National Library of Energy BETA

Sample records for automation distribution smart

  1. DA (Distribution Automation) (Smart Grid Project) | Open Energy...

    Open Energy Info (EERE)

    DA (Distribution Automation) (Smart Grid Project) Jump to: navigation, search Project Name DA (Distribution Automation) Country Netherlands Coordinates 52.132633, 5.291266...

  2. Smart distribution systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jiang, Yazhou; Liu, Chen -Ching; Xu, Yin

    2016-04-19

    The increasing importance of system reliability and resilience is changing the way distribution systems are planned and operated. To achieve a distribution system self-healing against power outages, emerging technologies and devices, such as remote-controlled switches (RCSs) and smart meters, are being deployed. The higher level of automation is transforming traditional distribution systems into the smart distribution systems (SDSs) of the future. The availability of data and remote control capability in SDSs provides distribution operators with an opportunity to optimize system operation and control. In this paper, the development of SDSs and resulting benefits of enhanced system capabilities are discussed. Amore » comprehensive survey is conducted on the state-of-the-art applications of RCSs and smart meters in SDSs. Specifically, a new method, called Temporal Causal Diagram (TCD), is used to incorporate outage notifications from smart meters for enhanced outage management. To fully utilize the fast operation of RCSs, the spanning tree search algorithm is used to develop service restoration strategies. Optimal placement of RCSs and the resulting enhancement of system reliability are discussed. Distribution system resilience with respect to extreme events is presented. Furthermore, test cases are used to demonstrate the benefit of SDSs. Active management of distributed generators (DGs) is introduced. Future research in a smart distribution environment is proposed.« less

  3. Elforsk Smart grid programme (Smart Grid Project) | Open Energy...

    Open Energy Info (EERE)

    in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Grid Automation Transmission Smart Grid Projects - Grid Automation Distribution Smart Grid Projects...

  4. Highly Insulating Residential Windows Using Smart Automated Shading...

    Office of Environmental Management (EM)

    Highly Insulating Residential Windows Using Smart Automated Shading Highly Insulating Residential Windows Using Smart Automated Shading Addthis 1 of 3 Residential Smart Window with ...

  5. Demonstration project Smart Charging (Smart Grid Project) | Open...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Integrated System Smart Grid Projects - Home...

  6. Eprice (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Transmission Smart Grid Projects - Grid Automation Distribution...

  7. EDISON (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Smart Meter and AMI...

  8. DG Demonet Smart LV Grid (Smart Grid Project) | Open Energy Informatio...

    Open Energy Info (EERE)

    Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Integrated System Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Smart Meter and AMI...

  9. Belgium east loop active network management (Smart Grid Project...

    Open Energy Info (EERE)

    Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Grid Automation Transmission...

  10. CET2001 Customer Led Network Revolution (Smart Grid Project)...

    Open Energy Info (EERE)

    in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Home application Smart Grid Projects - Customer...

  11. EMPORA 1 + 2 EMobile Power Austria (Smart Grid Project) | Open...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Integrated System Smart Grid Projects - Specific...

  12. Stockholm Royal seaport prestudy phase (Smart Grid Project) ...

    Open Energy Info (EERE)

    in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Integrated System Smart Grid Projects - Home...

  13. Electrical vehicles impacts on the grids (Smart Grid Project...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Home application Smart Grid Projects - Customer...

  14. Smart

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ---5---12 CenterPoint Energy Houston Electric Case Study Smart meters are generating vast amounts of data, enabling new customer products and services. Smart meters are generating vast amounts of data, enabling new customer products and services. Solutions Improve Operating Efficiency and Customer Participation CenterPoint Energy Houston Electric (CenterPoint), a transmission and distribution service provider (TDSP) in Texas, is deploying smart metering technology and distribution automation

  15. Highly Insulating Residential Windows Using Smart Automated Shading |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Highly Insulating Residential Windows Using Smart Automated Shading Highly Insulating Residential Windows Using Smart Automated Shading Addthis 1 of 3 Residential Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 2 of 3 Residential Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 3 of 3

  16. Automation and security of Supply (Smart Grid Project) | Open...

    Open Energy Info (EERE)

    and security of Supply (Smart Grid Project) Jump to: navigation, search Project Name Automation and security of Supply Country Denmark Coordinates 56.26392, 9.501785 Loading...

  17. ETM (Distribution Network Automation on 10 kV cable line stations...

    Open Energy Info (EERE)

    ETM (Distribution Network Automation on 10 kV cable line stations) (Smart Grid Project) Jump to: navigation, search Project Name ETM (Distribution Network Automation on 10 kV cable...

  18. Distribution System planning for Smart Grids, ForskEL (Smart...

    Open Energy Info (EERE)

    Name Distribution System planning for Smart Grids, ForskEL Country Denmark Coordinates 56.26392, 9.501785 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type...

  19. DG Demonetz Validierung (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Missing content Broken link Other Additional Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution...

  20. Enhancing the Smart Grid: Integrating Clean Distributed and Renewable...

    Energy Savers [EERE]

    Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid ...

  1. World-wide distribution automation systems

    SciTech Connect (OSTI)

    Devaney, T.M.

    1994-12-31

    A worldwide power distribution automation system is outlined. Distribution automation is defined and the status of utility automation is discussed. Other topics discussed include a distribution management system, substation feeder, and customer functions, potential benefits, automation costs, planning and engineering considerations, automation trends, databases, system operation, computer modeling of system, and distribution management systems.

  2. Automation systems for Demand Response, ForskEL (Smart Grid Project...

    Open Energy Info (EERE)

    systems for Demand Response, ForskEL (Smart Grid Project) Jump to: navigation, search Project Name Automation systems for Demand Response, ForskEL Country Denmark Coordinates...

  3. Highly insulating Residential Windows Using Smart Automated Shading

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Christian Kohler, cjkohler@lbl.gov Steve Selkowitz, seselkowitz@lbl.gov Lawrence Berkeley National Laboratory Highly insulating Residential Windows Using Smart Automated Shading 2014 Building Technologies Office Peer Review 2 Project Summary Timeline: Start date: 4/1/2013 Planned end date: 3/31/2016 Key Milestones 1. Window designs meeting FOA targets 9/30/2013 2. Prototype window with integrated sensors, ENERGY STAR level performance 12/31/2013 Budget: Total DOE $ to date: $783k (FY13-FY14)

  4. Highly insulating Residential Windows Using Smart Automated Shading

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highly insulating Residential Windows Using Smart Automated Shading 2015 Building Technologies Office Peer Review Robert Hart, rghart@lbl.gov Stephen Selkowitz, seselkowitz@lbl.gov Lawrence Berkeley National Laboratory Kevin Gaul, GaulKJ@pella.com Pella Corporation Project Summary Timeline: Start date: 04/01/2013 Planned end date: 03/31/2016 Key Milestones 1. Measured thermal performance of static prototype windows is within 0.03 Btu/hr-ft2F (NFRC tolerance) of design specifications 09/30/2014

  5. Distributed connected wind farms (Smart Grid Project) | Open...

    Open Energy Info (EERE)

    Distributed connected wind farms (Smart Grid Project) Jump to: navigation, search Project Name Distributed connected wind farms Country Ireland Headquarters Location Kerry, Ireland...

  6. Distributed Automated Demand Response - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Distributed Automated Demand Response Lawrence Livermore ...

  7. Enhancing the Smart Grid: Integrating Clean Distributed and Renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation | Department of Energy Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid where utilities and consumers work together to alleviate congestion and meet growing energy demands. RDSI is working to facilitate this reality by focusing on the integration of on-site, clean distributed and renewable generation. Enhancing the Smart Grid: Integrating Clean

  8. Long Island Power Authority Smart Grid Demonstration Project...

    Open Energy Info (EERE)

    distribution and consumer systems, such as smart meters, distribution automation, distributed energy resources, and electric vehicle charging stations. The projecct will also...

  9. Impact of SolarSmart Subdivisions on SMUD's Distribution System

    SciTech Connect (OSTI)

    McNutt, P.; Hambrick, J.; Keesee, M.; Brown, D.

    2009-07-01

    This study analyzes the distribution impacts of high penetrations of grid-integrated renewable energy systems, specifically photovoltaic (PV) equipped SolarSmart Homes found in the Anatolia III Residential Community.

  10. Economic evaluation of distribution system smart grid investments

    SciTech Connect (OSTI)

    Onen, Ahmet; Cheng, Danling; Broadwater, Robert P.; Scirbona, Charlie; Cocks, George; Hamilton, Stephanie; Wang, Xiaoyu; Roark, Jeffrey

    2014-12-31

    This paper investigates economic benefits of smart grid automation investments. A system consisting of 7 substations and 14 feeders is used in the evaluation. Here benefits that can be quantified in terms of dollar savings are considered, termed hard dollar benefits. Smart Grid investment evaluations to be considered include investments in improved efficiency, more cost effective use of existing system capacity with automated switches, and coordinated control of capacitor banks and voltage regulators. These Smart Grid evaluations are sequentially ordered, resulting in a series of incremental hard dollar benefits. Hard dollar benefits come from improved efficiency, delaying large capital equipment investments, shortened storm restoration times, and reduced customer energy use. Analyses used in the evaluation involve hourly power flow analysis over multiple years and Monte Carlo simulations of switching operations during storms using a reconfiguration for restoration algorithm. The economic analysis uses the time varying value of the Locational Marginal Price. Algorithms used include reconfiguration for restoration involving either manual or automated switches and coordinated control involving two modes of control. Field validations of phase balancing and capacitor design results are presented. The evaluation shows that investments in automation can improve performance while at the same time lowering costs.

  11. Economic evaluation of distribution system smart grid investments

    SciTech Connect (OSTI)

    Onen, Ahmet; Cheng, Danling; Broadwater, Robert P.; Scirbona, Charlie; Cocks, George; Hamilton, Stephanie; Wang, Xiaoyu; Roark, Jeffrey

    2014-12-31

    This paper investigates economic benefits of smart grid automation investments. A system consisting of 7 substations and 14 feeders is used in the evaluation. Here benefits that can be quantified in terms of dollar savings are considered, termed “hard dollar” benefits. Smart Grid investment evaluations to be considered include investments in improved efficiency, more cost effective use of existing system capacity with automated switches, and coordinated control of capacitor banks and voltage regulators. These Smart Grid evaluations are sequentially ordered, resulting in a series of incremental hard dollar benefits. Hard dollar benefits come from improved efficiency, delaying large capital equipment investments, shortened storm restoration times, and reduced customer energy use. Analyses used in the evaluation involve hourly power flow analysis over multiple years and Monte Carlo simulations of switching operations during storms using a reconfiguration for restoration algorithm. The economic analysis uses the time varying value of the Locational Marginal Price. Algorithms used include reconfiguration for restoration involving either manual or automated switches and coordinated control involving two modes of control. Field validations of phase balancing and capacitor design results are presented. The evaluation shows that investments in automation can improve performance while at the same time lowering costs.

  12. Economic evaluation of distribution system smart grid investments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Onen, Ahmet; Cheng, Danling; Broadwater, Robert P.; Scirbona, Charlie; Cocks, George; Hamilton, Stephanie; Wang, Xiaoyu; Roark, Jeffrey

    2014-12-31

    This paper investigates economic benefits of smart grid automation investments. A system consisting of 7 substations and 14 feeders is used in the evaluation. Here benefits that can be quantified in terms of dollar savings are considered, termed “hard dollar” benefits. Smart Grid investment evaluations to be considered include investments in improved efficiency, more cost effective use of existing system capacity with automated switches, and coordinated control of capacitor banks and voltage regulators. These Smart Grid evaluations are sequentially ordered, resulting in a series of incremental hard dollar benefits. Hard dollar benefits come from improved efficiency, delaying large capital equipmentmore » investments, shortened storm restoration times, and reduced customer energy use. Analyses used in the evaluation involve hourly power flow analysis over multiple years and Monte Carlo simulations of switching operations during storms using a reconfiguration for restoration algorithm. The economic analysis uses the time varying value of the Locational Marginal Price. Algorithms used include reconfiguration for restoration involving either manual or automated switches and coordinated control involving two modes of control. Field validations of phase balancing and capacitor design results are presented. The evaluation shows that investments in automation can improve performance while at the same time lowering costs.« less

  13. Town of Danvers, MA Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    Smart Meters AMI Communications Systems 75 Home Area Networks Customer Web Portal In-Home Displays Distribution Automation Upgrades for 5 of 34 Circuits Distribution...

