Sample records for audio mt magnetotellurics

  1. argentina audio magnetotelluric: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    argentina audio magnetotelluric First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Inversion of...

  2. Audio-magnetotelluric data collected in the area of Beatty, Nevada

    SciTech Connect (OSTI)

    Williams, J.M.

    1998-11-01T23:59:59.000Z

    In the summer of 1997, electrical geophysical data was collected north of Beatty, Nevada. Audio-magnetotellurics (AMT) was the geophysical method used to collect 16 stations along two profiles. The purpose of this data collection was to determine the depth to the alluvial basement, based upon the needs of the geologists requesting the data.

  3. MT3D: a 3 dimensional magnetotelluric modeling program (user's guide and documentation for Rev. 1)

    SciTech Connect (OSTI)

    Nutter, C.; Wannamaker, P.E.

    1980-11-01T23:59:59.000Z

    MT3D.REV1 is a non-interactive computer program written in FORTRAN to do 3-dimensional magnetotelluric modeling. A 3-D volume integral equation has been adapted to simulate the MT response of a 3D body in the earth. An integro-difference scheme has been incorporated to increase the accuracy. This is a user's guide for MT3D.REV1 on the University of Utah Research Institute's (UURI) PRIME 400 computer operating under PRIMOS IV, Rev. 17.

  4. The electrical resistivity structure of the crust beneath the northern Main Ethiopian Rift

    E-Print Network [OSTI]

    ´aniques', Place Nicolas Copernic, F-29280 Plouzane, France Abstract: 18 audio-frequency magnetotelluric (MT) sites

  5. Continuous profiling of magnetotelluric fields

    SciTech Connect (OSTI)

    Verdin, C.T.

    1991-05-01T23:59:59.000Z

    The magnetotelluric (MT) method of mapping ground electrical conductivity is traditionally based on measurement of the surface impedance at widely spaced stations to infer models of the subsurface through a suitable pseudo 1-D inverse or with linearized least-squares inversion for 2- or 3-D geoelectric media. It is well known that small near-surface inhomogeneities can produce spatial discontinuities in the measured electric fields over a wide frequency range and may consequently bias the impedance on a very local scale. Inadequate station spacing effectively aliases the electric field measurements and results in distortions that cannot be removed in subsequent processing or modelling. In order to fully exploit the benefits of magnetotellurics in complex geological environments, closely spaced measurements must be used routinely. This thesis entertains an analysis of MT data taken along continuous profiles and is a first step that will allow more encompassing 2-D sampling techniques to become viable in the years to come. The developments presented here are to a large extent motivated by the physical insight gained from low-contrast solutions to the forward MT problem. These solutions describe the relationship between a perturbation in the electrical conductivity of the subsurface and the ensuing perturbation of the MT response as the output of a linear system. Albeit strictly accurate in a limited subset of practical exploration problems, the linearized solutions allow one to pursue a model independent study of the response characteristics of MT data. In fact, these solutions yield simple expressions for 1-,2-, and 3-D resistivity models which are here examined in progressive sequence.

  6. Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High Enthalpy, Extensional Geothermal Systems Intergrating Magnetotellurics, Soil...

  7. Category:Audio-Magnetotellurics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashton Greens Jump

  8. Audio-Magnetotellurics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria Power Corporation Ltd APCL

  9. Magnetotelluric survey of San Juan sag

    SciTech Connect (OSTI)

    Furgerson, R.B. (Phoenix Geoscience Inc., Denver, CO (USA))

    1989-09-01T23:59:59.000Z

    The San Juan Mountains of southwestern Colorado, consisting almost entirely of Tertiary volcanic rocks, are bounded on the southwest by the mature oil and gas province of the San Juan basin and on the east by the San Luis basin, continuation of the sediments from the San Juan basin eastward beneath the volcanics was suspected based on the reported presence of seeps and the evaluation of regional gravity and magnetic data. The probability greatly increased when Milestone drilled Tertiary and Cretaceous sediments beneath 3,000 ft of volcanics, 37 mi northeast of the nearest Cretaceous outcrop. The MT (magnetotellurium) program described in this presentation is part of a nonexclusive survey that included magnetotelluric soundings, time-domain electromagnetic soundings, gravity stations, and geochemical sampling. MT data were acquired at 20 sites along an east-west profile centered on the Milestone 1 AMF well, five sites along a north-south cross profile, and three more sites around the wells northeast of the Milestone well. Site spacing was of the order of 1 to 3 mi except for the cross line. The program was designed to map the thickness of the surface volcanics and the thickness and resistivity of the underlying sediments. The MT data acquired near the Milestone well indicated that the Cretaceous sedimentary rocks are characterized by an average resistivity of the order of 4-12 ohm-meters. The MT data acquired in the San Luis basin east of Del Norte also shows 4-12 ohm-meter rocks in the subsurface, correlated in this case with Tertiary volcanics, volcaniclastics, and continental sediments. The MT data show that the low-resistivity 4-12 ohm-meter section extends continuously beneath the more resistive surface volcanics from the San Luis Valley to at least 16 mi west-northwest of Del Norte.

  10. MAGNETOTELLURIC STUDIES AT CERRO PRIETO

    E-Print Network [OSTI]

    Gamble, T. D.

    2011-01-01T23:59:59.000Z

    magneto- tellurics at Cerro Prieto, in Proceedings, FirstSecond Symposium on the Cerro Prieto Geothermal Field, BajaMAGNETOTELLURIC STUDIES AT CERRO PRIETO T. Do Gamble, W. M.

  11. Magnetotelluric Techniques At Mt Princeton Hot Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison Gas & Jump

  12. Audio-Magnetotellurics At Baltazor Hot Springs Area (Isherwood...

    Open Energy Info (EERE)

    about the same extent as that indicated on the 7.5 Hz AMT map (Fig. 6b). The resistivity data suggest a reservoir of limited horizontal extent. References W. F. Isherwood, D. R....

  13. Schlumberger soundings, audio-magnetotelluric soundings and telluric

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAir Jump to: navigation,Delta Jumpmapping in and

  14. Audio-Magnetotellurics At Coso Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformationGuide |Aubrey, Texas:1978)

  15. An Audio-Magnetotelluric Investigation In Terceira Island (Azores) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan BlanchAmite County,Amrit BioElevatedEnergy

  16. Controlled Source Audio MT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|

  17. Magnetotelluric Transect of Long Valley Caldera: Resistivity...

    Open Energy Info (EERE)

    MT line. Our MT data set reveals numerous resistivity structures which illuminate the evolution and present state of the Long Valley system. Many of these have been quantified...

  18. 3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal...

    Open Energy Info (EERE)

    Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field, Indonesia Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: 3-D...

  19. MAGNETOTELLURIC SURVEYING AND MONITORING AT THE COSO GEOTHERMAL...

    Open Energy Info (EERE)

    PARAMETERS AND INITIAL RESULTS Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: MAGNETOTELLURIC SURVEYING AND MONITORING AT THE COSO...

  20. Three-Dimensional Inversion of Magnetotelluric Data on a PC,...

    Open Energy Info (EERE)

    Coso Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Three-Dimensional Inversion of Magnetotelluric Data on a PC,...

  1. Further Analysis of 3D Magnetotelluric Measurements Over the...

    Open Energy Info (EERE)

    Coso Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Further Analysis of 3D Magnetotelluric Measurements Over the Coso...

  2. Magnetotelluric models of the Roosevelt Hot Springs thermal area, Utah

    SciTech Connect (OSTI)

    Wannamaker, P.E.; Ward, S.H.; Hohmann, G.W.; Sill, W.R.

    1980-09-01T23:59:59.000Z

    The Roosevelt Hot Springs (RHS) thermal area, which includes a hotwater-dominated fracture zone prospect, near the eastern margin of the Basin-Range tectonic province, conceivably possesses a whole family of resistivity structures that includes the following: deep hot brine reservoirs, deep-seated partially molten heat sources in the crust or upper mantle that drive the convective system, near-surface hydrothermal alteration zones, wet sedimentary fill in valleys, and a regional, apparently one-dimensional resistivity profile of the crust and upper mantle. This complex resistivity makeup, particular to RHS but probably similar to that at other geothermal areas in the Great Basin, must be treated as being fully three-dimensional (3-D). In an attempt to understand these structures, broadband (10/sup -3/ to 10/sup -2/ Hz) tensor magnetotelluric (MT) data were obtained including apparent resistivities (rho/sub a/), impedance phases (phi) and vertical magnetic field transfer functions for 93 sites in the vicinity of this resource area.

  3. 3-D Magnetotelluric Investigations for geothermal exploration in Martinique (Lesser Antilles). Characteristic Deep Resistivity Structures, and Shallow Resistivity Distribution Matching Heliborne TEM Results

    E-Print Network [OSTI]

    Coppo, Nicolas; Girard, Jean-François; Wawrzyniak, Pierre; Hautot, Sophie; Tarits, Pascal; Jacob, Thomas; Martelet, Guillaume; Mathieu, Francis; Gadalia, Alain; Bouchot, Vincent; Traineau, Hervé

    2015-01-01T23:59:59.000Z

    Within the framework of a global French program oriented towards the development of renewable energies, Martinique Island (Lesser Antilles, France) has been extensively investigated (from 2012 to 2013) through an integrated multi-methods approach, with the aim to define precisely the potential geothermal ressources, previously highlighted (Sanjuan et al., 2003). Amongst the common investigation methods deployed, we carried out three magnetotelluric (MT) surveys located above three of the most promising geothermal fields of Martinique, namely the Anses d'Arlet, the Montagne Pel{\\'e}e and the Pitons du Carbet prospects. A total of about 100 MT stations were acquired showing single or multi-dimensional behaviors and static shift effects. After processing data with remote reference, 3-D MT inversions of the four complex elements of MT impedance tensor without pre-static-shift correction, have been performed for each sector, providing three 3-D resistivity models down to about 12 to 30 km depth. The sea coast effe...

  4. 2D Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data...

    Open Energy Info (EERE)

    Authors F. A. M. Santos, A. R. A. Afonso and A. Dupis Published Journal Journal of Geophysics and Engineering, 20070101 DOI Not Provided Check for DOI availability: http:...

  5. audio-magnetotelluric station location: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Chicago ATLAS HEP, Enrico Fermi Institute 5640 S. Ellis Ave Chicago, IL 60637 October 15, 2007 Abstract A remote monitoring station located at the University of Chicago is...

  6. 2D Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data In The

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformationColorado School20090: SWRCB

  7. Station location map and audio-magnetotelluric data log for Rye Patch known

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr|| Open

  8. Audio-Magnetotellurics At Baltazor Hot Springs Area (Isherwood & Mabey,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformationGuide |Aubrey, Texas:1978) | Open

  9. Audio-Magnetotellurics At Chena Area (Erkan, Et. Al., 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformationGuide |Aubrey, Texas:1978) |

  10. Audio-Magnetotellurics At Raft River Geothermal Area (1978) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformationGuide |Aubrey,

  11. Audio-Magnetotellurics At Chena Geothermal Area (Holdmann, Et Al., 2006) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to: navigation,Kansas: Energy ResourcesAuburndale,Open

  12. Audio-Magnetotellurics At Roosevelt Hot Springs Geothermal Area (Ward, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to: navigation,Kansas: Energy

  13. A Target-Oriented Magnetotelluric Inversion Approach For Characterizin...

    Open Energy Info (EERE)

    to establish an in situ laboratory to investigate the potential for geothermal energy production. Classical 2-D smooth inversion of the MT data, recorded along two profiles,...

  14. Initial Results of Magnetotelluric Array Surveying at the Dixie...

    Open Energy Info (EERE)

    Structural Controls and Hydrothermal Alteration Abstract A new generation MT array measurement system was applied in a contiguous bipole deployment at the Dixie Valley thermal...

  15. Metrological digital audio reconstruction

    DOE Patents [OSTI]

    Fadeyev; Vitaliy (Berkeley, CA), Haber; Carl (Berkeley, CA)

    2004-02-19T23:59:59.000Z

    Audio information stored in the undulations of grooves in a medium such as a phonograph record may be reconstructed, with little or no contact, by measuring the groove shape using precision metrology methods coupled with digital image processing and numerical analysis. The effects of damage, wear, and contamination may be compensated, in many cases, through image processing and analysis methods. The speed and data handling capacity of available computing hardware make this approach practical. Two examples used a general purpose optical metrology system to study a 50 year old 78 r.p.m. phonograph record and a commercial confocal scanning probe to study a 1920's celluloid Edison cylinder. Comparisons are presented with stylus playback of the samples and with a digitally re-mastered version of an original magnetic recording. There is also a more extensive implementation of this approach, with dedicated hardware and software.

  16. Plasmon-Assisted Audio Recording

    E-Print Network [OSTI]

    Chen, Hao

    We present the first demonstration of the recording of optically encoded audio onto a plasmonic nanostructure. Analogous to the ‘‘optical sound’’ approach used in the early twentieth century to store sound on photographic ...

  17. Magnetotellurics At Roosevelt Hot Springs Geothermal Area (Ward...

    Open Energy Info (EERE)

    MT data. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  18. Audio, Video and Audio-Visual Signatures for Short Video Clip Detection: Experiments on Trecvid2003

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Audio, Video and Audio-Visual Signatures for Short Video Clip Detection: Experiments on Trecvid2003.Senechal,Denis.Pellerin}@lis.inpg.fr, Laurent.Besacier@imag.fr ABSTRACT In this paper, we present the association of audio and video signatures for short video clip detection. First, we present an audio signature based on the spectral flatness measure

  19. Processing of Audio-Visual Collections

    E-Print Network [OSTI]

    Diaz, Angel

    2012-01-01T23:59:59.000Z

    invisible histories visible collection notes from the NEH/2012 Processing of AUDIO-VISUAL COLLECTIONS A s of June, 15of the audio and video collections San Francisco Bay Area.

  20. Audio classification from time-frequency texture

    E-Print Network [OSTI]

    Slotine, Jean-Jacques E.

    Time-frequency representations of audio signals often resemble texture images. This paper derives a simple audio classification algorithm based on treating sound spectrograms as texture images. The algorithm is inspired ...

  1. Role of magnetotellurics in exploration of San Juan sag

    SciTech Connect (OSTI)

    Orange, A.; Schofield, J. (Emerald Exploration Consultants, Austin, TX (USA))

    1989-09-01T23:59:59.000Z

    The San Juan Mountains of southwestern Colorado, consisting almost entirely of Tertiary volcanic rocks, are bounded on the southwest by the mature oil and gas province of the San Juan basin and on the east by the San Luis basin. Continuation of the sediments from the San Juan basin eastward beneath the volcanics was suspected based on the reported presence of seeps and the evaluation of regional gravity and magnetic data. The objective of applying MT to the exploration of the San Juan sag area was to determine, through the measurement of subsurface resistivity, whether the hydrocarbon-rich sedimentary rocks of the San Juan basin indeed extended eastward beneath the San Juan volcanics and, if so, to what extent. The MT program the authors describe was a reconnaissance profile, one of the initial investigations of the area. MT data were acquired at 12 sites extending from Pagosa Springs east across Wolf Creek Pass to Del Norte on the western margin of the San Luis basin. Data were acquired for calibration at well sites near Pagosa Springs and northeast of Del Norte. Site spacing was 4-8 mi. The 12-site program was designed to test the geologic concept and evaluate for a minimum expenditure the feasibility of applying MT to the problem.

  2. Magnetotelluric images of the crustal structure of Chyulu Hills volcanic field, Kenya

    E-Print Network [OSTI]

    Meju, Max

    Magnetotelluric images of the crustal structure of Chyulu Hills volcanic field, Kenya V. Sakkas volcanic chain on the eastern flank of the Kenya Rift in East Africa. Transient electromagnetic (TEM flank of the Kenya Rift deduced from wide-angle P-wave data. In: Fuchs, K., Altherr, R., Muller, B

  3. The structure of a Mesozoic basin beneath the Lake Tana area, Ethiopia, revealed by magnetotelluric imaging

    E-Print Network [OSTI]

    The structure of a Mesozoic basin beneath the Lake Tana area, Ethiopia, revealed by magnetotelluric of Mines, Addis Ababa, Ethiopia c Geological Survey of Ethiopia, Addis Ababa, Ethiopia Received 18 April 2006 Abstract The northwestern Plateau of Ethiopia is almost entirely covered with extensive Tertiary

  4. M.T. Thomas Recipient Named | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M.T. Thomas Recipient Named M.T. Thomas Recipient Named EMSL Recognizes Patrick Roach for Postdoc Achievement Dr. Patrick Roach Patrick Roach, now an environmental scientist at...

  5. audio frequency: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Domain Method for Blind Source Separation of Convolutive Audio Mixtures Kamran Reilly, James P. 12 Balanced Homodyne Detection of Optical Quantum States at Audio-Band...

  6. audio computer assisted: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in computer-assisted annotation of audio George Tzanetakis Computer Science Dept of digital audio compression standards like MPEG have made possible the creation of large...

  7. AME CURRICULUM GUIDE SPRING 2014 AUDIO AND MUSIC ENGINEERING

    E-Print Network [OSTI]

    Mahon, Bradford Z.

    choose to earn a Master of Science degree in Electrical Engineering with as little as one additional year manufacturing, audio software development, music and audio recording and production, core audio and signal processing technologies and component manufacturing, musical instruments and audio equipment manufacturing

  8. AME CURRICULUM GUIDE FALL 2014 AUDIO AND MUSIC ENGINEERING

    E-Print Network [OSTI]

    choose to earn a Master of Science degree in Electrical Engineering with as little as one additional year manufacturing, audio software development, music and audio recording and production, core audio and signal processing technologies and component manufacturing, musical instruments and audio equipment manufacturing

  9. THE AUDIO DEGRADATION TOOLBOX AND ITS APPLICATION TO ROBUSTNESS EVALUATION

    E-Print Network [OSTI]

    Mauch, Matthias

    THE AUDIO DEGRADATION TOOLBOX AND ITS APPLICATION TO ROBUSTNESS EVALUATION Matthias Mauch Sebastian.ewert}@eecs.qmul.ac.uk ABSTRACT We introduce the Audio Degradation Toolbox (ADT) for the controlled degradation of audio signals degradation. For example, audio is degraded by low-quality microphones, noisy recording environments, MP3

  10. Controlled Source Audio MT At Mccoy Geothermal Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| OpenCongress,ConsolidatedContainedInformation

  11. Controlled Source Audio MT At Cove Fort Area - Liquid (Combs 2006) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)ConservationLSCEnergy Information

  12. Controlled Source Audio MT At Pilgrim Hot Springs Area (DOE GTP) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)ConservationLSCEnergy

  13. Controlled Source Audio MT At Roosevelt Hot Springs Area (Combs 2006) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005)ConservationLSCEnergyOpen Energy

  14. Microsoft Word - MtRichmond_CX

    Broader source: Energy.gov (indexed) [DOE]

    Dorie Welch Project Manager - KEWM-4 Proposed Action: Mt. Richmond property funding Fish and Wildlife Project No.: 2011-003-00, BPA-007071 Categorical Exclusion Applied (from...

  15. Agassiz Glacier Glacier National Park, MT

    E-Print Network [OSTI]

    Agassiz Glacier Glacier National Park, MT Greg Pederson photo USGS USGS Repeat Photography Project Glacier Glacier National Park, MT Greg Pederson photo USGS USGS Repeat Photography Project http://nrmsc.usgs.gov/repeatphoto/ 2005 M. V. Walker photo courtesy of GNP archives1943 #12;Blackfoot ­ Jackson Glacier Glacier National

  16. ALSEP-MT-06 APOLLO LUNAR SURFACE

    E-Print Network [OSTI]

    Rathbun, Julie A.

    ALSEP-MT-06 APOLLO LUNAR SURFACE EXPERIMENTS PACKAGE (ALSEP) APOLLO 16 ALSEP ARRAY D FLIGHT July 1971 A #12;ALSEP-MT-06 INTRODUCTION The Apollo 16 LWlar Surface Expe riments Package (ALSEP of the Moon consistent with the scientific objectives of the Apollo Program. The measur ement data

  17. Alpha-Stable Distributions in Signal Processing of Audio Signals

    E-Print Network [OSTI]

    Mosegaard, Klaus

    Alpha-Stable Distributions in Signal Processing of Audio Signals Preben Kidmose, Department parameter estimator for estimating the parameters in a symmetrical stable distribution. The proposed distribution, for modelling audio signals, is discussed. For a broad class of audio signals, the distribution

  18. Mt Wheeler Power, Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoon LakeMountain ElectricMt Princeton HotMt

  19. Mt. Baker Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,Spurr GeothermalInformationMtMt. Baker

  20. MT STROMLO OBSERVATORY VISITOR GUIDE & WALK

    E-Print Network [OSTI]

    Botea, Adi

    to the Observatory and construction of a new Advanced Instrumentation and Technology Centre was begun. You can watch, the University of NSW, and the Faulkes Telescope Project. Mt Stromlo began operation as the Commonwealth Solar Optical Munitions Factory. After the war, the Observatory changed from solar to stellar astronomy

  1. audio recognition framework: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Face Detection, Audio de-noising, Speaker collaborative scenarios, the problem of face recognition rst requires to detect the face pattern the image capture allows dynamics in...

  2. audio computer-assisted self-interviewing: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in computer-assisted annotation of audio George Tzanetakis Computer Science Dept of digital audio compression standards like MPEG have made possible the creation of large...

  3. audio computer-assisted self-interview: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in computer-assisted annotation of audio George Tzanetakis Computer Science Dept of digital audio compression standards like MPEG have made possible the creation of large...

  4. Blind Spectral-GMM Estimation for Underdetermined Instantaneous Audio Source

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Blind Spectral-GMM Estimation for Underdetermined Instantaneous Audio Source Separation Simon.ozerov@telecom-paristech.fr Abstract. The underdetermined blind audio source separation prob- lem is often addressed in the time. Other approaches which are not blind assume a more structured model, like the Spectral Gaussian Mixture

  5. audio streaming technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    audio streaming technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Audio Minimization: Applying...

