Powered by Deep Web Technologies
Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fusion Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research...

2

Nuclear Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Science and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE) Sourcebook. We have evolved and improved! The core mission of the Sourcebook has not changed, however. Our purpose is to facilitate interaction among faculty, students, industry, and government agencies to accomplish nuclear research, teaching and service activities. Since 1986 we have compiled critical information on nuclear

3

Nuclear Science at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Science Accelerator Science Astrophysics Biological Sciences Chemistry & Materials Science Climate & Earth Science Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear Science Science Highlights NERSC Citations HPC Requirements Reviews Home » Science at NERSC » Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of matter. This includes discovering the origins of nuclei and identifying the forces that transform matter. Specific topics include: Nuclear astrophysics and the synthesis of nuclei in stars and elsewhere in the cosmos; Nuclear forces and quantum chromodynamics (QCD), the quantum field

4

Nuclear Sciences | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Chemistry Advanced Materials Nuclear Forensics Climate & Environment Biology and Soft Matter Chemical and Engineering Materials Quantum Condensed Matter Computational Chemistry Nuclear Sciences More Science Home | Science & Discovery | More Science | Chemistry | Nuclear Sciences SHARE Nuclear Sciences In World War II's Manhattan Project, ORNL helped usher in the nuclear age. Today, laboratory scientists are leaders in using nuclear technologies and systems to improve human health; explore safer, more environmentally friendly power; and better understand the structure of matter. Thanks to its nuclear heritage, ORNL is a world leader in the production of isotopes for medical purposes and research. The lab's High Flux Isotope Reactor (HFIR) and Radiochemical Engineering Development Center (REDC)

5

Security Science & Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Security Treaty Verification Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology Reactor Technology Nuclear Science Home | Science & Discovery |...

6

Nuclear Science & Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science & Technology Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. /No/ Nuclear Science & Technology Some of these resources are LANL-only and will require Remote Access. Key Resources Databases Organizations Journals Key Resources International Atomic Energy Agency IAEA scientific and technical publications cover areas of nuclear power, radiation therapy, nuclear security, nuclear law, and emergency repose. Search under Publications/Books and Reports for scientific books, standards, technical guides and reports National Nuclear Data Center Nuclear physics data for basic nuclear research and for applied nuclear technologies, operated by Brookhaven.

7

Nuclear Systems Modeling, Simulation & Validation | Nuclear Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Fuel Cycle Science & Technology Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation...

8

Reactor Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Fuel Cycle Science & Technology Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation...

9

Nuclear Science Series: Radiochemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiochemistry Nuclear Science Series: Radiochemistry These volumes are publicly accessible via the Library Catalog or the links below. Question? 667-5809 Email Scope This...

10

Whos Watching the Nuclear Watchdog? A Critique of the Australian Safeguards and Non-Proliferation Office  

E-Print Network (OSTI)

This EnergyScience Briefing Paper raises serious concerns regarding the competence and professionalism of the Australian Safeguards and Non-Proliferation Office (ASNO). ASNOs mission, to prevent nuclear proliferation dangers associated with Australias uranium exports, is a task vital to the long-term security of Australians and all people. This paper details a large number of statements made by ASNO which are false or misleading. The evidence compiled raises critical questions of good governance, and leads inescapably to the conclusion that the safeguards on Australian uranium which ASNO is responsible for implementing are deeply flawed both in their design and in their execution.

Richard Broinowski; Tilman Ruff; Alan Roberts; Jim Green

2007-01-01T23:59:59.000Z

11

Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Educational Outreach Educational Outreach Publications and Reports News and Awards Home | Science & Discovery | Nuclear Science Nuclear Science | Nuclear Science SHARE In World War II's Manhattan Project, ORNL helped usher in the nuclear age. Today, laboratory scientists are leaders in using nuclear technologies and systems to improve human health; explore safer, more environmentally friendly power; and better understand the structure of matter. Thanks to its nuclear heritage, ORNL is a world leader in the production of isotopes for medical purposes and research. The lab's High Flux Isotope Reactor (HFIR) and Radiochemical Engineering Development Center (REDC) together provide the western world's sole supply of californium-252, an isotope instrumental in a wide variety of uses including cancer therapy,

12

Nuclear Science Research Facilities Nuclear Science User Guide  

E-Print Network (OSTI)

LANSCE User Guide Nuclear Science Research Facilities #12;#12;Nuclear Science User Guide Table of Contents Introduction 3 Nuclear Science Research Facilities 3 The LANSCE Accelerator 4 Time structure techniques 8 Nuclear Science User Program 11 Proposal Process 13 Information for Prospective Users 14

13

Western Nuclear Science Alliance  

SciTech Connect

The primary objective of the INIE program is to strengthen nuclear science and engineering programs at the member institutions and to address the long term goal of the University Reactor Infrastructure and Education Assistance Program.

Steve Reese; George Miller; Stephen Frantz; Denis Beller; Denis Beller; Ed Morse; Melinda Krahenbuhl; Bob Flocchini; Jim Elliston

2010-12-07T23:59:59.000Z

14

Nuclear Forensics | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science and Engineering Materials Science and Engineering Advanced Materials Clean Energy Materials Theory and Simulation Neutron Science Nuclear Forensics Nuclear Science Supercomputing Theory, Modeling and Simulation More Science Home | Science & Discovery | More Science | Materials Science and Engineering | Nuclear Forensics SHARE Nuclear Forensics image Tools, techniques, and expertise in nuclear fuel cycle research gained over seven decades help ORNL scientists control and track nuclear bomb-grade materials to be sure they don't fall into the wrong hands. Among the leading-edge technologies used by researchers are high-resolution techniques that allow analysis of radiation detector data in stunning detail. Researchers are also developing aerosol sampling systems to collect

15

Nuclear Science References Database  

E-Print Network (OSTI)

The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center http://www.nndc.bnl.gov/nsr and the International Atomic Energy Agency http://www-nds.iaea.org/nsr.

B. Pritychenko; E. B?tk; B. Singh; J. Totans

2013-02-27T23:59:59.000Z

16

Science With The Australian Square Kilometre Array Pathfinder  

E-Print Network (OSTI)

The future of cm and m-wave astronomy lies with the Square Kilometre Array (SKA), a telescope under development by a consortium of 17 countries that will be 50 times more sensitive than any existing radio facility. Most of the key science for the SKA will be addressed through large-area imaging of the Universe at frequencies from a few hundred MHz to a few GHz. The Australian SKA Pathfinder (ASKAP) is a technology demonstrator aimed in the mid-frequency range, and achieves instantaneous wide-area imaging through the development and deployment of phased-array feed systems on parabolic reflectors. The large field-of-view makes ASKAP an unprecedented synoptic telescope that will make substantial advances in SKA key science. ASKAP will be located at the Murchison Radio Observatory in inland Western Australia, one of the most radio-quiet locations on the Earth and one of two sites selected by the international community as a potential location for the SKA. In this paper, we outline an ambitious science program for ASKAP, examining key science such as understanding the evolution, formation and population of galaxies including our own, understanding the magnetic Universe, revealing the transient radio sky and searching for gravitational waves.

Simon Johnston

2007-11-14T23:59:59.000Z

17

Nuclear Science | Publications and Reports | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

NSED Monthly Reports Reactor and Nuclear Systems Publications News and Awards Nuclear Science Home | Science & Discovery | Nuclear Science | Publications and Reports SHARE...

18

Nuclear Data | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Science Computer Science Theory, Modeling and Simulation Cyber Security Bioinformatics Climate & Environment Systems Biology Neutron Data Analysis and Visualization Nuclear Data Nuclear Systems Modeling and Simulation Supercomputing and Computation More Science Home | Science & Discovery | More Science | Computer Science | Nuclear Data SHARE Nuclear Data Nuclear Data ORNL is a recognized, international leader in nuclear data research and development (R&D) to support nuclear applications analyses. For more than 40 years, ORNL has provided neutron resonance region nuclear data evaluations to the US Evaluated Nuclear Data File (ENDF/B) database, and many of the key ORNL resonance evaluations have also been adopted by international nuclear databases in Europe, Japan, China, and Russia. ORNL

19

Nuclear Systems Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Fuel Cycle Systems Criticality Safety Irradiation Experiment Development and Execution Robotics & Remote Systems Engineering and Applications Thermal & Hydraulic Experiments & Analysis Used Nuclear Fuel Storage, Transportation, and Disposal Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research Areas | Nuclear Systems Technology SHARE Nuclear Systems Technology Nuclear Systems Technology Image 2 ORNL has had historic involvement in a broad set of nuclear research areas: irradiated materials and isotopes R&D, fission and fusion reactors development, neutron scattering, fuel enrichment, used fuel recycling and disposal, etc. The skills and knowledge required to succeed in these research areas often cultivated core areas of expertise in which ORNL is

20

Nuclear Science Day live webinar (National Nuclear Science Week) - Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science Day live webinar Nuclear Science Day live webinar Search Go Home Postdocs Students Student Outreach Resources for Schools U.S.-based International (English) International (Other) Events IGED 2013 Science Careers in Search of Women Girls, choose a career in Nuclear Science and Technology! Argonne Nuclear Engineers tell why they chose a Nuclear Career Resources Contact Us Recent Events Science Careers in Search of Women, Apr. 18, 2013 Junior Girl Scout Workshop 'Atomic Fission Fun with the American Nuclear Society', Jan. 26, 2013 Getting to know nuclear energy: the past, the present & the future - free public lecture (Nov. 15, 2012, Argonne National Laboratory) On January 26, 2013, Argonne staff members participated in the Junior Girl Scout Workshop 'Atomic Fission Fun with the American Nuclear Society'

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The ABC's of Nuclear Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic Nuclear Science Basic Nuclear Science Cosmic Connection Presentations Experiments Antimatter Make a Nucleus Glossary Safety Credits Praise CPEP Speak With Us Boy Scout Merit Badge Translations Guide to the Nuclear Wall Chart About the Nuclear Wall Chart Privacy and Security Notice Other Interesting Sites Last updated: September 26, 2013 Contact Us The ABC's Of Nuclear Science The ABC's of Nuclear Science is a brief introduction to Nuclear Science. We look at Antimatter, Beta rays, Cosmic connection and much more. Visit here and learn about radioactivity - alpha, beta and gamma decay. Find out the difference between fission and fusion. Learn about the structure of the atomic nucleus. Learn how elements on the earth were produced. Do you know that you are being bombarded constantly by nuclear radiation from the

22

GARS | Nuclear Science and Technology Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science and Technology Department Exploring Nuclear Technologies for Our Energy Future Brookhaven National Laboratory's Department of Nuclear Science and Technology...

23

Educational Outreach | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science Research Areas Research Highlights Facilities and Capabilities Educational Outreach University Engagement STEM Outreach Publications and Reports News and Awards...

24

Fuel Cycle Science & Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Fuel Cycle Systems Radiochemical Separation & Processing Recycle & Waste Management Uranium Enrichment Used Nuclear Fuel Storage, Transportation, and Disposal Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research Areas | Fuel Cycle Science & Technology SHARE Fuel Cycle Science and Technology The ORNL expertise and experience across the entire nuclear fuel cycle is underpinned by extensive facilities and a comprehensive modeling and simulation capability ORNL supports the understanding, development, evaluation and deployment of

25

Promethean Boldness - Argonne's Nuclear Science and Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy...

26

Isotope Development & Production | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Radioisotope Radiochemical Separation & Processing Strategic Isotope Production Super Heavy Element Discovery Nuclear Security Science & Technology Nuclear Systems...

27

Index to Nuclear Science Wall Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

The Nucleus Chart of the Nuclides Radioactivity Expansion of the Universe Phases of Nuclear Matter Unstable Nuclei Nuclear Energy Applications of Nuclear Science Chapter 2 The...

28

The Nuclear Science References Database  

E-Print Network (OSTI)

The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center http://www.nndc.bnl.gov/nsr and the International Atomic Energy Agency http://www-nds.iaea.org/nsr.

Pritychenko, B; Singh, B; Totans, J

2013-01-01T23:59:59.000Z

29

Office of Nuclear Threat Science | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Threat Science | National Nuclear Security Administration Nuclear Threat Science | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Office of Nuclear Threat Science Home > About Us > Our Programs > Counterterrorism and Counterproliferation > Office of Nuclear Threat Science Office of Nuclear Threat Science

30

Basic Nuclear Science Information  

NLE Websites -- All DOE Office Websites (Extended Search)

element. Only through such radioactive decays or nuclear reactions can transmutation, the age-old dream of the alchemists, actually occur. The mass number, A, of an a particle is...

31

Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities  

E-Print Network (OSTI)

Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges these issues. 2 #12;FNST is the science, engineering, technology and materials Fusion Nuclear Science & Technology (FNST) FNST is the science, engineering, technology and materials for the fusion nuclear

Abdou, Mohamed

32

Nuclear Science and Engineering - Divisions  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home NSED Divisions The Nuclear Science and Engineering Directorate (NSED) organization is composed of ORNL's only DOE Energy Innovation Hub, a program office, and the following five divisions. Fuel Cycle and Isotopes Division (FCID) FCID focuses on advancing the applications of medical, industrial, and research isotopes (developing separation processes for the processing of radioisotopes and spent nuclear fuels) and designing robotic systems and unique facilities for the safe handling of nuclear materials. Fusion Energy Division (FE) FE is developing the understanding required for an attractive fusion energy source through integrated research, and is pursuing near term applications of plasma science and technology in support of national goals. Global Nuclear Security Technology Division (GNSTD)

33

Nuclear Science-A Guide to the Nuclear Science Wall Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

12 Tools of Nuclear Science Presently, the most commonly used tools of nuclear science are accelerators (see Chapter 11), reactors, detectors, and computers. The technological...

34

Office of Nuclear Threat Science | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Threat Science | National Nuclear Security Administration Threat Science | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Office of Nuclear Threat Science Home > About Us > Our Programs > Counterterrorism and Counterproliferation > Office of Nuclear Threat Science Office of Nuclear Threat Science

35

Nuclear Science & Engineering Directorate  

E-Print Network (OSTI)

, and allowable fuel burn-up Typical crud loading in a PWR fuel assembly ( NEI, 2012) CASL is advancing power plant with high-fidelity R&D capabilities · Provide analysis capability on a spatial scale never extremely large problems challenging the U.S. nuclear power industry · Software validation against measured

Pennycook, Steve

36

WEB RESOURCE: Glossary of Nuclear Science  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... Topic Summary: An animated glossary of nuclear science terms ... A number of animations have been created to illustrate nuclear decay and...

37

Research Highlights | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

News and Awards News and Awards Nuclear Science Home | Science & Discovery | Nuclear Science | Research Highlights SHARE Research Highlights 1-3 of 3 Results Neutron scattering continues as a vital tool in superconductivity studies January 01, 2011 - In 2008, the totally unexpected discovery of a New class of superconductors, the iron pnictides, set off A Feverish international effort to understand them. Fabrication and Characterization of Uranium-based High Temperature Reactor Fuel June 01, 2013 - The Uranium Fuel Development Laboratory is a modern R&D scale lab for the fabrication and characterization of uranium-based high temperature reactor fuel. Light Water Reactor Fuel Cladding Research June 01, 2013 - ORNL is the focus point for Light Water Reactor (LWR)

38

Argonne's Nuclear Science and Technology Legacy  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Argonne's Nuclear Science and Technology Legacy About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia...

39

Nuclear Materials Science:Materials Science Technology:MST-16...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Materials Science (MST-16) Home About Us MST Related Links Research Highlights Focus on Facilities MST e-News Experimental Physical Sciences Vistas MaRIE: Matter-Radiation...

40

Multimedia Resources related to Argonne's Nuclear Science and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Science and Technology Legacy > Multimedia Director's Welcome Organization Achievements Nuclear Energy Nuclear Reactors CP-1 70th Anniversary Argonne's Nuclear Science and...

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

National Nuclear Science Week live talks today | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Week live talks today | National Nuclear Security Science Week live talks today | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > National Nuclear Science Week live talks today National Nuclear Science Week live talks today Posted By Office of Public Affairs National Nuclear Science Week Students and teachers today will get the chance to talk live with nuclear

42

National Nuclear Science Week live talks today | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Science Week live talks today | National Nuclear Security Science Week live talks today | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > National Nuclear Science Week live talks today National Nuclear Science Week live talks today Posted By Office of Public Affairs National Nuclear Science Week Students and teachers today will get the chance to talk live with nuclear

43

WEB RESOURCE: Nuclear Science and Technology  

Science Conference Proceedings (OSTI)

Feb 19, 2007 ... This page offers lecture notes and presentations from a course on nuclear science and technology. Presentation slides and audio files are also...

44

Nuclear Science and Technology Division - Home page  

NLE Websites -- All DOE Office Websites (Extended Search)

image image image - mural in bldg 5200 image image Fuels, Isotopes, and Nuclear Materials image Fuels, Isotopes, and Nuclear Materials Nuclear System Analysis, Design, and Safety image Nuclear System Analysis, Design, and Safety WELCOME Performing basic and applied R&D for the Department of Energy, the National Nuclear Security Administration, and other government agencies, as well as supporting and leveraging industrial partnerships Mission Statement The Nuclear Science and Technology Division at Oak Ridge National Laboratory will provide leading-edge science, technology, and engineering research that support our Nation's nuclear science and technology enterprise across a broad spectrum of applications including but not limited to advanced nuclear power systems, nuclear medicine,and nuclear

45

NUCLEAR SCIENCE REFERENCES CODING MANUAL  

Science Conference Proceedings (OSTI)

This manual is intended as a guide for Nuclear Science References (NSR) compilers. The basic conventions followed at the National Nuclear Data Center (NNDC), which are compatible with the maintenance and updating of and retrieval from the Nuclear Science References (NSR) file, are outlined. The NSR database originated at the Nuclear Data Project (NDP) at Oak Ridge National Laboratory as part of a project for systematic evaluation of nuclear structure data.1 Each entry in this computer file corresponds to a bibliographic reference that is uniquely identified by a Keynumber and is describable by a Topic and Keywords. It has been used since 1969 to produce bibliographic citations for evaluations published in Nuclear Data Sheets. Periodic additions to the file were published as the ''Recent References'' issues of Nuclear Data Sheets prior to 2005. In October 1980, the maintenance and updating of the NSR file became the responsibility of the NNDC at Brookhaven National Laboratory. The basic structure and contents of the NSR file remained unchanged during the transfer. In Chapter 2, the elements of the NSR file such as the valid record identifiers, record contents, and text fields are enumerated. Relevant comments regarding a new entry into the NSR file and assignment of a keynumber are also given in Chapter 2. In Chapter 3, the format for keyword abstracts is given followed by specific examples; for each TOPIC, the criteria for inclusion of an article as an entry into the NSR file as well as coding procedures are described. Authors preparing Keyword abstracts either to be published in a Journal (e.g., Nucl. Phys. A) or to be sent directly to NNDC (e.g., Phys. Rev. C) should follow the illustrations in Chapter 3. The scope of 1See W.B.Ewbank, ORNL-5397 (1978). the literature covered at the NNDC, the categorization into Primary and Secondary sources, etc., is discussed in Chapter 4. Useful information regarding permitted character sets, recommended abbreviations, etc., is given in the Appendices. The NSR database has been in existence for decades, and responsibility for its upkeep has passed through many hands. Those familiar with the contents of NSR will note that not all of the formats and conventions discussed in this manual have always been adhered to. In recent years, however, these conventions have been followed fairly consistently, and it is expected that the preparation of new entries will follow these guidelines. The most up-to-date information about NSR contents and policies can be found at the NSR web site: http://www.nndc.bnl.gov/nsr. This manual is an update to BNL-NCS-51800 (Rev. 08/96) by S. Ramavataram and C.L. Dunford. Discussions with Mark Kellett of the IAEA are gratefully acknowledged, as are comments and suggestions from the NNDC staff and members of the U.S. Nuclear Data Program. This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH1-886 with the U.S.Department of Energy.

WINCHELL,D.F.

2007-04-01T23:59:59.000Z

46

Nuclear Science-A Guide to the Nuclear Science Wall Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

Science-A Guide to the Nuclear Science Wall Chart 2004 Contemporary Physics Education Project (CPEP) 9-1 Chapter 9 Phases of Nuclear Matter As we know, water (H 2 O) can exist as...

47

Nuclear Data | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Data SHARE Nuclear Data Nuclear Data ORNL is a recognized, international leader in nuclear data research and development (R&D) to support nuclear applications analyses. For more...

48

Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program Issues and Strategy for Fusion Nuclear Science Facility (FNSF)  

E-Print Network (OSTI)

Need for Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program ­Issues and Strategy for Fusion Nuclear Science Facility (FNSF) ­Key R&D Areas to begin NOW (modeling 12, 2010 #12;Fusion Nuclear Science and Technology (FNST) FNST is the science engineering technology

Abdou, Mohamed

49

Nuclear Science Division: 1993 Annual report  

Science Conference Proceedings (OSTI)

This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations.

Myers, W.D. [ed.

1994-06-01T23:59:59.000Z

50

NUCLEAR SCIENCE ANNUAL REPORT 1975  

E-Print Network (OSTI)

Gove and A. H. Wapstra, Nuclear Data Tables 11, 127 (1972).P. Jackson, Chalk River Nuclear Laboratories Report (1975)national Conference on Nuclear Structure and Spec troscopy,

Authors, Various

2010-01-01T23:59:59.000Z

51

Stewardship Science Academic Alliances | National Nuclear Security  

National Nuclear Security Administration (NNSA)

| National Nuclear Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Stewardship Science Academic Alliances Stewardship Science Academic Alliances Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > University Partnerships / Academic Alliances > Stewardship Science Academic Alliances

52

Global Security, Medical Isotopes, and Nuclear Science  

Science Conference Proceedings (OSTI)

Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R&D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

Ahle, L E

2007-09-17T23:59:59.000Z

53

Los Alamos Neutron Science Center | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Neutron Science Center | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

54

2013 NNSA Science Council | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

NNSA Science Council | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

55

Fusion Nuclear Science Pathways Assessment  

Science Conference Proceedings (OSTI)

With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

C.E. Kessel, et. al.

2012-02-23T23:59:59.000Z

56

Nuclear Science-A Guide to the Nuclear Science Wall Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

fields, nuclear scientists generally work with a great interest and excitement for the science. Understanding the building blocks of nature and the physical laws that govern them...

57

Preparing the Nuclear Security Science Minds of Tomorrow | National...  

National Nuclear Security Administration (NNSA)

the Nuclear Security Science Minds of Tomorrow | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

58

Research Areas | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation & Validation Nuclear Systems Technology Reactor Technology Research Highlights Facilities and Capabilities Educational Outreach Publications and Reports News and Awards...

59

Nuclear Science and Engineering Education Sourcebook | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science and Engineering Education Sourcebook Science and Engineering Education Sourcebook Nuclear Science and Engineering Education Sourcebook The Nuclear Science and Engineering Education Sourcebook is a repository of critial information on nuclear engineering programs at U.S. colleges and universities. It includes detailed information such as nuclear engineering enrollments, degrees, and faculty expertise. In this latest edition, science faculty and programs relevant to nuclear energy are also included. NuclearScienceEngineeringSourcebook2013.pdf More Documents & Publications University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee The Future of University Nuclear Engineering Programs and University Research and Training Reactors Clark Atlanta Universities (CAU) Energy Related Research Capabilities

60

Nuclear Science Division Annual Report 1995-1996  

E-Print Network (OSTI)

Saladin5, and C.H. Yu6 Nuclear Science Division, LawrenceMoretto, G.J. Wozniak, Nuclear Science Division, LawrenceComment on Probing the Nuclear Liquid-Gas Phase Transition

Authors, Various

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Nuclear Medicine | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Medicine Nuclear Medicine SHARE Nuclear Medicine The Medical Isotope Program is focused on the development of: improved reactor production and processing methods to provide medical radioisotopes; new radionuclide generator systems; design and evaluation of new radiopharmaceuticals for applications in nuclear medicine and oncology; and association with Medical Cooperative Programs throughout the world for the further pre-clinical testing and clinical evaluation of agents developed at ORNL. In the United States, only ORNL has the combined resources of a stable isotope inventory, the High Flux Isotope Reactor (HFIR), hot cell processing capabilities, and a wide range of support functions required for such research. These collective resources provide unique capabilities for

62

Media Mentions | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear security and safeguards at the Safeguards Laboratory at Oak Ridge National Laboratory (ORNL) from October 15-19, 2012. Faculty members Dr. Craig Marianno from NSSPI and Dr...

63

Nuclear Science--A Guide to the Nuclear Science Wall Chart 2003 Contemporary Physics Education Project (CPEP)  

E-Print Network (OSTI)

Nuclear Science--A Guide to the Nuclear Science Wall Chart ©2003 Contemporary Physics Education Project (CPEP) 7-1 Chapter 7 Nuclear Reactions Nuclear reactions and nuclear scattering are used, protons, alphas, or "heavy ions"), creates these reactions when they strike a target nucleus. Nuclear

64

Los Alamos Neutron Science Center | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

sponsors of LANSCE include the DOE, NNSA, Office of Science and Office of Nuclear Energy, Science and Technology. Users conduct research at state-of-the-art facilities...

65

Nuclear Science References Coding Manual D.F. Winchell  

E-Print Network (OSTI)

Nuclear Science References Coding Manual D.F. Winchell National Nuclear Data Center Brookhaven and coding procedures for specific topics . . 18 3.2.1 NUCLEAR REACTIONS . . . . . . . . . . . . . . . . 19 3.2.2 RADIOACTIVITY . . . . . . . . . . . . . . . . . . . . 20 3.2.3 NUCLEAR STRUCTURE

Homes, Christopher C.

66

Nuclear Science-A Guide to the Nuclear Science Wall Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

both to solve problems and to search for new understandings of the world around us. In nuclear science the concept of symmetry plays a key role in gaining an understanding of the...

67

Midwest Nuclear Science and Engineering Consortium  

SciTech Connect

The objective of the Midwest Nuclear Science and Engineering Consortium (MNSEC) is to enhance the scope, quality and integration of educational and research capabilities of nuclear sciences and engineering (NS/E) programs at partner schools in support of the U.S. nuclear industry (including DOE laboratories). With INIE support, MNSEC had a productive seven years and made impressive progress in achieving these goals. Since the past three years have been no-cost-extension periods, limited -- but notable -- progress has been made in FY10. Existing programs continue to be strengthened and broadened at Consortium partner institutions. The enthusiasm generated by the academic, state, federal, and industrial communities for the MNSEC activities is reflected in the significant leveraging that has occurred for our programs.

Dr. Wynn Volkert; Dr. Arvind Kumar; Dr. Bryan Becker; Dr. Victor Schwinke; Dr. Angel Gonzalez; Dr. DOuglas McGregor

2010-12-08T23:59:59.000Z

68

Medical Radioisotope | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Medical Radioisotope SHARE Medical Radioisotope Staff members preparing Ac-225 in glove boxes for shipment to hospitals to support radiotherapy cancer clinical trials in multiple locations around the world. ORNL's Medical Radioisotope Program is focused on the development of improved reactor production and processing methods to provide medical radioisotopes, the development of new radionuclide generator systems, the design and evaluation of new radiopharmaceuticals for applications in nuclear medicine and oncology, and association with Medical Cooperative Programs throughout the world for further preclinical testing and clinical evaluation of agents developed at ORNL. The collective resources of ORNL, including access to the enriched stable isotope inventory, a High Flux

69

Graphite in Science and Nuclear Technique  

E-Print Network (OSTI)

The monograph is devoted to the application of graphite and graphite composites in science and technology. The structure and electrical properties, the technological aspects of production of high-strength synthetic graphites, the dynamics of the graphite destruction, traditionally used in the nuclear industry are discussed. It is focuses on the characteristics of graphitization and properties of graphite composites based on carbon isotope 13C. The book is based, generally, on the original results, and concentrated on the actual problems of application and testing of graphite materials in modern nuclear physics, in scientific and technical applications. For scientists and engineers specializing in nuclear physics and engineering, physics of nuclear reactors, condensed matter, for undergraduate, graduate and post-graduate students of universities physical specialties.

Zhmurikov, E I; Pokrovsky, A S; Harkov, D V; Dremov, V V; Samarin, S I

2013-01-01T23:59:59.000Z

70

Graphite in Science and Nuclear Technique  

E-Print Network (OSTI)

The monograph is devoted to the application of graphite and graphite composites in science and technology. The structure and electrical properties, the technological aspects of production of high-strength synthetic graphites, the dynamics of the graphite destruction, traditionally used in the nuclear industry are discussed. It is focuses on the characteristics of graphitization and properties of graphite composites based on carbon isotope 13C. The book is based, generally, on the original results, and concentrated on the actual problems of application and testing of graphite materials in modern nuclear physics, in scientific and technical applications. For scientists and engineers specializing in nuclear physics and engineering, physics of nuclear reactors, condensed matter, for undergraduate, graduate and post-graduate students of universities physical specialties.

