Route; (2) turn left onto West Jemez Road; (3) proceed to Lane 7; (4) STOP and present the inspection pass to the protective force officer; (5) turn left onto Diamond

103

Research and Development Opportunities for Heavy Trucks  

NLE Websites -- All DOE Office Websites (Extended Search)

1] 1] Introduction Heavy-duty long-haul trucks are critical to the movement of the Nation's freight. These vehicles, which currently consume about 10 percent of the Nation's oil, are characterized by high fuel consumption, fast market turnover, and rapid uptake of new technologies. Improving the fuel economy of Class 8 trucks will dramatically impact both fuel and cost savings. This paper describes the importance of heavy trucks to the Nation's economy, and its potential for fuel efficiency gains. Why Focus on Heavy Trucks? Large and Immediate Impact Investments in improving the fuel economy of heavy Class 8 trucks will result in large reduction in petroleum consumption within a short timeframe. While heavy-duty vehicles make up only 4% of the

104

Developing and evaluating pit truck safety devices  

SciTech Connect

Describes an electromagnetic system whereby smaller vehicles transmit a signal to haulage truck operators, to alert them to their presence. Driver visibility is restricted in large, rear-dump haulage trucks used in open-pit mining. Analysis shows the need for an alarm in the truck, to warn of vehicles in blind spots. As open-pit haulage truck size has increased, so has the size of the blind areas. Parameters for a prototype system included high- and low-frequency electromagnetic noise rejection, system sensitivity, ease of distance calibration, box size, mounting ease, power needs, and an internal system to continuously self-test all electronic fault-detection circuits. The prototype haulage truck cabmounted receiver had 2 channels. The system has been field-tested at the Twin Buttes open-pit mine near Tucson, AZ.

Yates, W.C.

1982-07-01T23:59:59.000Z

105

Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator  

SciTech Connect

Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCARâ??s test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of imported oil, that much less air pollution, and an equivalent reduction in the trade deficit, which is expected to lower the inflation rate.

N.B. Elsner; J.C. Bass; S. Ghamaty; D. Krommenhoek; A. Kushch; D. Snowden; S. Marchetti

2005-03-31T23:59:59.000Z

106

LPG buses in southern California leave the competition at the curb  

SciTech Connect

This paper reports that after the first year of a landmark experiment in which LPG has been competing against methanol and CNG in city buses, propane appears to be pulling out in front of the pack. According to Efren Medellin, superintendent of vehicle maintenance at the Orange County Transit Authority, two LPG buses had registered a total of 31,000 moles with relatively little, if any, downtime. The two methanol buses had run a total of 30,000 miles while the two CNG buses had traveled only 5000 miles. Furthermore the methanol and CNG buses have had their share of downtime for new parts and other problems. The propane-powered buses appear to be running consistently well without mechanical difficulties. The only problem that occurred was occasional backfiring. As a result, the electronic controls were replaced and no subsequent complaints were heard.

1992-03-01T23:59:59.000Z

107

To Evaluate Zero Emission Propulsion and Support Technology for Transit Buses  

DOE Green Energy (OSTI)

This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority (VTA) in San Jose, California, in partnership with the San Mateo County Transit District in San Carlos, California. VTA has been operating three fuel cell transit buses in extra revenue service since February 28, 2005. This report provides descriptions of the equipment used, early experiences, and evaluation results from the operation of the buses and the supporting hydrogen infrastructure from March 2005 through July 2006.

Kevin Chandler; Leslie Eudy

2006-11-01T23:59:59.000Z

108

Alameda-Contra Costa Transit District Fuel Cell Transit Buses: Evaluation Results Update  

DOE Green Energy (OSTI)

This report is an update to the 2007 preliminary results report on hydrogen fuel cell and diesel buses operating at Alameda-Contra Costa Transit District.

Chandler, K.; Eudy, L.

2007-10-01T23:59:59.000Z

109

Sunline Transit Agency Hydrogen-Powered Transit Buses: Evaluation Results Update  

Science Conference Proceedings (OSTI)

This report provides an update on the evaluation results for hydrogen and CNG-fueled buses opertating at SunLine Transit Agency in California.

Chandler, K.; Eudy, L.

2007-10-01T23:59:59.000Z

110

SunLine Transit Agency, Hydrogen Powered Transit Buses: Preliminary Evaluation Results  

DOE Green Energy (OSTI)

This paper provides preliminary results from an evaluation by DOE's National Renewable Energy Laboratory of hydrogen-powered transit buses at SunLine Transit Agency.

Chandler, K.; Eudy, L.

2007-02-01T23:59:59.000Z

111

100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20)  

DOE Green Energy (OSTI)

Evaluates the emissions, fuel economy, and maintenance of five 40-foot transit buses operated on B20 compared to four on petroleum diesel.

Proc, K.; Barnitt, R.; Hayes, R. R.; Ratcliff, M.; McCormick, R. L.; Ha, L.; Fang, H. L.

2006-11-01T23:59:59.000Z

112

New York City Transit Diesel Hybrid-Electric Buses Final Results...  

Open Energy Info (EERE)

of facilities, a description of the project start-up process, evaluation results of hybrid buses studied, lessons learned, and recommendations for future alternative fuel...

113

New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results  

DOE Green Energy (OSTI)

This report focuses on the evaluation of compressed natural gas (CNG) and diesel hybrid electric bus propulsion systems in New York City Transit's transit buses.

Chandler, K.; Eberts, E.; Eudy, L.

2006-01-01T23:59:59.000Z

114

Medium Truck Duty Cycle Data from Real-World Driving Environments: Final Report  

SciTech Connect

Since the early part of the 20th century, the US trucking industry has provided a safe and economical means of moving commodities across the country. At present, nearly 80% of US domestic freight movement involves the use of trucks. The US Department of Energy (DOE) is spearheading a number of research efforts to improve heavy vehicle fuel efficiencies. This includes research in engine technologies (including hybrid and fuel cell technologies), lightweight materials, advanced fuels, and parasitic loss reductions. In addition, DOE is developing advanced tools and models to support heavy vehicle research and is leading the 21st Century Truck Partnership and the SuperTruck development effort. Both of these efforts have the common goal of decreasing the fuel consumption of heavy vehicles. In the case of SuperTruck, a goal of improving the overall freight efficiency of a combination tractor-trailer has been established. This Medium Truck Duty Cycle (MTDC) project is a critical element in DOE s vision for improved heavy vehicle energy efficiency; it is unique in that there is no other existing national database of characteristic duty cycles for medium trucks based on collecting data from Class 6 and 7 vehicles. It involves the collection of real-world data on medium trucks for various situational characteristics (e.g., rural/urban, freeway/arterial, congested/free-flowing, good/bad weather) and looks at the unique nature of medium trucks drive cycles (stop-and-go delivery, power takeoff, idle time, short-radius trips). This research provides a rich source of data that can contribute to the development of new tools for FE and modeling, provide DOE a sound basis upon which to make technology investment decisions, and provide a national archive of real-world-based medium-truck operational data to support energy efficiency research. The MTDC project involved a two-part field operational test (FOT). For the Part-1 FOT, three vehicles each from two vocations (urban transit and dry-box delivery) were instrumented for the collection of one year of operational data. The Part-2 FOT involved the towing and recovery and utility vocations for a second year of data collection. The vehicles that participated in the MTDC project did so through gratis partnerships in return for early access to the results of this study. Partnerships such as these are critical to FOTs in which real-world data is being collected. In Part 1 of the project, Oak Ridge National Laboratory (ORNL) established partnerships with the H.T. Hackney Company (HTH), one of the largest wholesale distributors in the country, distributing products to 21 states; and with Knoxville Area Transit (KAT), the city of Knoxville s transit system, which operates across Knoxville and parts of Knox County. These partnerships and agreements provided ORNL access to three Class-7 day-cab tractors that regularly haul 28 ft pup trailers (HTH) and three Class-7 buses for the collection of duty cycle data. In addition, ORNL collaborated with the Federal Motor Carrier Safety Administration (FMCSA) to determine if there were possible synergies between this duty cycle data collection effort and FMCSA s need to learn more about the operation and duty cycles of medium trucks. FMCSA s primary interest was in collecting safety data relative to the driver, carrier, and vehicle. In Part 2 of the project, ORNL partnered with the Knoxville Utilities Board, which made available three Class-8 trucks. Fountain City Wrecker Service was also a Part 2 partner, providing three Class-6 rollback trucks. In order to collect the duty cycle and safety-related data, ORNL developed a data acquisition system (DAS) that was placed on each test vehicle. Each signal recorded in this FOT was collected by means of one of the instruments incorporated into each DAS. Other signals were obtained directly from the vehicle s J1939 and J1708 data buses. A VBOX II Lite collected information available from a global positioning system (GPS), including speed, acceleration, and spatial location information at a rate of 5 Hz for the Part 1

Lascurain, Mary Beth [ORNL; Franzese, Oscar [ORNL; Capps, Gary J [ORNL; Siekmann, Adam [ORNL; Thomas, Neil [ORNL; LaClair, Tim J [ORNL; Barker, Alan M [ORNL; Knee, Helmut E [ORNL

2012-11-01T23:59:59.000Z

115

Automobile Dealer Letter-FINAL.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Agency Agency December 2013 SUBJECT: The 2014 Model Year EPA/DOE Fuel Economy Guide Dear Automobile Dealer: The U.S. Department of Energy (DOE) and U.S. Environmental Protection Agency (EPA) seek your help in providing your customers with information about fuel economy and the benefi ts of using more fuel-effi cient vehicles. Fuel economy is an important factor for consumers when shopping for a vehicle. EPA regulations require automobile dealers to prominently display the EPA/DOE Fuel Economy Guide booklets at each location where new automobiles are offered for sale and to make them available to the public at no charge (40 CFR 600.405-08 and 600.407-08). The regulations ensure that prospective customers have ready access to fuel economy information for current model year vehicles.

116

Truck Stop Electrification: A Cost-Effective Solution to Reducing Truck Idling  

Science Conference Proceedings (OSTI)

Truck stop electrification (TSE) allows truckers to "plug in" their vehicles while stopped, in order to operate air conditioning, heating, and appliances without any engine idling. Truck stop electrification technologies fall into two major categories: "off-board" and "on-board" systems. Off-board systems are fixed, stand-alone units installed at the truck parking space. These systems provide heating, ventilating, and air conditioning (HVAC), and may also include AC electrical power and entertainment, co...

2004-12-27T23:59:59.000Z

117

Alternative fuel trucks case studies: Running line-haul trucks on ethanol  

DOE Green Energy (OSTI)

This bulletin describes case studies of trucks operating on ethanol fuel. Cost, maintenance and repair, as well as fuel economy are discussed.

Norton, P.; Kelly, K.J.; Marek, N.J.

1996-10-01T23:59:59.000Z

118

Mechanism design of a multi-motion automobile door  

E-Print Network (OSTI)

This thesis describes the design and prototype construction of a multi-motion automobile door. This design is intended to provide a unique option for the opening of an automobile by enabling the door to open in two separate ...

Edinger, Sarah T. (Sarah Tracy)

2008-01-01T23:59:59.000Z

119

Automobile safety regulation : technological change and regulatory process  

E-Print Network (OSTI)

This report examines the history of automobile safety regulation since 1966, viewed as an attempt to substitute public decisions on the design of new automobiles for private decisions. The focus of the

Lorang, Philip Alphonse

120

TRUCK ROLL STABILITY DATA COLLECTION AND ANALYSIS  

NLE Websites -- All DOE Office Websites (Extended Search)

16 TRUCK ROLL STABILITY DATA COLLECTION AND ANALYSIS S. S. Stevens, Principal Investigator S. M. Chin K. A. Hake H. L. Hwang J. P. Rollow L. F. Truett July 2001 Prepared for the...

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Raley's LNG Truck Fleet: Final Results  

DOE Green Energy (OSTI)

Raley's, a large retail grocery company based in Northern California, began operating heavy-duty trucks powered by liquefied natural gas (LNG) in 1997, in cooperation with the Sacramento Metropolitan Air Quality Management District (SMAQMD). The US Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) sponsored a research project to collect and analyze data on the performance and operation costs of eight of Raley's LNG trucks in the field. Their performance was compared with that of three diesel trucks operating in comparable commercial service. The objective of the DOE research project, which was managed by the National Renewable Energy Laboratory (NREL), was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

Chandler, K. (Battelle); Norton, P. (NREL); Clark, N. (West Virginia University)

2000-05-03T23:59:59.000Z

122

Water by truck in Mexico City  

E-Print Network (OSTI)

Supply of water to urban households by tanker truck in developing and advanced developing countries is often associated with early stages of urbanization or with the private markets on which water vendors serve households ...

Pike, Jill (Jill Susan)

2005-01-01T23:59:59.000Z

123

Mobile Truck Stop Electrification Site Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Truck Stop Electrification Site Locator Location Enter a city, postal code, or address Search Caution: The AFDC recommends that users verify that sites are open prior to making a...

124

Analysis of Power Quality Concerns at an Automobile Assembly Plant  

Science Conference Proceedings (OSTI)

This report summarizes the findings of a general power quality (PQ) study for an automobile assembly plant.

2003-12-31T23:59:59.000Z

125

Diesel Engine Light Truck Application  

DOE Green Energy (OSTI)

The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

None

2007-12-31T23:59:59.000Z

126

Alternative Fuel Transit Buses: DART's (Dallas Area Rapid Transit) LNG Bus Fleet Final Results  

DOE Green Energy (OSTI)

In 1998, Dallas Area Rapid Transit, a public transit agency in Dallas, Texas, began operating a large fleet of heavy-duty buses powered by liquefied natural gas. As part of a $16 million commitment to alternative fuels, DART operates 139 LNG buses serviced by two new LNG fueling stations.

Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Lab., Golden, CO (US); Clark, N.

2000-11-07T23:59:59.000Z

127

Bay Area Transit Agencies Propel Fuel Cell Buses Toward Commercialization (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes the Zero Emission Bay Area (ZEBA) demonstration of the next generation of fuel cells buses. Several transit agencies in the San Francisco Bay Area are participating in demonstrating the largest single fleet of fuel cell buses in the United States.

Not Available

2010-07-01T23:59:59.000Z

128

Automobiles on steroids: Product attribute trade-offs and technological progress in the automobile sector  

E-Print Network (OSTI)

This paper estimates the technological progress that has occurred since 1980 in the automobile industry and the trade-offs faced when choosing between fuel economy, weight, and engine power characteristics. The results ...

Knittel, Christopher Roland

129

Natural Gas Buses: Separating Myth from Fact; Autobuses Urbanos de Gas Natural: Separemos el Mito de la Realidad  

DOE Green Energy (OSTI)

Using a myth vs. fact format, this fact sheet addresses common public misconceptions about compressed natural gas buses.

LaRocque, T.

2001-10-01T23:59:59.000Z

130

Kansas City Buses Provide a Clean Ride for Kids | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kansas City Buses Provide a Clean Ride for Kids Kansas City Buses Provide a Clean Ride for Kids Kansas City Buses Provide a Clean Ride for Kids March 18, 2011 - 2:25pm Addthis Kansas City Buses Provide a Clean Ride for Kids Dennis A. Smith Director, National Clean Cities What does this project do? Creates infrastructure such as fueling stations to support compressed natural gas vehicles. Saves the Kansas City, Kansas School District money Reduces pollution Educates students about natural gas technologies. On Wednesday March 16, the Kansas City, Kansas School District welcomed some newcomers to their community - 47 natural gas school buses deployed as part of the Clean Cities Alternative Fuel Vehicle Pilot Program, supported by the American Recovery and Reinvestment Act. Kansas City's mayor, the school's director of transportation, and the Kansas City Clean

131

Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Trucks Electric Trucks Deliver at Kansas City Schools to someone by E-mail Share Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Facebook Tweet about Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Twitter Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Google Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Delicious Rank Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Digg Find More places to share Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on AddThis.com... Sept. 17, 2011 Electric Trucks Deliver at Kansas City Schools F ind out how the Lee's Summit R-7 School District in Missouri uses electric

132

Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Truck Biodiesel Truck Transports Capitol Christmas Tree to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Google Bookmark Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Delicious Rank Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on AddThis.com... Dec. 31, 2009 Biodiesel Truck Transports Capitol Christmas Tree F ollow the Capitol Christmas Tree from Arizona to Washington, D.C., aboard

133

Recent trends in automobile recycling: An energy and economic assessment  

SciTech Connect

Recent and anticipated trends in the material composition of domestic and imported automobiles and the increasing cost of landfilling the non-recyclable portion of automobiles (automobile shredder residue or ASR) pose questions about the future of automobile recycling. This report documents the findings of a study sponsored by the US Department of Energy`s Office of Environmental Analysis to examine the impacts of these and other relevant trends on the life-cycle energy consumption of automobiles and on the economic viability of the domestic automobile recycling industry. More specifically, the study (1) reviewed the status of the automobile recycling industry in the United States, including the current technologies used to process scrapped automobiles and the challenges facing the automobile recycling industry; (2) examined the current status and future trends of automobile recycling in Europe and Japan, with the objectives of identifying ``lessons learned`` and pinpointing differences between those areas and the United States; (3) developed estimates of the energy system impacts of the recycling status quo and projections of the probable energy impacts of alternative technical and institutional approaches to recycling; and (4) identified the key policy questions that will determine the future economic viability of automobile shredder facilities in the United States.

Curlee, T.R.; Das, S.; Rizy, C.G. [Oak Ridge National Lab., TN (United States); Schexanyder, S.M. [Tennessee Univ., Knoxville, TN (United States). Dept. of Biochemistry

1994-03-01T23:59:59.000Z

134

A Set of Comparable Carbon Footprints for Auto, Truck and Transit Travel in Metropolitan America  

NLE Websites -- All DOE Office Websites (Extended Search)

Set of Comparable Carbon Footprints for Highway Travel in Set of Comparable Carbon Footprints for Highway Travel in Metropolitan America by Frank Southworth* and Anthon Sonnenberg** August 31, 2009 *Corresponding author: Senior R&D Staff, Oak Ridge National Laboratory and Principal Research Scientist Georgia Institute of Technology 790 Atlantic Drive SEB Building, Room 324 Atlanta, GA 30332-0355 E-mail: frank.southworth@ce.gatech.edu ** PhD Student, Georgia Institute of Technology School of Civil and Environmental Engineering Georgia Institute of Technology 1 Abstract The authors describe the development of a set of carbon dioxide emissions estimates for highway travel by automobile, truck, bus and other public transit vehicle movements within the nation's 100 largest metropolitan areas, in calendar year 2005. Considerable variability is found to exist

135

Caterpillar Light Truck Clean Diesel Program  

DOE Green Energy (OSTI)

In 1998, light trucks accounted for over 48% of new vehicle sales in the U.S. and well over half the new Light Duty vehicle fuel consumption. The Light Truck Clean Diesel (LTCD) program seeks to introduce large numbers of advanced technology diesel engines in light-duty trucks that would improve their fuel economy (mpg) by at least 50% and reduce our nation's dependence on foreign oil. Incorporating diesel engines in this application represents a high-risk technical and economic challenge. To meet the challenge, a government-industry partnership (Department of Energy, diesel engine manufacturers, and the automotive original equipment manufacturers) is applying joint resources to meet specific goals that will provide benefits to the nation. [1] Caterpillar initially teamed with Ford Motor Company on a 5 year program (1997-2002) to develop prototype vehicles that demonstrate a 50% fuel economy improvement over the current 1997 gasoline powered light truck vehicle in this class while complying with EPA's Tier II emissions regulations. The light truck vehicle selected for the demonstration is a 1999 Ford F150 SuperCab. To meet the goals of the program, the 4.6 L V-8 gasoline engine in this vehicle will be replaced by an advanced compression ignition direct injection (CIDI) engine. Key elements of the Caterpillar LTCD program plan to develop the advanced CIDI engine are presented in this paper.

Robert L. Miller; Kevin P. Duffy; Michael A. Flinn; Steve A. Faulkner; Mike A. Graham

1999-04-26T23:59:59.000Z

136

Large Scale Truck Duty Cycle.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Truck Duty Cycle Evaluation and Truck Duty Cycle Evaluation and Assessment of Fuel Efficiency and Emission Reduction Technologies Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract number DE-AC05-00OR22725 Research Areas Freight Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies Research Brief T he Oak Ridge National Laboratory (ORNL) is conducting research to better understand truck fuel economy and emissions in normal everyday use, as part of a study sponsored by the Department of Energy (DOE) Vehicle Technologies Program (VTP). By collecting duty cycle data (velocity, acceleration and elevation) during normal operations of literally thousands of vehicles for an

137

Running Line-Haul Trucks on Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

I I magine driving a 55,000-pound tractor- trailer that runs on corn! If you find it difficult to imagine, you can ask the truck drivers for Archer Daniels Midland (ADM) what it's like. For the past 4 years, they have been piloting four trucks powered by ethyl alcohol, or "ethanol," derived from corn. Several advantages to operating trucks on ethanol rather than on conventional petro- leum diesel fuel present themselves. Because ethanol can be produced domestically, unlike most of our petroleum supply, the price and supply of ethanol is not subject to the whims of potentially unstable foreign governments. And domestic production translates into domestic jobs. In addition, ethanol has the potential to reduce harmful emissions, such as particulate matter and oxides of nitrogen

138

Heavy Truck Clean Diesel Cooperative Research Program  

DOE Green Energy (OSTI)

This report is the final report for the Department of Energy on the Heavy Truck Engine Program (Contract No. DE-FC05-00OR22806) also known as Heavy Truck Clean Diesel (HTCD) Program. Originally, this was scoped to be a $38M project over 5 years, to be 50/50 co-funded by DOE and Caterpillar. The program started in June 2000. During the program the timeline was extended to a sixth year. The program completed in December 2006. The program goal was to develop and demonstrate the technologies required to enable compliance with the 2007 and 2010 (0.2g/bhph NOx, 0.01g/bhph PM) on-highway emission standards for Heavy Duty Trucks in the US with improvements in fuel efficiency compared to today's engines. Thermal efficiency improvement from a baseline of 43% to 50% was targeted.

Milam, David

2006-12-31T23:59:59.000Z

139

Climate VISION: Private Sector Initiatives: Automobile Manufacturers:  

Office of Scientific and Technical Information (OSTI)

Federal/State Programs Federal/State Programs ENERGY STAR Focus for Automobile Manufacturing The U.S. automobile manufacturers and EPA have worked together to jointly develop a Focus on energy efficiency within the industry. Participating companies work with EPA to institute or improve their corporate energy management programs and the energy performance of their operations. Through ENERGY STAR, EPA provides tools to gauge plant and program energy performance, a forum for elevating energy management in the industry, and recognition for superior energy achievements. See all Federal/State Programs DOE State Activities For information on activities, financial assistance, and solicitations within your state, please refer to the DOE Office of Energy Efficiency and Renewable Energy State Specific Information website.

140

Automobile air-conditioning unit. Final report  

SciTech Connect

In this study the refrigerant in the automobile air-conditioner is compressed by thermal energy in a unique compression system rather than by work in a standard compressor. The compression uses an intermittent compression process with a solid absorbent. The vapor is absorbed by an absorbent at relatively low temperature and ejected as the absorbent temperature is raised. A set of one way valves limits flow to one direction. Major contributions are heat transfer requirements, molecular sieve-refrigerant matching, minimizing non-producing mass, solving thermal fatigue and shock problems, and applying this to automobile air-conditioning. The performance study shows energy savings up to fifty percent are possible, depending on engine load. A twenty percent energy savings with the vehicle tested with the air-conditioner in operation is average. The study also showed that less fuel is used with the windows open than with the air-conditioner operating.

Schaetzle, W.J.

1982-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Automobile usage patterns. Highlight report. Volume XIV  

SciTech Connect

A report is given as part of a series of studies dealing with general public behavior and attitudes towards energy conservation. Specifically, this study concentrates on automobile usage patterns. The study is based on 1,007 telephone interviews and includes topics such as car usage affected by lifestyle, car usage patterns, planned trips as compared with routine or spontaneous trips, times per week trip is usually made, analysis of trips, the extent to which shopping trips are done by phone instead of by car, willingness to cut out trips, factors deterring car use, and a summary which concludes that the primary way that people could cut down automobile use without eliminating leisure time use would be in more careful planning of trip for shopping and errands. Another important finding in this study is lack of sensitivity to gasoline prices. (GRA)

Rappeport, M.; Labaw, P.

1975-09-01T23:59:59.000Z

142

Alternative Fuels Data Center: Delaware Reduces Truck Idling With  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware Reduces Truck Delaware Reduces Truck Idling With Electrified Parking Areas to someone by E-mail Share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Facebook Tweet about Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Twitter Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Google Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Delicious Rank Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Digg Find More places to share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on AddThis.com...

143

Vehicle Technologies Office: Fact #372: May 16, 2005 Truck Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2005 Truck Fuel Economy by Size Class to someone by E-mail Share Vehicle Technologies Office: Fact 372: May 16, 2005 Truck Fuel Economy by Size Class on Facebook Tweet about...

144

Norcal Prototype LNG Truck Fleet: Final Data Report  

SciTech Connect

U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final data.

Chandler, K.; Proc, K.

2005-02-01T23:59:59.000Z

145

Fire Department Gets New Trucks, Saves Money | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fire Department Gets New Trucks, Saves Money Fire Department Gets New Trucks, Saves Money August 27, 2013 - 12:00pm Addthis Hanford firefighters stand next to the 31-year-old...

146

Fire Department Gets New Trucks, Saves Money | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fire Department Gets New Trucks, Saves Money Fire Department Gets New Trucks, Saves Money Fire Department Gets New Trucks, Saves Money August 27, 2013 - 12:00pm Addthis Hanford firefighters stand next to the 31-year-old chemical truck. Pictured, left to right, are Hanford Fire Lt. Robert Smith, Firefighter/Paramedic Kyle Harbert, Firefighter Don Blackburn and Capt. Sean Barajas. Hanford firefighters stand next to the 31-year-old chemical truck. Pictured, left to right, are Hanford Fire Lt. Robert Smith, Firefighter/Paramedic Kyle Harbert, Firefighter Don Blackburn and Capt. Sean Barajas. One of two of the Hanford Fire Department’s new chemical trucks. One of two of the Hanford Fire Department's new chemical trucks. Hanford firefighters stand next to the 31-year-old chemical truck. Pictured, left to right, are Hanford Fire Lt. Robert Smith, Firefighter/Paramedic Kyle Harbert, Firefighter Don Blackburn and Capt. Sean Barajas.

147

Curbside eating : mobilizing food trucks to activate public space  

E-Print Network (OSTI)

In the past 5 years, cities across the United States have seen the rise of a new form of street vending: the modern food truck. Nearly overnight, food trucks have become an expected and anticipated occurrence in many ...

Sheppard, Alison Marguerite

2013-01-01T23:59:59.000Z

148

Vehicle Technologies Office: 21st Century Truck Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Truck Partnership is an industry-government collaboration among heavy-duty engine manufacturers, medium-duty and heavy-duty truck and bus manufacturers, heavy-duty hybrid...

149

Vehicle Technologies Office: Fact #787: July 8, 2013 Truck Stop...  

NLE Websites -- All DOE Office Websites (Extended Search)

7: July 8, 2013 Truck Stop Electrification Reduces Idle Fuel Consumption to someone by E-mail Share Vehicle Technologies Office: Fact 787: July 8, 2013 Truck Stop Electrification...

150

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network (OSTI)

trucks. This amount of battery capacity can supply a 100 Wshowed that the stock battery capacity of the truck couldCapacity Table 14 - Tank Specifications L psi kg Hawker Genesis Batteries The Genesis battery

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

151

Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Natural Gas Liquefied Natural Gas Powers Trucks in Connecticut to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Facebook Tweet about Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Twitter Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Google Bookmark Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Delicious Rank Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on Digg Find More places to share Alternative Fuels Data Center: Liquefied Natural Gas Powers Trucks in Connecticut on AddThis.com... June 4, 2011 Liquefied Natural Gas Powers Trucks in Connecticut

152

Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop  

NLE Websites -- All DOE Office Websites (Extended Search)

8: June 21, 2010 8: June 21, 2010 Truck Stop Electrification Sites to someone by E-mail Share Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Facebook Tweet about Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Twitter Bookmark Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Google Bookmark Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Delicious Rank Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on Digg Find More places to share Vehicle Technologies Office: Fact #628: June 21, 2010 Truck Stop Electrification Sites on AddThis.com... Fact #628: June 21, 2010 Truck Stop Electrification Sites

153

Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maryland Conserves Maryland Conserves Fuel With Hybrid Trucks to someone by E-mail Share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Facebook Tweet about Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Twitter Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Google Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Delicious Rank Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Digg Find More places to share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on AddThis.com... March 5, 2011 Maryland Conserves Fuel With Hybrid Trucks L earn how Maryland is reducing fuel consumption, engine noise, and

154

Unintended Impacts of Increased Truck Loads on Pavement Supply-Chain Emissions  

E-Print Network (OSTI)

rail and truck freight transportation.    Transportation Research rail?truck freight transport literature.  Transportation Research 

Sathaye, Nakul; Horvath, Arpad; Madanat, Samer

2009-01-01T23:59:59.000Z

155

Evaluations of 1997 Fuel Consumption Patterns of Heavy Duty Trucks  

DOE Green Energy (OSTI)

The proposed 21st Century Truck program selected three truck classes for focused analysis. On the basis of gross vehicle weight (GVW) classification, these were Class 8 (representing heavy), Class 6 (representing medium), and Class 2b (representing light). To develop and verify these selections, an evaluation of fuel use of commercial trucks was conducted, using data from the 1997 Vehicle Inventory and Use Survey (VIUS). Truck fuel use was analyzed by registered GVW class, and by body type.

Santini, Danilo

2001-08-05T23:59:59.000Z

156

Ralphs Grocery EC-Diesel Truck Fleet: Final Results  

DOE Green Energy (OSTI)

DOE's Office of Heavy Vehicle Technologies sponsored a research project with Ralphs Grocery Company to collect and analyze data on the performance and operation of 15 diesel trucks fueled with EC-Diesel in commercial service. These trucks were compared to 5 diesel trucks fueled with CARB diesel and operating on similar routes. This document reports this evaluation.

Not Available

2003-02-01T23:59:59.000Z

157

UPS CNG Truck Fleet Final Results: Alternative Fuel Truck Evaluation Project (Brochure)  

Science Conference Proceedings (OSTI)

This report provides transportation professionals with quantitative, unbiased information on the cost, maintenance, operational and emissions characteristics of CNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

Not Available

2002-08-01T23:59:59.000Z

158

Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Truck Stop Truck Stop Electrification for Heavy-Duty Trucks to someone by E-mail Share Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Facebook Tweet about Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Twitter Bookmark Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Google Bookmark Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Delicious Rank Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on Digg Find More places to share Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty Trucks on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles

159

Light Duty Truck Aftertreatment - Experience and Challenges  

DOE Green Energy (OSTI)

Detroit Diesel's test experience on light duty truck PM aftertreatment technology development will be presented. The Tier-II extremely low emissions standards combined with the light-duty test cycle impose a significant challenge for the development of production-viable emissions technologies. A robust general path to achieve these emissions targets will be outlined.