  6. An Object-Based Audio Rendering System using Spatial Parameters

    E-Print Network [OSTI]

    Chang, Pao-Chi

    An Object-Based Audio Rendering System using Spatial Parameters Kuo-Lun Huang, Tai-Ming Chang rendering system, in which the audio signal of each object is distributed to multi-channel systems by spatial parameters. The operation of the rendering system is based on the sound localization theories

  7. MIXPLORATION: Rethinking the Audio Mixer Interface Mark Cartwright

    E-Print Network [OSTI]

    Pardo, Bryan

    MIXPLORATION: Rethinking the Audio Mixer Interface Mark Cartwright Northwestern University Queen Mary University of London josh.reiss@eecs.qmul.ac.uk ABSTRACT A typical audio mixer interface mixing options. In this work, we rethink the mixer interface, describing an alternative inter- face

  8. A Robust Audio Classification and Segmentation Method Lie Lu, Hao Jiang and HongJiang Zhang

    E-Print Network [OSTI]

    Jiang, Hao

    A Robust Audio Classification and Segmentation Method Lie Lu, Hao Jiang and HongJiang Zhang for audio classification that is capable of segmenting and classifying an audio stream into speech, music, environment sound and silence. Audio classification is processed in two steps, which makes it suitable

  9. The power of digital audio in interactive instruction: An unexploited medium

    SciTech Connect (OSTI)

    Pratt, J.; Trainor, M.

    1989-01-01T23:59:59.000Z

    Widespread use of audio in computer-based training (CBT) occurred with the advent of the interactive videodisc technology. This paper discusses the alternative of digital audio, which, unlike videodisc audio, enables one to rapidly revise the audio used in the CBT and which may be used in nonvideo CBT applications as well. We also discuss techniques used in audio script writing, editing, and production. Results from evaluations indicate a high degree of user satisfaction. 4 refs.

  10. Mt Signal Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVistaZephyr)Mountain AirPeak UtilityMt

  11. Mt Rainier Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,Spurr GeothermalInformationMt Rainier

  12. Mt Ranier Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,Spurr GeothermalInformationMt RainierRanier

  13. ,"Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  14. ,"Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  15. ,"Babb, MT Natural Gas Pipeline Imports From Canada (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Babb, MT...

  16. ,"Havre, MT Natural Gas Pipeline Imports From Canada (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Havre, MT...

  17. Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson & Dellechaie, 1976)...

  18. Frequency of plumbing fixture use through audio sampling

    E-Print Network [OSTI]

    Shea, Kevin Bruce

    2013-02-22T23:59:59.000Z

    FREQUENCY OF PLUMBING FIXTURE USE THROUGH AUDIO SAMPLING A Senior Honors Thesis By KEVIN BRUCE SHEA Submitted to the Office of Honors Programs & Academic Scholarships Texas ARM University In partial fulfillment of the requirements... of the UNIVERSITY UNDERGRADUATE RESEARCH FELLOWS April 2000 Group. Physical Sciences FREQUENCY OF PLUMBING FIXTURE USE THROUGH AUDIO SAMPLING A Senior Honors Thesis By KEVIN BRUCE SHEA Submitted to the Office of Honors Programs & Academic Scholarships...

  19. WPA Omnibus Award MT Wind Power Outreach

    SciTech Connect (OSTI)

    Brian Spangler, Manager Energy Planning and Renewables

    2012-01-30T23:59:59.000Z

    The objective of this grant was to further the development of Montanaâ??s vast wind resources for small, medium, and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community, and interested citizens. Through these efforts MT Dept Environmental Quality (DEQ) was able to identify development barriers, educate and inform citizens, as well as to participate in regional and national dialogue that will spur the development of wind resources. The scope of DEQâ??s wind outreach effort evolved over the course of this agreement from the development of the Montana Wind Working Group and traditional outreach efforts, to the current focus on working with the stateâ??s university system to deliver a workforce trained to enter the wind industry.

  20. Data Update for Mt. Tom, Holyoke, MA August 2006

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA August 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for August 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  1. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA June 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for June 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

  2. Data Update for Mt. Tom, Holyoke, MA January 2006

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA January 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for December 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  3. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA May 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for May 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  4. Data Update for Mt. Tom, Holyoke, MA October 2006

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA October 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for October 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  5. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA July 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for July 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  6. Data Update for Mt. Tom, Holyoke, MA December 2005

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA December 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for December 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  7. Data Update for Mt. Tom, Holyoke, MA October 2005

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA October 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for October 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  8. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA July 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for July 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  9. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA July 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for July 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

  10. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA March 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for March 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  11. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA May 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for May 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

  12. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA April 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for April 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  13. Data Update for Mt. Tom, Holyoke, MA October 2007

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA October 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for October 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  14. Data Update for Mt. Tom, Holyoke, MA November 2005

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA November 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for November 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  15. Data Update for Mt. Tom, Holyoke, MA January 2008

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA January 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for January 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  16. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA June 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for June 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  17. Data Update for Mt. Tom, Holyoke, MA January 2007

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA January 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for January 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  18. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA April 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for April 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  19. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA March 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for March 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  20. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA June 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for June 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  1. Data Update for Mt. Tom, Holyoke, MA November 2006

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA November 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Elkinton Monthly Data Summary for November 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  2. Data Update for Mt. Tom, Holyoke, MA February 2007

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA February 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for February 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  3. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA April 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for April 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

  4. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA March 2006 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for March 2006 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59.2" N, 72

  5. Data Update for Mt. Tom, Holyoke, MA August 2005

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA August 2005 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Melissa Ray Monthly Data Summary for August 2005 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  6. Data Update for Mt. Tom, Holyoke, MA Prepared for

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA May 2008 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for May 2008 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  7. Data Update for Mt. Tom, Holyoke, MA August 2007

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Update for Mt. Tom, Holyoke, MA August 2007 Prepared for Massachusetts Technology Collaborative 75 North Drive, Westborough, MA 01581 By Puneet Malhotra Monthly Data Summary for August 2007 This update summarizes the monthly data results for the Mt. Tom monitoring site in Holyoke, MA, at 42° 14' 59

  8. A Five-Component Magneto-Telluric Method In Geothermal Exploration- The

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S. NationalMammals JumpMt-5-Ex | Open

  9. BLIND SOURCE SEPARATION OF CONVOLUTIVE AUDIO USING AN ADAPTIVE STEREO BASIS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BLIND SOURCE SEPARATION OF CONVOLUTIVE AUDIO USING AN ADAPTIVE STEREO BASIS Maria G. Jafari.davies@ed.ac.uk ABSTRACT We consider the problem of convolutive blind source sep- aration of audio mixtures. We propose The convolutive blind audio source separation problem arises when an array of sensor microphones is placed

  10. Perceptual Audio Rendering of Complex Virtual Environments Nicolas Tsingos, Emmanuel Gallo and George Drettakis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Perceptual Audio Rendering of Complex Virtual Environments Nicolas Tsingos, Emmanuel Gallo and spatial clustering allows us to render such complex audio-visual scenes in real-time. Abstract We propose a real-time 3D audio rendering pipeline for complex virtual scenes containing hundreds of moving sound

  11. Ground Gravity Survey At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    Notes Gravity low associated with Mt. Princeton Batholith; density contrast of -0.5 gcm3 of valley-fill sediments relative to batholith References J.E. Case, R.F. Sikora...

  12. Integrated Dense Array and Transect MT Surveying at Dixie Valley...

    Open Energy Info (EERE)

    and Deep Fluid Sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Integrated Dense Array and Transect MT Surveying at Dixie Valley...

  13. Distributed and Efficient Classifiers for Wireless Audio-Sensor Networks

    E-Print Network [OSTI]

    Nascimento, Mario A.

    efficient in terms of communication overhead. Index Terms--Sensors, Acoustic Classification, Features Selec evaluation results in terms of classification ac- curacy and energy expenditure trade-offs. Finally, SectionDistributed and Efficient Classifiers for Wireless Audio-Sensor Networks Baljeet Malhotra

  14. West Virginia Palliative Care Network 2011 Audio Conference Series

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    West Virginia Palliative Care Network 2011 Audio Conference Series Target Audience - These courses of palliative care in West Virginia; explain how an interdisciplinary palliative care team can help patients with a Living Will: How Much ICU Treatment and For How Long Alvin H. Moss, MD, West Virginia University School

  15. A New Approach to Securing Audio Conference Tools Zhenkai Zhu

    E-Print Network [OSTI]

    California at Los Angeles, University of

    architecture based on content-centric networking, is designed to secure data directly, instead of securing conference tool. The basic design of ACT is presented in [13], which is based on the named data paradigmA New Approach to Securing Audio Conference Tools Zhenkai Zhu UCLA Los Angeles, California, USA

  16. Surveillance Using Both Video and Audio Yigithan Dedeoglu1

    E-Print Network [OSTI]

    GĂĽdĂĽkbay, Ugur

    surveillance techniques are discussed in a recent edited book by Zhu and Huang [595]. In [597], sig- nals from applications, Cristani et al. propose an adaptive method to build background and fore- ground models for audio al. propose an approach to automatic segmentation and classi- fication of audiovisual data based only

  17. Audio-Visual Multimedia Retrieval on Mobile Iftikhar Ahmad1

    E-Print Network [OSTI]

    Gabbouj, Moncef

    of devices (hand held phones to personal computers). Mobile devices are not only limited in size, shape devices is a challenge. 8.1 Introduction The amount of personal digital information is increasing8 Audio-Visual Multimedia Retrieval on Mobile Devices Iftikhar Ahmad1 and Moncef Gabbouj2 1 Nokia

  18. An Audio Compressor/Peak Limiter Circuit -Part III The object of this lab is to test your compressor/limiter with a "real-world" audio signal.

    E-Print Network [OSTI]

    Leach Jr.,W. Marshall

    An Audio Compressor/Peak Limiter Circuit - Part III The object of this lab is to test your compressor/limiter with a "real-world" audio signal. Allen Robinson has set up a microphone the oscilloscope. · Verify that your compressor is working before doing the following steps. · Connect the output

  19. m_T2 : the truth behind the glamour

    E-Print Network [OSTI]

    Alan Barr; Christopher Lester; Phil Stephens

    2003-04-23T23:59:59.000Z

    We present the kinematic variable, m_T2, which is in some ways similar to the more familiar `transverse-mass', but which can be used in events where two or more particles have escaped detection. We define this variable and describe the event topologies to which it applies, then present some of its mathematical properties. We then briefly discuss two case studies which show how m_T2 is vital when reconstructing the masses of supersymmetric particles in mSUGRA-like and AMSB-like scenarios at the Large Hadron Collider.

  20. Mt St Helens Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,Spurr GeothermalInformationMt RainierRanierMt

  1. Going-to-the-Sun Road, Glacier National Park, MT, USA

    E-Print Network [OSTI]

    Going-to-the-Sun Road, Glacier National Park, MT, USA Avalanche Path Atlas Erich H. Peitzsch Daniel..................................................................................................................................... 2 Overview of Red Rock Group avalanche paths, Going-to-the-Sun Road, Glacier National Park, MT................................................................................................................................................... 3 Overview of Lower GTSR group avalanche paths, Going-to-the-Sun Road, Glacier National Park, MT

  2. Phylogeography of pipistrelle-like bats within the Canary Islands, based on mtDNA sequences

    E-Print Network [OSTI]

    Brown, Richard

    Phylogeography of pipistrelle-like bats within the Canary Islands, based on mtDNA sequences J January 2002; received in revised form 7 July 2002 Abstract Evolution of three Canary Island by comparison of 1 kbp of mtDNA (from cytochrome b and 16S rRNA genes) between islands. mtDNA reveals that both

  3. Audio Classification by Search of Primary Components Julien PINQUIER, Jos ARIAS and Rgine ANDRE-OBRECHT

    E-Print Network [OSTI]

    Pinquier, Julien

    Audio Classification by Search of Primary Components Julien PINQUIER, José ARIAS and Régine ANDRE broadcasts. We present three different audio classification tools that we have developed. The first one, a speech/music classification tool, is based on three original features: entropy modulation, stationary

  4. ASSESSMENT OF AUDIO FEATURES FOR AUTOMATIC COUGH DETECTION Thomas Drugman, Jerome Urbain, Thierry Dutoit

    E-Print Network [OSTI]

    Dupont, Stéphane

    ASSESSMENT OF AUDIO FEATURES FOR AUTOMATIC COUGH DETECTION Thomas Drugman, Jerome Urbain, Thierry://tcts.fpms.ac.be/drugman/ ABSTRACT This paper addresses the issue of cough detection using only audio recordings, with the ultimate. 1. INTRODUCTION For children as well as for adults, cough is in pneumology the commonest syndrom

  5. SEARCHING FOR MULTIMEDIA: AN ANALYSIS OF AUDIO, VIDEO, AND IMAGE WEB QUERIES

    E-Print Network [OSTI]

    Jansen, James

    search engine. From this data set, terms were used to identify queries for audio, image, and video multimedia files by searching for file extensions and matching the filename to terms in the query (WittenSEARCHING FOR MULTIMEDIA: AN ANALYSIS OF AUDIO, VIDEO, AND IMAGE WEB QUERIES Bernard J. Jansen

  6. Market Brief AT&T Connect is a strategic web, audio and video conferencing

    E-Print Network [OSTI]

    Fisher, Kathleen

    resource a small company of 20 employees working locally or a corporate powerhouse of 200,000 distributed Conferencing with Integrated Data, Video and Audio Market Brief #12;Enterprise-Class Security and Technology Whether it's a simple voice call between two people or an integrated audio, video and data conference

  7. Self-oscillating modulators for direct energy conversion audio power amplifiers

    E-Print Network [OSTI]

    Self-oscillating modulators for direct energy conversion audio power amplifiers Petar Ljusev1, Denmark Correspondence should be addressed to Petar Ljusev (pl@oersted.dtu.dk) ABSTRACT Direct energy conversion audio power amplifier represents total integration of switching-mode power supply and Class D

  8. Geothermal energy resource investigations at Mt. Spurr, Alaska

    SciTech Connect (OSTI)

    Turner, D.L.; Wescott, E.M. (eds.)

    1986-12-01T23:59:59.000Z

    Spurr volcano is a composite Quaternary cone of largely andesitic composition located on the west side of Cook Inlet about 80 miles west of Anchorage and about 40 miles from the Beluga electrical transmission line. Geologic mapping (Plate 1-1) shows that the present summit depression was produced by a Mt. St. Helens-type sector collapse, rather than by a caldera collapse. Geochronologic and previous tephrachronologic studies show that there has been an active magmatic system at Spurr volcano during the late Pleistocene-to-Holocene time interval that is of critical interest for geothermal energy resource assessment. Major effort was devoted to geochemical and geophysical surveys of the accessible area south of Mt. Spurr, in addition to geologic mapping and geochronologic studies. Many coincident mercury and helium anomalies were found, suggesting the presence of geothermal systems at depth. Extremely large electrical self-potential anomalies were also found, together with extensive zones of low resistivity discovered by our controlled-source audiomagnetotelluric survey. The juxtaposition of all of these different types of anomalies at certain areas on the south slope of Crater Peak indicates the presence of a geothermal system which should be accessible by drilling to about 2000 ft depth. It is also evident that there is a strong volcanic hazard to be evaluated in considering any development on the south side of Mt. Spurr. This hazardous situation may require angle drilling of production wells from safer areas and placement of power generation facilities at a considerable distance from hazardous areas.

  9. Exploration of the El Hoyo-Monte Galan Geothermal Concession. Final report

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    In January 1996 Trans-Pacific Geothermal Corporation (TGC) was granted a geothermal concession of 114 square kilometers from the Instituto Nicaragueense de Energie (INE) for the purpose of developing between 50 and 150 MWe of geothermal electrical generating capacity. The Concession Agreement required TGC to perform geological, geophysical, and geochemical studies as part of the development program. TGC commenced the geotechnical studies in January 1996 with a comprehensive review of all existing data and surveys. Based on this review, TGC formulated an exploration plan and executed that plan commencing in April, 1996. The ground magnetic (GM), self potential (SP), magnetotelluric/controlled source audio magnetotelluric (MT/CSAMT) and one-meter temperature surveys, data integration, and synthesis of a hydrogeologic model were performed. The purpose of this report is to present a compilation of all data gathered from the geophysical exploration program and to provide an integrated interpretation of that data.

  10. Properties of MT2 in the massless limit

    E-Print Network [OSTI]

    Colin H. Lally; Christopher G. Lester

    2013-09-10T23:59:59.000Z

    Although numerical methods are required to evaluate the stransverse mass, MT2, for general input momenta, non-numerical methods have been proposed for some special clases of input momenta. One special case, considered in this note, is the so-called `massless limit' in which all four daughter objects (comprising one invisible particle and one visible system from each `side' of the event) have zero mass. This note establishes that it is possible to construct a stable and accurate implementation for evaluating MT2 based on an analytic expression valid in that massless limit. Although this implementation is found to have no significant speed improvements over existing evaluation strategies, it leads to an unexpected by-product: namely a secondary variable, that is found to be very similar to MT2 for much of its input-space and yet is much faster to calculate. This is potentially of interest for hardware applications that require very fast estimation of a mass scale (or QCD background discriminant) based on a hypothesis of pair production -- as might be required by a high luminosity trigger for a search for pair production of new massive states undergoing few subsequent decays (eg di-squark or di-slepton production). This is an application to which the contransverse mass MCT has previously been well suited due to its simplicity and ease of evaluation. Though the new variable requires a quadratic root to be found, it (like MCT) does not require iteration to compute, and is found to perform better then MCT in circumstances in which the information from the missing transverse momentum (which the former retains and the latter discards) is both reliable and useful.

  11. MT Energie GmbH Co KG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECO Auger <SmarTurbineMIT-MRINewMT Energie

  12. RAPID/Roadmap/17-MT-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, search RAPIDaUT-ab <-MT-b

  13. RAPID/Roadmap/17-MT-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, search RAPIDaUT-ab <-MT-bd

  14. RAPID/Roadmap/5-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searche <caMT-a <

  15. RAPID/Roadmap/9-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:b < RAPID‎ | Roadmap JumpMT-a <

  16. City of Mt Pleasant, Utah (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban TransportMartinsville,Minidoka,City ofIowaMt Pleasant,

  17. Mt Princeton Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoon LakeMountain ElectricMt Princeton Hot Springs

  18. Mt Wheeler Power, Inc (Utah) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoon LakeMountain ElectricMt Princeton Hot

  19. Mt Carmel Public Utility Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,Spurr GeothermalInformation Biofuels,(RECP)Mt

  20. Mt St Helens Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,Spurr GeothermalInformationMt

  1. RAPID/Roadmap/1-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas) Redirect page JumpAK-aHI-aMT-a

  2. RAPID/Roadmap/13-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a < RAPID‎ID-a <MT-a

  3. RAPID/Roadmap/4-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-b <aibHI-aMT-a

  4. Monitoring and Targeting (M&T): A Low Investment, Low Risk Approach to Energy Cost Savings

    E-Print Network [OSTI]

    McMullan, A.; Rutkowski, M.; Karp, A.

    Monitoring and Targeting (M&T): A Low Investment, Low Risk Approach to Energy Cost Savings Andrew McMullan Mike Rutkowski Alan Karp Vice President President Manager Bus. Development VERITECH, INC. Sterling, VA ABSTRACT Monitoring... and Targeting (M&T) is a disciplined approach to energy management that ensures that energy resources are used to their maximmn economic advantage. M&T serves two principal functions: ? Ongoing, day-to-day control of energy use ? Planned improvements...

  5. ,"Port of Del Bonita, MT Natural Gas Pipeline Imports From Canada...

    U.S. Energy Information Administration (EIA) Indexed Site

    Del Bonita, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  6. Acoustic chase : designing an interactive audio environment to stimulate human body movement

    E-Print Network [OSTI]

    Schiessl, Simon Karl Josef, 1972-

    2004-01-01T23:59:59.000Z

    An immersive audio environment was created that explores how humans react to commands imposed by a machine generating its acoustic stimuli on the basis of tracked body movement. In this environment, different states of ...

  7. Robust audio-visual person verification using Web-camera video

    E-Print Network [OSTI]

    Schultz, Daniel (Daniel T.)

    2006-01-01T23:59:59.000Z

    This thesis examines the challenge of robust audio-visual person verification using data recorded in multiple environments with various lighting conditions, irregular visual backgrounds, and diverse background noise. ...

  8. Loco-Radio : designing high-density augmented reality audio browsers

    E-Print Network [OSTI]

    Li, Wu-Hsi

    2014-01-01T23:59:59.000Z

    In this dissertation research, we explore ways of using audio on AR applications, as it is especially suitable for mobile users when their eyes and hands are not necessarily available and they have limited attention capacity. ...

  9. A proposed system to automatically control audio sound-to-noise levels 

    E-Print Network [OSTI]

    Neinast, Gary Strickland

    1957-01-01T23:59:59.000Z

    A PROPOSED SYSTEM TO AUTOMATICALLY CONTROL AUDIO SOUND TO NOISE LEVELS A Thesis ~ ]3y GARY 8% NEINAST Submitted to the Graduate Sohool of the Agrioultural and Meohanioal College of Texas in partial fulfillment of the requirements...