  14. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Distributed Generation

    SciTech Connect (OSTI)

    Singh, Ruchi; Vyakaranam, Bharat GNVSR

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of addition of renewable resources- solar and wind in the distribution system as deployed in the SGIG projects.

  15. An advanced power distribution automation model system

    SciTech Connect (OSTI)

    Niwa, Shigeharu; Kanoi, Minoru; Nishijima, Kazuo; Hayami, Mitsuo

    1995-12-31

    An advanced power distribution automation (APDA) model system has been developed on the present basis of the automated distribution systems in Japan, which have been used for remote switching operations and for urgent supply restorations during faults. The increased use of electronic apparatuses sensitive to supply interruption requires very high supply reliability, and the final developed system is expected to be useful for this purpose. The developed model system adopts pole circuit breakers and remote termination units connected through 64kbps optical fibers to the computer of the automated system in the control center. Immediate switching operations for supply restorations during faults are possible through the restoration procedures, prepared beforehand, by the computer and by fast telecommunications using optical fibers. So, protection by the feeder circuit breaker in the substation can be avoided, which would otherwise cause the blackout of the whole distribution line. The test results show the effectiveness of model the system: successful fault locations and reconfiguration for supply restoration including separation of the fault sections (without blackout for the ground faults and with a short period (within 1 s) of blackout for the short-circuit faults).

  16. Automated Vulnerability Detection for Compiled Smart Grid Software

    SciTech Connect (OSTI)

    Prowell, Stacy J; Pleszkoch, Mark G; Sayre, Kirk D; Linger, Richard C

    2012-01-01

    While testing performed with proper experimental controls can provide scientifically quantifiable evidence that software does not contain unintentional vulnerabilities (bugs), it is insufficient to show that intentional vulnerabilities exist, and impractical to certify devices for the expected long lifetimes of use. For both of these needs, rigorous analysis of the software itself is essential. Automated software behavior computation applies rigorous static software analysis methods based on function extraction (FX) to compiled software to detect vulnerabilities, intentional or unintentional, and to verify critical functionality. This analysis is based on the compiled firmware, takes into account machine precision, and does not rely on heuristics or approximations early in the analysis.

  17. Some characteristics of emerging distribution systems considering the smart grid initiative

    SciTech Connect (OSTI)

    Brown, Hilary E.; Suryanarayanan, Siddharth; Heydt, Gerald T.

    2010-06-15

    Modernization of the electric power system in the United States is driven by the Smart Grid Initiative. Many changes are planned in the coming years to the distribution side of the U.S. electricity delivery infrastructure to embody the idea of ''smart distribution systems.'' However, no functional or technical definition of a smart distribution system has yet been accepted by all. (author)

  18. A Distributed Intelligent Automated Demand Response Building Management System

    SciTech Connect (OSTI)

    Auslander, David; Culler, David; Wright, Paul; Lu, Yan; Piette, Mary

    2013-12-30

    The goal of the 2.5 year Distributed Intelligent Automated Demand Response (DIADR) project was to reduce peak electricity load of Sutardja Dai Hall at UC Berkeley by 30% while maintaining a healthy, comfortable, and productive environment for the occupants. We sought to bring together both central and distributed control to provide “deep” demand response1 at the appliance level of the building as well as typical lighting and HVAC applications. This project brought together Siemens Corporate Research and Siemens Building Technology (the building has a Siemens Apogee Building Automation System (BAS)), Lawrence Berkeley National Laboratory (leveraging their Open Automated Demand Response (openADR), Auto-­Demand Response, and building modeling expertise), and UC Berkeley (related demand response research including distributed wireless control, and grid-­to-­building gateway development). Sutardja Dai Hall houses the Center for Information Technology Research in the Interest of Society (CITRIS), which fosters collaboration among industry and faculty and students of four UC campuses (Berkeley, Davis, Merced, and Santa Cruz). The 141,000 square foot building, occupied in 2009, includes typical office spaces and a nanofabrication laboratory. Heating is provided by a district heating system (steam from campus as a byproduct of the campus cogeneration plant); cooling is provided by one of two chillers: a more typical electric centrifugal compressor chiller designed for the cool months (Nov-­ March) and a steam absorption chiller for use in the warm months (April-­October). Lighting in the open office areas is provided by direct-­indirect luminaries with Building Management System-­based scheduling for open areas, and occupancy sensors for private office areas. For the purposes of this project, we focused on the office portion of the building. Annual energy consumption is approximately 8053 MWh; the office portion is estimated as 1924 MWh. The maximum peak load

  19. Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid

    SciTech Connect (OSTI)

    Ghatikar, Girish; Mathieu, Johanna L.; Piette, Mary Ann; Kiliccote, Sila

    2010-06-02

    We present an Open Automated Demand Response Communications Specifications (OpenADR) data model capable of communicating real-time prices to electricity customers. We also show how the same data model could be used to for other types of dynamic pricing tariffs (including peak pricing tariffs, which are common throughout the United States). Customers participating in automated demand response programs with building control systems can respond to dynamic prices by using the actual prices as inputs to their control systems. Alternatively, prices can be mapped into"building operation modes," which can act as inputs to control systems. We present several different strategies customers could use to map prices to operation modes. Our results show that OpenADR can be used to communicate dynamic pricing within the Smart Grid and that OpenADR allows for interoperability with existing and future systems, technologies, and electricity markets.

  20. Category:Smart Grid Projects - Electric Distributions Systems...

    Open Energy Info (EERE)

    Systems" The following 13 pages are in this category, out of 13 total. A Atlantic City Electric Company Smart Grid Project Avista Utilities Smart Grid Project C...

  1. Model-centric distribution automation: Capacity, reliability, and efficiency

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Onen, Ahmet; Jung, Jaesung; Dilek, Murat; Cheng, Danling; Broadwater, Robert P.; Scirbona, Charlie; Cocks, George; Hamilton, Stephanie; Wang, Xiaoyu

    2016-02-26

    A series of analyses along with field validations that evaluate efficiency, reliability, and capacity improvements of model-centric distribution automation are presented. With model-centric distribution automation, the same model is used from design to real-time control calculations. A 14-feeder system with 7 substations is considered. The analyses involve hourly time-varying loads and annual load growth factors. Phase balancing and capacitor redesign modifications are used to better prepare the system for distribution automation, where the designs are performed considering time-varying loads. Coordinated control of load tap changing transformers, line regulators, and switched capacitor banks is considered. In evaluating distribution automation versus traditionalmore » system design and operation, quasi-steady-state power flow analysis is used. In evaluating distribution automation performance for substation transformer failures, reconfiguration for restoration analysis is performed. In evaluating distribution automation for storm conditions, Monte Carlo simulations coupled with reconfiguration for restoration calculations are used. As a result, the evaluations demonstrate that model-centric distribution automation has positive effects on system efficiency, capacity, and reliability.« less

  2. Integrated, Automated Distributed Generation Technologies Demonstration

    SciTech Connect (OSTI)

    Jensen, Kevin

    2014-09-30

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources

  3. US Recovery Act Smart Grid Projects - Electric Distributions...

    Open Energy Info (EERE)

    York New York 136,170,899 272,341,798 New Jersey El Paso Electric Smart Grid Project El Paso Texas 1,014,414 2,085,095 New Mexico Hawaii Electric Co. Inc. Smart Grid Project Oahu...

  4. VOLTTRON - An Intelligent Agent Platform for the Smart Grid

    SciTech Connect (OSTI)

    2013-10-23

    The distributed nature of the Smart Grid, such as responsive loads, solar and wind generation, and automation in the distribution system present a complex environment not easily controlled in a centralized manner.

  5. VOLTTRON - An Intelligent Agent Platform for the Smart Grid

    ScienceCinema (OSTI)

    None

    2014-06-12

    The distributed nature of the Smart Grid, such as responsive loads, solar and wind generation, and automation in the distribution system present a complex environment not easily controlled in a centralized manner.

  6. Distributed connected wind farms (Smart Grid Project) (Limerick...

    Open Energy Info (EERE)

    address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Display map Period Ma y 2009 Apr 2012 References EU Smart Grid Projects Map1 Overview This project comprises...

  7. Advanced Manufacturing Office: Smart Manufacturing Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Smart Manufacturing is a network data-driven process that combines innovative automation ... Smart Manufacturing is a network data-driven process that combines innovative automation ...

  8. Automated Energy Distribution and Reliability System Status Report

    SciTech Connect (OSTI)

    Buche, D. L.; Perry, S.

    2007-10-01

    This report describes Northern Indiana Public Service Co. project efforts to develop an automated energy distribution and reliability system. The purpose of this project was to implement a database-driven GIS solution that would manage all of the company's gas, electric, and landbase objects.

  9. Automated Energy Distribution and Reliability System (AEDR): Final Report

    SciTech Connect (OSTI)

    Buche, D. L.

    2008-07-01

    This report describes Northern Indiana Public Service Co. project efforts to develop an automated energy distribution and reliability system. The purpose of this project was to implement a database-driven GIS solution that would manage all of the company's gas, electric, and landbase objects.

  10. Distributed Smart Grid Asset Control Strategies for Providing Ancillary Services

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Zhang, Wei; Lian, Jianming; Marinovici, Laurentiu D.; Moya, Christian; Dagle, Jeffery E.

    2013-10-30

    With large-scale plans to integrate renewable generation driven mainly by state-level renewable portfolio requirements, more resources will be needed to compensate for the uncertainty and variability associated with intermittent generation resources. Distributed assets can be used to mitigate the concerns associated with renewable energy resources and to keep costs down. Under such conditions, performing primary frequency control using only supply-side resources becomes not only prohibitively expensive but also technically difficult. It is therefore important to explore how a sufficient proportion of the loads could assume a routine role in primary frequency control to maintain the stability of the system at an acceptable cost. The main objective of this project is to develop a novel hierarchical distributed framework for frequency based load control. The framework involves two decision layers. The top decision layer determines the optimal gain for aggregated loads for each load bus. The gains are computed using decentralized robust control methods, and will be broadcast to the corresponding participating loads every control period. The second layer consists of a large number of heterogeneous devices, which switch probabilistically during contingencies so that aggregated power change matches the desired amount according to the most recently received gains. The simulation results show great potential to enable systematic design of demand-side primary frequency control with stability guarantees on the overall power system. The proposed design systematically accounts for the interactions between the total load response and bulk power system frequency dynamics. It also guarantees frequency stability under a wide range of time varying operating conditions. The local device-level load response rules fully respect the device constraints (such as temperature setpoint, compressor time delays of HVACs, or arrival and departure of the deferrable loads), which are crucial for

  11. Distribution capacitor automation that controls voltage and saves energy

    SciTech Connect (OSTI)

    Williams, B.R.