Redon, Fabien

2000-08-20T23:59:59.000Z

160

Truck Driver Scheduling in the European Union  

Science Conference Proceedings (OSTI)

Since April 2007 working hours of truck drivers in the European Union are controlled by regulation (EC) No. 561/2006. According to the new regulation, road transport undertakings must organise the work of drivers in a way that drivers are able to comply ... Keywords: drivers' working hours, regulation (EC) No. 561/2006, vehicle scheduling

Asvin Goel

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

New York City Transit Diesel Hybrid-Electric Buses Final Results: DOE/ NREL  

Open Energy Info (EERE)

Transit Diesel Hybrid-Electric Buses Final Results: DOE/ NREL Transit Diesel Hybrid-Electric Buses Final Results: DOE/ NREL Transit Bus Evaluation Project Jump to: navigation, search Name New York City Transit Diesel Hybrid-Electric Buses Final Results: DOE/ NREL Transit Bus Evaluation Project Agency/Company /Organization Department of Energy Partner National Renewable Energy Laboratory Batelle"National Renewable Energy Laboratory Batelle" cannot be used as a page name in this wiki. Focus Area Transportation Phase Bring the Right People Together, Determine Baseline, Evaluate Options, Develop Finance and Implement Projects Resource Type Guide/manual Availability Publicly available--Free Publication Date 7/1/2002 Website http://www.nrel.gov/docs/fy02o Locality New York City References New York City Transit Diesel Hybrid-Electric Buses Final Results: DOE/ NREL Transit Bus Evaluation Project[1]

162

Experiences from Ethanol Buses and Fuel Station Report - La Spezia | Open  

Open Energy Info (EERE)

Experiences from Ethanol Buses and Fuel Station Report - La Spezia Experiences from Ethanol Buses and Fuel Station Report - La Spezia Jump to: navigation, search Tool Summary Name: Experiences from Ethanol Buses and Fuel Station Report - La Spezia Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report This report summarizes the introduction and utilization of E95 buses and E95 pumps in the region of La Spezia (Italy) within the framework of the BioEthanol for Sustainable Transport (BEST) project. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

163

DOE Hydrogen Analysis Repository: Ethanol-Diesel Blends in Buses and  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol-Diesel Blends in Buses and Tractors Ethanol-Diesel Blends in Buses and Tractors Project Summary Full Title: Fuel-Cycle Energy and Emission Impacts of Ethanol-Diesel Blends in Urban Buses and Farming Tractors Project ID: 86 Principal Investigator: Michael Wang Brief Description: This project studied the full fuel-cycle energy and emissions effects of ethanol-diesel blends relative to those of petroleum diesel when used in urban transit buses and farming tractors. Keywords: Ethanol; diesel; emissions; well-to-wheels (WTW) Purpose Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark- ignition engine vehicles. Those studies did not address the energy and emission effects of

164

Lightweight Buses With Electric Drive Improve Fuel Economy and Passenger Experience  

NLE Websites -- All DOE Office Websites (Extended Search)

Lightweight Buses With Electric Drive Improve Lightweight Buses With Electric Drive Improve Fuel Economy and Passenger Experience Background The standard, 40-foot diesel- powered transit bus is noisy, consumes a gallon of fuel for every three miles it travels, weighs 28,000 pounds, and contributes significantly to ur- ban air pollution. While hybrid electric buses do exist, they are very expensive, and typi- cally get just four miles to the gallon. Autokinetics and the Department of Energy Office of FreedomCAR and Vehicle Technologies Program saw sig- nificant room for improvement in hybrid electric buses-in terms of weight and noise reduction, better fuel economy, lower cost, and rider percep- tion-using lightweight body

165

Fuel Cell Vehicle World Survey 2003-Fuel Cells in Transit Buses  

NLE Websites -- All DOE Office Websites (Extended Search)

range of heavy-duty diesel, compressed natural gas (CNG), and liquefied natural gas (LNG) transit buses. NABI, Inc., is a wholly owned subsidiary of NABI Rt., which was...

166

Alternative Fuel School Buses Earn High Marks: Reprint from Alternative Fuel News, Vol. 5, No. 3  

DOE Green Energy (OSTI)

A two-page article on school buses that run on alternative fuels including biodiesel and compressed natural gas. Reprinted from Alternative Fuel News, published by the Clean Cities Program of DOE.

Not Available

2002-11-01T23:59:59.000Z

167

SunLine Transit Agency Hydrogen-Powered Transit Buses: Third Evaluation Report (Report and Appendices)  

Science Conference Proceedings (OSTI)

This report describes operations at SunLine Transit Agency for a protoype fuel cell bus, a prototype hydrogen hybrid interal combustion engine bus, and five new compressed natural gas buses.

Chandler, K.; Eudy, L.

2008-06-01T23:59:59.000Z

168

King County Metro Transit Hybrid Articulated Transit Buses: Interim Evaluation Results  

DOE Green Energy (OSTI)

Interim technical report compares and evaluates new diesel and diesel hybrid-electric articulated buses operated as part of the King County Metro Transit (KC Metro) fleet in Seattle, Washington.

Chandler, K.; Walkowicz, K.

2006-04-01T23:59:59.000Z

169

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2009  

DOE Green Energy (OSTI)

This report documents progress in meeting the technological challenges of fuel cell propulsion for transportation based on current fuel cell transit bus demonstrations and plans for more fuel cell transit buses and hydrogen infrastructure.

Eudy, L.; Chandler, K.; Gikakis, C.

2009-10-01T23:59:59.000Z

170

Heavy Truck Duty Cycle (HTDC) Project OVERVIEW The Heavy Truck Duty Cycle (HTDC)  

NLE Websites -- All DOE Office Websites (Extended Search)

(HTDC) Project (HTDC) Project OVERVIEW The Heavy Truck Duty Cycle (HTDC) Project is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies. The project involves efforts to collect, analyze and archive data and information related to class -8 truck operation in real-world environments. Such data and information will be useful for supporting: energy efficiency technology evaluation efforts, the

171

Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel  

DOE Green Energy (OSTI)

Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also economically competitive with California diesel fuel if .roduced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel, because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels. The buses were equipped with unmodified Detroit Diesel 6V92 2-stroke diesel engines. Six 40-foot buses were tested. Three of the buses had recently rebuilt engines and were equipped with an oxidation catalytic converter. Vehicle emissions measurements were performed using West Virginia University's unique transportable chassis dynamometer. The emissions were measured over the Central Business District (CBD) driving cycle. The buses performed well on both neat and blended MGSD fuel. Three buses without catalytic converters were tested. Compared to their emissions when operating on Federal no. 2 diesel fuel, these buses emitted an average of 5% lower oxides of nitrogen (NOx) and 20% lower particulate matter (PM) when operating on neat MGSD fuel. Catalyst equipped buses emitted an average of 8% lower NOx and 31% lower PM when operating on MGSD than when operating on Federal no. 2 diesel fuel.

Paul Norton; Keith Vertin; Nigel N. Clark; Donald W. Lyons; Mridul Gautam; Stephen Goguen; James Eberhardt

1999-05-03T23:59:59.000Z

172

Indianapolis Public Transportation Corporation. Advanced Technology Vehicles in Service: Diesel Hybrid Electric Buses (Fact Sheet).  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Web site and in print publications. Web site and in print publications. TESTING ADVANCED VEHICLES INDIANAPOLIS PUBLIC TRANSPORTATION â—† DIESEL HYBRID ELECTRIC BUSES Indianapolis Public Transportation DIESEL HYBRID ELECTRIC BUSES NREL/PIX 13504, 13505, 13583 THE INDIANAPOLIS PUBLIC TRANSPORTATION CORPORATION (INDYGO) provides transit service in the Indianapolis Metropolitan area, using 226 vehicles to serve 28 fixed and demand response routes. IndyGo vehicles

173

Climate VISION: News and Events - Automobile - EPA Announces...  

Office of Scientific and Technical Information (OSTI)

worked jointly to develop the ENERGY STAR Automobile Assembly Plant Energy Performance Indicator (EPI) and were supported by the analytical skills of Argonne National...

174

Climate VISION: News and Events - Autmobile - First Automobile...  

Office of Scientific and Technical Information (OSTI)

top 25 percent nationally using EPA's ENERGY STAR Automobile Assembly Plant Energy Performance Indicator (EPI). EPA's national energy performance rating system, developed in...

175

Long Haul Truck Idling at Public Facilities in Key States  

Science Conference Proceedings (OSTI)

Idling the main truck engine to provide for the relatively small power requirements needed during rest stops is inefficient and highly polluting. An alternative is to supply power from the grid or some form of distributed generation, and a national effort is underway to electrify truck stops. Not all idling occurs at truck stops, however. The purpose of this project was to quantify the major truck idling that takes place at public facilities other than truck stops. The study focused on public rest areas,...

2008-03-31T23:59:59.000Z

176

2014 Best and Worst MPG Trucks, Vans and SUVs  

NLE Websites -- All DOE Office Websites (Extended Search)

Trucks Trucks 2014 Most Efficient Trucks by EPA Size Class 2014 Least Efficient Trucks by EPA Size Class 2014 Most Fuel Efficient Trucks, Vans and SUVs EPA Class Vehicle Description Fuel Economy Combined Small Pickup Trucks Toyota Tacoma Toyota Tacoma 2WD 4 cyl, 2.7 L, Manual (5), Regular Gasoline 23 Standard Pickup Trucks Ram 1500 HFE 2WD Ram 1500 HFE 2WD 6 cyl, 3.6 L, Automatic (8), Regular Gasoline 21 Small Sport Utility Vehicles Toyota RAV4 EV Toyota RAV4 EV Automatic (variable gear ratios), 115 kW AC Induction, Electricity 76* Subaru XV Crosstrek Hybrid AWD Subaru XV Crosstrek Hybrid AWD 4 cyl, 2.0 L, Automatic (CVT), Regular Gasoline 31 Standard Sport Utility Vehicles Infiniti QX60 Hybrid AWD Infiniti QX60 Hybrid AWD 4 cyl, 2.5 L, AV-S7, Regular Gasoline Infiniti QX60 Hybrid FWD

177

Alternative Fuels Data Center: Truck Stop Electrification Site Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels & Vehicles » Tools Fuels & Vehicles » Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods to someone by E-mail Share Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Facebook Tweet about Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Twitter Bookmark Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Google Bookmark Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Delicious Rank Alternative Fuels Data Center: Truck Stop Electrification Site Data Collection Methods on Digg Find More places to share Alternative Fuels Data Center: Truck Stop

178

Medium Truck Duty Cycle Data from Real-World Driving Environments: Project Interim Report  

SciTech Connect

Since the early part of the 20th century, the US trucking industry has provided a safe and economical means of moving commodities across the country. At the present time, nearly 80% of the US domestic freight movement involves the use of trucks. The US Department of Energy (DOE) is spearheading a number of research efforts to improve heavy vehicle fuel efficiencies. This includes research in engine technologies (including hybrid and fuel cell technologies), lightweight materials, advanced fuels, and parasitic loss reductions. In addition, DOE is developing advanced tools and models to support heavy vehicle truck research, and is leading the 21st Century Truck Partnership whose stretch goals involve a reduction by 50% of the fuel consumption of heavy vehicles on a ton-mile basis. This Medium Truck Duty Cycle (MTDC) Project is a critical element in DOE s vision for improved heavy vehicle energy efficiency and is unique in that there is no other national database of characteristic duty cycles for medium trucks. It involves the collection of real-world data for various situational characteristics (rural/urban, freeway/arterial, congested/free-flowing, good/bad weather, etc.) and looks at the unique nature of medium trucks drive cycles (stop-and-go delivery, power takeoff, idle time, short-radius trips), to provide a rich source of data that can contribute to the development of new tools for fuel efficiency and modeling, provide DOE a sound basis upon which to make technology investment decisions, and provide a national archive of real-world-based medium-truck operational data to support heavy vehicle energy efficiency research. The MTDC project involves a two-part field operational test (FOT). For the Part-1 FOT, three vehicles, each from two vocations (urban transit and dry-box delivery) were instrumented for one year of data collection. The Part-2 FOT will involve the towing/recovery and utility vocations. The vehicles participating in the MTDC project are doing so through gratis partnerships in return for early access to the results of this study. Partnerships such as these are critical to FOTs in which real-world data is being collected. In Part 1 of the project, Oak Ridge National Laboratory(ORNL) established partnerships with the H.T. Hackney Company, one of the largest wholesale distributors in the country, distributing products to 21 states; and with the Knoxville Area Transit (KAT), the City of Knoxville s transit system, operating services across the city of Knoxville and parts of Knox co. These partnerships and agreements provided ORNL access to three Class-7 2005/2007 International day-cab tractors, model 8600, which regularly haul 28 ft pup trailers (H.T. Hackney Co) and three Class-7 2005 Optima LF-34 buses (KAT), for collection of duty cycle data. In addition, ORNL has collaborated with the Federal Motor Carrier Safety Administration (FMCSA) to determine if there were possible synergies between this duty cycle data collection effort and FMCSA s need to learn more about the operation and duty cycles of the second-largest fuel consuming commercial vehicle category in the US. FMCSA s primary interest was in collecting safety data relative to the driver, carrier, and vehicle. In order to collect the duty cycle and safety-related data, ORNL developed a data acquisition and wireless communication system that was placed on each test vehicle. Each signal recorded in this FOT was collected by means of one of the instruments incorporated into each data acquisition system (DAS). Native signals were obtained directly from the vehicle s J1939 and J1708 data buses. A VBOX II Lite collected Global Positioning System related information including speed, acceleration, and spatial location information at a rate of 5 Hz, and communicated this data via the CAN (J1939) protocol. The Air-Weigh LoadMaxx, a self-weighing system which determines the vehicle s gross weight by means of pressure transducers and posts the weight to the vehicle s J1939 data bus, was used to collect vehicle payload information. A cellular modem, the Raven X

Franzese, Oscar [ORNL; Lascurain, Mary Beth [ORNL; Capps, Gary J [ORNL

2011-01-01T23:59:59.000Z

179

Progress in recycling of automobile shredder residue  

DOE Green Energy (OSTI)

At Argonne National Laboratory, we have been developing a potentially economical process to recycle automobile shredder residue (ASR). We identified three potentially marketable materials that can be recovered from ASR and developed technologies to recover and upgrade these materials. We build and tested a field-demonstration plant for recycling polyurethane foam and produced about 2000 lb of recycled foam. Several 300-lb samples were sent for evaluation and were found to be of marketable quality. We are also preparing for a large-scale test in which about 200 tons of ASR-derived fines will be used as a raw material in cement making. A major cement company has evaluated small samples of fines prepared in the laboratory and found that they meet its requirements as a substitute for iron ore or mill scale. We also produced about 50 lb of recycled acrylonitrile butadiene styrene (ABS) from obsolete automobiles and found that it has properties that could be readily upgraded to meet the specifications of the automotive industry. In this paper, we briefly discuss the process as a whole and summarize the results obtained from the field work on foam and fines recycling.

Jody, B.J.; Daniels, E.J.; Pomykala, J.A. Jr.

1996-03-01T23:59:59.000Z

180

Santa Clara Valley Transportation Authority and San Mateo County Transit District; Fuel Cell Transit Buses: Preliminary Evaluation Results  

DOE Green Energy (OSTI)

Report provides preliminary results from an evaluation of prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority (VTA) in San Jose, California.

Eudy, L.; Chandler, K.

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results  

DOE Green Energy (OSTI)

This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority in San Jose, California.

Chandler, K.; Eudy, L.

2006-11-01T23:59:59.000Z

182

Evaluation of Alternative Field Buses for Lighting ControlApplications  

Science Conference Proceedings (OSTI)

The Subcontract Statement of Work consists of two major tasks. This report is the Final Report in fulfillment of the contract deliverable for Task 1. The purpose of Task 1 was to evaluate existing and emerging protocols and standards for interfacing sensors and controllers for communicating with integrated lighting control systems in commercial buildings. The detailed task description follows: Task 1. Evaluate alternative sensor/field buses. The objective of this task is to evaluate existing and emerging standards for interfacing sensors and controllers for communicating with integrated lighting control systems in commercial buildings. The protocols to be evaluated will include at least: (1) 1-Wire Net, (2) DALI, (3) MODBUS (or appropriate substitute such as EIB) and (4) ZigBee. The evaluation will include a comparative matrix for comparing the technical performance features of the different alternative systems. The performance features to be considered include: (1) directionality and network speed, (2) error control, (3) latency times, (4) allowable cable voltage drop, (5) topology, and (6) polarization. Specifically, Subcontractor will: (1) Analyze the proposed network architecture and identify potential problems that may require further research and specification. (2) Help identify and specify additional software and hardware components that may be required for the communications network to operate properly. (3) Identify areas of the architecture that can benefit from existing standards and technology and enumerate those standards and technologies. (4) Identify existing companies that may have relevant technology that can be applied to this research. (5) Help determine if new standards or technologies need to be developed.

Koch, Ed; Rubinstein, Francis

2005-03-21T23:59:59.000Z

183

Manhattan Project Truck Unearthed in Recovery Act Cleanup | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manhattan Project Truck Unearthed in Recovery Act Cleanup Manhattan Project Truck Unearthed in Recovery Act Cleanup Manhattan Project Truck Unearthed in Recovery Act Cleanup A Los Alamos National Laboratory (LANL) excavation crew working on an American Recovery and Reinvestment Act cleanup project has uncovered the remnants of a 1940s military truck buried in a Manhattan Project landfill. The truck was unearthed inside a sealed building where digging is taking place at Material Disposal Area B (MDA-B), the Lab's first hazardous and radioactive waste landfill. MDA-B was used from 1944 to 1948. Manhattan Project Truck Unearthed in Recovery Act Cleanup More Documents & Publications Los Alamos Lab Completes Excavation of Waste Disposal Site Used in the 1940s Protecting Recovery Act Cleanup Site During Massive Wildfire

184

Boondocks Truck Stop Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Boondocks Truck Stop Wind Farm Boondocks Truck Stop Wind Farm Jump to: navigation, search Name Boondocks Truck Stop Wind Farm Facility Boondocks Truck Stop Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Boondocks Truck Stop Energy Purchaser Boondocks Truck Stop Location IA Coordinates 42.4703°, -93.5624° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4703,"lon":-93.5624,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

185

Estimation of Fuel Use by Idling Commercial Trucks  

NLE Websites -- All DOE Office Websites (Extended Search)

Estimation of Fuel Use Estimation of Fuel Use by Idling Commercial Trucks Estimation of Fuel Use by Idling Commercial Trucks TRB 85 th Annual Meeting Washington, DC January 22-26, 2006 Linda Gaines, Anant Vyas, and John L. Anderson 2 Trucks are classified into 8 classes Based on gross vehicle weight (GVW) - Includes empty vehicle plus cargo - Classes formulated >50 years ago Classes 1 and 2 include commercial and personal vehicles - Our analysis removes personal vehicles - Commercial uses include service and retail, construction, agriculture, manufacturing - Class 2 is divided into 2A and 2B (>8,500 lbs.) Single unit (SU) trucks cover classes 1-8 - Flatbed, pickup, dump, van dominate Combination (C) trucks are in classes 6-8 - About half have sleepers * Travel long distances * Driver often sleeps in truck

186

Truck Stop Electrification: Codes and Standards Ensure Safety for The Trucking Industry  

Science Conference Proceedings (OSTI)

Every day in the United States as many as 677,600 heavy-duty trucks are on the road; and, at some point during that day, they are idling. Over the course of a year, long-duration idling of truck and locomotive engines consumes more than 1 billion gallons of diesel fuel and emits 11 million tons of carbon dioxide. Drivers often idle their main engines during the U.S. Department of Transportation mandated rest time of 10 hours after driving for 11 hours, to power heating, air conditioning, lighting, and ap...

2009-05-08T23:59:59.000Z

187

Climate VISION: Private Sector Initiatives: Automobile Manufacturers:  

Office of Scientific and Technical Information (OSTI)

Resources & Links Resources & Links Technical Information Publications Case Studies Publications Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Plant and Energy Managers, Ernest Orlando Lawrence Berkeley National Laboratory, LBNL-50939 (PDF 792 KB). Download Acrobat Reader This report provides guidance to energy and plant managers in the vehicle assembly industry on the implementation of energy efficiency programs and upgrades in their companies and facilities. See all Publications Case Studies The following case studies are available for download as Adobe PDF documents. Download Acrobat Reader Automobile Case Studies Compressed Air System Improvements at an Automotive Plant (PDF 256 KB) Ford Plant-Wide Assessment at Cleveland, OH (PDF 266 KB)

188

Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks  

DOE Green Energy (OSTI)

With a variety of hybrid vehicles available in the passenger car market, electric technologies and components of that scale are becoming readily available. Commercial vehicle segments have lagged behind passenger car markets, leaving opportunities for component and system development. Escalating fuel prices impact all markets and provide motivation for OEMs, suppliers, customers, and end-users to seek new techniques and technologies to deliver reduced fuel consumption. The research presented here specifically targets the medium-duty (MD), Class 4-7, truck market with technologies aimed at reducing fuel consumption. These technologies could facilitate not only idle, but also parasitic load reductions. The development efforts here build upon the success of the More Electric Truck (MET) demonstration program at Caterpillar Inc. Employing a variety of electric accessories, the MET demonstrated the improvement seen with such technologies on a Class 8 truck. The Truck Essential Power Systems Efficiency Improvements for Medium-Duty Trucks (TEPS) team scaled the concepts and successes of MET to a MD chassis. The team designed an integrated starter/generator (ISG) package and energy storage system (ESS), explored ways to replace belt and gear-driven accessory systems, and developed supervisory control algorithms to direct the usage of the generated electricity and system behavior on the vehicle. All of these systems needed to fit within the footprint of a MD vehicle and be compatible with the existing conventional systems to the largest extent possible. The overall goal of this effort was to demonstrate a reduction in fuel consumption across the drive cycle, including during idle periods, through truck electrification. Furthermore, the team sought to evaluate the benefits of charging the energy storage system during vehicle braking. The vehicle features an array of electric accessories facilitating on-demand, variable actuation. Removal of these accessories from the belt or geartrain of the engine yields efficiency improvements for the engine while freeing those accessories to perform at their individual peak efficiencies to meet instantaneous demand. The net result is a systems approach to fuel usage optimization. Unique control algorithms were specifically developed to capitalize on the flexibility afforded by the TEPS architecture. Moreover, the TEPS truck technology mixture exhibits a means to supplant current accessory power sources such as on-board or trailer-mounted gasoline-powered generators or air compressors. Such functionality further enhances the value of the electric systems beyond the fuel savings alone. To demonstrate the fuel economy improvement wrought via the TEPS components, vehicle fuel economy testing was performed on the nearly stock (baseline) truck and the TEPS truck. Table 1 illustrates the fuel economy gains produced by the TEPS truck electrification. While the fuel economy results shown in Table 1 do reflect specific test conditions, they show that electrification of accessory hardware can yield significant fuel savings. In this case, the savings equated to a 15 percent reduction in fuel consumption during controlled on-road testing. Truck electrification allows engine shutdown during idle conditions as well as independent on-demand actuation of accessory systems. In some cases, independent actuation may even include lack of operation, a feature not always present in mechanically driven components. This combination of attributes allows significant improvements in system efficiency and the fuel economy improvements demonstrated by the TEPS team.

Larry Slone; Jeffery Birkel

2007-12-31T23:59:59.000Z

189

STATEMENT OF CONSIDERATIONS REQUEST BY MACK TRUCKS, INC. FOR...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for all subject inventions made under the above subject cooperative agreement: "Very High Fuel Economy, Heavy Duty, Constant Speed, Truck, Engine Optimized Via Unique Energy...

190

The Role of Batteries in Auxiliary Power for Heavy Trucks  

DOE Green Energy (OSTI)

The problem that this paper deals with is that Heavy trucks leave their engines on while they are stopped and the driver is sleeping, eating, etc.

D. Crouch

2001-12-12T23:59:59.000Z

191

Refinery receipts of crude oil by rail, truck, and barge ...  

U.S. Energy Information Administration (EIA)

While refinery receipts of crude by truck, rail, and barge remain a small percentage of total receipts, EIA's recently released Refinery Capacity ...

192

STATEMENT OF CONSIDERATIONS REQUEST BY OSHKOSH TRUCK CORPORATION...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of advanced, next generation heavy hybrid truck and bus propulsion technologies and hybrid vehicle systems. This two phase technology development program is intended to...

193

Demonstration Project 111 ITS/CVO Technology Truck Final Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

1277 Demonstration Project 111 ITSCVO Technology Truck Final Project Report December 2001 Prepared by G. J. Capps, ORNL Project Manager K. P. Gambrell, Technical Associate K. L....

194

Microsoft Word - NUCLEUS - INL Busing-DAT 10-14-2010.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

INL busing now becoming the DOE role model INL busing now becoming the DOE role model For energy savings and pollution reduction The following message to Integrated Transportation Services from R&D Support Services Director Debby Tate was sent to all her transportation employees last month. There has been a surprising and welcome change in attitude for why we have INL busing. I'd like to share it with you because of the role each of you has played in moving Bus Operations forward in exciting new directions for the future. INL was one of only eight institutions in the nation to win a 2010 GreenGov Presidential Award. The Laboratory received the Lean, Clean & Green Award for extraordinary improvements to fleet sustainability. Robert Gallegos (DOE-ID), Deborah Tate, Scott Wold (Integrated

195

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Buses in U.S. Transit Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 Leslie Eudy National Renewable Energy Laboratory Kevin Chandler Battelle Christina Gikakis Federal Transit Administration Technical Report NREL/TP-5600-56406 November 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 Leslie Eudy National Renewable Energy Laboratory Kevin Chandler Battelle Christina Gikakis Federal Transit Administration

196

Guidelines for Conversion of Diesel Buses to Compressed Natural Gas | Open  

Open Energy Info (EERE)

Guidelines for Conversion of Diesel Buses to Compressed Natural Gas Guidelines for Conversion of Diesel Buses to Compressed Natural Gas Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Guidelines for Conversion of Diesel Buses to Compressed Natural Gas Agency/Company /Organization: United Nations Economic and Social Commission for Asia and the Pacific Sector: Energy Focus Area: Energy Efficiency, Transportation Topics: Implementation, Policies/deployment programs, Technology characterizations Resource Type: Guide/manual Website: www.unescap.org/ttdw/Publications/TIS_pubs/pub_1361/pub_1361_fulltext. UN Region: Central Asia, Eastern Asia, South-Eastern Asia, "Pacific" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

197

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2011  

DOE Green Energy (OSTI)

This status report, fifth in a series of annual status reports from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), discusses the achievements and challenges of fuel cell propulsion for transit and summarizes the introduction of fuel cell transit buses in the United States. Progress this year includes an increase in the number of fuel cell electric buses (FCEBs), from 15 to 25, operating at eight transit agencies, as well as increased diversity of the fuel cell design options for transit buses. The report also provides an analysis of the combined results from fuel cell transit bus demonstrations evaluated by NREL with a focus on the most recent data through July 2011 including fuel cell power system reliability and durability; fuel economy; roadcall; and hydrogen fueling results. These evaluations cover 22 of the 25 FCEBs currently operating.

Eudy, L.; Chandler, K.; Gikakis, C.

2011-11-01T23:59:59.000Z

198

COMPARATIVE STUDY ON EXHAUST EMISSIONS FROM DIESEL- AND CNG-POWERED URBAN BUSES  

DOE Green Energy (OSTI)

Couple years ago, ADEME engaged programs dedicated to the urban buses exhaust emissions studies. The measures associated with the reduction of atmospheric and noise pollution has particular importance in the sector of urban buses. In many cases, they illustrate the city's environmental image and contribute to reinforcing the attractiveness of public transport. France's fleet in service, presently put at about 14,000 units, consumes about 2 per cent of the total energy of city transport. It causes about 2 per cent of the HC emissions and from 4 to 6 per cent of the NOx emissions and particles. These vehicles typically have a long life span (about 15 years) and are relatively expensive to buy, about 150.000 euros per unit. Several technical solutions were evaluated to quantify, on a real condition cycle for buses, on one hand pollutants emissions, fuel consumption and on the other hand reliability, cost in real existing fleet. This paper presents main preliminary results on urban buses exhaust emission on two different cases: - existing Diesel buses, with fuel modifications (Diesel with low sulphur content), Diesel with water emulsion and bio-Diesel (30% oil ester in standard Diesel fuel); renovating CNG powered Euro II buses fleet, over representative driving cycles, set up by ADEME and partners. On these cycles, pollutants (regulated and unregulated) were measured as well as fuel consumption, at the beginning of a program and one year after to quantify reliability and increase/decrease of pollutants emissions. At the same time, some after-treatment technologies were tested under real conditions and several vehicles. Information such as fuel consumption, lubricant analysis, problem on the technology were following during a one year program. On the overall level, it is the combination of various action, pollution-reduction and renewal that will make it possible to meet the technological challenge of reducing emissions and fuel consumption by urban bus networks.

COROLLER, P; PLASSAT, G

2003-08-24T23:59:59.000Z

199

UPS CNG Truck Fleet Start Up Experience: Alternative Fuel Truck Evaluation Project  

DOE Green Energy (OSTI)

UPS operates 140 Freightliner Custom Chassis compressed natural gas (CNG)-powered vehicles with Cummins B5.9G engines. Fifteen are participating in the Alternative Fuel Truck Evaluation Project being funded by DOE's Office of Transportation Technologies and the Office of Heavy Vehicle Technologies.

Walkowicz, K.

2001-08-14T23:59:59.000Z

200

Heavy Truck Duty Cycle (HTDC) Project The Heavy Truck Duty Cycle (HTDC)  

E-Print Network (OSTI)

is sponsored by the US Department of Energy's (DOE's) Office of FreedomCar and Vehicle Technologies with standard dual tires. The trailers are of various manufacturers and are 53 foot dry-box vans. Five-trailer (Truck#1) had its engine running while the vehicle was not moving. Over a period of one year

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

External costs of intercity truck freight transportation  

E-Print Network (OSTI)

From a societal perspective, it is desirable for all transportation users to pay their full social (private and external) costs. We estimate four general types of external costs for intercity freight trucking and compare them with the private costs incurred by carriers. Estimated external costs include: accidents (fatalities, injuries, and property damage); emissions (air pollution and greenhouse gases); noise; and unrecovered costs associated with the provision, operation, and maintenance of public facilities. The analysis reveals that external costs are equal to 13.2 % of private costs and user fees would need to be increased about

David J. Forkenbrock

1999-01-01T23:59:59.000Z

202

CNG Exports by Truck out of the U.S. Form | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PDF Version of CNG Exports by Truck out of the U.S. Form More Documents & Publications LNG Exports by Truck out of the U.S. Form LNG Imports by Truck into the U.S. Form Complete...