  10. An Empirical Study of Hear-Through Augmented Reality: Using Bone Conduction to Deliver Spatialized Audio

    E-Print Network [OSTI]

    Lindeman, Robert W.

    tones played at three frequencies. However, both static and moving tones were considered, while the head-Through AR takes place either using an audio mixer or a computer. Hear-Through AR delivers CG sound through

  11. Magnetotellurics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group Jump to:Macquarie Energy LLC

  12. MT-SDF: Scheduled Dataflow Architecture with mini-threads Domenico Pace

    E-Print Network [OSTI]

    Kavi, Krishna

    MT-SDF: Scheduled Dataflow Architecture with mini-threads Domenico Pace University of Pisa Pisa Dataflow (SDF) architecture. We call the new architecture MT-SDF. We introduce mini-threads to execute and quantitative comparison of the mini-threads with the original SDF architecture, and out-of-order superscalar

  13. An assessment of regional climate trends and changes to the Mt. Jaya glaciers of Irian Jaya

    E-Print Network [OSTI]

    Kincaid, Joni L.

    2007-09-17T23:59:59.000Z

    on the Mt. Jaya glaciers has been lacking since the early 1970s. Using IKONOS satellite images, the ice extents of the Mt. Jaya glaciers in 2000, 2002, 2003, 2004, and 2005 were mapped. The mapping indicates that the recessional trend which began in the mid...

  14. Intraspecific evolution of Canary Island Plecotine bats, based on mtDNA sequences

    E-Print Network [OSTI]

    Brown, Richard

    Intraspecific evolution of Canary Island Plecotine bats, based on mtDNA sequences J Pestano1 , RP investigated in the endemic Canary Island bat Plecotus teneriffae, based on B1 kb of mtDNA from the 16S r of differentiation between Canary Islands were quite high relative to Pipis- trelle-like bats, consistent

  15. Visual Field Maps, Population Receptive Field Sizes, and Visual Field Coverage in the Human MT Complex

    E-Print Network [OSTI]

    Dumoulin, Serge O.

    of processing in human motion-selective cortex. I N T R O D U C T I O N Neuroimaging experiments localize human by additional experiments. Defining human MT based on stimulus selectivity means that the identificationVisual Field Maps, Population Receptive Field Sizes, and Visual Field Coverage in the Human MT

  16. A MT System from Turkmen to Turkish Employing Finite State and Statistical Methods

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    between close language pairs can be relatively easier and can still benefit from simple(r) paradigms in MT with a disambiguation post-processing stage based on statistical language models. The very productive inflectionalA MT System from Turkmen to Turkish Employing Finite State and Statistical Methods A. Cüneyd TANTU

  17. Innovative Computational Tools for Reducing Exploration Risk...

    Broader source: Energy.gov (indexed) [DOE]

    Using Magnetotelluric Surveys to Map Permeability Ussher, 2007 Karaha - Telaga Bodas, Indonesia MT surveys can be used to map: * Smectite and interlayered illite-smectite that...

  18. Impact of monsoons, temperature, and CO2 on the rainfall and ecosystems of Mt. Kenya during the Common Era

    E-Print Network [OSTI]

    Vuille, Mathias

    Impact of monsoons, temperature, and CO2 on the rainfall and ecosystems of Mt. Kenya during Leaf waxes Glacial and early Holocene-age sediments from lakes on Mt. Kenya have documented strong and atmospheric CO2 concentra- tions. However, little is known about climate and ecosystem variations on Mt. Kenya

  19. Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria, September 6-10, 2010

    E-Print Network [OSTI]

    Boyer, Edmond

    of the Digital Audio Effects (DAFx) conference proceedings from 1998 to 2009. Using the online DAFx proceedings. In this paper we thus aim to use this proceedings and try to quan- tify the impact of DAFx conferences usingProc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria, September 6

  20. Chair for Computer Networks and Internet -Universitt Tbingen 1 ffor an open source, ultra low delay audio coding

    E-Print Network [OSTI]

    Carle, Georg

    an open source, ultra low delay audio coding Extending the packet loss concealment algorithm ITU G 711 A di 1 t f ll b d idthITU G.711 Appendix 1 to full bandwidth Comparing ultra low delay audio codecs SSummary Chair for Computer Networks and Internet - Universität Tübingen 2 #12;From speech to ultra-low

  1. Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp Petar Ljusev, Michael A.E. Andersen

    E-Print Network [OSTI]

    Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp Petar discusses the advantages and problems when implementing direct energy conversion switching-mode audio power on a direct-conversion switching-mode audio power ampli- fier with active capacitive voltage clamp

  2. L mt i tng nghin cu, qu v c nhng quyn li sau

    E-Print Network [OSTI]

    Church, George M.

    . Quyt nh nŕy s không nh hng ti dch v chm sóc mŕ quý v nhn c ti bnh vin. c nhn mt bn sao ca mu chp thun

  3. TIME-VARIABLEFILTERING OF MtTLTI[CHANNELSIGNALS USING MULTIPLE WINDOWS COHERENCEAND THE WEYL TRANSFORM

    E-Print Network [OSTI]

    Sandsten, Maria

    TIME-VARIABLEFILTERING OF MtTLTI[CHANNELSIGNALS USING MULTIPLE WINDOWS COHERENCEAND THE WEYL between all channel pairs. Time-frequency coherence functions are estimated using the multiple window

  4. Random mtDNA mutations modulate proliferation capacity in mouse embryonic fibroblasts

    SciTech Connect (OSTI)

    Kukat, Alexandra [Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institute, S-17171 Stockholm (Sweden) [Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institute, S-17171 Stockholm (Sweden); Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne University Clinic, D-50674 Cologne (Germany); Edgar, Daniel [Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institute, S-17171 Stockholm (Sweden)] [Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institute, S-17171 Stockholm (Sweden); Bratic, Ivana [Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institute, S-17171 Stockholm (Sweden) [Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institute, S-17171 Stockholm (Sweden); Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne University Clinic, D-50674 Cologne (Germany); Maiti, Priyanka [Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne University Clinic, D-50674 Cologne (Germany)] [Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne University Clinic, D-50674 Cologne (Germany); Trifunovic, Aleksandra, E-mail: aleksandra.trifunovic@ki.se [Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institute, S-17171 Stockholm (Sweden) [Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institute, S-17171 Stockholm (Sweden); Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Cologne University Clinic, D-50674 Cologne (Germany)

    2011-06-10T23:59:59.000Z

    Highlights: {yields} Increased mtDNA mutations in MEFs lead to high level of spontaneous immortalization. {yields} This process is independent of endogenous ROS production. {yields} Aerobic glycolysis significantly contributes to spontaneous immortalization of MEFs. -- Abstract: An increase in mtDNA mutation load leads to a loss of critical cells in different tissues thereby contributing to the physiological process of organismal ageing. Additionally, the accumulation of senescent cells that display changes in metabolic function might act in an active way to further disrupt the normal tissue function. We believe that this could be the important link missing in our understanding of the molecular mechanisms of premature ageing in the mtDNA mutator mice. We tested proliferation capacity of mtDNA mutator cells in vitro. When cultured in physiological levels of oxygen (3%) their proliferation capacity is somewhat lower than wild-type cells. Surprisingly, in conditions of increased oxidative stress (20% O{sub 2}) mtDNA mutator mouse embryonic fibroblasts exhibit continuous proliferation due to spontaneous immortalization, whereas the same conditions promote senescence in wild-type cells. We believe that an increase in aerobic glycolysis observed in mtDNA mutator mice is a major mechanism behind this process. We propose that glycolysis promotes proliferation and allows a fast turnover of metabolites, but also leads to energy crisis due to lower ATP production rate. This could lead to compromised replication and/or repair and therefore, in rare cases, might lead to mutations in tumor suppressor genes and spontaneous immortalization.

  5. Spatial audio in small screen device displays Ashley Walker and Stephen Brewster

    E-Print Network [OSTI]

    Williamson, John

    :ashley,stephen@dcs.gla.ac.uk keywords: interface design, 3D audio, delay affordance, usability testing Our work addresses problem condition. These results have important implications for the design of multi-tasking interfaces for mobile). They can be used to signal whether a building is being broken into or pollution has reached a critical

  6. Berkeley Lab Scientist Named MacArthur ''Genius'' Fellow for Audio Preservation Research

    ScienceCinema (OSTI)

    Haber, Carl

    2013-10-22T23:59:59.000Z

    Audio Preservationist Carl Haber was named a MacArthur Fellow in 2013. The Fellowship is a $625,000, no-strings-attached grant for individuals who have shown exceptional creativity in their work and the promise to do more. Learn more at http://www.macfound.org/fellows.

  7. INTEGRATION OF AUDIO/VISUAL INFORMATION FOR USE IN HUMANCOMPUTER INTELLIGENT INTERACTION

    E-Print Network [OSTI]

    Pavlovic, Vladimir

    INTEGRATION OF AUDIO/VISUAL INFORMATION FOR USE IN HUMAN­COMPUTER INTELLIGENT INTERACTION Vladimir,berry,huangg@ifp.uiuc.edu ABSTRACT Human­computer intelligent interaction (HCII) in virtual environments is a rapidly developing modes of human­computer communication. By using auditory and visual features at different levels

  8. IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 1 Model-Based Speech Enhancement with Improved

    E-Print Network [OSTI]

    So, Hing-Cheung

    IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 1 Model-Based Speech Enhancement-based approach to enhance noisy speech using an analysis-synthesis framework. Target speech is reconstructed. Ini- tially, we propose an analysis-synthesis framework for speech enhancement based on harmonic noise

  9. ON FAIRNESS AND EFFICIENCY OF ADAPTIVE AUDIO APPLICATION LAYERS FOR MULTIHOP WIRELESS NETWORKS

    E-Print Network [OSTI]

    Wang, Lan

    ON FAIRNESS AND EFFICIENCY OF ADAPTIVE AUDIO APPLICATION LAYERS FOR MULTIHOP WIRELESS NETWORKS}@cs.ucla.edu ABSTRACT Multimedia applications for networks with wireless links are required to constantly adapt-hoc, multihop wireless networks. The application layer plays a significant role in this design space, since

  10. Berkeley Lab Scientist Named MacArthur ''Genius'' Fellow for Audio Preservation Research

    SciTech Connect (OSTI)

    Haber, Carl

    2013-09-24T23:59:59.000Z

    Audio Preservationist Carl Haber was named a MacArthur Fellow in 2013. The Fellowship is a $625,000, no-strings-attached grant for individuals who have shown exceptional creativity in their work and the promise to do more. Learn more at http://www.macfound.org/fellows.

  11. Generating audio-responsive video images in real-time for a live symphony performance

    E-Print Network [OSTI]

    Beane, Allison Brooke

    2007-09-17T23:59:59.000Z

    instruments to cutting-edge video image productions for musical groups of all sizes. Throughout this evolution, a common goal has been to create real-time, audio-responsive visuals that accentuate the sound and enhance the performance. This paper explains...

  12. Andersen Efficient Audio Power Amplification -Challenges International Conference, Copenhagen, Denmark, 2005 September 24 1

    E-Print Network [OSTI]

    . ANDERSEN Oersted-DTU, Technical University of Denmark, Lyngby, Denmark ma@oersted.dtu.dk For more than in various forms are the state-of-the-art. The technical steps that lead to this evolution are described. As the dominating audio power amplifier principle was the class-B/AB higher output power meant higher power losses

  13. A NEW PETROLOGICAL AND GEOPHYSICAL INVESTIGATION OF THE PRESENT-DAY PLUMBING

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A NEW PETROLOGICAL AND GEOPHYSICAL INVESTIGATION OF THE PRESENT-DAY PLUMBING SYSTEM OF MT. VESUVIUS, on geophysical information, in particular, magnetotelluric (MT) data, and on petrological and geochemical

  14. The cortical organization of audio-visual sentence comprehension: an fMRI study at 4 Tesla

    E-Print Network [OSTI]

    The cortical organization of audio-visual sentence comprehension: an fMRI study at 4 Tesla Cheryl M Tesla. Participants viewed the face and upper body of a speaker via a video screen while listening

  15. Low Power DC-DC Converters and a Low Quiescent Power High PSRR Class-D Audio Amplifier

    E-Print Network [OSTI]

    Torres, Joselyn

    2013-12-03T23:59:59.000Z

    High-performance DC-DC voltage converters and high-efficient class-D audio amplifiers are required to extend battery life and reduce cost in portable electronics. This dissertation focuses on new system architectures and design techniques...

  16. Low Power DC-DC Converters and a Low Quiescent Power High PSRR Class-D Audio Amplifier 

    E-Print Network [OSTI]

    Torres, Joselyn

    2013-12-03T23:59:59.000Z

    High-performance DC-DC voltage converters and high-efficient class-D audio amplifiers are required to extend battery life and reduce cost in portable electronics. This dissertation focuses on new system architectures and design techniques...

  17. PARTICLE FILTER WITH EFFICIENT IMPORTANCE SAMPLING AND MODE TRACKING (PF-EIS-MT) AND ITS APPLICATION TO LANDMARK SHAPE TRACKING

    E-Print Network [OSTI]

    Vaswani, Namrata

    PARTICLE FILTER WITH EFFICIENT IMPORTANCE SAMPLING AND MODE TRACKING (PF-EIS-MT) AND ITS a practically implementable particle filtering (PF) method called "PF-EIS-MT" for tracking on large dimensional dimensions and (b) direct application of PF requires an impractically large number of particles. PF-EIS

  18. MSU Human Resources 19 Montana Hall ~ PO Box 172520 ~ Bozeman, MT 59717-2520

    E-Print Network [OSTI]

    Dyer, Bill

    MSU Human Resources 19 Montana Hall ~ PO Box 172520 ~ Bozeman, MT 59717-2520 Tel (406) 994 with the Social Security Administration and State policies, the Human Resources procedure for Name and Address changes has been modified. The Human Resources Department uses two separate forms ­ one for name changes

  19. Dr. Joseph A. Shaw Electrical & Computer Engineering Dept., Montana State University, Bozeman, MT 59717

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Dr. Joseph A. Shaw Electrical & Computer Engineering Dept., Montana State University, Bozeman, MT M.S. Electrical Engineering University of Utah 1987 B.S. Electrical Engineering University of Alaska Experience: 2008 ­ present Professor ­ Electrical & Computer Engineering (ECE) Department, Montana State

  20. Behavioral/Systems/Cognitive Receptive Field Positions in Area MT during Slow Eye

    E-Print Network [OSTI]

    Krekelberg, Bart

    Behavioral/Systems/Cognitive Receptive Field Positions in Area MT during Slow Eye Movements Till S across eye movements. We first tested the hypothesis that motion signals are integrated by neurons whose receptive fields (RFs) do not move with the eye but stay fixed in the world. Specifically, we measured

  1. Hybrid Rule-Based Example-Based MT: Feeding Apertium with Sub-sentential Translation Units

    E-Print Network [OSTI]

    Way, Andy

    Hybrid Rule-Based ­ Example-Based MT: Feeding Apertium with Sub-sentential Translation Units Felipe S´anchez-Mart´inez Mikel L. Forcada Andy Way Dept. Llenguatges i Sistemes Inform`atics Universitat University Dublin 9, Ireland {mforcada,away}@computing.dcu.ie Abstract This paper describes a hybrid machine

  2. Job submission to grid computing environments RP Bruin, TOH White, AM Walker, KF Austen, MT Dove

    E-Print Network [OSTI]

    Cambridge, University of

    Job submission to grid computing environments RP Bruin, TOH White, AM Walker, KF Austen, MT Dove Albemarle Street, London W1S 4BS Abstract The problem of enabling scientist users to submit jobs to grid scientists to work with raw Globus job-submission commands ­ in the end they are likely to end up

  3. The School for Marine Science and The Heat Budget for Mt. Hope Bay

    E-Print Network [OSTI]

    Chen, Changsheng

    SMAST, UMassD SMAST Technical Report No. SMAST-03-0801 The School for Marine Science and Technology not hold during the summer, when heat losses due to tidal exchanges between MHB and NB/SR may be important-fuel-fired electrical generating facility at Brayton Point, Massachusetts, on the Mt. Hope Bay ecosystem. Recent studies

  4. MS2a: Bioinformatics and Computational Biology -16MT Recommended Prerequisites

    E-Print Network [OSTI]

    Goldschmidt, Christina

    MS2a: Bioinformatics and Computational Biology - 16MT Recommended Prerequisites None. In particular of statistical analysis and modelling to be properly interpreted. The fields of Bioinformatics and Computational Biology have this as their subject matter and there is no sharp boundary between them. Bioinformatics has

  5. 3D-Audio Matting, Post-editing and Re-rendering from Field Recordings Emmanuel Gallo1,2, Nicolas Tsingos1 and Guillaume Lemaitre1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    3D-Audio Matting, Post-editing and Re-rendering from Field Recordings Emmanuel Gallo1,2, Nicolas components through time. Right: This high-level representation allows for post-editing and re-rendering the acquired soundscape within generic 3D-audio rendering architectures. Abstract We present a novel approach

  6. Progressive Perceptual Audio Rendering of Complex Scenes Thomas Moeck1,2 Nicolas Bonneel1 Nicolas Tsingos1 George Drettakis1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Progressive Perceptual Audio Rendering of Complex Scenes Thomas Moeck1,2 Nicolas Bonneel1 Nicolas sound sources. Audio is rendered in realtime with our progressive lossy processing technique using 15 and per- ceptual auditory masking, high quality rendering of complex virtual scenes with thousands

  7. An Audio Compressor/Peak Limiter Circuit The object of this experiment is to use the voltage-controlled amplifier designed in the

    E-Print Network [OSTI]

    Leach Jr.,W. Marshall

    An Audio Compressor/Peak Limiter Circuit The object of this experiment is to use the voltage-controlled amplifier designed in the last lab to realize an audio compressor/peak limiter circuit. Such a circuit and a compressor is primarily in the attack and release times of the circuits. A limiter reduces gain quickly when

  8. LOCA simulation in NRU program: data report for the fourth materials experiment (MT-4)

    SciTech Connect (OSTI)

    Wilson, C.L.; Mohr, C.L.; Hesson, G.M.; Wildung, N.J.; Russcher, G.E.; Webb, B.J.; Freshley, M.D.

    1983-07-01T23:59:59.000Z

    A series of in-reactor experiments were conducted using full-length 32-rod pressurized water reactor (PWR) fuel bundles as part of the Loss-of-Coolant Accident (LOCA) Simulation Program by Pacific Northwest Laboratory (PNL). This experiment (MT-4) was funded by the US Nuclear Regulatory Commission (NRC) to evaluate ballooning and rupture during adiabatic heatup in the temperature range of 1033 to 1200K (1400 to 1700/sup 0/F). The 12 rest rods in the center of the 32-rod bundle were initially pressurized to 4.62 MPa (670 psia) to insure rupture in the correct temperature range. All 12 test rods ruptured with an average strain of 43.7% at the maximum flow blockage elevation of 2.68 m (105.4 in.). Experimental data for the MT-4 transient experiment and post-test measurements and photographs of the fuel are presented in this report.

  9. Altered Mitochondrial Retrograde Signaling in Response to mtDNA Depletion or a Ketogenic Diet

    E-Print Network [OSTI]

    Selfridge, Jennifer Eva

    2012-12-31T23:59:59.000Z

    kinase kinase MCI Mild cognitive impairment MCT Monocarboxylate transporter Mfn Mitofusin mtDNA Mitochondrial DNA mTOR Mammalian target of rapamycin mTORC1 mTOR complex 1 MRC Mitochondrial Respiratory Complex NAD(H) Nicotinamide adenine...; Smith et al., 1991; Sultana et al., 2010). Many studies suggest that oxidative damage is also present in individuals with mild cognitive impairment (MCI), a syndromic state that in many cases represents a very early AD clinical stage (Aluise et al...

  10. Global analysis of genetic variation in human arsenic (+ 3 oxidation state) methyltransferase (AS3MT)

    SciTech Connect (OSTI)

    Fujihara, Junko [Department of Legal Medicine, Faculty of Medicine, Shimane University, Izumo, Shimane (Japan); Soejima, Mikiko [Department of Forensic Medicine and Human Genetics, Kurume University School of Medicine, Kurume, Fukuoka (Japan); Yasuda, Toshihiro [Division of Medical Genetics and Biochemistry, Faculty of Medical Sciences, University of Fukui, Eiheiji-cho, Fukui (Japan); Koda, Yoshiro [Department of Forensic Medicine and Human Genetics, Kurume University School of Medicine, Kurume, Fukuoka (Japan); Agusa, Tetsuro [Department of Legal Medicine, Faculty of Medicine, Shimane University, Izumo, Shimane (Japan); Kunito, Takashi [Department of Environmental Sciences, Faculty of Science, Shinshu University, Matsumoto, Nagano (Japan); Tongu, Miki; Yamada, Takaya [Department of Experimental Animals, Center for Integrated Research in Science, Faculty of Medicine, Shimane University, Izumo (Japan); Takeshita, Haruo, E-mail: htakeshi@med.shimane-u.ac.j [Department of Legal Medicine, Faculty of Medicine, Shimane University, Izumo, Shimane (Japan)

    2010-03-15T23:59:59.000Z

    Human arsenic (+ 3 oxidation state) methyltransferase (AS3MT) is known to catalyze the methylation of arsenite. The objective of this study was to investigate the diversity of the AS3MT gene at the global level. The distribution of 18 single nucleotide polymorphisms (SNPs) in AS3MT was performed in 827 individuals from 10 populations (Japanese, Korean, Chinese, Mongolian, Tibetans, Sri Lankan Tamils, Sri Lankan Sinhalese, Nepal Tamangs, Ovambo, and Ghanaian). In the African populations, the A allele in A6144T was not observed; the allele frequencies of C35587 were much lower than those in other populations; the allele frequencies of A37616 and C37950 were relatively higher than those in other populations. Among Asian populations, Mongolians showed a different genotype distribution pattern. A lower C3963 and T6144 frequencies were observed, and, in the C37616A and T37950C polymorphism, the Mongolian population showed higher A37616 and C37950 allele frequencies than other Asian populations, similarly to the African populations. A total of 66 haplotypes were observed in the Ovambo, 48, in the Ghanaian, 99, in the Japanese, 103, in the Korean, 103, in the South Chinese, 20, in the Sri Lankan Tamil, 12, in the Sri Lankan Sinhalese, 21, in the Nepal Tamang, 50, in the Tibetan, and 45, in the Mongolian populations. The D' values between the SNP pairs were extremely high in the Sri Lankan Sinhalese population. Relatively higher D' values were observed in Mongolian and Sri Lankan Tamil populations. Network analysis showed two clusters that may have different origins, African and Asians (Chinese and/or Japanese). The present study is the first to demonstrate the existence of genetic heterogeneity in a world wide distribution of 18 SNPs in AS3MT.