E. I. Zhmurikov; I. A. Bubnenkov; A. S. Pokrovsky; D. V. Harkov; V. V. Dremov; S. I. Samarin

2013-07-07T23:59:59.000Z

71

NUCLEAR SCIENCE DIVISION ANNUAL REPORT 1979-1980  

E-Print Network (OSTI)

1979). {Laboratory for Nuclear Studies, Osaka University,D. Loveland, and G. T. Seaborg, Nuclear Science Div. AnnualBohr and B. R. Hottel son. Nuclear Structure Vol. 1 (W. A.

Cerny, J.

2010-01-01T23:59:59.000Z

72

Reactors: Modern-Day Alchemy - Argonne's Nuclear Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Achievements > Legacy > Reactors: Modern-Day Alchemy About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

73

Education: The Effort Is Global - Argonne's Nuclear Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Achievements > Argonne Reactors > Education: The Effort Is Global About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

74

Stewardship Science Graduate Fellowship Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

Fellowship Program Stewardship Science Graduate Fellowship Program The Computational Science Graduate Fellowship (CSGF) The Department of Energy Computational Science Graduate...

75

Stewardship Science Academic Alliances Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Program | National Nuclear Security Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Stewardship Science Academic Alliances Program Home > Stewardship Science Academic Alliances Program Stewardship Science Academic Alliances Program Stewardship Science Academic Alliances (SSAA) Program Overview Established in 2002, the Stewardship Science Academic Alliances Program

76

Applications of Nuclear Science and Technology| U.S. DOE Office of Science  

Office of Science (SC) Website

Applications of Nuclear Science and Technology Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Benefits of NP Applications of Nuclear Science and Technology Print Text Size: A A A RSS Feeds FeedbackShare Page Applications of Nuclear Science and Technology (ANS&T) Exchange Meeting: August 22-23, 2011 Hilton Washington DC/Rockville Hotel & Executive Meeting Center

77

National Museum of Nuclear Science & History Opens WIPP Exhibit |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Museum of Nuclear Science & History Opens WIPP Exhibit Museum of Nuclear Science & History Opens WIPP Exhibit National Museum of Nuclear Science & History Opens WIPP Exhibit November 22, 2011 - 3:17pm Addthis To celebrate the WIPP's 10,000th shipment of defense-related TRU waste, the National Museum of Nuclear Science & History added a new exhibit, which includes one the receptacles, pictured above, used by the Energy Department to ship transuranic (TRU) waste from sites located across the country to the Waste Isolation Pilot Plant in New Mexico. | Photo courtesy of the National Museum of Nuclear Science & History To celebrate the WIPP's 10,000th shipment of defense-related TRU waste, the National Museum of Nuclear Science & History added a new exhibit, which includes one the receptacles, pictured above, used by the Energy Department

78

Middle School Energy and Nuclear Science Curriculum Now Available |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Middle School Energy and Nuclear Science Curriculum Now Available Middle School Energy and Nuclear Science Curriculum Now Available Middle School Energy and Nuclear Science Curriculum Now Available October 30, 2013 - 1:18pm Addthis Andrea Duskas Public Affairs Specialist for the Office of Nuclear Energy A new middle school science, technology, engineering, and math (STEM) curriculum called The Harnessed Atom is now available on the Office of Nuclear Energy website. This new curriculum offers accurate, unbiased, and up-to-date information on the roles that energy and nuclear science play in our lives. The essential principles and fundamental concepts in The Harnessed Atom address the latest science standards for crosscutting concepts about energy and matter. The Harnessed Atom teacher's kit is an updated and expanded edition of the

79

Predictive Science Academic Alliance Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Predictive Science Academic Alliance Program | National Nuclear Security Predictive Science Academic Alliance Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Predictive Science Academic Alliance Program Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

80

The Italian Navigator Lands - Argonne's Nuclear Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

The Italian Navigator Lands The Italian Navigator Lands About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Forefront Questions in Nuclear Science and the Role of High  

E-Print Network (OSTI)

Forefront Questions in Nuclear Science and the Role of High Performance Computing January 26-28, 2009 · Washington D.C. Major Issues in Nuclear Physics Aided by Massive Computation David B. Kaplan ~ Institute for Nuclear Theory #12;The challenge of nuclear theory · Many-body problem of interaction nucleons

Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

82

Department of Energy Issues Requests for Nuclear Science and Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Science and Nuclear Science and Engineering Scholarships and Fellowships Applications Department of Energy Issues Requests for Nuclear Science and Engineering Scholarships and Fellowships Applications May 7, 2009 - 1:46pm Addthis The U.S. Department of Energy (DOE) today announced two new Requests for Application (RFA) as part of the Department's efforts to recruit and train the next generation of nuclear scientists and engineers - a critical need as the nation moves toward greater use of nuclear energy to meet our energy needs and address the global climate crisis. Under the Nuclear Energy University Program, DOE will provide approximately $2.9 million to fund scholarships and fellowships for students enrolled in two or four year nuclear science and engineering programs at accredited

83

MISSION AND NEED FOR A FUSION NUCLEAR SCIENCE FACILITY  

E-Print Network (OSTI)

MISSION AND NEED FOR A FUSION NUCLEAR SCIENCE FACILITY Mission Gerald Navratil Need Mohamed Abdou and Symposium 1-2 December 2010 #12;FUSION NUCLEAR SCIENCE FACILITY: COMMENTS ON MISSION Gerald A. Navratil Component Test Facility Theory & Simulation FESAC/Snowmass Report: ITER-Based Development Path #12;FUSION

84

Molecular forensic science of nuclear materials  

SciTech Connect

We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

Wilkerson, Marianne Perry [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

85

2013 NNSA Defense Programs Science Council | National Nuclear Security  

National Nuclear Security Administration (NNSA)

3 NNSA Defense Programs Science Council | National Nuclear Security 3 NNSA Defense Programs Science Council | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > 2013 NNSA Defense Programs Science Council 2013 NNSA Defense Programs Science Council Posted By Office of Public Affairs 2013 NNSA Defense Programs Science Council Members of the 2013 NNSA Defense Programs Science Council include, from

86

NUCLEAR SCIENCE ANNUAL REPORT 1977-1978  

E-Print Network (OSTI)

A Relation Between Nuclear Dynamics and the RenormalizationMultiplicity Distributions in Nuclear Collision M. GyulassyHigh Energy Nuclear Collisions in the Resonance Dominated

Schroeder, L.S.

2011-01-01T23:59:59.000Z

87

Nuclear Science: a survey of funding, facilities, and manpower  

SciTech Connect

In 1973 the Committee on Nuclear Science of the National Research Council initiated a re-examination of aspects (funding, manpower, and facilities) of the organization and operation of nuclear science research in order to evaluate any changes in the preceding four years and implications of such changes. The reports of the three ad hoc panels established for this purpose (funding and level of effort, nuclear facilities, manpower and education) are presented. Although they identify current problems in nuclear science, these reports do not provide simple solutions; rather, they attempt to provide updated information for use as background for continuing decisions. (RWR)

1975-01-01T23:59:59.000Z

88

Thomas Miller Office of Nuclear Energy, Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Miller Miller Office of Nuclear Energy, Science and Technology U.S. Department of Energy September 30, 2002 Presentation at the Nuclear Energy Research Advisory Committee Nuclear Power 2010 Program Strategy to Deploy New Nuclear Power Plants Nuclear Power 2010 Program Strategy to Deploy New Nuclear Power Plants Office of Nuclear Energy, Science and Technology TMiller/Sept11_02 ESE Project.ppt ( 2) Nuclear Power 2010: Overview Nuclear Power 2010: Overview Goal 6 Achieve industry decision by 2005 to deploy at least one new advanced nuclear power plant by 2010 Cooperative Activities 6 Regulatory Demonstration Projects * Early Site Permit (ESP) * Combined Construction and Operating License (COL) 6 Reactor Technology Development Projects * NRC Design Certification (DC) * First-of-a-kind engineering for a standardized plant

89

Argonne Chemical Sciences & Engineering - Nuclear & Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Fuel Cycle * Overview * Fissile Material * Chemical Process Models * Chemistry at Interfaces * Improved Safeguards Nuclear & Environmental Processes Home Closing the...

90

Nuclear science. Annual report, July 1, 1980-June 30, 1981  

Science Conference Proceedings (OSTI)

This annual report describes the scientific research carried out within the Nuclear Science Division between July 1, 1980 and June 30, 1981. The principal activity of the division continues to be the experimental and theoretical investigation of the interaction of heavy ions with target nuclei. Complementary research programs in light-ion nuclear science, in nuclear data evaluations, and in the development of advanced instrumentation are also carried out.

Friedlander, E.M. (ed.)

1982-06-01T23:59:59.000Z

91

Predictive Science Academic Alliance Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

for Our Jobs Our Jobs Working at NNSA Blog Predictive Science Academic Alliance Program Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs >...

92

Future Science & Technology Programs | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Apply for Our Jobs Our Jobs Working at NNSA Blog Future Science & Technology Programs Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs...

93

Stewardship Science Academic Programs Annual | National Nuclear...  

National Nuclear Security Administration (NNSA)

Alliances Annual 2011 Stewardship Science Academic Alliances Annual Banner photo: The Texas Petawatt laser bay at the University of Texas, Center for High Intensity Laser Science...

94

NUCLEAR SCIENCE PUBLICATIONS OF ROBERT B. WEISENMILLER, PH.D.  

E-Print Network (OSTI)

1 NUCLEAR SCIENCE PUBLICATIONS OF ROBERT B. WEISENMILLER, PH.D. 1. Two-proton Pickup Studies, K. H. Wilcox, G. J. Wozniak, M. S. Zisman, and J. Cerny. Nuclear Physics A 280, 217. 1977. 3 Spectroscopic Measurement via Exotic Nuclear Rearrangement: The Reaction 26 Mg (7 Li, 8 B), 25 Ne. With K. H

95

Nuclear Science and Technology, November 2000. NEUTRON CROSS SECTION EVALUATIONS  

E-Print Network (OSTI)

Nuclear Science and Technology, November 2000. 1 NEUTRON CROSS SECTION EVALUATIONS FOR 238 U UP and Power Engineering, 249020 Obninsk, Russia A.Ventura ENEA, Nuclear Data Center and INFN, Bologna Section of the statistical description that includes direct, pre-equilibrium and equilibrium mechanisms of nuclear reactions

96

NNSA conference showcases complex science, engineering | National Nuclear  

National Nuclear Security Administration (NNSA)

conference showcases complex science, engineering | National Nuclear conference showcases complex science, engineering | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA conference showcases complex science, engineering NNSA conference showcases complex science, engineering Posted By Office of Public Affairs NNSA Stewardship Science Graduate Fellowship (SSGF) annual fellows' conference

97

Nuclear Wallet Cards at BNL | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

Wallet Cards at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications SBIRSTTR Applications of Nuclear Science and...

98

NNSA/CEA Cooperation in Computer Science | National Nuclear Security  

National Nuclear Security Administration (NNSA)

NNSA/CEA Cooperation in Computer Science | National Nuclear Security NNSA/CEA Cooperation in Computer Science | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration NNSA/CEA Cooperation in Computer Science Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

99

NNSA/CEA Cooperation in Computer Science | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

NNSA/CEA Cooperation in Computer Science | National Nuclear Security NNSA/CEA Cooperation in Computer Science | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration NNSA/CEA Cooperation in Computer Science Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

100

Nuclear Science Division annual report for 1991  

Science Conference Proceedings (OSTI)

This paper discusses research being conducted under the following programs: Low energy research program; bevalac research program; ultrarelativistic research program; nuclear theory program; nuclear theory program; nuclear data evaluation program; and 88-inch cyclotron operations.

Myers, W.D. (ed.)

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Chemical Sciences & Engineering - Nuclear and Environmental Processes...  

NLE Websites -- All DOE Office Websites (Extended Search)

commercially viable electrochemical processes for the back end of the nuclear fuel cycle. This work covers the full scope of the nuclear fuel cycle for metal, oxide,...

102

Materials Science Challenges for Nuclear Applications  

Science Conference Proceedings (OSTI)

Aladar A. Csontos, U.S. Nuclear Regulatory Commission. Scope, Worldwide expansion of nuclear energy has been proposed to address rising global energy ...

103

Predictive Science Academic Alliance Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

> Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research & Development > University...

104

Drell receives National Medal of Science | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Drell receives National Medal of Science | National Nuclear Security Drell receives National Medal of Science | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Drell receives National Medal of Science Drell receives National Medal of Science Posted By Office of Public Affairs NNSA Blog Sidney Drell, physicist, arms control expert and adviser, is one

105

Nuclear Science Division 1994 annual report  

Science Conference Proceedings (OSTI)

This report describes the activities of the Nuclear Science Division for the period of January 1, 1994, to December 31, 1994. This was a time of significant accomplishment for all of the programs in the Division. Assembly of the solar neutrino detector at the Sudbury Neutrino Observatory is well under way. All of the components fabricated by LBL were shipped to Sudbury early in the year and our efforts are now divided between assisting the assembly of the detector and preparing software for data analysis once the detector is operational in 1996. Much of the activity at the 88-Inch Cyclotron centered on Gammasphere. The {open_quotes}early implementation{close_quotes} phase of the detector ended in September. This phase was extremely successful, involving over 60 experiments with nearly 200 users from 37 institutions worldwide. The mechanical structure was installed and the final electronic system is expected to operate in March 1995. The Division concurrently hosted a conference on physics for large {gamma}-ray detector arrays at the Clark Kerr Campus at UC Berkeley in August. This was a very successful meeting, reflecting the enthusiasm for this field worldwide. Also at the Cyclotron, the progress toward weak interaction experiments using ultra-thin sources passed a major milestone with the trapping of radioactive {sup 21}Na atoms. We are now engaged in a major upgrade of the experimental area and the outlook is very promising for these novel experiments. Another highlight of research at the Cyclotron was the confirmation of element 106. This development allowed the original LLNL/LBL discovery team to move forward with their proposal to name this element seaborgium.

Myers, W.D. [ed.

1995-06-01T23:59:59.000Z

106

Celebrating Innovation with National Nuclear Science Week | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Celebrating Innovation with National Nuclear Science Week Celebrating Innovation with National Nuclear Science Week Celebrating Innovation with National Nuclear Science Week January 25, 2012 - 2:54pm Addthis Assistant Secretary for Nuclear Energy Dr. Peter Lyons meets with students from the California Institute of Technology to discuss how the Energy Department is working to ensure that the next generation is trained to lead innovation in the industry. | Photo courtesy of CalTech. Assistant Secretary for Nuclear Energy Dr. Peter Lyons meets with students from the California Institute of Technology to discuss how the Energy Department is working to ensure that the next generation is trained to lead innovation in the industry. | Photo courtesy of CalTech. Kate Bannan Communications and Outreach Specialist How can I participate?

107

Chemical Sciences and Engineering - Nuclear and Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation & Equipment Design * Members * Overview * Chemical Process Models * Chemistry at Interfaces Nuclear & Environmental Processes Home Process Simulation and Equipment...

108

Future Science & Technology Programs | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

efforts and the long-term vitality of science and engineering at NNSA. NNSA is focused on developing and maintaining the critical scientific and technical capabilities that are...

109

Stewardship Science Graduate Fellowship Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

to students pursuing doctoral degrees in fields of study that use high performance computing to solve complex science and engineering problems. The program fosters a...

110

Nuclear Test-Experimental Science: Annual report, fiscal year 1988  

Science Conference Proceedings (OSTI)

Fiscal year 1988 has been a significant, rewarding, and exciting period for Lawrence Livermore National Laboratory's nuclear testing program. It was significant in that the Laboratory's new director chose to focus strongly on the program's activities and to commit to a revitalized emphasis on testing and the experimental science that underlies it. It was rewarding in that revolutionary new measurement techniques were fielded on recent important and highly complicated underground nuclear tests with truly incredible results. And it was exciting in that the sophisticated and fundamental problems of weapons science that are now being addressed experimentally are yielding new challenges and understanding in ways that stimulate and reward the brightest and best of scientists. During FY88 the program was reorganized to emphasize our commitment to experimental science. The name of the program was changed to reflect this commitment, becoming the Nuclear Test-Experimental Science (NTES) Program.

Struble, G.L.; Donohue, M.L.; Bucciarelli, G.; Hymer, J.D.; Kirvel, R.D.; Middleton, C.; Prono, J.; Reid, S.; Strack, B. (eds.)

1988-01-01T23:59:59.000Z

111

Nuclear Criticality Safety | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Criticality Safety Criticality Safety SHARE Criticality Safety Nuclear Criticality Safety ORNL is the lead national laboratory responsible for supporting the National Nuclear Security Administration (NNSA) in managing the US Nuclear Criticality Safety Program. NCSP is chartered to maintain the technical infrastructure (integral experiments, computational tools, training, data, etc.) needed to support safe, efficient fissionable material operations. ORNL has extensive expertise in the area of nuclear criticality safety (NCS) based upon years of experience in the following areas: Operations Support: providing fissionable material operations support for enrichment, fabrication, production, and research; Critical Experiments: performing experiments at the Y-12 Critical Experiment Facility;

112

Materials Science of Nuclear Waste Management I  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Separation of the nuclear waste stream into actinides and fission products offers new opportunities for development of ceramic waste forms.

113

Argonne Chemical Sciences & Engineering - People - Nuclear and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Spent nuclear fuel reprocessing Process monitoring for reprocessing safeguards Non-proliferation-based research: medical isotope production John F. Krebs, Chemist phone: 630...

114

Argonne Chemical Sciences & Engineering - People - Nuclear and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear and Environmental Processes Analytical Chemistry Laboratory Vivian S. Sullivan, Physical and Analytical Chemist and Manager, Analytical Chemistry Laboratory phone: 630...

115

Argonne Chemical Sciences & Engineering - Nuclear & Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

with other fuel processing steps and facilities, and are economically feasible. Two other key areas of interest are: Pyrochemical Process Research Closing the Nuclear Fuel Cycle...

116

Argonne Chemical Sciences & Engineering - Nuclear & Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy's Advanced Fuel Cycle Research and Development Program. More Closing the nuclear fuel cycle Recycling long-lived fissile materials as fuel Developing chemical process models...

117

Argonne Chemical Sciences & Engineering - People - Nuclear and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Loyola University Design of liquid-liquid extraction systems for actinide and fission product separations Nuclear fuel and target dissolution Chemical processes for...

118

Materials Science of Nuclear Waste Management  

Science Conference Proceedings (OSTI)

The intent is to provide a forum for researchers from national laboratories, universities, and nuclear industry to discuss current understanding of materials...

119

Chemical Sciences & Engineering - Nuclear & Environmental Processes...  

NLE Websites -- All DOE Office Websites (Extended Search)

processing of these fuels. In addition to evaluating degradation and radionuclide release from used nuclear fuels, group researchers are developing metal alloy waste...

120

Argonne Chemical Sciences & Engineering - People - Nuclear and...  

NLE Websites -- All DOE Office Websites (Extended Search)

fax 630972-4456, e-mail: ebert@anl.gov Ph.D., Chemistry, Northwestern University Nuclear waste material formulation, testing, and modeling Test method development and...

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nuclear Systems Modeling & Simulation | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

from single processors to the world's largest supercomputers. The DOE Nuclear Energy Hub (CASL, the Consortium for Advanced Simulation of Light Water Reactors) is a prominent...

122

Nuclear Science-A Guide to the Nuclear Science Wall Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

Chapter 7 Nuclear Reactions Nuclear reactions and nuclear scattering are used to measure the properties of nuclei. Reactions that exchange energy or nucleons can be used to measure...

123

Stewardship Science Academic Alliances Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

17, 2013 NNSA, Republic of Korea Ministry Agree to Minimize Use of HEU in Nuclear Reactors Sep 3, 2013 NNSA Conducts Two Emergency Response Training Courses in Armenia Aug 29, 2013...

124

Argonne Chemical Sciences & Engineering - Nuclear & Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Nuclear & Environmental Processes Home Eliminating the Use of Highly-Enriched Uranium The mission of the U.S. non-proliferation policy is to minimize and, to the...

125

The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology.  

SciTech Connect

The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R. E.

2005-01-01T23:59:59.000Z

126

The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology  

SciTech Connect

The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory were 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R E.

2005-01-01T23:59:59.000Z

127

The Nuclear Education and Staffing Challenge: Rebuilding Critical Skills in Nuclear Science and Technology.  

SciTech Connect

The United States, the Department of Energy (DOE) and its National Laboratories, including the Pacific Northwest National Laboratory (PNNL), are facing a serious attrition of nuclear scientists and engineers and their capabilities through the effects of aging staff. Within the DOE laboratories, 75% of nuclear personnel will be eligible to retire by 2010. It is expected that there will be a significant loss of senior nuclear science and technology staff at PNNL within five years. PNNL's nuclear legacy is firmly rooted in the DOE Hanford site, the World War II Manhattan Project, and subsequent programs. Historically, PNNL was a laboratory where 70% of its activities were nuclear/radiological, and now just under 50% of its current business science and technology are nuclear and radiologically oriented. Programs in the areas of Nuclear Legacies, Global Security, Nonproliferation, Homeland Security and National Defense, Radiobiology and Nuclear Energy still involve more than 1,000 of the 3,800 current laboratory staff, and these include more than 420 staff who are certified as nuclear/radiological scientists and engineers. This paper presents the current challenges faced by PNNL that require an emerging strategy to solve the nuclear staffing issues through the maintenance and replenishment of the human nuclear capital needed to support PNNL nuclear science and technology programs.

Wogman, Ned A.; Bond, Leonard J.; Waltar, Alan E.; Leber, R. E.

2005-01-01T23:59:59.000Z

128

Research in the nuclear sciences: summaries of FY 1978  

SciTech Connect

Programs funded in fiscal year 1978 by the Division of Nuclear Sciences/Office of Basic Energy Sciences are summarized. Each summary is preceded by a heading that includes institution, title, principal investigators, budget reporting category, and operating funds provided in FY 1978. The summaries are presented in alphabetical order by institution. Indexes are appended to facilitate the location of a summary according to an investigator's name or a budget reporting category. (RWR)

1978-06-01T23:59:59.000Z

129

Submission House of Representatives Standing Committee on Industry, Science and Innovation Inquiry into Research Training and Research Workforce Issues in Australian Universities  

E-Print Network (OSTI)

The contribution that Australian universities make to research training in Australia a) Contribution of research training programs to Australias competitiveness in the areas of science, research and innovation Australian universities are clearly the primary research training platform in regards to science, research and innovation. Commonwealth research training scheme funding is accessed by The University of Notre Dame Australia (UNDA) to provide, primarily, relief from tuition fees for higher degree by research students. Only a very minimal amount of RTS funding is used to fund skills acquisition and professional development for research active staff and students at UNDA. Other programs within UNDA that are linked to RTS include a limited injection of funding into student research project costs and general research capacity building. UNDA has undergone a sustained growth in its research student population; our enrolled research students have increased seven-fold between 2002 and 2008. RTS funding has significantly supported this growth and, as a result, the capacity to support research in other ways has remained limited. One example of where the University has achieved success on a limited budget has been in the implementation of a Research Incentive Scheme that rewards research output and acts as a catalyst for future research initiatives. In the context of seeking to achieve excellence in niche research UNDA has expanded its research program in the

unknown authors

2008-01-01T23:59:59.000Z

130

Studies in Low-Energy Nuclear Science  

Science Conference Proceedings (OSTI)

This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between March 1, 2006 and October 31, 2009 which were supported by U.S. DOE grant number DE-FG52-06NA26187.

Carl R. Brune; Steven M. Grimes

2010-01-13T23:59:59.000Z

131

Nuclear Science Division, 1995--1996 annual report  

Science Conference Proceedings (OSTI)

This report describes the activities of the Nuclear Science Division (NSD) for the two-year period, January 1, 1995 to January 1, 1997. This was a time of major accomplishments for all research programs in the Division-many of which are highlighted in the reports of this document.

Poskanzer, A.M. [ed.

1997-02-01T23:59:59.000Z

132

NNS computing facility manual P-17 Neutron and Nuclear Science  

SciTech Connect

This document describes basic policies and provides information and examples on using the computing resources provided by P-17, the Neutron and Nuclear Science (NNS) group. Information on user accounts, getting help, network access, electronic mail, disk drives, tape drives, printers, batch processing software, XSYS hints, PC networking hints, and Mac networking hints is given.

Hoeberling, M.; Nelson, R.O.

1993-11-01T23:59:59.000Z

133

Standards in nuclear science and technology. A bibliography  

SciTech Connect

Abstracts of 1803 U. S. and non-U. S. publications concerning a broad range of standards used in nuclear science and technology are included. The publication dates span the period 1962 through 1972, inclusive. Abstracts are arranged chronologically within four categories entitled Reactors and Engineering, Instruments and Calibration, Radiation and Radiation Protection, and Miscellaneous. A subject index is also included. (auth)

1973-09-01T23:59:59.000Z

134

Notices DEPARTMENT OF ENERGY DOE/NSF Nuclear Science Advisory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

58 Federal Register 58 Federal Register / Vol. 78, No. 224 / Wednesday, November 20, 2013 / Notices DEPARTMENT OF ENERGY DOE/NSF Nuclear Science Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the DOE/NSF Nuclear Science Advisory Committee (NSAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770) requires that public notice of these meetings be announced in the Federal Register. DATES: Thursday, December 19, 2013, 9:00 a.m.-5:00 p.m. ADDRESSES: Gaithersburg Marriott Washingtonian Center, 9751 Washingtonian Boulevard, Gaithersburg, Maryland 20878, (301) 590-0044. FOR FURTHER INFORMATION CONTACT: Brenda L. May, U.S. Department of Energy; SC-26/Germantown Building,

135

Nuclear science. Annual report, July 1, 1979-June 30, 1980  

SciTech Connect

This annual report describes the scientific research carried out within the Nuclear Science Division (NSD) during the period between July 1, 1979 and June 30, 1980. The principal objective of the division continues to be the experimental and theoretical investigation of the interactions of heavy ions with target nuclei, complemented with programs in light ion nuclear science, in nuclear data compilations, and in advanced instrumentation development. The division continues to operate the 88 Inch Cyclotron as a major research facility that also supports a strong outside user program. Both the SuperHILAC and Bevalac accelerators, operated as national facilities by LBL's Accelerator and Fusion Research Division, are also important to NSD experimentalists. (WHK)

Myers, W.D.; Friedlander, E.M.; Nitschke, J.M.; Stokstad, R.G. (eds.)

1981-03-01T23:59:59.000Z

136

Australian Nuclear Science & Technology Organization (ANSTO) Interdicted Samples 24-Hour Report  

Science Conference Proceedings (OSTI)

Categorization is complete. Samples 11-3-1 (NSR-F-270409-01) and 11-3-2 (NSR-F-270409-02) are depleted uranium powders of moderate purity ({approx}65-80 % U). The uranium feed stocks for 11-3-1 and 11-3-2 have both experienced a neutron flux (as demonstrated by the presence of {sup 232}U). Sample 11-3-3 is indistinguishable from a natural uranium ore concentrate of moderate purity ({approx}70-80% U). Two anomalous objects (11-3-1-4 and 11-3-2-5) were found in the material during aliquoting. These objects might be valuable for route attribution.

Kristo, M J; Hutcheon, I D; Grant, P M; Borg, L E; Sharp, M A; Moody, K J; Conrado, C L; Wooddy, P T

2011-01-27T23:59:59.000Z

137

Institute for Critical Technology and Applied Science Seminar Series Emerging Technologies in Nuclear  

E-Print Network (OSTI)

in Nuclear Science & Engineering ­ Development of novel techniques/tools using particle transport theory including reactors, nuclear security and safeguards systems and medical devices. His work is recognized methodologies with Alireza Haghighat, Nuclear Engineering Program, Mechanical Engineering Department Virginia

Beex, A. A. "Louis"

138

Basic science research to support the nuclear material focus area  

SciTech Connect

The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

Boak, J. M. (Jeremy M.); Eller, P. Gary; Chipman, N. A.; Castle, P. M.

2002-01-01T23:59:59.000Z

139

Basic Science Research to Support the Nuclear Materials Focus Area  

SciTech Connect

The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

2002-02-26T23:59:59.000Z

140

Nuclear Science-A Guide to the Nuclear Science Wall Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

Chapter 6 Nuclear Energy Levels The nucleus, like the atom, has discrete energy levels whose location and properties are governed by the rules of quantum mechanics. The locations...

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Nuclear Science-A Guide to the Nuclear Science Wall Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

The proton distribution can be characterized by an average radius. It is found that nuclear radii range from 1-10 10 -15 m. This radius is much smaller than that of the atom,...

142

Nuclear Science-A Guide to the Nuclear Science Wall Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

and about 250 kg of 239 Pu. Some 40% of the energy produced in the course of a nuclear fuel cycle comes from 239 Pu. Since about 20% of the electricity generated in the United...