203

Assessing the impact of regulation and deregulation on the rail and trucking industries  

E-Print Network (OSTI)

(cont.) Many Class I railroads disappeared and severe competition bankrupted many small carriers in the trucking industry. Larger trucking carriers gained market dominance. Real wages in the trucking industry fell. The ...

Lowtan, Donavan M. (Donavan Mahees), 1975-

2004-01-01T23:59:59.000Z

204

Addendum: Tenth International Symposium on Alcohol Fuels, The road to commercialization  

DOE Green Energy (OSTI)

The Tenth International Symposium on ALCOHOL FUELS ``THE ROAD TO COMMERCIALIZATION`` was held at the Broadmoor Hotel, Colorado Springs, Colorado, USA November 7--10, 1993. Twenty-seven papers on the production of alcohol fuels, specifications, their use in automobiles, buses and trucks, emission control, and government policies were presented. Individual papers have been processed separately for entry into the data base.

Not Available

1994-05-01T23:59:59.000Z

205

Rail versus truck fuel efficiency: The relative fuel efficiency of truck-competitive rail freight and truck operations compared in a range of corridors. Final report  

SciTech Connect

The report summarizes the findings of a study to evaluate the fuel efficiency of rail freight operations relative to competing truckload service. The objective of the study was to identify the circumstances in which rail freight service offers a fuel efficiency advantage over alternative truckload options, and to estimate the fuel savings associated with using rail service. The findings are based on computer simulations of rail and truck freight movements between the same origins and destinations. The simulation input assumptions and data are based on actual rail and truck operations. Input data was provided by U.S. regional and Class I railroads and by large truck fleet operators.

Not Available

1991-04-01T23:59:59.000Z

206

DOE Announces $17 Million to Promote Greater Automobile Efficiency |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces $17 Million to Promote Greater Automobile Efficiency DOE Announces $17 Million to Promote Greater Automobile Efficiency DOE Announces $17 Million to Promote Greater Automobile Efficiency January 23, 2007 - 10:15am Addthis WASHINGTON, DC - U.S. Department of Energy (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner today announced that DOE intends issue $17 million in solicitations to improve automobile efficiency and reduce the United States's dependence on foreign sources of oil. The funding will be offered as two separate solicitations, one for $14 million to support plug-in hybrid electric vehicle technology and another for $3 million for research to improve E-85 engine efficiency. "President Bush is committed to developing alternative fuels and energy-saving innovations in vehicle technology, not just for concept cars,

207

The use of onboard diagnostics to reduce emissions in automobiles  

E-Print Network (OSTI)

The emissions from automobiles are very harmful and include gases such as Carbon Dioxide, Nitrous Oxide, and Sulfur Dioxide. One of the main reasons OBD was created was to control emissions however it currently only monitors ...

Perez, Alberto, Jr

2009-01-01T23:59:59.000Z

208

Anti-Idling Battery for Truck Applications  

DOE Green Energy (OSTI)

In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

Keith Kelly

2011-09-30T23:59:59.000Z

209

Hybrid Control of a Truck and Trailer Vehicle  

Science Conference Proceedings (OSTI)

A hybrid control scheme is proposed for the stabilization of backward driving along simple paths for a miniature vehicle composed of a truck and a two-axle trailer. When reversing, the truck and trailer can be modelled as an unstable nonlinear system ...

Claudio Altafini; Alberto Speranzon; Karl Henrik Johansson

2002-03-01T23:59:59.000Z

210

Automobile shredder residue: Process developments for recovery of recyclable constituents  

SciTech Connect

The objectives of this paper are threefold: (1) to briefly outline the structure of the automobile shredder industry as a supplier of ferrous scrap, (2) to review the previous research that has been conducted for recycling automobile shredder residue (ASR), and (3) to present the results and implications of the research being conducted at ANL on the development of a process for the selective recovery and recycling of the thermoplastics content of ASR. 15 refs., 5 figs.

Daniels, E.J.; Jody, B.J.; Bonsignore, P.V.; Shoemaker, E.L.

1990-01-01T23:59:59.000Z

211

Studies Of The Adoption And Use Of Location And Communication Technologies By The Trucking Industry  

E-Print Network (OSTI)

of Location and Communication Technologies by the TruckingOF LOCATION AND COMMUNICATION TECHNOLOGIES BY THE TRUCKINGpositioning and communication technologies by the trucking

Scapinakis, Dimitris A.; Garrison, William Louis

1991-01-01T23:59:59.000Z

212

Control theoretic model of automobile demand and gasoline consumption  

SciTech Connect

The purpose of this research is to examine the controllability of gasoline consumption and automobile demand using gasoline price as a policy instrument. The author examines the problem of replacing the standby motor-fuel rationing plan with use of the federal excise tax on gasoline. It is demonstrated that the standby targets are attainable with the tax. The problem of multiple control of automobile demand and gasoline consumption is also addressed. When the federal gasoline excise tax is used to control gasoline consumption, the policy maker can also use the tax to direct automobile demand. There exists a trade-off between various automobile demand targets and the target implied for gasoline consumption. We seek to measure this trade-off and use the results for planning. This research employs a time series of cross section data base with a disaggregated model of automobile demand, and an aggregate model of gasoline consumption. Automobile demand is divided into five mutually exclusive classes of cars. Gasoline demand is model as the sum of regular, premium, and unleaded gasoline. The pooled data base is comprised of a quarterly time series running from 1963 quarter one through 1979 quarter four, for each of the 48 continuous states. The demand equations are modelled using dynamic theories of demand. Estimates of the respective equations are made with error components and covariance techniques. Optimal control is applied to examine the gasoline-control problem.

Panerali, R.B.

1982-01-01T23:59:59.000Z

213

Energy Department, Volvo Partnership Builds More Efficient Trucks and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department, Volvo Partnership Builds More Efficient Trucks Department, Volvo Partnership Builds More Efficient Trucks and Manufacturing Plants Energy Department, Volvo Partnership Builds More Efficient Trucks and Manufacturing Plants January 27, 2012 - 3:00pm Addthis Washington, D.C. -Today, Acting Under Secretary of Energy Arun Majumdar joined with North Carolina Congressman Howard Coble (NC-6) to tour the Volvo Group's truck headquarters in Greensboro, North Carolina, and highlight the blueprint for an America built to last laid out by President Obama in his State of the Union address earlier this week. The Department of Energy is partnering with companies like the Volvo Group to help harness American ingenuity to commercialize and deploy cutting-edge trucking technologies that will help boost the competitiveness of the U.S. auto and

214

Supercomputers, Semi Trucks and America's Clean Energy Future |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercomputers, Semi Trucks and America's Clean Energy Future Supercomputers, Semi Trucks and America's Clean Energy Future Supercomputers, Semi Trucks and America's Clean Energy Future February 8, 2011 - 5:44pm Addthis BMI corporation, of South Carolina, is using the Jaguar super computer at Oak Ridge National Laboratory to do complex pre-visualization and develop products to increase fuel efficiency for the trucking industry. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain BMI corporation, of South Carolina, is using the Jaguar super computer at Oak Ridge National Laboratory to do complex pre-visualization and develop products to increase fuel efficiency for the trucking industry. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain

215

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air  

E-Print Network (OSTI)

The Social Costs of Intercity Passenger Transportation: AEffects and Social Costs of Road Transport, TransportationTransportation Research Center, Knoxville, TN [Delucchi 1997] Delucchi, M. , The Annualized Social Cost

Chester, Mikhail; Horvath, Arpad

2007-01-01T23:59:59.000Z

216

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network (OSTI)

of 20 mph. Regenerative braking affects energy consumptionenergy consumption is significantly affected by both the driving cycle, and to some extent, regenerative

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

217

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network (OSTI)

and Russell, A. , Electric Vehicles and the Environment:Roadway Powered Electric Vehicle ---An All-Electric Hybrid8th International Electric Vehicle Symposium, Washington,

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

218

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network (OSTI)

SCR sox - low sulfur oil 30 Source: Wang f et al. (1989).the three major fuel sources (gas, oil, and coal) assumed inIGCC Oil-fired: Residual Boiler Cogen-Turbine Source: N/A co

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

219

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air  

E-Print Network (OSTI)

Environment Agency, 12/2006. [EERE 2002] U.S. LightingVersion: its_report_06.doc) [EERE 2007] 2007 BuildingsRenewable Energy, 2007. [EERE] U.S. Department of Energy,

Chester, Mikhail; Horvath, Arpad

2007-01-01T23:59:59.000Z

220

Feasibility Study Of Advanced Technology Hov Systems: Volume 2b: Emissions Impact Of Roadway-powered Electric Buses, Light-duty Vehicles, And Automobiles  

E-Print Network (OSTI)

Excluding Conventional - Coal-fired Power Plants Chapter VI.of Conventional Coal-fired Power Plants The procedureCase II: Conventional Coal-fired Power Plants The procedure

Miller, Mark A.; Dato, Victor; Chira-chavala, Ted

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Cooling system for an automobile engine  

SciTech Connect

This patent describes a cooling system for an automobile engine having a water jacket, a radiator, a water pump, and a thermostat housing, comprising: a first passage communicating an upper outlet of the water jacket with an inlet of the radiator provided at a lower portion, a second passage communicating an upper outlet of the radiator with an inlet of the water pump and having the thermostat housing at the upstream of the pump; an outlet of the pump communicated with a lower inlet of the water jacket; a bypass connected between the first passage and the thermostat housing; a thermostat comprising a thermo-sensitive device, a first valve and a second valve disposed in the thermostat housing both the valves operatively connect to the thermo-sensitive device, so that the first valve closes the second passage and the second valve opens the bypass; the thermo-sensitive device disposes in the bypass and the first and second valves operate by the operation of the thermo-sensitive device.

Kuze, Y.

1987-07-14T23:59:59.000Z

222

Energy-efficient automobiles for the future  

DOE Green Energy (OSTI)

The characteristics of energy-efficient vehicles determined by the degree of incorporation of advanced technology and on reactions of consumers to the vehicles using those technologies are emphasized. Critical technology design aspects, as well as important consumer preferences, have been identified. Nearly 300 vehicles were designed using a heuristic method to meet several different expectations of consumer preference for acceleration. Air-pollutant emission standards in the Clear Air Act Amendments of 1977 were assumed to have been met in all designs, even when fuel efficiency was projected to increase sharply. Weight reductions are still expected to play an important role in improving fuel economy. Stirling, and electric motors, was also expected to play a significant role in reducing automobile energy consumption. Use of alternative fuels for spark-ignition engines, as well as for the other engines, was projected. Large gains in overall energy efficiency were projected, with methanol fuels playing a significant role. Even with so many acceptable alternatives projected to be available to households for purchase, the spark-ignition engine always captured the largest share of the market. Steady improvement in that vehicle's design kept it attractive to households through the year 2000 under varying economic conditions.

LaBelle, S.J.; Hudson, C.L.

1983-08-01T23:59:59.000Z

223

BAE/Orion Hybrid Electric Buses at New York City Transit: A Generation...  

NLE Websites -- All DOE Office Websites (Extended Search)

8 truck Cummins Westport ISXG high-pressure, direct- injection, liquefied natural gas (LNG) and diesel Completed in 2004 Host Site Profile-NYCT NYCT is a part of the Metropolitan...

224

New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

CA Peterbilt378, Class 8 truck Cummins Westport ISXG high pressure direct injection LNG and diesel Complete and reported IndyGo Indianapolis, IN Ebus 22-ft bus Series hybrid,...

225

Cummins Light Truck Diesel Engine Progress Report  

DOE Green Energy (OSTI)

Cummins has studied requirements of the Light Truck Automotive market in the United States and believes that the proposed V-family of engines meets those needs. Design and development of the V-family engine system continues and has expanded. The engine system is a difficult one, since the combined requirements of a very fuel-efficient commercial diesel, and the performance and sociability requirements of a gasoline engine are needed. Results of testing show that the engine can meet requirements for fuel economy and emissions in the Tier 2 interim period from 2004 to 2008. Advanced results show that the full Tier 2 results for 2008 and beyond can be achieved on a laboratory basis.

John H. Stang; David E. Koeberlein; Michael J. Ruth

2001-05-14T23:59:59.000Z

226

Solar Energy for Charging Fork Truck Batteries  

E-Print Network (OSTI)

The demand for renewable energy sources has stimulated technological advances in solar cell development. Initially, development and fabrication were extremely costly and no encouragement for use in industrial applications was made. Today, evidence exists that new technological advances and mass-production techniques have lowered the costs considerably. The U.S. Department of Energy has indicated that by the year 1990 the price per peak watt would be less than fifty U.S. cents. This paper keeps this price decrease in mind and does an economic study on the feasibility of using photovoltaic cells to charge electric fork lift trucks, at different costs per peak watt. This particular idea could be used as a measure of energy conservation for industrial material handling. Two evaluation methods were used; namely, the Payback Method, and the Modified Energy Inflation Rate Method. Neither of the methods proved to be economically favorable, but some interesting results were obtained.

Viljoen, T. A.; Turner, W. C.

1980-01-01T23:59:59.000Z

227

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CCities AOI 4:Deployment of CNG refuse trucks and shuttle buses and the development of four CNG refueling locations....

228

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Refuse Trucks, Shuttle Buses and Infrastructure Clean Cities AOI 4:Deployment of CNG refuse trucks and shuttle buses and the development of four CNG refueling locations....

229

Projection of light-truck population to year 2025  

SciTech Connect

The recent growth in the number of light trucks is a matter of considerable interest in that it may have far-reaching implications for gasoline consumption. This paper forecasts the number of light trucks in the years to 2025. The forecast is based on economic scenarios developed by SRI International. Except for the case of the most-dismal economic forecast, the number of light trucks is predicted to increase monotonically and to show the greatest rate of increase between 1973 and 1980.

1978-10-01T23:59:59.000Z

230

LNG Imports by Truck into the U.S. Form | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Truck into the U.S. Form LNG Imports by Truck into the U.S. Form Excel Version of LNG Imports by Truck into the U.S. Form.xlsx PDF Version of LNG Imports by Truck into the U.S....

231

LNG Exports by Truck out of the U.S. Form | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Truck out of the U.S. Form LNG Exports by Truck out of the U.S. Form Excel Version of LNG Exports by Truck out of the U.S. Form.xlsx PDF Version of LNG Exports by Truck out of the...

232

Tools and Equipment Modeling for Automobile Interactive Assembling Operating Simulation  

SciTech Connect

Tools and equipment play an important role in the simulation of virtual assembly, especially in the assembly process simulation and plan. Because of variety in function and complexity in structure and manipulation, the simulation of tools and equipments remains to be a challenge for interactive assembly operation. Based on analysis of details and characteristics of interactive operations for automobile assembly, the functional requirement for tools and equipments of automobile assembly is given. Then, a unified modeling method for information expression and function realization of general tools and equipments is represented, and the handling methods of manual, semi-automatic, automatic tools and equipments are discussed. Finally, the application in assembly simulation of rear suspension and front suspension of Roewe 750 automobile is given. The result shows that the modeling and handling methods are applicable in the interactive simulation of various tools and equipments, and can also be used for supporting assembly process planning in virtual environment.

Wu Dianliang; Zhu Hongmin [Shanghai Jiao Tong University (China); Shanghai Key Laboratory of Advance Manufacturing Environment (China)

2010-05-21T23:59:59.000Z

233

National Renewable Energy Laboratory (NREL) Reports Increase in Durability and Reliability for Current Generation Fuel Cell Buses (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes NREL's accomplishments in evaluating the durability and reliability of fuel cell buses being demonstrated in transit service. Work was performed by the Hydrogen Technology Validation team in the Hydrogen Technologies and Systems Center.

Not Available

2010-11-01T23:59:59.000Z

234

DOE Seeks Trucking Services for Transuranic Waste Shipments | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trucking Services for Transuranic Waste Shipments Trucking Services for Transuranic Waste Shipments DOE Seeks Trucking Services for Transuranic Waste Shipments March 30, 2011 - 12:00pm Addthis Media Contact Bill Taylor 513-246-0539 william.taylor@emcbc.doe.gov Cincinnati -- The Department of Energy (DOE) today will issue a Request for Proposals for the continuation of carrier services to transport transuranic waste (TRU) between DOE sites and the Waste Isolation Pilot Plant (WIPP) site, near Carlsbad, New Mexico. The transportation of TRU waste is accomplished by contracted trucking carriers that ship the waste via public highways on custom designed trailers. The contract will be an Indefinite Delivery/ Indefinite Quantity (ID/IQ) contract using firm-fixed- price delivery task orders. The estimated contract cost is $80-$100 million over a five-year contract

235

NREL: Fleet Test and Evaluation - Truck Stop Electrification  

NLE Websites -- All DOE Office Websites (Extended Search)

Stop Electrification Stop Electrification NREL's Fleet Test and Evaluation Team is evaluating and documenting the use of 50 truck stop electrification (TSE) sites along the busiest transportation corridors in the United States. Truck drivers typically idle their vehicles during mandated rest periods to maintain access to air conditioning, heat, and electricity. TSE sites allow truckers to enjoy these auxiliary systems by plugging into the electric grid instead of running their engines. The American Recovery and Reinvestment Act (ARRA) provided funding for these TSE sites-which feature electric power pedestals at 1,250 truck parking spaces-and for rebates to upgrade 5,000 long-haul trucks for drivers who agreed to use the facilities. Site usage will be monitored for three years to study patterns across the

236

Unemployed Truck Driver Trains for New Career in Weatherization |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Truck Driver Trains for New Career in Weatherization Truck Driver Trains for New Career in Weatherization Unemployed Truck Driver Trains for New Career in Weatherization November 5, 2010 - 2:46pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What does this mean for me? Workers across the country are being retrained for careers in the new clean energy economy. Tyrone Bailey had been out of work for 14 months when an unemployment office staffer told him about a home-weatherization training program offered by the state of New Jersey. The former truck driver and construction worker jumped at the opportunity to acquire new skills and began training January 19. He graduated April 1 and won a position with GreenLight Solutions, a Montclair, New Jersey-based residential home improvement company just two weeks later.

237

Sysco Deploys Hydrogen Powered Pallet Trucks | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks July 12, 2010 - 2:50pm Addthis Food service distribution company Sysco celebrated the grand opening of its highly efficient distribution center in June in Houston. As part of Sysco's efforts to reduce its carbon footprint, the company deployed almost 100 pallet trucks powered by fuel cells that create only water and heat as by-products. The hydrogen fuel cell project's cost was partially covered by funding from a $1.2 million grant provided by the American Recovery and Reinvestment Act through the U.S. Department of Energy's Fuel Cell Technologies Program. The total project cost was $3.3 million. The 98 new Raymond Corporation pallet lifts are powered by Plug Power

238

Unemployed Truck Driver Trains for New Career in Weatherization |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unemployed Truck Driver Trains for New Career in Weatherization Unemployed Truck Driver Trains for New Career in Weatherization Unemployed Truck Driver Trains for New Career in Weatherization November 5, 2010 - 2:46pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What does this mean for me? Workers across the country are being retrained for careers in the new clean energy economy. Tyrone Bailey had been out of work for 14 months when an unemployment office staffer told him about a home-weatherization training program offered by the state of New Jersey. The former truck driver and construction worker jumped at the opportunity to acquire new skills and began training January 19. He graduated April 1 and won a position with GreenLight Solutions, a Montclair, New Jersey-based residential home improvement company just two weeks later.

239

FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation: 12-Month Report R. Barnitt Technical Report NRELTP-5400-48896 January 2011 NREL is a national laboratory of the...

240

Dual-Fuel Truck Fleet: Start-Up Experience  

DOE Green Energy (OSTI)

Although dual-fuel engine technology has been in development and limited use for several years, it has only recently moved toward full-scale operational capability for heavy-duty truck applications. Unlike a bifuel engine, which has two separate fuel systems that are used one at a time, a dual-fuel engine uses two fuel systems simultaneously. One of California's South Coast Air Quality Management District (SCAQMD) current programs is a demonstration of dual-fuel engine technology in heavy-duty trucks. These trucks are being studied as part of the National Renewable Energy Laboratory's (NREL's) Alternative Fuel Truck Program. This report describes the start-up experience from the program.

NREL

1998-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Manhattan Project Truck Unearthed in Recovery Act Cleanup  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

www.em.doe.govemrecovery April 20, 2011 Remnants of 1940s military truck buried in a Manhattan Project-era landfill LOS ALAMOS, N.M. - A Los Alamos National Laboratory (LANL)...

242

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network (OSTI)

Design of a Truck- mounted Fuel Cell APU System. Society ofEngine Idling Versus Fuel Cell APUs. ” Society of AutomotiveJr; 2003. Evaluation of Fuel Cell Auxiliary Power Units for

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

243

DOE Expands International Effort to Develop Fuel-Efficient Trucks |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expands International Effort to Develop Fuel-Efficient Trucks Expands International Effort to Develop Fuel-Efficient Trucks DOE Expands International Effort to Develop Fuel-Efficient Trucks June 30, 2008 - 2:15pm Addthis GOTHENBURG, SWEDEN - U.S. Department of Energy's (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Volvo Group CEO Leif Johansson today agreed to expand cooperation to develop more fuel-efficient trucks. Once contractual negotiations are complete later this year, the cooperative program will be extended for three more years. An additional $9 million over three years in DOE funds will be matched by $9 million in Swedish government funds and $18 million from Volvo Group. When added with the existing $12 million commitment from the United States, Sweden and the Volvo Group the overall value of the cooperation will be $48

244

Outdoor Electric Heavy-Duty Lift Truck Demonstration at Progress Energy Florida  

Science Conference Proceedings (OSTI)

Electric lift trucks now represent well over 50% of the U.S. lift truck market, their sales propelled by improved performance, life-cycle cost savings, and operational, health, and environmental benefits. In fact, research shows that electric lift trucks over their lifetime cost approximately $1 per operating hour less per unit than internal combustion trucks due to lower fuel and maintenance costs. Despite these market successes, however, some users perceive that electric lift trucks do not perform ...

2012-08-23T23:59:59.000Z

245

Industrial Lift Truck Battery Charger Demand Response Impact Study  

Science Conference Proceedings (OSTI)

Demand response and load shifting are two common energy management strategies used by lift truck fleet operators to mitigate on-peak energy consumption, reduce electricity costs, and react to electric system emergency curtailment requests. When customers elect to participate in demand response programs, they are contacted and asked to reduce load during power shortage situations. Alternatively, customers may implement longer-term economic load shifting strategies by reducing power to their lift truck bat...

2008-04-03T23:59:59.000Z

246

New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

New York City Transit Hybrid New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results K. Chandler and E. Eberts Battelle L. Eudy National Renewable Energy Laboratory Technical Report NREL/TP-540-38843 January 2006 New York City Transit Hybrid and CNG Transit Buses: Interim Evaluation Results K. Chandler and E. Eberts Battelle L. Eudy National Renewable Energy Laboratory Prepared under Task No. FC06.3000 Technical Report NREL/TP-540-38843 January 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

247

Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emission Testing of Washington Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S. Wayne West Virginia University D. Smith U.S. Department of Energy Technical Report NREL/TP-540-36355 December 2005 Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S. Wayne West Virginia University D. Smith U.S. Department of Energy Prepared under Task No. FC05-9000 Technical Report NREL/TP-540-36355 December 2005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov

248

Automobile Assembly Plant EPI | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Automobile Assembly Plant EPI Automobile Assembly Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

249

Hybrid GPS-GSM Localization of Automobile Tracking System  

E-Print Network (OSTI)

An integrated GPS-GSM system is proposed to track vehicles using Google Earth application. The remote module has a GPS mounted on the moving vehicle to identify its current position, and to be transferred by GSM with other parameters acquired by the automobile's data port as an SMS to a recipient station. The received GPS coordinates are filtered using a Kalman filter to enhance the accuracy of measured position. After data processing, Google Earth application is used to view the current location and status of each vehicle. This goal of this system is to manage fleet, police automobiles distribution and car theft cautions.

Al-Khedher, Mohammad A

2012-01-01T23:59:59.000Z

250

Optimizing the selection and implementation of assembly line equipment at a large automobile original equipment manufacturer  

E-Print Network (OSTI)

Toyota Motor Manufacturing North America (TMMNA) is continuing to face an increasingly competitive automobile market. To meet these evolving market conditions, TMMNA has experienced rapid growth in demand for its automobiles ...

Holman, Cale M. (Cale Matthew)

2005-01-01T23:59:59.000Z

251

Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid Transit Buses  

DOE Green Energy (OSTI)

This report focuses on a gasoline-electric hybrid transit bus propulsion system. The propulsion system is an alternative to standard diesel buses and allows for reductions in emissions (usually focused on reductions of particulate matter and oxides of nitrogen) and petroleum use. Gasoline propulsion is an alternative to diesel fuel and hybrid propulsion allows for increased fuel economy, which ultimately results in reduced petroleum use.

Lammert, M.

2008-06-01T23:59:59.000Z

252

Using adaptive network-based fuzzy inference system to forecast automobile sales  

Science Conference Proceedings (OSTI)

Improving the sales forecasting accuracy has become a primary concern for automobile industry. Here, we only focus on new automobile sales in Taiwan. The data set is based on monthly sales, and the data can be divided into three styles of automobile ... Keywords: ANFIS, ANN, ARIMA, Demand forecasting

Fu-Kwun Wang; Ku-Kuang Chang; Chih-Wei Tzeng

2011-08-01T23:59:59.000Z

253

Renewable energy of waste heat recovery system for automobiles  

Science Conference Proceedings (OSTI)

A system to recover waste heat comprised of eight thermoelectric generators (TEGs) to convert heat from the exhaust pipe of an automobile to electrical energy has been constructed. Simulations and experiments for the thermoelectric module in this system are undertaken to assess the feasibility of these applications. In order to estimate the temperature difference between thermoelectric elements

Cheng-Ting Hsu; Da-Jeng Yao; Ke-Jyun Ye; Ben Yu

2010-01-01T23:59:59.000Z

254

Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Frito-Lay Delivers Frito-Lay Delivers With Electric Truck Fleet to someone by E-mail Share Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Facebook Tweet about Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Twitter Bookmark Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Google Bookmark Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Delicious Rank Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Digg Find More places to share Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on AddThis.com... Sept. 22, 2012 Frito-Lay Delivers With Electric Truck Fleet D iscover how Frito-Lay provides service with electric trucks in Columbus,

255

Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Truck Idle Heavy-Duty Truck Idle Reduction Technologies to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Technologies on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles Onboard Equipment Truck Stop Electrification

256

Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Heavy-Duty Truck Idle Heavy-Duty Truck Idle Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Truck Idle Reduction Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Heavy-Duty Truck Idle Reduction Requirements

257

Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles  

NLE Websites -- All DOE Office Websites (Extended Search)

9: April 25, 9: April 25, 2005 Medium-Truck Miles by Age to someone by E-mail Share Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Facebook Tweet about Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Twitter Bookmark Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Google Bookmark Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Delicious Rank Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Digg Find More places to share Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on AddThis.com... Fact #369: April 25, 2005 Medium-Truck Miles by Age Medium trucks (class 3-6) were driven an average of 14,439 miles in 2002.

258

Six Manufacturers to Offer Natural-Gas-Powered Trucks in 1996  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

ix truck manufacturers will offer ix truck manufacturers will offer natural-gas-powered versions of their medium- and heavy-duty trucks in 1996, according to the Gas Research Institute (GRI). The trucks will be the first fully dedicated natural gas vehicles (NGVs) offered in U.S. medium- and heavy-duty markets by original equipment manufacturers (OEMs). Four manufacturers will design trucks to operate on liquefied natural gas (LNG), and one manufacturer will design trucks to run on compressed natural gas (CNG). These manufacturers will join Volvo GM Heavy Truck Corporation, which has announced plans to manufacture an NGV refuse hauler, the Xpeditor. The refuse hauler will be available in LNG and CNG versions. "The availability of OEM- produced trucks is a significant development for GRI and the gas

259

Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Powers Natural Gas Powers Milk Delivery Trucks in Indiana to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Google Bookmark Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Delicious Rank Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Powers Milk Delivery Trucks in Indiana on AddThis.com... Aug. 20, 2011 Natural Gas Powers Milk Delivery Trucks in Indiana

260

Volvo Truck Headquarters in North Carolina to Host Event With Acting Under  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Volvo Truck Headquarters in North Carolina to Host Event With Volvo Truck Headquarters in North Carolina to Host Event With Acting Under Secretary of Energy Majumdar Volvo Truck Headquarters in North Carolina to Host Event With Acting Under Secretary of Energy Majumdar January 26, 2012 - 2:00pm Addthis Washington, D.C. - Tomorrow, Friday, January 27, Acting Under Secretary of Energy Arun Majumdar and North Carolina Congressman Howard Coble will visit the Volvo Group's truck headquarters in Greensboro, North Carolina. Through the Department of Energy's Super Truck project, the Volvo Group, which includes Mack Trucks and Volvo Trucks, received $19 million in federal funding to improve the freight-moving efficiency of heavy-duty trucks, an example of the Obama Administration's strong commitment to reviving the U.S. auto industry through investments in more efficient

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams  

NLE Websites -- All DOE Office Websites (Extended Search)

Truck Truck Technical Goals and Teams to someone by E-mail Share Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Facebook Tweet about Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Twitter Bookmark Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Google Bookmark Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Delicious Rank Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on Digg Find More places to share Vehicle Technologies Office: 21st Century Truck Technical Goals and Teams on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget

262

Analysis of Major Trends in U.S. Commercial Trucking, 1977-2002  

NLE Websites -- All DOE Office Websites (Extended Search)

Further, since single-unit trucks operate usually at part cargo load, the extra mass of CNG tanks is acceptable. For Class 8 combination trucks, the energy storage limitations of...

263

Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds  

NLE Websites -- All DOE Office Websites (Extended Search)

1: April 18, 1: April 18, 2011 Average Truck Speeds to someone by E-mail Share Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Facebook Tweet about Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Twitter Bookmark Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Google Bookmark Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Delicious Rank Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on Digg Find More places to share Vehicle Technologies Office: Fact #671: April 18, 2011 Average Truck Speeds on AddThis.com... Fact #671: April 18, 2011 Average Truck Speeds The Federal Highway Administration studies traffic volume and flow on major

264

Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conserve Fuel Conserve Fuel Printable Version Share this resource Send a link to Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations to someone by E-mail Share Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Facebook Tweet about Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Twitter Bookmark Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Google Bookmark Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Delicious Rank Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Digg Find More places to share Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on AddThis.com... U.S. Truck Stop Electrification Locations

265

Integrated Numerical Modeling Process for Evaluating Automobile Climate Control Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

FCC-70 FCC-70 Integrated Numerical Modeling Process for Evaluating Automobile Climate Control Systems John Rugh National Renewable Energy Laboratory Copyright © 2002 Society of Automotive Engineers, Inc. ABSTRACT The air-conditioning (A/C) system compressor load can significantly impact the fuel economy and tailpipe emissions of conventional and hybrid electric automobiles. With the increasing emphasis on fuel economy, it is clear that the A/C compressor load needs to be reduced. In order to accomplish this goal, more efficient climate control delivery systems and reduced peak soak temperatures will be necessary to reduce the impact of vehicle A/C systems on fuel economy and tailpipe emissions. Good analytical techniques are important in identifying promising concepts. The goal at

266

Project Startup: Evaluating Coca-Cola's Class 8 Hybrid-Electric Delivery Trucks (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet describing the project startup for evaluating Coca-Cola's Class 8 hybrid-electric delivery trucks.