  11. Tidally dominated depositional environment for the Mt. Simon Sandstone in central Illinois

    SciTech Connect (OSTI)

    Sargent, M.L.; Lasemi, Z. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01T23:59:59.000Z

    Several hundred feet of core from the upper part of the Mt. Simon in central Illinois have been examined macroscopically. Grain sizes and their systematics, bedding characteristics, sedimentary structures, and relationships among beds show that the upper Mt. Simon Sandstone is composed of a series of fining-upward cycles up to 10 m (30 feet) thick. A typical cycle consists, in ascending order, of a sandy subtidal facies, a mixed sand and mud intertidal-flat facies, and a muddy upper tidal-flat facies upward through the succession, the maximum and average grain size becomes progressively finer and the cycles thinner. The lower sandstone of each cycle contains beds that are massive to cross bedded and cross laminated; some beds show scoured reactivation surfaces. A few cycles contain a middle unit characterized by flaser and lenticular bedding and abundant mudcracks. Mudcracks also are common in the shale beds at the top of each cycle. Sedimentary structures such as reactivation surfaces, flaser and lenticular bedding, and mudcracks suggest that these cycles were deposited in peritidal environments. The presence of Skolithos in some cycles suggests very shallow marine conditions. The within-cycle upward fining is caused by regression or progradation that reflects a progressive decrease in current velocity from subtidal to intertidal parts of the tidal flat. Frequent flooding of the tidal flat resulted in repeated fining-upward cycles within the upper part of the Mt. Simon Sandstone.

  12. Continuous Profiling of Magnetotelluric Fields

    E-Print Network [OSTI]

    Verdin, C.T.

    2009-01-01T23:59:59.000Z

    those employed in seismic data interpretation under the nameseismic nature, these techniques power implicit in the at least two decades of continued field and interpretation

  13. Magnetotelluric Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECOFlorida:MadisonYork:Drill CoreTechniques

  14. Review of potential technologies for the treatment of Methyl tertiary butyl Ether (MtBE) in drinking water

    SciTech Connect (OSTI)

    Brown, A.; Browne, T.E. [Komex H2O Science, Huntington Beach, CA (United States); Devinny, J.S. [Univ. of Southern California, Los Angeles, CA (United States)] [and others

    1997-12-31T23:59:59.000Z

    At present, the state of knowledge on effective treatment technologies for MtBE in drinking water, and groundwater in general, is limited. Research by others is focusing on the remediation of MtBE close to the point of release. The City of Santa Monica, MWD, Komex and USC are currently conducting research into different technologies that could be used to remove MtBE from drinking water supplies. The objectives of the research are to evaluate different treatment technologies to identify cost-effective and technically feasible alternatives for the removal of MtBE from drinking water. The evaluation is considering moderate to high water flow rates (100 to 2,000+ gpm) and low to moderate MtBE concentrations (<2,000 {mu}g/l). The research program includes four phases: (1) Literature Review; (2) Bench Scale Study; (3) Field Scale Pre-pilot Study; and (4) Summary Evaluation. This paper presents some preliminary information and findings from the first phase of this research - the literature review. The review discusses the chemical properties of MtBE and how they affect remediation and thus, an evaluation of alternative treatment technologies. The review of available literature, and the applicability and limitations of the following technologies are presented in detail.

  15. 2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 19-22, 2003, New Paltz, NY FACTORS IN AUTOMATIC MUSICAL GENRE CLASSIFICATION OF AUDIO SIGNALS

    E-Print Network [OSTI]

    Tzanetakis, George

    , New Paltz, NY FACTORS IN AUTOMATIC MUSICAL GENRE CLASSIFICATION OF AUDIO SIGNALS Tao Li Computer for or- ganizing the large collections of music that are becoming available to the average user user studies. This paper provides a detailed comparative analysis of various factors affecting

  16. 2003 IEEE Workshop on Applications of Signal Processing 10 Audio and Acoustics October 19-22,2003. New Paltr. N y FACTORS IN AUTOMATICMUSICAL GENRE CLASSIFICATION OF AUDIO SIGNALS

    E-Print Network [OSTI]

    Li, Tao

    -22,2003. New Paltr. N y FACTORS IN AUTOMATICMUSICAL GENRE CLASSIFICATION OF AUDIO SIGNALS Tao Li Computer of music that are becoming available lo the average user. In addition it provides a structured way of evaluating musical content features that doesn't require extensive user studies. This paper provides

  17. ROBUST SPEECH / MUSIC CLASSIFICATION IN AUDIO DOCUMENTS Julien PINQUIER, Jean-Luc ROUAS and Regine ANDR E-OBRECHT

    E-Print Network [OSTI]

    Pinquier, Julien

    - efficients are extracted and energy is computed in 40 per- ceptual channels. This energy is then filteredROBUST SPEECH / MUSIC CLASSIFICATION IN AUDIO DOCUMENTS Julien PINQUIER, Jean-Luc ROUAS and R energy. The relevance of these features is studied in a first experiment based on a development corpus

  18. IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 5, NO. 2, MARCH 1997 141 Enhancement of Connected Words in

    E-Print Network [OSTI]

    Bistritz, Yuval

    IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 5, NO. 2, MARCH 1997 141 Enhancement Bistritz, Senior Member, IEEE Abstract--A speech enhancement algorithm that is based on a connected achieved when subjects who listened to the enhanced speech were given the results of an automatic

  19. 1600 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 6, AUGUST 2011 Unvoiced Speech Segregation From Nonspeech

    E-Print Network [OSTI]

    Wang, DeLiang "Leon"

    of unvoiced speech from nonspeech interference. Speech enhancement methods have been proposed to enhance noisy1600 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 6, AUGUST 2011 Unvoiced Speech Segregation From Nonspeech Interference via CASA and Spectral Subtraction Ke Hu, Student

  20. This paper introduces a methodology for estimation of energy consumption in peripherals such as audio and video devices.

    E-Print Network [OSTI]

    Simunic, Tajana

    ABSTRACT This paper introduces a methodology for estimation of energy consumption in peripherals such as audio and video devices. Peripherals can be responsible for significant amount of the energy consumption in current embedded systems. We introduce a cycle- accurate energy simulator and profiler capable

  1. Safe-commutation principle for direct single-phase AC-AC converters for use in audio power

    E-Print Network [OSTI]

    and G, expressed as very low total harmonic distortion + noise (THD+N) levels and supplemented. SIngle Conversion stage AMplifier (SICAM) is the next im- portant evolutionary step in designing-stage AC-AC audio power amplifiers. As compared with the bridge commutation with load current or source

  2. Digital Archeology: Recovering Digital Objects from Audio Waveforms Mark Guttenbrunner, Mihai Ghete, Annu John, Chrisanth Lederer, Andreas Rauber

    E-Print Network [OSTI]

    data (e.g. digital diaries) on various storage media. As we have to deal with this data at the time90 Digital Archeology: Recovering Digital Objects from Audio Waveforms Mark Guttenbrunner, Mihai storage media and no working systems to read data from these carriers. With storage media residing

  3. The SWEET-HOME Project: Audio Technology in Smart Homes to improve Well-being and Reliance

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The SWEET-HOME Project: Audio Technology in Smart Homes to improve Well-being and Reliance Michel- nologies (ICT), one way to achieve this aim is to promote the development of smart homes. In the health domain, a health smart home is a habitation equipped with a set of sensors, actuators, automated devices

  4. Methyl tertiary butyl ether (MtBE) contamination of the City of Santa Monica drinking water supply

    SciTech Connect (OSTI)

    Brown, A.; Farrow, J.R.C. [Komex H2O Science, Huntington Beach, CA (United States); Rodriguez, R.A. [City of Santa Monica, CA (United States)] [and others

    1997-12-31T23:59:59.000Z

    In the summer of 1996, the City of Santa Monica ceased pumping groundwater from two Well Fields (Charnock and Arcadia) used for public drinking water supply due to persistent and increasing concentrations of MtBE in all seven municipal water supply wells. This lost production accounted for 50% of the City`s total drinking water supply. In late 1996, the City, in cooperation with State and Federal agencies, initiated an investigation of MtBE contamination at the two well fields. The objectives of the investigation were as follows: (1) Review available data on the production, use, chemical characteristics, fate and transport, toxicology, and remediation of MtBE; (2) Identify locations of potential sources of MtBE groundwater contamination at the well fields; (3) Develop an understanding of the hydrologic pathways from the potential sources to the drinking water wells; and (4) Evaluate alternative treatment technologies for the removal of MtBE from drinking water. In addition to a review of available information about MtBE, the investigation included an extensive review of literature and available data relevant to the well fields, including well field production histories, site and regional hydrogeology, all well logs and production in the groundwater basins, general groundwater quality, and the record of MtBE detection. Based upon the review of background information, conceptual hydrogeologic models were developed. A detailed review of agency files for over 45 potential source sites was conducted. The information from this review was summarized, and source site screening and ranking criteria were developed. A field program was conducted at the major well field (Charnock), including soil gas surveys, CPTs, soil borings and well installations, geophysics, and aquifer testing. The field program provided site data which allowed the conceptual hydrogeologic model to be refitted to actual site conditions.

  5. The Investigation on Fibrous Veins and Their Host from Mt. Ida, Ouachita Mountains, Arkansas 

    E-Print Network [OSTI]

    Chung, Jae Won

    2004-09-30T23:59:59.000Z

    of the host is given by: ?* = 3b/(16kBV0B) (2) where b is the radius of rock sphere containing one vein or spherical crystal, ?* is the critical value of surrounding host rock viscosity, k is a constant in kinetic law for precipitation/dissolution... goal to test some of these implications. 7 2. GEOLOGY Samples of fibrous veins were collected from Paleozoic Womble Shale around Mt. Ida, Arkansas (Fig. 2). The study area lies within the Benton Uplift of eastern Arkansas. The Benton Uplift...

  6. Water Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpen EnergyKauaiMt Ranier Area (Frank,

  7. Water Sampling At Mt St Helens Area (Shevenell & Goff, 1995) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpen EnergyKauaiMt Ranier Area

  8. Using voice input and audio feedback to enhance the reality of a virtual experience

    SciTech Connect (OSTI)

    Miner, N.E.

    1994-04-01T23:59:59.000Z

    Virtual Reality (VR) is a rapidly emerging technology which allows participants to experience a virtual environment through stimulation of the participant`s senses. Intuitive and natural interactions with the virtual world help to create a realistic experience. Typically, a participant is immersed in a virtual environment through the use of a 3-D viewer. Realistic, computer-generated environment models and accurate tracking of a participant`s view are important factors for adding realism to a virtual experience. Stimulating a participant`s sense of sound and providing a natural form of communication for interacting with the virtual world are equally important. This paper discusses the advantages and importance of incorporating voice recognition and audio feedback capabilities into a virtual world experience. Various approaches and levels of complexity are discussed. Examples of the use of voice and sound are presented through the description of a research application developed in the VR laboratory at Sandia National Laboratories.

  9. Integrated geophysical-petrological modeling of lithosphereasthenosphere1 boundary in Central Tibet using electromagnetic and seismic data2

    E-Print Network [OSTI]

    Jones, Alan G.

    1 Integrated geophysical-petrological modeling of lithosphere­asthenosphere1 boundary in Central magnetotelluric and seismic data in petrologically24 consistent manner25 · Lithosphere-asthenosphere boundary a petrologically-driven approach to jointly model magnetotelluric (MT) and29 seismic surface wave dispersion (SW

  10. Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: Identification of an RGFRRR motif governing fungal cell entry

    SciTech Connect (OSTI)

    Sagaram, Uma S.; El-Mounadi, Kaoutar; Buchko, Garry W.; Berg, Howard R.; Kaur, Jagdeep; Pandurangi, Raghoottama; Smith, Thomas J.; Shah, Dilip

    2013-12-04T23:59:59.000Z

    A highly conserved plant defensin MtDef4 potently inhibits the growth of a filamentous fungus Fusarium graminearum. MtDef4 is internalized by cells of F. graminearum. To determine its mechanism of fungal cell entry and antifungal action, NMR solution structure of MtDef4 has been determined. The analysis of its structure has revealed a positively charged patch on the surface of the protein consisting of arginine residues in its ?-core signature, a major determinant of the antifungal activity of MtDef4. Here, we report functional analysis of the RGFRRR motif of the ?-core signature of MtDef4. The replacement of RGFRRR to AAAARR or to RGFRAA not only abolishes fungal cell entry but also results in loss of the antifungal activity of MtDef4. MtDef4 binds strongly to phosphatidic acid (PA), a precursor for the biosynthesis of membrane phospholipids and a signaling lipid known to recruit cytosolic proteins to membranes. Mutations of RGFRRR which abolish fungal cell entry of MtDef4 also impair its binding to PA. Our results suggest that RGFRRR motif is a translocation signal for entry of MtDef4 into fungal cells and that this positively charged motif likely mediates interaction of this defensin with PA as part of its antifungal action.

  11. Fabrication of Message Digest to Authenticate Audio Signals with Alternation of Coefficients of Harmonics in Multi-Stages (MDAC)

    E-Print Network [OSTI]

    Mondal, Uttam Kr

    2012-01-01T23:59:59.000Z

    Providing security to audio songs for maintaining its intellectual property right (IPR) is one of chanllenging fields in commercial world especially in creative industry. In this paper, an effective approach has been incorporated to fabricate authentication of audio song through application of message digest method with alternation of coefficients of harmonics in multi-stages of higher frequency domain without affecting its audible quality. Decomposing constituent frequency components of song signal using Fourier transform with generating secret code via applying message digest followed by alternating coefficients of specific harmonics in multi-stages generates a secret code and this unique code is utilized to detect the originality of the song. A comparative study has been made with similar existing techniques and experimental results are also supported with mathematical formula based on Microsoft WAVE (".wav") stereo sound file.

  12. MT1-MMP promotes cell growth and ERK activation through c-Src and paxillin in three-dimensional collagen matrix

    SciTech Connect (OSTI)

    Takino, Takahisa; Tsuge, Hisashi; Ozawa, Terumasa [Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)] [Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Sato, Hiroshi, E-mail: vhsato@kenroku.kanazawa-u.ac.jp [Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)] [Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)

    2010-06-11T23:59:59.000Z

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21{sup WAF1} and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin {alpha}{sub v}{beta}{sub 3} were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.

  13. EIS-0092: Conversion to Coal, Holyoke Water Power Company, Mt. Tom Generating Station Unit 1 Holyoke, Hampden County, Massachusetts

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration prepared this statement to assess the environmental impacts of prohibiting Unit 1 of the Mt. Tom Generation Station Unit 1 from using either natural gas or petroleum products as a primary energy source, which would result in the utility burning low-sulfur coal.

  14. Retreat of Glaciers in Glacier National Park In Glacier National Park (GNP), MT some effects of global

    E-Print Network [OSTI]

    Retreat of Glaciers in Glacier National Park In Glacier National Park (GNP), MT some effects of global climate change are strikingly clear. Glacier recession is underway, and many glaciers have already disappeared. The retreat of these small alpine glaciers reflects changes in recent climate as glaciers respond

  15. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS--II: EXPRESS BRIEFS, VOL. 59, NO. 3, MARCH 2012 133 A 16-Audio Amplifier With 93.8-mW Peak Load

    E-Print Network [OSTI]

    Johnson, Eric E.

    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS--II: EXPRESS BRIEFS, VOL. 59, NO. 3, MARCH 2012 133 A 16-AB audio amplifier is designed to drive a 16- headphone speaker load. High power efficiency is achieved from both ±1.5-V supplies exceeds 63 dB over the entire audio frequency range. The design

  16. Four-year prospective study of the respiratory effects of volcanic ash from Mt. St. Helens

    SciTech Connect (OSTI)

    Buist, A.S.; Vollmer, W.M.; Johnson, L.R.; Bernstein, R.S.; McCamant, L.E.

    1986-04-01T23:59:59.000Z

    This report describes the 4-yr follow-up of 712 loggers exposed over an extended period to varying levels of fresh volcanic ash from the 1980 eruptions of Mt. St. Helens. Concerns related to the irritant effect the ash might have on the airways and also to its fibrogenic potential if exposures were intense and continued over many years. Our subjects were divided into 3 groups: high, low, and no exposure. Baseline testing was begun in June 1980, 1 month after the major eruption, and follow-up testing continued on an annual basis through 1984; 88% of the loggers have been tested at least 3 times. Analysis of lung function data showed that a significant, exposure-related decline in FEV1 occurred during the first year after the eruption. The decline was short-lived, however, and by 1984 the differences between exposure groups were no longer significant. Self-reported symptoms of cough, phlegm, and wheeze showed a similar pattern. No ash-related changes were seen in chest roentgenograms taken in 1980 and in 1984. Our findings are consistent with the hypothesis that the inhaled ash caused mucus hypersecretion and/or airway inflammation that reversed when the exposure levels decreased. The ash levels to which the loggers were exposed were low compared with permissible occupational levels for nuisance dusts, but generally higher than the total suspended particulate levels permissible in ambient air.

  17. CO2 flood tests on whole core samples of the Mt. Simon sandstone, Illinois Basin

    SciTech Connect (OSTI)

    O'Connor, William K.; Rush, Gilbert E.

    2005-09-01T23:59:59.000Z

    Geological sequestration of CO2, whether by enhanced oil recovery (EOR), coal-bed methane (CBM) recovery, or saline aquifer injection is a promising near-term sequestration methodology. While tremendous experience exists for EOR, and CBM recovery has been demonstrated in existing fields, saline aquifer injection studies have only recently been initiated. Studies evaluating the availability of saline aquifers suitable for CO2 injection show great potential, however, the long-term fate of the CO2 injected into these ancient aqueous systems is still uncertain. For the subject study, a series of laboratory-scale CO2 flood tests were conducted on whole core samples of the Mt. Simon sandstone from the Illinois Basin. By conducting these tests on whole core samples rather than crushed core, an evaluation of the impact of the CO2 flood on the rock mechanics properties as well as the geochemistry of the core and brine solution has been possible. This empirical data could provide a valuable resource for the validation of reservoir models under development for these engineered CO2 systems.

  18. Development of CO2 measurement system in a remote area under harsh observation environment -a case of Mt. Fuji

    E-Print Network [OSTI]

    ) GlassBottle 7/27 11007/27 1100 7/30 11007/30 1100 8/12 17008/12 1700 Measurement; a case of Mt. Fuji summer start at 3,9,15,21(JST) once / day starting at 15:00 (from 16/08/2009) (Glass bottle sampling (1L JMA facilities. We appreciate for their help with the glass bottle sampling and our activities

  19. Assignment 4 BS4a Actuarial Science Oxford MT 2011 IX A.4 Inflation, taxation and project appraisal

    E-Print Network [OSTI]

    Winkel, Matthias

    Assignment 4 ­ BS4a Actuarial Science ­ Oxford MT 2011 IX A.4 Inflation, taxation and project are indexed by reference to the value of a retail price index with a time lag of 8 months. The retail price index value in September 1996 was Q(-8/12) = 200 and in March 1997 was Q(-2/12) = 206. The issue price

  20. Influence of electron injection into 27 cm audio plasma cell on the plasma diagnostics

    SciTech Connect (OSTI)

    Haleem, N. A.; Ragheb, M. S.; Zakhary, S. G. [Accelerators Department, Nuclear Research Center, AEA, Cairo 13759 (Egypt)] [Accelerators Department, Nuclear Research Center, AEA, Cairo 13759 (Egypt); El Fiki, S. A.; Nouh, S. A. [Faculty of Science, Ain Shams University, Cairo 11566 (Egypt)] [Faculty of Science, Ain Shams University, Cairo 11566 (Egypt); El Disoki, T. M. [Faculty of Girls, Ain Shams University, Cairo 11566 (Egypt)] [Faculty of Girls, Ain Shams University, Cairo 11566 (Egypt)

    2013-08-15T23:59:59.000Z

    In this article, the plasma is created in a Pyrex tube (L = 27 cm, ?= 4 cm) as a single cell, by a capacitive audio frequency (AF) discharge (f = 10–100 kHz), at a definite pressure of ?0.2 Torr. A couple of tube linear and deviating arrangements show plasma characteristic conformity. The applied AF plasma and the injection of electrons into two gas mediums Ar and N{sub 2} revealed the increase of electron density at distinct tube regions by one order to attain 10{sup 13}/cm{sup 3}. The electrons temperature and density strengths are in contrast to each other. While their distributions differ along the plasma tube length, they show a decaying sinusoidal shape where their peaks position varies by the gas type. The electrons injection moderates electron temperature and expands their density. The later highest peak holds for the N{sub 2} gas, at electrons injection it changes to hold for the Ar. The sinusoidal decaying density behavior generates electric fields depending on the gas used and independent of tube geometry. The effect of the injected electrons performs a responsive impact on electrons density not attributed to the gas discharge. Analytical tools investigate the interaction of the plasma, the discharge current, and the gas used on the electrodes. It points to the emigration of atoms from each one but for greater majority they behave to a preferred direction. Meanwhile, only in the linear regime, small percentage of atoms still moves in reverse direction. Traces of gas atoms revealed on both electrodes due to sheath regions denote lack of their participation in the discharge current. In addition, atoms travel from one electrode to the other by overcoming the sheaths regions occurring transportation of particles agglomeration from one electrode to the other. The electrons injection has contributed to increase the plasma electron density peaks. These electrons populations have raised the generated electrostatic fields assisting the elemental ions emigration to a preferred electrode direction. Regardless of plasma electrodes positions and plasma shape, ions can be departed from one electrode to deposit on the other one. In consequence, as an application the AF plasma type can enhance the metal deposition from one electrode to the other.