143

Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report  

E-Print Network (OSTI)

the Directors of the Office of Science, Office of AdvancedProgram Office, DOE Office of Science Energy SciencesDepartment of Energy, Office of Science, Advanced Scientific

Tierney, Ed., Brian L

2008-01-01T23:59:59.000Z

144

Scientific Opportunities to Reduce Risk in Nuclear Process Science  

SciTech Connect

Cleaning up the nations nuclear weapons complex remains as one of the most technologically challenging and financially costly problems facing the U.S. Department of Energy (DOE). Safety, cost, and technological challenges have often delayed progress in retrieval, processing, and final disposition of high-level waste, spent nuclear fuel, and challenging materials. Some of the issues result from the difficulty and complexity of the technological issues; others have programmatic bases, such as contracting strategies that may provide undue focus on near-term, specific clean-up goals or difficulty in developing and maintaining stakeholder confidence in the proposed solutions. We propose that independent basic fundamental science research focused on the full cleanup life-cycle offers an opportunity to help address these challenges by providing 1) scientific insight into the fundamental mechanisms involved in currently selected processing and disposal options, 2) a rational path to the development of alternative technologies should the primary options fail, 3) confidence that models that predict long-term performance of different disposal options are based upon the best available science, 4) fundamental science discovery that enables transformational solutions to revolutionize the current baseline processes.

Bredt, Paul R.; Felmy, Andrew R.; Gauglitz, Phillip A.; Hobbs, David T.; Krahn, Steve; Machara, N.; Mcilwain, Michael; Moyer, Bruce A.; Poloski, Adam P.; Subramanian, K.; Vienna, John D.; Wilmarth, B.

2008-07-18T23:59:59.000Z

145

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

by the Soviets. Nuclear Non-Proliferation Treaty (NPT) enters into force (1970). Prevent the spread of nuclear and eliminate nuclear weapons (1953). Vetoed by the Soviets. Nuclear Non-Proliferation Treaty (NPT) entersPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle

Gilfoyle, Jerry

146

Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report  

Science Conference Proceedings (OSTI)

The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In May 2008, ESnet and the Nuclear Physics (NP) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the NP Program Office. Most of the key DOE sites for NP related work will require significant increases in network bandwidth in the 5 year time frame. This includes roughly 40 Gbps for BNL, and 20 Gbps for NERSC. Total transatlantic requirements are on the order of 40 Gbps, and transpacific requirements are on the order of 30 Gbps. Other key sites are Vanderbilt University and MIT, which will need on the order of 20 Gbps bandwidth to support data transfers for the CMS Heavy Ion program. In addition to bandwidth requirements, the workshop emphasized several points in regard to science process and collaboration. One key point is the heavy reliance on Grid tools and infrastructure (both PKI and tools such as GridFTP) by the NP community. The reliance on Grid software is expected to increase in the future. Therefore, continued development and support of Grid software is very important to the NP science community. Another key finding is that scientific productivity is greatly enhanced by easy researcher-local access to instrument data. This is driving the creation of distributed repositories for instrument data at collaborating institutions, along with a corresponding increase in demand for network-based data transfers and the tools to manage those transfers effectively. Network reliability is also becoming more important as there is often a narrow window between data collection and data archiving when transfer and analysis can be done. The instruments do not stop producing data, so extended network outages can result in data loss due to analysis pipeline stalls. Finally, as the scope of collaboration continues to increase, collaboration tools such as audio and video conferencing are becoming ever more critical to the productivity of scientific collaborations.

Tierney, Ed., Brian L; Dart, Ed., Eli; Carlson, Rich; Dattoria, Vince; Ernest, Michael; Hitchcock, Daniel; Johnston, William; Kowalski, Andy; Lauret, Jerome; Maguire, Charles; Olson, Douglas; Purschke, Martin; Rai, Gulshan; Watson, Chip; Vale, Carla

2008-11-10T23:59:59.000Z

147

Argonne Chemical Sciences & Engineering - People - Nuclear and  

NLE Websites -- All DOE Office Websites (Extended Search)

Processes Processes Areas Heavy Element Separations Science Interfacial Processes Process Safeguards Environmental Science Radiochemistry Process Simulation and Equipment Design Pyroprocess Development Management and Support Mark A. Williamson, Chemist and Department Manager phone: 630/252-9627, fax: 630/252-5246, e-mail: williamson@anl.gov Ph.D., Physical Chemistry, University of Kansas Advanced nuclear fuel cycles Pyrochemical process research and development Actinide thermodynamics and inorganic chemistry High-temperature chemistry Monica C. Regalbuto, Senior Chemical Engineer phone:630/252-4616, e-mail: regalbuto@anl.gov George F. Vandegrift, Argonne Distinguished Fellow phone: 630/252-4513, fax: 630/972-4513, e-mail: vandegrift@anl.gov Ph.D., Inorganic Chemistry, Iowa State University

148

Glenn T. Seaborg and heavy ion nuclear science  

Science Conference Proceedings (OSTI)

Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

Loveland, W. (Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry Lawrence Berkeley Lab., CA (United States))

1992-04-01T23:59:59.000Z

149

Glenn T. Seaborg and heavy ion nuclear science  

Science Conference Proceedings (OSTI)

Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg`s laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed.

Loveland, W. [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States)

1992-04-01T23:59:59.000Z

150

Argonne Chemical Sciences & Engineering - People - Nuclear and  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation and Equipment Design Simulation and Equipment Design Candido Pereira, Chemical Engineer and Group Leader phone: 630/252-9832, fax: 630/972-4448, e-mail: pereira@anl.gov Ph.D., Chemical Engineering, University of Pennsylvania Aqueous separations Solvent extraction and ion exchange Process modeling and design Spent nuclear fuel processing High-level waste treatment Jacqueline M. Copple, Computer Scientist phone: 630/252-4555, fax 630/972-4555, e-mail, copple@anl.gov MS, Computer Science, Illinois Institute of Technology Modeling and simulation (UREX+ process for recovering key radionuclides from commercial spent nuclear fuel) Laura E. Maggos, Scientific Associate phone: 630/252-4701, e-mail: maggos@anl.gov BS, Chemistry, University of Chicago Aqueous separations (UREX+) Solvent extraction modeling

151

Development of Students Metacognitive Strategies In Science Learning Regarding Nuclear Energy  

Science Conference Proceedings (OSTI)

This research aimed to develop 48 Grade 10 students learning process and metacognitive strategies in the Nuclear Energy topic through the Science

Warawun Siriuthen; Chokchai Yuenyong

2010-01-01T23:59:59.000Z

152

COURSE NOTES: Nuclear Science and Technology Part I/II - TMS  

Science Conference Proceedings (OSTI)

Oct 22, 2007 ... Citation: W. Udo Schrder, "Nuclear Science and Technology Part I/II Chm466/ 566/Phy446/546," University of Rochester, 2007. Access Course

153

Program Overview Shane Johnson Office of Nuclear Energy, Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Overview Program Overview Shane Johnson Office of Nuclear Energy, Science and Technology April 15, 2002 Presentation to the Nuclear Energy Research Advisory Committee Office of Nuclear Energy, Science and Technology Johnson/April15_02 NP 2010 to NERAC.ppt 2 Nuclear Power 2010 Overview Nuclear Power 2010 Overview Goals 6 Orders for one or more new nuclear plants by 2005 6 Operation of new nuclear power plants by 2010 6 New program initiative unveiled February 2002 6 Based on Near-Term Deployment Roadmap 6 Public/private partnership to: ! Develop advanced reactor technologies ! Explore sites that could host new nuclear power plants ! Demonstrate new Nuclear Regulatory Commission (NRC) regulatory processes Office of Nuclear Energy, Science and Technology Johnson/April15_02 NP 2010 to NERAC.ppt 3

154

A Home for Heffalump and Pooh - Argonne's Nuclear Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

A Home for Heffalump and Pooh A Home for Heffalump and Pooh About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

155

Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report  

E-Print Network (OSTI)

Requirements Workshop Nuclear Physics Program Office, DOEDOE Nuclear Physics Programs .. 6 Nuclear Physics Network Requirementsbandwidth and services requirements. 3 DOE Nuclear Physics

Tierney, Ed., Brian L

2008-01-01T23:59:59.000Z

156

Nuclear Wallet Cards at BNL | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Wallet Cards at BNL Wallet Cards at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Nuclear Wallet Cards at BNL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Nuclear Wallet Cards Developed at: National Nuclear Data Center, BNL Developed in: 2000-current Result of NP research: DOE-NP nuclear data program Application currently being supported by:

157

Global Nuclear Energy Initiative at LBNL | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Global Nuclear Energy Initiative at Global Nuclear Energy Initiative at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Global Nuclear Energy Initiative at LBNL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Global nuclear energy initiative Developed at: 88-inch Cyclotron, Lawrence Berkeley National Laboratory Developed in:

158

Bachelor of Science in Nuclear Medicine Technology NAME:________________________________ OLD DOMINION UNIVERSITY UID___________________________________  

E-Print Network (OSTI)

Bachelor of Science in Nuclear Medicine Technology NAME:________________________________ OLD________________________________ Entrance Writing Sample Placement Test:_________________ LOWER DIVISION GENERAL EDUCATION Credits/Grade A____________________ Students must complete the following courses (or equivalent) prior to entering the nuclear medicine

159

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors  

E-Print Network (OSTI)

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors: current practices in a nutshell Christophe Demazière Department of Applied Physics, Division of Nuclear Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden Email

Demazière, Christophe

160

Nuclear Science References (NSR) from the National Nuclear Data Center (NNDC)  

DOE Data Explorer (OSTI)

The Nuclear Science References (NSR) database is an indexed bibiliography of primary and secondary references in nuclear physics research. About 80 journals are regularly scanned for articles. Recent references are added on a weekly basis. Approximately 4300 entries are added to the database annually. In general, articles are included in NSR if they include measured, calculated, or deduced quantitative nuclear structure or reaction data. Papers that apply previously known data are generally not included. Examples of this include neutron activation analysis using known cross sections or radiological dating using known half-lives. The database can be searched like a normal bibliographic database but can also be searched by the data that distinguishes it, data such as the nuclide, target/parent/daughter, reaction, incident particles, and outgoing particles. (Specialized Interface) [Taken from the NSR Help pages at http://www.nndc.bnl.gov/nsr/nsr_help.jsp

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Argonne Chemical Sciences & Engineering - Nuclear & Environmental Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

f-Element Polyoxoanion Chemistry f-Element Polyoxoanion Chemistry PuPreyssler The trans-uranium chemistry of the Preyssler heteropolyanion was extended to include the synthesis of the Pu(III) complex, [PuP5W30O110]12-, whose electroanalytical characterization reveals dual redox activity involving the 1-electron Pu(III)/Pu(IV) couple of the guest ion at +0.96 V vs. Ag/AgCl and the 5 × 2-electron reductive electrochemistry of the P-W-O host framework at potentials between -0.6 and 0 V, and electrostatic ion solvation behavior. Details are presented in the article by Antonio and Chiang, Inorg. Chem. 2008, 47, 8285. Polyoxoanions of general composition [XaMbOc]d- (X º P, Si; M º W, Mo) have applications in various disciplines including medicine, catalysis, and separations science. In prospective applications relating to nuclear waste

162

Argonne Chemical Sciences & Engineering - Nuclear & Environmental Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

HESS HESS * Members * Publications * Overview * Recent Research Results Nuclear & Environmental Processes Home Heavy Element and Separations Science (HESS) Three dimensional reconstruction of the structure of a plutonium-containing protein in solution from small angle X-ray scattering (SAXS) data. Three-dimensional reconstruction of the structure of a plutonium-containing protein in solution from small-angle X-ray scattering (SAXS) data. Except for ultra-trace amounts of neptunium (Np) and plutonium (Pu) naturally generated by neutrons in uranium ores, all of the elements heavier than uranium (with atomic number 92) found in the geosphere are man made. The study of their chemistries began with the synthetic production of Np by Edwin McMillan and Philip H. Abelson in 1940. Since that time, much

163

Nuclear Science Advisory Committee (NSAC) Homepage | U.S. DOE Office of  

Office of Science (SC) Website

NSAC Home NSAC Home Nuclear Science Advisory Committee (NSAC) NSAC Home Meetings Members Charges/Reports Charter .pdf file (629KB) NP Committees of Visitors NP Home The Frontiers of Nuclear Science .pdf file (11.7MB) Nuclear Science Advisory Committee's December 2007 Long Range Plan.Read More .pdf file (11.7MB) The Frontiers of Nuclear Science 1 of 2 Print Text Size: A A A RSS Feeds FeedbackShare Page Additional Information Contact NSAC: Email: sc.np@science.doe.gov Phone: 301-903-3613 NSAC DFO: Dr. Timothy J. Hallman Committee Manager: Mrs. Brenda May Committee Chair: Dr. Donald Geesaman Associate Director - NP: Dr. Timothy J. Hallman NSAC is an advisory committee that provides official advice to the Department of Energy (DOE) and the National Science Foundation (NSF) External link

164

Nuclear Physics Related Brochures | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Nuclear Physics Related Brochures and Videos Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources NP Workforce Survey Results .pdf file (258KB) Links Databases Workshop Reports Nuclear Physics Related Brochures and Videos Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » News & Resources Nuclear Physics Related Brochures and Videos Print Text Size: A A A RSS Feeds FeedbackShare Page Brochures Accelerating Innovation NP Highlights Image Accelerating Innovation (2011) .pdf file (1.2MB): How nuclear physics benefits us all

165

New Horizons on the Nuclear Landscape | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Science Highlights » 2012 Science Highlights » 2012 » New Horizons on the Nuclear Landscape Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » June 2012 New Horizons on the Nuclear Landscape New calculations have quantified the boundaries and uncertainties of the 'chart of the nuclides'-the extended periodic table of all matter. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of University of Tennessee/ORNL

166

Nuclear Resonance Fluorescence at MIT | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Resonance Fluorescence at MIT Resonance Fluorescence at MIT Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Nuclear Resonance Fluorescence at MIT Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Material Identification and Object Imaging Using Nuclear Resonance Fluorescence Developed at: Massachusetts Institute of Technology

167

Conference on Advances in Materials Science | National Nuclear...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

168

Conference on Advances in Materials Science | National Nuclear...  

National Nuclear Security Administration (NNSA)

in Materials Science Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research...

169

The "Last Universal Scientist" Takes Charge - Argonne's Nuclear Science  

NLE Websites -- All DOE Office Websites (Extended Search)

The "Last Universal Scientist" Takes Charge The "Last Universal Scientist" Takes Charge About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

170

Progress in Nuclear Energy 53 (2011) 618 625 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

Progress in Nuclear Energy 53 (2011) 618 625 Contents lists available at ScienceDirect Progress in Nuclear Energy journal homepage: www.elsevier.com/locate/pnucene Comparison of thorium-based fuels. / Progress in Nuclear Energy 53 (2011) 618 625 3. Methodology 3.1. Determining the initial average fissile

Demazière, Christophe

171

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test BanPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons

Gilfoyle, Jerry

172

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

Outline: 1. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban Treaty. 4. TestingPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons

Gilfoyle, Jerry

173

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban Treaty. 4. Testing The TestPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons

Gilfoyle, Jerry

174

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

weapons (1953). Vetoed by the Soviets. Nuclear Non-Proliferation Treaty (NPT) enters into force (1970Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1

Gilfoyle, Jerry

175

Nuclear science abstracts (NSA) database 1948--1974 (on the Internet)  

SciTech Connect

Nuclear Science Abstracts (NSA) is a comprehensive abstract and index collection of the International Nuclear Science and Technology literature for the period 1948 through 1976. Included are scientific and technical reports of the US Atomic Energy Commission, US Energy Research and Development Administration and its contractors, other agencies, universities, and industrial and research organizations. Coverage of the literature since 1976 is provided by Energy Science and Technology Database. Approximately 25% of the records in the file contain abstracts. These are from the following volumes of the print Nuclear Science Abstracts: Volumes 12--18, Volume 29, and Volume 33. The database contains over 900,000 bibliographic records. All aspects of nuclear science and technology are covered, including: Biomedical Sciences; Metals, Ceramics, and Other Materials; Chemistry; Nuclear Materials and Waste Management; Environmental and Earth Sciences; Particle Accelerators; Engineering; Physics; Fusion Energy; Radiation Effects; Instrumentation; Reactor Technology; Isotope and Radiation Source Technology. The database includes all records contained in Volume 1 (1948) through Volume 33 (1976) of the printed version of Nuclear Science Abstracts (NSA). This worldwide coverage includes books, conference proceedings, papers, patents, dissertations, engineering drawings, and journal literature. This database is now available for searching through the GOV. Research Center (GRC) service. GRC is a single online web-based search service to well known Government databases. Featuring powerful search and retrieval software, GRC is an important research tool. The GRC web site is at http://grc.ntis.gov.

NONE

1999-02-01T23:59:59.000Z

176

Topics in nuclear and radiochemistry for college curricula and high school science programs  

Science Conference Proceedings (OSTI)

The concern with the current status and trends of nuclear chemistry and radiochemistry education in academic institutions was addressed in a recent workshop. The 1988 workshop considered the important contributions that scientist with nuclear and radiochemistry backgrounds have made and are continuing to make to other sciences and to various applied fields. Among the areas discussed were environmental studies, life sciences, materials science, separation technology, hot atom chemistry, cosmochemistry, and the rapidly growing field of nuclear medicine. It is intent of the organizer and participants of this symposium entitled Topics in Nuclear and Radiochemistry for College Curricula and High School Science Program'' to provide lecture material on topics related to nuclear and radiochemistry to educators. It is our hope that teachers, who may or may not be familiar with the field, will find this collections of articles useful and incorporate some of them into their lectures.

Not Available

1990-01-01T23:59:59.000Z

177

Presented by The Neutron Science TeraGrid Gateway  

E-Print Network (OSTI)

Report" Maslow, A. H. (1943). A Theory of Human Motivation. Psychological Review, 50, 370-396. David · Under development at Australian Nuclear Science and Technology Organisation's (ANSTO) Bragg Institute for instruments on the OPAL reactor source · ANSTO Team: Nick Hauser, Tony Lam · Mark Green (TechX, Buffalo

178

Nuclear Science Division Annual Report 1995-1996  

E-Print Network (OSTI)

Times in 3He Induced Nuclear Fission Th. Rubehn, K.X. Jing,of the discovery of nuclear fission. Many review papers andtimes in 3He induced nuclear fission* Th. Rubehn, K.X. Jing,

Authors, Various

2010-01-01T23:59:59.000Z

179

Nuclear Science Division Annual Report 1984-85  

E-Print Network (OSTI)

and J.R. Huizenga, Nuclear Fission (Academic, New York,and J.R. Huizenga, Nuclear Fission (Academic, N.Y. , 1973).is well known from nuclear fission where it can be related

Mahoney Editor, Jeannette

2010-01-01T23:59:59.000Z

180

Nuclear Science Division Annual Report 1984-85  

E-Print Network (OSTI)

3. Nuclear Collisions at Relativistic Energies The theory6 Nuclear Theory 1. Hadronic and Quark Matter at High Energytheory group to calculate whether such energy densities could be generated in nuclear collisions at ultra-relativistic energies.

Mahoney Editor, Jeannette

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NUCLEAR SCIENCE DIVISION ANNUAL REPORT 1979-1980  

E-Print Network (OSTI)

high energy nuclear collisions. Application of HFB theory totheory that accounts for the known bulk properties of nuclear matter, i t s saturation energyenergy options. Sane neutron star physics involving nuclear theory.

Cerny, J.

2010-01-01T23:59:59.000Z

182

Nuclear Science Division Annual Report 1995-1996  

E-Print Network (OSTI)

Nuclear Theory Study of Medium-induced Parton Energy LossTransport theory With a view towards high-energy nuclearNuclear Theory Study of Medium-induced Parton Energy Loss

Authors, Various

2010-01-01T23:59:59.000Z

183

Nuclear Science Division Annual Report 1984-85  

E-Print Network (OSTI)

M. Xcssi. and W. Wolf. Nuclear-Reaction-Time Studies of U +K Produced in Relativistic Nuclear Collisions Phys. Lett.Momentum Distributions of Nuclear Fragments in im Collisions

Mahoney Editor, Jeannette

2010-01-01T23:59:59.000Z

184

ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology  

SciTech Connect

We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, {sup 6}Li, {sup 10}B, Au and for {sup 235,238}U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases. The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The {sup 238}U, {sup 208}Pb, and {sup 9}Be reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good agreement for simulations of highly enriched uranium assemblies is preserved; (d) The underprediction of fast criticality of {sup 233,235}U and {sup 239}Pu assemblies is removed; and (e) The intermediate spectrum critical assemblies are predicted more accurately. We anticipate that the new library will play an important role in nuclear technology applications, including transport simulations supporting national security, nonproliferation, advanced reactor and fuel cycle concepts, criticality safety, medicine, space applications, nuclear astrophysics, and nuclear physics facility design. The ENDF/B-VII.0 library is archived at the National Nuclear Data Center, BNL. The complete library, or any part of it, may be retrieved from www.nndc.bnl.gov.

Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

2006-10-02T23:59:59.000Z

185

Nuclear Physics (NP) Homepage | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

NP Home NP Home Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Accelerating Innovation .pdf file (1.2MB) Nuclear Physics supports the experimental and theoretical research needed to create a roadmap of matter that will help unlock the secrets of how the universe and everything in it is put together.Read More .pdf file (1.2MB) Accelerating Innovation What is Nuclear Physics? .pdf file (1.2MB) Nuclear physicists study the fundamental building blocks of matter, from

186

DOE Science Showcase - DOE Nuclear Physics R&D Info | OSTI, US Dept of  

Office of Scientific and Technical Information (OSTI)

DOE Nuclear Physics R&D Info DOE Nuclear Physics R&D Info While quarks and gluons are fairly well understood, how they fit together to create different types of matter is still a mystery. The DOE Nuclear Physics program's mission is to solve this mystery through theoretical and experimental research; the benefits to society range from fighting cancer to ensuring food safety to border protection. Find DOE research information on this topic from the OSTI databases and read about the Department's Nuclear Physics program. From the Databases Select a database to initiate a search. DOE Information Bridge DOE R&D Accomplishments Energy Citations Database ScienceCinema Science.gov WorldWideScience.org More information Accelerating Innovation: How nuclear physics benefits us all About DOE's Nuclear Physics Program

187

Girls, choose a career in Nuclear Science and Technology!  

NLE Websites -- All DOE Office Websites (Extended Search)

'Atomic Fission Fun with the American Nuclear Society', Jan. 26, 2013 Getting to know nuclear energy: the past, the present & the future - free public lecture (Nov. 15, 2012,...

188

Einstein's Letter- Argonne's Nuclear Science and Technology Legacy  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people...

189

U.S. Department of Energy Office of Nuclear Energy, Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One the cover: One the cover: Albert Einstein (1879-1955) U.S. Department of Energy Office of Nuclear Energy, Science and Technology Washington, D.C. 20585 The History of Nuclear Energy Table of Contents Preface ................................................................... 1 Introduction .......................................................... 3 The Discovery of Fission ...................................... 4 The First Self-Sustaining Chain Reaction ............ 5 The Development of Nuclear Energy for Peaceful Applications ..................................... 7 Chronology of Nuclear Research and Development, 1942-1994 .................................... 13 Selected References ............................................. 23 Glossary ..............................................................

190

Economics of Nuclear and Renewable Electricity Energy Science Coalition  

E-Print Network (OSTI)

Nuclear energy arose as a spin-off from nuclear weapons. Its use grew rapidly during the 1960s, nurtured by huge subsidies and the belief that nuclear electricity would soon become too cheap to meter. According to the International Atomic Energy Agency, at the end of 2009 there were 438 operating nuclear power reactors in the world, total

Dr Mark Diesendorf

2010-01-01T23:59:59.000Z

191

Y-12 gives students a taste of science | National Nuclear Security  

National Nuclear Security Administration (NNSA)

gives students a taste of science | National Nuclear Security gives students a taste of science | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Y-12 gives students a taste of science Y-12 gives students a taste of science Posted By Office of Public Affairs During a recent visit to the Y-12 National Security Complex, eighth graders

192

Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels  

SciTech Connect

This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

Todd R. Allen

2011-12-01T23:59:59.000Z

193

Chemical Sciences & Engineering - Nuclear & Environmental Processes -  

NLE Websites -- All DOE Office Websites (Extended Search)

Safeguards Safeguards * Members * Overview Nuclear & Environmental Processes Home Process Safeguards Process Safeguards is the application of chemical and engineering expertise to improve safeguards and nonproliferation of nuclear materials in complex facilities. Researchers in this group are developing novel approaches that integrate process modeling, process monitoring, and radiochemistry to understand, track and confirm the movement of nuclear materials through multistage chemical processes. Recent work includes Describing system response and observables of relevant process changes Developing detectors for nuclear materials Developing techniques for safeguarding nuclear materials More Closing the Nuclear Fuel Cycle Improved Safeguards for Spent Fuel Treatment Systems

194

A,B,C`s of nuclear science  

SciTech Connect

This introductory level presentation contains information on nuclear structure, radioactivity, alpha decay, beta decay, gamma decay, half-life, nuclear reactions, fusion, fission, cosmic rays, and radiation protection. Nine experiments with procedures and test questions are included.

Noto, V.A. [Mandeville High School, LA (United States); Norman, E.B.; Chan, Yuen-Dat; Dairiki, J.; Matis, H.S.; McMahan, M.A.; Otto, R. [Lawrence Berkeley Lab., CA (United States)

1995-08-07T23:59:59.000Z

195

Impact of contributions of Glenn T. Seaborg on nuclear science  

E-Print Network (OSTI)

the negotiation of the Non-Proliferation Treaty and took thetalks were begun. The non- proliferation treaty (NPT) wasban treaty, nuclear non-proliferation and the use of nuclear

Hoffman, Darleane C.

2000-01-01T23:59:59.000Z

196

Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report  

E-Print Network (OSTI)

Office of Advanced Scientific Computing Research, Facilitiesof Science, Advanced Scientific Computing Research (ASCR)Office of Advanced Scientific Computing Research, Facilities

Tierney, Ed., Brian L

2008-01-01T23:59:59.000Z

197

Office of Nuclear Energy, Science and Technology Executive Summary  

E-Print Network (OSTI)

-effective, advanced nuclear plant designs and develop gas-cooled reactor technologies in order to pave the way projects to usher forth next-generation nuclear reactors and fuel cycles based on the results that enable used nuclear fuels to be recycled back into the reactors as fresh fuel. The Advanced Fuel Cycle

198

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY  

E-Print Network (OSTI)

, engineering, construction. operation, transmission and distribution of nuclear electricity, decommissioning from $O.Ol/kWh ($1982) at l%/yr to $O.O165/kWh in year 50, decommissioning and nuclear waste reserved Copyright 0 1988 Pergamon Journals Ltd THE NET-ENERGY YIELD OF NUCLEAR POWER GENETYNER SR,~ ROBERT

McDonald, Kirk

199

Australian and New Zealand Standard  

E-Print Network (OSTI)

Materials for nuclear energy system, fission reactors, nuclear fuels, energy policy, sustainability and gene therapy. Xudong Wang Assistant Professor, Materials Science & Engineering Nanomaterials growth; nanomaterials for energy storage; nanoelectronics; nano-biomaterials. Jay Samuel Senior Lecturer in Materials

Du, Jie

200

Int. J. Nuclear Energy Science and Technology, Vol. 4, No. 4, 2009 287 Development of computational methods and their  

E-Print Network (OSTI)

Int. J. Nuclear Energy Science and Technology, Vol. 4, No. 4, 2009 287 Development of computational plants', Int. J. Nuclear Energy Science and Technology, Vol. 4, No. 4, pp.287­298. Biographical notes, energy and temporal distribution of the neutron density throughout the nuclear core depends

Demazière, Christophe

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 4, AUGUST 2007 843 A Prototype Three-Dimensional Position Sensitive  

E-Print Network (OSTI)

for homeland security and nuclear non-proliferation applications. Mechanically cooled HPGe detectorsIEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 4, AUGUST 2007 843 A Prototype Three of Nuclear Engineering and Radi- ological Sciences, University of Michigan, Ann Arbor, MI 48109 USA (e

He, Zhong

202

16 years of successful projects in16 years of successful projects in Nuclear Science & TechnologyNuclear Science & Technology  

E-Print Network (OSTI)

of operating NPP; · NPP decommissioning and waste treatment; · Novel reactor concepts and Nuclear Fuel Cycle

203

Argonne Chemical Sciences & Engineering - Nuclear & Environmental Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Technology Nuclear Technology * Members * Contact * Publications * Overview * Pyrochemical Process Research * Closing the Nuclear Fuel Cycle Nuclear & Environmental Processes Home Pyrochemical Process Research Our department is also interested in pyrochemical process research and its development and demonstration for the U.S. Department of Energy's Generation IV (GEN IV) and Advanced Fuel Cycle Initiative (AFCI) programs. Through these initiatives, we are working to contribute to the development of next generation of advanced nuclear systems, to meet future needs for safe, economic, proliferation-resistant and environmentally responsible fuel cycles and energy production. Argonne research efforts in this area include: developing a novel electrochemical method for the conversion of spent oxide nuclear fuel to its metallic form for subsequent treatment by pyrochemical methods

204

Piglet and the Pumpkin Field - Argonne's Nuclear Science and...  