Not Available

2011-03-01T23:59:59.000Z

267

Firm Uses DOE?s Fastest Supercomputer to Streamline Long-Haul Trucks  

DOE R&D Accomplishments (OSTI)

Sophisticated simulation on the world?s fastest computer for science makes trucks more aerodynamic, saves fuel, helps environment.

2011-03-28T23:59:59.000Z

268

Cost Effectiveness of On-Site Chlorine Generation for Chlorine Truck Attack Prevention  

Science Conference Proceedings (OSTI)

A chlorine tank truck attack could cause thousands of fatalities. As a means of preventing chlorine truck attacks, I consider the on-site generation of chlorine or hypochlorite at all U.S. facilities currently receiving chlorine by truck. I develop and ... Keywords: applications, cost-effectiveness, public policy, risk analysis, terrorism, uncertainty

Anthony M. Barrett

2010-12-01T23:59:59.000Z

269

CoolCab: Reducing Thermal Loads in Long-Haul Trucks (Fact Sheet)  

SciTech Connect

This fact sheet describes how the National Renewable Energy Laboratory's CoolCab project tested and modeled the effects of several thermal-load reduction strategies applied to long-haul truck cabs. NREL partnered with two major truck manufacturers to evaluate three long-haul trucks at NREL's outdoor test facility in Golden, Colorado.

Not Available

2010-02-01T23:59:59.000Z

270

Effect of Fuel Economy on Automobile Safety: A Reexamination  

NLE Websites -- All DOE Office Websites (Extended Search)

75, the fuel economy of passenger cars and light trucks has been 75, the fuel economy of passenger cars and light trucks has been regulated by the corporate average fuel economy (CAFE) standards, established during the energy crises of the 1970s. Calls to increase fuel economy are usually met by a fierce debate on the effectiveness of the CAFE standards and their impact on highway safety. A seminal study of the link between CAFE and traffic fatalities was published by R. W. Crandall and J. D. Graham in 1989. They linked higher fuel economy levels to decreases in vehicle weight and correlated the decline in new car weight with about a 20% increase in occupant fatalities. The time series available to them, 1947-1981, includes only the first 4 years of fuel economy regulation, but any statistical relationship estimated over such

271

DOE Light Truck Clean Diesel (LTCD) Program Final Caterpillar Public Report Light Truck Clean Diesel Program  

DOE Green Energy (OSTI)

The US Department of Energy and Caterpillar entered a Cooperative Agreement to develop compression ignition engine technology suitable for the light truck/SUV market. Caterpillar, in collaboration with a suitable commercialization partner, developed a new Compression Ignition Direct Injection (CIDI) engine technology to dramatically improve the emissions and performance of light truck engines. The overall program objective was to demonstrate engine prototypes by 2004, with an order of magnitude emission reduction while meeting challenging fuel consumption goals. Program emphasis was placed on developing and incorporating cutting edge technologies that could remove the current impediments to commercialization of CIDI power sources in light truck applications. The major obstacle to commercialization is emissions regulations with secondary concerns of driveability and NVH (noise, vibration and harshness). The target emissions levels were 0.05 g/mile NOx and 0.01 g/mile PM to be compliant with the EPA Tier 2 fleet average requirements of 0.07 g/mile and the CARB LEV 2 of 0.05 g/mile for NOx, both have a PM requirement of 0.01 g/mile. The program team developed a combustion process that fundamentally shifted the classic NOx vs. PM behavior of CIDI engines. The NOx vs. PM shift was accomplished with a form of Homogeneous Charge Compression Ignition (HCCI). The HCCI concept centers on appropriate mixing of air and fuel in the compression process and controlling the inception and rate of combustion through various means such as variable valve timing, inlet charge temperature and pressure control. Caterpillar has adapted an existing Caterpillar design of a single injector that: (1) creates the appropriate fuel and air mixture for HCCI, (2) is capable of a more conventional injection to overcome the low power density problems of current HCCI implementations, (3) provides a mixed mode where both the HCCI and conventional combustion are functioning in the same combustion cycle. Figure 1 illustrates the mixed mode injection system. Under the LTCD program Caterpillar developed a mixed mode injector for a multi-cylinder engine system. The mixed mode injection system represents a critical enabling technology for the implementation of HCCI. In addition, Caterpillar implemented variable valve system technology and air system technology on the multi-cylinder engine platform. The valve and air system technology were critical to system control. Caterpillar developed the combustion system to achieve a 93% reduction in NOx emissions. The resulting NOx emissions were 0.12 gm/mile NOx. The demonstrated emissions level meets the stringent Tier 2 Bin 8 requirement without NOx aftertreatment! However, combustion development alone was not adequate to meet the program goal of 0.05gm/mile NOx. To meet the program goals, an additional 60% NOx reduction technology will be required. Caterpillar evaluated a number of NOx reduction technologies to quantify and understand the NOx reduction potential and system performance implications. The NOx adsorber was the most attractive NOx aftertreatment option based on fuel consumption and NOx reduction potential. In spite of the breakthrough technology development conducted under the LTCD program there remains many significant challenges associated with the technology configuration. For HCCI, additional effort is needed to develop a robust control strategy, reduce the hydrocarbon emissions at light load condition, and develop a more production viable fuel system. Furthermore, the NOx adsorber suffers from cost, packaging, and durability challenges that must be addressed.

Eric Fluga

2004-09-30T23:59:59.000Z

272

Satellite Detec*on of Truck & Rail NO2  

E-Print Network (OSTI)

Satellite Detec*on of Truck & Rail NO2 Erica Bickford Tracey Holloway Environment (SAGE) University of Wisconsin Madison #12;Freight and Air Quality 2 · Transporta*on is the largest source of NOx emissions. · Freight accounts for 33

Jacob, Daniel J.

273

Improved performance of railcar/rail truck interface components  

E-Print Network (OSTI)

The objective of this research is to improve the railcar/rail truck interface by developing a low maintenance bearing interface with a favorable friction coefficient. Friction and wear at the center bowl/center plate bearing interface cause high turning moments around curved track, wear of truck components, and increased detrimental dynamic effects. The recommended improvement of the rail truck interface is a set of two steel inserts, one concave and one convex, that can be retrofit to center bowls/center plates. The insert geometry addresses concerns about maintaining favorable pressure distribution on existing components, minimizing overall height increase to accommodate existing infrastructure, and retaining railcar stability. The stability of the railcar upon the design inserts has been ensured when the instantaneous center of rotation of the railcar body is above the railcar center of gravity. The damping ratio provided by the frictional moment within center bowl is 240 and eliminates the possibility of dynamic amplification. Using a 90 inch radius of curvature ensures stability and requires a 0.5 inch diameter reduction of the existing center plate for a gap of 1/16 inch. The increase in railcar height for the specific design is 0.71 inches which can be absorbed by either grinding of the center plate or new manufacturing dimensions. The design is feasible for small travel values corresponding to small vertical gaps at the side bearings. In addition to geometry alterations, the bearing surfaces are coated with a protective metallic layer. The literature suggests that optimum friction coefficients between bearing elements in the center bowl/center plate interface may reduce turning moments of the truck, wear of truck components, and detrimental dynamic effects such as hunting. Axial-torsional tests determined friction coefficient estimates and wear properties for a matrix of various metallic protective coatings and steel. Tungsten carbide-cobalt-chrome has a favorable coefficient of 0.3 under standard center bowl/center plate contact conditions.

Story, Brett Alan

2007-08-01T23:59:59.000Z

274

From plant to dealer : improving route optimization for outbound vehicle distribution at an automobile manufacturer  

E-Print Network (OSTI)

With rising fuel costs and increasing rates among specialized shipping carriers, cost mitigation in outbound distribution is increasingly important for automobile manufacturers. Many manufacturers have turned to specialized, ...

Katcoff, Elizabeth

2012-01-01T23:59:59.000Z

275

Optimizing the selection and implementation of assembly line equipment at a large automobile original equipment manufacturer.  

E-Print Network (OSTI)

??Toyota Motor Manufacturing North America (TMMNA) is continuing to face an increasingly competitive automobile market. To meet these evolving market conditions, TMMNA has experienced rapid… (more)

Holman, Cale M. (Cale Matthew)

2005-01-01T23:59:59.000Z

276

Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and Zero Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Google Bookmark Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Delicious Rank Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on Digg Find More places to share Alternative Fuels Data Center: Hybrid and Zero Emission Truck and Bus Vouchers - San Joaquin Valley on AddThis.com...

277

Oak Ridge Leadership Computing Facility User Update: SmartTruck Systems |  

NLE Websites -- All DOE Office Websites (Extended Search)

Leadership Computing Facility User Update: SmartTruck Systems Leadership Computing Facility User Update: SmartTruck Systems Startup zooms to success improving fuel efficiency of long-haul trucks by more than 10 percent Supercomputing simulations at Oak Ridge National Laboratory enabled SmartTruck Systems engineers to develop the UnderTray System, some components of which are shown here. The system dramatically reduces drag-and increases fuel mileage-in long-haul trucks. Image: Michael Matheson, Oak Ridge National Laboratory Supercomputing simulations at Oak Ridge National Laboratory enabled SmartTruck Systems engineers to develop the UnderTray System, some components of which are shown here. The system dramatically reduces drag-and increases fuel mileage-in long-haul trucks. Image: Michael Matheson, Oak Ridge National Laboratory (hi-res image)

278

Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE  

NLE Websites -- All DOE Office Websites (Extended Search)

1: May 18, 2009 1: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation to someone by E-mail Share Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Facebook Tweet about Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Twitter Bookmark Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Google Bookmark Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Delicious Rank Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Digg Find More places to share Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on

279

Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move  

NLE Websites -- All DOE Office Websites (Extended Search)

1: April 2, 2012 1: April 2, 2012 Heavy Trucks Move Freight Efficiently to someone by E-mail Share Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Facebook Tweet about Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Twitter Bookmark Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Google Bookmark Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Delicious Rank Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on Digg Find More places to share Vehicle Technologies Office: Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently on AddThis.com...

280

Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Saving Fuel in the Saving Fuel in the Garden State with Truck Stop Electrification to someone by E-mail Share Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Facebook Tweet about Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Twitter Bookmark Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Google Bookmark Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Delicious Rank Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Digg Find More places to share Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on AddThis.com...

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

In-Use Performance Comparison of Hybrid Electric, CNG, and Diesel Buses at New York City Transit  

Science Conference Proceedings (OSTI)

The National Renewable Energy Laboratory (NREL) evaluated the performance of diesel, compressed natural gas (CNG), and hybrid electric (equipped with BAE Systems? HybriDrive propulsion system) transit buses at New York City Transit (NYCT). CNG, Gen I and Gen II hybrid electric propulsion systems were compared on fuel economy, maintenance and operating costs per mile, and reliability.

Barnitt, R. A.

2008-06-01T23:59:59.000Z

282

Use of noble metals in automobile exhaust catalysts  

SciTech Connect

This is a review of recent literature involving laboratory work on catalytic reactions of interest in automobile exhaust purification. The review is concerned with the noble metals Pt, Pd, and Rh, the oxidation of CO and hydrocarbons, the reduction of NO, and the water-gas-shift and steam-re-forming reactions. Current thoughts are given about the mechanisms of these reactions, the dependence of the reaction rates on particle size, when known, and the role of the impurity SO/sub 2/. The current opinion that alloy formation between the noble metals is detrimental and segregation beneficial is supported by literature references.

Kummer, J.T.

1986-09-25T23:59:59.000Z

283

Natural gas buses: Separating myth from fact (Clean Cities alternative fuel information series fact sheet)  

DOE Green Energy (OSTI)

Increasing numbers of transit agencies across North America are making the choice to convert their bus fleets to compressed natural gas (CNG), and even more are seriously considering it. Natural gas buses now account for at least 20{percent} of all new bus orders. However, it becomes difficult for fleet operators to fairly evaluate the potential benefits of an alternative fuel program if they are confronted with misinformation or poor comparisons based on false assumptions. This fact sheet addresses some of the most common misconceptions that seem to work their way into anecdotal stories, media reports, and even some poorly researched white papers and feasibility studies. It is an expanded version of information that was presented on behalf of the U.S. Department of Energy at the South Coast Air Basin Alternative Fuel and Electric Transit Bus Workshop in Diamond Bar, California, on March 15, 2000.

Parish, R.

2000-04-27T23:59:59.000Z

284

Alternative fuel transit buses: Interim results from the National Renewable Energy Laboratory (NREL) Vehicle Evaluation Program  

DOE Green Energy (OSTI)

The transit bus program is designed to provide a comprehensive study of the alternative fuels currently used by the transit bus industry. The study focuses on the reliability, fuel economy, operating costs, and emissions of vehicles running on the various fuels and alternative fuel engines. The alternative fuels being tested are methanol, ethanol, biodiesel and natural gas. The alternative fuel buses in this program use the most common alternative fuel engines from the heavy-duty engine manufacturers. Data are collected in four categories: Bus and route descriptions; Bus operating data; Emissions data; and, Capital costs. The goal is to collect 18 months of data on each test bus. This report summarizes the interim results from the project to date. The report addresses performance and reliability, fuel economy, costs, and emissions of the busses in the program.

Motta, R.; Norton, P.; Kelly, K.J.; Chandler, K.

1995-05-01T23:59:59.000Z

285

Which idling reduction system is most economical for truck owners?  

NLE Websites -- All DOE Office Websites (Extended Search)

Which idling reduction system is Which idling reduction system is most economical for truck owners? Linda Gaines Center for Transportation Research Argonne National Laboratory Commercial Vehicle Engineering Congress and Exposition Rosemont, Il October 7-9, 2008 The price of diesel is high *Idling a Class 8 truck uses 0.6-1.2 gallons per hour *That can total over $50 a night! *So even without regulations, there's an incentive to reduce idling *Even if the price goes down more, idling reduction makes sense 2 Why do sleepers idle overnight? For services to resting driver and friend y Heating, ventilation, and air conditioning (HVAC) y Power for appliances 8TV, microwave, refrigerator, computer, hair drier To keep fuel and engine warm To mask out noises and smells Because other drivers do it

286

The ethanol heavy-duty truck fleet demonstration project  

DOE Green Energy (OSTI)

This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

NONE

1997-06-01T23:59:59.000Z

287

Upgrades for truck transportation of SNM in the Russian Federation  

Science Conference Proceedings (OSTI)

The goal of this project is the rapid reduction of risk to truck transportation of SNM in Russia. Enhanced protection is being accomplished by cooperation between the US Department of Energy, MINATOM of Russia, the Russian Ministry of Defense, and various Russian Institutes. This program provides an integrated program of specialized trucks that are equipped with hardened overpack (SNM vault) containers, alarm and communications systems, and armored cabs. Armored escort vehicles are also provided to increase the survivability of the guards escorting convoys. Only indigenous Russian equipment, modified and/or manufactured by Designing Bureau for Motor Vehicle Transport Equipment (KBATO), is provided under this program. The US will not provide assistance in the truck transportation arena without a commitment from the Russian facility to provide heavily armed escorts for SNM movement. Each site conducts a detailed transportation needs assessment study that is used as the basis for prioritizing assistance. The Siberian Chemical Combine (Tomsk-7) was the initial site of cooperation. The designs used at Tomsk-7 are serving as the baseline for all future vehicles modified under this program. In FY98, many vehicles systems have been ordered for various institutes. Many additional systems will be ordered in FY99.

Gardner, B.H. [Sandia National Labs., Albuquerque, NM (United States); Kornilovich, E. [Construction Bureau for Motor Vehicle Transport Equipment, Mytischy (Russian Federation)

1998-08-01T23:59:59.000Z

288

Experimental Measurement of the Flow Field of Heavy Trucks  

SciTech Connect

Flat flaps that enclose the trailer base on the sides and top are known to reduce truck drag and reduce fuel consumption. Such flapped-truck geometries have been studied in laboratory wind tunnels and in field tests. A recent review of wind tunnel data for a variety of truck geometries and flow Reynolds numbers show roughly similar values of peak drag reduction, but differ in the determination of the optimum flap angle. Optimum angles lie in the range 12 degrees-20 degrees, and may be sensitive to Reynolds number and truck geometry. The present field test is undertaken to provide additional estimates of the magnitude of the savings to be expected on a typical truck for five flap angles 10, 13, 16, 19, and 22 degrees. The flaps are constructed from a fiberglass-epoxy-matrix material and are one-quarter of the base width in length (about 61 cm, or 2 feet). They are attached along the rear door hinge lines on either side of the trailer, so that no gap appears at the joint between the flap and the side of the trailer The flap angle is adjusted by means of two aluminum supports. The present test is performed on the NASA Crows Landing Flight Facility at the northern end of the San Joaquin valley in California. The main runway is approximately 2400 meters in length, and is aligned approximately in a north-south direction The test procedure is to make a series of runs starting at either end of the runway. All runs are initiated under computer control to accelerate the truck to a target speed of 60 mph (96 6 km/hr), to proceed at the target speed for a fixed distance, and to decelerate at the far end of the runway. During a run, the broadcast fuel rate, the engine rpm, forward speed, elapsed time--as well as several other parameters (10 in all)--are digitized at a rate of 100 digitizations per second. Various flapped-conditions are interspersed with the ''no flaps'' control, and are sequenced in a different order on different days. Approximately 310 runs are accumulated over the 5-day test period, May 17-21, 2004. The runway slopes rather uniformly upward from north-to-south. Over the distance of 2424 meters between our two ''start'' markers at either end of the runway, the net change in elevation is a little over ten meters. Test results clearly show the greater fuel consumption required to lift the truck against gravity in the southbound direction For this reason, it is important that the tests be averaged over a round trip circuit--that is, a run in both directions over the identical portion of the roadway. Northbound-southbound averages require an overlap segment of the runway (near the middle of the runway) where the truck--starting from either end--has achieved its target speed. For the target truck speed of 60 mph, this overlap region is approximately 700 meters in length. Typically a run and the return run are accomplished within a time interval of 6 minutes. Analysis of the data show fuel consumption savings at all flap angle settings tested, when compared to the ''no flaps'' condition. The most beneficial flap angle appears to be 13 degrees, for which the fuel consumption is 0.3778 {+-} 0.0025 liters/km compared to the ''no flaps'' control of 0.3941 {+-} 0.0034 liters/km. The error bounds expressed above mark the 99% confidence interval in the mean values given. That is, additional estimates of the mean fuel consumption would be expected to lie within the bounds given, approximately 99% of the time. The fuel consumption saving is--to reasonable accuracy--about 1.63 liters/100 kilometers. These savings represent the increment associated only with the change in drag due to the presence or absence of flaps. The result will hold for any truck of similar size and shape and engine performance regardless of the loading of the truck or the rolling resistance. The economy achieved by use of base flaps can be compared to the economy resulting from driving two trucks in a tandem configuration. In December 2003, such fuel consumption tests were performe

Fred Browand; Charles Radovich

2005-05-31T23:59:59.000Z

289

Emissions from Trucks using Fischer-Tropsch Diesel Fuel  

DOE Green Energy (OSTI)

The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

1998-10-19T23:59:59.000Z

290

Study of hydrogen-powered versus battery-powered automobiles  

SciTech Connect

A study has been conducted of two future candidate automobile propulsion systems that do not rely upon petroleum or natural gas as an energy source. Potential vehicle characteristics for each system have been identified. The first vehicle system employs a gaseous, hydrogen-fueled, internal combustion engine and either a liquid or metal hydride energy storage system. The second vehicle system employs an electronically controlled, electric motor powertrain and a battery energy storage system. Major tasks included in this study were the technical and economic assessments of the state of the art and future alternatives in hydrogen production and delivery, the hydrogen vehicle assessment, the battery-electric vehicle assessment, and the comparison of the principal vehicle alternative in 1985, 1990, and 2000. The comparison includes weight, size, cost, energy, and design range relationships and the implications on expenditure of all major energy sources. The study is summarized, results are presented, and conclusions are drawn. Comments are made on the future roles of hydrogen and electricity in automobile propulsion.

Donnelly, J.J. Jr.; Escher, W.J.D.; Greayer, W.C.; Nichols, R.J.

1979-05-01T23:59:59.000Z

291

On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 5,  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 5, November 2004 Gary A, Suite 140 Alpharetta, Georgia 30022 Contract No. E-23-9 #12;On-Road Remote Sensing of Automobile-day remote sensing study in the Phoenix, AZ area in the fall of 2004. The remote sensor used in this study

Denver, University of

292

On-Road Remote Sensing of Automobile Emissions in the LaBrea Area: Year 2  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the LaBrea Area: Year 2 Mitchell J. Williams 140 Alpharetta, Georgia 30022 Contract No. E-23-4 #12;On-Road Remote Sensing of Automobile Emissions in the LaBrea Area: Year 2 1 EXECUTIVE SUMMARY The University of Denver conducted a five-day remote sensing

Denver, University of

293

On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 3  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 3 Sajal S. Pokharel, Gary Alpharetta, Georgia 30022 Contract No. E-23-4 #12;On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 3 1 EXECUTIVE SUMMARY The University of Denver conducted a five-day remote sensing

Denver, University of

294

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 5,  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 5, January 2005 Gary A, Suite 140 Alpharetta, Georgia 30022 Contract No. E-23-9 #12;On-Road Remote Sensing of Automobile-day remote sensing study in the Denver, CO area in the winter of 2005. The remote sensor used in this study

Denver, University of

295

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 6,  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 6, January 2007 Gary A 80208 June 2007 #12;On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 6 1 EXECUTIVE SUMMARY The University of Denver conducted a three-day remote sensing study in the Denver, CO area

Denver, University of

296

On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 2  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 2 Sajal S. Pokharel, Gary Alpharetta, Georgia 30022 Contract No. E-23-4 #12;On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 2 1 EXECUTIVE SUMMARY The University of Denver conducted a five-day remote sensing

Denver, University of

297

On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 4,  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 4, November 2002 Gary A conducted a five-day remote sensing study in the Phoenix, AZ area in the fall of 2002. The remote sensor #12;On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 4 2 by 5 years

Denver, University of

298

Zero emission passenger vehicles in tyhhe [sic] United States, anticipating future automobile industry trends based on stakeholder interview analysis  

E-Print Network (OSTI)

My personal interest in automobile evolution is the primary motivation for this thesis. My engineering education and a fifteen year career in professional automobile racing were also inspired by personal passion for ...

German, Thomas M

2012-01-01T23:59:59.000Z

299

NETL: News Release - Solid Oxide Fuel Cell Successfully Powers Truck Cab  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2009 9, 2009 Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test DOE, Delphi, Peterbilt Join to Test Auxiliary Power Unit for Commercial Trucks Washington, DC -In a test sponsored by the U.S. Department of Energy (DOE), a Delphi auxiliary power unit employing a solid oxide fuel cell (SOFC) successfully operated the electrical system and air conditioning of a Peterbilt Model 386 truck under conditions simulating idling conditions for 10 hours. The device provides an alternative to running a truck's main diesel engine, or using a truck's batteries, to power auxiliary electrical loads during rest periods, thereby lowering emissions, reducing noise, and saving fuel. Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test

300

Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test Solid Oxide Fuel Cell Successfully Powers Truck Cab and Sleeper in DOE-Sponsored Test March 19, 2009 - 1:00pm Addthis Washington, DC --In a test sponsored by the U.S. Department of Energy (DOE), a Delphi auxiliary power unit employing a solid oxide fuel cell (SOFC) successfully operated the electrical system and air conditioning of a Peterbilt Model 386 truck under conditions simulating idling conditions for 10 hours. The device provides an alternative to running a truck's main diesel engine, or using a truck's batteries, to power auxiliary electrical loads during rest periods, thereby lowering emissions, reducing noise, and saving fuel. In testing at Peterbilt Motors Company Texas head-quarters, a Delphi

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Fuel Cell Lift Trucks: A Grocer's Best Friend | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend Fuel Cell Lift Trucks: A Grocer's Best Friend December 1, 2011 - 3:21pm Addthis Baldor Specialty Foods relies on fuel cell technology from Oorja Protonics to power lift-trucks like the one pictured above, refueling takes less than one minute | Photo Courtesy of Oorja Protonics. Baldor Specialty Foods relies on fuel cell technology from Oorja Protonics to power lift-trucks like the one pictured above, refueling takes less than one minute | Photo Courtesy of Oorja Protonics. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What are the key facts? Fuel Cell Lift Trucks can operate twice as long as their battery powered counterparts. They also avoid deep discharges, which effectively extends their

302

FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS  

Science Conference Proceedings (OSTI)

We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

Gao, Zhiming [ORNL; LaClair, Tim J [ORNL; Daw, C Stuart [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

303

Energy Efficiency and Performance Testing of Non-Road Electric Vehicles: Forklift Truck Evaluation — Status Report  

Science Conference Proceedings (OSTI)

Forklift trucks play an integral role in the industrial economy, and the majority of those trucks in service in the United States are electric. The benefits of such non-road electric vehicles include lower life cycle costs, improved worker health and safety, and reduced maintenance. However, large numbers of electric lift trucks can become a concern to the electric utility industry if the vehicles are inefficient or cause power quality problems. Southern California Edison (SCE) has evaluated the energy e...

2003-12-31T23:59:59.000Z

304

Business Case for Fast Charging of Industrial Lift Truck Fleets: Life Cycle Cost Model  

Science Conference Proceedings (OSTI)

In industrial settings, up to three battery packs are required per electric industrial lift truck: one in use, another being charged, and a third being cooled. Many industry experts see this as a financial barrier in selling electric over internal combustion (IC) industrial lift trucks. EPRI sponsored this study to provide a thorough evaluation of the economics in support of a business case for fast charging lift truck fleets.

2000-09-18T23:59:59.000Z

305

Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002--September 30, 2004  

DOE Green Energy (OSTI)

The report covers literature and laboratory analyses to identify modification requirements of a Cummins Westport B Gas Plus engine for transit buses using a hydrogen/compressed natural fuel blend.

Del Toro, A.; Frailey, M.; Lynch, F.; Munshi, S.; Wayne, S.

2005-11-01T23:59:59.000Z

306

FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month...  

NLE Websites -- All DOE Office Websites (Extended Search)

7693 May 2010 FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report R. Barnitt National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado...

307

Definition and Evaluation of Bus and Truck Automation Operations Concepts: Final Report  

E-Print Network (OSTI)

trucks Intermodal Rail 2.2 RELATED RESEARCH Research andrail) and the proponents of a more efficient freight system for national defense purposes. Research

Taso, H. S. Jacob; Botha, Jan L.

2003-01-01T23:59:59.000Z

308

Climate VISION: Private Sector Initiatives: Automobile Manufacturers: GHG  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information This section provides various sources describing the energy consumption of the industrial sector and the carbon emissions in particular. Below is an estimate of the million metric tons of carbon equivalents (MMTCE) based upon the Annual Energy Outlook 2003. According to EIA "Annual Energy Outlook 2003" data, energy-related CO2 emissions for the automobile industry were 3.5 MMTCE in 1995. (The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2003 using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2000-2025. The AEO2003 reflects data and information available as of August 30, 2002. These include mostly data from 2000 and partial data from

309

Commanding lateral acceleration: a natural paradigm for automobile steering  

E-Print Network (OSTI)

This thesis describes a joystick automobile steering phics. controller which allows the driver to command the lateral acceleration of the vehicle directly, as opposed to controlling the front tire angle. The purpose of the controller is to improve joystick steering controls available to handicapped drivers, The controller design uses feedback from a chassis mounted accelerometer to sense actual vehicle lateral acceleration and cause the vehicle to achieve the lateral acceleration commanded by the driver. The thesis explains how a joystick and servo system utilizing the lateral acceleration command concept was analyzed, designed, built, and tested. Subjective and quantitative results are presented which show that a practical system was achieved and that commanding lateral acceleration is a natural way to steer a car. A1l test drivers preferred this system over joystick systems currently available to handicapped drivers which require the driver to command front wheel turn angle.

Kenny, Andrew

1998-01-01T23:59:59.000Z

310

Impact of Compressed Natural Gas Fueled Buses on Street Pavements 6. Performing Organization Code 7. Author(s)  

E-Print Network (OSTI)

Federal Clean Air Act Amendments of 1990 (CAAA) and the Energy Policy Act of 1992 (EPACT), together with other state regulations have encouraged or mandated transit systems to use alternative fuels to power bus fleets. Among such fuels, compressed natural gas (CNG) is attractive, although it must be stored in robust, heavy pressurized cylinders, capable of withstanding pressures up to 5,000 psi. Such systems are typically heavier than conventional diesel storage tanks. As a result, this raises gross vehicle weight, sometimes significantly, which then increases the consumption of the pavement over which CNG buses operate. Capital Metro, the Austin, Texas transit authority, is currently evaluating a number of CNG fueled buses. As part of the U.S. DOT Region Six University Transportation Centers Program (UTCP), a study was instigated into the scale of incremental pavement consumption associated with the operation of these buses. The study suggests that replacing current vehicles with CNG powered models utilizing aluminum storage tanks would raise average network equivalent single rehabilitation costs across the network of over four percent. Finally, it recommends that full cost study be undertaken with evaluation of the adoption of

Dingyi Yang; Robert Harrison

1995-01-01T23:59:59.000Z

311

Optimal power management for a hydraulic hybrid delivery truck  

E-Print Network (OSTI)

Hydraulic hybrid propulsion and energy storage components demonstrate characteristics that are very different from their electric counterparts, thus requiring unique control strategies. This paper presents a methodology for developing a power management strategy tailored specifically to a parallel Hydraulic Hybrid Vehicle (HHV) configured for a medium-size delivery truck. The Hydraulic Hybrid Vehicle is modelled in the MATLAB/SIMULINK environment to facilitate system integration and control studies. A Dynamic Programming (DP) algorithm is used to obtain optimal control actions for gear shifting and power splitting bet ween the engine and the hydraulic motor over a representative urban driving schedule. Features of optimal trajectories are then studied to derive i mplementable rules. System behaviour demonstrates that the new control strategy takes advantage of high power density and efficiency characteristics of hydraulic components, and minimizes disadvantages of low energy density, to achieve enhanced overall efficiency. Simulation results indicate that the potential for fuel economy improvement of medium trucks with hydraulic hybrid propulsion can be as high as 48 %. 1

Bin Wu; Chan-chiao Lin; Zoran Filipi; Huei Peng

2004-01-01T23:59:59.000Z

312

Forecast of California car and truck fuel demand  

Science Conference Proceedings (OSTI)

The purpose of this work is to forecast likely future car and truck fuel demand in California in light of recent and possible additional improvements in vehicle efficiency. Forecasts of gasoline and diesel fuel demand are made based on projections of primary economic, demographic, and transportation technology variables. Projections of car and light truck stock and new sales are based on regression equations developed from historical data. Feasible future vehicle fuel economies are determined from technical improvements possible with existing technology. Several different cases of market-induced efficiency improvement are presented. Anticipated fuel economy improvements induced by federal mileage standards and rising fuel costs will cause lower future fuel demand, even though vehicle miles traveled will continue to increase both on a per capita and total basis. If only relatively low-cost fuel economy improvements are adopted after about 1985, when federal standards require no further improvements, fuel demand will decrease from the 1982 level of 11.7 billion gallons (gasoline equivalent) to 10.6 billion gallons in 2002, about a 9% reduction. Higher fuel economy levels, based on further refinements in existing technology, can produce an additional 7% reduction in fuel demand by 2002.