  1. Dark Matter Particle Spectroscopy at the LHC: Generalizing M(T2) to Asymmetric Event Topologies

    SciTech Connect (OSTI)

    Konar, Partha; /Florida U.; Kong, Kyoungchul; /SLAC; Matchev, Konstantin T.; Park, Myeonghun; /Florida U.; ,

    2012-04-03T23:59:59.000Z

    We consider SUSY-like missing energy events at hadron colliders and critically examine the common assumption that the missing energy is the result of two identical missing particles. In order to experimentally test this hypothesis, we generalize the subsystem M{sub T2} variable to the case of asymmetric event topologies, where the two SUSY decay chains terminate in different 'children' particles. In this more general approach, the endpoint M{sub T2(max)} of the M{sub T2} distribution now gives the mass {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}) of the parent particles as a function of two input children masses {tilde M}{sub c}{sup (a)} and {tilde M}{sub c}{sup (b)}. We propose two methods for an independent determination of the individual children masses M{sub c}{sup (a)} and M{sub c}{sup (b)}. First, in the presence of upstream transverse momentum PUTM the corresponding function {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}, P{sub UTM}) is independent of P{sub UTM} at precisely the right values of the children masses. Second, the previously discussed MT2 'kink' is now generalized to a 'ridge' on the 2-dimensional surface {tilde M}p({tilde M}{sub c}{sup (a)}, {tilde M}{sub c}{sup (b)}). As we show in several examples, quite often there is a special point along that ridge which marks the true values of the children masses. Our results allow collider experiments to probe a multi-component dark matter sector directly and without any theoretical prejudice.

  2. Uranium hydrogeochemical and stream-sediment reconnaissance of the Mt. Michelson NTMS quadrangle, Alaska

    SciTech Connect (OSTI)

    Zinkl, R.J.; Shettel, D.L. Jr.; Langfeldt, S.L.; Hardy, L.C.; D'Andrea, R.F. Jr. (comps.) [comps.

    1982-04-01T23:59:59.000Z

    This report presents results of a Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Mt. Michelson NTMS quadrangle, Alaska. In addition to this abbreviated data release, more complete data are available to the public in machine-readable form. These machine-readable data, as well as quarterly or semiannual program progress reports containing further information on the HSSR program in general, or on the Los Alamos National Laboratory (LANL) portion of the program in particular, are available from DOE's Technical Library at its Grand Junction Area Office. Presented in this data release are location data, field analyses, and laboratory analyses of several different sample media. For the sake of brevity, many field site observations have not been included in this volume; these data are, however, available on the magnetic tape. Appendices A and B describe the sample media and summarize the analytical results for each medium. The data have been subdivided by one of the Los Alamos National Laboratory sorting programs of Zinkl and others (1981a) into groups of stream-sediment and lake-sediment samples. For each group which contains a sufficient number of observations, statistical tables, tables of raw data, and 1:1,000,000 scale maps of pertinent elements have been included in this report. Also included are maps showing results of multivariate statistical analyses. Information on the field and analytical procedures used by the Los Alamos National Laboratory during sample collection and analysis may be found in any HSSR data release prepared by the Laboratory and will not be included in this report.

  3. IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 16, NO. 6, AUGUST 2008 1087 Transforming Perceived Vocal Effort and Breathiness

    E-Print Network [OSTI]

    Driessen, Peter F.

    IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 16, NO. 6, AUGUST 2008 1087 are with the Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC V8W 3P6, Canada (e of Computer Science, University of Victoria, Victoria, BC V8W 3P6, Canada (e-mail: gtzan@cs.uvic.ca). Digital

  4. 916 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 4, MAY 2011 AR-GARCH in Presence of Noise: Parameter

    E-Print Network [OSTI]

    Cohen, Israel

    916 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 4, MAY 2011 AR-GARCH (VAD) based on the autoregressive-generalized autore- gressive conditional heteroscedasticity (AR-GARCH) model. The speech signal is modeled as an AR-GARCH process in the time domain, and the likelihood ratio

  5. IEEE TRANS. AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. XX, NO. Y, MONTH 2010 1 AR-GARCH in Presence of Noise: Parameter

    E-Print Network [OSTI]

    Cohen, Israel

    IEEE TRANS. AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. XX, NO. Y, MONTH 2010 1 AR-GARCH (VAD) based on the autoregressive-generalized autore- gressive conditional heteroscedasticity (AR-GARCH) model. The speech signal is modeled as an AR-GARCH process in the time domain, and the likelihood ratio

  6. Library Audio Tour: Main Library Welcome to the MSU Libraries! I'm a Reference Librarian and I'm going to take you

    E-Print Network [OSTI]

    Library Audio Tour: Main Library Welcome to the MSU Libraries! I'm a Reference Librarian and I'm going to take you on a quick tour of the Main Library, the largest library of the MSU Libraries. You can and a Library Directory. Hit your PAUSE button now if you need a minute to find it. You are now in the Lobby

  7. Approaches to building single-stage AC/AC conversion switch-mode audio power Petar Ljusev and Michael A.E. Andersen

    E-Print Network [OSTI]

    power amplifiers with a separate power supply, it is expected that direct conversion will provide better performance. It is also quite appealing for the Active Trans- ducer (AT) [2] approach for direct conversionApproaches to building single-stage AC/AC conversion switch-mode audio power amplifiers Petar

  8. Observations of roAp stars at the Mt. Dushak-Erekdag station of Odessa Astronomical Observatory

    E-Print Network [OSTI]

    T. N. Dorokhova; N. I. Dorokhov

    1998-05-14T23:59:59.000Z

    Since 1992, observations of roAp stars have been carried out using the dual-channel photometer attached to the 0.8m telescope, which is situated in Central Asia, at the Mt. Dushak-Erekdag station of Odessa Astronomical Observatory. Some results of observations of gamma Equ and of HD 134214 are presented. 5 stars were investigated as roAp candidates. The Fourier spectra of 4 stars did not show any variability in the high-frequency region. The Fourier spectrum of HD 99563 revealed a peak at a frequency f=128.9 c/d and with a semi-amplitude of 3.98 mmag.

  9. A polymorphism in metallothionein 1A (MT1A) is associated with cadmium-related excretion of urinary beta 2?microglobulin

    SciTech Connect (OSTI)

    Lei, Lijian [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China) [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China); Department of Epidemiology, School of Public Health, Shanxi Medical University, Shanxi (China); Chang, Xiuli [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China)] [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China); Rentschler, Gerda [Department of Occupational and Environmental Medicine, Lund University, SE-22185, Lund (Sweden)] [Department of Occupational and Environmental Medicine, Lund University, SE-22185, Lund (Sweden); Tian, Liting [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China)] [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China); Zhu, Guoying; Chen, Xiao [Department of Bone Metabolism, Institute of Radiation Medicine, Fudan University, Shanghai (China)] [Department of Bone Metabolism, Institute of Radiation Medicine, Fudan University, Shanghai (China); Jin, Taiyi, E-mail: tyjinster@gmail.com [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China)] [Department of Occupational Health, School of Public Health, Fudan University, Shanghai (China); Broberg, Karin, E-mail: karin.broberg_palmgren@med.lu.se [Department of Occupational and Environmental Medicine, Lund University, SE-22185, Lund (Sweden)] [Department of Occupational and Environmental Medicine, Lund University, SE-22185, Lund (Sweden)

    2012-12-15T23:59:59.000Z

    Objectives: Cadmium (Cd) toxicity of the kidney varies between individuals despite similar exposure levels. In humans Cd is mainly bound to metallothioneins (MT), which scavenge its toxic effects. Here we analyzed whether polymorphisms in MT genes MT1A and MT2A influence Cd-related kidney damage. Methods: In a cross-sectional study N = 512 volunteers were selected from three areas in South-Eastern China, which to varying degree were Cd-polluted from a smelter (control area [median Cd in urine U-Cd = 2.67 ?g/L], moderately [U-Cd = 4.23 ?g/L] and highly [U-Cd = 9.13 ?g/L] polluted areas). U-Cd and blood Cd (B-Cd) concentrations were measured by graphite-furnace atomic absorption spectrometry. MT1A rs11076161 (G/A), MT2A rs10636 (G/C) and MT2A rs28366003 (A/G) were determined by Taqman assays; urinary N-Acetyl-beta-(D)-Glucosaminidase (UNAG) by spectrometry, and urinary ?2-microglobulin (UB2M) by ELISA. Results: Higher B-Cd (natural log-transformed) with increasing number of MT1A rs11076161 A-alleles was found in the highly polluted group (p-value trend = 0.033; all p-values adjusted for age, sex, and smoking). In a linear model a significant interaction between rs11076161 genotype and B-Cd was found for UNAG (p = 0.001) and UB2M concentrations (p = 0.001). Carriers of the rs11076161 AA genotype showed steeper slopes for the associations between Cd in blood and natural log-transformed UB2M (? = 1.2, 95% CI 0.72–1.6) compared to GG carriers (? = 0.30, 95% CI 0.15–0.45). Also for UNAG (natural log-transformed) carriers of the AA genotype had steeper slopes (? = 0.55, 95% CI 0.27–0.84) compared to GG carriers (? = 0.018, 95% CI ? 0.79–0.11). Conclusions: MT1A rs11076161 was associated with B-Cd concentrations and Cd-induced kidney toxicity at high exposure levels. -- Highlights: ? Cadmium is toxic to the kidney but the susceptibility differs between individuals. ? The toxic effect of cadmium is scavenged by metallothioneins. ? A common variant of metallothionein 1A was genotyped in 512 cadmium exposed humans. ? Variant carriers of this polymorphism showed more kidney damage from cadmium. ? The frequency of these variants needs to be taken into account in risk assessment.

  10. Searches for supersymmetry using the MT2 variable in hadronic events produced in pp collisions at 8 TeV

    E-Print Network [OSTI]

    CMS Collaboration

    2015-02-15T23:59:59.000Z

    Searches for supersymmetry (SUSY) are performed using a sample of hadronic events produced in 8 TeV pp collisions at the CERN LHC. The searches are based on the MT2 variable, which is a measure of the transverse momentum imbalance in an event. The data were collected with the CMS detector and correspond to an integrated luminosity of 19.5 inverse femtobarns. Two related searches are performed. The first is an inclusive search based on signal regions defined by the value of the MT2 variable, the hadronic energy in the event, the jet multiplicity, and the number of jets identified as originating from bottom quarks. The second is a search for a mass peak corresponding to a Higgs boson decaying to a bottom quark-antiquark pair, where the Higgs boson is produced as a decay product of a SUSY particle. For both searches, the principal backgrounds are evaluated with data control samples. No significant excess over the expected number of background events is observed, and exclusion limits on various SUSY models are derived.

  11. LOCA simulation in the national research universal reactor program: postirradiation examination results for the third materials experiment (MT-3)

    SciTech Connect (OSTI)

    Rausch, W.N.

    1984-04-01T23:59:59.000Z

    A series of in-reactor experiments were conducted using full-length 32-rod pressurized water reactor (PWR) fuel bundles as part of the Loss-of-Coolant Accident (LOCA) Simulation Program. The third materials experiment (MT-3) was the sixth in the series of thermal-hydraulic and materials deformation/rutpure experiments conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. The main objective of the experiment was to evaluate ballooning and rupture during active two-phase cooling in the temperature range from 1400 to 1500/sup 0/F (1030 to 1090 K). The 12 test rods in the center of the 32-rod bundle were initially pressurized to 550 psi (3.8 MPa) to insure rupture in the correct temperature range. All 12 of the rods ruptured, with an average peak bundle strain of approx. 55%. The UKAEA also funded destructive postirradiation examination (PIE) of several of the ruptured rods from the MT-3 experiment. This report describes the work performed and presents the PIE results. Information obtained during the PIE included cladding thickness measurements metallography, and particle size analysis of the cracked and broken fuel pellets.

  12. Magnetotellurics At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    structure in the reservoir region. Some of the data were reinterpreted using K508 computer models, and interpretations from the various surveys were compared for consistency of...

  13. Magnetotellurics At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    structure in the reservoir region. Some of the data were reinterpreted using computer models, and interpretations from the various surveys were compared for consistency of...

  14. Magnetotellurics At Dixie Valley Geothermal Area (Wannamaker...

    Open Energy Info (EERE)

    Exploration Basis The goal of this project was to better define the fault system running through the thermally active part of Dixie Valley and infer the sources for the heat...

  15. Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15Among States in theWAPA1 DOEAnalysis to

  16. Category:Magnetotelluric Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual ModelLists for Companies"

  17. Magnetotellurics (Muse, 1973) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison Gas & JumpStructuralMuse,

  18. Magnetotellurics (Laney, 2005) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECOFlorida:MadisonYork:Drill

  19. Category:Magnetotellurics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo Back to PVMagnetotellurics as

  20. Electrical, electromagnetic, and magnetotelluric methods | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open JumpEcologyElInformationof

  1. Comment on ``A modified leapfrog scheme for shallow water equations'' by Wen-Yih Sun and Oliver M.T. Sun

    E-Print Network [OSTI]

    Williams, Paul

    Commentary Comment on ``A modified leapfrog scheme for shallow water equations'' by Wen-Yih Sun and Oliver M.T. Sun Paul D. Williams Department of Meteorology, University of Reading, UK a r t i c l e i n f integration of the shallow-water equa- tions using the leapfrog time-stepping scheme [Sun Wen-Yih, Sun Oliver

  2. The mitochondrial fatty acid synthesis (mtFASII) pathway is capable of mediating nuclear-mitochondrial cross talk through the PPAR system of transcriptional activation

    SciTech Connect (OSTI)

    Parl, Angelika; Mitchell, Sabrina L.; Clay, Hayley B.; Reiss, Sara; Li, Zhen; Murdock, Deborah G., E-mail: deborah.murdock@vanderbilt.edu

    2013-11-15T23:59:59.000Z

    Highlights: •The function of the mitochondria fatty acid synthesis pathway is partially unknown. •Overexpression of the pathway causes transcriptional activation through PPARs. •Knock down of the pathway attenuates that activation. •The last enzyme in the pathway regulates its own transcription. •Products of the mtFASII pathway are able to drive nuclear transcription. -- Abstract: Mammalian cells contain two fatty acid synthesis pathways, the cytosolic FASI pathway, and the mitochondrial FASII pathway. The selection behind the conservation of the mitochondrial pathway is not completely understood, given the presence of the cytosolic FAS pathway. In this study, we show through heterologous gene reporter systems and PCR-based arrays that overexpression of MECR, the last step in the mtFASII pathway, causes modulation of gene expression through the PPAR pathway. Electromobility shift assays (EMSAs) demonstrate that overexpression of MECR causes increased binding of PPARs to DNA, while cell fractionation and imaging studies show that MECR remains localized to the mitochondria. Interestingly, knock down of the mtFASII pathway lessens the effect of MECR on this transcriptional modulation. Our data are most consistent with MECR-mediated transcriptional activation through products of the mtFASII pathway, although we cannot rule out MECR acting as a coactivator. Further investigation into the physiological relevance of this communication will be necessary to better understand some of the phenotypic consequences of deficits in this pathway observed in animal models and human disease.

  3. COII/tRNA[sup Lys] intergenic 9-bp deletion and other mtDNA markers clearly reveal that the Tharus (Southern Nepal) have oriental affinities

    SciTech Connect (OSTI)

    Passarino, G.; Semino, O.; Santachiara-Benerecetti, A.S.; Modiano, G. (Universita di Tor Vergata (Romania))

    1993-09-01T23:59:59.000Z

    The authors searched for the East Asian mtDNA 9-bp deletion in the intergenic COII/tRNA[sup Lys] region in a sample of 107 Tharus (50 from central Terai and 57 from eastern Terai), a population whose anthropological origin has yet to be completely clarified. The deletion, detected by electrophoresis of the PCR-amplified nt 7392-8628 mtDNA fragment after digestion with HaeIII, was found in about 8% of both Tharu groups but was found in none of the 76 Hindus who were examined as a non-Oriental neighboring control population. A complete triplication of the 9-bp unit, the second case so far reported, was also observed in one eastern Tharu. All the mtDNAs with the deletion, and that with the triplication, were further characterized (by PCR amplification of the relevant mTDNA fragments and their digestion with the appropriate enzymes) to locate them in the Ballinger et al. phylogeny of East Asian mtDNA haplotypes. The deletion was found to be associated with four different haplotypes, two of which are reported for the first time. One of the deletions and especially the triplication could be best explained by the assumption of novel length-change events. Ballinger's classification of East Asian mtDNA haplotypes is mainly based on the phenotypes for the DdeI site at nt 10394 and the AluI site at nt 10397. Analysis of the entire Tharu sample revealed that more than 70% of the Tharus have both sites, the association of which has been suggested as an ancient East Asian peculiarity. These results conclusively indicate that the Tharus have a predominantly maternal Oriental ancestry. Moreover, they show at least one and perhaps two further distinct length mutations, and this suggests that the examined region is a hot spot of rearrangements. 21 refs., 5 figs., 6 tabs.

  4. Method for determining depth and shape of a sub-surface conductive object

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Wayland, Jr.

    1984-06-27T23:59:59.000Z

    The depth to and size of an underground object may be determined by sweeping a controlled source audio magnetotelluric (CSAMT) signal and locating a peak response when the receiver spans the edge of the object. The depth of the object is one quarter wavelength in the subsurface media of the frequency of the peak. 3 figures.

  5. Acute and chronic effects of exposure to a 1-mT magnetic field on the cytoskeleton, stress proteins, and proliferation of astroglial cells in culture

    SciTech Connect (OSTI)

    Bodega, G. [Departamento de Biologia Celular y Genetica, Facultad de Biologia, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain)]. E-mail: guillermo.bodega@uah.es; Forcada, I. [Departamento de Biologia Celular y Genetica, Facultad de Biologia, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain); Suarez, I. [Departamento de Biologia Celular y Genetica, Facultad de Biologia, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain); Fernandez, B. [Departamento de Biologia Celular, Facultad de Biologia, Universidad Complutense, 28040 Madrid (Spain)

    2005-07-01T23:59:59.000Z

    This paper reports the effects of exposure to static, sinusoidal (50 Hz), and combined static/sinusoidal magnetic fields on cultured astroglial cells. Confluent primary cultures of astroglial cells were exposed to a 1-mT sinusoidal, static, or combined magnetic field for 1 h. In another experiment, cells were exposed to the combined magnetic field for 1, 2, and 4 h. The hsp25, hsp60, hsp70, actin, and glial fibrillary acidic protein contents of the astroglial cells were determined by immunoblotting 24 h after exposure. No significant differences were seen between control and exposed cells with respect to their contents of these proteins, neither were any changes in cell morphology observed. In a third experiment to determine the effect of a chronic (11-day) exposure to a combined 1-mT static/sinusoidal magnetic field on the proliferation of cultured astroglial cells, no significant differences were seen between control, sham-exposed, or exposed cells. These results suggest that exposure to 1-mT sinusoidal, static, or combined magnetic fields has no significant effects on the stress, cytoskeletal protein levels in, or proliferation of cultured astroglial cells.

  6. Structural and tectonic implications of pre-Mt. Simon strata -- or a lack of such -- in the western part of the Illinois basin

    SciTech Connect (OSTI)

    Sargent, M.L. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01T23:59:59.000Z

    The discovery of a pre-Mt. Simon lithic arenite (arkose) in southwestern Ohio has lead to reevaluation of many basement tests in the region. Several boreholes in adjacent states have been reexamined by others and are now believed to bottom in the Middle Run Formation. Seismic-reflection sections in western Ohio and Indiana have indicated pre-Mt. Simon basins filled with layered rocks that are interpreted to be Middle Run, however, the pre-Mt. Simon basins and east of Illinois. Samples from Illinois basement tests were reexamined to determine whether they had encountered similar strata. All reported crystalline-basement tests in Illinois show diagnostic igneous textures and mineralogical associations. Coarsely crystalline samples in cores show intergrown subhedral grains of quartz, microcline, and sodic plagioclase. Medium-crystalline rocks in cuttings samples show numerous examples of micrographic intergrowths of quartz and K-feldspar. This texture cannot be authigenically grown in a sediment and probably could not have survived a single cycle of erosion and deposition. Aphanitic rocks show porphyritic and spherulitic textures that are distinctly igneous and would be destroyed by weathering. Substantial relief on the Precambrian crystalline surface in Illinois is postulated for major structural features like the LaSalle Anticlinorium, the Sparta Shelf, the Ste. Genevieve Fault zone, etc. Paleotopographic relief up to 300 m (1,000 feet) is documented from drilling on the western flank of the basin.

  7. versity (MT Assistant o

    E-Print Network [OSTI]

    discipline um vitae, s and contac electronica cmsearch@ 2011, an trategic Fac nitiative ates are en rsities

  8. Audio Spots | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumni AlumniFederalAshley BoyleAn overheadTechnical1AttendeesNews

  9. Experiment Safety Assurance Package for the 40- to 50-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-Hole Positions in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Khericha, S.T.

    2002-06-30T23:59:59.000Z

    This experiment safety assurance package (ESAP) is a revision of the last MOX ESAP issued in February 2001(Khericha 2001). The purpose of this revision is to identify the changes in the loading pattern and to provide a basis to continue irradiation up to {approx}42 GWd/MT burnup (+ 2.5%) as predicted by MCNP (Monte Carlo N-Particle) transport code before the preliminary postirradiation examination (PIE) results for 40 GWd/MT burnup are available. Note that the safety analysis performed for the last ESAP is still applicable and no additional analysis is required (Khericha 2001). In July 2001, it was decided to reconfigure the test assembly using the loading pattern for Phase IV, Part 3, at the end of Phase IV, Part 1, as the loading pattern for Phase IV, Parts 2 and 3. Three capsule assemblies will be irradiated until the highest burnup capsule assembly accumulates: {approx}50 GWd/MT burnup, based on the MCNP code predictions. The last ESAP suggests that at the end of Phase IV, Part 1, we remove the two highest burnup capsule assemblies ({at} {approx}40 GWd/MT burnup) and send them to ORNL for PIE. Then, irradiate the test assembly using the loading pattern for Phase IV, Part 2, until the highest burnup capsule reaches {approx}40 GWd/MT burnup per MCNP-predicted values.