    1994-12-31

    The Electric Distribution Business Line of Southern California Edison Company (SCE) has begun a program to improve the distribution system operations and electrical efficiency. The program, called the Distribution System Efficiency Enhancement Program (DSEEP), consists of five principal projects: Automated Switching, Circuit Lock-Out Alarming, Substation Monitoring and Control, Outage Management, and Distribution Capacitor Automation Project (DCAP). DCAP is the largest and most sophisticated of the projects being implemented. The project takes advantage of fine-tuning customer voltages for conservation voltage regulation (CVR) benefits as well as minimizes line losses by reducing unnecessary reactive power flow. DCAP can also help to increase transmission line and substation capacity by improving system power factor. The DCAP system takes advantage of the distributed processing capability of meters, capacitor controllers, radios, and substation processors. DCAP uses two-way packet radios and new electronic meters that read real-time customer voltages as well as energy consumption. The radios transmit customer meter voltage information and capacitor status to substation processors, where a control algorithm runs to determine which capacitors should be turned on or off. The objective of DCAP is to reduce over-all net energy transfer from the substation to the customer and meet system VAR requirements. SCE has tested the system on 66 circuit capacitors (including 3 substation capacitors) on 18 circuits served from two substations. The positive results of the DCAP demonstrations has led to an aggressive roll-out plan for system-wide implementation of automating over 7600 switched capacitors by year-end 1995.

  12. Data Exchange (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Missing content Broken link Other Additional Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Transmission...

  13. Bus.py: A GridLAB-D Communication Interface for Smart Distribution Grid Simulations

    SciTech Connect (OSTI)

    Hansen, Timothy M.; Palmintier, Bryan; Suryanarayanan, Siddharth; Maciejewski, Anthony A.; Siegel, Howard Jay

    2015-07-03

    As more Smart Grid technologies (e.g., distributed photovoltaic, spatially distributed electric vehicle charging) are integrated into distribution grids, static distribution simulations are no longer sufficient for performing modeling and analysis. GridLAB-D is an agent-based distribution system simulation environment that allows fine-grained end-user models, including geospatial and network topology detail. A problem exists in that, without outside intervention, once the GridLAB-D simulation begins execution, it will run to completion without allowing the real-time interaction of Smart Grid controls, such as home energy management systems and aggregator control. We address this lack of runtime interaction by designing a flexible communication interface, Bus.py (pronounced bus-dot-pie), that uses Python to pass messages between one or more GridLAB-D instances and a Smart Grid simulator. This work describes the design and implementation of Bus.py, discusses its usefulness in terms of some Smart Grid scenarios, and provides an example of an aggregator-based residential demand response system interacting with GridLAB-D through Bus.py. The small scale example demonstrates the validity of the interface and shows that an aggregator using said interface is able to control residential loads in GridLAB-D during runtime to cause a reduction in the peak load on the distribution system in (a) peak reduction and (b) time-of-use pricing cases.

  14. Recovery Act-SmartGrid regional demonstration transmission and distribution (T&D) Infrastructure

    SciTech Connect (OSTI)

    Hedges, Edward T.

    2015-01-31

    This document represents the Final Technical Report for the Kansas City Power & Light Company (KCP&L) Green Impact Zone SmartGrid Demonstration Project (SGDP). The KCP&L project is partially funded by Department of Energy (DOE) Regional Smart Grid Demonstration Project cooperative agreement DE-OE0000221 in the Transmission and Distribution Infrastructure application area. This Final Technical Report summarizes the KCP&L SGDP as of April 30, 2015 and includes summaries of the project design, implementation, operations, and analysis performed as of that date.

  15. Long Island Smart Energy Corridor

    SciTech Connect (OSTI)

    Mui, Ming

    2015-02-04

    The Long Island Power Authority (LIPA) has teamed with Stony Brook University (Stony Brook or SBU) and Farmingdale State College (Farmingdale or FSC), two branches of the State University of New York (SUNY), to create a “Smart Energy Corridor.” The project, located along the Route 110 business corridor on Long Island, New York, demonstrated the integration of a suite of Smart Grid technologies from substations to end-use loads. The Smart Energy Corridor Project included the following key features: -TECHNOLOGY: Demonstrated a full range of smart energy technologies, including substations and distribution feeder automation, fiber and radio communications backbone, advanced metering infrastructure (AM”), meter data management (MDM) system (which LIPA implemented outside of this project), field tools automation, customer-level energy management including automated energy management systems, and integration with distributed generation and plug-in hybrid electric vehicles. -MARKETING: A rigorous market test that identified customer response to an alternative time-of-use pricing plan and varying levels of information and analytical support. -CYBER SECURITY: Tested cyber security vulnerabilities in Smart Grid hardware, network, and application layers. Developed recommendations for policies, procedures, and technical controls to prevent or foil cyber-attacks and to harden the Smart Grid infrastructure. -RELIABILITY: Leveraged new Smart Grid-enabled data to increase system efficiency and reliability. Developed enhanced load forecasting, phase balancing, and voltage control techniques designed to work hand-in-hand with the Smart Grid technologies. -OUTREACH: Implemented public outreach and educational initiatives that were linked directly to the demonstration of Smart Grid technologies, tools, techniques, and system configurations. This included creation of full-scale operating models demonstrating application of Smart Grid technologies in business and residential

  16. A smart sensor system for trace organic vapor detection using a temperature-controlled array of surface acoustic wave vapor sensors, automated preconcentrator tubes, and pattern recognition

    SciTech Connect (OSTI)

    Grate, J.W.; Rose-Pehrsson, S.L.; Klusty, M.; Wohltjen, H.

    1993-05-01

    A smart sensor system for the detection, of toxic organophosphorus and toxic organosulfur vapors at trace concentrations has been designed, fabricated, and tested against a wide variety of vapor challenges. The key features of the system are: An array of four surface acoustic wave (SAW) vapor sensors, temperature control of the vapor sensors, the use of pattern recognition to analyze the sensor data, and an automated sampling system including thermally-desorbed preconcentrator tubes (PCTs).

  17. Distributed Power Flow Control: Distributed Power Flow Control using Smart Wires for Energy Routing

    SciTech Connect (OSTI)

    2012-04-24

    GENI Project: Smart Wire Grid is developing a solution for controlling power flow within the electric grid to better manage unused and overall transmission capacity. The 300,000 miles of high-voltage transmission line in the U.S. today are congested and inefficient, with only around 50% of all transmission capacity utilized at any given time. Increased consumer demand should be met in part with more efficient and an economical power flow. Smart Wire Grid’s devices clamp onto existing transmission lines and control the flow of power within—much like how internet routers help allocate bandwidth throughout the web. Smart wires could support greater use of renewable energy by providing more consistent control over how that energy is routed within the grid on a real-time basis. This would lessen the concerns surrounding the grid’s inability to effectively store intermittent energy from renewables for later use.

  18. Development of Early Warning Systems (PMU/WAMS) (Smart Grid Project...

    Open Energy Info (EERE)

    Missing content Broken link Other Additional Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Transmission...

  19. AMIS (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    map Period Jan 2005 - Jun 2012 References EU Smart Grid Projects Map1 Overview Automation of metering and customer processes, further automation of grid components, creation...

  20. Scalable Distributed Automation System: Scalable Real-time Decentralized Volt/VAR Control

    SciTech Connect (OSTI)

    2012-03-01

    GENI Project: Caltech is developing a distributed automation system that allows distributed generators—solar panels, wind farms, thermal co-generation systems—to effectively manage their own power. To date, the main stumbling block for distributed automation systems has been the inability to develop software that can handle more than 100,000 distributed generators and be implemented in real time. Caltech’s software could allow millions of generators to self-manage through local sensing, computation, and communication. Taken together, localized algorithms can support certain global objectives, such as maintaining the balance of energy supply and demand, regulating voltage and frequency, and minimizing cost. An automated, grid-wide power control system would ease the integration of renewable energy sources like solar power into the grid by quickly transmitting power when it is created, eliminating the energy loss associated with the lack of renewable energy storage capacity of the grid.

  1. Distributed Microprocessor Automation Network for Synthesizing Radiotracers Used in Positron Emission Tomography [PET

    DOE R&D Accomplishments [OSTI]

    Russell, J. A. G.; Alexoff, D. L.; Wolf, A. P.

    1984-09-01

    This presentation describes an evolving distributed microprocessor network for automating the routine production synthesis of radiotracers used in Positron Emission Tomography. We first present a brief overview of the PET method for measuring biological function, and then outline the general procedure for producing a radiotracer. The paper identifies several reasons for our automating the syntheses of these compounds. There is a description of the distributed microprocessor network architecture chosen and the rationale for that choice. Finally, we speculate about how this network may be exploited to extend the power of the PET method from the large university or National Laboratory to the biomedical research and clinical community at large. (DT)

  2. Using Smart Grid Technologies to Modernize Distribution Infrastructure in New York

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Under the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy and the electricity industry have jointly invested over $7.9 billion in 99 cost-shared Smart Grid Investment Grant projects to modernize the electric grid, strengthen cybersecurity, improve interoperability, and collect an unprecedented level of data on smart grid and customer operations. 1. Summary Consolidated Edison's (Con Edison) Smart Grid Investment Grant (SGIG) project focuses on the modernization of

  3. AMIS (Smart Grid Project) (Vcklabruck, Austria) | Open Energy...

    Open Energy Info (EERE)

    map Period Jan 2005 - Jun 2012 References EU Smart Grid Projects Map1 Overview Automation of metering and customer processes, further automation of grid components, creation...

  4. AMIS (Smart Grid Project) (Traun, Austria) | Open Energy Information

    Open Energy Info (EERE)

    map Period Jan 2005 - Jun 2012 References EU Smart Grid Projects Map1 Overview Automation of metering and customer processes, further automation of grid components, creation...

  5. Automated Energy Distribution and Reliability System: Validation Integration - Results of Future Architecture Implementation

    SciTech Connect (OSTI)

    Buche, D. L.

    2008-06-01

    This report describes Northern Indiana Public Service Co. project efforts to develop an automated energy distribution and reliability system. The purpose of this project was to implement a database-driven GIS solution that would manage all of the company's gas, electric, and landbase objects. This report is second in a series of reports detailing this effort.

  6. SmartLabs Inc | Open Energy Information

    Open Energy Info (EERE)

    Zip: 92606 Product: SmartLabs Inc is the owner and promoter of the Insteon wireless sensor network technology for building automation. References: SmartLabs Inc1 This article...

  7. The Development of a Smart Distribution Grid Testbed for Integrated Information Management Systems

    SciTech Connect (OSTI)

    Lu, Ning; Du, Pengwei; Paulson, Patrick R.; Greitzer, Frank L.; Guo, Xinxin; Hadley, Mark D.

    2011-07-28

    This paper presents a smart distribution grid testbed to test or compare designs of integrated information management systems (I2MSs). An I2MS extracts and synthesizes information from a wide range of data sources to detect abnormal system behaviors, identify possible causes, assess the system status, and provide grid operators with response suggestions. The objective of the testbed is to provide a modeling environment with sufficient data sources for the I2MS design. The testbed includes five information layers and a physical layer; it generates multi-layer chronological data based on actual measurement playbacks or simulated data sets produced by the physical layer. The testbed models random hardware failures, human errors, extreme weather events, and deliberate tampering attempts to allow users to evaluate the performance of different I2MS designs. Initial results of I2MS performance tests showed that the testbed created a close-to-real-world environment that allowed key performance metrics of the I2MS to be evaluated.

  8. Identifying emerging smart grid impacts to upstream and midstream natural gas operations.

    SciTech Connect (OSTI)

    McIntyre, Annie

    2010-09-01

    The Smart Grid has come to describe a next-generation electrical power system that is typified by the increased use of communications and information technology in the generation, delivery and consumption of electrical energy. Much of the present Smart Grid analysis focuses on utility and consumer interaction. i.e. smart appliances, home automation systems, rate structures, consumer demand response, etc. An identified need is to assess the upstream and midstream operations of natural gas as a result of the smart grid. The nature of Smart Grid, including the demand response and role of information, may require changes in upstream and midstream natural gas operations to ensure availability and efficiency. Utility reliance on natural gas will continue and likely increase, given the backup requirements for intermittent renewable energy sources. Efficient generation and delivery of electricity on Smart Grid could affect how natural gas is utilized. Things that we already know about Smart Grid are: (1) The role of information and data integrity is increasingly important. (2) Smart Grid includes a fully distributed system with two-way communication. (3) Smart Grid, a complex network, may change the way energy is supplied, stored, and in demand. (4) Smart Grid has evolved through consumer driven decisions. (5) Smart Grid and the US critical infrastructure will include many intermittent renewables.