NLE Websites -- All DOE Office Websites (Extended Search)

scientists describe the historic events which brought them to understand nuclear fission Anniversary - 80 years ago, Leo Szilard envisioned neutron chain reaction blog...

205

Program Overview Shane Johnson Office of Nuclear Energy, Science...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(COL) 6 Design Completion Tasks * Material, component and system testing * Fuel irradiation and testing * First-of-a-kind engineering 6 Nuclear Plant Business Case Study...

206

Oak Ridge National Laboratory - Nuclear Science and Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

supercomputer research such as this simulation of a Westinghouse PWR900 pressurized water reactor core. Visualization by Tom Evans, ORNL Nuclear Energy Innovation Hub ORNL will...

207

Impact of contributions of Glenn T. Seaborg on nuclear science  

E-Print Network (OSTI)

the negotiation of the Non-Proliferation Treaty and took thebegun. The non- proliferation treaty (NPT) was negotiatedtest ban treaty, nuclear non-proliferation and the use of

Hoffman, Darleane C.

2000-01-01T23:59:59.000Z

208

Australian Winter Mountain Storm Clouds: Precipitation Augmentation Potential  

Science Conference Proceedings (OSTI)

Two Australian winter mountain storm field research projects were conducted by the Commonwealth Scientific and Industrial Research Organisation Division of Atmospheric Research and the Desert Research Institute Atmospheric Sciences Center in the ...

Alexis B. Long; Elizabeth J. Carter

1996-09-01T23:59:59.000Z

209

Fusion Nuclear Science Facility - Advanced Tokamak Option (A26932)  

E-Print Network (OSTI)

Proc. Of 19th Technology Of Fusion Energy, Las Vegas, Nevada, 2010; To Be Published In Fusion Science And Technology19th Topical Meeting on Technology Fusion Energy Las Vegas Nevada, US, 2010999618795

Wong, C.P.C.

2010-04-13T23:59:59.000Z

210

884 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 4, AUGUST 2005 Distributed Computing Grid Experiences in CMS  

E-Print Network (OSTI)

884 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 4, AUGUST 2005 Distributed Computing Grid is with National University of Science and Technology, Pakistan (e-mail: Ashiq.Anjum@cern.ch). T. Barrass, S

Low, Steven H.

211

PNNL's Community Science & Technology Seminar Series Nuclear Power in a  

E-Print Network (OSTI)

Entropy and black holes Binney, Prof James ES21 Winter, Emma Balliol The importance of energy storage22 Colman, Jake St Peter's Accelerator driven Nuclear Reactors Jelley, Prof Nick CO38 Cullen, Emma Podsiadlowski, Prof Philipp ES0305 Ghelani, Shanil University The Challenges and Promise of Nuclear Fusion

212

NNSA/CEA Cooperation in Computer Science | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

models for each stage of operation of a nuclear weapon and a high level of computing power and complex software to integrate these models along with experimental validation of...

213

Nuclear Theory and Science of the Facility for Rare Isotope Beams  

E-Print Network (OSTI)

The Facility for Rare Isotope Beams (FRIB) will be a world-leading laboratory for the study of nuclear structure, reactions and astrophysics. Experiments with intense beams of rare isotopes produced at FRIB will guide us toward a comprehensive description of nuclei, elucidate the origin of the elements in the cosmos, help provide an understanding of matter in neutron stars, and establish the scientific foundation for innovative applications of nuclear science to society. FRIB will be essential for gaining access to key regions of the nuclear chart, where the measured nuclear properties will challenge established concepts, and highlight shortcomings and needed modifications to current theory. Conversely, nuclear theory will play a critical role in providing the intellectual framework for the science at FRIB, and will provide invaluable guidance to FRIB's experimental programs. This article overviews the broad scope of the FRIB theory effort, which reaches beyond the traditional fields of nuclear structure and reactions, and nuclear astrophysics, to explore exciting interdisciplinary boundaries with other areas. \\keywords{Nuclear Structure and Reactions. Nuclear Astrophysics. Fundamental Interactions. High Performance Computing. Rare Isotopes. Radioactive Beams.

A. B Balantekin; J. Carlson; D. J. Dean; G. M. Fuller; R. J. Furnstahl; M. Hjorth-Jensen; R. V. F. Janssens; Bao-An Li; W. Nazarewicz; F. M. Nunes; W. E. Ormand; S. Reddy; B. M. Sherrill

2014-01-24T23:59:59.000Z

214

A Clean Nuclear Energy Using Hydrogen and Condensed Matter Nuclear Science  

Science Conference Proceedings (OSTI)

Other Concepts and Assessments / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

Xing Z. Li; Zhan M. Dong; Chang L. Liang; Han Yi; Yun P. Fu

215

The Need for a Strong Science and Technology Program in the Nuclear Weapons Complex for the 21st Century  

Science Conference Proceedings (OSTI)

In this paper I argue for the need for a strong Science and Technology program in the Nuclear Weapons Complex as the basis for maintaining a credible deterrence capability. The current Nuclear Posture Review establishes a New Triad as the basis for the United States deterrence strategy in a changing security environment. A predictive science capability is at the core of a credible National Nuclear Weapons program in the 21st Century. In absence of nuclear testing, the certification of our current Nuclear Weapons relies on predictive simulations and quantification of the associated simulation uncertainties. In addition, a robust nuclear infrastructure needs an active research and development program that considers all the required nuclear scenarios, including new configurations for which there is no nuclear test data. This paper also considers alternative positions to the need for a Science and Technology program in the Nuclear Weapons complex.

Garaizar, X

2010-01-06T23:59:59.000Z

216

Chemical Sciences & Engineering - Nuclear and Environmental Processes -  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiochemistry Radiochemistry * Members * Overview * Eliminating Uranium * Medical Isotopes Nuclear & Environmental Processes Home Radiochemistry radiochemistry The Radiochemistry Group studies the chemistry of radioactive materials involved in the nuclear fuel cycle and medical isotope production. Our research is aimed at developing a comprehensive understanding of radiochemical processes via experimental determination and modeling of the underlying kinetics, thermodynamics, and mechanisms of the relevant chemistries. A thorough understanding of these parameters enables the development of potentially transformational used fuel processing techniques, and the optimization and scale-up of known techniques. Current research goals: Design a single-step process, replacing TRUEX and TALSPEAK

217

Argonne Chemical Sciences & Engineering - People - Nuclear and  

NLE Websites -- All DOE Office Websites (Extended Search)

Interfacial Processes Interfacial Processes Paul Fenter, Physicist and Group Leader phone: 630/252-7053, fax: 630/252-9570, e-mail: fenter@anl.gov Ph.D., Physics, University of Pennsylvania Interfacial science Interfacial geochemistry (mineral / fluid interfaces) Phase-sensitive interfacial x-ray scattering Sang Soo Lee, Assistant Geochemist phone: 630/252-6679, fax: 630/252-9570, e-mail: sslee@anl.gov Ph.D., Earth and Environmental Sciences, University of Illinois at Chicago Mineral-solution interfacial process Sorption of heavy metal and organic matter on minerals Ion-exchange and swelling of clay minerals X-ray reflectivity, resonant anomalous X-ray reflectivity, resonant anomalous X-ray diffraction Tim Fister, Assistant Materials Scientist Fax: 630/252-9570, e-mail: fister@anl.gov

218

Argonne Chemical Sciences & Engineering - Publications - Nuclear &  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Element and Separations Science Heavy Element and Separations Science 2009 Antonio, M. R., M. Nyman, and T. M. Anderson, Direct observation of contact ion-pair formation in aqueous solution, Angew. Chem., Int. Ed. 48(33), 6136-6140 (2009) Antonio, M. R., M.-H. Chiang, S. Seifert, D. M. Tiede, and P. Thiyagarajan, In situ measurement of the Preyssler polyoxometalate morphology upon electrochemical reduction: A redox system with Born electrostatic ion salvation. J. Electroanal. Chem. 626(1-2), 103-110 (2009) Meridiano, Y., L. Berthon, X. Crozes, C. Sorel, P. Dannus, M. R. Antonio, R. Chiarizia, and T. Zemb,Aggregation in organic solutions of malonamides: Consequences for water extraction, Solvent Extr. Ion Exch., in press (2009) Pan, Y. X., W. Wang, G. K. Liu, S. Skanthakumar, R. A. Rosenberg, X. Z. Guo, K. K. Li , Correlation between structure variation and luminescence red shift in YAG:Ce, J. Alloy Comp., in press (2009)

219

Argonne Chemical Sciences & Engineering - People - Nuclear and  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Technology Nuclear Technology Mark A. Williamson, Chemist and Department Head phone: 630/252-9627, fax: 630/252-5246, e-mail: williamson@anl.gov Pyroprocess Development James L. Willit, Physical Chemist and Group Leader Phone: 630/252-4384, fax 630/972-4416, e-mail: willit@anl.gov Ph.D., Physical Chemistry, North Carolina State University Molten salt electrochemistry High-temperature actinide chemistry Electrochemical separations chemistry Pyroprocess development Robert J. Blaskovitz, Engineering Specialist phone: 630/252-4441, fax: 630/972-4421, blaskovitz@anl.gov Javier Figueroa, Chemical Engineer phone: 630/252-4248, fax 630/52-9917, e-mail: figueroa@anl.gov M.S., Chemical Engineering, Illinois Institute of Technology Pyroprocessing technology Plant modeling Terry R. Johnson, STA, Senior Chemical Engineer

220

Scientific Grand Challenges: Forefront Questions in Nuclear Science and the Role of High Performance Computing  

SciTech Connect

This report is an account of the deliberations and conclusions of the workshop on "Forefront Questions in Nuclear Science and the Role of High Performance Computing" held January 26-28, 2009, co-sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Physics (ONP) and the DOE Office of Advanced Scientific Computing (ASCR). Representatives from the national and international nuclear physics communities, as well as from the high performance computing community, participated. The purpose of this workshop was to 1) identify forefront scientific challenges in nuclear physics and then determine which-if any-of these could be aided by high performance computing at the extreme scale; 2) establish how and why new high performance computing capabilities could address issues at the frontiers of nuclear science; 3) provide nuclear physicists the opportunity to influence the development of high performance computing; and 4) provide the nuclear physics community with plans for development of future high performance computing capability by DOE ASCR.

Khaleel, Mohammad A.

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels  

SciTech Connect

The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the centers investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The centers research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

Todd R. Allen, Director

2011-04-01T23:59:59.000Z

222

Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview  

SciTech Connect

Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

2010-01-01T23:59:59.000Z

223

High Flux Isotope Reactor (HFIR) | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

High Flux Isotope Reactor High Flux Isotope Reactor May 30, 2013 The High Flux Isotope Reactor (HFIR) first achieved criticality on August 25, 1965, and achieved full power in August 1966. It is a versatile 85-MW isotope production, research, and test reactor with the capability and facilities for performing a wide variety of irradiation experiments and a world-class neutron scattering science program. HFIR is a beryllium-reflected, light water-cooled and moderated flux-trap type swimming pool reactor that uses highly enriched uranium-235 as fuel. HFIR typically operates seven 23-to-27 day cycles per year. Irradiation facility capabilities include Flux trap positions: Peak thermal flux of 2.5X1015 n/cm2/s with similar epithermal and fast fluxes (Highest thermal flux available in the

224

from Savannah River Nuclear Solutions, LLC NEWS Area High School Teams Compete during DOE's National Science  

NLE Websites -- All DOE Office Websites (Extended Search)

High School Teams Compete during DOE's National Science High School Teams Compete during DOE's National Science Bowl® Regional Championship: Lakeside and Evans High School Finish Second and Third - Dorman Wins AIKEN, S.C. - Feb. 25, 2013 - Using a format similar to the television show "Jeopardy," America's next generation of scientists and engineers put their knowledge to the test at the University of South Carolina Aiken during the DOE National Science Bowl regional compe- tition this past weekend. High School teams from across South Carolina and the greater Augusta, Ga. area relied on their collective knowledge as they participated in one of the coun- try's largest science tournaments. This regional competition, managed by Savannah River Nuclear Solutions, LLC (SRNS), hosted 120 high school students from 12 high schools. It is the only educational event

225

Argonne Chemical Sciences & Engineering - Nuclear & Environmental Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing Medical Isotopes from Low-Enriched Uranium Developing Medical Isotopes from Low-Enriched Uranium Argonne researchers are contributing to the security and welfare of our nation by developing means to produce a reliable domestic supply of an important medical agent using low-enriched uranium. Technetium-99m is a vital isotope that is commonly used for cardiac and mammogram imaging. However, the U.S. currently has no domestic source of molybdenum-99, which is the parent nuclide for technetium-99m, so we are particularly susceptible to supply interruptions. Through the National Nuclear Security Administration's Global Threat Reduction Initiative, Argonne researchers are supporting three separate approaches for domestic molybdenum-99 production from low-enriched uranium. Argonne is currently working with University of Missouri Research Reactor, and has already demonstrated one approach by irradiating 5g of low-enriched uranium metal foil. Argonne is also working with Babcock and Wilcox to design a molybdenum-99 production system based on fission of uranium-235 in a liquid fuel reactor. Argonne and NorthStar Nuclear Medicine, LLC are exploring an accelerator-based method for the production of molybdenum-99 by irradiating molybdenum targets

226

Nuclear Science Division annual report, July 1, 1981-September 30, 1982  

Science Conference Proceedings (OSTI)

This report summarizes the scientific research carried out within the Nuclear Science Division between July 1, 1981, and September 30, 1982. Heavy-ion investigations continue to dominate the experimental and theoretical research efforts. Complementary programs in light-ion nuclear science, in nuclear data evaluation, and in the development of advanced instrumentation are also carried out. Results from Bevalac experiments employing a wide variety of heavy ion beams, along with new or upgraded detector facilities (HISS, the Plastic Ball, and the streamer chamber) are contained in this report. These relativistic experiments have shed important light on the degree of equilibration for central collisions, the time evolution of a nuclear collision, the nuclear density and compressional energy of these collisions, and strange particle production. Reaction mechanism work dominates the heavy-ion research at the 88-Inch Cyclotron and the SuperHILAC. Recent experiments have contributed to our understanding of the nature of light-particle emission in deep-inelastic collisions, of peripheral reactions, incomplete fusion, fission, and evaporation. Nuclear structure investigations at these accelerators continue to be directed toward the understanding of the behavior of nuclei at high angular momentum. Research in the area of exotic nuclei has led to the observation at the 88-Inch Cyclotron of the ..beta..-delayed proton decay of odd-odd T/sub z/ = -2 nuclides; ..beta..-delayed proton emitters in the rare earth region are being investigated at the SuperHILAC.

Mahoney, J. (ed.)

1983-06-01T23:59:59.000Z

227

Nuclear Engineering and Design 257 (2013) 3144 Contents lists available at SciVerse ScienceDirect  

E-Print Network (OSTI)

Nuclear Engineering and Design 257 (2013) 31­44 Contents lists available at SciVerse ScienceDirect Nuclear Engineering and Design journal homepage: www.elsevier.com/locate/nucengdes Validation of PARCS Bánáti, Mathias Stålek, Christophe Demazière Division of Nuclear Engineering, Department of Applied

Demazière, Christophe

228

Neutron Transfer Reactions: Surrogates for Neutron Capture for Basic and Applied Nuclear Science  

SciTech Connect

Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

Cizewski, J. A.; Peters, W. A.; Allen, J.; Hatarik, R.; Matthews, C.; O'Malley, P. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); Jones, K. L. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Kozub, R. L.; Howard, J.; Patterson, N.; Paulauskas, S. V.; Rogers, J.; Sissom, D. J. [Department of Physics, Tennessee Technological University, Cookeville, TN 38505 (United States); Pain, S. D. [Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ 08903 (United States); Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Adekola, A. [Department of Physics and Astronomy, Ohio University, Athens, OH 45703 (United States); Bardayan, D. W.; Blackmon, J. C.; Liang, F.; Nesaraja, C. D.; Pittman, S. T. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)] (and others)

2009-03-10T23:59:59.000Z

229

Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities  

Science Conference Proceedings (OSTI)

This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

Schoenberg, Kurt F [Los Alamos National Laboratory

2010-12-15T23:59:59.000Z

230

Fusion Science at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Rotating Plasma Finding is Key for ITER Heavy-Ion Fusion Science (HIFS) Math & Computer Science Nuclear Science Science Highlights HPC Requirements Reviews NERSC HPC Achievement...

231

Safeguarding Nuclear Fuel Processing | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Safeguarding Nuclear Safeguarding Nuclear Fuel Processing Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process Laboratory Planning Process Work for Others in the Office of Science Laboratory Directed Research and Development (LDRD) DOE's Philosophy on LDRD Frequently Asked Questions Success Stories Brochures Additional Information LDRD Program Contacts Technology Transfer DOE National Laboratories Contact Information Laboratory Policy and Evaluation U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202) 586-3119 Success Stories Safeguarding Nuclear Fuel Processing Print Text Size: A A A RSS Feeds FeedbackShare Page Idaho National Laboratory Develops International Nonproliferation

232

Technical Considerations for the Nuclear Regulatory Commission/ National Academy of Sciences Proposed Study: Cancer in Populations L iving Near Nuclear Facilities  

Science Conference Proceedings (OSTI)

The U.S. Nuclear Regulatory Commission (NRC), through the National Academy of Sciences (NAS), is updating the 1990 U.S. National Institutes of Health - National Cancer Institute (NCI) report, Cancer in Populations Living near Nuclear Facilities. The Electric Power Research Institute (EPRI) formed a committee of scientists and professionals in the fields of epidemiology, radiation biology, nuclear plant effluents, and environmental risk assessment to provide study design considerations to the NAS committe...

2011-11-04T23:59:59.000Z

233

Nuclear Physics User Facilities | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

NP User Facilities NP User Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 NP User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page The Nuclear Physics program supports the operation of the following national scientific user facilities: Relativistic Heavy Ion Collider (RHIC): External link RHIC at Brookhaven National Laboratory External link is a world-class scientific research facility that began operation in 2000, following 10 years of development and construction. Hundreds of physicists from around

234

International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013) Sun Valley, Idaho, USA, May 5-9, 2013, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2013)  

E-Print Network (OSTI)

and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR22725, National for Solving k-Eigenvalue Problems in Neutron Diffusion Theory," Nuclear Science and Engineering, 167, pp. 141International Conference on Mathematics and Computational Methods Applied to Nuclear Science

Kelley, C. T. "Tim"

235

Nuclear reactor and materials science research: Technical report, May 1, 1985-September 30, 1986  

Science Conference Proceedings (OSTI)

Throughout the 17-month period of its grant, May 1, 1985-September 30, 1986, the MIT Research Reactor (MITR-II) was operated in support of research and academic programs in the physical and life sciences and in related engineering fields. The reactor was operated 4115 hours during FY 1986 and for 6080 hours during the entire 17-month period, an average of 82 hours per week. Utilization of the reactor during that period may be classified as follows: neutron beam tube research; nuclear materials research and development; radiochemistry and trace analysis; nuclear medicine; radiation health physics; computer control of reactors; dose reduction in nuclear power reactors; reactor irradiations and services for groups outside MIT; MIT Research Reactor. Data on the above utilization for FY 1986 show that the MIT Nuclear Reactor Laboratory (NRL) engaged in joint activities with nine academic departments and interdepartmental laboratories at MIT, the Charles Stark Draper Laboratory in Cambridge, and 22 other universities and nonprofit research institutions, such as teaching hospitals.

Not Available

1987-05-11T23:59:59.000Z

236

Future of Nuclear Data for Nuclear Astrophysics  

Science Conference Proceedings (OSTI)

Nuclear astrophysics is an exciting growth area in nuclear science. Because of the enormous nuclear data needs of this field

Michael S. Smith

2005-01-01T23:59:59.000Z

237

Nuclear Science Division annual report, October 1, 1984-September 30, 1985  

SciTech Connect

This report summarizes the activities of the Nuclear Science Division during the period October 1, 1984 to September 30, 1985. As in previous years, experimental research has for the most part been carried out using three local accelerators, the Bevalac, the SuperHILAC and the 88-Inch Cyclotron. However, during this time, preparations began for a new generation of relativistic heavy-ion experiments at CERN. The Nuclear Science Division is involved in three major experiments at CERN and several smaller ones. The report is divided into 5 sections. Part I describes the research programs and operations, and Part II contains condensations of experimental papers arranged roughly according to program and in order of increasing energy, without any further subdivisions. Part III contains condensations of theoretical papers, again ordered according to program but in order of decreasing energy. Improvements and innovations in instrumentation and in experimental or analytical techniques are presented in Part IV. Part V consists of appendices, the first listing publications by author for this period, in which the LBL report number only is given for papers that have not yet appeared in journals; the second contains abstracts of PhD theses awarded during this period; and the third gives the titles and speakers of the NSD Monday seminars, the Bevatron Research Meetings and the theory seminars that were given during the report period. The last appendix is an author index for this report.

Mahoney, J. (ed.)

1986-09-01T23:59:59.000Z

238

Biology | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioinformatics Nuclear Medicine Climate and Environment Systems Biology Computational Biology Chemistry Engineering Computer Science Earth and Atmospheric Sciences Materials...

239

Filip G. Kondev, Program Manager, Nuclear Data Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Filip G. Kondev Filip G. Kondev Program Manager, Argonne Nuclear Data Program Curriculum Vitae Name: Filip G. Kondev Current Address: Nuclear Engineering Division Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439, USA Telephone: +1 (630) 252 4484 (office) Fax: +1 (630) 252 4978 (office) Filip G. Kondev E-mail: Education Ph.D Research School of Physical Science and Engineering, Australian National University, Canberra, Australia Thesis title: "Interplay between intrinsic and Collective Motion in Tantalum Nuclei" Diploma (MSc) Plovdiv University, Plovdiv Bulgaria Thesis title: "Study of (γ,α) Photonuclear Reactions in the Giant Dipole Resonance Region" Employment Feb. 2004 - present Physicist, Nuclear Engineering Division,

240

Nuclear Science Division annual report, October 1, 1986--September 30, 1987  

Science Conference Proceedings (OSTI)

This report summarizes the activities of the Nuclear Science Division during the period October 1, 1986 to September 30, 1987. A highlight of the experimental program during this time was the completion of the first round of heavy-ion running at CERN with ultrarelativistic oxygen and sulfur beams. Very rapid progress is being made in the analysis of these important experiments and preliminary results are presented in this report. During this period, the Bevalac also continued to produce significant new physics results, while demand for beam time remained high. An important new community of users has arrived on the scene, eager to exploit the unique low-energy heavy-beam capabilities of the Bevalac. Another major highlight of the program has been the performance of the Dilepton Spectrometer which has entered into production running. Dileptons have been observed in the p + Be and Ca + Ca reactions at several bombarding energies. New data on pion production with heavy beams measured in the streamer chamber to shed light on the question of nuclear compressibility, while posing some new questions concerning the role of Coulomb forces on the observed pion spectra. In another quite different area, the pioneering research with radioactive beams is continuing and is proving to be one of the fastest growing programs at the Bevalac. Exotic secondary beams (e.g., 8He, 11Li, and 14Be) have been produced for fundamental nuclear physics studies. In order to further enhance the scientific research program and ensure the continued vitality of the facility, the Laboratory has proposed an upgrade of the existing Bevalac. Specifically, the Upgrade would replace the Bevatron with a modern, strong-focusing synchrotron to provide higher intensity and higher quality beams to continue the forefront research program. Other papers on nuclear physics research are included in this report.

Mahoney, J. (ed.)

1988-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Rhode Island Nuclear Science Center conversion from HEU to LEU fuel  

SciTech Connect

The 2-MW Rhode Island Nuclear Science Center (RINSC) open pool reactor was converted from 93% UAL-High Enriched Uranium (HEU) fuel to 20% enrichment U3Si2-AL Low Enriched Uranium (LEU) fuel. The conversion included redesign of the core to a more compact size and the addition of beryllium reflectors and a beryllium flux trap. A significant increase in thermal flux level was achieved due to greater neutron leakage in the new compact core configuration. Following the conversion, a second cooling loop and an emergency core cooling system were installed to permit operation at 5 MW. After re-licensing at 2 MW, a power upgrade request will be submitted to the NRC.

Tehan, Terry

2000-09-27T23:59:59.000Z

242

Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006  

Science Conference Proceedings (OSTI)

The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

2006-10-01T23:59:59.000Z

243

The development of a remote monitoring system for the Nuclear Science Center reactor  

E-Print Network (OSTI)

With funding provided by Nuclear Energy Research Initiative (NERI), design of Secure, Transportable, Autonomous Reactors (STAR) to aid countries with insufficient energy supplies is underway. The development of a new monitoring system that allows remote access to data from the reactor site is an important part of this project. The two goals of this monitoring system are to control the use of nuclear materials and to monitor the performance of the facility from a remote location. I have designed a prototype system for this NERI project that utilizes LabVIEW software and global network technologies to monitor the Nuclear Science Center (NSC) reactor at Texas A&M University. LabVIEW and its applications have all the needed features to build a monitoring system for many types of facilities, including STAR reactors. This system takes data from reactor cooling systems, power monitoring channels, fuel temperature indicators, control rod drives, security alarm sensors and stores it on local and remote hard drives, sends it through an output port to remote clients, and graphically displays these data in the reactor control room. Data from NSC TRIGA reactor is fed to a computer program that analyzes and predicts reactor performance in real time. To provide a remote observation of the working area and fissile material, this system uses cameras, triggered by alarm sensors and LabVIEW vision applications. Operators at the local and remote control stations may view and store all the images from these cameras. The system has been in operation for many months at the NSC with outstanding results and further development is continuing.

Jiltchenkov, Dmitri Victorovich

2002-01-01T23:59:59.000Z

244

IN AUSTRALIAN SCHOOLS  

E-Print Network (OSTI)

SOFTLINK INTERNATIONAL Softlink International is a longstanding supplier to schools in Australia, providing leading-edge Library Management Systems for school libraries. Established in 1983, Softlink is an Australian company with a global footprint encompassing 108 countries, with more than 10,000 clients. Softlinks library management solutions are used in more than 40 % of Australian school libraries. Softlinks head office is in Brisbane, Queensland, with regional offices in Oxford (UK), Seattle (USA), and Auckland (NZ). Softlink strives to support student literacy development along with learning and education improvements. Softlinks systems are powerful tools for students, librarians and teachers allowing key interaction between students, the library and parents. This is accomplished through core web based applications as well as full library management and administrative functions. Drawing on experience from around the world, Softlink is a strong supporter of school libraries and teacher librarians in Australia. SUMMARY AND RECOMMENDATIONS From Softlinks experience, there are widespread inconsistencies in the funding of school libraries

unknown authors

2010-01-01T23:59:59.000Z

245

Fusion Nuclear Science Facility (FNSF) before Upgrade to Component Test Facility (CTF)  

SciTech Connect

The compact (R0~1.2-1.3m) Fusion Nuclear Science Facility (FNSF) is aimed at providing a fully integrated, continuously driven fusion nuclear environment of copious fusion neutrons. This facility would be used to test, discover, understand, and innovate scientific and technical solutions for the challenges facing DEMO, by addressing the multi-scale synergistic interactions involving fusion plasma material interactions, tritium fuel cycle, power extraction, and the nuclear effects on materials. Such a facility properly designed would provide, initially at the JET-level plasma pressure (~30%T2) and conditions (e.g., Hot-Ion H-Mode), an outboard fusion neutron flux of 0.25 MW/m2 while requiring a fusion power of 19 MW. If and when this research operation is successful, its performance can be extended to 1 MW/m2 and 76 MW by reaching for twice the JET plasma pressure and Q. High-safety factor q and moderate- plasmas would minimize plasma-induced disruptions, helping to deliver reliably a neutron fluence of 1 MW-yr/m2 and a duty factor of 10% presently anticipated for the FNS research. Success of this research will depend on achieving time-efficient installation and replacement of all components using extensive remote handling (RH). This in turn requires modular designs for all internal components, including the single-turn toroidal field coil center-post with RH-compatible bi-directional sliding joints. Such device goals would further dictate placement of support structures and vacuum seal welds behind the internal and shielding components. If these further goals could be achieved, the FNSF would provide a ready upgrade path to the Component Test Facility (CTF), which would aim to test, at higher neutron fluence and duty cycle, the demanding fusion nuclear engineering and technologies for DEMO. This FNSF-CTF strategy would be complementary to the ITER and the Broader Approach programs, and thereby help mitigate the risks of an aggressive world fusion DEMO R&D Program. The key physics and technology research needed in the next decade to manage the potential risks of this FNSF are identified.