Stamets, L.

1983-01-01T23:59:59.000Z

313

Procedures for Passenger Cars, Light-Duty Trucks and Medium-Duty  

E-Print Network (OSTI)

2001 and subsequent model-year passenger cars, light-duty trucks, and medium-duty trucks for which non-methane organic gas (NMOG) exhaust emission reduction credit is requested as a result of the use of a DOR technology on a motor vehicle radiator, air conditioning assembly, or other appropriate substrate. REFERENCES:

unknown authors

1999-01-01T23:59:59.000Z

314

On-Road Remote Sensing of Heavy-duty Diesel Truck  

E-Print Network (OSTI)

On-Road Remote Sensing of Heavy-duty Diesel Truck Emissions in the Austin- San Marcos Area: August Denver, CO 80208 November 1998 UNIVERSITY Of DENVER #12;Remote Sensing of Heavy-duty Trucks in Austin be observed by probing the exhaust. In the process of measuring the ratios, the remote sensing unit results

Denver, University of

315

F2001-01-2793 Design of an Advanced Heavy Tactical Truck  

E-Print Network (OSTI)

response of both a series hybrid and an electric-driven truck at the top (vehicle) level, and the response is applied to the design of an advanced heavy tactical truck. Novel technologies (e.g., series hybrid for both series hybrid and series electric drive propulsion systems; results are presented for two sets

Michelena, Nestor

316

Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck  

E-Print Network (OSTI)

03TB-45 Control System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck and vehicle test results for a medium-duty hybrid electric truck are reported in this paper. The design the benchmark vehicle. INTRODUCTION Hybrid powertrain is among the most visible transportation technology

Grizzle, Jessy W.

317

International Truck & Bus Meeting & Exhibition, Fort Worth, TX, November 2003. 2003-01-3369  

E-Print Network (OSTI)

System Development for an Advanced-Technology Medium-Duty Hybrid Electric Truck Chan-Chiao Lin, Huei Peng for a hybrid electric vehicle (HEV). The hybrid electric truck that employs this control system features a "Direct Hybrid" powertrain system [1], which integrates an advanced diesel engine, an electric traction

Peng, Huei

318

An Automobile Platform for the Measurement of Foehn and Gap Flows  

Science Conference Proceedings (OSTI)

An instrument package to measure temperature, pressure, humidity, and position was designed to be quickly deployable on any automobile to be used for the study of gap and other orographically influenced flows. Differential GPS (global positioning ...

Georg J. Mayr; Johannes Vergeiner; Alexander Gohm

2002-10-01T23:59:59.000Z

319

Urban co-existence : a new typology for transit exchange in an automobile dominated city  

E-Print Network (OSTI)

Delineated by the reign of the automobile, the urban fabric of Los Angeles is a landscape of superblocks, six lane highways, and an abundance of parking lots. These residual urban voids intensify the spatial chasm between ...

Cho, Shani Eunjin

2009-01-01T23:59:59.000Z

320

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network (OSTI)

K. , 1993b, Fuel Prices and Economy: Factors Effecting LandCar Test and Actual Fuel Economy: Yet Another Gap? Transportof automobile fuel economy in Europe. Energy Policy 34 14.

Schipper, Lee

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Understanding Sustainable Transportation Choices: Shifting Routine Automobile Travel to Walking and Bicycling  

E-Print Network (OSTI)

changed modes when gas prices spiked in Summer 2008. xvlittle evidence that the gas price spike during Summer 2008were aware of the high gas prices, but most automobile users

Schneider, Robert James

2011-01-01T23:59:59.000Z

322

EM Awards Two Large Contracts to Small Businesses for Trucking Services |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards Two Large Contracts to Small Businesses for Trucking Awards Two Large Contracts to Small Businesses for Trucking Services EM Awards Two Large Contracts to Small Businesses for Trucking Services June 1, 2012 - 12:00pm Addthis A Waste Isolation Pilot Plant (WIPP) truck approaches the WIPP facility near Carlsbad, N.M. Since opening in 1999, WIPP has established an impressive record. In addition to transporting more than 10,500 shipments safely, WIPP drivers have logged more than 12.6 million safe loaded miles — equivalent to 26 roundtrips to the moon — without a serious accident or injury. Their work has helped DOE clean up 22 transuranic waste sites around the nation. A Waste Isolation Pilot Plant (WIPP) truck approaches the WIPP facility near Carlsbad, N.M. Since opening in 1999, WIPP has established an

323

VP 100: Producing Electric Truck Vehicles with a Little Something Extra |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VP 100: Producing Electric Truck Vehicles with a Little Something VP 100: Producing Electric Truck Vehicles with a Little Something Extra VP 100: Producing Electric Truck Vehicles with a Little Something Extra August 6, 2010 - 10:31am Addthis VP 100: Producing Electric Truck Vehicles with a Little Something Extra Kevin Craft What does this mean for me? Smith Electric Vehicles included in Vice President's report on 100 Recovery Act Projects That Are Changing America. Smith plans to hire at least 50 employees by the end of the year. Through a Recovery Act grant, that company - Smith Electric Vehicles (SEV) - is taking a different tact that could lay the foundation for the industry's future. Not only is the company manufacturing all-electric, zero-emission commercial trucks, it's collecting data on how these commercial EVs are used. In Kansas City, Mo., an 80-year old company is on

324

STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO INTERNATIONAL TRUCK AND  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INTERNATIONAL TRUCK AND INTERNATIONAL TRUCK AND ENGINE CORPORATION (ITEC) UNDER DOE PRIME CONTRACT NO. DE-FC26- 06NT42791 FOR "NATIONAL HYBRID TRUCK MANUFACTURING PROGRAM"; CH-1412; W(A)-07-024 International Truck and Engine Corporation (ITEC) has petitioned for an advanced waiver of domestic and foreign patent rights to inventions conceived or first actually reduced to practice under DOE Contract No. DE-FC26-06NT42891. ITEC is a subcontractor of WESTSTART- CALSTART. This advanced waiver is intended to apply to all subject inventions of International Truck and Engine's employees and those of its subcontractors, regardless of tier, except subcontractors eligible to obtain title pursuant to P. L. 96-517 as amended, and National Laboratories. As brought out in its waiver petition, ITEC will research and develop electrical subsystems

325

Analysis of major trends in U.S. commercial trucking, 1977-2002.  

DOE Green Energy (OSTI)

This report focuses on various major long-range (1977-2002) and intermediate-range (1982-2002) U.S. commercial trucking trends. The primary sources of data for this period were the U.S. Bureau of the Census Vehicle Inventory and Use Survey and Truck Inventory and Use Survey. In addition, selected 1977-2002 data from the U.S. Department of Energy/Energy Information Administration and from the U.S. Department of Transportation/Federal Highway Administration's Highway Statistics were used. The report analyzes (1) overall gasoline and diesel fuel consumption patterns by passenger vehicles and trucks and (2) the population changes and fuels used by all commercial truck classes by selected truck type (single unit or combination), during specified time periods, with cargo-hauling commercial trucks given special emphasis. It also assesses trends in selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-mile traveled, as well as the effect of cargo tons per truck on fuel consumption. In addition, the report examines long-range trends for related factors (e.g., long-haul mileages driven by heavy trucks) and their impacts on reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes. It identifies the effects of these trends on U.S. petroleum consumption. The report also discusses basic engineering design and performance, national legislation on interstate highway construction, national demographic trends (e.g., suburbanization), and changes in U.S. corporate operations requirements, and it highlights their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry.

Bertram, K. M.; Santini, D .J.; Vyas, A. D.

2009-06-10T23:59:59.000Z

326

ECUT energy data reference series: Otto cycle engines in transportation  

SciTech Connect

Information that describes the use of the Otto cycle engines in transportation is summarized. The transportation modes discussed in this report include the following: automobiles, light trucks, heavy trucks, marine, recreational vehicles, motorcycles, buses, aircraft, and snowmobiles. These modes account for nearly 100% of the gasoline and LPG consumed in transportation engines. The information provided on each of these modes includes descriptions of the average energy conversion efficiency of the engine, the capital stock, the amount of energy used, and the activity level as measured in ton-miles. Estimates are provided for the years 1980 and 2000.

Hane, G.J.; Johnson, D.R.

1984-07-01T23:59:59.000Z

327

Proceedings of the 1995 SAE alternative fuels conference. P-294  

Science Conference Proceedings (OSTI)

This volume contains 32 papers and five panel discussions related to the fuel substitution of trucks, automobiles, buses, cargo handling equipment, diesel passenger cars, and pickup trucks. Fuels discussed include liquefied natural gas, natural gas, ethanol fuels, methanol fuels, dimethyl ether, methyl esters from various sources (rape oil, used cooking oils, soya, and canola oils), hydrogen fuels, and biodiesel. Other topics include fuel cell powered vehicles, infrastructure requirements for fuel substitution, and economics. Papers have been processed separately for inclusion on the data base.

NONE

1995-12-31T23:59:59.000Z

328

Study of hydrogen-powered versus battery-powered automobiles  

DOE Green Energy (OSTI)

A study conducted to compare the technological status and the resultant potential vehicle characteristics for hydrogen- and battery-powered automobiles that could be produced from 1985 to 2000 is documented in 3 volumes. The primary objectives of the study were: the assessments of applicable energy storage and propulsion technology for the two basic vehicle types (applied to four-passenger cars); a rigorous comparison of vehicle weight, size, and usefulness versus design range; and an investigation of the relative efficiencies of expending energy from various primary sources to power the subject vehicle. Another important objective, unique to hydrogen powered vehicles, was the assessment of the technology, logistics, and cost implications of a hydrogen production and delivery capability. This volume, Volume III, contains three major sections: the assessment of battery electric vehicle technology for energy storage and the drivetrain system; the technical and economic comparison of hydrogen- and battery-powered vehicles derived primarily from data in the previous vehicle technology assessments, with consideration of alternative energy sources; and a series of appendices that support the vehicle definitions and comparisons.

Donnelly, J.J. Jr.; Greayer, W.C.; Nichols, R.J.; Escher, W.J.D.

1979-05-01T23:59:59.000Z

329

State Traffic Safety Information - Fatal Crashes Involving a Large Truck :  

NLE Websites -- All DOE Office Websites (Extended Search)

Hawaii (2007-2009) Hawaii (2007-2009) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data State Traffic Safety Information - Fatal Crashes Involving a Large Truck : Hawaii (2007-2009) Dataset Summary Description The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic safety profiles, including: crash data, lives saved/savable, legislation, economic costs, grant funding, alcohol related crash data, performance measures, and geographic maps of crash data. Tags {geospatial,fatality,crash,data,safety,roadway,vehicle,human,person} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness 0 No votes yet

330

State Traffic Safety Information - Fatal Crashes Involving a Large Truck :  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware (2007-2009) Delaware (2007-2009) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data State Traffic Safety Information - Fatal Crashes Involving a Large Truck : Delaware (2007-2009) Dataset Summary Description The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic safety profiles, including: crash data, lives saved/savable, legislation, economic costs, grant funding, alcohol related crash data, performance measures, and geographic maps of crash data. Tags {geospatial,fatality,crash,data,safety,roadway,vehicle,human,person} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness

331

State Traffic Safety Information - Fatal Crashes Involving a Large Truck :  

NLE Websites -- All DOE Office Websites (Extended Search)

District of Columbia (2007-2009) District of Columbia (2007-2009) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data State Traffic Safety Information - Fatal Crashes Involving a Large Truck : District of Columbia (2007-2009) Dataset Summary Description The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic safety profiles, including: crash data, lives saved/savable, legislation, economic costs, grant funding, alcohol related crash data, performance measures, and geographic maps of crash data. Tags {geospatial,fatality,crash,data,safety,roadway,vehicle,human,person} Dataset Ratings Overall 0 No votes yet Data Utility

332

State Traffic Safety Information - Fatal Crashes Involving a Large Truck :  

NLE Websites -- All DOE Office Websites (Extended Search)

Indiana (2007-2009) Indiana (2007-2009) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data State Traffic Safety Information - Fatal Crashes Involving a Large Truck : Indiana (2007-2009) Dataset Summary Description The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic safety profiles, including: crash data, lives saved/savable, legislation, economic costs, grant funding, alcohol related crash data, performance measures, and geographic maps of crash data. Tags {geospatial,fatality,crash,data,safety,roadway,vehicle,human,person} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness

333

State Traffic Safety Information - Fatal Crashes Involving a Large Truck :  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho (2007-2009) Idaho (2007-2009) Research Menu Data/Tools Apps Resources Let's Talk Research Alpha You are here Data.gov » Communities » Research » Data State Traffic Safety Information - Fatal Crashes Involving a Large Truck : Idaho (2007-2009) Dataset Summary Description The State Traffic Safety Information (STSI) portal is part of the larger Fatality Analysis Reporting System (FARS) Encyclopedia. STSI provides state-by-state traffic safety profiles, including: crash data, lives saved/savable, legislation, economic costs, grant funding, alcohol related crash data, performance measures, and geographic maps of crash data. Tags {geospatial,fatality,crash,data,safety,roadway,vehicle,human,person} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness 0 No votes yet

334

Microsoft Word - 2011sr10-fire truck donation.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Monday, August 8, 2011 Monday, August 8, 2011 james-r.giusti@srs.gov Rick McLeod, SRSCRO, (803) 593-9954, Ext. 1411 rick.mcleod@srscro.org DOE's Excess Property Donation Protects Lives, Property and the Environment AIKEN, SC - The recent purchase of new fire engines at Savannah River Site resulted in the availability of two excess fire trucks under the SRS Community Reuse Organization's (SRS CRO) Asset Transition Program. The primary goal of the Department of Energy's (DOE) Asset Transition Program is to utilize excess personal property derived from the Savannah River Site to enhance economic development and job opportunities within a five-county region surrounding the Site. In addition to job creation, assets may also be used to improve the "quality

335

Interim Results from Alternative Fuel Truck Evaluation Project  

DOE Green Energy (OSTI)

The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. Currently, the project has four sites: Raley's in Sacramento, CA (Kenworth, Cummins LlO-300G, liquefied natural gas - LNG); Pima Gro Systems, Inc. in Fontana, CA (White/GMC, Caterpillar 31768 Dual-Fuel, compressed natural gas - CNG); Waste Management in Washington, PA (Mack, Mack E7G, LNG); and United Parcel Service in Hartford, CT (Freightliner Custom Chassis, Cummins B5.9G, CNG). This paper summarizes current data collection and evaluation results from this project.

Kevin L. Chandler; Paul Norton; Nigel Clark

1999-05-03T23:59:59.000Z

336

Modeling the interaction between passenger cars and trucks  

E-Print Network (OSTI)

The topic of this dissertation was the use of distributed computing to improve the modeling of the interaction between passenger cars and trucks. The two main focus areas were the development of a methodology to combine microscopic traffic simulation programs with driving simulator programs, and the application of a prototype distributed traffic simulation to study the impact of the length of an impeding vehicle on passing behavior. The methodology was motivated by the need to provide an easier way to create calibrated traffic flows in driving simulations and to capture vehicle behavior within microscopic traffic simulations. The original design for the prototype was to establish a two-way, real time exchange of vehicle data, however problems were encountered that imposed limitations on its development and use. The passing study was motivated by the possible changes in federal truck size and weight regulations and the current inconsistency between the passing sight distance criteria for the design of two lane highways and the marking of no-passing zones. Test drivers made passing maneuvers around impeding vehicles that differed in length and speed. The main effects of the impeding vehicle length were found to be significant for the time and distance in the left lane, and the start and end gap distances. Passing equations were formulated based on the mechanics of the passing maneuver and included behavior variables for calibration. Through a sensitivity analysis, it was shown that increases in vehicle speeds, vehicle length, and gap distance increased the distance traveled in the left lane, while increases in the speed difference and speed gain decreased the distance traveled in the left lane. The passing equations were calibrated using the current AASHTO values and used to predict the impact of increased vehicle lengths on the time and distance in the left lane. The passing equations are valuable for evaluating passing sight distance criteria and observed passing behavior.

Jenkins, Jacqueline Marie

2004-08-01T23:59:59.000Z

337

Environmental, health, and safety issues of fuel cells in transportation. Volume 1: Phosphoric acid fuel-cell buses  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) chartered the Phosphoric Acid Fuel-Cell (PAFC) Bus Program to demonstrate the feasibility of fuel cells in heavy-duty transportation systems. As part of this program, PAFC- powered buses are being built to meet transit industry design and performance standards. Test-bed bus-1 (TBB-1) was designed in 1993 and integrated in March 1994. TBB-2 and TBB-3 are under construction and should be integrated in early 1995. In 1987 Phase I of the program began with the development and testing of two conceptual system designs- liquid- and air-cooled systems. The liquid-cooled PAFC system was chosen to continue, through a competitive award, into Phase H, beginning in 1991. Three hybrid buses, which combine fuel-cell and battery technologies, were designed during Phase III. After completing Phase II, DOE plans a comprehensive performance testing program (Phase HI) to verify that the buses meet stringent transit industry requirements. The Phase III study will evaluate the PAFC bus and compare it to a conventional diesel bus. This NREL study assesses the environmental, health, and safety (EH&S) issues that may affect the commercialization of the PAFC bus. Because safety is a critical factor for consumer acceptance of new transportation-based technologies the study focuses on these issues. The study examines health and safety together because they are integrally related. In addition, this report briefly discusses two environmental issues that are of concern to the Environmental Protection Agency (EPA). The first issue involves a surge battery used by the PAFC bus that contains hazardous constituents. The second issue concerns the regulated air emissions produced during operation of the PAFC bus.

Ring, S.

1994-12-01T23:59:59.000Z

338

UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA  

NLE Websites -- All DOE Office Websites (Extended Search)

36 36 UPDATING THE FREIGHT TRUCK STOCK ADJUSTMENT MODEL: 1997 VEHICLE INVENTORY AND USE SURVEY DATA Stacy C. Davis November 2000 Prepared for the Energy Information Administration U.S. Department of Energy Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6073 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-00OR22725 Updating the FTSAM: 1997 VIUS Data iii TABLE OF CONTENTS ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 OBJECTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 VIUS DATA PREPARATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 1. Share of Trucks by Fuel Type and Truck Size -

339

Alternative-fueled truck demonstration natural gas program: Caterpillar G3406LE development and demonstration  

DOE Green Energy (OSTI)

In 1990, the California Energy Commission, the South Coast Air Quality Management District, and the Southern California Gas Company joined together to sponsor the development and demonstration of compressed natural gas engines for Class 8 heavy-duty line-haul trucking applications. This program became part of an overall Alternative-Fueled Truck Demonstration Program, with the goal of advancing the technological development of alternative-fueled engines. The demonstration showed natural gas to be a technically viable fuel for Class 8 truck engines.

NONE

1995-06-01T23:59:59.000Z

340

Automobile materials competition: energy implications of fiber-reinforced plastics  

DOE Green Energy (OSTI)

The embodied energy, structural weight, and transportation energy (fuel requirement) characteristics of steel, fiber-reinforced plastics, and aluminum were assessed to determine the overall energy savings of materials substitution in automobiles. In body panels, a 1.0-lb steel component with an associated 0.5 lb in secondary weight is structurally equivalent to a 0.6-lb fiber-reinforced plastic component with 0.3 lb in associated secondary weight or a 0.5-lb aluminum component with 0.25 lb of secondary weight. (Secondary weight refers to the combined weight of the vehicle's support structure, engine, braking system, and drive train, all of which can be reduced in response to a decrease in total vehicle weight.) The life cycle transportation energy requirements of structurally equivalent body panels (including their associated secondary weights) are 174.4 x 10/sup 3/ Btu for steel, 104.6 x 10/sup 3/ Btu for fiber-reinforced plastics, and 87.2 x 10/sup 3/ Btu for aluminum. The embodied energy requirements are 37.2 x 10/sup 3/ Btu for steel, 22.1 x 10/sup 3/ Btu for fiber-reinforced plastics, and 87.1 x 10/sup 3/ Btu for aluminum. These results can be combined to yield total energy requirements of 211.6 x 10/sup 3/ Btu for steel, 126.7 x 10/sup 3/ Btu for fiber-reinforced plastics, and 174.3 x 10/sup 3/ Btu for aluminum. Fiber-reinforced plastics offer the greatest improvements over steel in both embodied and total energy requirements. Aluminum achieves the greatest savings in transportation energy.

Cummings-Saxton, J.

1981-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Discussion of the gradual progress of automobile industry - take the United States , Japan and Germany as an example.  

E-Print Network (OSTI)

??The nature of range ¡§ automobile ¡§ has high technology and traditional science both together. It expands living habit and areas for the human beings… (more)

Lin, Yun-tiao

2006-01-01T23:59:59.000Z

342

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air v.2  

E-Print Network (OSTI)

The Social Costs of Intercity Passenger Transportation: AEffects and Social Costs of Road Transport, TransportationTransportation Research Center, Knoxville, TN [Delucchi 1997] Delucchi, M. , The Annualized Social Cost

Chester, Mikhail; Horvath, Arpad

2008-01-01T23:59:59.000Z

343

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air v.2  

E-Print Network (OSTI)

J,N,AE,AO Tracks & Stations Rail Trains N N,X,AO F,H,J,N,P,Modern Tramway and Light Rail Transit, V47, N563, p373,2005. [FTA 2006] U.S. Non-Rail Vehicle Market Viability

Chester, Mikhail; Horvath, Arpad

2008-01-01T23:59:59.000Z

344

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air v.2  

E-Print Network (OSTI)

Environment Agency, 12/2006. [EERE 2002] U.S. LightingConsulting, Inc. , 9/2002 [EERE 2007] 2007 Buildings Energyand Renewable Energy, 2007. [EERE 2007b] U.S. Department of

Chester, Mikhail; Horvath, Arpad

2008-01-01T23:59:59.000Z

345

Technical evaluation report on the 120 Vac vital instrument buses and inverter Technical Specifications Issue B71  

SciTech Connect

The operation of a Pressurized Water Reactor (PWR) with one of its 120 Vac vital buses energized in an off-normal mode was analyzed. A Probabilistic Risk Assessment was made to determine the increment of risk by energizing a vital bus from an off-site source directly vs energizing it from its normal, uninterruptible source (i.e., a battery/inverter arrangement). The calculations were made based on uninterruptible source energized vital buses as the normal mode. The analysis indicated that a reduction in the incremental risk increase (caused by plant operation with a vital bus being energized in an off-normal mode) can be accomplished by limiting the time permitted in that condition. Currently, the time that a vital bus can be energized in the off-normal mode is not universally time-limited by plant Technical Specifications. Several alternatives for the reduction in incremental risk were examined and their value/impacts were derived. These data indicate that a recommendation be made for a Technical Specification time limitation of 72 hours per year for off-normal energizing a vital bus during operation of a PWR.

St. Leger-Barter, G.; White, R.L.

1982-10-28T23:59:59.000Z

346

Argonne CNM Highlight: Nanofluids Could Make Cool Work of Hot Truck Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanofluids Could Make Cool Work of Hot Truck Engines Nanofluids Could Make Cool Work of Hot Truck Engines What the work is about Truck engines are hot places, and new emission reduction technologies such as exhaust gas recirculation (EGR) can make them even hotter. The coolants, lubricants, oils, and other heat transfer fluids used in today's conventional truck thermal systems (including radiators, engines, and HVAC equipment) have inherently poor heat transfer properties. And conventional working fluids that contain millimeter- or micrometer-sized particles do not work with newly emerging "miniaturized" technologies because they can clog in microchannels. Why Nanoparticles Are Better than Microparticles Argonne National Laboratory has developed metal nanofluids that can dramatically enhance the thermal conductivity of conventional heat transfer fluids and flow smoothly in microchannel passages. These "nanocoolants," as they're known, can enhance heat transfer more than several times better than the best competing fluid.

347

DOE Hydrogen and Fuel Cells Program Record 9010: Benefits of Fuel Cell APU on Trucks  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Date: November 3, 2009 0 Date: November 3, 2009 Title: Benefits of Fuel Cell APU on Trucks Originator: Tien D. Nguyen and Fred Joseck Approved by: Sunita Satyapal Date: November 25, 2009 Item: Approximately 700 million gallons of diesel can be saved annually through the use of fuel cell auxiliary power units (APUs) in the trucking industry, resulting in a reduction of 8.9 million metric tons of CO 2 per year. Data and Assumptions 1. Total number of trucks with sleeper berths is estimated to be 931,000 in 2030: The total number of heavy-duty freight trucks forecasted in EIA's Annual Energy Outlook 2009 is 5.21 millions in 2010, increasing to 6.93 millions in 2030. In a survey published in 2006, the American Transportation Research Institute (ATRI) received responses from

348

DOE Selects Two Small Businesses to Truck Transuranic Waste to New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Two Small Businesses to Truck Transuranic Waste to New Two Small Businesses to Truck Transuranic Waste to New Mexico Waste Isolation Pilot Plant DOE Selects Two Small Businesses to Truck Transuranic Waste to New Mexico Waste Isolation Pilot Plant January 9, 2012 - 12:00pm Addthis Media Contact Bill Taylor 803-952-8564 bill.taylor@srs.gov Cincinnati - The Department of Energy (DOE) today awarded two small-business contracts to CAST Specialty Transportation, Inc. and Visionary Solutions, LLC, to provide trucking services to transport transuranic (TRU) waste, from DOE and other defense-related TRU waste generator sites to the Waste Isolation Pilot Plant (WIPP) site, near Carlsbad, New Mexico. The contracts are firmfixed-price with cost-reimbursable expenses over five years. CAST Specialty Transportation, Inc. of Henderson, Colorado, will begin

349

Secretary of Energy Bodman Remarks for 21st Century Truck Event |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary of Energy Bodman Remarks for 21st Century Truck Event Secretary of Energy Bodman Remarks for 21st Century Truck Event Secretary of Energy Bodman Remarks for 21st Century Truck Event May 10, 2005 - 12:46pm Addthis I am delighted to be here. The technologies on exhibit today represent one very promising avenue for meeting our growing energy needs while maintaining good stewardship of the environment. As many of you know, U.S. highway transportation is over 97 percent dependent on petroleum for its energy, with about one-quarter consumed by heavy-duty vehicles. Over half of our petroleum is imported, which impacts our security and balance of payments deficit. Without significant technology development, our Department is forecasting that heavy truck petroleum use will increase by 40 percent by 2020 and will double by 2050

350

Secretary of Energy Bodman Remarks for 21st Century Truck Event |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bodman Remarks for 21st Century Truck Event Bodman Remarks for 21st Century Truck Event Secretary of Energy Bodman Remarks for 21st Century Truck Event May 10, 2005 - 12:46pm Addthis I am delighted to be here. The technologies on exhibit today represent one very promising avenue for meeting our growing energy needs while maintaining good stewardship of the environment. As many of you know, U.S. highway transportation is over 97 percent dependent on petroleum for its energy, with about one-quarter consumed by heavy-duty vehicles. Over half of our petroleum is imported, which impacts our security and balance of payments deficit. Without significant technology development, our Department is forecasting that heavy truck petroleum use will increase by 40 percent by 2020 and will double by 2050 relative to today.

351

Investigation of Class 2b Trucks (Vehicles of 8,500 to 10,000...  

NLE Websites -- All DOE Office Websites (Extended Search)

weight rating HD heavy-duty lbs pounds LDT light-duty trucks LEV low-emission vehicle LNG liquefied natural gas LPG liquefied petroleum gas MDPV medium-duty passenger vehicle MY...

352

Assessment of the risk of transporting plutonium oxide and liquid plutonium nitrate by truck  

SciTech Connect

A methodology for assessing the risk in transporting radioactive materials and the results of the initial application of the methodology to shipment of plutonium by truck are presented. (LK)

1975-08-01T23:59:59.000Z

353

Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)  

Reports and Publications (EIA)

In August 2005, NHTSA published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck CAFE standards for model years 2008 through 2011 [8]. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

Information Center

2006-02-01T23:59:59.000Z

354

Trucking country : food politics and the transformation of rural life in Postwar America  

E-Print Network (OSTI)

Trucking replaced railroads as the primary link between rural producers and urban consumers in the mid-twentieth century. With this technological change came a fundamental transformation of the defining features of rural ...

Hamilton, Shane, 1976-

2005-01-01T23:59:59.000Z

355

Engineering Task Plan for Water Supply for Spray Washers on the Support Trucks  

SciTech Connect

This Engineering Task Plan (ETP) defines the task and deliverables associated with the design, fabrication and testing of an improved spray wash system for the Rotary Mode Core Sampling (RMCS) System Support Trucks.

BOGER, R.M.

2000-02-03T23:59:59.000Z

356

Investigation of the low temperature performance of trucks operating on low cetane diesel fuel  

Science Conference Proceedings (OSTI)

An anticipated increase in diesel fuel demand prompted a study by Energy, Mines and Resources Canada, to assess the effect of synthetic and cracked fuel components on truck cold weather performance. Subsequently, a two-year contract was awarded to Esso Petroleum Canada Research to evaluate the effect of fuel composition on combustion using a 310 hp modern HD engine, and the effect on startup and driveability down to -30/sup 0/C in four Class 8 trucks.

Cartwright, S.J.; Gilbert, J.B

1988-01-01T23:59:59.000Z

357

Effect of Wide-Based Single Tires on Fuel Efficiency of Class 8 Combination Trucks  

SciTech Connect

In 2007 and 2008, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class- 8 trucks from a fleet engaged in normal freight operations. Such data and information is useful to support Class-8 modeling of heavy-truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within heavy-truck research and analyses. This paper presents some general statistics, including distribution of idling times during long-haul trucking operations. However, the main focus is on the analysis of some of the extensive real-world information collected in this project, specifically on the assessment of the effect that different types of tires (i.e., dual tires vs. new generation single wide-based tires or NGSWBTs) have on the fuel efficiency of Class-8 trucks. The tire effect is also evaluated as a function of the vehicle load level. In all cases analyzed, the statistical tests performed strongly suggest that fuel efficiencies achieved when using all NGSWBTs or combinations of duals and NGSWBTs are higher than in the case of a truck equipped with all dual tires.