  9. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meters and a Smarter Power Grid Tips: Smart Meters and a Smarter Power Grid The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- ...

  10. Smart Cities - Smart Growth

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Cities - Smart Growth The United States Secretaries of Commerce will co-lead a Business Development Mission to China from April 12-17, 2015. This mission will promote U.S. clean technology products and services in the areas of green building/construction, energy efficiency, carbon capture, utilization and storage (CCUS) and environmental technologies in support of the Smart Cities-Smart Growth theme. On November 12, President Obama and President Xi jointly announced the two countries'

  11. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Office of Environmental Management (EM)

    Tips: Smart Meters and a Smarter Power Grid Tips: Smart Meters and a Smarter Power Grid The Smart Grid will consist of controls, computers, automation, and new technologies and...

  12. Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs (October 2014)

    Broader source: Energy.gov [DOE]

    Three municipal utilities that received funding through the Recovery Act Smart Grid Investment Grant program are featured in this report. Burbank, California; Glendale, California; and Danvers, Massachusetts are mid-sized cities that implemented grid modernization activities in multiple areas including advanced metering infrastructure, distribution automation, and customer systems.

  13. Understanding The Smart Grid

    SciTech Connect (OSTI)

    2007-11-15

    The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology

  14. DSOpilot project (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    for faster action by mistakes and to reduce the outage. Furthermore it allows for automation by switching on failure. References "EU Smart Grid Projects Map" Retrieved from...

  15. DCN4TSO (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Overview DCN system will enable smart protection, metering, energy management, automation and data exchange with other European TSO using standard protocols. References ...

  16. NSTAR Electric & Gas Corporation Smart Grid Demonstration Project...

    Open Energy Info (EERE)

    Project which is based in Westwood, Massachusetts. Overview Develop and implement a Smart Grid pilot program that will examine technologies to leverage existing automated...

  17. Recovery Act: Smart Grid Investment Grant (SGIG) Program | Department...

    Energy Savers [EERE]

    ... October 15, 2014: Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs September 22, 2014: Honeywell Demonstrates Automated Demand Response ...

  18. Recovery Act: Smart Grid Investment Grants | Department of Energy

    Energy Savers [EERE]

    October 15, 2014: Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs September 22, 2014: Honeywell Demonstrates Automated Demand Response ...

  19. Environmental Impact of Smart Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pollutants * Evaluate impact from Smart Grid on reducing pollutants through: - Demand Response - Electric Vehicles - Demand Side Management - Renewables and Distributed Energy ...

  20. SGIP Smart Grid Interoperabilty Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Grid Industry to Grid Business & Policy Vehicle to Grid Distributed Renewables, Generation & Storage Wireless Comm ... Smart Grid Information Model OPC Unified ...

  1. Smart Grid Projects Are Improving Performance and Helping Consumers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and the installation of "smart" switches and sensor equipment for 164 distribution circuits as well as the deployment of approximately 1500 smart switches system-wide. Thanks to...

  2. Smart Grid System Report U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid System Report U.S. Department of Energy July 2009 SEC. 1302. SMART GRID SYSTEM REPORT ... to connect distributed generation, storage, and renewable resources is becoming ...

  3. Customer Value Proposition Smart Grid (KEL) (Smart Grid Project...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  4. NSTAR Smart Grid Pilot

    SciTech Connect (OSTI)

    Rabari, Anil; Fadipe, Oloruntomi

    2014-03-31

    NSTAR Electric & Gas Corporation (“the Company”, or “NSTAR”) developed and implemented a Smart Grid pilot program beginning in 2010 to demonstrate the viability of leveraging existing automated meter reading (“AMR”) deployments to provide much of the Smart Grid functionality of advanced metering infrastructure (“AMI”), but without the large capital investment that AMI rollouts typically entail. In particular, a central objective of the Smart Energy Pilot was to enable residential dynamic pricing (time-of-use “TOU” and critical peak rates and rebates) and two-way direct load control (“DLC”) by continually capturing AMR meter data transmissions and communicating through customer-sited broadband connections in conjunction with a standardsbased home area network (“HAN”). The pilot was supported by the U.S. Department of Energy’s (“DOE”) through the Smart Grid Demonstration program. NSTAR was very pleased to not only receive the funding support from DOE, but the guidance and support of the DOE throughout the pilot. NSTAR is also pleased to report to the DOE that it was able to execute and deliver a successful pilot on time and on budget. NSTAR looks for future opportunities to work with the DOE and others in future smart grid projects.

  5. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Troxell, Wade

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of

  6. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 27, 2014 - 8:13pm Addthis The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home --...

  7. PHY and MAC Layer Design of Hybrid Spread Spectrum Based Smart Meter Network

    SciTech Connect (OSTI)

    Kuruganti, Phani Teja

    2012-01-01

    The smart grid is a combined process of revitalizing the traditional power grid applications and introducing new applications to improve the efficiency of power generation, transmission and distribution. This can be achieved by leveraging advanced communication and networking technologies. Therefore the selection of the appropriate communication technology for different smart grid applications has been debated a lot in the recent past. After comparing different possible technologies, a recent research study has arrived at a conclusion that the 3G cellular technology is the right choice for distribution side smart grid applications like smart metering, advanced distribution automation and demand response management system. In this paper, we argue that the current 3G/4G cellular technologies are not an appropriate choice for smart grid distribution applications and propose a Hybrid Spread Spectrum (HSS) based Advanced Metering Infrastructure (AMI) as one of the alternatives to 3G/4G technologies. We present a preliminary PHY and MAC layer design of a HSS based AMI network and evaluate their performance using matlab and NS2 simulations. Also, we propose a time hierarchical scheme that can significantly reduce the volume of random access traffic generated during blackouts and the delay in power outage reporting.

  8. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Thermal Energy Storage

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Bonebrake, Christopher A.

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of energy storage technologies deployed in the SGIG projects.

  9. Evaluation of Representative Smart Grid Investment Project Technologies: Demand Response

    SciTech Connect (OSTI)

    Fuller, Jason C.; Prakash Kumar, Nirupama; Bonebrake, Christopher A.

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of a limited number of demand response technologies and implementations deployed in the SGIG projects.

  10. Operating and Maintaining Energy Smart Schools Action Plan Template - All Action Plans

    SciTech Connect (OSTI)

    none,

    2009-07-01

    EnergySmart Schools action plan templates for benchmarking, lighting, HVAC, water heating, building envelope, transformer, plug loads, kitchen equipment, swimming pool, building automation system, other.

  11. Building to Grid (B2G) (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    to expose their currently unused flexibility of operations, supported by building automation and information technology. References "EU Smart Grid Projects Map" Retrieved...

  12. Microsoft PowerPoint - 02.11.2010_Smart Grid Conference.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology for smart grid applications (substation automation) * Project started in Nov ... further analytics 13 Summary: HV BPL Substation Communications * HV BPL Applications ...

  13. About the Smart Grid | Open Energy Information

    Open Energy Info (EERE)

    and demonstration projects, and the federal matching fund for Smart Grid technologies, with funds distributed through a competitive grant process. 1 Below is a map...

  14. Smart Grid Pilot Program- Colorado

    Broader source: Energy.gov [DOE]

    This b-roll shows a pilot program to modernize the electrical distribution system in Fort Collins, Colorado, where a smart grid connects industrial and commercial buildings employing renewable...

  15. SMART GRID:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the SMART GRID: an introduction. Exploring the imperative of revitalizing America's electric infrastructure. How a smarter grid works as an enabling engine for our economy, our environment and our future. prepared for the U.S. Department of Energy by Litos Strategic Communication under contract No. DE-AC26-04NT41817, Subtask 560.01.04 the SMART GRID: an introduction. the SMART GRID: an introduction. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United

  16. Smart Grid Investment Grants: Map of Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grants: Map of Projects Smart Grid Investment Grants: Map of Projects Map showing the distribution of project types awarded across the United States through the Smart Grid Investment Grant project under the American Recovery and Reinvestment Act. Smart Grid Investment Grants: Map of Projects (436.13 KB) More Documents & Publications Smart Grid Investment Grant Topic Areas Recovery Act Selections for Smart Grid Investment Grant Awards - By Category Updated November 2011 Recovery Act

  17. Smart Power Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Smart Power Laboratory at the Energy Systems Integration Facility. Research at NREL's Smart Power Laboratory in the Energy Systems Integration Facility (ESIF) focuses on the development and integration of smart technologies including the integration of distributed and renewable energy resources through power electronics and smart energy management for building applications. The 5,300 sq. ft. laboratory is designed to be highly flexible and configurable, essential for a large variety of smart power applications that range from developing advanced inverters and power converters to testing residential and commercial scale meters and control technologies. Some application scenarios are: (1) Development of power converters for integration of distributed and renewable energy resources; (2) Development of advanced controls for smart power electronics; (3) Testing prototype and commercially available power converters for electrical interconnection and performance, advanced functionality, long duration reliability and safety; and (4) Hardware-in-loop development and testing of power electronics systems in smart distribution grid models.

  18. Environmental Impacts of Smart Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 24 4.7 Renewable Energy and Distributed Storage ......Grid is an automated electric power system that monitors and controls grid ...

  19. Consolidated Edison Company of New York, Inc. Smart Grid Project...

    Open Energy Info (EERE)

    smart-grid project will deploy a wide-range of grid-related technologies, including automation, monitoring and two-way communications, to make the electric grid function more...

  20. Smart Grid | Open Energy Information

    Open Energy Info (EERE)

    Recovery Act Smart Grid Projects Data Collected from the US Recovery Act Smart Grid Investment Grant Projects US Recovery Act Smart Grid Investment Grant Projects (98) The Smart...

  1. Maui Smart Grid Demonstration Project Managing Distribution System Resources for Improved Service Quality and Reliability, Transmission Congestion Relief, and Grid Support Functions

    SciTech Connect (OSTI)

    none,

    2014-09-30

    The Maui Smart Grid Project (MSGP) is under the leadership of the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii at Manoa. The project team includes Maui Electric Company, Ltd. (MECO), Hawaiian Electric Company, Inc. (HECO), Sentech (a division of SRA International, Inc.), Silver Spring Networks (SSN), Alstom Grid, Maui Economic Development Board (MEDB), University of Hawaii-Maui College (UHMC), and the County of Maui. MSGP was supported by the U.S. Department of Energy (DOE) under Cooperative Agreement Number DE-FC26-08NT02871, with approximately 50% co-funding supplied by MECO. The project was designed to develop and demonstrate an integrated monitoring, communications, database, applications, and decision support solution that aggregates renewable energy (RE), other distributed generation (DG), energy storage, and demand response technologies in a distribution system to achieve both distribution and transmission-level benefits. The application of these new technologies and procedures will increase MECO’s visibility into system conditions, with the expected benefits of enabling more renewable energy resources to be integrated into the grid, improving service quality, increasing overall reliability of the power system, and ultimately reducing costs to both MECO and its customers.

  2. smart grid publications | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Articles-Examples of articles are publications in newsletters, journals, magazines, and conference proceedings. Results from DOE's ARRA Smart Grid Program Success Stories in DOE's ARRA Smart Grid Program Dodrill, Keith and Steven Bossart, Charging the Nation: West Virginia's Vast Power Portfolio, Summer 2011, West Virginia Executive Magazine, p. 27-29. Bossart, Steven. The Smart Grid: Transforming Electricity's Distribution. West Virginia Executive, Summer 2009 (p. 99-101). Bossart,

  3. NREL Smart Grid Projects

    SciTech Connect (OSTI)

    Hambrick, J.