Peng, Yueng Kay Martin [ORNL

2010-01-01T23:59:59.000Z

246

International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013) Sun Valley, Idaho, USA, May 5-9, 2013, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2013)  

E-Print Network (OSTI)

Monte Carlo simulation to model nuclear reactor dynamics. These Monte Carlo methods can be extremely://www.energy.gov/hubs) for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR22725 for Solving k-Eigenvalue Problems in Neutron Diffusion Theory," Nuclear Science and Engineering, 167, pp. 141

Kelley, C. T. "Tim"

247

Science  

NLE Websites -- All DOE Office Websites (Extended Search)

149802 149802 , 1291 (2007); 318 Science et al. L. Ozyuzer, Superconductors Emission of Coherent THz Radiation from www.sciencemag.org (this information is current as of November 29, 2007 ): The following resources related to this article are available online at http://www.sciencemag.org/cgi/content/full/318/5854/1291 version of this article at: including high-resolution figures, can be found in the online Updated information and services, http://www.sciencemag.org/cgi/content/full/318/5854/1291/DC1 can be found at: Supporting Online Material found at: can be related to this article A list of selected additional articles on the Science Web sites http://www.sciencemag.org/cgi/content/full/318/5854/1291#related-content http://www.sciencemag.org/cgi/content/full/318/5854/1291#otherarticles

248

SCience  

NLE Websites -- All DOE Office Websites (Extended Search)

all all SCience Chicago Office Environment, Safety and Health Functions, Responsibilities, and Authorities Manual December 2012 ~5 {?JI-- l L-H1- I Roxanne E. Purucker, Manager Date SC-CH FRAM Revision 7 Office of Science - Chicago Office SC-CH Revision History TITLE: SC-CH Functions, Responsibilities, and Authorities Manual POINT OF CONTACT: Karl Moro SCMS MANAGEMENT SYSTEM: Environment, Safety and Health (ES&H) TO BE UPDATED: December 31, 2013 Revision Date Reason/Driver Description 5 Oct 10 Annual review and revision of the SC-CH ES&H Functions, Responsibilities, and Authorities Manual Changes were primarily made to address administrative and organizational changes and general improvement of text and presentation. I 6 Nov 11 Annual review and revision of

249

The on-line charge breeding program at TRIUMF's Ion Trap For Atomic and Nuclear Science for precision mass measurements  

Science Conference Proceedings (OSTI)

TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) constitutes the only high precision mass measurement setup coupled to a rare isotope facility capable of increasing the charge state of short-lived nuclides prior to the actual mass determination in a Penning trap. Recent developments around TITAN's charge breeder, the electron beam ion trap, form the basis for several successful experiments on radioactive isotopes with half-lives as low as 65 ms and in charge states as high as 22+.

Simon, M. C.; Eberhardt, B.; Jang, F.; Luichtl, M.; Robertson, D.; Chaudhuri, A.; Delheij, P.; Grossheim, A.; Kwiatkowski, A. A.; Mane, E.; Pearson, M. R.; Schultz, B. E. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Bale, J. C. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Chowdhury, U. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Ettenauer, S.; Gallant, A. T.; Dilling, J. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1 (Canada); Lennarz, A. [TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet, D-48149 Muenster (Germany); Ma, T.; Andreoiu, C. [Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); and others

2012-02-15T23:59:59.000Z

250

Nonreactor Nuclear Facilities Division  

NLE Websites -- All DOE Office Websites (Extended Search)

role in developing science and technology for nuclear power programs, nuclear propulsion, nuclear medicine, and the nation's nuclear weapon program among others. Many...

251

Low Energy Nuclear Reactions: Exciting New Science and Potential Clean Energy  

Science Conference Proceedings (OSTI)

Other Concepts and Assessments / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

David J. Nagel; Kamron C. Fazel

252

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 1, FEBRUARY 2011 277 Anomaly Detection in Nuclear Power Plants via  

E-Print Network (OSTI)

applications (e.g., nuclear power reactor plants, petroleum industry and micro-gravity flow systems and Seungjin Kim Department of Mechanical and Nuclear Engineering, The Pennsylvania State University sensing. The underlying algorithm is built upon the recently reported theory of a statistical pattern

Ray, Asok

253

Earth and Atmospheric Sciences | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Forensics Climate & Environment Sensors and Measurements Chemical & Engineering Materials Computational Earth Science Systems Modeling Geographic Information Science and Technology Materials Science and Engineering Mathematics Physics More Science Home | Science & Discovery | More Science | Earth and Atmospheric Sciences SHARE Earth and Atmospheric Sciences At ORNL, we combine our capabilities in atmospheric science, computational science, and biological and environmental systems science to focus in the cross-disciplinary field of climate change science. We use computer models to improve climate change predications and to measure the impact of global warming on the cycling of chemicals in earth systems. Our Climate Change Science Institute uses models to explore connections among atmosphere,

254

Civilian Nuclear Programs, SPO-CNP: LANL  

NLE Websites -- All DOE Office Websites (Extended Search)

Civilian Nuclear Programs, SPO-CNP Science Program Office Applied Energy Civilian Nuclear Office of Science Civilian Nuclear Programs Home Advanced Nuclear Energy Programs Yucca...

255

Topical Area MFE Title: Burning Plasma Science_____________________________________________ Description Fusion energy is released by burning light elements using nuclear reactions which consume mass and  

E-Print Network (OSTI)

Page 1 Topical Area MFE Title: Burning Plasma Science_____________________________________________ · Description Fusion energy is released by burning light elements using nuclear reactions which consume mass-sustained purely by its alpha particle heating. The science of burning plasmas consists of: (1) the physics

256

The BMRC Australian Monsoon Experiment: AMEX  

Science Conference Proceedings (OSTI)

The Bureau of Meteorology Research Centre (BMRC) willbe conducting a major research effort in the Australian tropics during 1986-1988 including a two-phase field experiment, the Australian Monsoon Experiment (AMEX). This will be done in ...

Greg J. Holland; John L. McBride; Roger K. Smith; David Jasper; Thomas D. Keenan

1986-12-01T23:59:59.000Z

257

Australian Solar Institute | Open Energy Information  

Open Energy Info (EERE)

Solar Institute Solar Institute Jump to: navigation, search Name Australian Solar Institute Place Newcastle, New South Wales, Australia Zip 2300 Sector Solar Product New South Wales-based institute providing support for the Australian solar community, helping to retain Australian solar expertise and develop the next generation of Australian solar researchers. References Australian Solar Institute[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Australian Solar Institute is a company located in Newcastle, New South Wales, Australia . References ↑ "Australian Solar Institute" Retrieved from "http://en.openei.org/w/index.php?title=Australian_Solar_Institute&oldid=342442

258

Clean Energy | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

sciences, advanced materials, neutron sciences, nuclear sciences, and high-performance computing, and brings multidisciplinary teams together to address key issues. That...

259

Berkeley Lab Science Articles Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

History of the Laboratory Human Genome & DNA Research Life Sciences Materials Sciences Medical & Risk-related Research Nuclear Science Physics Reports on Distinguished Lecturers...

260

Nuclear Science Division, Annual report, October 1, 1988--December 31, 1990  

Science Conference Proceedings (OSTI)

This report contains short papers of research conducted in the following areas: Low energy research program; bevalac research program; ultrarelativistic research program; nuclear theory program; nuclear data evaluation; and, 88-inch cyclotron operations.

Poskanzer, A.M.; Deleplanque, M.A.; Firestone, R.B.; Lofdahl, J.B. (eds.)

1991-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

to IAEA inspectors and withdrawal from the Non-Proliferation Treaty are evidence of an active and advanced proliferation of nuclear weapons. The first conclusion is that proliferation is easy and inevitable. The second-backed conventional attacks on non-nuclear states which are not securely under a great power's nuclear umbrella

Gilfoyle, Jerry

262

ABOUT THE DEGREE The Master of Nuclear Science degree is a coursework  

E-Print Network (OSTI)

by the Nuclear Non- Proliferation Treaty (NPT), or the so-called P-5 countries, to play a leadership role ourselves to the goal of eliminating nuclear weapons under the Treaty on the Non-Proliferation of Nuclear build on but broaden the periodic dialogue on non- proliferation issues among the United States, Russia

Chen, Ying

263

Advanced neutron irradiation system using Texas A&M University Nuclear Science Center Reactor  

E-Print Network (OSTI)

A heavily filtered fast neutron irradiation system (FNIS) was developed for a variety of applications, including the study of long-term health effects of fast neutrons by evaluating the biological mechanisms of damage in cultured cells and living animals such as rats or mice. This irradiation system includes an exposure cave made with a lead-bismuth alloy, a cave positioning system, a gamma and neutron monitoring system, a sample transfer system, and interchangeable filters. This system was installed in the irradiation cell of the Texas A&M University Nuclear Science Center Reactor (NSCR). By increasing the thickness of the lead-bismuth alloy, the neutron spectra were shifted into lower energies by the scattering interactions of fast neutrons with the alloy. It is possible, therefore, by changing the alloy thickness, to produce distinctly different dose weighted neutron spectra inside the exposure cave of the FNIS. The calculated neutron spectra showed close agreement with the results of activation foil measurements, unfolded by SAND-II close to the cell window. However, there was a considerable less agreement for locations far away from the cell window. Even though the magnitude of values such as neutron flux and tissue kerma rates in air differed, the weighted average neutron energies showed close agreement between the MCNP and SAND-II since the normalized neutron spectra were in a good agreement each other. A paired ion chamber system was constructed, one with a tissue equivalent plastic (A-150) and propane gas for total dose monitoring, and another with graphite and argon for photon dose monitoring. Using the pair of detectors, the neutron to gamma ratio can be inferred. With the 20 cm-thick FNIS, the absorbed dose rates of neutrons measured with the paired ion chamber method and calculated with the SAND-II results were 13.7 ?? 0.02 Gy/min and 15.5 Gy/min, respectively. The absorbed dose rate of photons and the gamma contribution to total dose were 6.7??10-1 ?? 1.3??10-1 Gy/min and 4.7%, respectively. However, the estimated gamma contribution to total dose varied between 3.6 % to 6.6 % as the assumed neutron sensitivity to the graphite detector was changed from 0.01 to 0.03.

Jang, Si Young

2004-08-01T23:59:59.000Z

264

Technetium production: a feasibility study for Texas A&M University nuclear science center  

E-Print Network (OSTI)

The affordability and feasibility of the production of the metastable nuclide of technetium (Tc-99m) by neutron capture activation of molybdenum trioxide (with a subsequent solvent extraction) has been explored for the Texas A&M University, Nuclear Science Center (NSC). The primary impetus for exploring the possibility of producing Tc-99m is the interest expressed by the University's College of Veterinary Medicine (CVM). Currently, the CVM receives partially depleted Tc-99m generators from a local vendor, free-of-charge. However, the future status of this supply is unclear and the need for an alternative source needs to be addressed. Also, the CVM expects sufficient growth so that the donated generators cannot meet their anticipated need. Two experiments performed at the NSC explored the ability to produce Tc99m for the CVM and provided data for estimating production costs. These experiments entailed the irradiation of molybdenum trioxide and the separation of Tc99m from the irradiated targets. In addition, the experiments determined the optimum solvent volumes, the effects of a subsequent extraction, and measured the loss in recovery when an oxidizing agent (hydrogen peroxide) was eliminated from the extraction procedure. These results have not previously been reported. The feasibility of production was determined by comparing a local hospital's cost for Tc-99m, delivered by a local vendor, to the production costs at the NSC. The production cost for Tc-99m is based on a modified NSC irradiation price listing, chemical costs, and miscellaneous costs based upon the Tc-99m activity requirement of 1 1. I GBq per day by the CVM. A cost for initial setup was also determined. This research also revealed additional obtaining Tc-99m. A low activity separation showed a mean recovery of 66.9 ?1. 1 % for Tc-99m over a five-day extraction period. The optimum solvent volume to aqueous volume ratio for a first and second extraction was determined from an additional separation experiment to be 0.6 and 0.2, respectively. The second experiment also demonstrated a 20.9 % reduction in percent-recovery when the oxidizing agent was eliminated.

Hearne, David Douglass

1997-01-01T23:59:59.000Z

265

PROBING DENSE NUCLEAR MATTER VIA NUCLEAR COLLISIONS  

E-Print Network (OSTI)

University of California. LBL-12095 Probing Dense NuclearMatter Nuclear Collisions* v~a H. Stocker, M.Gyulassy and J. Boguta Nuclear Science Division Lawrence

Stocker, H.

2012-01-01T23:59:59.000Z

266

Nuclear Analytical Methods  

Science Conference Proceedings (OSTI)

... Nuclear Analytical Methods. Research activities in the Nuclear Analytical Methods Group are focused on the science that ...

267

Nuclear Science and Physics Data from the Isotopes Project, Lawrence Berkeley National Laboratory (LBNL)  

DOE Data Explorer (OSTI)

The Isotopes Project pages at Lawrence Berkeley National Laboratory have been a source of nuclear data and reference information since the mid-nineties. Almost all of the data, the results of analyses, the specialized charts and interfaces, and the extensive bibiographic references are fed to the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory and maintained there. The Isotope Project pages at LBNL provide a glimpse of early versions for many of the nuclear data resources.

None

268

The Radiation Safety Information Computational Center (RSICC): A Resource for Nuclear Science Applications  

Science Conference Proceedings (OSTI)

The Radiation Safety Information Computational Center (RSICC) has been in existence since 1963. RSICC collects, organizes, evaluates and disseminates technical information (software and nuclear data) involving the transport of neutral and charged particle radiation, and shielding and protection from the radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste management. RSICC serves over 12,000 scientists and engineers from about 100 countries.

Kirk, Bernadette Lugue [ORNL

2009-01-01T23:59:59.000Z

269

Materials Science & Engineering | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Clean Energy Materials Theory and Simulation Neutron Science Nuclear Forensics Nuclear Science Supercomputing Theory, Modeling and Simulation Mathematics Physics More Science Home | Science & Discovery | More Science | Materials Science and Engineering SHARE Materials Science and Engineering ORNL's core capability in applied materials science and engineering directly supports missions in clean energy, national security, and industrial competitiveness. A key strength of ORNL's materials science program is the close coupling of basic and applied R&D. Programs building on this core capability are focused on (1) innovations and improvements in materials synthesis, processing, and design; (2) determination and manipulation of critical structure-property relationships, and (3)

270

Conference on Nuclear Energy and Science for the 21st Century: Atoms for Peace Plus Fifty - Washington, D.C., October 2003  

SciTech Connect

This conference's focus was the peaceful uses of the atom and their implications for nuclear science, energy security, nuclear medicine and national security. The conference also provided the setting for the presentation of the prestigious Enrico Fermi Prize, a Presidential Award which recognizes the contributions of distinguished members of the scientific community for a lifetime of exceptional achievement in the science and technology of nuclear, atomic, molecular, and particle interactions and effects. An impressive group of distinguished speakers addressed various issues that included: the impact and legacy of the Eisenhower Administration??s ??Atoms for Peace? concept, the current and future role of nuclear power as an energy source, the challenges of controlling and accounting for existing fissile material, and the horizons of discovery for particle or high-energy physics. The basic goal of the conference was to examine what has been accomplished over the past fifty years as well as to peer into the future to gain insights into what may occur in the fields of nuclear energy, nuclear science, nuclear medicine, and the control of nuclear materials.

Pfaltzgraff, Robert L [Institute for Foreign Policy Analysis

2006-10-22T23:59:59.000Z

271

Detecting Nuclear Threats | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Detecting Nuclear Threats Detecting Nuclear Threats Stories of Discovery & Innovation Detecting Nuclear Threats Enlarge Photo Photo: Denise Applewhite The MINDS device was invented by a team of engineers at the Princeton Plasma Physics Laboratory, including, from left: Kenny Silber, Henry Carnevale, Charles Gentile, Dana Mastrovito, and Bill Davis. Enlarge Photo 03.28.11 Detecting Nuclear Threats Plasma physics challenge yields portable nuclear detector for homeland security. In 1999, faced with the task of decommissioning the legendary Tokamak Fusion Test Reactor (TFTR), officials at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) realized they needed something that didn't yet exist-a non-destructive, real time device to detect certain "hot" elements lacing the inner vessel of the doughnut-

272

Development of Real-Time Fuel Management Capability at the Texas A&M Nuclear Science Center  

E-Print Network (OSTI)

For the Texas A&M University Nuclear Science Center reactor a fuel depletion code was created to develop real-time fuel management capability. This code package links MCNP8 and ORIGEN26 and is interfaced through a Visual Basic code. Microsoft Visual Basic was used to create a user interface and for pre-and post-processing of MCNP and ORIGEN2 output. MCNP was used to determine the flux for all fuel and control rods within the core while ORIGEN2 used this flux along with the power history to calculate buildup and depletion for tracking the fuel isotopic evolution through time. A comparison of MCNP calculated fluxes and measured flux values were used to confirm the validity of the MCNP model. A comparison to Monteburns was used to add confidence to the correctness of the calculated fuel isotopics. All material isotopics were stored in a Microsoft Access database for integration with the Visual Basic code to allow for isotopics report generation for the Nuclear Science Center staff. This fuel management code performs its function with reasonable accuracy. It gathers minimal information from the user and burns the core over daily operation. After execution it stores all material data to the database for further use within NSCRFM or for isotopic report generation.

Parham, Neil A.

2010-05-01T23:59:59.000Z

273

WEB RESOURCE: Nuclear Materials and Nuclear Fuel/Waste  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science...

274

The Radiation Safety Information Computational Center (RSICC): A Resource for Nuclear Science Applications  

SciTech Connect

The Radiation Safety Information Computational Center (RSICC) has been in existence since 1963. RSICC collects, organizes, evaluates and disseminates technical information (software and nuclear data) involving the transport of neutral and charged particle radiation, and shielding and protection from the radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste management. RSICC serves over 12,000 scientists and engineers from about 100 countries. An important activity of RSICC is its participation in international efforts on computational and experimental benchmarks. An example is the Shielding Integral Benchmarks Archival Database (SINBAD), which includes shielding benchmarks for fission, fusion and accelerators. RSICC is funded by the United States Department of Energy, Department of Homeland Security and Nuclear Regulatory Commission.

Kirk, Bernadette Lugue [ORNL

2009-01-01T23:59:59.000Z

275

Texas A and M University student/professional nuclear science and engineering conference  

SciTech Connect

Abstracts of papers presented at the meeting are included. Topics discussed include: reactor engineering; space nuclear power systems; health physics and dosimetry; fusion engineering and physics; and reactor physics and theory.

1984-03-12T23:59:59.000Z

276

Nuclear Wallet Cards at BNL | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

decay modes. Its 7th edition has been published in 2005. In March 2002, DOE Office of Security, Nuclear Management & Safeguards System has accepted the 6th edition, published in...

277

Nuclear | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Energy Sources Nuclear Nuclear Radioisotope Power Systems, a strong partnership between the Energy Department's Office of Nuclear Energy and NASA, has...

278

mathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publisher  

E-Print Network (OSTI)

sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences

Calegari, Frank

279

Science Program Office, Los Alamos National Laboratory, Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Science Program Office Applied Energy Civilian Nuclear Office of Science Applied Energy Programs Office of Science Civilian Nuclear Program Directors Applied Energy Programs...

280

Siberian Branch of Russian Academy of Sciences BUDKER INSTITUTE OF NUCLEAR PHYSICS  

E-Print Network (OSTI)

and taxes See page 5 for details. shmuelthaler #12;Industry leader creates endowed chair A$1 million gift that shaped plans for the library project. A retired technology industry executive, Mura-smith has also made Professor, Earth Sciences, and Vice Provost and Dean, Graduate Studies Virginia Steel University Librarian

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Mercury-Free Dissolution of Aluminum-Based Nuclear Material: From Basic Science to the Plant  

Science Conference Proceedings (OSTI)

Conditions were optimized for the first plant-scale dissolution of an aluminum-containing nuclear material without using mercury as a catalyst. This nuclear material was a homogeneous mixture of plutonium oxide and aluminum metal that had been compounded for use as the core matrix in Mark 42 nuclear fuel. Because this material had later failed plutonium distribution specifications, it was rejected for use in the fabrication of Mark 42 fuel tubes, and was stored at the Savannah River Site (SRS) awaiting disposition. This powder-like material was composed of a mixture of approximately 80 percent aluminum and 11 percent plutonium. Historically, aluminum-clad spent nuclear fuels [13] have been dissolved using a mercuric nitrate catalyst in a nitric acid (HNO3) solution to facilitate the dissolution of the bulk aluminum cladding. Developmental work at SRS indicated that the plutonium oxide/aluminum compounded matrix could be dissolved without mercury. Various mercury-free conditions were studied to evaluate the rate of dissolution of the Mark 42 compact material and to assess the corrosion rate to the stainless steel dissolver. The elimination of mercury from the dissolution process fit with waste minimization and industrial hygiene goals to reduce the use of mercury in the United States. The mercury-free dissolution technology was optimized for Mark 42 compact material in laboratory-scale tests, and successfully implemented at the plant.

Crooks, W.J. III

2003-05-14T23:59:59.000Z

282

FUNDAMENTALS IN THE OPERATION OF NUCLEAR TEST REACTORS. VOLUME 1. REACTOR SCIENCE AND TECHNOLOGY  

SciTech Connect

A resume of nuclear physics basic to reactor operation precedes discussion of aspects of reactor physics, engineering, chemistry, metallurgy, instrumentation, control, kinetics, and safety. The object is to provide an approach to and understanding of problems in irradiation test programs in the Materials Testing and Engineering Test Reactors. (D.C.W.)

1963-06-01T23:59:59.000Z

283

Nuclear Science | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

of isotopes for medical purposes and research. The lab's High Flux Isotope Reactor (HFIR) and Radiochemical Engineering Development Center (REDC) together provide the western...

284

mathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publisher  

E-Print Network (OSTI)

& Number Theory mathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences publishersmathematical sciences

Skorobogatov, Alexei N.

285

Applied Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science EXAFS and XANES of plutonium and uranium edges from titanate ceramics for fissile materials disposition J.A. Fortner, A.J. Kropf, R.J. Finch, M.C. Hash, S.B. Aase,...

286

Nuclear reactor and materials science research: Final technical report, May 1, 1985-September 30, 1986. [Academic and research utilization of reactor  

SciTech Connect

Throughout the 17-month period of the grant, May 1, 1985 - September 30, 1986, the MIT Research Reactor (MITR-II) was operated in support of research and academic programs in the physical and life sciences and in related engineering fields. The period encompassed MIT's fiscal year utilization of the reactor during that period may be classified as follows: neutron beam tube research, nuclear materials research and development, radiochemistry and trace analysis, nuclear medicine, radiation health physics, computer control of reactors, dose reduction in nuclear power reactors, reactor irradiations and services for groups outside MIT, and MIT research reactor. This paper provides detailed information on this research academic utilization.

Harling, O.K.

1987-05-11T23:59:59.000Z

287

J. H. Scofield and D. M. Fleetwood, IEEE Transactions on Nuclear Science NS-38, 1567-77 (December 1991). PHYSICAL BASIS FOR NONDESTRUCTIVE TESTS OF MOS RADIATION HARDNESS*  

E-Print Network (OSTI)

J. H. Scofield and D. M. Fleetwood, IEEE Transactions on Nuclear Science NS-38, 1567-77 (December 1991). PHYSICAL BASIS FOR NONDESTRUCTIVE TESTS OF MOS RADIATION HARDNESS* John H. Scofield Department noise and channel mobility measurements may be useful in defining nondestructive hardness assurance test

Scofield, John H.

288

Nuclear Science Division annual report for the period October 1, 1987--September 30, 1988  

Science Conference Proceedings (OSTI)

Highlights of the low energy research program included the identification of new super-deformed bands in gadolinium and palladium isotopes using the HERA array. Other work at the 88-Inch Cyclotron involved studies of the fragmentation of light nuclei; the spectroscopy of nuclear far from stability and interesting new experiments on the properties of the heaviest elements. Two other programs deserve special mention, the new program in Nuclear Astrophysics and the spectroscopic studies being carried out at OASIS. This isotope separator is now in full operation at the SuperHILAC after many yeas of development. At the Bevalac, important new results were obtained on the properties of hot dense nuclear matter produced in central collisions of heavy ions. First measurements were made using the di-lepton spectrometer which provide the most direct access to the conditions at the earliest stage of the reaction. New results on pion interferometry have been obtained using the Janus spectrometer and surprises continue to be found in careful analysis of data from the Plastic Ball detector, most recently the identification of a new component of hydrodynamic flow. Also at the Bevalac the intermediate energy program continued to grow, studying the evolution of the reaction mechanism from incomplete fusion to the fireball regime, as did the spectroscopic studies using secondary radioactive beams. The third major component of the experimental program is the study of ultra-relativistic nuclear collisions using the CERN SPS. This year saw the completing of analysis of the first round of experiments with important results being obtained on general particle production, the space-time evolution of the system and strangeness production.

Mahoney, J. (ed.)

1989-10-01T23:59:59.000Z

289

Experimental and phenomenological comparison between Piezonuclear reactions and Condensed Matter Nuclear Science phenomenology  

E-Print Network (OSTI)

The purpose of this paper is to place side by side the experimental results of Piezonu- clear reactions, which have been recently unveiled, and those collected during the last twenty years of experiments on low energy nuclear reactions (LENR). We will briefy re- port the results of our campaign of piezonuclear reactions experiments where ultrasounds and cavitation were applied to solutions of stable elements. These outcomes will be shown to be compatible with the results and evidences obtained from low energy nuclear reac- tion experiments. Some theoretical concepts and ideas, on which our experiments are grounded, will be sketched and it will be shown that, in order to trigger our measured effects, it exists an energy threshold, that has to be overcome, and a maximum inter- val of time for this energy to be released to the nuclear system. Eventually, a research hypothesis will be put forward about the chance to raise the level of analogy from the mere comparison of results up to the phenomenological level. Here, among the various evidences collected in LENR experiments, we will search for hints about the overcome of the energy threshold and about the mechanism that releases the loaded energy in a suitable interval of time.

F. Cardone; R. Mignani; A. Petrucci

2011-03-06T23:59:59.000Z

290

DOE Hydrogen and Fuel Cells Program: Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy Fossil Energy Nuclear Energy Science U.S. Department of Energy Search help Home > DOE Participants > Science Printable Version Science DOE's...

291

Australian developments in oil shale processing  

SciTech Connect

This study gives some background on Australian oil shale deposits, briefly records some history of oil shale processing in the country and looks at the current status of the various proposals being considered to produce syncrudes from Australian oil shales. 5 refs.

Baker, G.L.

1981-01-01T23:59:59.000Z

292

ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data  

SciTech Connect

The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 418 nuclides; (2) Covariance uncertainty data for 185 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions at higher energies for isotopes of F, Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides 235,238U and 239Pu at this point, except for delayed neutron data, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on 239Pu; and (9) A new Decay Data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide range of MCNP simulations of criticality benchmarks, with improved performance coming from new structural material evaluations, especially for Ti, Mn, Cr, Zr and W. For Be we see some improvements although the fast assembly data appear to be mutually inconsistent. Actinide cross section updates are also assessed through comparisons of fission and capture reaction rate measurements in critical assemblies and fast reactors. We describe the cross section evaluations that have been updated for ENDF/B-VII.1 and the measured data and calculations that motivated the changes, and therefore this paper augments the ENDF/B-VII.0 publication [1].

G. Palmiotti

2011-12-01T23:59:59.000Z

293

Investigation of the low enrichment conversion of the Texas A and M Nuclear Science Center Reactor  

SciTech Connect

The use of highly enriched uranium as a fuel research reactors is of concern due to the possibility of diversion for nuclear weapons applications. The Texas A M TRIGA reactor currently uses 70% enriched uranium in a FLIP (Fuel Life Improvement Program) fuel element manufactured by General Atomics. Thus fuel also contains 1.5 weight percent of erbium as a burnable poison to prolong useful core life. US university reactors that use highly enriched uranium will be required to covert to 20% or less enrichment to satisfy Nuclear Regulatory Commission requirements for the next core loading if the fuel is available. This investigation examined the feasibility of a material alternate to uranium-zirconium hydride for LEU conversion of a TRIGA reactor. This material is a beryllium oxide uranium dioxide based fuel. The theoretical aspects of core physics analyses were examined to assess the potential advantages of the alternative fuel. A basic model was developed for the existing core configuration since it is desired to use the present fuel element grid for the replacement core. The computing approach was calibrated to the present core and then applied to a core of BeO-UO{sub 2} fuel elements. Further calculations were performed for the General Atomics TRIGA low-enriched uranium zirconium hydride fuel.