  10. Experiment Safety Assurance Package for the 40- to 50-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-Hole Positions in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Khericha, Soli T

    2002-06-01T23:59:59.000Z

    This experiment safety assurance package (ESAP) is a revision of the last MOX ESAP issued in February 2001(Khericha 2001). The purpose of this revision is to identify the changes in the loading pattern and to provide a basis to continue irradiation up to ~42 GWd/MT burnup (+ 2.5% as predicted by MCNP (Monte Carlo N-Particle) transport code before the preliminary postirradiation examination (PIE) results for 40 GWd/MT burnup are available. Note that the safety analysis performed for the last ESAP is still applicable and no additional analysis is required (Khericha 2001). In July 2001, it was decided to reconfigure the test assembly using the loading pattern for Phase IV, Part 3, at the end of Phase IV, Part 1, as the loading pattern for Phase IV, Parts 2 and 3. Three capsule assemblies will be irradiated until the highest burnup capsule assembly accumulates: ~50 GWd/MT burnup, based on the MCNP code predictions. The last ESAP suggests that at the end of Phase IV, Part 1, we remove the two highest burnup capsule assemblies (@ ~40 GWd/MT burnup) and send them to ORNL for PIE. Then, irradiate the test assembly using the loading pattern for Phase IV, Part 2, until the highest burnup capsule reaches ~40 GWd/MT burnup per MCNP-predicted values.

  11. A synthesis and review of geomorphic surfaces of the boundary zone Mt. Taylor to Lucero uplift area, West-Central New Mexico

    SciTech Connect (OSTI)

    Wells, S.G. [NEOTEC, Inc., Albuquerque, NM (United States)

    1989-01-01T23:59:59.000Z

    The Mt. Taylor volcanic field and Lucero uplift of west-central New Mexico occur in a transitional-boundary zone between the tectonically active Basin-and Range province (Rio Grande rift) and the less tectonically active Colorado plateau. The general geomorphology and Cenozoic erosional history has been discussed primarily in terms of a qualitative, descriptive context and without the knowledge of lithospheric processes. The first discussion of geomorphic surfaces suggested that the erosional surface underlying the Mt. Taylor volcanic rocks is correlative with the Ortiz surface of the Rio Grande rift. In 1978 a study supported this hypothesis with K-Ar dates on volcanic rocks within each physiographic province. The correlation of this surface was a first step In the regional analysis of the boundary zone; however, little work has been done to verify this correlation with numerical age dates and quantitatively reconstruct the surface for neotectonic purposes. Those geomorphic surfaces inset below and younger than the ``Ortiz`` surface have been studied. This report provides a summary of this data as well as unpublished data and a conceptual framework for future studies related to the LANL ISR project.

  12. Experiment Safety Assurance Package for the 40- to 52-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-hole Positions in the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. T. Khericha; R. C. Pedersen

    2003-09-01T23:59:59.000Z

    This experiment safety assurance package (ESAP) is a revision of the last mixed uranium and plutonium oxide (MOX) ESAP issued in June 2002). The purpose of this revision is to provide a basis to continue irradiation up to 52 GWd/MT burnup [as predicted by MCNP (Monte Carlo N-Particle) transport code The last ESAP provided basis for irradiation, at a linear heat generation rate (LHGR) no greater than 9 kW/ft, of the highest burnup capsule assembly to 50 GWd/MT. This ESAP extends the basis for irradiation, at a LHGR no greater than 5 kW/ft, of the highest burnup capsule assembly from 50 to 52 GWd/MT.

  13. Geophys. J. Int. (2011) doi: 10.1111/j.1365-246X.2011.05105.x GJIGeomagnetism,rockmagnetismandpalaeomagnetism

    E-Print Network [OSTI]

    Constable, Steve

    ,rockmagnetismandpalaeomagnetism A marine electromagnetic survey to detect gas hydrate at Hydrate Ridge, Oregon K. A. Weitemeyer,1 S; in original form 2010 April 8 S U M M A R Y Gas hydrates are a potential energy resource and hazard of controlled source electromagnetic (CSEM) and magnetotelluric (MT) methods to map gas hydrate and free gas

  14. Visualizing the Surface Infrastructure Used to Move 2 MtCO2/year from the Dakota Gasification Company to the Weyburn CO2 Enhanced Oil Recovery Project: Version of July 1, 2009

    SciTech Connect (OSTI)

    Dooley, James J.

    2009-07-09T23:59:59.000Z

    Google Earth Pro has been employed to create an interactive flyover of the world’s largest operational carbon dioxide capture and storage project. The visualization focuses on the transport and storage of 2 MtCO2/year which is captured from the Dakota Gasification Facility (Beula, North Dakota) and transported 205 miles and injected into the Weyburn oil field in Southeastern Saskatchewan.

  15. Arnaud Rykner, L'incomprhensible dans le tapis (Sur Henry James) , in L'Incomprhensible. Littrature, rel, visuel, sous la dir. de M.-T. Mathet, Paris, L'Harmattan,

    E-Print Network [OSTI]

    Boyer, Edmond

    'Incompréhensible. Littérature, réel, visuel, sous la dir. de M.-T. Mathet, Paris, L'Harmattan, coll. Champs visuels, 2003, p.-T. Mathet, Paris, L'Harmattan, coll. Champs visuels, 2003, p. 137-165. 2 Georges Didi-Huberman et dans un

  16. A magnetotelluric investigation of crustal structure in southeastern Arizona

    E-Print Network [OSTI]

    Parizek, Daniel Joseph

    1983-01-01T23:59:59.000Z

    . The consistent deep electrical strike may also suggest that the NN-trend of surface structures in the region was controlled by pre-existing, deep seated, NW-trending structures. Correlation between heat flow and depth to the crustal conductive zone... cross-section wi th the apparent resistivity model Conductive temperature profiles for major heat flow provinces in the United States (from Shankland and Ander, in press) 51 52 56 Page Figure 15. Heat flow sites in southeastern Arizona...

  17. Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance...

    Open Energy Info (EERE)

    System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And Age Determinations Of Hot-Spring Deposits Additional References Retrieved from...

  18. 3D Magnetotelluric Characterization Of The Geothermal Anomaly...

    Open Energy Info (EERE)

    C. Arango, A. Marcuello, J. Ledo and P. Queralt Published Journal Journal of Applied Geophysics, 2009 DOI 10.1016j.jappgeo.2008.05.006 Citation C. Arango,A. Marcuello,J. Ledo,P....

  19. Geothermal significance of magnetotelluric sounding in the eastern...

    Open Energy Info (EERE)

    and fitted to geologic models. Authors Stanley, W.D.; Boehl, J.E.; Bostick, F.X.; Smith and H.W. Published Journal J. Geophys. Res., 6101977 DOI Not Provided Check for DOI...

  20. A Broadband Tensorial Magnetotelluric Study In The Travale Geothermal...

    Open Energy Info (EERE)

    cover formations and of the intensity of the artificial disturbances from local power stations and distribution lines. Nevertheless it has been possible to obtain good...

  1. Magnetotellurics At Kilauea Southwest Rift And South Flank Area...

    Open Energy Info (EERE)

    to use the funds available to work at the Fort Bidwell Indian reservation where characterization work could be done at relatively low cost. We decided to perform a time lapse SP...

  2. Three-dimensional magnetotelluric characterization of the Coso...

    Open Energy Info (EERE)

    array profiling has been acquired over the east flank of the Coso geothermal system, CA, USA. Due to production related electromagnetic (EM) noise the permanent observatory at...

  3. Further Analysis of 3D Magnetotelluric Measurements Over the Coso

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown, New Jersey:Transit JumpNewGeothermal

  4. Geothermal significance of magnetotelluric sounding in the eastern Snake

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd toWell Testing and EvaluationRiver

  5. 3D MAGNETOTELLURIC CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki Home Jweers's APTA BasicEnergy Information

  6. 3D Magnetotelluric Characterization Of The Geothermal Anomaly In The

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki Home Jweers's APTA BasicEnergy

  7. A Broadband Tensorial Magnetotelluric Study In The Travale Geothermal Field

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Windthe CommissionEnergyEnergySeismic Response ofBrief| Open

  8. A Magnetotelluric Survey Of The Nissyros Geothermal Field (Greece) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergy Information FlashingEvaluation || OpenA

  9. A Systematic Approach to the Interpretation of Magnetotelluric Data in

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergy InformationOfandInformation Synthesis

  10. A Target-Oriented Magnetotelluric Inversion Approach For Characterizing The

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergy InformationOfandInformation SynthesisLow

  11. Initial Results of Magnetotelluric Array Surveying at the Dixie Valley

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown, Florida:InerjyIngham County,Long

  12. MAGNETOTELLURIC SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07) WindLowM2E Power Inc Jump

  13. Magnetotelluric Studies In Grass Valley, Nevada | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison Gas & Jump to:Magnetek

  14. Magnetotelluric Transect of Long Valley Caldera: Resistivity Cross Section,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison Gas & JumpStructural

  15. Magnetotellurics At Alum Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison Gas & JumpStructuralMuse,

  16. Magnetotellurics At Brady Hot Springs Area (Combs 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison Gas &

  17. Magnetotellurics At Central Nevada Seismic Zone Region (Pritchett, 2004) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison Gas &Open Energy

  18. Magnetotellurics At Coso Geothermal Area (2004) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison Gas &Open Energy

  19. Magnetotellurics At Coso Geothermal Area (2006) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison Gas &Open

  20. Magnetotellurics At Dixie Hot Springs Area (Combs 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison Gas

  1. Magnetotellurics At Dixie Valley Geothermal Area (Laney, 2005) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison GasEnergy Information

  2. Magnetotellurics At Dixie Valley Geothermal Area (Wannamaker, Et Al., 2006)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison GasEnergy Information|

  3. Magnetotellurics At Glass Mountain Area (Cumming And Mackie, 2007) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison GasEnergy

  4. Magnetotellurics At International Geothermal Area, Indonesia (Laney, 2005)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison GasEnergy| Open Energy

  5. Magnetotellurics At Kilauea Southwest Rift And South Flank Area (Laney,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison GasEnergy| Open Energy2005) |

  6. Magnetotellurics At Mccoy Geothermal Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison GasEnergy| Open Energy2005)

  7. Magnetotellurics At Mcgee Mountain Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison GasEnergy| Open

  8. Magnetotellurics At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison GasEnergy|

  9. Magnetotellurics At Roosevelt Hot Springs Area (Combs 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison

  10. Magnetotellurics At Salt Wells Area (Bureau of Land Management, 2009) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadisonOpen Energy Information

  11. Magnetotellurics At Silver Peak Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadisonOpen Energy Information

  12. Magnetotellurics At Socorro Mountain Area (Owens, Et Al., 2005) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadisonOpen Energy

  13. Magnetotellurics At Soda Lake Area (Combs 2006) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadisonOpen Energynot indicated

  14. Magnetotellurics At Truckhaven Area (Layman Energy Associates, 2010) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadisonOpen Energynot indicatedEnergy

  15. Magnetotellurics At Truckhaven Area (Warpinski, Et Al., 2004) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadisonOpen Energynot

  16. Magnetotellurics At Walker-Lane Transitional Zone Region (Pritchett, 2004)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadisonOpen EnergynotInformation|

  17. Magnetotellurics At Akutan Fumaroles Area (Kolker, Et Al., 2010) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECOFlorida:MadisonYork:DrillEnergy

  18. Magnetotellurics At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2013)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECOFlorida:MadisonYork:DrillEnergyEnergy|

  19. Magnetotellurics At Dixie Valley Geothermal Area (Wannamaker, Et Al., 2007)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECOFlorida:MadisonYork:DrillEnergyEnergy||

  20. Magnetotellurics At Grass Valley Area (Morrison, Et Al., 1979) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,

  1. Magnetotellurics At Jemez Pueblo Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez Pueblo Area (DOE GTP) Exploration Activity Details

  2. Magnetotellurics At Kilauea East Rift Geothermal Area (Laney, 2005) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez Pueblo Area (DOE GTP) Exploration Activity

  3. Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez Pueblo Area (DOE GTP) Exploration Activity1988) | Open

  4. Magnetotellurics At Long Valley Caldera Geothermal Area (Nordquist, 1987) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez Pueblo Area (DOE GTP) Exploration Activity1988) |

  5. Magnetotellurics At New River Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez Pueblo Area (DOE GTP) Exploration Activity1988) |New

  6. Magnetotellurics At Newberry Caldera Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez Pueblo Area (DOE GTP) Exploration Activity1988)

  7. Magnetotellurics At Northern Basin & Range Region (Pritchett, 2004) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez Pueblo Area (DOE GTP) Exploration Activity1988)Energy

  8. Magnetotellurics At Roosevelt Hot Springs Geothermal Area (Ward, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez Pueblo Area (DOE GTP) Exploration

  9. Magnetotellurics At Stillwater Area (Laney, 2005) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez Pueblo Area (DOE GTP) ExplorationStillwater Area

  10. Magnetotellurics At Valles Caldera - Redondo Geothermal Area (Wilt & Haar,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez Pueblo Area (DOE GTP) ExplorationStillwater Area1986) |

  11. Magnetotellurics At Valles Caldera - Sulphur Springs Geothermal Area (Wilt

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez Pueblo Area (DOE GTP) ExplorationStillwater Area1986)

  12. Three-dimensional magnetotelluric characterization of the Coso geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThe yearThermalSoulOaks,MileOpenfield | Open

  13. Heavy Oil Program. Quarterly progress report No. 1, April 1-June 30, 1980

    SciTech Connect (OSTI)

    Wayland, J. R.; Bartel, L. C.; Johnson, D. R.; Fox, R. L.

    1980-12-01T23:59:59.000Z

    Research and development efforts in support of the DOE Heavy Oil RD and D Program in reservoir access were initiated. Preliminary activities in the survey of sand control, drilling, and fracturing techniques in heavy oil formations are described. The continued development of a high temperature packer for use in steam injection applications is presented. A new application of controlled source audio magnetotelluric survey to developing thermal fronts from in situ combustion and steam drive is described.

  14. Value of Information spreadsheet

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Trainor-Guitton, Whitney

    This spreadsheet represents the information posteriors derived from synthetic data of magnetotellurics (MT). These were used to calculate value of information of MT for geothermal exploration. Information posteriors describe how well MT was able to locate the "throat" of clay caps, which are indicative of hidden geothermal resources. This data is full explained in the peer-reviewed publication: Trainor-Guitton, W., Hoversten, G. M., Ramirez, A., Roberts, J., Júlíusson, E., Key, K., Mellors, R. (Sept-Oct. 2014) The value of spatial information for determining well placement: a geothermal example, Geophysics.

  15. Value of Information spreadsheet

    SciTech Connect (OSTI)

    Trainor-Guitton, Whitney

    2014-05-12T23:59:59.000Z

    This spreadsheet represents the information posteriors derived from synthetic data of magnetotellurics (MT). These were used to calculate value of information of MT for geothermal exploration. Information posteriors describe how well MT was able to locate the "throat" of clay caps, which are indicative of hidden geothermal resources. This data is full explained in the peer-reviewed publication: Trainor-Guitton, W., Hoversten, G. M., Ramirez, A., Roberts, J., Júlíusson, E., Key, K., Mellors, R. (Sept-Oct. 2014) The value of spatial information for determining well placement: a geothermal example, Geophysics.

  16. Respiratory motion management using audio-visual biofeedback for respiratory-gated radiotherapy of synchrotron-based pulsed heavy-ion beam delivery

    SciTech Connect (OSTI)

    He, Pengbo; Ma, Yuanyuan; Huang, Qiyan; Yan, Yuanlin [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Qiang, E-mail: liqiang@impcas.ac.cn; Liu, Xinguo; Dai, Zhongying; Zhao, Ting; Fu, Tingyan; Shen, Guosheng [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-11-01T23:59:59.000Z

    Purpose: To efficiently deliver respiratory-gated radiation during synchrotron-based pulsed heavy-ion radiotherapy, a novel respiratory guidance method combining a personalized audio-visual biofeedback (BFB) system, breath hold (BH), and synchrotron-based gating was designed to help patients synchronize their respiratory patterns with synchrotron pulses and to overcome typical limitations such as low efficiency, residual motion, and discomfort. Methods: In-house software was developed to acquire body surface marker positions and display BFB, gating signals, and real-time beam profiles on a LED screen. Patients were prompted to perform short BHs or short deep breath holds (SDBH) with the aid of BFB following a personalized standard BH/SDBH (stBH/stSDBH) guiding curve or their own representative BH/SDBH (reBH/reSDBH) guiding curve. A practical simulation was performed for a group of 15 volunteers to evaluate the feasibility and effectiveness of this method. Effective dose rates (EDRs), mean absolute errors between the guiding curves and the measured curves, and mean absolute deviations of the measured curves were obtained within 10%–50% duty cycles (DCs) that were synchronized with the synchrotron’s flat-top phase. Results: All maneuvers for an individual volunteer took approximately half an hour, and no one experienced discomfort during the maneuvers. Using the respiratory guidance methods, the magnitude of residual motion was almost ten times less than during nongated irradiation, and increases in the average effective dose rate by factors of 2.39–4.65, 2.39–4.59, 1.73–3.50, and 1.73–3.55 for the stBH, reBH, stSDBH, and reSDBH guiding maneuvers, respectively, were observed in contrast with conventional free breathing-based gated irradiation, depending on the respiratory-gated duty cycle settings. Conclusions: The proposed respiratory guidance method with personalized BFB was confirmed to be feasible in a group of volunteers. Increased effective dose rate and improved overall treatment precision were observed compared to conventional free breathing-based, respiratory-gated irradiation. Because breathing guidance curves could be established based on the respective average respiratory period and amplitude for each patient, it may be easier for patients to cooperate using this technique.

  17. Miniature MT optical assembly (MMTOA)

    SciTech Connect (OSTI)

    Laughlin, Daric (Overland Park, KS); Abel, Phillip (Overland Park, KS)

    2008-04-01T23:59:59.000Z

    An optical assembly (10) includes a rigid mount (12) with a recess (26) proximate a first side thereof, a substrate (14), and an optical die (16) flip-chip bonded to the substrate (14). The substrate (14) is secured to the first side of the mount and includes a plurality of die bonding elements (40), a plurality of optical apertures (32), and a plurality of external bonding elements (42). A plurality of traces (44) interconnect the die bonding elements (40) and the external bonding elements (42). The optical die (16) includes a plurality of optical elements, each element including an optical signal interface (48), the die being bonded to the plurality of die bonding elements (40) such that the optical signal interface (48) of each element is in registry with an optical aperture (32) of the substrate (14) and the die (16) is at least partially enclosed by the recess (26).

  18. Telecommunications Audio Conference 800 # (Permanent)

    E-Print Network [OSTI]

    to continue when leader disconnects from the call Yes No Conference Entry/Exit announces the entry and exit

  19. Multicast Audio: The Next Generation

    E-Print Network [OSTI]

    Perkins, C.S.; Hardman, V.; Kouvelas, I.; Sasse, M.A.; Proceedings of INET'97, Kuala Lumpur, Malaysia, June 1997 Internet Society [More Details

    Perkins,C.S. Hardman,V. Kouvelas,I. Sasse,M.A. Proceedings of INET'97, Kuala Lumpur, Malaysia, June 1997 Internet Society

  20. Audio Engineering Society Convention Paper

    E-Print Network [OSTI]

    Ferri, Massimo

    drops [3], on objects. It consists of conventional eyeglasses linked to a comfortable-to-carry palmtop

  1. Audio Engineering Society Convention Paper

    E-Print Network [OSTI]

    Wawrzynek, John

    . The transfer function of the filter is a first-order shelving response. The tilt knob controls the slope the tilt parame- ter even more powerful. This is done by morphing the shelving response into a 6 d

  2. Marine Controlled-Source Electromagnetic Responses of a Thin Hydrocarbon Reservoir beneath Anisotropic Overburden

    E-Print Network [OSTI]

    Youn, Sangseok

    2014-08-07T23:59:59.000Z

    friends for their patience and persistent love. v NOMENCLATURE MCSEM Marine Controlled-source Electromagnetic HED Horizontal electric dipole MT Magnetotellurics TX Transmitter RX Receiver EX Total electric field response EX-EX Total.... ............................................................ 22 Figure 8. The isotropic EX-EX responses for an isotropic halfspace results, computed to validate the anisotropy modification of the SEATEM code. ........................ 24 Figure 9. EX-EX responses for different values of the z...

  3. Announcements Pick up old homework & MT

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    -REPLICATING, ENCAPSULATED, CHEMICAL SYSTEM THAT UNDERGOES DARWINIAN EVOLUTION" Important points to examine: -What/Archean transition 4.0 ­ 3.5 billion years ago #12;At this time the solar system was bombarded with comets

  4. Babb, MT Natural Gas Export to Canada

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame MonthLease3.01 12.33CubicMillion0

  5. Havre, MT Natural Gas Exports to Canada

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TO OBTAIN EIA PRODUCTS AND2,504

  6. Marysville Mt Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <Stevens Jump to:source History View New

  7. Mt Peak Utility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVistaZephyr)Mountain AirPeak Utility Jump

  8. Mt Poso Cogeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVistaZephyr)Mountain AirPeak Utility

  9. Marysville Mt Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump

  10. Category:Billings, MT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashton Greens Jump Lease. Add.png Add a new

  11. Mt Rainier Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,Spurr GeothermalInformation

  12. Plumbing fixture patterns through audio sampling

    E-Print Network [OSTI]

    Shea, Kevin Bruce

    2002-01-01T23:59:59.000Z

    was used to estimate maximal usage patterns and probabilities of the concurrent use of multiple water closets and urinals. Data was collected on the building's class population and schedule for comparisons to fixture use. The technique of multiple...