    2012-01-01

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

  4. Automated Data Collection for Determining Statistical Distributions of Module Power Undergoing Potential-Induced Degradation: Preprint

    SciTech Connect (OSTI)

    Hacke, P.; Spataru, S.

    2014-08-01

    We propose a method for increasing the frequency of data collection and reducing the time and cost of accelerated lifetime testing of photovoltaic modules undergoing potential-induced degradation (PID). This consists of in-situ measurements of dark current-voltage curves of the modules at elevated stress temperature, their use to determine the maximum power at 25 degrees C standard test conditions (STC), and distribution statistics for determining degradation rates as a function of stress level. The semi-continuous data obtained by this method clearly show degradation curves of the maximum power, including an incubation phase, rates and extent of degradation, precise time to failure, and partial recovery. Stress tests were performed on crystalline silicon modules at 85% relative humidity and 60 degrees C, 72 degrees C, and 85 degrees C. Activation energy for the mean time to failure (1% relative) of 0.85 eV was determined and a mean time to failure of 8,000 h at 25 degrees C and 85% relative humidity is predicted. No clear trend in maximum degradation as a function of stress temperature was observed.

  5. Customer Engagement in AEP gridSMART Residential Transactive System

    SciTech Connect (OSTI)

    Widergren, Steven E.; Marinovici, Maria C.; Fuller, Jason C.; Subbarao, Krishnappa; Chassin, David P.; Somani, Abhishek

    2014-12-31

    — In 2013, AEP Ohio (AEP) operated a 5-minute real-time price (RTP) electricity market system on 4 distribution feeders as part of their gridSMART® demonstration project. The RTP households were billed for their electricity usage according to an RTP tariff approved by the Public Utility Commission of Ohio. They were given the incentive that their annual bill would be no greater than if they were on the flat-rate tariff, but they had financial incentives to shift consumption from high price periods to low price periods. Incentives were also available for response under high prices from local events, such as reaching the distribution feeder capacity or a critical peak pricing event. An analysis of this transactive system experiment was completed in early 2014. This paper describes the incentive provided to the customer, the nature of their interaction with the smart thermostat that provided automated response to the transactive signal, and their level of satisfaction with the program.

  6. SMART Scale

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SMART Scale Small Market Advanced Retrofit Transformation Program 2014 Building Technologies Office Peer Review Colin Clark, CClark@ecoact.org ECOLOGY ACTION Project Summary Timeline:  Start date: October 1, 2013  Planned end date: September 30, 2016 Key Milestones :  June 2014: Research and develop list of measures needed to enhance Ecology !ction's DI 2.0 model to achieve an average of at least 20% energy savings  October 2014: Identification and Selection of Demonstration

  7. Lessons Learned: An Ongoing Dialogue About Smart Grid | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Lessons Learned: An Ongoing Dialogue About Smart Grid Lessons Learned: An Ongoing Dialogue About Smart Grid November 21, 2011 - 11:31am Addthis EPB’s $226 million Smart Grid Investment Grant project, part of the Energy Department's Recovery Act funding has allowed upgrades on its distribution system and the installation of “smart” switches and sensor equipment for 164 distribution circuits as well as the deployment of approximately 1500 smart switches system-wide.

  8. GAD (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Projects in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Integrated System Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  9. Address (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Integrated System Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  10. SMARTS status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ContactsPhonebookOrganizationMapsCalendarJobs NEWS LIBRARY JOBS Search Lujan Home| Proposal Process | Ancillary Equipment | Chemical & Sample Prep | Training Office | Web Contact SMARTS INSTRUMENT STATUS Instrument Status (Last updated: 2016/03/02 14:04:07) Run Number: 97106 Title: Adams Sample 6-4 after heat treat to 1000C [abso strain -10.000 Run Status: ended Last Script Activity: 2016/02/28 20:05:52: End run 97106; mah 300000 abso strain -10.000 100.0 * * * * * * View full script Next

  11. Reports on Initial Results of Smart Grid Investment Grant Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    program involves 99 projects that are deploying smart grid technologies, tools, and techniques for electric transmission, distribution, advanced metering, and customer systems. ...

  12. Southern Company Services, Inc. Smart Grid Project | Open Energy...

    Open Energy Info (EERE)

    Company) Smart Grid project involves integrated upgrades of the distribution, transmission, and grid management systems throughout their large service territory. Major...

  13. Avista Utilities Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    (Avista) Spokane Smart Circuit project aims to reduce energy losses and improve reliability and efficiency in the electricity distribution system while reducing the need for...

  14. Microsoft Word - SMART GRID INVESTMENT GRANT DESCRIPTIONS.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    commercial, or industrial equipment; consumer products and appliances; or distributed generation, demand response, or energy storage devices to enable the smart grid functions. ii. ...

  15. Secretary Chu Announces $620 Million for Smart Grid Demonstration...

    Office of Environmental Management (EM)

    for Smart Grid Demonstration and Energy Storage Projects Secretary Chu Announces 620 ... meters, distribution and transmission system monitoring devices, and a range of ...

  16. The Department's Management of the Smart Grid Investment Grant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    establishing the Smart Grid Investment Grant (SGIG) program. ... Department's Office of Electricity Delivery and Energy ... of the electric transmission and distribution system. ...

  17. Sandia Energy - SMART Rotor Video

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Rotor Video Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind Energy Publications Online Abstracts and Reports SMART Rotor Video SMART Rotor...

  18. Smart Grid Demonstration Project

    SciTech Connect (OSTI)

    Miller, Craig; Carroll, Paul; Bell, Abigail

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and

  19. Five Million Smart Meters Installed Nationwide is Just the Beginning of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Progress | Department of Energy Million Smart Meters Installed Nationwide is Just the Beginning of Smart Grid Progress Five Million Smart Meters Installed Nationwide is Just the Beginning of Smart Grid Progress June 13, 2011 - 1:55pm Addthis A 21st Century Grid includes increasing the overall efficiency of our generating, transmission and distribution system to facilitate the growth of renewable energy sources. | Energy Department Image A 21st Century Grid includes increasing the

  20. Smart Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Smart Grid Smart Grid Rows of battery racks at the Salem Smart Power Center in Salem, Oregon. The Battelle-led Pacific Northwest Smart ...

  1. A Community-Based Approach to Leading the Nation in Smart Energy Use

    SciTech Connect (OSTI)

    None, None

    2013-12-31

    Project Objectives The AEP Ohio gridSMART® Demonstration Project (Project) achieved the following objectives: • Built a secure, interoperable, and integrated smart grid infrastructure in northeast central Ohio that demonstrated the ability to maximize distribution system efficiency and reliability and consumer use of demand response programs that reduced energy consumption, peak demand, and fossil fuel emissions. • Actively attracted, educated, enlisted, and retained consumers in innovative business models that provided tools and information reducing consumption and peak demand. • Provided the U.S. Department of Energy (DOE) information to evaluate technologies and preferred smart grid business models to be extended nationally. Project Description Ohio Power Company (the surviving company of a merger with Columbus Southern Power Company), doing business as AEP Ohio (AEP Ohio), took a community-based approach and incorporated a full suite of advanced smart grid technologies for 110,000 consumers in an area selected for its concentration and diversity of distribution infrastructure and consumers. It was organized and aligned around: • Technology, implementation, and operations • Consumer and stakeholder acceptance • Data management and benefit assessment Combined, these functional areas served as the foundation of the Project to integrate commercially available products, innovative technologies, and new consumer products and services within a secure two-way communication network between the utility and consumers. The Project included Advanced Metering Infrastructure (AMI), Distribution Management System (DMS), Distribution Automation Circuit Reconfiguration (DACR), Volt VAR Optimization (VVO), and Consumer Programs (CP). These technologies were combined with two-way consumer communication and information sharing, demand response, dynamic pricing, and consumer products, such as plug-in electric vehicles and smart appliances. In addition, the Project

  2. ALLETE Inc., d/b/a Minnesota Power Smart Grid Project | Open...

    Open Energy Info (EERE)

    smart meter network by deploying an additional 8,000 meters and new measurement and automation equipment. This will also create a dynamic pricing program.1 Allete, which does...

  3. Central Networks Low Carbon Hub Optimizing renewable energy resources...

    Open Energy Info (EERE)

    Other Additional Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Other...

  4. Smart Grid: Transforming the Electric System

    SciTech Connect (OSTI)

    Widergren, Steven E.

    2010-04-13

    This paper introduces smart grid concepts, summarizes the status of current smart grid related efforts, and explains smart grid priorities.

  5. NBP RFI-Addressing Policy and Logistical Challenges to Smart...

    Energy Savers [EERE]

    the generation, transmission, distribution and consumption of electricity to provide greater automation, increase reliability, improve efficiency and reduce energy consumption. ...

  6. Maya Payne Smart

    Broader source: Energy.gov [DOE]

    Maya Payne Smart is a former writer for Energy Empowers in the Office of Energy Efficiency and Renewable Energy.

  7. DLC+VIT4IP (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    applications. These shall include the existing power distribution network for novel services in smart electricity distribution networks such as demand side management,...

  8. DLC+VIT4IP (Smart Grid Project) (Israel) | Open Energy Information

    Open Energy Info (EERE)

    applications. These shall include the existing power distribution network for novel services in smart electricity distribution networks such as demand side management,...

  9. DLC+VIT4IP (Smart Grid Project) (Italy) | Open Energy Information

    Open Energy Info (EERE)

    applications. These shall include the existing power distribution network for novel services in smart electricity distribution networks such as demand side management,...

  10. DLC+VIT4IP (Smart Grid Project) (Netherlands) | Open Energy Informatio...

    Open Energy Info (EERE)

    applications. These shall include the existing power distribution network for novel services in smart electricity distribution networks such as demand side management,...

  11. DLC+VIT4IP (Smart Grid Project) (United Kingdom) | Open Energy...

    Open Energy Info (EERE)

    applications. These shall include the existing power distribution network for novel services in smart electricity distribution networks such as demand side management,...

  12. DLC+VIT4IP (Smart Grid Project) (Belgium) | Open Energy Information

    Open Energy Info (EERE)

    applications. These shall include the existing power distribution network for novel services in smart electricity distribution networks such as demand side management,...

  13. DLC+VIT4IP (Smart Grid Project) (Austria) | Open Energy Information

    Open Energy Info (EERE)

    applications. These shall include the existing power distribution network for novel services in smart electricity distribution networks such as demand side management,...

  14. Case Study - EPB Smart Grid Investment Grant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EPB Smart Grid Investment Grant 1 Smart switches installed in EPB service territory A Smarter Electric Circuit: Electric Power Board of Chattanooga Makes the Switch EPB of Chattanooga, Tennessee, is one of the largest publicly owned providers of electric power in the country. Established in 1935, EPB covers about 600 square miles and serves about 170,000 customers in Tennessee and Georgia. Chattanooga is making its distribution system more robust while improving operations with the deployment of

  15. SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Read More Permalink Sandia to Co-Host International Workshop on Photovoltaics (PV) Penetration DETL, Distribution Grid Integration, Energy, Energy Surety, Grid Integration, ...