Reuscher, J.A.

1988-01-01T23:59:59.000Z

294

Setting Up a Tutor Training Programme in Computer Science  

E-Print Network (OSTI)

Strooper,P. Bakker,P. Carrington,D. Creasy,P. Goodchild,A. MacColl,I. Purchase,H.C. Proceedings of the First Australian Conference on Computer Science Education, Rosenberg, J. (ed) ACM Press

Strooper, P.; Bakker, P.; Carrington, D.; Creasy, P.; Goodchild, A.; MacColl, I.; Purchase, H.C.

295

Materials Science and Technology Division - Physical Sciences...  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Space Radioisotope Power Systems Energy.Gov Office of Nuclear Energy - Space Power Systems NASA Cassini- Huygens Mission to Saturn NASA Curosity - Mars Science...

296

Nuclear Science Division: Annual report for the period October 1, 1985-September 30, 1986  

Science Conference Proceedings (OSTI)

Research has for the most part been carried out using three local accelerators, the Bevalac, the SuperHILAC and the 88-Inch Cyclotron. However, at CERN, oxygen-16 beams were accelerated to 3.2 TeV using the LBL-GSI heavy ion injector into the CERN SPS. First results obtained during the beam test period are presented in this report. Bevalac research has probed new regions of the nuclear matter equation of state. Studies of collisions between the most massive nuclei have revealed rich new phenomena such as collective flow, where the pressures generated force the emerging particles away from the beam direction. Experiments on dileptons e/sup +/e/sup -/ pairs) utilizing the newly completed Dilepton Spectrometer (DLS) are being carried out to glean new insights into the hot, high-density stage of the collision. Major new results on the nuclear structure of exotic, very neutron-rich light nuclei are being obtained by exploiting the projectile fragmentation process to produce secondary radioactive beams. The Laboratory has proposed the Bevalac Upgrade Project to replace the Bevalac's weak-focusing synchrotron with a modern, strong-focusing synchrotron to provide higher intensity and higher quality beams. The significant enhancement of the heavy ion capability at the 88-Inch Cyclotron as a result of the recent development of the ECR source has led to a renaissance of the cyclotron as indicated by the increased demand for beam time. A variety of other scientific activities were also carried out during this period. The Isotopes Project published the first edition of a new radioactivity reference book for applied users-The Table of Radioactive Isotopes and division members organized several major scientific meetings.

Mahoney, J. (ed.)

1987-07-01T23:59:59.000Z

297

Nuclear Weapons  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear science that has had a significant global influence. Following the observation of fission products of uranium by Hahn and Strassmann in 1938, a uranium fission weapon...

298

EA-0896; Research in Alzheimer's Disease Health Sciences Center - West Virginia University Environmental Assessment and (FONSI) Center For Nuclear Medicine Research In Alzheimer's Disease Health Sciences Center - West Virginia University  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6; Research in Alzheimer's Disease Health Sciences Center - West 6; Research in Alzheimer's Disease Health Sciences Center - West Virginia University Environmental Assessment and (FONSI) Center for Nuclear Medicine Research in Alzheimer's Disease Health Sciences Center - West Virginia University TABLE OF CONTENTS 1.0 DOCUMENT SUMMARY 1.1. Description 1.2 Alternatives 1.3 Affected Environment 1.4 Construction Impacts 1.5 Operating Impacts 2.0 PURPOSE AND NEED FOR AGENCY ACTION 3.0 DESCRIPTION OF ALTERNATIVES INCLUDING THE PROPOSED ACTION 3.1 Description of the Proposed Action 3.2.1 Construction Activities 3.2.2 Operation Activities 3.3 The No Action Alternative 3.4 Site Alternatives 4.0 THE AFFECTED ENVIRONMENT 5.0 ENVIRONMENTAL CONSEQUENCES OF THE PROPOSED ACTION AND ALTERNATIVES 5.1 Construction Impacts 5.1.1 Sensitive Resources

299

WEB RESOURCE: Transport Properties (Nuclear Materials)  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science...

300

ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data  

Science Conference Proceedings (OSTI)

The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He; Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl; K; Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides (235,238)U and (239)Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es; Fm; and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on (239)Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide range of MCNP simulations of criticality benchmarks, with improved performance coming from new structural material evaluations, especially for Ti, Mn, Cr, Zr and W. For Be we see some improvements although the fast assembly data appear to be mutually inconsistent. Actinide cross section updates are also assessed through comparisons of fission and capture reaction rate measurements in critical assemblies and fast reactors, and improvements are evident. Maxwellian-averaged capture cross sections at 30 keV are also provided for astrophysics applications. We describe the cross section evaluations that have been updated for ENDF/B-VII.1 and the measured data and calculations that motivated the changes, and therefore this paper augments the ENDF/B-VII.0 publication [H.

Chadwick, M. B. [Los Alamos National Laboratory (LANL); Herman, Micheal W [Brookhaven National Laboratory (BNL); Oblozinsky, Pavel [Brookhaven National Laboratory (BNL); Dunn, Michael E [ORNL; Danon, Y. [Rensselaer Polytechnic Institute (RPI); Kahler, A. [Los Alamos National Laboratory (LANL); Smith, Donald L. [Argonne National Laboratory (ANL); Pritychenko, B [Brookhaven National Laboratory (BNL); Arbanas, Goran [ORNL; Arcilla, r [Brookhaven National Laboratory (BNL); Brewer, R [Los Alamos National Laboratory (LANL); Brown, D A [Brookhaven National Laboratory (BNL); Capote, R. [International Atomic Energy Agency (IAEA); Carlson, A. D. [National Institute of Standards and Technology (NIST); Cho, Y S [Korea Atomic Energy Research Institute; Derrien, Herve [ORNL; Guber, Klaus H [ORNL; Hale, G. M. [Los Alamos National Laboratory (LANL); Hoblit, S [Brookhaven National Laboratory (BNL); Holloway, Shannon T. [Los Alamos National Laboratory (LANL); Johnson, T D [Brookhaven National Laboratory (BNL); Kawano, T. [Los Alamos National Laboratory (LANL); Kiedrowski, B C [Los Alamos National Laboratory (LANL); Kim, H [Korea Atomic Energy Research Institute; Kunieda, S [Los Alamos National Laboratory (LANL); Larson, Nancy M [ORNL; Leal, Luiz C [ORNL; Lestone, J P [Los Alamos National Laboratory (LANL); Little, R C [Los Alamos National Laboratory (LANL); Mccutchan, E A [Brookhaven National Laboratory (BNL); Macfarlane, R E [Los Alamos National Laboratory (LANL); MacInnes, M [Los Alamos National Laboratory (LANL); Matton, C M [Lawrence Livermore National Laboratory (LLNL); Mcknight, R D [Argonne National Laboratory (ANL); Mughabghab, S F [Brookhaven National Laboratory (BNL); Nobre, G P [Brookhaven National Laboratory (BNL); Palmiotti, G [Idaho National Laboratory (INL); Palumbo, A [Brookhaven National Laboratory (BNL); Pigni, Marco T [ORNL; Pronyaev, V. G. [Institute of Physics and Power Engineering (IPPE), Obninsk, Russia; Sayer, Royce O [ORNL; Sonzogni, A A [Brookhaven National Laboratory (BNL); Summers, N C [Lawrence Livermore National Laboratory (LLNL); Talou, P [Los Alamos National Laboratory (LANL); Thompson, I J [Lawrence Livermore National Laboratory (LLNL); Trkov, A. [Jozef Stefan Institute, Slovenia; Vogt, R L [Lawrence Livermore National Laboratory (LLNL); Van der Marck, S S [Nucl Res & Consultancy Grp, Petten, Netherlands; Wallner, A [University of Vienna, Austria; White, M C [Los Alamos National Laboratory (LANL); Wiarda, Dorothea [ORNL; Young, P C [Los Alamos National Laboratory (LANL)

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Interannual Variability of Northwest Australian Tropical Cyclones  

Science Conference Proceedings (OSTI)

Tropical cyclone (TC) activity over the southeast Indian Ocean has been studied far less than other TC basins, such as the North Atlantic and northwest Pacific. The authors examine the interannual TC variability of the northwest Australian (NWAUS)...

Kevin H. Goebbert; Lance M. Leslie

2010-09-01T23:59:59.000Z

302

Tropical Transition of the 2001 Australian Duck  

Science Conference Proceedings (OSTI)

In March 2001, a hybrid low pressure system, unofficially referred to as Donald (or the Duck), developed in the Tasman Sea under tropicalextratropical influence, making landfall on the southeastern Australian coast. Here, it is shown that ...

Luke Andrew Garde; Alexandre Bernardes Pezza; John Arthur Tristram Bye

2010-06-01T23:59:59.000Z

303

Coherent Synoptic Disturbances in the Australian Monsoon  

Science Conference Proceedings (OSTI)

Coherent synoptic-scale weather systems within the Australian monsoon are identified and tracked in the isentropic potential vorticity (PV) field from the ECMWF Interim Reanalysis (ERA-Interim) dataset during the Southern Hemisphere summer. The ...

Gareth J. Berry; Michael J. Reeder; Christian Jakob

2012-12-01T23:59:59.000Z

304

Australian Shale Gas Assessment Project Reza Rezaee  

E-Print Network (OSTI)

Australian Shale Gas Assessment Project Reza Rezaee Unconventional Gas Research Group, Department of Petroleum Engineering, Curtin University, Australia Shale gas is becoming an important source feet (Tcf) of technically recoverable shale gas resources. Western Australia (WA) alone

305

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 51, NO. 5, OCTOBER 2004 2427 Improved Resolution for 3-D Position Sensitive  

E-Print Network (OSTI)

by the Office of Basic Energy Sciences US Department of Energy and the NNSA ASC Program. VVB wishes to express

He, Zhong

306

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 5, OCTOBER 2006 3021 New Readout Electronics for 3-D Position Sensitive  

E-Print Network (OSTI)

for homeland security and nuclear non-proliferation applications. Mechanically cooled HPGe detectors

He, Zhong

307

Neutronic evaluation of LEU 30-20 fuel for the Texas A&M Nuclear Science Center Reactor  

E-Print Network (OSTI)

A neutronic evaluation of the Texas A&M University Nuclear Science Center Reactor (TAMU NSCR) using the General Atomic Company (GA) low enrichment uranium (LEU 30-20 fuel was performed to determine the feasibility of this type of fuel. To perform this evaluation, the WIMSD4m transport code and DIF3D diffusion code were utilized. These codes were provided by Argonne National Laboratory (ANL). WIMSD4m was used to calculate macroscopic cross-sections for the various core materials and DIF3D was used to calculate the effective multiplication factor and thermal neutron flux for various core configurations. In order to benchmark these codes and the core model used to evaluate the proposed LEU 30-20 core, the current FLIP core was first modeled. Various neutronic parameters, such as excess reactivity, shutdown margin, critical rod height and control rod worths were calculated using the core model and codes, and the results compared with actual experimental results for the FLIP core. Once the core model and codes were validated, the core model was modified using LEU 30-20 fuel and an optimum core configuration obtained which satisfied certain design criteria, including values for excess reactivity, shutdown margin and thermal neutron flux. In addition to modeling the LEU 30-20 core, a control rod model was developed to generate effective macroscopic cross-sections for the control rod materials in the core, based on previous work in this area performed at ANL. The results of this analysis indicate the feasibility of converting the TAMU NSCR to GA LEU 30-20 fuel.

Bigler, Mark Andrew

1996-01-01T23:59:59.000Z

308

Fission neutron/gamma irradiation of Bacillus thuringiensis bacteria at the Texas A&M University Nuclear Science Center Reactor  

E-Print Network (OSTI)

The objective of this research is to fully characterize the effectiveness of the Texas A&M University Nuclear Science Center Reactor (TAMU NSCR) neutrons for bacterial sterilization, and to assess the secondary gamma flux produced when neutrons collide with nuclei in biological materials. Sterilization of bacteria by exposure to gamma rays and charged particles is fairly well understood. Exposure to neutrons and gamma rays from fission as a means of sterilization has not to date been adequately characterized. The lack of data on the relationship between biological detriment resulting from thermal or fast neutron exposures and absorbed doses as applied in countermeasures to weapons of mass destruction (WMD) is the primary motivation for this investigation of neutron doses to endospores. Bacillus thuringiensis (Bt) spores were irradiated after producing and sampling them using standard microbiological procedures. Irradiation was accomplished using neutrons and gamma rays from the 1-MW TRIGA reactor at the TAMU NSCR using a reactor power of 100 kilowatts (kW). The combination of neutron and gamma-ray absorbed dose provided an effective means of sterilization of these types of spores; it yielded a 100-percent kill for the first study. Survival curves have been developed, from subsequent experiments, for these energy dependent neutron interactions with biological materials using a combination of radiation dosimetry, microbiological culture techniques, and computer modeling (Monte Carlo Neutral Particle history modeling - MCNP). Survival curves indicate a D?? value of 321.08 Gy. Additional work is needed to investigate the specific bacteria used in biological weapons in order to understand agent-specific radiation sensitivity. Once this is done, more effective and meaningful experiments can be conducted in order to tailor the neutron source strength to the robustness of the threat.

Hearnsberger, David Wayne

2001-01-01T23:59:59.000Z

309

Environmentally Assisted Cracking: Nuclear  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2014. Symposium, Environmentally Assisted Cracking: Nuclear. Sponsorship. Organizer(s)...

310

National Security Science  

NLE Websites -- All DOE Office Websites (Extended Search)

NSS cover - april NSS cover - april Read the April 2013 issue: web | interactive| pdf Skip to Content Skip to Search Skip to Utility Navigation Skip to Top Navigation Skip to Content Navigation Los Alamos National Laboratory submit About | Mission | Business | Newsroom | Phonebook Los Alamos National Laboratory links to site home page Science & Innovation Collaboration Careers, Jobs Community, Environment Science & Innovation Home » Science & Engineering Capabilities Accelerators, Electrodynamics Bioscience, Biosecurity, Health Chemical Science Earth, Space Sciences Energy Engineering High Energy Density Plasmas, Fluids Information Science, Computing, Applied Math Materials Science National Security, Weapons Science Nuclear & Particle Physics, Astrophysics, Cosmology

311

Los Alamos Lab: Science Program Office, Energy Security Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Energy & Environment (SPO-FE) SPO FE Science AEI Nuclear Fossil Energy & Environment Home Office of Science Home Alternative Energy & Infrastructure Home Civilian Nuclear...

312

Int. J. Nuclear Energy Science and Technology, Vol. 4, No. 4, 2009 287 Development of computational methods and their  

E-Print Network (OSTI)

-3 PWR', to be submitted to Nucl. Tech. Bell, G.I. and Glasstone, S. (1970) Nuclear Reactor Theory@nephy.chalmers.se Abstract: A specificity of nuclear reactors is their multiphysics and multiscale character of nuclear reactors and are presented in this paper. The use of such techniques for both time

Demazière, Christophe

313

Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

an isotope instrumental in a wide variety of uses including cancer therapy, oil exploration, and explosives detection. In fact, isotopes produced at HFIR have...

314

Nuclear test experimental science  

Science Conference Proceedings (OSTI)

This report discusses research being conducted at Lawrence Livermore Laboratory under the following topics: prompt diagnostics; experimental modeling, design, and analysis; detector development; streak-camera data systems; weapons supporting research.

Struble, G.L.; Middleton, C.; Bucciarelli, G.; Carter, J.; Cherniak, J.; Donohue, M.L.; Kirvel, R.D.; MacGregor, P.; Reid, S. (eds.)

1989-01-01T23:59:59.000Z

315

Nuclear Science Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

absorb alpha particles and most beta particles. accelerator: Device used to increase the energy of particles, which then collide with other particles. Major types are linear...

316

Nuclear Science & Engineering  

E-Print Network (OSTI)

§ SC Resolutions 1267 (1999), 1373 (2001) and 1540 (2004) on international terrorism and non-proliferation of non-governmental organizations (NGOs) and other non-State actors will also be analyzed. Knowledge of the PIL course) ? Legal consequences of the international personality: functional protection, treaty

317

Future Directions [Irradiation Performance] - Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements Awards Patents Argonne Distinguished Fellows Professional Societies About Nuclear Energy Reactors Designed by Argonne Argonne's Nuclear Science and Technology...

318

Other Current Activities [Irradiation Performance] - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements Awards Patents Argonne Distinguished Fellows Professional Societies About Nuclear Energy Reactors Designed by Argonne Argonne's Nuclear Science and Technology...

319

Office of Science and Technology & International Year End Report - 2005  

E-Print Network (OSTI)

Director, Office of Science and Technology and Internationalreprocessing. Journal of Nuclear Science and Technology, 26,2 nanoparticles. Environmental Science and Technology, 37,

Bodvarsson, G.S.

2005-01-01T23:59:59.000Z

320

An Australian Perspective On Distributed Energy Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

An Australian Perspective On Distributed Energy Resources An Australian Perspective On Distributed Energy Resources Speaker(s): Hugh Outhred Date: December 11, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare The seminar will describe and critique the Australian approach to incorporating distributed energy resources into its restructured electricity industry, which consists of the National Electricity Market (a wholesale electricity market), retail electricity markets, network regulation and environmental regulation. These arrangements continue to evolve and recent developments will be discussed. Hugh Outhred is in the School of Electrical Engineering & Telecommunications at the University of New South Wales, Sydney, Australia. He is also a member of the National Electricity Tribunal ( a quasi-judicial appeal body associated with

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Nuclear New Zealand: New Zealand's nuclear and radiation history to 1987.  

E-Print Network (OSTI)

??New Zealand has a paradoxical relationship with nuclear science. We are as proud of Ernest Rutherford, known as the father of nuclear science, as of (more)

Priestley, Rebecca Katherine

2010-01-01T23:59:59.000Z

322

NUCLEAR STRUCTURE DATABASE  

E-Print Network (OSTI)

d UNIVERSITY OF CALIFORNIA NUCLEAR STRUCTURE DATABASE R. B.IS UNLfflfTEO LBL-11089 NUCLEAR STRUCTURE DATABASE by R.B.and E. Browne June 1980 Nuclear Science Division University

Firestone, R.B.

2010-01-01T23:59:59.000Z

323

Nuclear Hydrogen Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Nuclear Research Advanced Nuclear Research Office of Nuclear Energy, Science and Technology FY 2003 Programmatic Overview Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Office of Nuclear Energy, Science and Technology Henderson/2003 Hydrogen Initiative.ppt 2 Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Program Goal * Demonstrate the economic commercial-scale production of hydrogen using nuclear energy by 2015 Need for Nuclear Hydrogen * Hydrogen offers significant promise for reduced environmental impact of energy use, specifically in the transportation sector * The use of domestic energy sources to produce hydrogen reduces U.S. dependence on foreign oil and enhances national security * Existing hydrogen production methods are either inefficient or produce

324

National Science Bowl 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting --Solar Decathlon Energy Sources -Renewables --Solar ---SunShot --Wind -Nuclear Energy Usage -Smart Grid Science & Innovation -Science & Technology --Computing...

325

Nuclear Engineering and Design 242 (2012) 1925 Contents lists available at SciVerse ScienceDirect  

E-Print Network (OSTI)

2011 Accepted 14 September 2011 a b s t r a c t Graphite is a widely used material in nuclear reactors of creep data in reactor design. In: 1st International Nuclear Graphite Specialists Meeting (INGSM), Oak.J.E., 1974. Theory of irradiation creep in reactor graphite--dislocation pinning­unpinning model. Carbon 12

Martin, Ralph R.

326

Annual Report to the Australian Government 2008  

E-Print Network (OSTI)

Contributions 112 i) Audited General Purpose Financial Reports 113 j) Details of Asset Disposal 114 k) Public volume 3 #12;1. Milestone Report 4 #12;About NICTA NICTA, National Information & CommunicationsAnnual Report to the Australian Government 2008 March 2009 1 #12;Contents 1. Milestone Report 4

Heiser, Gernot

327

Australian Government Department ofClimate Change  

E-Print Network (OSTI)

committed $20 million to the Australia-China Joint Coordination Group on Clean Coal Technology. The Australian Government also recognises the importance of renewable technologies in addressing the challenges of climate change. Renewable technologies will need to become a greater part of the world's energy mix

Hansen, James E.

328

Petroleum Hydrocarbon Vapour Intrusion Assessment: Australian Guidance  

E-Print Network (OSTI)

Copyright CRC CARE Pty Ltd, 2013 This book is copyright. Except as permitted under the Australian Copyright Act 1968 (Commonwealth) and subsequent amendments, no part of this publication may be reproduced, stored or transmitted in any form or by any means, electronic or otherwise, without the specific written permission of the copyright owner.

Jackie Wright; Greg Davis; Csiro L; Sophie Wood; Marc Salmon; Cavvanba Consulting; Peter Nadebaum; Prashant Srivastava; Crc Care; Ravi Naidu; Crc Care

2013-01-01T23:59:59.000Z

329

Solar Thermal Group Australian National University  

E-Print Network (OSTI)

of Concentrated Solar Power Parabolic Troughs (Concentration Ratio ~ 80) #12;Solar Thermal Group AustralianC 500o C Solar Concentrator (Dish or Trough) Rebecca Dunn & Dr Keith Lovegrove rebecca Concentrating Solar Power ­ The Basics 1. Parabolic mirror. 2. Receiver at focus. 3. Solar Radiation heats fluid

330

Nuclear Forensics | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

facilities, and inorganic mass spectrometry as applied to traditional nuclear forensic science applications. The application of classical forensic science tools (mass spectrometry,...

331

Light Water Reactor Sustainability (LWRS) Initiative Science-Based R&D to Extend Nuclear Plant Operation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Energy Nuclear Energy Updates Dr. Pete Lyons Acting Assistant Secretary for Nuclear Energy U.S. Department of Energy December 9, 2010 NEAC Meeting Leadership Changes Pete Miller retired Pete Lyons - Acting NE-1 Shane Johnson - Acting NE-2 Dennis Miotla - Acting COO Monica Regalbuto - Acting DAS for Fuel Cycle Technologies John Herczeg- Acting ADAS for Fuel Cycle Technologies John Kelly - DAS for Nuclear Reactor Technologies Bob Boudreau- Acting ADAS International Nuclear Energy Coop Monica Regalbuto John Kelly NE University Programs (NEUP) - Overview and FY 2011 Schedule NEUP FY 2011 Solicitations Schedule RPA/FOA Pre- Applications Proposals Due Awards Announced R&D (PS and Blue Sky) Oct. '10 Dec. '10 Feb. '11 May '11 Integrated Research Projects (IRP) Dec. '10 Late Jan '11

332

Materials for Nuclear Power: Digital Resource Center - WEBCAST ...  

Science Conference Proceedings (OSTI)

May 25, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science...

333

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science...

334

Materials for Nuclear Power: Digital Resource Center - JOM Article ...  

Science Conference Proceedings (OSTI)

Mar 15, 2009 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science...

335

Materials for Nuclear Power: Digital Resource Center - BOOK ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science...

336

Materials for Nuclear Power: Digital Resource Center - What long ...  

Science Conference Proceedings (OSTI)

Jan 4, 2008 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science...

337

Argonne Distinguished Fellows: Nuclear Engineering Division ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Societies Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology...

338

Maps, Directions and Lodging - Nuclear Engineering Division ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology...

339

Multimedia Library - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Argonne's Nuclear Science and Technology Legacy Other Multimedia Photos on Flickr Nuclear Engineering Nuclear Reactor Simulations National Security Information Systems...

340

Nuclear Resonance Fluorescence for Materials Assay  

E-Print Network (OSTI)

et al. Investigation of Nuclear Structure by Resonance1996, pp. G. Warren et al. Nuclear Resonance Fluorescenceof 235U IEEE Nuclear Science Symposium 2006, pp. 914. W.

Quiter, Brian J.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Nuclear Data Sheets for 225Fr  

E-Print Network (OSTI)

for CORAL M. BAGLIN Nuclear Science Division LawrenceCA 94720, USA Abstract: Nuclear structure data pertaining tofor (Y. A. Akovali, Nuclear Data Sheets 60 , 617 (1990),

Baglin, Coral M.

2005-01-01T23:59:59.000Z

342

Science Afternoons  

Science Conference Proceedings (OSTI)

Science Afternoon: From Invention to Marketplace. Science Afternoon: Focus on ... Understand It? Science Afternoons. To continue ...

2013-01-16T23:59:59.000Z

343

Nuclear Weapons Proliferation and the Civilian Nuclear Fuel Cycle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Sciences October 12-14, 2011, Northwestern University Evanston, Illinois Nuclear Weapons Proliferation and the Civilian Nuclear Fuel Cycle: Understanding and Reducing...

344

SCIENCE CHINA Earth Sciences  

E-Print Network (OSTI)

change little. Water diverted from Bendora Dam (the middle dam) is supplied to Canberra via a gravity examines the ecological effects of serial impoundments (three dams) on a rocky upland stream and Sons, New York] and the Australian Rivers Assessment System (AUSRIVAS) to predict pre-dam biota. First

Perissin, Daniele - Institute of Space and Earth Information Science

345

Innovations in Nuclear Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovations in Nuclear Infrastructure Innovations in Nuclear Infrastructure and Education (INIE) Innovations in Nuclear Infrastructure and Education (INIE) Presented to the Nuclear Energy Research Advisory Committee Crystal City, Virginia John Gutteridge Director, University Programs Office of Nuclear Energy, Science and Technology September 30 - October 1, 2002 Office of Nuclear Energy, Science and Technology Gutteridge/Sep-Oct_02 INIE-NERAC.ppt (2) INIE The Stimuli .... INIE The Stimuli .... 6 Declining number of operating university research/training reactors 6 Dwindling student population in nuclear engineering 6 Closing or loss of identity of university nuclear engineering programs 6 Looming shortage of nuclear engineering graduates 6 Threat of additional reactor closures -- Cornell, Michigan, MIT

346

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos...

347

The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

Science Conference Proceedings (OSTI)

'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

Allen, Todd (Director, Center for Material Science of Nuclear Fuel); CMSNF Staff

2011-05-01T23:59:59.000Z

348

Security Sciences Field Lab (SSFL) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science Nuclear Science Research Areas Research Highlights Facilities and Capabilities Educational Outreach Publications and Reports News and Awards Nuclear Science Home | Science & Discovery | Nuclear Science | Facilities and Capabilities SHARE Security Sciences Field Laboratory May 30, 2013 The Security Sciences Field Laboratory (SSFL) is designed to support testing and evaluation of a wide range of intrusion detection, assessment, surveillance, and peripheral physical security equipment including: sensors; cameras; alarm communication and display; power generation; access control; unattended stand-alone, remote communication; unmanned aerial and activated delay systems. At the heart of SSFL is a simulated border region of varied terrain such as open grassy fields, hilly wooded areas, sand

349

German South African Year of Science Theme -"Enhancing Science Partnerships for Innovation and Sustainable Development"  

E-Print Network (OSTI)

Peter von Neumann-Cosel Area: Other: Experimental nuclear physics, nuclear structure, nuclear astrophysics Title: International Workshop on Nuclear Spectroscopy: Frontiers at Magnetic Spectrometers Date German Academic: Uzoegbo Area: Urbanisation/ Mega Cities Title: Year of Science - Advances in Cement

Wagner, Stephan

350

Final Progress Report to the Department of Energy's Office of Science on the Committee on Nuclear Physics  

SciTech Connect

The Committee on Nuclear Physics (CNP), under the National Research Council's Board on Physics and Astronomy (BPA), conducted an assessment of the field as part of the BPA's survey of physics in the last decade, titled ''Physics in a New Era.'' The CNP report was published by the National Academy Press in early 1999 under the title ''Nuclear Physics: The Core of Matter, The Fuel of Stars.''

Board on Physics and Astronomy

2001-01-01T23:59:59.000Z

351

Physics | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Physics ORNL Physics More Science Home | Science & Discovery | More Science | Physics SHARE Physics Bottom view of the 25 million volt tandem electrostatic accelerator of the Holifield Heavy Ion Research Facility. Physics researchers at ORNL seek to answer fascinating questions about our Universe: What are the nuclear reactions that drive stellar explosions? How does nuclear matter organize itself? What are the properties of nuclear interactions? Why is there more matter than antimatter in the universe? Is the neutrino its own antiparticle? What are the properties of matter that existed just after the Big Bang? Our research staff address these questions by developing experimental techniques and detector systems, performing experiments at national and

352

The Australian monsoon and its mesoscale convective systems.  

E-Print Network (OSTI)

??The 1987 Australian monsoon was observed with satellites, rawinsondes, radar and aircraft. These data are presented, with theory filling the gaps, in illustration of its (more)

Mapes, Brian, 1964-

2009-01-01T23:59:59.000Z

353

Teaching the nation: politics and pedagogy in Australian history.  