Franzese, Oscar [ORNL; Knee, Helmut E [ORNL; Slezak, Lee [U.S. Department of Energy

2010-01-01T23:59:59.000Z

358

CX-008462: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-008462: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses & Infrastructure - Atlantic City Jitney Compressed...

359

Demonstration Project 111, ITS/CVO Technology Truck, Final Project Report  

DOE Green Energy (OSTI)

In 1995, the planning and building processes began to design and develop a mobile demonstration unit that could travel across the nation and be used as an effective outreach tool. In 1997, the unit was completed; and from June 1997 until December 2000, the Federal Highway Administration (FHWA)/Federal Motor Carrier Safety Administration (FMCSA) mobilized the Technology Truck, also known as Demonstration Project No. 111, ''Advanced Motor Carrier Operations and Safety Technologies.'' The project featured the latest available state-of-the-practice intelligent transportation systems (ITS) technologies designed to improve both the efficiency and safety of commercial vehicle operations (CVO). The Technology Truck was designed to inform and educate the motor carrier community and other stakeholders regarding ITS technologies, thus gaining support and buy-in for participation in the ITS program. The primary objective of the project was to demonstrate new and emerging ITS/CVO technologies and programs, showing their impact on motor carrier safety and productivity. In order to meet the objectives of the Technology Truck project, the FHWA/FMCSA formed public/private partnerships with industry and with Oak Ridge National Laboratory to demonstrate and display available ITS/CVO technologies in a cooperative effort. The mobile demonstration unit was showcased at national and regional conferences, symposiums, universities, truck shows and other venues, in an effort to reach as many potential users and decision makers as possible. By the end of the touring phase, the ITS/CVO Technology Truck had been demonstrated in 38 states, 4 Canadian provinces, 88 cities, and 114 events; been toured by 18,099 people; and traveled 115,233 miles. The market penetration for the Technology Truck exceeded 4,000,000, and the website received more than 25,000 hits. In addition to the Truck's visits, the portable ITS/CVO kiosk was demonstrated at 31 events in 23 cites in 15 states.

Gambrell, KP

2002-01-11T23:59:59.000Z

360

EIA - AEO2010 - Naturall gas as a fuel for heavy trucks: Issues and  

Gasoline and Diesel Fuel Update (EIA)

gas as a fuel for heavy trucks: Issues and incentives gas as a fuel for heavy trucks: Issues and incentives Annual Energy Outlook 2010 with Projections to 2035 Natural gas as a fuel for heavy trucks: Issues and incentives Environmental and energy security concerns related to petroleum use for transportation fuels, together with recent growth in U.S. proved reserves and technically recoverable natural gas resources, including shale gas, have sparked interest in policy proposals aimed at stimulating increased use of natural gas as a vehicle fuel, particularly for heavy trucks. In 2008, U.S. freight trucks used more than 2 million barrels of petroleum-based diesel fuel per day. In the AEO2010 Reference case, they are projected to use 2.7 million barrels per day in 2035. Petroleum-based diesel use by freight trucks in 2008 accounted for 15 percent of total petroleum consumption (excluding biofuels and other non-petroleum-based products) in the transportation sector (13.2 million barrels per day) and 12 percent of the U.S. total for all sectors (18.7 million barrels per day). In the Reference case, oil use by freight trucks grows to 20 percent of total transportation use (13.7 million barrels per day) and 14 percent of the U.S. total (19.0 million barrels per day) by 2035. The following analysis examines the potential impacts of policies aimed at increasing sales of heavy-duty natural gas vehicles (HDNGVs) and the use of natural gas fuels, and key factors that lead to uncertainty in these estimates.

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

THERMOELECTRICAL ENERGY RECOVERY FROM THE EXHAUST OF A LIGHT TRUCK  

DOE Green Energy (OSTI)

A team formed by Clarkson University is engaged in a project to design, build, model, test, and develop a plan to commercialize a thermoelectric generator (TEG) system for recovering energy from the exhaust of light trucks and passenger cars. Clarkson University is responsible for project management, vehicle interface design, system modeling, and commercialization plan. Hi-Z Technology, Inc. (sub-contractor to Clarkson) is responsible for TEG design and construction. Delphi Corporation is responsible for testing services and engineering consultation and General Motors Corporation is responsible for providing the test vehicle and information about its systems. Funds were supplied by a grant from the Transportation Research Program of the New York State Energy Research and Development Authority (NYSERDA), through Joseph R. Wagner. Members of the team and John Fairbanks (Project Manager, Office of Heavy Vehicle Technology). Currently, the design of TEG has been completed and initial construction of the TEG has been initiated by Hi-Z. The TEG system consists of heat exchangers, thermoelectric modules and a power conditioning unit. The heat source for the TEG is the exhaust gas from the engine and the heat sink is the engine coolant. A model has been developed to simulate the performance of the TEG under varying operating conditions. Preliminary results from the model predict that up to 330 watts can be generated by the TEG which would increase fuel economy by 5 percent. This number could possibly increase to 20 percent with quantum-well technology. To assess the performance of the TEG and improve the accuracy of the modeling, experimental testing will be performed at Delphi Corporation. A preliminary experimental test plan is given. To determine the economic and commercial viability, a business study has been conducted and results from the study showing potential areas for TEG commercialization are discussed.

Karri, M; Thacher, E; Helenbrook, B; Compeau, M; Kushch, A; Elsner, N; Bhatti, M; O' Brien, J; Stabler, F

2003-08-24T23:59:59.000Z

362

Fuel comsumption of heavy-duty trucks : potential effect of future technologies for improving energy efficiency and emission.  

Science Conference Proceedings (OSTI)

The results of an analysis of heavy-duty truck (Classes 2b through 8) technologies conducted to support the Energy Information Administration's long-term projections for energy use are summarized. Several technology options that have the potential to improve the fuel economy and emissions characteristics of heavy-duty trucks are included in the analysis. The technologies are grouped as those that enhance fuel economy and those that improve emissions. Each technology's potential impact on the fuel economy of heavy-duty trucks is estimated. A rough cost projection is also presented. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

Saricks, C. L.; Vyas, A. D.; Stodolsky, F.; Maples, J. D.; Energy Systems; USDOE

2003-01-01T23:59:59.000Z

363

Environmental implications of alternative-fueled automobiles: Air quality and greenhouse gas tradeoffs  

Science Conference Proceedings (OSTI)

The authors analyze alternative fuel-powerstrain options for internal combustion engine automobiles. Fuel/engine efficiency, energy use, pollutant discharges, and greenhouse gas emissions are estimated for spark and compression ignited, direct injected (DI), and indirect injected (II) engines fueled by conventional and reformulated gasoline, reformulated diesel, compressed natural gas (CNG), and alcohols. Since comparisons of fuels and technologies in dissimilar vehicles are misleading, the authors hold emissions level, range, vehicle size class, and style constant. At present, CNG vehicles have the best exhaust emissions performance while DI diesels have the worst. Compared to a conventional gasoline fueled II automobile, greenhouse gases could be reduced by 40% by a DI CNG automobile and by 25% by a DI diesel. Gasoline- and diesel-fueled automobiles are able to attain long ranges with little weight or fuel economy penalty. CNG vehicles have the highest penalty for increasing range, due to their heavy fuel storage systems, but are the most attractive for a 160-km range. DI engines, particularly diesels, may not be able to meet strict emissions standards, at least not without lowering efficiency.

MaClean, H.L.; Lave, L.B.

2000-01-15T23:59:59.000Z

364

On-Road Remote Sensing of Automobile Emissions in the Los Angeles Area: Year 3  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Los Angeles Area: Year 3 (Riverside) Sajal S., Suite 140 Alpharetta, GA. 30022 Contract No. E-23-4 #12;On-Road Remote Sensing in the Los Angeles Area sensing study in the Los Angeles, CA area. The remote sensor used in this study is capable of measuring

Denver, University of

365

On-Road Remote Sensing of Automobile Emissions in the Los Angeles Area  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Los Angeles Area: Year 1 Gary A. Bishop a nine-day remote sensing study in the Los Angeles, CA area in the summer of 1999. The remote sensor used study to characterize motor vehicle emissions and deterioration in the Los Angeles area. On-Road Remote

Denver, University of

366

On-Road Remote Sensing of Automobile Emissions in the Chicago Area: Year 4  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Chicago Area: Year 4 Sajal S. Pokharel, Gary Alpharetta, Georgia 30022 Contract No. E-23-4 #12;On-Road Remote Sensing in the Chicago Area: Year 4 2 EXECUTIVE SUMMARY The University of Denver has completed the first four years of a multi-year remote sensing

Denver, University of

367

On-Road Remote Sensing of Automobile Emissions in the Chicago Area: Year 5,  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Chicago Area: Year 5, September 2002 Gary A five years of a multi-year remote sensing study in the Chicago area, with measurements made as to the extent I/M programs and #12;On-Road Remote Sensing in the Chicago Area: Year 5 2 special fuels contribute

Denver, University of

368

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 4,  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 4, January 2003 Daniel A year of a multi-year remote sensing study in the Denver area. The remote sensor used in this study channel was somewhat significant. #12;On-Road Remote Sensing in the Denver Area: Year 4 2 INTRODUCTION

Denver, University of

369

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 2  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 2 Sajal S. Pokharel, Gary A Alpharetta, Georgia 30022 CRC Project No. E-23-4 #12;On-Road Remote Sensing in the Denver Area: Year 2 2 EXECUTIVE SUMMARY The University of Denver has completed the second year of a five-year remote sensing study

Denver, University of

370

On-Road Remote Sensing of Automobile Emissions in the Chicago Area: Year 3  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Chicago Area: Year 3 Sajal S. Pokharel, Gary Alpharetta, Georgia 30022-8246 Contract No. E-23-4 #12;On-Road Remote Sensing in the Chicago Area: Year 3 2 EXECUTIVE SUMMARY The University of Denver has completed the first three years of a five-year remote sensing

Denver, University of

371

On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 1  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Phoenix Area: Year 1 Gary A. Bishop, Sajal S-day remote sensing study in the Phoenix, AZ area in the fall of 1998. The remote sensor used in this study selected for 1999. On-Road Remote Sensing in the Phoenix Area: Year 1 2 #12;INTRODUCTION Many cities

Denver, University of

372

On-Road Remote Sensing of Automobile Emissions in the Chicago Area: Year 1  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Chicago Area: Year 1 Peter J. Popp, Gary A, Georgia 30346 Contract No. E-23-4 #12;On-Road Remote Sensing in the Chicago Area: Year 1 2 EXECUTIVE SUMMARY The University of Denver conducted a five-day remote sensing study in the Chicago area in the fall

Denver, University of

373

On-Road Remote Sensing of Automobile Emissions in the Los Angeles Area: Year 2  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Los Angeles Area: Year 2 Sajal S. Pokharel Alpharetta, GA. 30022 Contract No. E-23-4 #12;On-Road Remote Sensing in the Los Angeles Area: Year 2 2 EXECUTIVE SUMMARY The University of Denver conducted the second year of a five year remote sensing study

Denver, University of

374

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 3  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 3 Sajal S. Pokharel, Gary A Alpharetta, Georgia 30022 CRC Project No. E-23-4 #12;On-Road Remote Sensing in the Denver Area: Year 3 2 EXECUTIVE SUMMARY The University of Denver has completed the third year of a multi-year remote sensing study

Denver, University of

375

On-Road Remote Sensing of Automobile Emissions in the Chicago Area: Year 6,  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Chicago Area: Year 6, September 2004 Gary A, Suite 140 Alpharetta, Georgia 30022 Contract No. E-23-9 #12;On-Road Remote Sensing in the Chicago Area-year remote sensing study in the Chicago area, with measurements made in September of 1997 through 2000, 2002

Denver, University of

376

On-Road Remote Sensing of Automobile Emissions in the La Brea Area: Year 3,  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the La Brea Area: Year 3, October 2003 Gary A, Suite 140 Alpharetta, Georgia 30022 Contract No. E-23-4 #12;On-Road Remote Sensing in the La Brea Area: Year 3 1 EXECUTIVE SUMMARY The University of Denver conducted a five-day remote sensing study in the La

Denver, University of

377

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 1  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 1 Peter J. Popp, Sajal S Center Parkway Atlanta, Georgia 30346 CRC Project No. E-23-4-99 #12;On-Road Remote Sensing in the Denver-year remote sensing study in the Denver area. The remote sensor used in this study is capable of measuring

Denver, University of

378

On-Road Remote Sensing of Automobile Emissions in the Chicago Area: Year 2  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Chicago Area: Year 2 Peter J. Popp, Gary A Atlanta, Georgia 30346 Contract No. E-23-4 #12;On-Road Remote Sensing in the Chicago Area: Year 2 2 EXECUTIVE SUMMARY The University of Denver has completed the first two years of a five-year remote sensing

Denver, University of

379

On-Road Remote Sensing of Automobile Emissions in west Los Angeles: Year 4,  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in west Los Angeles: Year 4, October 2005 Gary A Alpharetta, Georgia 30022 Contract No. E-23-9 #12;On-Road Remote Sensing in west Los Angeles: Year 4 1 EXECUTIVE SUMMARY The University of Denver conducted a five-day remote sensing study in west Los Angeles

Denver, University of

380

On-Road Remote Sensing of Automobile Emissions in the Omaha Area: Year 2,  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Omaha Area: Year 2, September 2004 Gary A of the work. #12;On-Road Remote Sensing in the Omaha Area: Year 2 2 EXECUTIVE SUMMARY The University of Denver conducted a five-day remote sensing study in the Omaha, Nebraska area in September of 2004. The remote

Denver, University of

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Economic Implications of Natural Gas Vehicle Technology in U.S. Private Automobile Transportation  

E-Print Network (OSTI)

is as a result of the more expensive fuel storage tank required to store natural gas safely and effectively). Because of the relative density of natural gas and size of CNG storage containers, CNG vehicles typically1 Economic Implications of Natural Gas Vehicle Technology in U.S. Private Automobile Transportation

382

FUTURES OF AUTOMOBILE INDUSTRY AND CHALLENGES ON SUSTAINABLE DEVELOPMENT AND MOBILITY  

E-Print Network (OSTI)

of load transports and traffic. Once there is a greater need of mobility, the increase of negative impacts of product. #12;6 T8. 50% of passenger automobile vehicles have systems of hybrid propulsion (electrical . It can be forecasted that ¼ of the total light passenger vehicles will use this kind of energy source. 4

Paris-Sud XI, Université de

383

Factor of two : halving the fuel consumption of new U.S. Automobiles by 2035  

E-Print Network (OSTI)

This thesis examines the vehicle design and sales mix changes necessary to double the average fuel economy of new U.S. cars and light-trucks by model year 2035. To achieve this factor of two target, three technology options ...

Cheah, Lynette W

2008-01-01T23:59:59.000Z

384

An interactive fuzzy multi-objective approach for operational transport planning in an automobile supply chain  

Science Conference Proceedings (OSTI)

A novel supply chain operational transport planning model is developed in this paper. The goals of the model are to minimize the number of used trucks and the total inventory levels. Because of somewhat imprecise nature of vehicle capacities and decision ... Keywords: fuzzy multi-objective linear programming, supply chain planning, transport planning, uncertainty

David Peidro; Manuel Díaz-Madroñero; Josefa Mula

2010-02-01T23:59:59.000Z

385

Test, Evaluation, and Demonstration of Practical Devices/Systems to Reduce Aerodynamic Drag of Tractor/Semitrailer Combination Unit Trucks  

DOE Green Energy (OSTI)

Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their effect on fuel economy was determined, either through on-road testing or full-size wind tunnel testing. All of the manufacturers worked with devices and systems that offer practical solutions to reduce aerodynamic drag, accounting for functionality, durability, cost effectiveness, reliability, and maintainability. The project team members and their roles and responsibilities are shown in Figure 2-1. Figure 2-2 shows the Phase I and II project schedules for all four projects and associated management activities.

Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond

2007-04-30T23:59:59.000Z

386

Norcal Prototype LNG Truck Fleet: Final Data Report. Advanced Technology Vehicle Evaluation: Advanced Vehicle Testing Activity  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Data Report Data Report Norcal Prototype LNG Truck Fleet: Final Data Report By Kevin Chandler, Battelle Ken Proc, National Renewable Energy Laboratory February 2005 This report provides detailed data and analyses from the U.S. Department of Energy's evaluation of prototype liquefied natural gas (LNG) waste transfer trucks operated by Norcal Waste Systems, Inc. The final report for this evaluation, published in July 2004, is available from the Alternative Fuels Data Center at www.eere.energy.gov/afdc or by calling the National Alternative Fuels Hotline at 1-800-423-1363. Request Norcal Prototype LNG Truck Fleet: Final Results, document number DOE/GO-102004-1920. i NOTICE This report was prepared as an account of work sponsored by an agency of the United States

387

STATEMENT OF CONSIDERATIONS REQUEST BY OSHKOSH TRUCK CORPORATION FOR AN ADVANCE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OSHKOSH TRUCK CORPORATION FOR AN ADVANCE OSHKOSH TRUCK CORPORATION FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER NREL SUBCONTRACT NO. ZCL-3-32060-03 UNDER CONTRACT NO. DE-AC36-98G010337; W(A)-04-007; CH-1178 The Petitioner, Oshkosh Truck Corporation (OTC), has requested a waiver of domestic and foreign patent rights for all subject inventions made by its employees under the above- identified subcontract entitled "Advanced Heavy Hybrid Propulsion Systems for Increased Fuel Efficiency and Decreased Emissions". OTC is leading a teaming arrangement including Rockwell Automation, Inc. (Rockwell), and the National Renewable Energy Laboratory (NREL) to develop heavy hybrid propulsion systems. Rockwell has petitioned separately for a waiver of patent rights for all subject inventions its employees may make under Rockwell's lower tier

388

STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO MACK TRUCKS, INC. UNDER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MACK TRUCKS, INC. UNDER MACK TRUCKS, INC. UNDER NREL SUBCONTRACT NO. ZCI-4-32050, UNDER DOE PRIME CONTRACT NO. DE-AC36-98GO10337 FOR DEVELOPMENT OF THE NEXT GENERATION NATURAL GAS VEHICLE, PHASE II; CH-1182; W(A)-04-012 Mack Trucks, Inc. (Mack) has petitioned for an advance waiver of domestic and foreign patent rights to inventions conceived or first actually reduced to practice under DOE Contract No. NREL-ZCI-4-32050-01. This advance waiver is intended to apply to all subject inventions of Mack's employees and those of its subcontractors, regardless of tier except subcontractors eligible to obtain title pursuant to P.L. 96-517 as amended, and National Laboratories. As brought out in its waiver petition, the long term objective of this contract is to develop one medium duty compressed natural gas (CGN) prototype engine or one hi:avy duty liquified

389

FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month Interim Report  

SciTech Connect

This interim report presents partial (six months) results for a technology evaluation of gasoline hybrid electric parcel delivery trucks operated by FedEx in and around Los Angeles, CA. A 12 month in-use technology evaluation comparing in-use fuel economy and maintenance costs of GHEVs and comparative diesel parcel delivery trucks was started in April 2009. Comparison data was collected and analyzed for in-use fuel economy and fuel costs, maintenance costs, total operating costs, and vehicle uptime. In addition, this interim report presents results of parcel delivery drive cycle collection and analysis activities as well as emissions and fuel economy results of chassis dynamometer testing of a gHEV and a comparative diesel truck at the National Renewable Energy Laboratory's (NREL) ReFUEL laboratory. A final report will be issued when 12 months of in-use data have been collected and analyzed.

Barnitt, R.

2010-05-01T23:59:59.000Z

390

U.S. DRIVE Highlights of Technical Accomplishments 2011: Super Duty Diesel Truck with NOx Aftertreatment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 U.S. DRIVE Highlight Advanced Combustion and Emission Control 2011 Super Duty Diesel Truck with NO x Aftertreatment Diesel engine aftertreatment: Minimizing NO x emissions with SCR. Ford's 2011 Super Duty diesel truck-which utilizes aftertreatment technology jointly developed by Ford and the U.S. Department of Energy (DOE)-deliv- ered a multitude of firsts for the company. It was the first Ford diesel engine developed entirely in-house, the first to operate on B20 (a blend of 20% biofuel, 80% petroleum diesel), and the first to comply with

391

biogas to indian buses come home, dad biosensor lab in singapore sexy statistics world university No reason to rush homeLiU alumna Klara Tiitso enjoys her life in London | page 30  

E-Print Network (OSTI)

biogas to indian buses come home, dad biosensor lab in singapore sexy statistics world university an Indian Master's student whose studies at Linköping inspired him to use biogas as fuel for busses. He

Zhao, Yuxiao

392

National Renewable Energy Laboratory (NREL) Reports Increase in Durability and Reliability for Current Generation Fuel Cell Buses (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

NLE Websites -- All DOE Office Websites (Extended Search)

869 * November 2010 869 * November 2010 National Renewable Energy Laboratory (NREL) Reports Increase in Durability and Reliability for Current Generation Fuel Cell Buses NREL Team: Hydrogen Technology Validation, Leslie Eudy Accomplishment: NREL recently reported an increase in durability and reliability for fuel cell systems demonstrated in transit service (first reported in July 2010). Context: The transit industry provides an excellent test-bed for developing and optimizing advanced transportation technologies, such as fuel cells. In coordination with the Federal Transit Administration, the Department of Energy (DOE) funds the evaluation of fuel cell buses (FCBs) in real-world service. Under this funding, NREL has collected and analyzed data on nine early generation FCBs operated by four transit agencies in the United States.

393

Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses: October 15, 2002-September 30, 2004  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Development and Demonstration Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses October 15, 2002 - September 30, 2004 A. Del Toro SunLine Services Group Thousand Palms, California M. Frailey National Renewable Energy Laboratory Golden, Colorado F. Lynch Hydrogen Components Inc. Littleton, Colorado S. Munshi Westport Innovations Inc. Vancouver, British Columbia, Canada S. Wayne West Virginia University Morgantown, West Virginia Technical Report NREL/TP-540-38707 November 2005 Development and Demonstration of Hydrogen and Compressed Natural Gas (H/CNG) Blend Transit Buses October 15, 2002 - September 30, 2004 A. Del Toro SunLine Services Group Thousand Palms, California M. Frailey National Renewable Energy Laboratory Golden, Colorado

394

Driven to congestion : how the planning, engineering and politics of transportation established, preserves and perpetuates the automobile city  

E-Print Network (OSTI)

The last eight decades of urban transportation planning and engineering in the United States have been dominated by the hegemony of the automobile. Auto-oriented planning of the transportation and land use system has had ...

Krishnamurthy, Vignesh (Vignesh Kumar)

2012-01-01T23:59:59.000Z

395

GPRS Based Remote Monitoring and Controlling System for Oil Delivery Truck  

Science Conference Proceedings (OSTI)

In the oil retail market, to participate into the whole oil sale process is an urgent demand for oil retail company. As a respond to this situation, a GPRS based remote monitoring and controlling system for oil delivery truck is proposed in this paper. ... Keywords: GPRS, oil delivery, ATmega16

Yang Jia-zhi; Shen Xian-hao

2010-10-01T23:59:59.000Z

396

Decomposition of a complex fuzzy controller for the truck-and-trailer reverse parking problem  

Science Conference Proceedings (OSTI)

The use of fuzzy logic has, in the last twenty years, become standard practice in the field of control. The reason lies in the fuzzy logic's ability to relatively quickly transfer uncertain experience and knowledge about the observed object's behaviour ... Keywords: Decomposition, Fuzzy control, Fuzzy systems, Hierarchical fuzzy controller, Truck-and-trailer parking

Nikolaj Zimic; Miha Mraz

2006-03-01T23:59:59.000Z

397

Development of LNG-Powered Heavy-Duty Trucks in Commercial Hauling  

DOE Green Energy (OSTI)

In support of the U.S. Department of Energy's development, deployment, and evaluation of alternative fuels, NREL and the Trucking Research Institute contracted with Detroit Diesel Corporation (DDC) to develop and operate a liquid natural gas fueled tractor powered by a DDC Series 50 prototype natural gas engine. This is the final report on the project.

Detroit Diesel Corporation; Trucking Research Institute

1998-12-03T23:59:59.000Z

398

Electric Lift Truck Fast Charge Demonstration at the Port of Galveston, Texas  

Science Conference Proceedings (OSTI)

A recent review of cargo handling equipment at the Port of Galveston determined that changes needed to be made in order to improve air quality through reduced emissions, while at the same time enhancing efficiencies and realizing cost reductions. This demonstration showed that electric lift trucks using fast charging are a viable way to meet these goals.

2007-07-06T23:59:59.000Z

399

CoolCalc: A Long-Haul Truck Thermal Load Estimation Tool: Preprint  

DOE Green Energy (OSTI)

In the United States, intercity long-haul trucks idle approximately 1,800 hrs annually for sleeper cab hotel loads, consuming 838 million gallons of diesel fuel per year. The objective of the CoolCab project is to work closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling. Truck engine idling is primarily done to heat or cool the cab/sleeper, keep the fuel warm in cold weather, and keep the engine warm for cold temperature startup. Reducing the thermal load on the cab/sleeper will decrease air conditioning system requirements, improve efficiency, and help reduce fuel use. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches. It is intended for rapid trade-off studies, technology impact estimation, and preliminary HVAC sizing design and to complement more detailed and expensive CAE tools by exploring and identifying regions of interest in the design space. This paper describes the CoolCalc tool, provides outdoor long-haul truck thermal testing results, shows validation using these test results, and discusses future applications of the tool.

Lustbader, J. A.; Rugh, J. P.; Rister, B. R.; Venson, T. S.

2011-05-01T23:59:59.000Z

400

NOx Adsorbers for Heavy Duty Truck Engines-Testing and Simulation  

DOE Green Energy (OSTI)

This feasibility study of NOx adsorbers in heavy-duty diesel engines examined three configurations (dual-leg, single-leg and single-leg-bypass) in an integrated experimental setup, composed of a Detroit Diesel Class-8 truck engine, a catalyzed diesel particulate filter and the NOx absorber system. The setup also employed a reductant injection concept, sensors and advanced control strategies.

Hakim, N; Hoelzer, J.; Liu, Y.

2002-08-25T23:59:59.000Z

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Natural Gas as a Fuel for Heavy Trucks: Issues and Incentives (released in AEO2010)  

Reports and Publications (EIA)

Environmental and energy security concerns related to petroleum use for transportation fuels, together with recent growth in U.S. proved reserves and technically recoverable natural gas resources, including shale gas, have sparked interest in policy proposals aimed at stimulating increased use of natural gas as a vehicle fuel, particularly for heavy trucks.

Information Center

2010-05-11T23:59:59.000Z

402

Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks  

SciTech Connect

Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000-3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter.

F. Stodolsky; L. Gaines; A. Vyas

2000-06-01T23:59:59.000Z

403

Design/Operations review of core sampling trucks and associated equipment  

SciTech Connect

A systematic review of the design and operations of the core sampling trucks was commissioned by Characterization Equipment Engineering of the Westinghouse Hanford Company in October 1995. The review team reviewed the design documents, specifications, operating procedure, training manuals and safety analysis reports. The review process, findings and corrective actions are summarized in this supporting document.

Shrivastava, H.P.

1996-03-11T23:59:59.000Z

404

Detroit Diesel Engine Technology for Light Duty Truck Applications - DELTA Engine Update  

DOE Green Energy (OSTI)

The early generation of the DELTA engine has been thoroughly tested and characterized in the virtual lab, during engine dynamometer testing, and on light duty trucks for personal transportation. This paper provides an up-to-date account of program findings. Further, the next generation engine design and future program plans will be briefly presented.

Freese, Charlie

2000-08-20T23:59:59.000Z

405

Operability test report for core sample truck {number_sign}1 flammable gas modifications  

SciTech Connect

This report primarily consists of the original test procedure used for the Operability Testing of the flammable gas modifications to Core Sample Truck No. One. Included are exceptions, resolutions, comments, and test results. This report consists of the original, completed, test procedure used for the Operability Testing of the flammable gas modifications to the Push Mode Core Sample Truck No. 1. Prior to the Acceptance/Operability test the truck No. 1 operations procedure (TO-080-503) was revised to be more consistent with the other core sample truck procedures and to include operational steps/instructions for the SR weather cover pressurization system. A draft copy of the operations procedure was used to perform the Operability Test Procedure (OTP). A Document Acceptance Review Form is included with this report (last page) indicating the draft status of the operations procedure during the OTP. During the OTP 11 test exceptions were encountered. Of these exceptions four were determined to affect Acceptance Criteria as listed in the OTP, Section 4.7 ACCEPTANCE CRITERIA.

Akers, J.C.

1997-09-15T23:59:59.000Z

406

Application of landfill gas as a liquefied natural gas fuel for refuse trucks in Texas  

E-Print Network (OSTI)

The energy consumption throughout the world has increased substantially over the past few years and the trend is projected to continue indefinitely. The primary sources of energy are conventional fuels such as oil, natural gas and coal. The most apparent negative impacts of these conventional fuels are global warming, poor air-quality, and adverse health effects. Considering these negative impacts, it is necessary to develop and use non-conventional sources of energy. Landfill gas (LFG) generated at landfills can serve as a source of cleaner energy. LFG has substantial energy generation potential and, if cleaned of certain impurities, can be used for several applications such as electricity generation and conversion to high Btu gas. This thesis considers another application of LFG, which consists of using it as a vehicular fuel for refuse trucks. Currently, limited research has been performed on the development of such a methodology to evaluate the application of LFG as a vehicular fuel for refuse truck operations. The purpose of this thesis is to develop a methodology that can be used to evaluate the use of LFG generated at landfills as a Liquefied Natural Gas (LNG) fuel source for refuse trucks in Texas. The methodology simulates the gas generation process at a landfill by using standard models developed by the Environmental Protection Agency. The operations of a refuse truck fleet are replicated by using generic drive cycles developed as part of this research. The economic feasibility is evaluated by estimating the costs required for cleaning the LFG and converting the truck fleet from diesel to LNG as well as quantifying the benefits obtained due to change in fuel consumption and emission generation by the refuse trucks. The methodology was applied to a potential landfill in Texas. The results show that the methodology offers an innovative tool that allows the stakeholders to evaluate the economic feasibility of using LFG for refuse truck operations. The methodology also provides a flexible framework wherein each component can be changed or tailored to meet the specific needs of the stakeholders.