  16. Smart Grid Enabled EVSE

    SciTech Connect (OSTI)

    None, None

    2014-10-15

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  17. Building America Expert Meeting: Minutes from Automated Home Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management System | Department of Energy Minutes from Automated Home Energy Management System Building America Expert Meeting: Minutes from Automated Home Energy Management System These meeting minutes are from the U.S. Department of Energy Building America program expert meeting titled "Automated Home Energy Management System," held on October 1-2, 2010 in Denver, Colorado. ahem_expert_meeting_minutes.pdf (133.07 KB) More Documents & Publications 2012 Smart Grid Peer Review

  18. Smart Grid Ready PV Inverters with Utility Communication | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Smart Grid Ready PV Inverters with Utility Communication Smart Grid Ready PV Inverters with Utility Communication EPRI logo.jpg -- This project is inactive -- Electric Power Research Institute (EPRI) will develop, implement, and demonstrate smart-grid ready inverters with grid support functionality and required communication links to capture the full value of distributed photovoltaic (PV). APPROACH epri segis summary poster.png This project will develop, implement, and demonstrate

  19. Dairyland Power Cooperative Comments on Smart Grid RFI: Addressing Policy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Logistical Challenges | Department of Energy Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges Dairyland Power Cooperative Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges Dairyland Power Cooperative is a generation and transmission cooperative (G&T) that provides the wholesale electrical requirements and other services for 25 electric distribution cooperatives and 16 municipal utilities in the Upper Midwest. Smart Grid RFI: Addressing

  20. Microsoft Word - SMART GRID INVESTMENT GRANT DESCRIPTIONS.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SMART GRID INVESTMENT GRANT TOPIC AREAS i. Equipment Manufacturing Project applications in this topic area will be aimed at the production or purchase of smart grid systems, equipment, devices, software, or communications and control systems for modifying existing electric system equipment; building, office, commercial, or industrial equipment; consumer products and appliances; or distributed generation, demand response, or energy storage devices to enable the smart grid functions. ii. Customer

  1. CenterPoint Energy Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    distribution automation equipment. The project aims to reduce peak loads, overall electricity use, and operations and maintenance costs while increasing distribution system...

  2. City of Tallahassee Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    new devices. The City of Tallahassee expects distribution automation to improve the reliability of electric service and to enhance monitoring and optimizing distribution system...

  3. Potomac Electric Power Company (PEPCO) Smart Grid Project | Open...

    Open Energy Info (EERE)

    automated distribution circuit switches and transformer monitors that improve the reliability of the distribution system while decreasing operations and maintenance costs.3...

  4. Smart Grid Status and Metrics Report Appendices

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.; Gorrissen, Willy J.; Kirkham, Harold; Ruiz, Kathleen A.; Smith, David L.; Weimar, Mark R.; Gardner, Chris; Varney, Jeff

    2014-07-01

    A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

  5. Cyprus Smart metering demo (Smart Grid Project) | Open Energy...

    Open Energy Info (EERE)

    Installation of 3000 smart meters with the required infrastructure for full functionality evaluation of the best practice approach for full roll out. References "EU Smart Grid...

  6. Smart Grid Consortium, Response of New York State Smart Grid...

    Office of Environmental Management (EM)

    Smart Grid Consortium, Response of New York State Smart Grid Addressing Policy and Logistical Challenges It represents a unique public-private partnership of largely New York State ...

  7. Authentication techniques for smart cards

    SciTech Connect (OSTI)

    Nelson, R.A.

    1994-02-01

    Smart card systems are most cost efficient when implemented as a distributed system, which is a system without central host interaction or a local database of card numbers for verifying transaction approval. A distributed system, as such, presents special card and user authentication problems. Fortunately, smart cards offer processing capabilities that provide solutions to authentication problems, provided the system is designed with proper data integrity measures. Smart card systems maintain data integrity through a security design that controls data sources and limits data changes. A good security design is usually a result of a system analysis that provides a thorough understanding of the application needs. Once designers understand the application, they may specify authentication techniques that mitigate the risk of system compromise or failure. Current authentication techniques include cryptography, passwords, challenge/response protocols, and biometrics. The security design includes these techniques to help prevent counterfeit cards, unauthorized use, or information compromise. This paper discusses card authentication and user identity techniques that enhance security for microprocessor card systems. It also describes the analysis process used for determining proper authentication techniques for a system.

  8. Sharing Smart Grid Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... base around the various aspects of the Smart Grid transition and considers the unique ... Response, interruptible rates, net metering, "de- coupling", etc. * Consumer ...

  9. "smart water" infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smart water" infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  10. Smart Ventilation - RIVEC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secondary Ventilation Activity Inputs Control Ventilation to Ensure Acceptable Indoor Air Quality Outputs ... * ASHRAE Standard 62.2 service to ensure smart ventilation ...

  11. Energy Smart Grocer Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture EnergySmart Grocer Program Close-out BPA and CLEAResult have concluded negotiations...

  12. Smart Grid e-Forum

    Broader source: Energy.gov [DOE]

    DOE conducted a series of Smart Grid E-Forums to discuss various issues surrounding Smart Grid including costs, benefits, value proposition to consumers, implementation, and deployment.

  13. Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers

    Broader source: Energy.gov [DOE]

    Honeywell’s Smart Grid Investment Grant (SGIG) project demonstrates utility-scale performance of a hardware/software platform for automated demand response (ADR) for utility, commercial, and industrial customers. The case study is now available for downloading.

  14. Design of an Open Smart Energy Gateway for Smart Meter Data Management

    SciTech Connect (OSTI)

    Page, Janie; McParland, Chuck; Piette, Mary Ann; Czarnecki, Stephen

    2015-03-01

    With the widespread deployment of electronic interval meters, commonly known as smart meters, came the promise of real-time data on electric energy consumption. Recognizing an opportunity to provide consumers access to their near real-time energy consumption data directly from their installed smart meter, we designed a mechanism for capturing those data for consumer use via an open smart energy gateway (OpenSEG). By design, OpenSEG provides a clearly defined boundary for equipment and data ownership. OpenSEG is an open-source data management platform to enable better data management of smart meter data. Effectively, it is an information architecture designed to work with the ZigBee Smart Energy Profile 1.x (SEP 1.x). It was specifically designed to reduce cyber-security risks and provide secure information directly from smart meters to consumers in near real time, using display devices already owned by the consumers. OpenSEG stores 48 hours of recent consumption data in a circular cache using a format consistent with commonly available archived (not real-time) consumption data such as Green Button, which is based on the Energy Services Provider Interface (ESPI) data standard. It consists of a common XML format for energy usage information and a data exchange protocol to facilitate automated data transfer upon utility customer authorization. Included in the design is an application program interface by which users can acquire data from OpenSEG for further post processing. A sample data display application is included in the initial software product. The data display application demonstrates that OpenSEG can help electricity use data to be retrieved from a smart meter and ported to a wide variety of user-owned devices such as cell phones or a user-selected database. This system can be used for homes, multi-family buildings, or small commercial buildings in California.

  15. Easy Street (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Integrated System Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  16. Smart Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Smart Grid Rows of battery racks at the <a href="/node/657906">Salem Smart Power Center</a> in Salem, Oregon. The Battelle-led Pacific Northwest Smart Grid Demonstration Project, will use the center’s 5-megawatt energy storage system to test several smart grid technologies and approaches. | Photo courtesy of Portland General Electric. Rows of battery racks at the Salem Smart Power Center in Salem, Oregon. The Battelle-led Pacific Northwest Smart Grid

  17. Tips: Smart Appliances | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learn More Smart meters and a smart power grid Kitchen appliances Laundry Shopping for appliances Estimating appliance and home electronic energy use Links What is the Smart Grid? ...

  18. SmartGrid Information | Department of Energy

    Office of Environmental Management (EM)

    SmartGrid Information SmartGrid Information Smart Grid Information This web page provides information and resources on several policy issues critical to the continued development ...

  19. Materials Research for Smart Grid Applications Steven J Bossart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research for Smart Grid Applications Steven J Bossart Ryan Egidi U.S. Department of Energy National Energy Technology Laboratory Our nation is transitioning to a Smart Grid which can sense and more optimally control the transmission, distribution, and delivery of electric power. The control of the electric power system is becoming more challenging with the addition of distributed renewable power sources, energy storage systems, electric vehicle charging, building and home energy management

  20. Neustar White Paper: When Smart Grids Grow Smart Enough to Solve...

    Energy Savers [EERE]

    Neustar White Paper: When Smart Grids Grow Smart Enough to Solve Crimes Neustar White Paper: When Smart Grids Grow Smart Enough to Solve Crimes Smart Grid data access PDF icon ...

  1. Smart Cities Innovation Summit

    Broader source: Energy.gov [DOE]

    The Smart Cities Innovation Summit is the leading summit for policy, technology, and resource management to meet with leading solution providers in transportation, energy, water, healthcare, education, and more.

  2. Smart Grid Overview

    Broader source: Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the Smart Grid including the National Renewable Energy Laboratory's research and development capabilities in this area.

  3. Sharing Smart Grid Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sharing Smart Grid Experiences through Performance Feedback March 31, 2011 DOE/NETL- DE-FE0004001 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Sharing Smart Grid Experiences through Performance Feedback v1.0 Page ii Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

  4. 2012 Smart Grid Peer Review Presentations - Day 2 First Afternoon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Recovery Act: Enhanced Demand and Distribution Management Regional Demonstration - Craig Miller, NRECA (264.13 KB) 2012 SG Peer Review - Recovery Act: NSTAR Automated Mater ...

  5. Workplace Charging Challenge Partner: UCLA Smart Grid Energy...

    Energy Savers [EERE]

    SMERC currently provides charging for employees as part of its ongoing research on the topics of Electric Vehicle Integration Automated Demand Response Microgrids, and Distributed ...

  6. PPL Electric Utilities Corp. Smart Grid Project | Open Energy...

    Open Energy Info (EERE)

    of the City of Harrisburg. The distribution automation equipment enhances system reliability through better protection and faster response and isolation of outages, while...

  7. Wisconsin Power and Light Company Smart Grid Project | Open Energy...

    Open Energy Info (EERE)

    automation project is designed to improve distribution system efficiency and reliability while lowering operations and maintenance costs. WPL is deploying a new centralized...

  8. Atlantic City Electric Company Smart Grid Project | Open Energy...

    Open Energy Info (EERE)

    monitors, equipment condition monitors, and automated feeder switches improve the reliability and power quality of the distribution system. These systems also reduce operation...

  9. Talquin Electric Cooperative, Inc. Smart Grid Project | Open...

    Open Energy Info (EERE)

    also installs automated distribution grid equipment expected to: (1) enhance the reliability and quality of electric delivery, and (2) reduce operations and maintenance...

  10. Northern Virginia Electric Cooperative Smart Grid Project | Open...

    Open Energy Info (EERE)

    and enhance situational awareness of the system and critical components to improve reliability and lower operating costs.3 Equipment Distribution System AutomationUpgrade for...

  11. Cuming County Public Power District Smart Grid Project | Open...

    Open Energy Info (EERE)

    devices for the Cuming County Public Power District (CCPPD) are being upgraded, enhancing demand response and peak load reduction capabilities.3 Equipment Distribution Automation...

  12. Kansas City Power & Light Company Smart Grid Demonstration Project...

    Open Energy Info (EERE)

    will include advanced renewable generation, storage resources, distribution system automation, in-home customer systems and digital technologies, and innovative rate structures....

  13. Snohomish County Public Utilities District Smart Grid Project...

    Open Energy Info (EERE)

    on the utlity side, including a digital telecommunications network, substation automation and a robust distribution system infrastructure, that will allow enable the...

  14. Voices of Experience: Insights on Smart Grid Customer Engagement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for dynamic pricing programs, demand response programs, distribution automation (e.g.; outage communication), and other technology such as home area network (HAN) devices. Voices...

  15. Voices of Experience: Insights on Smart Grid Customer Engagement...

    Office of Environmental Management (EM)

    for dynamic pricing programs, demand response programs, distribution automation (e.g.; outage communication), and other technology such as home area network (HAN) devices. ...

  16. Smart Grid Projects Are Improving Performance and Helping Consumers...

    Office of Environmental Management (EM)

    Automated distribution feeder switches minimize the frequency of sustained outages, shorten the duration of outages and minimize the number of affected customers by rerouting power ...