E-Print Network (OSTI)

??There is considerable anxiety about teaching Australian history in schools. In part, such concern reflects the so-called "History Wars", which have been played out in (more)

Clark, Anna

2004-01-01T23:59:59.000Z

354

Environmental management accounting for an Australian cogeneration company.  

E-Print Network (OSTI)

??This research explores whether Environmental Management Accounting can be applied to assist an Australian cogeneration company in improving both its financial performance as well as (more)

Niap, D

2006-01-01T23:59:59.000Z

355

The development of the Australian wool market, 1840-1900.  

E-Print Network (OSTI)

??The growth of the pastoral industry is usually accepted as a major feature in Australian history. Socially and politically the importance of the industry is, (more)

Barnard, Alan

2013-01-01T23:59:59.000Z

356

Life sciences and environmental sciences  

Science Conference Proceedings (OSTI)

The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER`s mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

Not Available

1992-02-01T23:59:59.000Z

357

Life sciences and environmental sciences  

Science Conference Proceedings (OSTI)

The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

Not Available

1992-02-01T23:59:59.000Z

358

Civilian Nuclear Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Civilian Nuclear Programs Civilian Nuclear Programs Civilian Nuclear Programs Los Alamos is committed to using its advanced nuclear expertise and unique facilities to meet the civilian nuclear national security demands of the future. CONTACT US Program Director Bruce Robinson (505) 667-1910 Email Los Alamos partners extensively with other laboratories, universities, industry, and the international nuclear community to address real-world technical challenges The Civilian Nuclear Programs Office is the focal point for nuclear energy research and development and next-generation repository science at Los Alamos National Laboratory. The Civilian Nuclear Programs Office manages projects funded by the Department of Energy's offices of Nuclear Energy Environmental Management Nuclear Regulatory Commission

359

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

May 7, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear Power ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science, Nuclear ... This 'thermodynamic database for advanced nuclear fuels' was...

360

Materials for Nuclear Power: Digital Resource Center -- Articles and ...  

Science Conference Proceedings (OSTI)

... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science, Nuclear Engineering ... BOOK: Safety Related Issues of Spent Nuclear Fuel Storage ... A compilation of reports prepared by the Center for Nuclear Waste Regulatory...

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Site map for the E-print Network -- Energy, science, and technology...  

Office of Scientific and Technical Information (OSTI)

Technologies Environmental Sciences and Ecology Fission and Nuclear Technologies Fossil Fuels Geosciences Materials Science Mathematics Physics Plasma Physics and Fusion...

362

Accelerated Chemical Aging of Crystalline Nuclear Waste Forms  

Science Conference Proceedings (OSTI)

Symposium, Materials Science of Nuclear Waste Management ... thereof) will ultimately determine whether nuclear energy is deemed environmentally friendly.

363

Materials and Chemical Sciences Division annual report, 1987  

DOE Green Energy (OSTI)

Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

Not Available

1988-07-01T23:59:59.000Z

364

Nuclear Data Program - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Program Data Program Nuclear Data Program Overview Current Projects & Recent Activities Collaborating Organizations Publications Nuclear Data Measurements (NDM) Reports Experimental Nuclear Data Resources Contact ND Program Related Resources Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Data Program We contribute to the development of comprehensive nuclear reactions and nuclear structure databases, including nuclear data measurement, analysis, modeling and evaluation methodologies, that are implemented in basic science research and advanced nuclear technologies. Bookmark and Share Recent Events Nuclear Structure 2012 Conference Argonne National Laboratory hosted the

365

Physical Sciences 2007 Science & Technology Highlights  

SciTech Connect

The Physical Sciences Directorate applies frontier physics and technology to grand challenges in national security. Our highly integrated and multidisciplinary research program involves collaborations throughout Lawrence Livermore National Laboratory, the National Nuclear Security Administration, the Department of Energy, and with academic and industrial partners. The Directorate has a budget of approximately $150 million, and a staff of approximately 350 employees. Our scientists provide expertise in condensed matter and high-pressure physics, plasma physics, high-energy-density science, fusion energy science and technology, nuclear and particle physics, accelerator physics, radiation detection, optical science, biotechnology, and astrophysics. This document highlights the outstanding research and development activities in the Physical Sciences Directorate that made news in 2007. It also summarizes the awards and recognition received by members of the Directorate in 2007.

Hazi, A U

2008-04-07T23:59:59.000Z

366

FY 2007 LDRD Director's R&D Progress SummaryProposal Title: Developing a Science Base for Fuel Reprocessing Separations in the Global Nuclear Energy Program  

SciTech Connect

This work is aimed at developing an experimentally validated computational capability for understanding the complex processes governing the performance of solvent extraction devices used for separations in nuclear fuel reprocessing. These applications pose a grand challenge due to the combination of complicating factors in a three-dimensional, turbulent, reactive, multicomponent, multiphase/interface fluid flow system. The currently limited process simulation and scale-up capabilities provides uncertainty in the ability to select and design the separations technology for the demonstration plan of the Global Nuclear Energy Partnership (GNEP) program. We anticipate the development of science-based models for technology development and design. This project will position ORNL to address the emerging opportunity by creating an expandable process model validated experimentally. This project has three major thrusts, namely, a prototype experimental station, a continuum modeling and simulation effort, and molecular modeling and kinetics support. Excellent progress has been made in corresponding activities in this first year in: (1) defining, assembling, and operating a relevant prototype system for model validation; (2) establishing a mathematical model for fluid flow and transport; (3) deploying sub-scale molecular modeling.

de Almeida, Valmor F [ORNL; Tsouris, Costas [ORNL; Birdwell Jr, Joseph F [ORNL; D'Azevedo, Ed F [ORNL; Jubin, Robert Thomas [ORNL; DePaoli, David W [ORNL; Moyer, Bruce A [ORNL

2011-01-01T23:59:59.000Z

367

Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France  

E-Print Network (OSTI)

and Reprocessing of Spent Nuclear Fuel", Science, Vol. 293,sustainability of the nuclear fuel cycle as well as safetyand Reprocessing of Spent Nuclear Fuel", Science, Vol. 293,

Grigoriadis, Theocharis N

2009-01-01T23:59:59.000Z

368

Findiing Science with Science Page 1 Finding Science with Science  

E-Print Network (OSTI)

Findiing Science with Science Page 1 Finding Science with Science: Evaluating the Use Stojanovicd , Femke Reitsmae , Lukasz Korczynskif and Boyan Brodaricg a Centre for Geospatial Science of Earth and Ocean Sciences, Cardiff University, Cardiff, UK; e Department of Geography, University

Stock, Kristin

369

Science Pillars  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment Feature Stories Public Reading Room: Environmental Documents, Reports LANL Home Phonebook Calendar Video Science & Innovation Science Pillars Science Pillars...

370

Nuclear & Particle Physics Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

NSAC Meeting, Bethesda, Maryland: 3-5 April 2005 US Nuclear Science web site (link to meeting) Brookhaven Presentations: Director's Remarks: Praveen Chaudhari Overview: Sam Aronson...

371

Nuclear Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

energy and environmental security. Full development of a science-based approach for nuclear reactor and fuel cycle technology and systems is a "grand challenge" well suited to...

372

Science DMZ  

NLE Websites -- All DOE Office Websites (Extended Search)

ESnet Overview ESnet Staff Governance Our Network Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ CU Science DMZ Penn State & VTTI Science DMZ NOAA...

373

Nuclear Imaging instrumentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Imaging instrumentation Advances in gamma-ray detection and imaging have increased the pace of discovery in a broad cross-section of the sciences ranging from nuclear...

374

COMPUTATIONAL SCIENCE CENTER  

SciTech Connect

The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.

DAVENPORT,J.

2004-11-01T23:59:59.000Z

375

Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste  

DOE Green Energy (OSTI)

Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing ''lessons learned'' from R&D efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues. The gas generation roadmap identified pathways that have significant risk, indicating where more emphasis should be placed on contingency planning. Roadmapping further identified many opportunities for sharing of information and collaboration. Roadmapping will continue to be useful in keeping focused on the efforts necessary to mitigate the risk in the disposition pathways and to respond to the specific needs of the sites. Other areas within NM programs, including transportation and disposition of orphan and other nuclear materials, are prime candidates for additional roadmapping to assure achievement of timely and cost effective solutions for the processing, packaging, shipping, and/or final disposition of nuclear materials.

Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

2002-06-01T23:59:59.000Z

376

Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste  

SciTech Connect

Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing ''lessons learned'' from R&D efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues. The gas generation roadmap identified pathways that have significant risk, indicating where more emphasis should be placed on contingency planning. Roadmapping further identified many opportunities for sharing of information and collaboration. Roadmapping will continue to be useful in keeping focused on the efforts necessary to mitigate the risk in the disposition pathways and to respond to the specific needs of the sites. Other areas within NM programs, including transportation and disposition of orphan and other nuclear materials, are prime candidates for additional roadmapping to assure achievement of timely and cost effective solutions for the processing, packaging, shipping, and/or final disposition of nuclear materials.

Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

2002-06-01T23:59:59.000Z

377

SC e-journals, Science (General/Popular)  

Office of Scientific and Technical Information (OSTI)

Science (General/Popular) Science (General/Popular) Aestimatio: Critical Reviews in the History of Science - OAJ Air, Soil and Water Research - OAJ Analyst Astronomy and Astrophysics Review, The Australian Journal of Emerging Technologies and Society - OAJ Bioelectromagnetics Biotechnology & Bioengineering Cancer Prevention Journals Portal Cancer Prevention Research Cancer Reviews Online Catalysis Today College of the Bahamas Research Journal - OAJ Columbia Undergraduate Science Journal - OAJ Continuum Mechanics and Thermodynamics Economist, De Electricity Journal, The Endeavour Eurasia Journal of Mathematics, Science & Technology Education - OAJ EURASIP Journal on Wireless Communications and Networking - OAJ European Food Research and Technology A European Physical Journal C Fibreculture Journal - OAJ

378

Light Water Reactor Sustainability (LWRS) Initiative Science-Based R&D to Extend Nuclear Plant Operation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 New Program Proposal for Fiscal Year 2011 - Modified Open Cycle Carter "Buzz" Savage Nuclear Energy Advisory Committee Meeting April 29, 2010 Washington, DC April 29, 2010 Recycle of Used Fuel Option to recycle used fuel has been the subject of much debate and discussion. Nonproliferation issues and economics have limited recycle options. Recycle of used fuel enables increased utilization of uranium resource and potential waste management benefits. - Once through fuel cycle uses less than 1% of energy value of the uranium. Courtesy AREVA 2 April 29, 2010 Summary of Fuel Cycle Options 3 Once-Through Fuel Cycle - One pass through reactor, used fuel directly disposed in a geologic repository. Modified Open Cycle - No or limited separations steps and

379

The University and the Nuclear Predicament  

E-Print Network (OSTI)

international affairs, national security, and science policy.policy and on nuclear age education. The Center for Science and International Affairs (

Kohn, Walter; Badash, Lawrence

1988-01-01T23:59:59.000Z

380

Annual Planning Summaries: National Nuclear Security Administration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Defense Science University Programs (NNSA-DSUP) Annual Planning Summaries: National Nuclear Security Administration-Defense Science University Programs (NNSA-DSUP...

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sandia National Laboratories: National Security Missions: Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Weapons Science & Technology National labs provide the science and technology to maintain and certify the nuclear stockpile in the absence of full-scale weapons testing. The...

382

Nuclear Deterrence  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Deterrence Nuclear Deterrence Nuclear Deterrence LANL's mission is to develop and apply science and technology to ensure the safety, security, and effectiveness of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. April 12, 2012 A B-2 Spirit bomber refuels from a KC-135 Stratotanker A B-2 Spirit bomber refuels from a KC-135 Stratotanker. Contact Operator Los Alamos National Laboratory (505) 667-5061 Charlie McMillan, Director: "For the last 70 years there has not been a world war, and I have to think that our strong deterrent has something to do with that fact." Mission nuclear weapons Charlie McMillan, Director of Los Alamos National Laboratory 1:06 Director McMillan on nuclear deterrence While the role and prominence of nuclear weapons in U.S. security policy

383

Materials for Nuclear Power: Digital Resource Center - 15th Int'l ...  

Science Conference Proceedings (OSTI)

Apr 14, 2011... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science ... 15th Int'l Conference on Environmental Degradation in Nuclear Power...

384

Nuclear and Particle Physics, Astrophysics and Cosmology : T...  

NLE Websites -- All DOE Office Websites (Extended Search)

applied and basic science, nuclear many-body theory, nuclear reaction theory, fission, nuclear data evaluation, processing and validation testing for applications that include...

385

Nuclear Engineering (NE) and the Energy Engineering and Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and...

386

Putting the new in nuclear - Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and...

387

Materials for Nuclear Power: Digital Resource Center - REPORT ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007... Nuclear Power Background, Trends in Nuclear Power, The Nuclear ... Science: Application to Fusion and Generation IV Fission Reactors

388

Department of Energy Issues Requests for Applications for Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chemistry, Health Physics, Nuclear Materials Science, Radiochemistry, Applied Nuclear Physics, and Nuclear Policy at universities and colleges located in the U.S....

389

Fellows of Professional Societies in the Nuclear Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Societies Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology...

390

BOOK: Environmental Degradation of Materials in Nuclear Power  

Science Conference Proceedings (OSTI)

Mar 28, 2007... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science ... associated with spent fuel storage and radioactive waste disposal.

391

BOOK: Safety Related Issues of Spent Nuclear Fuel Storage  

Science Conference Proceedings (OSTI)

Sep 26, 2007... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science ... Fifteen papers cover aluminum-clad fuel discharged from research...

392

Chemical Engineering | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Clean Energy Nuclear Sciences Computer Science Earth and Atmospheric Sciences Materials Science and Engineering Mathematics Physics More Science Home | Science & Discovery | More Science | Engineering SHARE Engineering Engineering at ORNL is integrated with nearly all of the scientific research areas and user facilities. In particular, ORNL has core capabilities chemical engineering and systems engineering. Chemical engineering moves knowledge gained from fundamental chemical research toward applications. For example, this capability supports the development of fuel reprocessing techniques and enables radioisotope production, isotope separation, and development of isotope applications. This capacity also contributes to advances in energy efficiency, renewable

393

Science Frontiers at Petascale  

E-Print Network (OSTI)

, and physics- inclusive simulations of an entire nuclear reactor core and provide insight into pro- cesses use. physics in ways unimaginable when science had just two pillars--theory and experiment. Computing into complex challenges, including the design of future car batteries, the operation of a nuclear fusion

394

Materials Science  

Science Conference Proceedings (OSTI)

Materials Science. Summary: ... Description: Group focus in materials science (inkjet metrology, micro-macro, advanced characterizations). ...

2012-10-02T23:59:59.000Z

395

Climate and Earth Science at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear Science Science Highlights NERSC Citations HPC Requirements Reviews Home » Science at NERSC » Climate & Earth Science Climate & Earth Science NERSC users have made significant and long-lasting improvements to the scientific basis for assessing the potential consequences of climatic changes and costs of alternative response options. Efforts using higher resolution, improved physical, chemical, and biological process representations, and more precise uncertainty estimates continue to explore potential ecological, social, and economic implications of climatic change. There has has also been a significant increase in the number of computational studies involving the application of molecular dynamics in

396

Lattice Quantum Chromodynamics Project and SCience Gateway at...  

NLE Websites -- All DOE Office Websites (Extended Search)

Science at NERSC Nuclear Science Lattice Quantum Chromodynamics Lattice Quantum Chromodynamics Key Challenges: Although the QCD theory has been extensively tested at at...

397

SCIENCE CHINA Technological Sciences  

E-Print Network (OSTI)

SCIENCE CHINA Technological Sciences © Science China Press and Springer-Verlag Berlin Heidelberg distribution and its relationship with soil water and salt under mulched drip irrigation in Xinjiang of China of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China Received July 8, 2010; accepted

Ahmad, Sajjad

398

Remote Handling and Plasma Conditions to Enable Fusion Nuclear Science R&D Using a US Component Testing Facility  

Science Conference Proceedings (OSTI)

The use of a fusion component testing facility to study and establish, during the ITER era, the remaining scientific and technical knowledge needed by fusion Demo is considered and described in this paper. This use aims to lest components in an integrated fusion nuclear environment, for the first time, to discover and understand the underpinning physical properties, and to develop improved components for further testing, in a time-efficient manner. It requires a design with extensive modularization and remote handling of activated components, and flexible hot-cell laboratories. It further requires reliable plasma conditions to avoid disruptions and minimize their impact, and designs to reduce the divertor heat flux to the level of ITER design. As the plasma duration is extended through the planned ITER level (similar to 10(3) s) and beyond, physical properties with increasing time constants, progressively for similar to 10(4) s, similar to 10(5) s, and similar to 10(6) s, would become accessible for testing and R&D. The longest time constants of these are likely to be of the order of a week ( 106 S). Progressive stages of research operation are envisioned in deuterium, deuterium-tritium for the ITER duration, and deuterium-tritium with increasingly longer plasma durations. The fusion neutron fluence and operational duty factor anticipated for this "scientific exploration" phase of a component test facility are estimated to be up to 1 MW-yr/m(2) and up to 10%, respectively.

Peng, Yueng Kay Martin [ORNL; Burgess, Thomas W [ORNL; Carroll, Adam J [ORNL; Neumeyer, C. L. [Princeton Plasma Physics Laboratory (PPPL); Canik, John [ORNL; Cole, Michael J [ORNL; Dorland, W. D. [University of Maryland; Fogarty, P. J. [Oak Ridge National Laboratory (ORNL); Grisham, L. [Princeton Plasma Physics Laboratory (PPPL); Hillis, Donald Lee [ORNL; Katoh, Yutai [ORNL; Korsah, Kofi [ORNL; Kotschenreuther, M. [University of Texas, Austin; LaHaye, R. [General Atomics, San Diego; Mahajan, S. [University of Texas, Austin; Majeski, R. [Princeton Plasma Physics Laboratory (PPPL); Nelson, Brad E [ORNL; Patton, Bradley D [ORNL; Rasmussen, David A [ORNL; Sabbagh, S. A. [Columbia University; Sontag, Aaron C [ORNL; Stoller, Roger E [ORNL; Tsai, C. C. [Oak Ridge National Laboratory (ORNL); Vanlanju, P. [University of Texas, Austin; Wagner, Jill C [ORNL; Yoder, III, Graydon L [ORNL

2009-08-01T23:59:59.000Z

399

Modeling the effects of uncertainty on fear of nuclear waste: Differences among science, business and environmental group members  

SciTech Connect

This paper analyzes the relationships between the subjective assessment of riskiness of managing nuclear waste and the level of certainty regarding the assessment. Uncertainty can be operationalized in two ways. The direct approach asks a person to assess their own subjective beliefs about a potential hazard. The indirect approach assesses how readily an individual will change his or her beliefs when confronted with new information that conflicts with prior beliefs. This paper tests for the relationships between these two distinct operationalizations of uncertainty and overall assessments of the risks posed by radioactive wastes. First we analyze the relationships between stated levels of uncertainty about the effects of radiation on the level of perceived risks from radioactive wastes. Second, we assess the linkage between willingness to alter prior beliefs about the risks of radioactive wastes in response to new information provided by ``a neutral source`` (or responsiveness of beliefs) and uncertainty. Using data taken from random mail surveys of members of scientific, business, and environmental groups in Colorado and New Mexico in the summer of 1990, we test hypotheses that (a) greater uncertainty is associated with greater perceived risks, and (b) greater responsiveness of beliefs to new information is associated with greater uncertainty. The import of these hypotheses concerns the dynamics of uncertainty in controversial technical policy issues, wherein perceived risks are a primary ingredient in policy positions taken by participants in policy disputes.

Bassett, G. [Illinois Univ., Chicago, IL (United States). Dept. of Economics]|[Argonne National Lab., IL (United States); Jenkins-Smith, H. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Political Science]|[Argonne National Lab., IL (United States)

1992-10-01T23:59:59.000Z

400

Modeling the effects of uncertainty on fear of nuclear waste: Differences among science, business and environmental group members  

SciTech Connect

This paper analyzes the relationships between the subjective assessment of riskiness of managing nuclear waste and the level of certainty regarding the assessment. Uncertainty can be operationalized in two ways. The direct approach asks a person to assess their own subjective beliefs about a potential hazard. The indirect approach assesses how readily an individual will change his or her beliefs when confronted with new information that conflicts with prior beliefs. This paper tests for the relationships between these two distinct operationalizations of uncertainty and overall assessments of the risks posed by radioactive wastes. First we analyze the relationships between stated levels of uncertainty about the effects of radiation on the level of perceived risks from radioactive wastes. Second, we assess the linkage between willingness to alter prior beliefs about the risks of radioactive wastes in response to new information provided by a neutral source'' (or responsiveness of beliefs) and uncertainty. Using data taken from random mail surveys of members of scientific, business, and environmental groups in Colorado and New Mexico in the summer of 1990, we test hypotheses that (a) greater uncertainty is associated with greater perceived risks, and (b) greater responsiveness of beliefs to new information is associated with greater uncertainty. The import of these hypotheses concerns the dynamics of uncertainty in controversial technical policy issues, wherein perceived risks are a primary ingredient in policy positions taken by participants in policy disputes.

Bassett, G. (Illinois Univ., Chicago, IL (United States). Dept. of Economics Argonne National Lab., IL (United States)); Jenkins-Smith, H. (New Mexico Univ., Albuquerque, NM (United States). Dept. of Political Science Argonne National Lab., IL (United States))

1992-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Manhattan Project: Science  

Office of Scientific and Technical Information (OSTI)

Science Science In the Laboratory Particle Accelerators and Other Technologies The Atom and Atomic Structure Nuclear Physics Bomb Design and Components Radioactivity Science and technology of the Manhattan Project Science PLEASE NOTE: The Science pages are not yet available. Links to the pages listed below and to the left will be activated as content is developed. Select topics relating to the science and technology of the Manhattan Project have been grouped into the categories listed to the left. A quick overview of scientific topics useful for understanding the Manhattan Project can be obtained by reading the summary pages for each of the categories, located in the left navigation bar. Each summary page also has a listing of all the subtopics included within that category. For a complete menu of all science pages, see the comprehensive list of topics below.

402

Argonne Historical News Releases about Nuclear Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Releases Releases About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

403

An evaluation of the neutron radiography facility at the Nuclear Science Center for dynamic imaging of two-phase hydrogenous fluids  

E-Print Network (OSTI)

Though both film and video radiographic image techniques are available in neutron radiography, radiographic cameras are commonly used to capture the dynamic flow patterns in a rapid sequence of images. These images may be useful to verify two-phase flow models in small diameter flow channels. An initial series of real-time neutron radiography experiments were performed at the Texas A&M University System, Texas Engineering Experiment Station, Nuclear Science Center Reactor (NSCR) to determined the image resolution of two-phase water and air flow regimes through small diameter metal flow channels. After evaluating these initial images, research was conducted to determine cost effective enhancements that would increase the dimensional accuracy and contrast of these flow images. Modifications were completed to the beam collimator and the radiography camera video processing board was realigned to provide a stronger vidio signal with less noise. Several hydrogenous-media reference standards were designed and constructed to evaluate the effectiveness of the modifications. The beamport collimator was redesigned and the radiography calibration methodology was changed. The post-modification images demonstrate that a smaller, more focused neutron beam and a more sensitive video camera provide clearer images with excellent dimensional characteristics. Specific research to quantify both the resolution and sensitivity limits is proposed and a change in dynamic target imaging methodology is proposed.

Carlisle, Bruce Scott

1994-01-01T23:59:59.000Z

404

Nuclear Energy Research and Development Roadmap | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Roadmap Nuclear Energy Research and Development Roadmap NuclearEnergyRoadmapFinal.pdf More Documents & Publications Before the House Science and...

405

Office of Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Energy Middle School STEM Curriculum The Harnessed Atom curriculum offers essential principles and fundamental concepts on energy and nuclear science. Read more...

406

WEB RESOURCE: TMS Nuclear Materials Committee  

Science Conference Proceedings (OSTI)

Feb 19, 2007 ... The mission of the TMS Nuclear Materials Committee encompasses the ... of nuclear energy technology and related areas of materials science...

407

National Nuclear Data Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Internal Radiation Dose Evaluated Nuclear (reaction) Data File Experimental nuclear reaction data Sigma Retrieval & Plotting Nuclear structure & decay Data Nuclear Science References Experimental Unevaluated Nuclear Data List Evaluated Nuclear Structure Data File NNDC databases Ground and isomeric states properties Nuclear structure & decay data journal Nuclear reaction model code Tools and Publications US Nuclear Data Program Cross Section Evaluation Working Group Nuclear data networks Basic properties of atomic nuclei Parameters & thermal values Basic properties of atomic nuclei Internal Radiation Dose Evaluated Nuclear (reaction) Data File Experimental nuclear reaction data Sigma Retrieval & Plotting Nuclear structure & decay Data Nuclear Science References Experimental Unevaluated Nuclear Data List Evaluated Nuclear Structure Data File NNDC databases Ground and isomeric states properties Nuclear structure & decay data journal Nuclear reaction model code Tools and Publications US Nuclear Data Program Cross Section Evaluation Working Group Nuclear data networks Basic properties of atomic nuclei Parameters & thermal values Basic properties of atomic nuclei Homepage BNL Home Site Index - Go USDNP and CSEWG November 18-22! USNDP CSEWG Agenda Thanks for attending! EXFOR 20,000 Milestone EXFOR Milestone 20,000 experimental works are now in the EXFOR database!

408

Strengthening Today's Science Talent to Become Tomorrow's Science Leaders |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Today's Science Talent to Become Tomorrow's Science Today's Science Talent to Become Tomorrow's Science Leaders Strengthening Today's Science Talent to Become Tomorrow's Science Leaders December 15, 2010 - 11:56am Addthis Director Brinkman Director Brinkman Director of the Office of Science A hidden strength of science is its diversity. That strength was visible yesterday as the Energy Department celebrated its 13 winners of the Presidential Early Career Award for Scientists and Engineers (PECASE). Secretary Chu, Principal Deputy Administrator for the National Nuclear Security Administration Neile L. Miller and Undersecretary for Science Steve Koonin joined me in honoring these awardees, outstanding in science and service. Three winners came from Oak Ridge National Laboratory. Sergei V. Kalinin won for applying his insights into scanning probe microscopy principles to

409

Strengthening Today's Science Talent to Become Tomorrow's Science Leaders |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strengthening Today's Science Talent to Become Tomorrow's Science Strengthening Today's Science Talent to Become Tomorrow's Science Leaders Strengthening Today's Science Talent to Become Tomorrow's Science Leaders December 15, 2010 - 11:56am Addthis Director Brinkman Director Brinkman Director of the Office of Science A hidden strength of science is its diversity. That strength was visible yesterday as the Energy Department celebrated its 13 winners of the Presidential Early Career Award for Scientists and Engineers (PECASE). Secretary Chu, Principal Deputy Administrator for the National Nuclear Security Administration Neile L. Miller and Undersecretary for Science Steve Koonin joined me in honoring these awardees, outstanding in science and service. Three winners came from Oak Ridge National Laboratory. Sergei V. Kalinin

410

Conference on Advances In Materials Science - 2009, Prague, Czech...  

National Nuclear Security Administration (NNSA)

In Materials Science - 2009, Prague, Czech Republic | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

411

Nuclear Energy Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 15, 2002 April 15, 2002 NERAC Spring 2002 Meeting Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (2) 2002 Will Be A Transition Year 2002 Will Be A Transition Year 6 Nuclear Power 2010 6 Major Program Developments 6 FY 2003 Budget Request Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (3) Nuclear Power 2010 Nuclear Power 2010 Nuclear Power 2010 is a new R&D initiative announced by Secretary Abraham on February 14, 2002. This initiative is designed to clear the way for the construction of new nuclear power plants by 2010. Office of Nuclear Energy, Science and Technology Magwood/April15_02 NERAC.ppt (4) Can We Build New U.S. Reactors By 2010? Yes! Can We Build New U.S. Reactors By 2010? Yes! Can Be Deployed by 2010

412

The Australian Bureau of Meteorology 1280-MHz Wind Profiler  

Science Conference Proceedings (OSTI)

The Australian Bureau of Meteorology has constructed a new 1280-MHz radar wind profiler. Key features include a state-of-the-art digital transceiver system and modern peak detection algorithms for obtaining high quality wind estimates, even in ...

P. T. May; F. Cummings; J. Koutsovasilis; R. Jones; D. Shaw

2002-06-01T23:59:59.000Z

413

Seasonal Relationships between Australian Rainfall and the Southern Oscillation  

Science Conference Proceedings (OSTI)

Correlations between indices of the Southern Oscillation (SO) and areal average rainfall for 107 Australian rainfall districts for the period December 1932 to November 1974 have been calculated. Simultaneous correlations between the SO and ...