Gokhale, Bhushan

2006-12-01T23:59:59.000Z

407

Emission Changes Resulting from the San Pedro Bay, California Ports Truck Retirement Program  

SciTech Connect

Recent U.S. Environmental Protection Agency emissions regulations have resulted in lower emissions of particulate matter and oxides of nitrogen from heavy-duty diesel trucks. To accelerate fleet turnover the State of California in 2008 along with the Ports of Los Angeles and Long Beach (San Pedro Bay Ports) in 2006 passed regulations establishing timelines forcing the retirement of older diesel trucks. On-road emissions measurements of heavy-duty diesel trucks were collected over a three-year period, beginning in 2008, at a Port of Los Angeles location and an inland weigh station on the Riverside freeway (CA SR91). At the Port location the mean fleet age decreased from 12.7 years in April of 2008 to 2.5 years in May of 2010 with significant reductions in carbon monoxide (30%), oxides of nitrogen (48%) and infrared opacity (a measure of particulate matter, 54%). We also observed a 20-fold increase in ammonia emissions as a result of new, stoichiometrically combusted, liquefied natural gas powered trucks. These results compare with changes at our inland site where the average ages were 7.9 years in April of 2008 and 8.3 years in April of 2010, with only small reductions in oxides of nitrogen (10%) being statistically significant. Both locations have experienced significant increases in nitrogen dioxide emissions from new trucks equipped with diesel particle filters; raising the mean nitrogen dioxide to oxides of nitrogen ratios from less than 10% to more than 30% at the Riverside freeway location.

Bishop, G. A.; Schuchmann, B. G.; Stedman, D. H.; Lawson, D. R.

2012-01-03T23:59:59.000Z

408

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

DOE Green Energy (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

409

Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks  

Science Conference Proceedings (OSTI)

The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional fuel economy benefits to the heavy-duty trucking industry. Control software for power management brings added value to the power distribution and energy storage architecture on board a truck with electric accessories and an ISG. The research team has built upon a previous truck electrification project, formally, 'Parasitic Energy Loss Reduction and Enabling Technologies for Class 7/8 Trucks', DE-FC04-2000AL6701, where the fundamental concept of electrically-driven accessories replacing belt/gear-driven accessories was demonstrated on a Kenworth T2000 truck chassis. The electrical accessories, shown in Figure 1, were controlled to provide 'flow on demand' variable-speed operation and reduced parasitic engine loads for increased fuel economy. These accessories also provided solutions for main engine idle reduction in long haul trucks. The components and systems of the current project have been integrated into the same Kenworth T2000 truck platform. Reducing parasitic engine loading by decoupling accessory loads from the engine and driving them electrically has been a central concept of this project. Belt or gear-driven engine accessories, such as water pump, air conditioning compressor, or air compressor, are necessarily tied to the engine speed dictated by the current vehicle operating conditions. These conventional accessory pumps are sized to provide adequate flow or pressure at low idle or peak torque speeds, resulting in excess flow or pressure at cruising or rated speeds. The excess flow is diverted through a pressure-minimizing device such as a relief valve thereby expending energy to drive unnecessary and inefficient pump operation. This inefficiency causes an increased parasitic load to the engine, which leads to a loss of usable output power and decreased fuel economy. Controlling variable-speed electric motors to provide only the required flow or pressure of a particular accessory system can yield significant increases in fuel economy for a commercial vehicle. Motor loads at relatively high power levels (1-5 kW, or higher) can be efficiently provided

Larry Slone; Jeffrey Birkel

2007-10-31T23:59:59.000Z

410

Dry powder mixes comprising phase change materials  

DOE Green Energy (OSTI)

A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figs.

Salyer, I.O.

1995-12-26T23:59:59.000Z

411

Estimated United States Transportation Energy Use 2005  

DOE Green Energy (OSTI)

A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

Smith, C A; Simon, A J; Belles, R D

2011-11-09T23:59:59.000Z

412

Dry powder mixes comprising phase change materials  

DOE Patents (OSTI)

A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figures.

Salyer, I.O.

1994-12-06T23:59:59.000Z

413

Dry powder mixes comprising phase change materials  

DOE Patents (OSTI)

A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

Salyer, Ival O. (Dayton, OH)

1994-01-01T23:59:59.000Z

414

Dry powder mixes comprising phase change materials  

DOE Patents (OSTI)

A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

Salyer, Ival O. (Dayton, OH)

1995-01-01T23:59:59.000Z

415

Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 7, DOE/AL68080-TSR07  

DOE Green Energy (OSTI)

Analysis and results show hybrid system weight and efficiency affect productivity and fuel usage. Analysis shows equivalent hybrid benefits for adjacent size classes of mine truck. Preparations are ongoing for full power test. The battery cycling test protocol was modified.

Lembit Salasoo

2004-08-25T23:59:59.000Z

416

Heavy-duty truck population, activity and usage patterns. Final report  

SciTech Connect

The objective of the study was to update the heavy-duty truck (HDT) population, activity (e.g., vehicle miles traveled (VMT), numbers of starts and trips, trip duration, etc.), and usage patterns type of service/business (e.g., delivery, construction, etc.), area of operation (i.e., local, short-haul, long-haul) for HDT`s registered and/or operated in California. The population and activity estimates were done on a weight-class-specific basis light-heavy-duty, medium-heavy-duty and heavy-heavy-duty. Population, activity and usage estimates were based primarily on Department of Motor Vehicles (DMV) registration data and Truck Inventory and Usage Survey (TIUS) data. In addition to the analysis of existing data (i.e., DMV and TIUS), 42 HDTs were fitted with on-board data loggers that recorded numbers of trips and starts, daily VMT and travel by time-of-day.

Fischer, M.

1998-07-01T23:59:59.000Z

417

STATEMENT OF CONSIDERATIONS REQUEST BY MACK TRUCKS, INC. FOR AN ADVANCE WAIVER OF PATENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INC. FOR AN ADVANCE WAIVER OF PATENT INC. FOR AN ADVANCE WAIVER OF PATENT RIGHTS TO INVENTIONS MADE UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC26-05NT42421; W(A)-05-041; CH-1323 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Mack Trucks, Inc (Mack) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above subject cooperative agreement: "Very High Fuel Economy, Heavy Duty, Constant Speed, Truck, Engine Optimized Via Unique Energy Recovery Turbines and Facilitated by High Efficiency Continuously Variable Drivetrain". The waiver will apply to inventions made by Mack employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible

418

Assessment of the risk of transporting spent nuclear fuel by truck  

SciTech Connect

The assessment includes the risks from release of spent fuel materials and radioactive cask cavity cooling water due to transportation accidents. The contribution to the risk of package misclosure and degradation during normal transport was also considered. The results of the risk assessment have been related to a time in the mid-1980's, when it is projected that nuclear plants with an electrical generating capacity of 100 GW will be operating in the U.S. For shipments from reactors to interim storage facilities, it is estimated that a truck carrying spent fuel will be involved in an accident that would not be severe enough to result in a release of spent fuel material about once in 1.1 years. It was estimated that an accident that could result in a small release of radioactive material (primarily contaminated cooling water) would occur once in about 40 years. The frequency of an accident resulting in one or more latent cancer fatalities from release of radioactive materials during a truck shipment of spent fuel to interim storage was estimated to be once in 41,000 years. No accidents were found that would result in acute fatalities from releases of radioactive material. The risk for spent fuel shipments from reactors to reprocessing plants was found to be about 20% less than the risk for shipments to interim storage. Although the average shipment distance for the reprocessing case is larger, the risk is somewhat lower because the shipping routes, on average, are through less populated sections of the country. The total risk from transporting 180-day cooled spent fuel by truck in the reference year is 4.5 x 10/sup -5/ fatalities. An individual in the population at risk would have one chance in 6 x 10/sup 11/ of suffering a latent cancer fatality from a release of radioactive material from a truck carrying spent fuel in the reference year. (DLC)

Elder, H.K.

1978-11-01T23:59:59.000Z

419

Remote Sensing of In-Use Heavy-Duty Diesel Trucks  

E-Print Network (OSTI)

Remote Sensing of In-Use Heavy-Duty Diesel Trucks D A N I E L A . B U R G A R D , G A R Y A . B I this study suggest that on-road remote sensing can detect illegal, high sulfur fuel use from individual heavy,HDDvehiclesemissionshavereceivedgrowing attentioninavarietyofstudiessuchaschassisdynamometers (5, 6), in a tunnel (7), and remote sensing (8-10) as well as one critical review (4

Denver, University of

420

Assessment of the risk of transporting propane by truck and train  

SciTech Connect

The risk of shipping propane is discussed and the risk assessment methodology is summarized. The risk assessment model has been constructed as a series of separate analysis steps to allow the risk to be readily reevaluated as additional data becomes available or as postulated system characteristics change. The transportation system and accident environment, the responses of the shipping system to forces in transportation accidents, and release sequences are evaluated to determine both the likelihood and possible consequences of a release. Supportive data and analyses are given in the appendices. The risk assessment results are related to the year 1985 to allow a comparison with other reports in this series. Based on the information presented, accidents involving tank truck shipments of propane will be expected to occur at a rate of 320 every year; accidents involving bobtails would be expected at a rate of 250 every year. Train accidents involving propane shipments would be expected to occur at a rate of about 60 every year. A release of any amount of material from propane trucks, under both normal transportation and transport accident conditions, is to be expected at a rate of about 110 per year. Releases from propane rail tank cars would occur about 40 times a year. However, only those releases that occur during a transportation accident or involve a major tank defect will include sufficient propane to present the potential for danger to the public. These significant releases can be expected at the lower rate of about fourteen events per year for truck transport and about one event every two years for rail tank car transport. The estimated number of public fatalities resulting from these significant releases in 1985 is fifteen. About eleven fatalities per year result from tank truck operation, and approximately half a death per year stems from the movement of propane in rail tank cars.

Geffen, C.A.

1980-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The relationship between truck accidents and geometric design of road sections: Poisson versus negative binomial regressions  

SciTech Connect

This paper evaluates the performance of Poisson and negative binomial (NB) regression models in establishing the relationship between truck accidents and geometric design of road sections. Three types of models are considered. Poisson regression, zero-inflated Poisson (ZIP) regression, and NB regression. Maximum likelihood (ML) method is used to estimate the unknown parameters of these models. Two other feasible estimators for estimating the dispersion parameter in the NB regression model are also examined: a moment estimator and a regression-based estimator. These models and estimators are evaluated based on their (1) estimated regression parameters, (2) overall goodness-of-fit, (3) estimated relative frequency of truck accident involvements across road sections, (4) sensitivity to the inclusion of short mad sections, and (5) estimated total number of truck accident involvements. Data from the highway Safety Information System (HSIS) are employed to examine the performance of these models in developing such relationships. The evaluation results suggest that the NB regression model estimated using the moment and regression-based methods should be used with caution. Also, under the ML method, the estimated regression parameters from all three models are quite consistent and no particular model outperforms the other two models in terms of the estimated relative frequencies of truck accident involvements across road sections. It is recommended that the Poisson regression model be used as an initial model for developing the relationship. If the overdispersion of accident data is found to be moderate or high, both the NB and ZIP regression model could be explored. Overall, the ZIP regression model appears to be a serious candidate model when data exhibit excess zeros due, e.g., to underreporting.

Miaou, Shaw-Pin

1993-07-01T23:59:59.000Z

422

Reduced energy consumption by massive thermoelectric waste heat recovery in light duty trucks  

Science Conference Proceedings (OSTI)

The main objective of the EC funded HEATRECAR project is to reduce the energy consumption and curb CO2 emissions of vehicles by massively harvesting electrical energy from the exhaust system and re-use this energy to supply electrical components within the vehicle or to feed the power train of hybrid electrical vehicles. HEATRECAR is targeting light duty trucks and focuses on the development and the optimization of a Thermo Electric Generator (TEG) including heat exchanger

D. Magnetto; G. Vidiella

2012-01-01T23:59:59.000Z

423

Application of Sleeper Cab Thermal Management Technologies to Reduce Idle Climate Control Loads in Long-Haul Trucks  

DOE Green Energy (OSTI)

Each intercity long-haul truck in the U.S. idles approximately 1,800 hrs per year, primarily for sleeper cab hotel loads. Including workday idling, over 2 billion gallons of fuel are used annually for truck idling. NREL's CoolCab project works closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling and fuel use. The impact of thermal load reduction technologies on idle reduction systems were characterized by conducting thermal soak tests, overall heat transfer tests, and 10-hour rest period A/C tests. Technologies evaluated include advanced insulation packages, a solar reflective film applied to the vehicle's opaque exterior surfaces, a truck featuring both film and insulation, and a battery-powered A/C system. Opportunities were identified to reduce heating and cooling loads for long-haul truck idling by 36% and 34%, respectively, which yielded a 23% reduction in battery pack capacity of the idle-reduction system. Data were also collected for development and validation of a CoolCalc HVAC truck cab model. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches.

Lustbader, J. A.; Venson, T.; Adelman, S.; Dehart, C.; Yeakel, S.; Castillo, M. S.

2012-10-01T23:59:59.000Z

424

Hybrid automobile  

SciTech Connect

The invention discloses a parallel hybrid drive system for self propelled vehicles including a direct current motor-generator having a drive shaft in common with an internal combustion engine leading to a variable speed transmission and a final drive train. The motor-generator has a no-load speed, established by a separate field exciter, below which it drives the shaft as a motor and above which it is driven by the shaft as a generator. Storage batteries are operatively connected to the motor-generator to supply power to it below the no-load speed. The internal combustion engine operates over a small RPM range around its most efficient speed at a power level established by a fixed throttle setting. The transmission is operatively connected to an accelerator and direction selector switch to vary the speed and direction of the vehicle.

Lynch, T.E.; Eastman, D.P.; Price, R.P.

1979-08-28T23:59:59.000Z

425

American Recovery & Reinvestment Act: Fuel Cell Hybrid Power Packs and Hydrogen Refueling for Lift Trucks  

Science Conference Proceedings (OSTI)

HEB Grocery Company, Inc. (H-E-B) is a privately-held supermarket chain with 310 stores throughout Texas and northern Mexico. H-E-B converted 14 of its lift reach trucks to fuel cell power using Nuvera Fuel Cells’ PowerEdge™ units to verify the value proposition and environmental benefits associated with the technology. Issues associated with the increasing power requirements of the distribution center operation, along with high ambient temperature in the summer and other operating conditions (such as air quality and floor surface condition), surfaced opportunities for improving Nuvera’s PowerEdge fuel cell system design in high-throughput forklift environments. The project included on-site generation of hydrogen from a steam methane reformer, called PowerTap™ manufactured by Nuvera. The hydrogen was generated, compressed and stored in equipment located outside H-E-B’s facility, and provided to the forklifts by hydrogen dispensers located in high forklift traffic areas. The PowerEdge fuel cell units logged over 25,300 operating hours over the course of the two-year project period. The PowerTap hydrogen generator produced more than 11,100 kg of hydrogen over the same period. Hydrogen availability at the pump was 99.9%. H-E-B management has determined that fuel cell forklifts help alleviate several issues in its distribution centers, including truck operator downtime associated with battery changing, truck and battery maintenance costs, and reduction of grid electricity usage. Data collected from this initial installation demonstrated a 10% productivity improvement, which enabled H-E-B to make economic decisions on expanding the fleet of PowerEdge and PowerTap units in the fleet, which it plans to undertake upon successful demonstration of the new PowerEdge reach truck product. H-E-B has also expressed interst in other uses of hydrogen produced on site in the future, such as for APUs used in tractor trailers and refrigerated transport trucks in its fleet.

Block, Gus

2011-07-31T23:59:59.000Z

426

Should we have a new engine. An automobile power systems evaluation. Volume II. Technical reports  

SciTech Connect

Alternative automotive powerplants were examined for possible introduction during the 1980 to 1990 time period. Technical analyses were made of the stratified-charge Otto, diesel, Rankine (steam), Brayton (gas turbine), Stirling, electric, and hybrid powerplants as alternatives to the conventional Otto-cycle engine with its likely improvements. These alternatives were evaluated from a societal point of view in terms of energy consumption, urban air quality, cost to the consumer, materials availability, safety, and industry impact. The results show that goals for emission reduction and energy conservation for the automobile over the next 5 to 10 years can be met by improvements to the Otto-cycle engine and to the vehicle. This provides time for the necessary development work on the Brayton and Stirling engines, which offer the promise of eliminating the automobile as a significant source of urban air pollution, dramatically reducing fuel consumption, and being saleable at a price differential which can be recovered in fuel savings by the first owner. Specifically, the Brayton and Stirling engines require intensive component, system, and manufacturing process development at a funding level considerably higher than at present.

Stephenson, R.R.

1975-01-01T23:59:59.000Z

427

Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site  

SciTech Connect

This study has shown that, based upon measurements from industry standard radiation detection instruments, such as the RS model RSS-131 PICs in a controlled configuration, a person may be exposed to gamma radiation above background when in close proximity to some LLW trucks. However, in approximately half (47.7 percent) the population of trucks measured in this study, a person would receive no exposure above background at a distance of 1.0 m (3.3 ft) away from a LLW truck. An additional 206 trucks had net exposures greater than zero, but equal to or less than 1 {micro}R/h. Finally, nearly 80 percent of the population of trucks (802 of 1,012) had net exposures less than or equal to 10 {micro}R/h. Although there are no shipping or exposure standards at 1.0 m (3.3 ft) distance, one relevant point of comparison is the DOT shipping standard of 10 mrem/h at 2.0 m (6.6 ft) distance. Assuming a one-to-one correspondence between Roentgens and Rems, then 903 trucks (89.2 percent of the trucks measured) were no greater than one percent of the DOT standard at 1.0 m (3.3 ft). Had the distance at which the trucks been measured increased to 2.0 m (6.6 ft), the net exposure would be even less because of the increase in distance between the truck and the receptor. However, based on the empirical data from this study, the rate of decrease may be slower than for either a point or line source as was done for previous studies (Gertz, 2001; Davis et al., 2001). The highest net exposure value at 1.0 m (3.3 ft) distance, 11.9 mR/h, came from the only truck with a value greater than 10 mR/h at 1.0 m (3.3 ft) distance.

J. Miller; D. Shafer; K. Gray; B. Church; S.Campbell; B. Holz

2005-08-15T23:59:59.000Z

428

Engineering task plan for upgrades to the leveling jacks on core sample trucks number 3 and 4  

Science Conference Proceedings (OSTI)

Characterizing the waste in underground storage tanks at the Hanford Site is accomplished by obtaining a representative core sample for analysis. Core sampling is one of the numerous techniques that have been developed for use given the environmental and field conditions at the Hanford Site. Core sampling is currently accomplished using either Push Mode Core Sample Truck No.1 or; Rotary Mode Core Sample Trucks No.2, 3 or 4. Past analysis (WHC 1994) has indicated that the Core Sample Truck (CST) leveling jacks are structurally inadequate when lateral loads are applied. WHC 1994 identifies many areas where failure could occur. All these failures are based on exceeding the allowable stresses listed in the American Institute of Steel Construction (AISC) code. The mode of failure is for the outrigger attachments to the truck frame to fail resulting in dropping of the CST and possible overturning (Ref. Ziada and Hundal, 1996). Out of level deployment of the truck can exceed the code allowable stresses in the structure. Calculations have been performed to establish limits for maintaining the truck level when lifting. The calculations and the associated limits are included in appendix A. The need for future operations of the CSTS is limited. Sampling is expected to be complete in FY-2001. Since there is limited time at risk for continued use of the CSTS with the leveling controls without correcting the structural problems, there are several design changes that could give incremental improvements to the operational safety of the CSTS with limited impact on available operating time. The improvements focus on making the truck easier to control during lifting and leveling. Not all of the tasks identified in this ETP need to be performed. Each task alone can improve the safety. This engineering task plan is the management plan document for implementing the necessary additional structural analysis. Any additional changes to meet requirements of standing orders shall require a Letter of Instruction from Numatec Hanford Company (NHC).

KOSTELNIK, A.J.

1999-02-24T23:59:59.000Z

429

The Ability of Automakers to Introduce a Costly, Regulated New Technology: A Case Study of Automotive Airbags in the U.S. Light-Duty Vehicle Market with Implications for Future Automobile and Light Truck Regulation  

E-Print Network (OSTI)

Cir. 1972). Motor Vehicle Manufacturers Association of theon the vehicle model and manufacturer. [31] An additionalgreatly across manufacturers and vehicle segments leading to

Abeles, Ethan

2004-01-01T23:59:59.000Z

430

The Ability of Automakers to Introduce a Costly, Regulated New Technology: A Case Study of Automotive Airbags in the U.S. Light-Duty Vehicle Market with Implications for Future Automobile and Light Truck Regulation  

E-Print Network (OSTI)

Ford GM DeLorean1 AMC Toyota Amer. Insur. Assoc. NationwideAge, 6 May 2002, p. 1. “Toyota Plans Lots More HybridDOT, NHTSA, Washington, D.C. Toyota Motor Sales, USA, Inc. (

Abeles, Ethan

2004-01-01T23:59:59.000Z

431

Truck and rail charges for shipping spent fuel and nuclear waste  

SciTech Connect

The Pacific Northwest Laboratory developed techniques for calculating estimates of nuclear-waste shipping costs and compiled a listing of representative data that facilitate incorporation of reference shipping costs into varius logistics analyses. The formulas that were developed can be used to estimate costs that will be incurred for shipping spent fuel or nuclear waste by either legal-weight truck or general-freight rail. The basic data for this study were obtained from tariffs of a truck carrier licensed to serve the 48 contiguous states and from various rail freight tariff guides. Also, current transportation regulations as issued by the US Department of Transportation and the Nuclear Regulatory Commission were investigated. The costs that will be incurred for shipping spent fuel and/or nuclear waste, as addressed by the tariff guides, are based on a complex set of conditions involving the shipment origin, route, destination, weight, size, and volume and the frequency of shipments, existing competition, and the length of contracts. While the complexity of these conditions is an important factor in arriving at a ''correct'' cost, deregulation of the transportation industry means that costs are much more subject to negotiation and, thus, the actual fee that will be charged will not be determined until a shipping contract is actually signed. This study is designed to provide the baseline data necessary for making comparisons of the estimated costs of shipping spent fuel and/or nuclear wastes by truck and rail transportation modes. The scope of the work presented in this document is limited to the costs incurred for shipping, and does not include packaging, cask purchase/lease costs, or local fees placed on shipments of radioactive materials.

McNair, G.W.; Cole, B.M.; Cross, R.E.; Votaw, E.F.

1986-06-01T23:59:59.000Z

432

Kinetic studies of competitive adsorption processes related to automobile catalytic converters  

DOE Green Energy (OSTI)

This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The goal of this project was to study the microscopic details for the adsorption of CO, NO, and O{sub 2} on transition metal surfaces under conditions resembling those present in automobile catalytic converters. Initial sticking coefficients were measured as a function of temperature on transition metal single crystals by using a method originally developed by King and Wells. These measurements were performed under conditions emulating those typical of competitive adsorption, namely, where the substrate is exposed to a mixture of two or more gases simultaneously, or where one molecule is adsorbed on the surface prior to exposure to the second gas. The experimental results were then analyzed by using Monte Carlo computer simulation algorithm in an attempt to better understand the relevant aspects of the adsorption process.

Zaera, F. [Univ. of California, Riverside, CA (United States). Dept. of Chemistry; Paffett, M.T. [Los Alamos National Lab., NM (United States)

1998-12-31T23:59:59.000Z

433

21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006  

NLE Websites -- All DOE Office Websites (Extended Search)

ACKNOWLEDGEMENTS ACKNOWLEDGEMENTS The 21 st Century Truck Partnership would like to acknowledge the time and resource investment that all our partners have made in developing this roadmap and technical white paper document, and in remaining committed to the goals and objectives outlined herein. We would also like to extend our appreciation to the industry and government teams that produced the individual technical white papers, and the leaders of those teams who are listed below. Engines: Ron Graves (Oak Ridge National Laboratory) with Dennis Siebers (Sandia National Laboratories) Hybrids: Terry Penney (National Renewable Energy Laboratory) Parasitic Losses: Jud Virden (Pacific Northwest National Laboratory) Idle Reduction: Glenn Keller (Argonne National Laboratory)

434

APBF-DEC NOx Adsorber/DPF Project: SUV / Pick-up Truck Platform  

DOE Green Energy (OSTI)

The objective of this project is to determine the influence of diesel fuel composition on the ability of NOX adsorber catalyst (NAC) technology, in conjunction with diesel particle filters (DPFs), to achieve stringent emissions levels with a minimal fuel economy impact. The test bed for this project was intended to be a light-duty sport utility vehicle (SUV) with a goal of achieving light-duty Tier 2-Bin 5 tail pipe emission levels (0.07 g/mi. NOX and 0.01 g/mi. PM). However, with the current US market share of light-duty diesel applications being so low, no US 2002 model year (MY) light-duty truck (LDT) or SUV platforms equipped with a diesel engine and having a gross vehicle weight rating (GVWR) less than 8500 lb exist. While the current level of diesel engine use is relatively small in the light-duty class, there exists considerable potential for the diesel engine to gain a much larger market share in the future as manufacturers of heavy light-duty trucks (HLDTs) attempt to offset the negative impact on cooperate average fuel economy (CAFE) that the recent rise in market share of the SUVs and LDTs has caused. The US EPA Tier 2 emission standards also contain regulation to prevent the migration of heavy light-duty trucks and SUV's to the medium duty class. This preventive measure requires that all medium duty trucks, SUV's and vans in the 8,500 to 10,000 lb GVWR range being used as passenger vehicles, meet light-duty Tier 2 standards. In meeting the Tier 2 emission standards, the HLDTs and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. Because the MDPV is the closest weight class and application relative to the potential upcoming HLDTs and SUV's, a weight class compromise was made in this program to allow the examination of using a diesel engine with a NAC-DPF system on a 2002 production vehicle. The test bed for this project is a 2500 series Chevrolet Silverado equipped with a 6.6L Duramax diesel engine certified to 2002 MY Federal heavy-duty and 2002 MY California medium-duty emission standards. The stock vehicle included cooled air charge (CAC), turbocharger (TC), direct fuel injection (DFI), oxidation catalyst (OC), and exhaust gas recirculation (EGR)

Webb, C; Weber, P; Thornton,M

2003-08-24T23:59:59.000Z

435

SCR SYSTEMS FOR HEAVY DUTY TRUCKS: PROGRESS TOWARDS MEETING EURO 4 EMISSION STANDARDS IN 2005  

DOE Green Energy (OSTI)

Emissions of diesel engines contain some components, which support the generation of smog and which are classified hazardous. Exhaust gas aftertreatment is a powerful tool to reduce the NOx and Particulate emissions. The NOx-emission can be reduced by the SCR technology. SCR stands for Selective Catalytic Reduction. A reduction agent has to be injected into the exhaust upstream of a catalyst. On the catalyst the NOx is reduced to N2 (Nitrogen) and H2O (Water). This catalytic process was developed in Japan about 30 years ago to reduce the NOx emission of coal-fired power plants. The first reduction agent used was anhydrous ammonia (NH3). SCR technology was used with diesel engines starting mid of the 80s. First applications were stationary operating generator-sets. In 1991 a joint development between DaimlerChrysler, MAN, IVECO and Siemens was started to use SCR technology for the reduction of heavy duty trucks. Several fleet tests demonstrated the durability of the systems. To day, SCR technology is the most promising technology to fulfill the new European Regulations EURO 4 and EURO 5 being effective Oct. 2005 and Oct. 2008. The efficient NOx reduction of the catalyst allows an engine calibration for low fuel consumption. DaimlerChrysler decided to use the SCR technology on every heavy duty truck and bus in Europe and many other truck manufacturers will introduce SCR technology to fulfill the 2005 emission regulation. The truck manufacturers in Europe agreed to use aqueous solution of Urea as reducing agent. The product is called AdBlue. AdBlue is a non toxic, non smelling liquid. The consumption is about 5% of the diesel fuel consumption to reduce the NOx emissions. A small AdBlue tank has to be installed to the vehicle. With an electronically controlled dosing system the AdBlue is injected into the exhaust. The dosing system is simple and durable. It has proven its durability during winter and summer testing as well as in fleet tests. The infrastructure for AdBlue is under evaluation in Europe by Urea Producers and Mineral Oil companies to be readily available in time. Urea is one of the most common chemical products in the world and the production and the distribution very much experienced. However, a pure grade is needed for automotive application and requires special attention.

Frank, W; Huethwohl, G; Maurer, B

2003-08-24T23:59:59.000Z

436

Selection of Light Duty Truck Engine Air Systems Using Virtual Lab Tests  

DOE Green Energy (OSTI)

An integrated development approach using seasoned engine technology methodologies, virtual lab parametric investigations, and selected hardware verification tests reflects today's state-of-the-art R&D trends. This presentation will outline such a strategy. The use of this ''Wired'' approach results in substantial reduction in the development cycle time and hardware iterations. An example showing the virtual lab application for a viable design of the air-exhaust-turbocharger system of a light duty truck engine for personal transportation will be presented.

Zhang, Houshun

2000-08-20T23:59:59.000Z

437

Combustion Commonality and Differences Between HSDI and Heavy Duty Truck Engines  

DOE Green Energy (OSTI)

Experimental understanding of the diesel spray and combustion process at the fundamental level has helped advance the virtual lab simulation tools. The computational fluid dynamics (CFD)-based simulation has been globally verified in many engines, providing substantial credibility to the use of this technology in advanced engine development. This paper highlights the common aspects and differences between the smallbore HSDI and the larger displacement heavy-duty truck engine spray and combustion processes. Implications for combustion system strategies will be delineated. Detroit Diesel integrated ''Wired'' approach will be explained with pointers towards future tool enhancements.

Chen, Rong

2000-08-20T23:59:59.000Z

438

Statistical description of heavy truck accidents on representative segments of interstate highway  

SciTech Connect

Any quantitative analysis of the risk of transportation accidents requires the use of many different statistical distributions. Included among these are the types of accidents which occur and the severity of these when they do occur. Several previous studies have derived this type of information for truck traffic over U. S. highways in general; these data are not necessarily applicable for the anticipated LMFBR spent fuel cask routes. This report presents data for highway segments representative of the specific LMFBR cask routes which are anticipated. These data are based upon a detailed record-by-record review of filed reports for accidents which occurred along the specified route segments.

Hartman, W.F.; Davidson, C.A.; Foley, J.T.

1977-01-01T23:59:59.000Z

439

Fuel Economy Standards for New Light Trucks (released in AEO2007)  

Reports and Publications (EIA)

In March 2006, NHTSA finalized CAFE standards requiring higher fuel economy performance for light-duty trucks in MY 2008 through 2011. Unlike the proposed CAFE standards discussed in AEO2006 [13], which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

Information Center

2007-02-22T23:59:59.000Z

440

Advanced Hybrid Propulsion and Energy Management System for High Efficiency, Off Highway, 240 Ton Class, Diesel Electric Haul Trucks  

DOE Green Energy (OSTI)

The objective of this project is to reduce the fuel consumption of off-highway vehicles, specifically large tonnage mine haul trucks. A hybrid energy storage and management system will be added to a conventional diesel-electric truck that will allow capture of braking energy normally dissipated in grid resistors as heat. The captured energy will be used during acceleration and motoring, reducing the diesel engine load, thus conserving fuel. The project will work towards a system validation of the hybrid system by first selecting an energy storage subsystem and energy management subsystem. Laboratory testing at a subscale level will evaluate these selections and then a full-scale laboratory test will be performed. After the subsystems have been proven at the full-scale lab, equipment will be mounted on a mine haul truck and integrated with the vehicle systems. The integrated hybrid components will be exercised to show functionality, capability, and fuel economy impacts in a mine setting.