  17. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems. automated around the clock - not a typical installation. The distribution management system features predictive applications and auto-restoration technology. The...

  18. Guam Power Authority Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    can install devices that assist in managing electricity use and costs, including in-home displays and home area networks. The new AMI and distribution automation technologies...

  19. Marblehead Municipal Light Department Smart Grid Project | Open...

    Open Energy Info (EERE)

    and automated load management. It is aimed at reducing peak electricity demand, overall energy use, and operations and maintenance costs while increasing distribution system...

  20. Vermont Transco, LLC Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AMI Communication Systems Meter Communications Network Backhaul Communications Meter Data Management System Customer Web Portal 500 Home Area Networks Distribution Automation...

  1. Manufacturing Innovation Institute for Smart Manufacturing: Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing Manufacturing Innovation Institute for Smart Manufacturing: ...

  2. The Need for Essential Consumer Protections: Smart metering proposals and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the move to time-based pricing. August 2010 | Department of Energy metering proposals and the move to time-based pricing. August 2010 The Need for Essential Consumer Protections: Smart metering proposals and the move to time-based pricing. August 2010 There is widespread consensus that the U.S. distribution and transmission systems for vital electricity service need to be modernized and upgraded. This modernization has been recently promoted under the rubric of the Smart Grid. The Smart Grid

  3. Watson and Siri: The Rise of the BI Smart Machine

    SciTech Connect (OSTI)

    Troy Hiltbrand

    2015-03-01

    Over the past few years, the industry has seen significant evolution in the area of human computer interaction. The era of the smart machines is upon us, with automation taking on a more advanced role than ever before, permeating into areas that have traditionally only been fulfilled by human beings. This movement has the potential of fundamentally altering the way that business intelligence is executed across the industry and the role that business intelligence has in all aspects of decision making.

  4. Smart crane ammunition transfer system

    SciTech Connect (OSTI)

    Bradley, E.C.; Killough, S.M.; Rowe, J.C.

    1995-03-01

    The purpose of the Smart Crane Ammunition Transfer System (SCATS) project is to demonstrate robotic/telerobotic controls technology for a mobile articulated crane for missile/ munitions handling, delivery, and reload. Missile resupply and reload have been manually intensive operations up to this time. Currently, reload missiles are delivered by truck to the site of the launcher. A crew of four to five personnel reloads the missiles from the truck to the launcher using a hydraulic-powered crane. The missiles are handled carefully for the safety of the missiles and personnel. Numerous steps are required in the reload process and the entire reload operation can take over 1 h for some missile systems. Recent U.S. Army directives require the entire operation to be accomplished in a fraction of that time. Current requirements for the development of SCATS are being based primarily on reloading Patriot missiles. The planned development approach will integrate robotic control and sensor technology with a commercially available hydraulic articulated crane. SCATS is being developed with commercially available hardware as much as possible. Development plans include adding a 3-D.F. end effector with a grapple to the articulating crane; closed-loop position control for the crane and end effector; digital microprocessor control of crane functions; simplified operator interface; and operating modes which include rectilinear movement, obstacle avoidance, and partial automated operation. The planned development will include progressive technology demonstrations. Ultimate plans are for this technology to be transferred and utilized in the military fielding process.

  5. Category:Smart Grid Projects - Electric Transmission Systems...

    Open Energy Info (EERE)

    Carolinas, LLC Smart Grid Project E Entergy Services, Inc. Smart Grid Project I ISO New England, Incorporated Smart Grid Project M Midwest Energy Inc. Smart Grid Project...

  6. BeAware (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Other Additional Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  7. Public Service Company of New Mexico Smart Grid Demonstration...

    Open Energy Info (EERE)

    Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in United States Stubs Smart Grid Demonstration Projects Smart Grid Projects - Energy Storage Demonstrations...

  8. Amber Kinetics, Inc. Smart Grid Demonstration Project | Open...

    Open Energy Info (EERE)

    Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in United States Smart Grid Demonstration Projects Smart Grid Projects - Energy Storage Demonstrations...

  9. City of Painesville Smart Grid Demonstration Project | Open Energy...

    Open Energy Info (EERE)

    Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in United States Stubs Smart Grid Demonstration Projects Smart Grid Projects - Energy Storage Demonstrations...

  10. The Smart Grid Experience: Applying Results, Reaching Beyond...

    Office of Environmental Management (EM)

    gained in both the EPRI Smart Grid Demonstration Initiative and DOE's Smart Grid Investment Grant Program (SGIG) and Smart Grid Demonstration Program (SGDP), with a focus on smart ...

  11. Electricity Advisory Committee Smart Grid Subcommittee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Advisory Committee Smart Grid Subcommittee Update to the 2008 EAC Report Smart Grid: Enabler of the New Energy Economy Report Recommendations May 10, 2011 Recommendations from the 2008 EAC Smart Grid Report (http://www.oe.energy.gov/DocumentsandMedia/final-smart-grid-report.pdf) 1. Create a Smart Grid Program office within DOE. Update: Completed. DOE's Office of Electricity Delivery and Energy Reliability (OE) has an active Smart Grid Program, which includes the Smart Grid Investment

  12. file://P:\\Smart Grid\\Smart Grid RFI Policy and Logistical Comme

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comments Due: Submission Type: Page 1 of 2 1182010 file:P:Smart GridSmart ... Page 2 of 2 1182010 file:P:Smart GridSmart Grid RFI Policy and ...

  13. SmartGrid Consortium: Smart Grid Roadmap for the State of New...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SmartGrid Consortium: Smart Grid Roadmap for the State of New York SmartGrid Consortium: Smart Grid Roadmap for the State of New York Throughout its history, New York State has ...

  14. TJ Automation | Open Energy Information

    Open Energy Info (EERE)

    TJ Automation Jump to: navigation, search Name TJ Automation Facility TJ Automation Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner TJ Automation...

  15. APEC Smart Grid Initiative

    SciTech Connect (OSTI)

    Bloyd, Cary N.

    2012-03-01

    This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.

  16. Unlocking the smart grid

    SciTech Connect (OSTI)

    Rokach, Joshua Z.

    2010-10-15

    The country has progressed in a relatively short time from rotary dial phones to computers, cell phones, and iPads. With proper planning and orderly policy implementation, the same will happen with the Smart Grid. Here are some suggestions on how to proceed. (author)

  17. BOA: Framework for automated builds

    SciTech Connect (OSTI)

    N. Ratnikova et al.

    2003-09-30

    Managing large-scale software products is a complex software engineering task. The automation of the software development, release and distribution process is most beneficial in the large collaborations, where the big number of developers, multiple platforms and distributed environment are typical factors. This paper describes Build and Output Analyzer framework and its components that have been developed in CMS to facilitate software maintenance and improve software quality. The system allows to generate, control and analyze various types of automated software builds and tests, such as regular rebuilds of the development code, software integration for releases and installation of the existing versions.

  18. Leveraging the General Services Administration's SmartPay2 Program and its Single Use Account Feature

    Broader source: Energy.gov [DOE]

    A large portion of DOE's annual spending remains outside of the GSA SmartPay Program (Program) due to check writing and Automated Clearing House payments. In addition, new cost-reimbursement contractors are not being considered for inclusion into the Program.

  19. Distributed PV Interconnection: Recent Analysis Findings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Make Smart Solar Decisions Distributed Solar Interconnection: Challenges and Best ... 50, Arizona: 54, Colorado: 63, New York: 68 New Jersey: 90 System Size Mean Median Std. ...

  20. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    various aspects of demand response, distributed generation, smart grid and energy storage. Annex 9 is a list of pilot programs and case studies, with links to those...

  1. OE Smart Grid Talking Points[1

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy and a Smart Grid Smart m eters a nd inverters c onnect customers' e nergy A ND information w ith t he g rid, making b oth s tronger a nd more f lexible. Smart G...

  2. SGIP Smart Grid Interoperabilty Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SGIP Smart Grid Interoperability Panel Building2Grid Integration Dave Hardin David Holmberg ∗ The SGIP was explicitly established to support NIST in fulfilling its responsibilities pursuant to the Energy Independence and Security Act of 2007 ("EISA"). SGIP 1.0: NIST-funded, SGIP 2.0: Member-funded ∗ SGIP's mission is to provide a framework for coordinating all Smart Grid stakeholders in an effort to accelerate standards harmonization and advance the Interoperability of Smart Grid

  3. LANSCE | Lujan Center | Instruments | SMARTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectrometer for Materials Research at Temperature and Stress | SMARTS Materials in Extreme Environments and Geoscience The SMARTS is a third-generation neutron diffractometer optimized for the study of engineering materials. It was funded by DOE and constructed at the Lujan Center, coming online in the summer of 2001. SMARTS provides an exciting range of capabilities for studying polycrystalline materials focusing on two areas: the measurement of deformation under stress and extreme

  4. SmartBuy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SmartBuy SmartBuy Arrows Arrows SmartBUY is a federal strategic sourcing initiative featuring blanket purchase agreements for commercial off the shelf software, designed to maximize the government's buying power and decrease the cost of widely used commercial software. The Department of Energy (DOE) fully supports and complies with the SmartBUY initiative. Learn More GSA SmartBUY Program GSA Waiver Process OMB Memoranda Federal Purchase of Commercial Software Maimizing Use of SmartBuy Software

  5. Eversource- Municipal Smart Start Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Eversource (previously Public Service of New Hampshire), an electric utility, offers the Smart Start Program to municipal customers. This program assists municipalities in reducing energy...

  6. Smart Thermostats in Residential Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Energy Efficiency Emerging Technologies Current Research Portfolio...

  7. Integrating smart sensors into grid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating smart sensors into grid systems will enable more complex modeling and ... in currents at A levels in electric grids, which can enable the early detection of ...

  8. DWEA SMART Wind Composites Subgroup

    Broader source: Energy.gov [DOE]

    Monday, February 16, 6:00 PMOpen to all SMART Wind participants: “Dutch Treat” group dinner, RSVP required | Location: TBD

  9. Smart-Grid Security Issues

    SciTech Connect (OSTI)

    Khurana, Himanshu; Hadley, Mark D.; Lu, Ning; Frincke, Deborah A.

    2010-01-29

    TITLE: Smart-Grid Security Issues (Editorial Material, English) IEEE SECURITY & PRIVACY 8 (1). JAN-FEB 2010. p.81-85 IEEE COMPUTER SOC, LOS ALAMITOS

  10. Smart Grid | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China Wants to Power the World Bloomberg View Chicago's ComEd Sees 'Public Purpose Microgrids' as a Sweet Spot for Utilities Microgrid Knowledge Featured Multimedia Smart Grid ...

  11. PSNH- Municipal Smart Start Program

    Broader source: Energy.gov [DOE]

    Public Service of New Hampshire (PSNH), an electric utility, offers the Smart Start Program to Municipal customers. This program assists municipalities in reducing energy consumption and electric...

  12. Highly Insulating Residential Windows Using Smart Automated Shading...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    These windows target significant reductions in residential heating as well as cooling energy. Contacts DOE Technology Manager: Karma Sawyer Performer: Steve Selkowitz, Lawrence ...

  13. Highly Insulating Residential Windows Using Smart Automated Shading

    Broader source: Energy.gov [DOE]

    Lead Performer: Lawrence Berkeley National Laboratory - Berkeley, CA Partner: Pella Windows - Pella, IA

  14. Financing an EnergySmart School

    Broader source: Energy.gov [DOE]

    EnergySmart Schools fact sheet on choosing an EnergySmart approach to school construction to increase the number of attractive financing options available.