  13. Audio Reminders in the Home Environment.

    E-Print Network [OSTI]

    McGee-Lennon, M.R.; Wolters, M.; McBryan, T.

    McGee-Lennon,M.R. Wolters,M. McBryan,T. International Community on Auditory Displays, Montreal, Canada.

  14. Audio Reminders in The Home Environment

    E-Print Network [OSTI]

    McGee-Lennon, M.; Wolters, M.; McBryan, A.; Proceedings of the 13th International Conference on Auditory Display, Montreal, Canada, June 26 - 29, 2007.; [More Details

    McGee-Lennon,M. Wolters,M. McBryan,A. Proceedings of the 13th International Conference on Auditory Display, Montreal, Canada, June 26 - 29, 2007.

  15. Audio Conferencing Unit Version franaise incluse.

    E-Print Network [OSTI]

    .6 A maximum CLASS 2 POWER SUPPLY -VE +VE -VE +VE NRTL/C or -VE +VE #12;iii Important Safety Instructions

  16. Audio Engineering Society Convention Paper 7893

    E-Print Network [OSTI]

    Maher, Robert C.

    Service (NPS) for protection and monitoring is the natural acoustical environment, or natural soundscape, of each park. The natural soundscape refers to the intrinsic acoustical environment of an area within.maher@montana.edu ABSTRACT According to current U.S. National Park Service (NPS) management policies, the natural soundscape

  17. Enrico Fermi: Audio/Video Clips

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000ConsumptionInnovation Portal Industrial(2)Enrico

  18. 2013 ORNL Audio Spots | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruary 2004AugustApril 20133 Audit2013 NUFO Annual3 2013

  19. 2014 ORNL Audio Spots | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruary 2004AugustAprilJanuaryDecember9201414 Page4 2014

  20. 2015 ORNL Audio Spots | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, 2014 2014February 2015June5Energy520155

  1. Application Of 3D Inversion To Magnetotelluric Data In The Ogiri...

    Open Energy Info (EERE)

    difference method. A Bayesian criterion ABIC is applied to searching for the optimum trade-off among the minimization of the data misfit, model roughness and static shifts. The...

  2. A Five-Component Magneto-Telluric Method In Geothermal Exploration...

    Open Energy Info (EERE)

    recording and processing levels for a practical solution of the overall problem of the Earth electromagnetism, in geophysics. Up to now, the random character of the natural...

  3. 2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets...

    Open Energy Info (EERE)

    The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: 2-D...

  4. DETECTION OF GEOTHERMAL INTERFERENCE IN THE TUNNEL EXCAVATION USING MAGNETOTELLURICS TECHNIQUE

    E-Print Network [OSTI]

    Harinarayana, T.

    temperature of the hot springs is as high as 900 C at some places. Major civil construction sites such as dams, tunnels etc. need to be carefully planned to avoid the hot spring locations. For example, high temperature-engineers involved in tunnel construction in Himalayas is to know the possible interference of hot water regimes

  5. Area selection for diamonds using magnetotellurics: Examples from southern Africa Alan G. Jones a,

    E-Print Network [OSTI]

    Jones, Alan G.

    of the Witwatersrand, Jan Smuts Avenue, Johannesburg 2050, South Africa k ABB AB, HVDC, Ludvika, SE-77180, Sweden a b

  6. A Closely-Spaced Magnetotelluric Study Of The Ahuachapan-Chipilapa...

    Open Energy Info (EERE)

    that the Chipilapa and La Labor hot springs are supplied by two separate sources of hot fluids, one coming from the east and the other from the south or southwest. The...

  7. 2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets-

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource HistorykVOpenOpenDesignatedResistivity

  8. 3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind ProjectsourceInformationColorado3 PhasesIndonesia |

  9. A Closely-Spaced Magnetotelluric Study Of The Ahuachapan-Chipilapa

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Windthe CommissionEnergyEnergySeismic ResponseEnergyGeothermal

  10. Magnetotellurics At Cove Fort Area (Toksoz, Et Al, 2010) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison Gas &OpenInformation

  11. Magnetotellurics At Nw Basin & Range Region (Pritchett, 2004) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison GasEnergy| OpenInformation

  12. Magnetotellurics At Rio Grande Rift Region (Aiken & Ander, 1981) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison GasEnergy|Energy

  13. Magnetotellurics At U.S. West Region (Aiken & Ander, 1981) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadisonOpen EnergynotInformation

  14. Magnetotellurics At Beowawe Hot Springs Area (Garg, Et Al., 2007) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECOFlorida:MadisonYork:DrillEnergyEnergy

  15. The Long Valley/Mono Basin Volcanic Complex: A Preliminary Magnetotelluric

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformation 2EnergyCityGreen Data Book Jump

  16. Three-Dimensional Inversion of Magnetotelluric Data on a PC, Methodology

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThe yearThermalSoulOaks,Mile Canyonand

  17. Application Of 3D Inversion To Magnetotelluric Data In The Ogiri Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County, Michigan:Applewood, Colorado: EnergyDispersion

  18. DRAFT FOR IEEE TRANS. ON SPEECH AND AUDIO PROCESSING 1 An experimental comparison of audio tempo

    E-Print Network [OSTI]

    Dixon, Simon

    animations and rhythmic expressiveness transformations. In any computational modelling endeavour, systematic the International Conference on Music Information Retrieval (ISMIR 2004) held at the University Pompeu Fabra by knowledge of human perceptual mechanisms, which combines multiple simpler methods using a voting mechanism

  19. IBm1024 Inteligncia Artificial 2 Semestre/2013 Nmero Nome P1 P2 Sub MP T1 T2 T2' T3 MT L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 E1 E2 L+E F %F MF Situao Rec MR Situao aps Rec

    E-Print Network [OSTI]

    Baranauskas, José Augusto

    L4 L5 L6 L7 L8 L9 L10 E1 E2 L+E F %F MF Situação Rec MR Situação após Rec 7961541 Amir do NascimentoIBm1024 Inteligência Artificial 2º Semestre/2013 Número Nome P1 P2 Sub MP T1 T2 T2' T3 MT L1 L2 L3 Elemam 1.4 3.5 4.4 4.0 0.0 10.0 10.0 0.0 6.7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.1 5 83% 5.1

  20. Methods for enhancing mapping of thermal fronts in oil recovery

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

    1984-03-30T23:59:59.000Z

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  1. Cerro Prieto geothermal field: exploration during exploitation

    SciTech Connect (OSTI)

    Not Available

    1982-07-01T23:59:59.000Z

    Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. The description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field are presented. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development.

  2. Information needs for characterization of high-level waste repository sites in six geologic media. Volume 2. Appendices

    SciTech Connect (OSTI)

    NONE

    1985-05-01T23:59:59.000Z

    Volume II contains appendices for the following: (1) remote sensing and surface mapping techniques; (2) subsurface mapping methods for site characterization; (3) gravity technique; (4) audio-frequency magnetotelluric technique; (5) seismic refraction technique; (6) direct-current electrical resistivity method; (7) magnetic technique; (8) seismic reflection technique; (9) seismic crosshole method; (10) mechanical downhole seismic velocity survey method; (11) borehole geophysical logging techniques; (12) drilling and coring methods for precharacterization studies; (13) subsurface drilling methods for site characterization; (14) geomechanical/thermomechanical techniques for precharacterization studies; (15)geomechanical/thermal techniques for site characterization studies; (16) exploratory geochemical techniques for precharacterization studies; (17) geochemical techniques for site characterization; (18) hydrologic techniques for precharacterization studies; (19) hydrologic techniques for site characterization; and (20) seismological techniques.

  3. Magnetotelluric studies of the crust and upper mantle in a zone of active continental breakup, Afar, Ethiopia 

    E-Print Network [OSTI]

    Johnson, Nicholas Edward

    2013-07-01T23:59:59.000Z

    The Afar region of Ethiopia is slowly being torn apart by the Red Sea, Gulf of Aden and Main Ethiopian rifts which all meet at this remote, barren corner of Africa. Prior to rifting, volcanism probably started here some ...

  4. Geothermometry At Mt Princeton Hot Springs Geothermal Area (Pearl...

    Open Energy Info (EERE)

    Basis Temperature estimation of valley-fill hydrothermal reservoir Notes Si, Na-K, & Na-K-Ca geothermometry estimates yielded a reservoir temperature range of 97 to 188...

  5. 3D Mt Resistivity Imaging For Geothermal Resource Assessment...

    Open Energy Info (EERE)

    Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  6. REVIEW FOR MT3 ANSWER KEY MATH 2373, FALL 2014

    E-Print Network [OSTI]

    Anderson, Greg W.

    Problem 6 We consider two brine tanks. Initially: · Tank A contains 150 gallons of water and 37 pounds of salt. · Tank B contains 250 gallons of water and 43 pounds of salt. Starting at time t = 0: · Brine at a concentration 3 lb gal of salt is pumped at 5 gal min into tank A. · Brine is pumped from tank A to tank B

  7. REVIEW FOR MT3 MATH 2373, FALL 2014

    E-Print Network [OSTI]

    Anderson, Greg W.

    two brine tanks. Initially: · Tank A contains 150 gallons of water and 37 pounds of salt. · Tank B contains 250 gallons of water and 43 pounds of salt. Starting at time t = 0: · Brine at a concentration 3 lb gal of salt is pumped at 5 gal min into tank A. · Brine is pumped from tank A to tank B at a rate

  8. SOFTWARE Open Access MT-Toolbox: improved amplicon sequencing using

    E-Print Network [OSTI]

    Dangl, Jeff

    maximization. It can be run in serial on a standard personal computer or in parallel on a Load Sharing Facility from sequences sharing the same tag enables inference of original template molecules thereby reducing quantification of sequences. To ad- dress these limitations several methods have been devel- oped where randomly

  9. Microsoft Word - CX Hillside and Squeque MT Land Acquisitions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - KEWM-4 Proposed Action: Hillside Road and Squeque Properties Acquisition Funding Fish and Wildlife Project No. and Contract No.: 2002-003-00, BPA-007585 Categorical...

  10. *MT 4S1SGOO ^ Ris-M-2672

    E-Print Network [OSTI]

    26 Real-time 26 Engine fluids 26 7.3. Non-industrial applications 27 Biology, medicine and dentistry. Because of this it is possible to detect hydrogen in zirconium. Conversly, dense materials such as lead

  11. MSc Programme In the programme, MT engineers acquire a thorough

    E-Print Network [OSTI]

    Langendoen, Koen

    such as ship hydromechanics, ship and offshore structures, marine systems design and ship production as exemplified by various students working on wind propulsion for commercial shipping. Courses cover topics such as cavitation of propellers and sailing yacht performance. · Ship and Offshore Structures focuses

  12. School of Mathematics and Statistics MT5824 Topics in Groups

    E-Print Network [OSTI]

    St Andrews, University of

    .] Deduce that GpG (G). Use the previous question to show that (G) = GpG. Show that G can be generated

  13. Strategic Planning Notes MT AHEC/MORH Advisory Board

    E-Print Network [OSTI]

    Dyer, Bill

    Communities Assuring there is a strong healthcare infrastructure Access to care Quality Improving health Scholarships o Building a pipeline in K-12 Workforce for population health and implementation of healthcare reform Serving as a model for how Montana can work together on a complex issue 2. Healthy Montana

  14. ,"Port of Morgan, MT Natural Gas Pipeline Imports From Canada...

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Port of Morgan,...

  15. MT3DMS v5.3 Supplemental User's Guide

    E-Print Network [OSTI]

    Zheng, Chunmiao

    The University of Alabama #12;i Technical Report February 2010 MMTT33DDMS vv55..33 a modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants information or to report program errors, please contact: Chunmiao Zheng Department of Geological Sciences

  16. Nakayasu named 2013 M.T. Thomas award recipient | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    first drug that can efficiently kill Methicillin-resistant Staphylococcus aureus, or MRSA, - the "superbug." Deputy Division Director Joshua Adkins, PNNL Biological Science,...

  17. Analysis of borehole temperature data from the Mt. Princeton...

    Open Energy Info (EERE)

    Colorado (abstract only) Author P. Morgan Conference AAPG Rocky Mountain Meeting; Salt Lake County, Utah; 10811 Published AAPG Rocky Mountain Meeting, 2013 DOI Not Provided...

  18. Compound and Elemental Analysis At Mt St Helens Area (Shevenell...

    Open Energy Info (EERE)

    Goff (2000) Temporal Geochemical Variations In Volatile Emissions From Mount St Helens, Usa, 1980-1994 Additional References Retrieved from "http:en.openei.orgw...

  19. Compound and Elemental Analysis At Mt St Helens Area (Shevenell...

    Open Energy Info (EERE)

    Fraser Goff (1995) Evolution Of Hydrothermal Waters At Mount St Helens, Washington, Usa Additional References Retrieved from "http:en.openei.orgwindex.php?titleCompounda...

  20. DC Resistivity Survey (Wenner Array) At Mt Princeton Hot Springs...

    Open Energy Info (EERE)

    2008 - 2010 Usefulness useful DOE-funding Unknown Exploration Basis Determination of groundwater flux patterns Notes Researchers measured DC resistivity and produced 12 resistivity...

  1. Self Potential At Mt Princeton Hot Springs Geothermal Area (Richards...

    Open Energy Info (EERE)

    2008 - 2010 Usefulness useful DOE-funding Unknown Exploration Basis Determination of groundwater flux patterns Notes Researchers collected 2700 SP measurements. Equilibrium...

  2. Sweetgrass, MT Liquefied Natural Gas Exports (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) Decade Year-0 Year-1

  3. Sweetgrass, MT Liquefied Natural Gas Exports Price (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) Decade Year-0 Year-1Cubic Feet)

  4. Sweetgrass, MT Liquefied Natural Gas Exports Price (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) Decade Year-0 Year-1Cubic Feet)Cubic

  5. Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Dollars

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) Decade Year-0 Year-1Cubic

  6. Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Dollars

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) Decade Year-0 Year-1Cubicper Thousand

  7. Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Million

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) Decade Year-0 Year-1Cubicper

  8. Sweetgrass, MT Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) Decade Year-0 Year-1Cubicper8 2009 2010

  9. Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) Decade Year-0 Year-1Cubicper8 2009

  10. Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Dollars per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) Decade Year-0 Year-1Cubicper8

  11. Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) Decade Year-0 Year-1Cubicper8Feet)

  12. Field Mapping At Marysville Mt Area (Blackwell) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV JumpFederalInformation Jump

  13. Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    the area References J. Held, F. Henderson (2012) New developments in Colorado geothermal energy projects Additional References Retrieved from "http:en.openei.orgw...

  14. 3D Mt Resistivity Imaging For Geothermal Resource Assessment And

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S. National Software

  15. Babb, MT Liquefied Natural Gas Exports (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame MonthLease3.01 12.33 11.85

  16. Babb, MT Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame MonthLease3.01

  17. File:INL-geothermal-mt.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to: navigation,SizeEthiopiametstak.pdf Jump to: navigation,hi.pdfmt.pdf

  18. Whitlash, MT Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear Jan 2011 2012 20139,195

  19. Mt. Wachusett Community College Makes Huge Investment in Wind Power |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the NationalPennsylvania |FebruaryEnergy5, 20148,

  20. RAPID/Roadmap/11-MT-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/OrganizationTechProbSolutionsPublicQuanlightR3(2) <HI-a <c <

  1. RAPID/Roadmap/14-MT-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, search RAPID Regulatory andb

  2. RAPID/Roadmap/14-MT-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, search RAPID Regulatory andbc

  3. RAPID/Roadmap/14-MT-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, search RAPID Regulatory

  4. RAPID/Roadmap/20-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searche < (1)

  5. RAPID/Roadmap/3-MT-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searche <c < RAPID‎ |

  6. RAPID/Roadmap/3-MT-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searche <c < RAPID‎

  7. RAPID/Roadmap/3-MT-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searche <c < RAPID‎e

  8. RAPID/Roadmap/3-MT-f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searche <c < RAPID‎ef

  9. RAPID/Roadmap/6-MT-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searcheWA-a < RAPID‎cdee

  10. Havre, MT Natural Gas Imports by Pipeline from Canada

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TO OBTAIN EIA PRODUCTS

  11. RAPID/Roadmap/8-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation,c < RAPID‎ |

  12. City of Mt Pleasant, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban TransportMartinsville,Minidoka,City ofIowa (Utility

  13. City of Mt Pleasant, Tennessee (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban TransportMartinsville,Minidoka,City ofIowa

  14. Ground Gravity Survey At Marysville Mt Area (Blackwell) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000) ExplorationAl., 1979)

  15. Ground Magnetics At Marysville Mt Area (Blackwell) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000)2004) | OpenInformation

  16. Micro-Earthquake At Marysville Mt Area (Blackwell) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole Inc Jump to:Michigan/WindOpen Energy2010) |

  17. Mt. Edgecumbe High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVistaZephyr)Mountain AirPeak

  18. Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade21 Louisiana11,685 1,054perThousand

  19. Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade21 Louisiana11,685

  20. Data Acquisition-Manipulation At Marysville Mt Area (Blackwell) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database Data andDarnestown, Maryland:(Blackwell, Et Al.,Al.,

  1. BWXT Pantex, LLC Route 726, Mt. Athos Road

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010EIS News | 9B. DATED (SEE

  2. BWXT Pantex, LLC Route 726, Mt. Athos Road

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010EIS News | 9B. DATED (SEEI

  3. BWXT Pantex, LLC Route 726, Mt. Athos Road

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010EIS News | 9B. DATED

  4. BWXT Pantex, LLC Route 726, Mt. Athos Road

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010EIS News | 9B. DATED 9B.

  5. BWXT Pantex, LLC Route 726, Mt. Athos Road

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010EIS News | 9B. DATED 9B.I

  6. BWXT Pantex, LLC Route 726, Mt. Athos Road Lynchburg, V

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010EIS News | 9B. DATED 9B.IV

  7. Northwest Distributed/Community Wind Workgroup Meeting - MT | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS September 9, 2013News Archive News Archive RSS MarchDepartment ofPotential

  8. 2007-mt-elbert | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruary 2004 Tue,March 2007(SC) 7 Long CRAC NFBThe

  9. Village of Mt Horeb, Wisconsin (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillage of Boonville, NewVillageVillageVillage ofVillage

  10. RAPID/Roadmap/11-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas) Redirecta < RAPID‎ |

  11. RAPID/Roadmap/11-MT-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas) Redirecta < RAPID‎ |b <

  12. RAPID/Roadmap/12-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-a < RAPID‎ | Roadmap

  13. RAPID/Roadmap/14-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-aRAPID/Roadmap/14-ID-d <a

  14. RAPID/Roadmap/14-MT-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas)ID-aRAPID/Roadmap/14-ID-d <ae

  15. RAPID/Roadmap/15-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | Roadmap Jump to:bdcb

  16. RAPID/Roadmap/17-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | RoadmapHI-a <

  17. RAPID/Roadmap/17-MT-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | RoadmapHI-a <c <

  18. RAPID/Roadmap/18-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | RoadmapHI-a <caac <da

  19. RAPID/Roadmap/18-MT-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | RoadmapHI-a <caac

  20. RAPID/Roadmap/19-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | RoadmapHI-acCA-bfID-a

  1. RAPID/Roadmap/3-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-b <a <

  2. RAPID/Roadmap/3-MT-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-b <a <b <

  3. RAPID/Roadmap/6-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-baa <b <aca

  4. RAPID/Roadmap/6-MT-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-baa <b <acab

  5. RAPID/Roadmap/6-MT-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-baa <b <acabc

  6. RAPID/Roadmap/6-MT-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-baa <b <acabcd

  7. RAPID/Roadmap/6-MT-f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-baa <b

  8. RAPID/Roadmap/7-MT-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k < RAPID‎

  9. Vertical Electrical Sounding Configurations At Mt Princeton Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning

  10. Port of Morgan, MT Natural Gas Exports to Canada

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousandby thePricePricetheTable 1. U.S.9Year92012 2013

  11. HGS Schedulers for Digital Audio Workstation like Applications

    E-Print Network [OSTI]

    Poduval, Karthik Venugopal

    2014-08-31T23:59:59.000Z

    RT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.3 Libsynchro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.4 Synchro SDF version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 JACK Integration... 4.1.4 Rt-app Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 v 4.2 JACK with SEQ SDF integration . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2.1 No Load...

  12. AUDIO-VIDEO EVENT RECOGNITION SYSTEM FOR PUBLIC TRANSPORT SECURITY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Amaury Flancquart Monique Thonnat INRIA CEA/LIST INRETS/LEOST 2004 route des Lucioles 91191 Gif process remains a major issue since the loss of a tracked object prevents the analysis of its behavior

  13. The effects of output transformers on distortion in audio amplifiers

    E-Print Network [OSTI]

    Lanier, Ross Edwin

    1949-01-01T23:59:59.000Z

    Introduction ~. . . . . . . . , . . . . . . ~. . . . . 7 Frequency Discrimination. . . . . . . . . . . . . . . . 9 Harmonic Distortion. ~ ~. . . . ~ 21 Distortion by the Intermodulationmethod. . . . . . . . 47 Comparison of Harmonic and Intermodulation... current in the primary as a function of frequency . 19 Output voltage of transformer 3 without direct current in the primary as a function of frequency 20 Block diagram for measuring distortion by the harmonic method 26 Per cent harmonic distortion...