Richter, Tim; Slezak, Lee; Johnson, Chris; Young, Henry; Funcannon, Dan

2008-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO MACK TRUCKS, INC. UNDER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 2006 14:16 FR IPL DOE CH 630 252 2779 TO AGCP-HQ P.02/03 4 2006 14:16 FR IPL DOE CH 630 252 2779 TO AGCP-HQ P.02/03 * 0 STATEMENT OF CONSIDERATIONS ADVANCE WAIVER OF PATENT RIGHTS TO MACK TRUCKS, INC. UNDER NREL SUBCONTRACT NO. ZCI-4-32049-01, UNDER DOE PRIME CONTRACT NO. DE-AC36-98GO10337 FOR DEVELOPMENT OF THE NEXT GENERATION NATURAL GAS VEHICLE, PHASE II; CH-1185; W(A)-04-016 Mack Trucks, Inc. (Mack) has petitioned for an advance waiver of domestic and foreign patent rights to inventions conceived or first actually reduced to practice under DOE Contract No. NREL-ZC:-4-32049-01. This advance waiver is intended to apply to all subject inventions of Mack's employees and those of its subcontractors, regardless of tier except subcontractors eligible to obtain title pursuant to P.L. 96-517 as amended, and National Laboratories.

442

Analysis of the risk of transporting uranium ore concentrates by truck  

SciTech Connect

This report evaluates the risks involved with shipping uranium ore concentrates by truck in an attempt to provide some perspective on the system safety issues. The basic probabilistic risk evaluation methodology used in this study is similar to that employed by Pacific Northwest Laboratory (PNL) in a series of risk analyses on the transportation of potentially hazardous energy materials. The risk model has been constructed as a series of separate analysis steps to allow the system risk to be readily reevaluated as additional data become available or as postulated system characteristics change. The reslts of this analysis show that the risks to the public health and safety from yellowcake releases during a transportation accident are insignificant. Accidents involving truck shipments of yellowcake are expected to occur at a rate of about ten a year. However, only one-fifth of these accidents, or about two a year, are expected to cause a release of yellowcake to the environment. None of these accidents was estimated to produce any potential fatalities. The low concentration of radioactivity distributed throughout the material resulted in no significant increase in radiation doses above normal background levels to members of the general public.

Geffen, C.A.

1981-07-01T23:59:59.000Z

443

Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks  

DOE Green Energy (OSTI)

In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel efficiency slightly. Fuel efficiency also decreases significantly with speed, but only for light and medium loads. For medium-heavy and heavy, FE is almost constant for speeds ranging from 57 to about 66 mph. For speeds higher than 66 mph, the FE decreases with speed, but at a lower rate than for light and medium loads. Statistical analyses that compared the fuel efficiencies obtained when the vehicles were traveling at 59 mph vs. those achieved when they were traveling at 65 mph or 70 mph indicated that the former were, on average, higher than the latter. This result was statistically significant at the 99.9% confidence level (note: the Type II error i.e., the probability of failing to reject the null hypothesis when the alternative hypothesis is true was 18% and 6%, respectively).

Franzese, Oscar [ORNL; Davidson, Diane [ORNL

2011-11-01T23:59:59.000Z

444

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Transportation sector energy consumption Transportation sector energy consumption Overview Energy use in the transportation sector includes energy consumed in moving people and goods by road, rail, air, water, and pipeline. The road transport component includes light-duty vehicles, such as automobiles, sport utility vehicles, minivans, small trucks, and motorbikes, as well as heavy-duty vehicles, such as large trucks used for moving freight and buses for passenger travel. Growth in economic activity and population are the key factors that determine transportation sector energy demand. In developing economies, increased economic activity leads to growing income per capita; and as standards of living rise, demand for personal transportation increases. Over the next 25 years, demand for liquid fuels increases more rapidly in

445

Environmental Life-cycle Assessment of Passenger Transportation An Energy, Greenhouse Gas, and Criteria Pollutant Inventory of Rail and Air Transportation  

E-Print Network (OSTI)

Pollutant Inventories of Automobiles, Buses, Light Rail,Heavy Rail and Air, University of California, Berkeley,of Passenger Transportation: Rail and Air Arpad Horvath,

Horvath, Arpad; Chester, Mikhail

2008-01-01T23:59:59.000Z

446

Environmental Life-cycle Assessment of Passenger Transportation An Energy, Greenhouse Gas, and Criteria Pollutant Inventory of Rail and Air Transportation  

E-Print Network (OSTI)

Selection in Life-Cycle Inventories Using Hybrid Approaches,and Criteria Pollutant Inventories of Automobiles, Buses,Criteria Pollutant Inventory of Rail and Air Transportation

Horvath, Arpad; Chester, Mikhail

2008-01-01T23:59:59.000Z

447

The Transportation Greenhouse Gas Inventory: A First Step Toward City-Driven Emissions Rationalization  

E-Print Network (OSTI)

and Criteria Pollutnat Inventories of Automobiles, Buses,Transportation Greenhouse Gas Inventory: A First Step TowardTransportation Greenhouse Gas Inventory: A First Step toward

Ganson, Chris

2008-01-01T23:59:59.000Z

448

Application of the New City-Suburban Heavy Vehicle Route (CSHVR) to Truck Emissions Characterization  

DOE Green Energy (OSTI)

Speed-time and video data were tractor-trailers performing local deliveries in logged for Akron, OH. and Richmond, VA. in order to develop an emissions test schedule that represented real truck use. The data bank developed using these logging techniques was used to create a Yard cycle, a Freeway cycle and a City-Suburban cycle by the concatenation of microtrips. The City-Suburban driving cycle was converted to a driving route, in which the truck under test would perform at maximum acceleration during certain portions of the test schedule. This new route was used to characterize the emissions of a 1982 Ford tractor with a Cummins 14 liter, 350 hp engine and a 1998 International tractor with a Cummins 14 liter, 435 hp engine. Emissions levels were found to be repeatable with one driver and the drier-to-driver variation of NO{sub x} was under 4%, although the driver-to driver variations of CO and PM were higher. Emissions levels of NO{sub x} for the Ford tractor at a test weight of 46,400 lb. u sing the CSHVR were comparable with values obtained using the WVU 5 mile route and the EPA Urban Dynamometer Driving Schedule for Heavy Duty Vehicles (''Test D''). The PM missions were slightly higher for the CSHVR than the 5 mile route and Test D. The effect of test weight on emissions, in units of mass/distance, was assessed using the International tractor with the CSHVR at 26,000, 36,000 and 46,400 lb. test weights. Variation of all regulated exhaust emissions was small between test weights, although the CO{sub 2} level reflected the additional energy used at higher weights. The small variation in regulated emissions may be attributed to the fact that in all three cases, the route called for full power operation of the vehicle, and that PM puff associated with gear shifting would be similar. It is concluded that the CSHVR represents a useful and realistic test schedule for truck emissions characterization.

Nigel N. Clark; James J. Daley; Ralph D. Nine; Christopher M. Atkinson

1999-05-03T23:59:59.000Z

449

Crack Width Analysis of Floor Slabs from Hyster 550 FS Lift Truck with 55 Kip Pay Load  

Science Conference Proceedings (OSTI)

This calculation determines the probable crack width experienced by the slab on grade floor at Building 2404WA from a Hyster 550 FS lift truck having tire pressures of 124 psi while moving and placing Standard Waste Disposal Boxes within the building.

BLACK, D.G.

2003-06-05T23:59:59.000Z

450

Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site  

Science Conference Proceedings (OSTI)

Since 1980, over 651,558 m{sup 3} (23,000,000 ft{sup 3}) of low-level radioactive waste (LLW) have been disposed of at the Nevada Test Site (NTS) by shallow land burial. Since 1988, the majority of this waste has been generated at other United States (U.S.) Department of Energy (DOE) and Department of Defense (DoD) sites and facilities in the U.S. Between fiscal year (FY) 2002 and the publication date, the volumes of LLW being shipped by truck to the NTS increased sharply with the accelerated closure of DOE Environmental Management (EM) Program sites (DOE, 2002). The NTS is located 105 km (65 mi) northwest of Las Vegas, Nevada, in the U.S. There continue to be public concerns over the safety of LLW shipments to the NTS. They can be broadly divided into two categories: (1) the risk of accidents involving trucks traveling on public highways; and (2) whether residents along transportation routes receive cumulative exposure from individual LLW shipments that pose a long-term health risk. The DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is a perceived risk from members of the public about cumulative exposure, particularly when ''Main Street'' and the routes being used by LLW trucks are one in the same. To provide an objective assessment of gamma radiation exposure to members of the public from LLW transport by truck, the Desert Research Institute (DRI) and the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) established a stationary and automated array of four pressurized ion chambers (PICs) in a vehicle pullout for LLW trucks to pass through just outside the entrance to the NTS. The PICs were positioned at a distance of 1.0 m (3.3 ft) from the sides of the truck trailer and at a height of 1.5 m (5.0 ft) to simulate conditions that a member of the public (Turner, 1995) might experience if a truck were to pass while the person was on the side of the road, or if a truck were to come to a stop at a stoplight in one of the smaller towns along the transportation routes. The 1.0-m (3.3-ft) distance also allowed for comparison with gamma readings of trucks taken with portable, hand-held instruments at the two LLW disposal sites at the NTS: the Area 5 Radioactive Waste Management Complex (RWMC) and the Area 3 Radioactive Waste Management Site (RWMS). The purpose in automating the system was to provide the most objective and consistent measurement and calculation of radiation exposure from the trucks possible. The array was set up in November 2002 and equipment was tested and calibrated over the next two months. Data collection on trucks began on February 13, 2003, and continued to the end of December 2003. In all, external gamma readings were collected from 1,012 of the 2,260 trucks that delivered LLW to the NTS during this period. Because DOE could not contractually require waste generators to participate in the study, the database is biased toward voluntary participants; however, data were collected from the 10 generators that represented 92 percent of the LLW shipments to the NTS during the study period, with another eight generators accounting for the balance of the shipments. Because of the voluntary nature of the participation, the identity of the waste generators is not used in the report. Previous studies on potential exposure to the public from transporting LLW to the NTS either relied on calculated exposures (Davis et al., 2002) or was based on a small population of trucks (e.g., 88) where a relatively high-background value of 50 microRoentgens per hour (R/h) (background value measured at the LLW disposal sites) were subtracted from the gross reading of the truck trailer as measured by portable, handheld instruments (Gertz, 2001). The dataset that resulted from the DRI study is the largest collection of measurements of LLW trucks in transit of which the authors are aware.

J. Miller; D. Shafer; K. Gray; B. Church; S. Campbell; B. Holz

2005-08-01T23:59:59.000Z

451

Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site  

Science Conference Proceedings (OSTI)

Since 1980, over 651,558 m{sup 3} (23,000,000 ft{sup 3}) of low-level radioactive waste (LLW) have been disposed of at the Nevada Test Site (NTS) by shallow land burial. Since 1988, the majority of this waste has been generated at other United States (U.S.) Department of Energy (DOE) and Department of Defense (DoD) sites and facilities in the U.S. Between fiscal year (FY) 2002 and the publication date, the volumes of LLW being shipped by truck to the NTS increased sharply with the accelerated closure of DOE Environmental Management (EM) Program sites (DOE, 2002). The NTS is located 105 km (65 mi) northwest of Las Vegas, Nevada, in the U.S. There continue to be public concerns over the safety of LLW shipments to the NTS. They can be broadly divided into two categories: (1) the risk of accidents involving trucks traveling on public highways; and (2) whether residents along transportation routes receive cumulative exposure from individual LLW shipments that pose a long-term health risk. The DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is a perceived risk from members of the public about cumulative exposure, particularly when ''Main Street'' and the routes being used by LLW trucks are one in the same. To provide an objective assessment of gamma radiation exposure to members of the public from LLW transport by truck, the Desert Research Institute (DRI) and the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) established a stationary and automated array of four pressurized ion chambers (PICs) in a vehicle pullout for LLW trucks to pass through just outside the entrance to the NTS. The PICs were positioned at a distance of 1.0 m (3.3 ft) from the sides of the truck trailer and at a height of 1.5 m (5.0 ft) to simulate conditions that a member of the public (Turner, 1995) might experience if a truck were to pass while the person was on the side of the road, or if a truck were to come to a stop at a stoplight in one of the smaller towns along the transportation routes. The 1.0-m (3.3-ft) distance also allowed for comparison with gamma readings of trucks taken with portable, hand-held instruments at the two LLW disposal sites at the NTS: the Area 5 Radioactive Waste Management Complex (RWMC) and the Area 3 Radioactive Waste Management Site (RWMS). The purpose in automating the system was to provide the most objective and consistent measurement and calculation of radiation exposure from the trucks possible. The array was set up in November 2002 and equipment was tested and calibrated over the next two months. Data collection on trucks began on February 13, 2003, and continued to the end of December 2003. In all, external gamma readings were collected from 1,012 of the 2,260 trucks that delivered LLW to the NTS during this period. Because DOE could not contractually require waste generators to participate in the study, the database is biased toward voluntary participants; however, data were collected from the 10 generators that represented 92 percent of the LLW shipments to the NTS during the study period, with another eight generators accounting for the balance of the shipments. Because of the voluntary nature of the participation, the identity of the waste generators is not used in the report. Previous studies on potential exposure to the public from transporting LLW to the NTS either relied on calculated exposures (Davis et al., 2002) or was based on a small population of trucks (e.g., 88) where a relatively high-background value of 50 microRoentgens per hour ({micro}R/h) (background value measured at the LLW disposal sites) were subtracted from the gross reading of the truck trailer as measured by portable, handheld instruments (Gertz, 2001). The dataset that resulted from the DRI study is the largest collection of measurements of LLW trucks in transit of which the authors are aware.

Miller, J; Shafer, D; Gray, K; Church, B; Campbell, S; Holtz, B.

2005-08-15T23:59:59.000Z

452

EFFECT OF IMPACT LIMITER MATERIAL DEGRATION ON STRUCTURAL INTEGRITY OF 9975 PACKAGE SUBJECTED TO TWO FORKLIFT TRUCK IMPACT  

SciTech Connect

This paper evaluates the effect of the impact limiter material degradation on the structural integrity of the 9975 package containment vessel during a postulated accident event of forklift truck collision. The analytical results show that the primary and secondary containment vessels remain structurally intact for Celotex material degraded to 20% of the baseline value.

Wu, T

2007-07-09T23:59:59.000Z

453

Evaluation of three catalysts formulated for methane oxidation on a cng-fueled pickup truck. Technical report  

Science Conference Proceedings (OSTI)

The report describes the exhaust emission results obtained from the evaluation of three specialized methane catalytic converters supplied by three different catalysts manufacturers. The catalytic converters were evaluated using a compressed natural gas-fueled Dodge Dakota pickup truck. The report includes a description of the catalytic converters, the test vehicle, test facilities and test procedures.

Piotrowski, G.K.; Schaefer, R.M.

1993-12-01T23:59:59.000Z

454

STATEMENT OF CONSIDERATIONS REQUEST BY MACK TRUCKS, INC FOR AN ADVANCE WAIVER OF DOMESTIC AND  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INC FOR AN ADVANCE WAIVER OF DOMESTIC AND INC FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE- FC26-05NT42417 W(A)-05-042, CH-1324 The Petitioner, Mack Trucks, Inc. (Mack), was awarded a cooperative agreement for the performance of work entitled, "Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Applications." The purpose of the cooperative agreement is to demonstrate a minimum of 15% fuel economy improvement with emissions meeting the 2010 EPA regulation. Mack Tracks will be establishing the base engine, developing engine management system for air-power-assist engine and ensuring the conduction of steady-state engine tests. Mack will also evaluate the commercial viability of variable valve

455

RadEducationPosterTrucks_11-7-13_final_print-ready  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOT Maximum Dose Limit: Service Attendants DOT Maximum Dose Limit: Service Attendants U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office Protecting Against Radiation Exposure All U.S. Department of Energy activities are performed in a manner that protects workers and the public from harmful exposure to radiation. In addition, packaging and transportation of all radioactive materials must be conducted in accordance with U.S. Department of Transportation (DOT) regulations.* *10 CFR Part 71 and 49 CFR 1910 DOT Maximum Dose Limits: "Closed" Exclusive-Use Vehicle At contact - Waste package inside trailer (Direct contact prohibited) 1,000 mrem/hour Driver in cab 2 mrem/hour At 2 meters (6.6 feet) 10 mrem/hour At contact - Truck 200 mrem/hour For 15 minutes of exposure

456

Heavy-Duty Truck Idle Reduction Technology Demonstations - 2005 Status Report  

NLE Websites -- All DOE Office Websites (Extended Search)

June 30, 2006 June 30, 2006 Heavy-Duty Truck Idle Reduction Technology Demonstrations 2005 Status Report Fred Wagner Energetics Incorporated NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

457

Stress Analysis of Floor Slab from Hyster 550 FS Lift Truck with 55 Kip Pay Load  

Science Conference Proceedings (OSTI)

The objective of this calculation is to determine the probable moments and stresses that will be induced into the slab on grade floor at building 2404WA from operation of a Hyster 550 FS lift truck having tire pressures of 124 psi while moving and placing SWDB boxes within building 2404WA. It was found that the probable reinforcing steel stress induced in the grade 60 reinforcing steel for the 124 psi tire pressure is about 35.55 ksi and the factor of safety against yield is about 1.7:l. The probable maximum concrete compression stress is expected to be about 2.21 ksi resulting in a factor of safety of about 2.04:1 against concrete compression failure. Slab on grade design is not subject to building code factors of safety requirements.

BLACK, D.G.

2003-06-05T23:59:59.000Z

458

DEVELOPMENT OF UREA-SCR FOR HEAVY-DUTY TRUCKS DEMONSTRATION UPDATE  

DOE Green Energy (OSTI)

This study included engine cell and vehicle tests. The engine cell tests are aimed at determining NOX reduction using the US transient and OICA emissions test cycles. These cycles will be included in future US HD emissions standards. The vehicle tests will show urea-SCR system performance during real-world operation. These tests will prove that the technology can be successfully implemented and demonstrated over-the-road. The program objectives are to: (a) apply urea-SCR to a US HD diesel engine; (b) determine engine cell emissions reduction during US-transient and OICA cycles; (c) apply urea-SCR to a US HD diesel truck; and (d) determine NOX reduction and urea consumption during over-the-road operation.

Miller, William

2000-08-20T23:59:59.000Z

459

Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power  

DOE Green Energy (OSTI)

The following report documents the progress of the Cummins Power Generation (CPG) Diesel Fueled SOFC for Class 7/Class 8 On-Highway Truck Auxiliary Power (SOFC APU) development and final testing under the U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) contract DE-FC36-04GO14318. This report overviews and summarizes CPG and partner development leading to successful demonstration of the SOFC APU objectives and significant progress towards SOFC commercialization. Significant SOFC APU Milestones: Demonstrated: Operation meeting SOFC APU requirements on commercial Ultra Low Sulfur Diesel (ULSD) fuel. SOFC systems operating on dry CPOX reformate. Successful start-up and shut-down of SOFC APU system without inert gas purge. Developed: Low cost balance of plant concepts and compatible systems designs. Identified low cost, high volume components for balance of plant systems. Demonstrated efficient SOFC output power conditioning. Demonstrated SOFC control strategies and tuning methods.

Vesely, Charles John-Paul [Cummins Power Generation; Fuchs, Benjamin S. [Cummins Power Generation; Booten, Chuck W. [Protonex Technology, LLC

2010-03-31T23:59:59.000Z

460

Evaluation of the adequacy of the 2000P test vehicle as a surrogate for light truck subclasses  

E-Print Network (OSTI)

This study evaluated the adequacy of the 2000P test vehicle as a surrogate for light truck subclasses. The National Cooperative Highway Research Program (NCHRP) Report 350 recommended the use of a 3/4-ton (approximately 2000 kg) pickup as the surrogate for all light truck subclasses. This standard test vehicle, the 3/4-ton pick-up truck (designated as the 2000P test vehicle in NCHRP Report 350) replaced the 2040 kg (4500 lb) passenger car which till its replacement in 1993, was the standard test vehicle of that weight class for all formal vehicle crash testing procedures. The study approach consisted of the following main tasks:, 1. Identification and comparison of key vehicle parameters. 2.literature review. 3.Statistical study 4. Simulation study. 5.Synthesize results. 6.Prepare thesis. In the initial part of the study key vehicle parameters were identified and used in a preliminary assessment of the 2000P test vehicle. These parameters were then used as statistical variables in the statistical study undertaken. The HVOSM computer simulation program was then used to evaluate representatives of the larger light truck subclasses and the 2000P test vehicle on impact with selected roadside features. A comparison scheme developed using NCHRP Report 350 was then utilized in the evaluation of simulation results. Results were then synthesized and a thesis prepared on the surrogate sufficiency of the 2000P test vehicle. Drawbacks and limitations experienced during tasks were outlined as well as the contribution and significance of the entire study. A six year ceiling was recommended by the NCHRP Report 350 by Ross et al. (1993) for the purpose of vehicle selection for crash testing purposes. Hence this study focuses on the modern light truck fleet, model years 1990 through present.

Titus-Glover, Cyril James

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "automobiles trucks buses" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Comparison of global warming impacts of automobile air-conditioning concepts  

DOE Green Energy (OSTI)

The global warming impacts of conventional vapor compression automobile air conditioning using HFC-134a are compared with the potential impacts of four alternative concepts. Comparisons are made on the basis of total equivalent warming impact (TEWI) which accounts for the effects of refrigerant emissions, energy use to provide comfort cooling, and fuel consumed to transport the weight of the air conditioning system. Under the most favorable assumptions on efficiency and weight, transcritical compression using CO{sub 2} as the refrigerant and adsorption cooling with water and zeolite beds could reduce TEWI by up to 18%rlative to HFC-134a compression air conditioning. Other assumptions on weight and efficiency lead to significant increases in TEWI relative to HFC-134a, and it is impossible to determine which set of assumptios is valid from existing data, Neither Stirling cycle or thermoelectric cooling will reduce TEWI relative to EFC-134a. Brief comments are also made concerning technical barriers that must be overcome for succesful development of the new technologies.

NONE

1995-12-31T23:59:59.000Z

462

DESIGN & DEVELOPMENT OF E-TURBO FOR SUV AND LIGHT TRUCK APPLICATIONS  

DOE Green Energy (OSTI)

The purpose of the project is to develop an electronically controlled, electrically assisted turbocharging system, e-Turbo, for application to SUV and light truck class of passenger vehicles. Earlier simulation work had shown the benefits of e-Turbo system on increasing low-end torque and improving fuel economy. This paper will present further data from the literature to show that advanced turbocharging can enable diesel engine downsizing of 10-30% with 6-17% improvement in fuel economy. This is in addition to the fuel economy benefit that a turbocharged diesel engine offers over conventional gasoline engines. E-Turbo is necessary to get acceptable driving characteristics with downsized diesel engines. As a first step towards the development of this technology for SUV/light truck sized diesel engines (4-6 litre displacement), design concepts and hardware were evaluated for a smaller engine (2 litre displacement). It was felt that design and developments issues could be minimized, the concept proven progressively on the bench, on a small engine and then applied to a large Vee engine (one on each bank). After successful demonstration of the concept, large turbomachinery could be designed and built specifically for larger SUV sized diesel engines. This paper presents the results of development of e-Turbo for a 2 litre diesel engine. A detailed comparison of several electric assist technologies including permanent magnet, six-phase induction and conventional induction motor/generator technology was done. A comparison of switched reluctance motor technology was also done although detailed design was not carried out.

Balis, C; Middlemass, C; Shahed, SM

2003-08-24T23:59:59.000Z

463

CX-000781: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Technology Laboratory The project funds the deployment of compressed natural gas (CNG) refuse trucks and shuttle buses and the development of four CNG refueling locations....

464

U.S. DEPARTMENT OF ENERGY - NETL CATEGORICAL EXCLUSION (CX) DESIGNATIO...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trucks, Shuttle Buses and Infrastructure The project funds the deployment of 277 various CNG vehicles and the development of 4 unique CNG refueling locations. ADMINISTRATIVE...

465

CX-000957: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cities Area of Interest 4: The project funds the deployment of compressed natural gas (CNG) refuse trucks and shuttle buses and the development of four CNG refueling locations....

466

CX-001449: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Technology Laboratory The project funds the deployment of Compressed Natural Gas (CNG) refuse trucks and shuttle buses and the development of four CNG refueling locations....

467

Alternative Fuel Vehicles | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

the transit authority to maintain its service while reducing harmful emissions. From electric cars and propane vehicles to natural gas-powered buses and trucks that run on...

468

Energy News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

help participants better coordinate their efforts to expand the availability and use of electric cars, trucks and buses by discussing the infrastructure investments needed to...

469

Vehicle Technologies Office: Fact #636: August 16, 2010 Transportation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Use by Mode, 2008 Bar graph showing the transportation energy use by mode (buses, rail, pipeline, water, air, mediumheavy trucks, and light vehicles) for 2008. For more...

470

CX-000369: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-000369: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CX(s) Applied: A9, A11 Date: 12...

471

Annual Energy Outlook 2013 Early Release Reference Case  

U.S. Energy Information Administration (EIA)

... 2013 U.S. maximum production level of 9.6 million barrels per day in 1970 Transportation sector ... 2013 Freight trucks Buses Freight rail and ...

472

Trends in the size distribution, highway use, and consumption of gasoline and diesel fuels of the U.S. Commercial Truck Fleet, 1977-2002.  

SciTech Connect

This paper focuses on various major long-range (1977-2002, 1982-2002) U.S. commercial trucking trends by using U.S. Department of Commerce, Bureau of the Census Vehicle/Truck Inventory and Use Survey (VIUS/TIUS) data from this period, as well as selected 1977-2002 data from the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA) and the U.S. Department of Transportation, Federal Highway Administration's (FHWA's) Highway Statistics. Analyses are made of (1) overall passenger vehicle versus truck consumption patterns of gasoline and diesel fuel and (2) the population growth and fuels used by all commercial truck classes and selected truck types (single unit and combination). Selected vehicle miles traveled, gallons per vehicle miles traveled, and gallons per cargo ton-miles traveled trends, as well as the effect of cargo tons per truck on fuel consumption, are also assessed. In addition, long-range trends of related factors (such as long-haul mileages driven by heavy trucks) and their impacts on both reducing fuel consumption per cargo-ton-mile and the relative shares of total commercial fuel use among truck classes were examined. Results of these trends on U.S. petroleum consumption are identified. The effects of basic engineering design and performance, national Interstate highway construction legislation, national demographic trends (such as suburbanization), and changes in U.S. corporate operational requirements are discussed. Their impacts on both the long-distance hauling and shorter-distance urban and suburban delivery markets of the commercial trucking industry are highlighted.

Bertram, K. M.; Santini, D. J.; Anderson, J. L.; Vyas, A. D.

2008-01-01T23:59:59.000Z

473

CALIFORNIA INVESTMENT PLAN FOR THE  

E-Print Network (OSTI)

­ Residential use ­ Industrial and manufacturing ­ Commercial space heating ­ Transportation fuel (CNG/LNG) *US Refuse trucks Commercial fleets Semi-trucks School buses Delivery vans PHEVS are only clean

474

INVESTMENT PLAN FOR THE ALTERNATIVE AND  

E-Print Network (OSTI)

­ Residential use ­ Industrial and manufacturing ­ Commercial space heating ­ Transportation fuel (CNG/LNG) *US Refuse trucks Commercial fleets Semi-trucks School buses Delivery vans PHEVS are only clean

475

Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedes  

E-Print Network (OSTI)

Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation operat

476

http://tti.tamu.edu Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight  

E-Print Network (OSTI)

http://tti.tamu.edu Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation >>> Transportation operat > Freight traffic > Commodities > Travel time > Travel demand > http

477

Liquid natural gas as a transportation fuel in the heavy trucking industry. Third quarterly progress report, January 1, 1995--March 31, 1995  

DOE Green Energy (OSTI)

Investigations are underway concerning the use of liquid natural gas as a fuel for trucks. Progress is reported in the following areas: direct diesel replacement and short and long term storage.

Sutton, W.H.

1995-04-01T23:59:59.000Z

478

REQUEST BY VOLVO TRUCKS NORTH AMERICA, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I I Statement of Considerations REQUEST BY VOLVO TRUCKS NORTH AMERICA, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS IN SUBJECT INVENTIONS MADE IN THE COURSE OF OR UNDER UT-BATTELLE, LLC SUBCONTRACT NO. 4000010928, UNDER DOE PRIME CONTRACT DE-AC05-00OR22725; DOE WAIVER DOCKET W(A)-02-018; [ORO-770] Volvo Trucks North America, Inc. (VTNA) has made a request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under UT-Battelle, LLC Subcontract No. 4000010928 under Department of Energy (DOE) Contract DE-ACO5- 00OR22725. The scope of work of this project is to develop an operational Accelerated Endurance Test (AEC) for Class 8 Volvo Hood System fabricated partly or wholly from carbon fiber Sheet Molding Compound (SMC). It is expected that this system will result in

479

Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck  

Science Conference Proceedings (OSTI)

We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

Daw, C Stuart [ORNL; Gao, Zhiming [ORNL; Smith, David E [ORNL; LaClair, Tim J [ORNL; Pihl, Josh A [ORNL; Edwards, Kevin Dean [ORNL

2013-01-01T23:59:59.000Z

480

The Detroit Diesel DELTA Engine for Light Trucks and SUVs - Year 2000 Update  

DOE Green Energy (OSTI)

Detroit Diesel Corporation (DDC) is developing the DELTA 4.0L V6 engine, specifically for the North American light truck market. This market poses unique requirements for a diesel engine, necessitating a clean sheet engine design. DELTA was developed from a clean sheet of paper, with the first engine firing just 228 days later. The process began with a Quality Function Deployment (QFD) analysis, which prioritized the development criteria. The development process integrated a co-located, fully cross-functional team. Suppliers were fully integrated and maintained on-site representation. The first demonstration vehicle moved under its own power 12 weeks after the first engine fired. It was demonstrated to the automotive press 18 days later. DELTA has repeatedly demonstrated its ability to disprove historical North American diesel perceptions and compete directly with gasoline engines. This paper outlines the Generation 0.0 development process and briefly defines the engine. A brief indication of the Generation 0.5 development status is given.

Nabil S. Hakim; Charles E. Freese; Stanley P. Miller

2000-06-19T23:59:59.000Z