J. L. McBride; N. Nicholls

1983-10-01T23:59:59.000Z

414

Symmetry and Asymmetry of the Asian and Australian Summer Monsoons  

Science Conference Proceedings (OSTI)

The rainfalls associated with the Asian summer monsoon have significant correlation with succeeding Australian summer monsoon rainfalls. This is partly due to the typical life cycle of the El NioSouthern Oscillation (ENSO) phase locked with the ...

Chih-wen Hung; Xiaodong Liu; Michio Yanai

2004-06-01T23:59:59.000Z

415

A Numerical Study of a Southeast Australian Coastal Ridging Event  

Science Conference Proceedings (OSTI)

A numerical study of the 911 November 1982 southeast Australian coastal ridging event is presented. The mesoscale coastal features of this event have been previously described as a coastally trapped disturbance (CTD). However, the analysis ...

K. J. Tory; C. J. C. Reason; P. L. Jackson

2001-03-01T23:59:59.000Z

416

Near-Inertial Motion on the South Australian Shelf  

Science Conference Proceedings (OSTI)

Inertial oscillations in current and temperature records collected at two moorings on the South Australian continental shelf during February to May 1983 have been examined. A strong response to the eastward passage of cold fronts was observed at ...

Richard B. Schahinger

1988-03-01T23:59:59.000Z

417

Performance Characteristics of Integrating Nephelometers in the Australian Outback  

Science Conference Proceedings (OSTI)

Radiance Research M903 nephelometers have been operated at remote Australian Outback sites since April 1998. This paper describes the calibration procedures applied to these instruments and reports on the noise performance and other operational ...

R. M. Mitchell; S. K. Campbell; Y. Qin; J. L. Gras

2009-05-01T23:59:59.000Z

418

Diurnal Variations during the Australian Monsoon Experiment (AMEX) Phase II  

Science Conference Proceedings (OSTI)

The diurnal variations in tropical cloudiness and tropospheric winds during the Australian Monsoon Experiment (AMEX) Phase II are documented and compared to those observed elsewhere. A diurnal variation in tropical cloudiness was found to be a ...

T. D. Keenan; J. McBride; G. Holland; N. Davidson; B. Gunn

1989-11-01T23:59:59.000Z

419

Demand-side participation in the Australian National Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand-side participation in the Australian National Electricity Market Speaker(s): Hugh Outhred Date: March 4, 2005 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact:...

420

Aerosol Measurement in the Australian Outback: Intercomparison of Sun Photometers  

Science Conference Proceedings (OSTI)

The low background aerosol loadings prevailing over much of the Australian continent necessitate careful attention to the calibration of sun photometers. The validity of such calibrations can only be assessed objectively by intercomparison of ...

R. M. Mitchell; B. W. Forgan

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A Bayesian Forecast Model of Australian Region Tropical Cyclone Formation  

Science Conference Proceedings (OSTI)

A new and potentially skillful seasonal forecast model of tropical cyclone formation [tropical cyclogenesis (TCG)] is developed for the Australian region. The model is based on Poisson regression using the Bayesian approach. Predictor combinations ...

Angelika Werner; Neil J. Holbrook

2011-12-01T23:59:59.000Z

422

Science Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Highlights Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by...

423

131Cognitive Science COGNITIVE SCIENCE  

E-Print Network (OSTI)

131Cognitive Science COGNITIVE SCIENCE PROFESSOR ELMES* MAJOR A major in cognitive science leading courses: Cognitive Science 110, 395, 403, 473; Computer Science 111, 211; Philosophy 106, 313; Psychology Science: Com- puter Science 295 (LISP, PROLOG or C), 313, 315; Psychology 207 b. Philosophical Foundations

Marsh, David

424

National Security, Weapons Science  

NLE Websites -- All DOE Office Websites (Extended Search)

National Security, Weapons Science National Security, Weapons Science /science-innovation/_assets/images/icon-science.jpg National Security, Weapons Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) The Dual-Axis Radiographic Hydrodynamic Test Facility at LANL is part of the DOE's stockpile stewardship program. It uses two large X-ray machines to record three-dimensional interior images of materials. In most experiments, materials (including plutonium) undergo hydrodynamic shock to simulate the implosion process in nuclear bombs and/or the effects of severe hydrodynamic stress. The tests are described as "full-scale mockups

425

West Virginia University Robert C. Byrd Health Sciences  

E-Print Network (OSTI)

) drill collar nmi [science and boating] nautical mile NRC [U.S. Govt.] Nuclear Regulatory Commission NRM

Mohaghegh, Shahab

426

Funding Opportunities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search Reviews NP Early Career Opportunities & Awardees Nuclear Science Advisory Committee...

427

SC e-journals, Nuclear  

Office of Scientific and Technical Information (OSTI)

Nuclear Nuclear Annals of Nuclear Energy Annual Review of Nuclear and Particle Science Atomic Data & Nuclear Data Tables Atomic Energy BMC Medical Physics - OAJ Cancer Prevention Journals Portal Cancer Prevention Research Cancer Reviews Online Dose Response Energy & Environmental Science Energy Policy EURASIP Journal on Advances in Signal Processing - OAJ EURASIP Journal on Bioinformatics and Systems Biology - OAJ EURASIP Journal on Embedded Systems (2006 forward) - OAJ Fuel Fusion Engineering and Design Fusion Nuclear Society Health Physics IETE Journal of Research - OAJ International Journal of Cancer International Journal of Low Radiation International Journal of Microwave Science and Technology - OAJ International Journal of Radiation Biology Journal of Cancer Eqidemiology - OAJ

428

Modeling Nuclear Fuels with a Combined Potts-Phase Field Model  

Science Conference Proceedings (OSTI)

Symposium, Materials Science Challenges for Nuclear Applications. Presentation Title, Modeling Nuclear Fuels with a Combined Potts-Phase Field Model.

429

FUSION NUCLEAR SCIENCE PROGRAM & SUPPORTING FUSION NUCLEAR SCIENCE FACILITY (FNSF)  

E-Print Network (OSTI)

­ FNSF STEERING GROUP WHITE PAPER 2010­ The critical R&D challenges that the FES program must address be that choice with the most well established physics basis. IN EITHER CASE, ADDING TO THE BASIC FNSP MISSION

430

Annual Report, 2008 THE COLLEGE OF SCIENCE  

E-Print Network (OSTI)

Nuclear Fuels · Carbon Sequestra.on Climate Measurement & Modeling If you Measurement and Detec.on Science And its special facili.es for: · Nanomaterials

431

NETL: 2009 SW PA Science Bowl Information  

NLE Websites -- All DOE Office Websites (Extended Search)

second in the National Competition and traveled to France to visit Europe's largest nuclear power plant. 2009 Southwestern Pennsylvania Science Bowl Information Center DATE:...

432

Coordinator's Report: ICRM Life Science Working Group  

Science Conference Proceedings (OSTI)

... radionuclide metrology issues as they relate to the life sciences. ... in nuclear medicine, measurement of decay properties (half-lives, decay energies ...

433

Margaret Butler Fellowship in Computational Science | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

offers computational scientists an opportunity to work at the forefront of high-performance computing. A pioneering researcher in both computer science and nuclear energy, Butler...

434

Los Alamos Lab: Environmental Physical Sciences, ADEPS  

NLE Websites -- All DOE Office Websites (Extended Search)

national security problems, such as nuclear weapons stewardship, homeland security, intelligence and information analysis, and alternative energy. The success of our science...

435

Materials for Nuclear Power: Digital Resource Center -- Nuclear ...  

Science Conference Proceedings (OSTI)

WEB RESOURCE: Nuclear Science and Technology Lecture notes and presentations, 0, 779, Lynne Robinson, 2/19/2007 8:55 AM by Lynne Robinson.

436

Faculty of Science General Science  

E-Print Network (OSTI)

Faculty of Science General Science The General Science program gives you maximum flexibility to explore the sciences, plus the core requirements you need for on-going, specialized studies. www.uwindsor.ca/science Rigorous, Enriching Programs The BSc General Science program is a great way to explore your many interests

437

Wine Science Wine Sciencee Science  

E-Print Network (OSTI)

Wine Science Wine Sciencee Science Thomas Henick-Kling Professor of Enology Director of Viticulture & Enology Program #12;Wine Science Wine Science Growth of Washington Wine Industry #12;Wine Science Wine Science Wine Grapes utilized 2007 2008 2009 2010 WA 127,000 145,000 156,000 160,000 NY 24,000 26,000 30

438

Facilities & Capabilities | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiated Material Examination and Testing (IMET) Facility was designed and built as a hot cell facility. It is a two-story block and brick structure with a two-story high bay...

439

Nobel Prizes in Nuclear Science  

NLE Websites -- All DOE Office Websites (Extended Search)

by accelerated particles 1951 Felix Bloch and Edward Purcell measured magnetic fields in atomic nuclei (NMR) 1952 Walther Bothe Analysis of cosmic radiation using the coincidence...

440

Fusion Nuclear Science Facility (FNSF)  

E-Print Network (OSTI)

on Mechanical Properties of SiC/SiCon Mechanical Properties of SiC/SiC 1: 500C, HFIR 2: 400C, HFIR 3: 200-500C, HFIR 4: 300-500C, JMTR 5: 430-500C, EBR-II ·YHi-Nicalon Type-S/PyC/FCVI-SiC ·¡Hi-Nicalon/PyC/FCVI-SiC ·£Nicalon/PyC/FCVI-SiC ·zTyranno-SA/PyC/FCVI-SiC ·>Monolithic CVD-SiC 6: 300C, HFIR 7: 800C, HFIR 8: 800C

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The ABC's of Nuclear Science  

NLE Websites -- All DOE Office Websites (Extended Search)

know if you have ever eaten radioactive food? Find out what materials are needed to shield us from alpha, beta, gamma, radiation. Discover what have we gained by its study....

442

com  

Science Conference Proceedings (OSTI)

... General Manager for Nuclear Operations at the Australian Nuclear Science & ... the 20MW open pool light water (OPAL) research reactor since going ...

443

The Energy Source for the Coastal-Trapped Waves in the Australian Coastal Experiment Region  

Science Conference Proceedings (OSTI)

The sea level on the southern Australian coast is examined for the source of the coastal-trapped wave energy observed during the Australian Coastal Experiment. Sea level, adjusted for atmospheric pressure, and atmospheric pressure are observed to ...

John A. Church; Howard J. Freeland

1987-03-01T23:59:59.000Z

444

SCIENCE HIGHLIGHTS 2008 ANNUAL REPORT ORNL NEUTRON SCIENCES neutrons...  

NLE Websites -- All DOE Office Websites (Extended Search)

for the treatment of cancers. Wei-Ren Chen, who received his doctorate in nuclear science and engineering at MIT in 2004, is a Clifford G. Shull fellow at ORNL. Chen studies...

445

Science Conference Proceedings : About  

Office of Scientific and Technical Information (OSTI)

Science Conference Proceedings - Home Science Conference Proceedings - Home Science Conference Proceedings - About Science Conference Proceedings - Advanced Search Science...

446

COMPUTATIONAL SCIENCE CENTER  

SciTech Connect

The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

DAVENPORT, J.

2005-11-01T23:59:59.000Z

447

Late Jurassic rifting along the Australian North West Shelf: margin geometry and spreading ridge  

E-Print Network (OSTI)

and extends over 2400 km from the Arafura Sea between northern Australian and Irian Jaya in the east, up

Müller, Dietmar

448

User Facility Science Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

user-facilities/highlights/ The Office of Science user-facilities/highlights/ The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of national importance. It oversees - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en {611EDD39-818D-4CBA-BFD7-9568495C1566}http://science.energy.gov/bes/highlights/2013/bes-2013-09-a/ The Role of Stripes in Superconducting Behavior Using neutron diffraction, movement of charged atoms arranged as "stripes"

449

Science & Discovery | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Clean Energy National Security Neutron Science Nuclear Science Supercomputing and Computation More Science Hubs, Centers and Institutes US ITER Mars 'Curiosity' has ORNL tech New family of tiny crystals glows bright in LED lights Home | Science & Discovery SHARE Science & Discovery As the US Department of Energy's largest multi-program laboratory, ORNL is engaged in a wide range of activities that support the department's mission of ensuring America's security and prosperity by addressing its energy and environmental challenges. To accomplish this, the laboratory applies a remarkable portfolio of scientific expertise and world-class scientific facilities and equipment to develop scientific and technological solutions. ORNL focuses these resources on delivering scientific discoveries and new

450

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity  

E-Print Network (OSTI)

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity Chris in this paper. Energy consumption data was sourced from the Bureau of Resources and Energy Economics' Australian Energy Statistics publication. Price and income data were sourced from the Australian Bureau

451

Benchmarking Building Performance & the Australian Building Greenhouse  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking Building Performance & the Australian Building Greenhouse Benchmarking Building Performance & the Australian Building Greenhouse Rating Scheme Speaker(s): Paul Bannister Date: August 21, 2006 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Stephen Selkowitz (Two topics): Benchmarking Building Performance: In a variety of voluntary and regulatory initiatives around the globe, including the introduction of the European Building Performance Directive, the question of how to assess the performance of commercial buildings has become a critical issue. There are presently a number of initiatives for the assessment of actual building performance internationally, including in particular US Energy Star Buildings rating tools and the Australian Building Greenhouse Rating scheme. These schemes seek to assess building energy performance on the

452

Materials for Nuclear Power: Digital Resource Center - REPORT ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... United States: Department of Energy Office of Nuclear Energy, Science, and Technology (NE) and the Office of Basic Energy Sciences (BES),...

453

Materials for Nuclear Power: Digital Resource Center Text Topic  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... United States: Department of Energy Office of Nuclear Energy, Science, and Technology (NE) and the Office of Basic Energy Sciences (BES),...

454

Remarks by Administrator Thomas D'Agostino, National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Science and Russian Academy of Science Symposium on Reactor Conversion | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation...

455

Information Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Science Information Science1354608000000Information ScienceSome of these resources are LANL-only and will require Remote Access.NoQuestions? 667-5809library@lanl.gov...

456

Climatic, biological, and strategic effects of nuclear war. Hearing before the Subcommittee on Natural Resources, Agriculture Research and Environment of the Committee on Science and Technology, House of Representatives, Ninety-Eighth Congress, Second Session, September 12, 1984  

Science Conference Proceedings (OSTI)

A panel of experts, including Carl Sagan, Jay Gould, and Edward Teller, testified along with climate and atmospheric science experts from the Soviet Union on the long-term effects of a nuclear war. The scientists warned that such an event could repeat the biological and climatic disruption that ended the age of dinosaurs 65 million years ago. The purpose of the hearing was to inform committee members about the nature and outcome of a nuclear winter. The scientists also described international research programs designed to ascertain these long-term effects. They pointed out that, while the effects of a single explosion are well known, little is known of overlapping effects from multiple explosions. Two appendices with additional material submitted for the record and additional questions and answers follows the testimony.

Not Available

1985-01-01T23:59:59.000Z

457

Chemical Science  

NLE Websites -- All DOE Office Websites (Extended Search)

reactor concept for deep space exploration Research directions Weapons chemistry and nuclear performance Radiological, nuclear, and chemical signatures Energy production,...

458

Science | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Science Neutron Science Neutron Scattering Science Neutrons are one of the fundamental particles that make up matter and have properties that make them ideal for certain types of research. In the universe, neutrons are abundant, making up more than half of all visible matter. Neutron scattering provides information about the positions, motions, and magnetic properties of solids. When a beam of neutrons is aimed at a sample, many neutrons will pass through the material. But some will interact directly with atomic nuclei and "bounce" away at an angle, like colliding balls in a game of pool. This behavior is called neutron diffraction, or neutron scattering. Using detectors, scientists can count scattered neutrons, measure their energies and the angles at which they scatter, and map their final position

459

Is sustainability science really a science?  

NLE Websites -- All DOE Office Websites (Extended Search)

Is sustainability science really a science? Is sustainability science really a science? The team's work shows that although sustainability science has been growing explosively...

460

Climate Control Using Nuclear Energy  

E-Print Network (OSTI)

We examine implications of anthropogenic low pressure regions, - created by injecting heat from nuclear reactors, into atmosphere. We suggest the possibility that such artificially generated low pressure regions, near hurricanes could disrupt their growth, path, and intensity. This method can also create controlled tropical stroms, which lead to substantial rainfall in arid areas, such as - (1)Sahara desert, (2) Australian interior desert, and (3) Indian Thar desert. A simple vortex suction model is developed to study, effect on atmospheric dynamics, by such a nuclear heat injection system.

Moninder Singh Modgil

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Science Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and...

462

Science & Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Faces of Science Science & Engineering Capabilities...

463

Science Organizations  

NLE Websites -- All DOE Office Websites (Extended Search)

Organizations Science Organizations National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place...

464

Science Requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Requirements About ESnet Overview ESnet Staff Governance Our Network Case Studies ESnet Strategic Plan ESnet Organizational Chart ESnet History Science Requirements Network...

465

Computer Science  

NLE Websites -- All DOE Office Websites (Extended Search)

in Physics, Mathematics, Computer Science, Quantitative Biology, Quantitative Finance and Statistics Cite Seer Department of Energy provided open access science research citations...

466

Science Education ProgramScience Education Program TEACH SCIENCE  

E-Print Network (OSTI)

Science Education ProgramScience Education Program TEACH SCIENCE IMPACT THE FUTURE #12;Science Education ProgramScience Education Program Why Teach Science? #12;Science Education Program SCIENCE, a middle school science teacher. He teaches several grades and covers many science topics, covering

de Lijser, Peter

467

Nuclear Energy Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 15, 2002 NERAC Spring 2002 Meeting Office of Nuclear Energy, Science and Technology MagwoodApril1502 NERAC.ppt (2) 2002 Will Be A Transition Year 2002 Will Be A Transition...

468

National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Security Administration FY 2011 - FY 2015 Budget Outlook Managing the NNSA 4.0% Science, Technology & Engineering 14.5% Stockpile Support 17.9% Preventing the Spread of...

469

Special Topics: Nuclear Materials  

Science Conference Proceedings (OSTI)

COURSE NOTES: Nuclear Science and Technology Part I/II (Chm466/566/ Phy446/546) W. Udo Schrder, University of Rochester. PPT, PDF, and audio lectures...

470

Science, technology and engineering at LANL  

SciTech Connect

The Laboratory provides science solution to the mission areas of nuclear deterrence, global security, and energy security. The capabilities support the Laboratory's vision as the premier national security science laboratory. The strength of LANL's science is at the core of the Laboratory. The Laboratory addresses important science questions for stockpile stewardship, emerging threats, and energy. The underpinning science vitality to support mission areas is supported through the Post Doc program, the fundamental science program in LDRD, collaborations fostered through the Institutes, and the LANL user facilities. LANL fosters the strategy of Science that Matters through investments, people, and facilities.

Mercer-smith, Janet A [Los Alamos National Laboratory; Wallace, Terry C [Los Alamos National Laboratory

2011-01-06T23:59:59.000Z

471

Secretary Chu Announces Nuclear Energy University Program Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Secretary Chu Announces Nuclear Energy University Program Awards Nearly 9 Million to Benefit Nuclear Science and Engineering Students and University Research Infrastructure...

472

Neutron Detectors for Detection of Nuclear Materials at LANL...  

Office of Science (SC) Website

Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building 1000 Independence...

473

Materials for Nuclear Power: Digital Resource Center Text Topic  

Science Conference Proceedings (OSTI)

Feb 19, 2007 ... Emphasis is placed on their contributions to nuclear science and technology, within the context of ... Department of Nuclear Engineering.

474

Special Topics: Nuclear Materials: On-line tutorials  

Science Conference Proceedings (OSTI)

Jun 28, 2007 ... TUTORIALS: Nuclear Chemistry and the Origins of the Elements Chemistry - The ... Nuclear Science Division, Lawrence Berkeley National Lab.

475

DOE Hydrogen and Fuel Cells Program: Office of Nuclear Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy Fossil Energy Nuclear Energy Science U.S. Department of Energy Search help Home > DOE Participants > Office of Nuclear Energy Printable...

476

Materials for Nuclear Power: Digital Resource Center - PDF ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... SOURCE: United States. Department of Energy, Office of Nuclear Energy, Science and Technology. Answers to Questions: Nuclear Energy,...

477

Report, Long-Term Nuclear Technology Research and Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

safeguards and nonproliferation, environmental management and waste cleanup, and Navy nuclear propulsion systems development resides outside the Office of Nuclear Energy, Science...

478

Neutron Detectors for Detection of Nuclear Materials at LANL...  

Office of Science (SC) Website

Neutron Detectors for Detection of Nuclear Materials at LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff...

479

Australian Agency for International Development (AusAID) | Open Energy  

Open Energy Info (EERE)

Australian Agency for International Development (AusAID) Australian Agency for International Development (AusAID) Jump to: navigation, search Logo: Australian Agency for International Development (AusAID) Name Australian Agency for International Development (AusAID) Address 255 London Circuit Canberra ACT 2601 Australia Place Canberra, Australia Website http://www.ausaid.gov.au/Pages Coordinates -35.28431°, 149.130947° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-35.28431,"lon":149.130947,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

480

A Qualitative Assessment of the Australian Tropical Region Analyses  

Science Conference Proceedings (OSTI)

The Bureau of Meteorology, Australia, routinely analyzes the tropospheric winds over the Australian Tropical Region (40S40N, 70180E). These wind data are assimilated without the use of a forecast model. While being free of any model bias, ...

Harry H. Hendon

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "australian nuclear science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

GDP Jobs Direct Structure of Australian economy, employment and  

E-Print Network (OSTI)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% GDP Jobs Direct emissions Inclusive emissions Structure Biomass Solar PV 3020 Abatement below businss as usual Mt CO2e Industry Buildings Forestry Power Transport Employment intensity Jobs / $m valu-add 13 2 10 4 14 10 11 Gross value added ABS Australian Nat'l Accounts

Pezzey, Jack

482

The Australian Summer Monsoon Circulation during AMEX Phase II  

Science Conference Proceedings (OSTI)

The major field phase of the Australian Monsoon Experiment (AMEX Phase II) was conducted over northern Australia from 1 0 January to 1 5 February 1987. It was based on the collection of high-density tropical upper air soundings and radar data at ...

Bruce W. Gunn; John L. McBride; Greg J. Holland; Tom D. Keenan; Noel E. Davidson; Harry H. Hendon

1989-11-01T23:59:59.000Z

483

Before the House Science and Technology Subcommittee on Energy and Environment  

Energy.gov (U.S. Department of Energy (DOE))

Subject: DOE's Office of Science Research Applications By: Dr. Jehanne Gillo, Director Office of Facilities and Project Management, Office of Nuclear Physics, Office of Science

484

Directions to FES | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Computing Research Basic Energy Sciences Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Workforce Development for Teachers...

485

Science based integrated approach to advanced nuclear fuel development - integrated multi-scale multi-physics hierarchical modeling and simulation framework Part III: cladding  

Science Conference Proceedings (OSTI)

Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.

Tome, Carlos N [Los Alamos National Laboratory; Caro, J A [Los Alamos National Laboratory; Lebensohn, R A [Los Alamos National Laboratory; Unal, Cetin [Los Alamos National Laboratory; Arsenlis, A [LLNL; Marian, J [LLNL; Pasamehmetoglu, K [INL

2010-01-01T23:59:59.000Z

486

Building Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Science The "Enclosure" Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com * Control heat flow * Control airflow * Control water vapor flow * Control rain * Control ground water * Control light and solar radiation * Control noise and vibrations * Control contaminants, environmental hazards and odors * Control insects, rodents and vermin * Control fire * Provide strength and rigidity * Be durable * Be aesthetically pleasing * Be economical Building Science Corporation Joseph Lstiburek 2 Water Control Layer Air Control Layer Vapor Control Layer Thermal Control Layer Building Science Corporation Joseph Lstiburek 3 Building Science Corporation Joseph Lstiburek 4 Building Science Corporation Joseph Lstiburek 5 Building Science Corporation

487

Faculty of Science Computer Science  

E-Print Network (OSTI)

Faculty of Science Computer Science Computer software engineering, network and system analysis.uwindsor.ca/computerscience The University of Windsor offers a variety of computer science programs to prepare students for a career in the technology industry or in research and academia. A computer science degree provides an in-depth understanding

488

MIT Nuclear Space Research Andrew C. Kadak  

E-Print Network (OSTI)

SELENE MIT Nuclear Space Research Andrew C. Kadak Professor of the Practice Nuclear Science with Nuclear Energy ­ Selene - Sodium-Cooled Epithermal Long-term Exploration Nuclear Engine (MS thesis) ­ The Martian Surface Reactor: An Advanced Nuclear Power Station for Manned Extraterrestrial Exploration

489

Materials Solutions for the Nuclear Renaissance - Programmaster.org  

Science Conference Proceedings (OSTI)

Nuclear reactors present a complex, challenging environment where innovations in materials science can provide for improved performance, efficiency and...

490

Advanced Nuclear Fuel Development for the Future in the United ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2010. Symposium, Materials Solutions for the Nuclear Renaissance. Presentation Title, Advanced...

491

Interface Affected Cascading In Nuclear Materials and Its Correlation ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2012. Symposium, Materials Development for Nuclear Applications and Extreme Environments.

492

Science Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne Argonne Science Project Ideas! Our Science Project section provides you with sample classroom projects and experiments, online aids for learning about science, as well as ideas for Science Fair Projects. Please select any project below to continue. Also, if you have an idea for a great project or experiment that we could share, please click our Ideas page. We would love to hear from you! Science Fair Ideas Science Fair Ideas! The best ideas for science projects are learning about and investigating something in science that interests you. NEWTON has a list of Science Fair linkd that can help you find the right topic. Toothpick Bridge Web Sites Toothpick Bridge Sites! Building a toothpick bridge is a great class project for physics and engineering students. Here are some sites that we recommend to get you started!

493

Awake Animal Imaging at BNL | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building 1000 Independence...

494

John A. Wheeler, 1968 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

to understanding nuclear fission, developing the technology of plutonium production reactors, and his continuing broad contributions to nuclear science. Back to 1960's...

495

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Materials Science Materials Science1354608000000Materials ScienceSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Materials Science Some of these resources are LANL-only and will require Remote Access. Key Resources Data Sources Reference Organizations Journals Key Resources CINDAS Materials Property Databases video icon Thermophysical Properties of Matter Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys Handbook (SAH) Proquest Technology Collection Includes the Materials Science collection MRS Online Proceedings Library Papers presented at meetings of the Materials Research Society Data Sources

496

Materials Science and Technology Division - Physical Sciences...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lightweight Materials Propulsion Materials Energy Storage Fossil Energy Nuclear - Radioisotope Power Systems Nuclear Energy Nuclear Fuels Nuclear Light Water...

497

Science Education | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 12, 2010 March 12, 2010 Department of Energy Issues Requests for Applications for Nuclear-Related Science and Engineering Scholarships and Fellowships Washington, D.C. - The Department of Energy today issued two Request for Applications (RFA) for scholarships and fellowships as part of its efforts to recruit and train the next generation of nuclear scientists and engineers. The Department's Nuclear Energy University Programs (NEUP) will provide approximately $5 million for scholarships and fellowships for students enrolled in two-year, four-year and graduate engineering and science programs related to nuclear energy at accredited U.S. universities and colleges. October 9, 2009 Department of Energy Issues Request for Pre-Applications to U.S. Universities for Nuclear Energy Research and Development Proposals

498

EMSL: Science  

NLE Websites -- All DOE Office Websites (Extended Search)

EMSL's Science and Science Themes EMSL's Science and Science Themes EMSL's unique and state-of-the-art capabilities along with staff expertise can help scientists gain a predictive understanding of the molecular-to-mesoscale processes in climate, biological, environmental and energy systems. These advancements are critical to development of sustainable solutions to the nation's energy and environmental challenges. Four Science Themes help EMSL define and direct the research investments and establish a portfolio of user projects to accelerate scientific innovation and discovery in the areas of environmental molecular science critical to DOE and the nation. EMSL's annual call for proposals solicits proposals on specific topics within these Science Themes. Over the next 10 years, EMSL will focus its science toward developing

499

Water Related Energy Use in Households and Cities - an Australian  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Related Energy Use in Households and Cities - an Australian Water Related Energy Use in Households and Cities - an Australian Perspective Speaker(s): Steven Kenway Date: May 12, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner James McMahon This presentation covers the content of recent journal papers and reports focused on the water-energy nexus and the related theory of urban metabolism. This includes (i) a review of the water-energy nexus focused on cities (ii) quantifying water-related energy in cities (iii) modeling household water-related energy use including key factors, sensitivity and uncertainty analysis, and (iv) relevance and implications of the urban metabolism theoretical framework. Steven's work focuses on understanding the indirect connections between urban water management, energy use and

500

Computer Science | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Theory, Modeling and Simulation Cyber Security Bioinformatics Climate & Environment Systems Biology Neutron Data Analysis and Visualization Nuclear Data Nuclear Systems Modeling...