  14. Audio sparse decompositions in parallel Let the greed be shared !

    E-Print Network [OSTI]

    Paris 7 - Denis Diderot, Université

    by absolute de- caying order, one observes a fast decay, typically a power law with some large negative harmonics of the musical content. With a smart quantization of these few large transform coefficients Abstract--Greedy methods are often the only practical way of solving very large sparse approximation

  15. Audio visual information fusion for human activity analysis

    E-Print Network [OSTI]

    Thagadur Shivappa, Shankar

    2010-01-01T23:59:59.000Z

    and I. McCowan, “Speech enhancement and recognition inrecogni- tion, speech enhancement and person identificationimprove the quality of speech enhancement by the microphone

  16. audio localization manifold: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algorithm Computer Technologies and Information Sciences Websites Summary: for LTSA in a special case. 1 Introduction Manifold learning (ML) methods have attracted...

  17. INTRAMODAL AND INTERMODAL FUSION FOR AUDIO-VISUAL BIOMETRIC AUTHENTICATION

    E-Print Network [OSTI]

    Mak, Man-Wai

    consensus that it is vital to utilize mul- tiple modalities (e.g. visual, infrared, acoustic, chemical sensors, etc.). In order to cope with the limitations of individual biometrics, researchers have proposed- ples and the prior knowledge of the score statistics. Evaluations of this multi-sample fusion technique

  18. Sociedad de Ingenieria de Audio Articulo de Congreso

    E-Print Network [OSTI]

    de Agosto a 1º de Septiembre de 2011 Montevideo, Uruguay Este art´iculo es una reproducci´on del de Ingenier´ia, Instituto de Ingenier´ia El´ectrica, UdelaR Montevideo, Uruguay haldos

  19. 540 K. Belhoula et al. Appendix: Audio Demos

    E-Print Network [OSTI]

    Toronto, University of

    Hunnicutt, Rolf Carlson, and Bjorn Granstrom, were working in the Speech Group at MIT on various aspects

  20. Audio-Visual Prosody: Perception, Detection, and Synthesis of Prominence

    E-Print Network [OSTI]

    Beskow, Jonas

    Beskow, Bj¨orn Granstr¨om, and David House Center for Speech Technology, Royal Institute of Technology Moubayed, Jonas Beskow, Bj¨orn Granstr¨om, and David House movements and head-movements dimensions

  1. AUDIO-VISUAL ISOLATED DIGIT RECOGNITION FOR WHISPERED SPEECH

    E-Print Network [OSTI]

    Busso, Carlos

    .L. Hansen Center for Robust Speech Systems(CRSS) University of Texas at Dallas, Richardson, Texas 75083 xxf circum- stances to protect personal privacy. Due to the absence of periodic excitation in the production. Therefore, performance of speech recognition systems trained with high energy voiced phonemes, degrades

  2. Digital Archeology: Recovering Digital Objects from Audio Waveforms

    E-Print Network [OSTI]

    Guttenbrunner, Mark; Ghete, Mihai; John, Annu; Lederer, Chrisanth; Rauber, Andreas

    2009-01-01T23:59:59.000Z

    data (e.g. digital diaries) on various storage media. As weJ. (1998) Storage Media Life Expectancies. Digital Archivein the digital archive. A popular storage media for home

  3. Audio visual information fusion for human activity analysis

    E-Print Network [OSTI]

    Thagadur Shivappa, Shankar

    2010-01-01T23:59:59.000Z

    been focussed on developing non- intrusive sensors such asof committing to non-intrusive and natural interfaces, thewhich contradicts the non-intrusive nature of Three speakers

  4. IRIT @ TRECVid HLF 2009 Audio to the Rescue

    E-Print Network [OSTI]

    Khoury, Elie

    is the SVM classifier for cth concept, using xd i descriptors as input. · pdc i is the probability (as output by SVMdc ) for shot si to contain the cth concept. In other words, pdc i = p(yc i = 1|xd i , SVMdc ). · dc-fusion vector for shot si made from the selective concatenation of pdc i / d 1, Nd |dc = 1 . · SVMc is the SVM

  5. Audio visual information fusion for human activity analysis

    E-Print Network [OSTI]

    Thagadur Shivappa, Shankar

    2010-01-01T23:59:59.000Z

    recorded in a health smart home,” in LREC 2010 workshop onto the system. Health smart homes and assisted living forintelligent vehicles, smart homes and natural human-computer

  6. Audio-based localisation for ubiquitous sensor networks

    E-Print Network [OSTI]

    Dalton, Benjamin Christopher

    2005-01-01T23:59:59.000Z

    This research presents novel techniques for acoustic-source location for both actively triggered, and passively detected signals using pervasive, distributed networks of devices, and investigates the combination of existing ...

  7. 1 Project Summary The Mt. Wilson Solar Photographic Archive DIgitization Project (Mt. Wilson SPADIP) will make available

    E-Print Network [OSTI]

    Ulrich, Roger K.

    at UCLA and through other virtual solar observatory data archives as they are implemented. Raw images scientific output will come from the utilization of the data by the general scientific com- munity. Many in order to reconstruct an improved history of the solar output of energy. The analyses to be carried out

  8. LM4651 & LM4652 OvertureTM Audio Power Amplifier 170W Class D Audio Power Amplifier Solution

    E-Print Network [OSTI]

    Paderborn, Universität

    and minimizes supply current. The LM4652 is a fully integrated H-bridge power MOSFET IC in a TO-220 power trademark of National Semiconductor Corporation. LM4651 Plastic Package DS101277-72 Top View Order Number LMDAudioPowerAmplifierSolution © 2000 National Semiconductor Corporation DS101277 www.national.com #12;Absolute Maximum Ratings (Notes 1

  9. Geological interpretation of Mount Ciremai geothermal system from remote sensing and magneto-teluric analysis

    E-Print Network [OSTI]

    Sumintadireja, Prihadi; Irawan, Dasapta E; Irawan, Diky; Fadillah, Ahmad

    2015-01-01T23:59:59.000Z

    The exploration of geothermal system at Mount Ciremai has been started since the early 1980s and has just been studied carefully since the early 2000s. Previous studies have detected the potential of geothermal system and also the groundwater mechanism feeding the system. This paper will discuss the geothermal exploration based on regional scale surface temperature analysis with Landsat image to have a more detail interpretation of the geological setting and magneto-telluric or MT survey at prospect zones, which identified by the previous method, to have a more exact and in depth local scale structural interpretation. Both methods are directed to pin point appropriate locations for geothermal pilot hole drilling and testing. We used four scenes of Landsat Enhanced Thematic Mapper or ETM+ data to estimate the surface manifestation of a geothermal system. Temporal analysis of Land Surface Temperature or LST was applied and coupled with field temperature measurement at seven locations. By combining the TTM with ...

  10. Geophysical Prospecting, 2013, 61 (Suppl. 1), 505532 doi: 10.1111/j.1365-2478.2012.01117.x Review paper: Instrumentation for marine magnetotelluric and

    E-Print Network [OSTI]

    Constable, Steve

    dipoles can be towed continuously through the seawater or on the sea-bed, achieving output currents and transmitters needs to be navigated using either long baseline or short baseline acoustic ranging, while sea exploits the natural variations in the Earth's magnetic field that induce electric currents and fields C

  11. Geothermal-resource assessment of the Steamboat-Routt Hot Springs area, Colorado. Resources Series 22

    SciTech Connect (OSTI)

    Pearl, R.H.; Zacharakis, T.G.; Ringrose, C.D.

    1983-01-01T23:59:59.000Z

    An assessment of the Steamboat Springs region in northwest Colorado was initiated and carried out in 1980 and 1981. The goal of this program was to delineate the geological features controlling the occurrence of the thermal waters (temperatures in excess of 68/sup 0/F (20/sup 0/C)) in this area at Steamboat Springs and 8 miles (12.8 km) north at Routt Hot Springs. Thermal waters from Heart Spring, the only developed thermal water source in the study area, are used in the municipal swimming pool in Steamboat Springs. The assessment program was a fully integrated program consisting of: dipole-dipole, Audio-magnetotelluric, telluric, self potential and gravity geophysical surveys, soil mercury and soil helium geochemical surveys; shallow temperature measurements; and prepartion of geological maps. The investigation showed that all the thermal springs appear to be fault controlled. Based on the chemical composition of the thermal waters it appears that Heart Spring in Steamboat Springs is hydrologically related to the Routt Hot Springs. This relationship was further confirmed when it was reported that thermal waters were encountered during the construction of the new high school in Strawberry Park on the north side of Steamboat Springs. In addition, residents stated that Strawberry Park appears to be warmer than the surrounding country side. Geological mapping has determined that a major fault extends from the Routt Hot Springs area into Strawberry Park.

  12. Istituzioni di Matematiche I (CH-CI-MT) ________________________________V_IIIo_foglio_di_esercizi______________________*

    E-Print Network [OSTI]

    Candilera, Maurizio

    flesso e B quello a tangente parallela all'asse delle ordinate, si determini il* * volume del solido ottenuto dalla rotazione della regione finita di piano compresa tra l'arco AB, la retta OA e l* *'asse delle ascisse, di un intero giro attorno alla asse medesimo. ESERCIZIO 4. Si disegni nel piano

  13. Cronograma Seminario Topicos em Reconstruc~ao de Imagens (MT859)

    E-Print Network [OSTI]

    De Pierro, Alvaro Rodolfo

    of PET data. 7) 27-04 (TBA) Specific assays for PET (FDG, etc). 1 #12;8) 04-05 Fabiana : Blind estimation from Fourier coefficients: Thesis. 11) 25-05 Eduardo: Estimating dynamic PET curves. 12) 01-06 Multichannel blind deconvolution: an introduction. 13) 08-06 TBA 14) 15-06 TBA 15) 22-06 TBA 16) 29-06 TBA

  14. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01T23:59:59.000Z

    of water systems (i.e. how many people are serviced and howwealthy people with holiday homes in the area comprised many

  15. The Investigation on Fibrous Veins and Their Host from Mt. Ida, Ouachita Mountains, Arkansas

    E-Print Network [OSTI]

    Chung, Jae Won

    2004-09-30T23:59:59.000Z

    I have studied syntectonic veins from shales and coarse calcareous sands of the Ordovician Womble Shale, Benton uplift, Arkansas. All veins are composed of calcite with minor quartz and trace feldspar and dolomite or high-Mg calcite in the coarser...

  16. Building America Case Study: Lancaster County Career and Technology Center Green Home 3, Mt Joy, Pennsylvania

    SciTech Connect (OSTI)

    Not Available

    2014-12-01T23:59:59.000Z

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction.This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

  17. MT3DMS, A Modular Three-Dimensional Multispecies Transport Model User Guide to the

    E-Print Network [OSTI]

    Zheng, Chunmiao

    .M. Cozzarelli, M.H. Lahvis, and B.A. Bekins. 1998. Ground water contamination by crude oil near Bemidji (LNAPL) contaminant through the unsaturated zone and the formation of an oil lens on the water table ................................................................................................................. 18 #12;1 1. INTRODUCTION Leaks of fuels that release contaminants such as BTEX, MTBE and other fuel

  18. Montana Weed Control Association Annual Meeting. January 11th 2011, Great Falls, MT.

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Seed movement by vehicles: how many, how far, and under what conditions? Movement of seeds by vehicles is generally thought to increase the spread of invasive plant species, but few studies have vehicles when driven a range of distances on different surfaces (asphalt, unpaved and offroad) under wet

  19. Impossible Differential Cryptanalysis of Pelican, MT-MAC-AES and PC-MAC-AES

    E-Print Network [OSTI]

    such as four rounds of AES with independent keys in a Wegman-Carter binary tree. However, it is not memory

  20. NAT'L INST. OF STAND & TECH \\lllDb 2527MT

    E-Print Network [OSTI]

    adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology public health, safety, and the environment. One of the agency's basic functions is to develop, maintain Electronics and Electrical Engineering Laboratory · Microelectronics · Law Enforcement Standards · Electricity

  1. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01T23:59:59.000Z

    water quality risk of power loss (see Cost of Infrastructurestorage in case of power loss or having back-up generators.

  2. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01T23:59:59.000Z

    incentivizing unbridled water extraction, this situation ledhow much individual water extraction practices impact theexcessive groundwater extraction Water Scarcity and Ac- cess

  3. Glacier terminus fluctuations on Mt. Baker, Washington, USA, 1940-1990, and climatic variations

    SciTech Connect (OSTI)

    Harper, J.T. (Western Washington Univ., Bellingham, WA (United States))

    1993-11-01T23:59:59.000Z

    The terminus positions of six glaciers located on Mount Baker, Washington, were mapped by photogrammetric techniques at 2- to 7-yr intervals for the period 1940-1990. Although the timing varied slightly, each of the glaciers experienced a similar fluctuation sequence consisting of three phases: (1) rapid retreat, beginning prior to 1940 and lasting through the late 1940s to early 1950s; (2) approximately 30 yr of advance, ending in the late 1970s to early 1980s; (3) retreat though 1990. Terminus positions changed by up to 750 m during phases, with the advance phase increasing the lengths of glaciers by 13 to 24%. These fluctuations are well explained by variations in a smoothed time-series of accumulation-season precipitation and ablation-season mean temperature. The study glaciers appear to respond to interannual scale changes in climate within 20 yr or less. The glaciers on Mount Baker have a maritime location and a large percentage of area at high elevation, which may make their termini undergo greater fluctuations in response to climatic changes, especially precipitation variations, than most other glaciers in the North Cascades region. 40 refs., 6 figs., 2 tabs.

  4. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01T23:59:59.000Z

    in theory, weighs environmental conservation needs againstfire protection, environmental conservation, and costs ofthe importance of environmental conservation. Such interests

  5. MT DOE/EPSCoR planning grant. Annual technical progress report

    SciTech Connect (OSTI)

    Bromenshenk, J.J.; Scruggs, V.L.

    1992-08-31T23:59:59.000Z

    The Montana DOE/EPSCoR planning process has made significant changes in the state of Montana. This is exemplified by notification from the Department of Energy`s Experimental Program to Stimulate Competitive Research (DOE/EPSCoR) recommendation to fund Montana`s 1992 graduate traineeship grant proposal in the amount of $500,000. This is a new award to Montana. DOE traineeship reviewers recognized that our planning grant enabled us to develop linkages and build the foundation for a competitive energy-related research and traineeship program in Montana. During the planning, we identified three major focus areas: Energy Resource Base, Energy Production, and Environmental Effects. For each focus area, we detailed specific problem areas that the trainees may research. We also created MORE, a consortium of industrial affiliates, state organizations, the Montana University System (MUS), tribal colleges, and DOE national laboratories. MORE and our state-wide Research and Education Workshop improved and solidified working relationships. We received numerous letters of support. DOE reviewers endorsed our traineeship application process. They praised the linkage of each traineeship with a faculty advisor, and the preference for teams of faculty members and two or more students. ``Particularly commendable`` were our programs to involve Native American educators and the ``leveraging effect`` of this on the human resources in the state. Finally, the DOE reviewers indicated that cost-sharing via support of Native Americans was creative and positive.

  6. MT DOE/EPSCoR planning grant. [Annual Technical Progress Report

    SciTech Connect (OSTI)

    Bromenshenk, J.J.; Scruggs, V.L.

    1992-08-31T23:59:59.000Z

    The Montana DOE/EPSCoR planning process has made significant changes in the state of Montana. This is exemplified by notification from the Department of Energy's Experimental Program to Stimulate Competitive Research (DOE/EPSCoR) recommendation to fund Montana's 1992 graduate traineeship grant proposal in the amount of $500,000. This is a new award to Montana. DOE traineeship reviewers recognized that our planning grant enabled us to develop linkages and build the foundation for a competitive energy-related research and traineeship program in Montana. During the planning, we identified three major focus areas: Energy Resource Base, Energy Production, and Environmental Effects. For each focus area, we detailed specific problem areas that the trainees may research. We also created MORE, a consortium of industrial affiliates, state organizations, the Montana University System (MUS), tribal colleges, and DOE national laboratories. MORE and our state-wide Research and Education Workshop improved and solidified working relationships. We received numerous letters of support. DOE reviewers endorsed our traineeship application process. They praised the linkage of each traineeship with a faculty advisor, and the preference for teams of faculty members and two or more students. Particularly commendable'' were our programs to involve Native American educators and the leveraging effect'' of this on the human resources in the state. Finally, the DOE reviewers indicated that cost-sharing via support of Native Americans was creative and positive.

  7. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01T23:59:59.000Z

    The mountain lacks potable surface water sources causingNo concerns about water scarcity due to lack of largecontaminated water or faulty infrastructure and lack the

  8. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01T23:59:59.000Z

    could prove that water shortages exist at Mount Laguna, itto fire, and risk of water shortage. In particular, issues72,73 Rural areas with water shortage problems tend to

  9. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01T23:59:59.000Z

    Regional Water Quality Control Board, “Watershed Managementof Land Management (BLM) Tests preserve water quality, whichRegional Water Quality Control Board. “Watershed Management

  10. Microsoft Word - Granite-Mt-3G-Radio-Station-CX.doc

    Broader source: Energy.gov (indexed) [DOE]

    1021): B1.19 Siting, construction, and operation of microwave and radio communication towers and associated facilities... Location: Stevens County, Washington (T34N, R38E,...

  11. Tatra Mt. Math. Publ. 20 (2000), 93--104 Mathematical Publications

    E-Print Network [OSTI]

    Kuèera, Radan

    2000-01-01T23:59:59.000Z

    AND CIRCULAR UNITS OF SOME GENUS FIELDS Radan KuŸ cera ABSTRACT. The Stickelberger ideal and the group. This research is supported by the grant 201/97/0433 of the Grant Agency of the Czech Republic. 93 #12; RADAN KU

  12. Review of Hypothesis Alignment Algorithms for MT System Combination via Confusion Network Decoding

    E-Print Network [OSTI]

    ,ney}@cs.rwth-aachen.de f Raytheon BBN Technologies, 10 Moulton Street, Cambridge, MA 02138 {smatsouk. The work reported in this paper was carried out while the authors were at Raytheon BBN Technologies

  13. at10 microtelsa-300 mt: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of all-pattern at 10 Gbps. Conclusion All optical wavelength conversion using four-wave mixing demonstrated at 10 Gbps bit rate, over 250 GHz range. Publication Aravind...

  14. m)T7(T^/f^\\ \\ / Riso-R-430 The Geochemistry

    E-Print Network [OSTI]

    -LEVEL HASTE 22 Uranium 31 Neptunium 35 Plutonium 38 Americium 41 CHEMISTRY OF TECHNETIUM 44 ADSORPTION, stability-diagrams for the transuranium elements from uranium to americium under diverse conditions have GROUNDWATER COMPOSITIONS 7 COMPLEX CHEMISTRY 12 CRITICAL ANION CONCENTRATION IN GROUND WATERS 17 THE CHEMISTRY

  15. Overview of physical oceanographic measurements taken during the Mt. Mitchell Cruise to the ROPME Sea Area

    SciTech Connect (OSTI)

    Reynolds, R.M.

    1993-03-31T23:59:59.000Z

    The ROPME Sea Area (RSA) is one of the most important commercial waterways in the world. However, the number of direct oceanographic observations is small. An international program to study the effect of the Iraqi oil spill on the environment was sponsored by the ROPME, the Intergovernmental Oceanographic Commission, and the National Oceanic and Atmospheric Administration (NOAA).

  16. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01T23:59:59.000Z

    of R: A Language and Environment for Statistical ComputingR Development Core Team. R: A language and environment for statistical

  17. MT4614 Design of Experiments Spring Semester 2014 Problem Sheet 2 10 February 2014

    E-Print Network [OSTI]

    St Andrews, University of

    of underwater structures at sea, such as piers and oil-drilling platforms. He wants to protect them against corrosion. A colleague has developed a new sort of paint for the components. The engineer would like to see, he will remove all the metal components from the tank, and measure the amount of corrosion on each

  18. Getting Our Feet Wet: Water Management at Mt. Laguna in Cleveland National Forest

    E-Print Network [OSTI]

    Mumby, William Cade

    2013-01-01T23:59:59.000Z

    A Mediterranean Response to Climate Change. ” Section 1:Nora. “A Mediterranean Response to Climate Change. ” Section

  19. PARTIAL DIFFERENTIAL EQUATIONS Lecturer: D.M.A. Stuart MT 2007

    E-Print Network [OSTI]

    Stuart, David

    advanced, but the first volume may be helpful. References [1] T.W. K¨orner, Cambridge Lecture notes on PDE) Discuss the invertibility properties of the restricted flow map: (t, s) = (t, (s, 0)) in (a) and (b) i u(x1, 0) = f(x1) for f a C1 function. Where is your solution valid? Classify the f for which

  20. Balloon-borne photometric studies of the stratospheric aerosol layer after Mt. Pinatubo eruption

    SciTech Connect (OSTI)

    Ramachandran, S.; Jayaraman, A.; Acharya, Y.B.; Subbaraya, B.H. [Physical Research Laboratory, Ahmedabad (India)

    1994-08-01T23:59:59.000Z

    Using Sun-tracking photometers on board balloons, the Pinatubo volcanic aerosol layer has been studied over Hyderabad (17.5 deg N) during October 1991 and April 1992. From the angular distribution of the scattered radiation intensity measurements the aerosol size parameters is derived. Over a decade of aerosol measurements at Hyderabad, aerosol extinction and number density obtained during October 1991 in the stratosphere are found to be the highest ever obtained with a distinct aerosol layer between 16 and 30 km. The derived aerosol size parameter shows layered structures. Analysis of the size parameter obtained during April 1992 indicates formation of aerosols at higher altitudes by coagulation with a subsequent reduction in the aerosol number density. The obtained results are found to agree well with that of an independent lidar measurement made over Ahmedabad (23 deg N) and with the stratospheric aerosol and gas experiment II (SAGE II) results.