  15. Secure Smart Grid Association | Open Energy Information

    Open Energy Info (EERE)

    Smart Grid Association Jump to: navigation, search Name: Secure Smart Grid Association Address: 2374 S Josephine St Place: Denver, Colorado Zip: 80210 Region: Rockies Area Number...

  16. Wind Smart LLC | Open Energy Information

    Open Energy Info (EERE)

    Smart LLC Jump to: navigation, search Name: Wind-Smart LLC Place: Greene, Rhode Island Zip: 2827 Sector: Wind energy Product: Rhode Island consulting company dedicated to the...

  17. Smart Grid Computational Tool | Open Energy Information

    Open Energy Info (EERE)

    project benefits. The Smart Grid Computational Tool employs the benefit analysis methodology that DOE uses to evaluate the Recovery Act smart grid projects. How it works: The...

  18. Smart Storage Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    Storage Pty Ltd Jump to: navigation, search Name: Smart Storage Pty Ltd Place: Australia Product: Australia-based developer of hybrid battery storage solutions. References: Smart...

  19. Smart Grid Investment Grant Recipient Information | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act SGIG Smart Grid Investment Grant Recipient Information Smart Grid Investment Grant Recipient Information BACKGROUND The Department of Energy's Office of Electricity ...

  20. Financing an EnergySmart School

    SciTech Connect (OSTI)

    2008-01-01

    EnergySmart Schools fact sheet on choosing an EnergySmart approach to school construction to increase the number of attractive financing options available.

  1. Networks, smart grids: new model for synchronization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Networks, smart grids: new model for synchronization Networks, smart grids: new model for synchronization Researchers developed a surprisingly simple mathematical model that ...

  2. Smart Grid Resources | Open Energy Information

    Open Energy Info (EERE)

    Grid Resources Jump to: navigation, search Us.jpg US Resources The Smart Grid: An Introduction US Department of Energy Smart Grid Information Clearinghouse EIA Smartgrid.gov...

  3. Smart Grid Investments Improve Grid Reliability, Resilience,...

    Broader source: Energy.gov (indexed) [DOE]

    reliability to reduce customer losses from power disruptions. This report presents findings on smart grid improvements in outage management from OE's Smart Grid Investment ...

  4. NSBA Endorses EnergySmart Schools

    SciTech Connect (OSTI)

    2008-01-01

    EnergySmart Schools fact sheet on the EnergySmart Schools program that is endorsed by the National School Board Association (NSBA).

  5. smart grid technologies | OpenEI Community

    Open Energy Info (EERE)

    and discussion of smart grid technologies, tools, and techniques. The Smart Grid Investment Grant (SGIG) program is authorized by the Energy Independence and Security Act of...

  6. Aggressive Underwriting and Smart Product Delivery | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aggressive Underwriting and Smart Product Delivery Aggressive Underwriting and Smart Product Delivery Presents AFC First's expert knowledge on lending products, financing, and ...

  7. Optical Method for Automated Real Time Control of Elemental Compositio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Method for Automated Real Time Control of Elemental Composition, Distribution, and Film Thickness in CIGS Solar Cell Production National Renewable Energy Laboratory Contact ...

  8. Automated Auditing Tool for Retrofit Building Projects

    Energy Science and Technology Software Center (OSTI)

    2011-06-23

    Building energy auditors regularly use notepads, physical forms, or simple spreadsheets to inventory energy consuming devices in buildings and audit overall performance. Mobile computing devices such as smart phones or tablet computers with camera inputs may be used to automatically capture relevant information and format audit input in a way that streamlines work flows and reduces the likelihood of error. As an example. an auditor could walk through a space holding a mobile device, whichmore » automatically identifies and appliances, windows, etc. This information would automatically be added to a mobile database associated with the building for later integration with a larger building audit database. The user experience would require little or no manual input, and could integrate with tools to automate used to automate data collection for building energy modeling.« less

  9. Smart Grid - Transforming Power System Operations

    SciTech Connect (OSTI)

    Widergren, Steven E.; Kirkham, Harold

    2010-04-28

    AbstractElectric power systems are entering a new realm of operations. Large amounts of variable generation tax our ability to reliably operate the system. Couple this with a greater reliance on the electricity network to serve consumer demand that is likely to rise significantly even as we drive for greater efficiency. Trade-offs between energy and environmental needs will be constantly negotiated, while a reliable supply of electricity needs even greater assurance in a world where threats of disruption have risen. Smart grid capabilities are being proposed to help address the challenges confronting system operations. This paper reviews the impact of smart grid functionality on transforming power system operations. It explores models for distributed energy resources (DER generation, storage, and load) that are appearing on the system. It reviews the evolving nature of electricity markets to deal with this complexity and a change of emphasis on signals from these markets to affect power system control. Smart grid capabilities will also impact reliable operations, while cyber security issues must be addressed as a culture change that influences all system design, implementation, and maintenance. Lastly, the paper explores significant questions for further research and the need for a simulation environment that supports such investigation and informs deployments to mitigate operational issues as they arise.

  10. Role of Standard Demand Response Signals for Advanced Automated Aggregation

    SciTech Connect (OSTI)

    Lawrence Berkeley National Laboratory; Kiliccote, Sila

    2011-11-18

    Emerging standards such as OpenADR enable Demand Response (DR) Resources to interact directly with Utilities and Independent System Operators to allow their facility automation equipment to respond to a variety of DR signals ranging from day ahead to real time ancillary services. In addition, there are Aggregators in today’s markets who are capable of bringing together collections of aggregated DR assets and selling them to the grid as a single resource. However, in most cases these aggregated resources are not automated and when they are, they typically use proprietary technologies. There is a need for a framework for dealing with aggregated resources that supports the following requirements: • Allows demand-side resources to participate in multiple DR markets ranging from wholesale ancillary services to retail tariffs without being completely committed to a single entity like an Aggregator; • Allow aggregated groups of demand-side resources to be formed in an ad hoc fashion to address specific grid-side issues and support the optimization of the collective response of an aggregated group along a number of different dimensions. This is important in order to taylor the aggregated performance envelope to the needs to of the grid; • Allow aggregated groups to be formed in a hierarchical fashion so that each group can participate in variety of markets from wholesale ancillary services to distribution level retail tariffs. This paper explores the issues of aggregated groups of DR resources as described above especially within the context of emerging smart grid standards and the role they will play in both the management and interaction of various grid-side entities with those resources.

  11. VP 100: A Smart Grid Initiative in an Eco-Conscious Town

    Broader source: Energy.gov [DOE]

    Naperville, Illinois is improving their long-term electricity distribution through the implementation of the Naperville Smart Grid Initiative (NSGI) -- to the tune of $3million in savings over a 15-year period.

  12. SMART Wind Consortium Virtual Meeting on Installation: Reducing Electrical and Foundation Costs

    Broader source: Energy.gov [DOE]

    This 90-minute SMART Wind Consortium virtual meeting is intended to foster dialogue on actions to improve safety and efficiency and to reduce installation costs for distributed wind turbines. Gary...

  13. Knoxville Utilities Board Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    Thermostats Customer Systems for 4,200 customers Home Area Networks Web Portal Access In-Home DisplaysEnergy Management Systems Distribution Automation (DA) Equipment for 5 out...

  14. Category:Smart Grid Projects - Advanced Metering Infrastructure...

    Open Energy Info (EERE)

    Central Maine Power Company Smart Grid Project Cheyenne Light, Fuel and Power Company Smart Grid Project City of Fulton, Missouri Smart Grid Project City of Glendale Water and...

  15. US Recovery Act Smart Grid Demonstration Projects | Open Energy...

    Open Energy Info (EERE)

    wikiCityofPainesvilleSmartGridDemonstrationProject" title"City of Painesville Smart Grid Demonstration Project">City of Painesville Smart Grid Demonstration Project<...

  16. US Recovery Act Smart Grid Projects - Customer Systems | Open...

    Open Energy Info (EERE)

    href"wikiCityofTallahasseeSmartGridProject" title"City of Tallahassee Smart Grid Project">City of Tallahassee Smart Grid Project","title":"City of...

  17. US Recovery Act Smart Grid Regional Demonstration Projects |...

    Open Energy Info (EERE)

    CompanySmartGridDemonstrationProject" title"Kansas City Power & Light Company Smart Grid Demonstration Project">Kansas City Power & Light Company Smart Grid...

  18. Future Power Systems 21 - The Smart Customer | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future Power Systems 21 - The Smart Customer Future Power Systems 21 - The Smart Customer Future Power Systems 21 - The Smart Customer: From Future Power Systems (FPS) articles 18...

  19. Category:Smart Grid Projects - Energy Storage Demonstrations...

    Open Energy Info (EERE)

    Smart Grid Projects - Energy Storage Demonstrations Jump to: navigation, search Smart Grid Energy Storage Demonstration Projects category. Pages in category "Smart Grid Projects -...

  20. Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Okaloosa Gas District Smart Grid RFI: Addressing Policy and ...

  1. Future Power Systems 20: The Smart Enterprise, its Objective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise, ...

  2. Category:Smart Grid Projects - Equipment Manufacturing | Open...

    Open Energy Info (EERE)

    Smart Grid Projects - Equipment Manufacturing Jump to: navigation, search Smart Grid Projects - Equipment Manufacturing category. Pages in category "Smart Grid Projects - Equipment...

  3. Recovery Act: Smart Grid Investment Grants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Center Recovery Act Recovery Act: Smart Grid Investment Grants Recovery Act: Smart Grid Investment Grants Smart Grid Investment Grant Awards Recipients by State ...

  4. Category:Smart Grid Investment Grant Projects | Open Energy Informatio...

    Open Energy Info (EERE)

    Smart Grid Investment Grant Projects Jump to: navigation, search Smart Grid Investment Grant Projects Pages in category "Smart Grid Investment Grant Projects" The following 98...

  5. Smart Grid Investment Grant Program - Progress Report (October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Investment Grant Program - Progress Report (October 2013) Smart Grid Investment Grant Program - Progress Report (October 2013) The Smart Grid Investment Grant (SGIG)...

  6. Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Natural Gas Industry Comments on Smart Grid RFI: Addressing Policy and ...

  7. Advancing Smart Grid Interoperability and Implementing NIST's Interoperability Roadmap

    SciTech Connect (OSTI)

    Basso,T.; DeBlasio, R.

    2010-04-01

    The IEEE American National Standards project P2030TM addressing smart grid interoperability and the IEEE 1547 series of standards addressing distributed resources interconnection with the grid have been identified in priority action plans in the Report to NIST on the Smart Grid Interoperability Standards Roadmap. This paper presents the status of the IEEE P2030 development, the IEEE 1547 series of standards publications and drafts, and provides insight on systems integration and grid infrastructure. The P2030 and 1547 series of standards are sponsored by IEEE Standards Coordinating Committee 21.

  8. Distribution:

    Office of Legacy Management (LM)

    JAN26 19% Distribution: OR00 Attn: h.H.M.Roth DFMusser ITMM MMMann INS JCRyan FIw(2) Hsixele SRGustavson, Document rocm Formal file i+a@mmm bav@ ~@esiaw*cp Suppl. file 'Br & Div rf's s/health (lic.only) UNITED STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAB MATERIAL LICENSE pursuant to the Atomic Energy Act of 1954 and Title 10, Code of Federal Regulations, Chapter 1, P&t 70, "Special Nuclear Material Reg)llatiqm," a license is hereby issued a$hortztng the licensee to rekeive

  9. 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sullivan, NC State University (1.5 MB) 2012 SG Peer Review - Day 2 Panel Discussion: Matt Wakefield, EPRI (1.41 MB) More Documents & Publications Smart Grid Characteristics, ...

  10. Multiplex automated genome engineering

    DOE Patents [OSTI]

    Church, George M; Wang, Harris H; Isaacs, Farren J

    2013-10-29

    The present invention relates to automated methods of introducing multiple nucleic acid sequences into one or more target cells.