National Library of Energy BETA

Sample records for auburn alabama usa

  1. Alabama

    Gasoline and Diesel Fuel Update (EIA)

    Alabama

  2. Auburn, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Indiana. It falls under Indiana's 3rd congressional district.12 US Recovery Act Smart Grid Projects in Auburn, Indiana City of Auburn, IN Smart Grid Project Utility...

  3. 2014 Race to Zero Student Design Competition: Auburn University...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Auburn University Profile 2014 Race to Zero Student Design Competition: Auburn University Profile 2014 Race to Zero Student Design Competition: Auburn University Profile, as posted...

  4. Auburn-Washburn Wind Project | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Auburn-Washburn Wind Project Facility Auburn-Washburn Sector Wind energy Facility Type Community Wind Owner Auburn-Washburn School District Address...

  5. Auburn University | Open Energy Information

    Open Energy Info (EERE)

    Alabama Zip: 36849 Product: Largest university in Alabama, enrolling approximately 23,000 students in 230 undergraduate, graduate, and professional programs. References:...

  6. Alabama - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Alabama

  7. Alabama - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Alabama

  8. Alabama - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Alabama

  9. Auburn, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Auburn, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.8965654, -121.0768901 Show Map Loading map... "minzoom":false,"mappingse...

  10. Auburn Hot Spring Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Auburn Hot Spring Sector Geothermal energy Type Pool and Spa Location Auburn, Wyoming Coordinates...

  11. Workplace Charging Challenge Partner: City of Auburn Hills | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Auburn Hills Workplace Charging Challenge Partner: City of Auburn Hills Workplace Charging Challenge Partner: City of Auburn Hills The City of Auburn Hills has been at the forefront in raising awareness about the fueling needs of plug-in electric vehicle (PEV) owners. In July 2011, Auburn Hills was the first municipality in Michigan to adopt a comprehensive Electric Vehicle Infrastructure Ordinance. The City's ordinance encourages, but does not require, developers, builders,

  12. Auburn, Washington: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Auburn is a city in King County and Pierce County, Washington. It falls under Washington's 8th congressional...

  13. Auburn University | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Auburn University Auburn University Professors J. Hanson and G. Hartwell Plasma equilibrium reconstruction relies on many pin-point magnetic field measurements (~ 100) during the plasma discharge and rather detailed analysis. A widely used analysis code to perform these reconstructions is the VMEC MHD equilibrium code, developed for the 2-D magnetic field configuration of the tokamak device. One complication to the magnetic field measurements within the plasma is compensating for induced

  14. City of Auburn Hills (Text Version) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Auburn Hills (Text Version) City of Auburn Hills (Text Version) Narrator: Clean Energy Coalition is working under a grant from the United States Department of Energy in collaboration with Clean Cities of Greater Lansing, NextEnergy, and over forty other project partners (Aker Wade, Ann Arbor DDA, City of Ann Arbor, City of Auburn Hills, Chrysler, City of Dearborn, City of Detroit, City of Flint, City of Grand Rapids, City of Houghton, City of Lansing, City of Warren, Clipper Creek, Consumers

  15. Auburn Board of Public Works | Open Energy Information

    Open Energy Info (EERE)

    2010 - File1a" Retrieved from "http:en.openei.orgwindex.php?titleAuburnBoardofPublicWorks&oldid879873" Feedback Contact needs updating Image needs updating...

  16. Auburn, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Auburn, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0045288, -71.348398 Show Map Loading map... "minzoom":false,"mappings...

  17. 2014 Race to Zero Student Design Competition: Auburn University Profile

    Broader source: Energy.gov [DOE]

    2014 Race to Zero Student Design Competition: Auburn University Profile, as posted on the U.S. Department of Energy website.

  18. City of Auburn, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Iowa (Utility Company) Jump to: navigation, search Name: City of Auburn Place: Iowa Phone Number: (712) 688-2264 Website: www.auburniowa.netindex.php?o Facebook: https:...

  19. City of Auburn, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Activity Distribution Yes This article is a stub. You can help OpenEI by expanding it. City of Auburn, IN Smart Grid Project was awarded 2,075,080 Recovery Act Funding with a...

  20. Alabama Profile

    Gasoline and Diesel Fuel Update (EIA)

    Alabama State Energy Profile Alabama Quick Facts In 2013, Alabama ranked 17th in the nation in the number of producing natural gas wells. Mobile, Alabama was the fourth-largest seaport for exporting U.S. coal in 2013. Coking coal used in the steelmaking process accounted for 82% of total exported coal. The three reactors at the Browns Ferry Nuclear Plant in Limestone County, Alabama have a combined generating capacity of 3,310 megawatts, second in capacity only to Arizona's Palo Verde plant.

  1. Calhoun County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Glencoe, Alabama Hobson City, Alabama Jacksonville, Alabama Ohatchee, Alabama Oxford, Alabama Piedmont, Alabama Saks, Alabama Southside, Alabama Weaver, Alabama West...

  2. Shelby County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Calera, Alabama Chelsea, Alabama Columbiana, Alabama Harpersville, Alabama Helena, Alabama Hoover, Alabama Indian Springs Village, Alabama Lake Purdy, Alabama Leeds,...

  3. Baldwin County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bay Minette, Alabama Daphne, Alabama Elberta, Alabama Fairhope, Alabama Foley, Alabama Gulf Shores, Alabama Loxley, Alabama Magnolia Springs, Alabama Orange Beach, Alabama Point...

  4. Etowah County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Gadsden, Alabama Glencoe, Alabama Hokes Bluff, Alabama Mountainboro, Alabama Rainbow City, Alabama Reece City, Alabama Ridgeville, Alabama Sardis City, Alabama Southside,...

  5. Auburn low-temperature geothermal well. Volume 6. Final report

    SciTech Connect (OSTI)

    Lynch, R.S.; Castor, T.P.

    1983-12-01

    The Auburn well was drilled to explore for low temperature geothermal resources in central New York State. The Auburn site was selected based on: its proximity to the Cayuga County anomaly (30/sup 0/C/km), its favorable local geological conditions and the potential to provide hot water and space heating to two educational facilities. The well was drilled to a total depth of 5250 feet and into the Pre-Cambrian Basement. The well was extensively logged, flow and stress tested, hydraulically stimulated, and pump (pressure transient analysis) tested. The low-temperature geothermal potential was assessed in terms of: geological environment; hydrological conditions; reservoir characteristics; and recoverable hydrothermal reserves. The average geothermal gradient was measured to be as high as 26.7/sup 0/C/km with a bottom-hole temperature of 126/sup 0/ +- 1/sup 0/F. The proved volumetric resources were estimated to be 3.0 x 10/sup 6/ stock tank barrels (STB) with a maximum initial deliverability of approx.11,600 STB/D and a continuous deliverability of approx.3400 STB/D. The proved hydrothermal reserves were estimated to be 21.58 x 10/sup 10/ Btu based on a volumetric component (4.13 x 10/sup 10/ Btu), and a reinjection component (17.45 x 10/sup 10/ Btu). The conclusion was made that the Auburn low-temperature reservoir could be utilized to provide hot water and space heating to the Auburn School District.

  6. Madison County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Huntsville, Alabama Madison, Alabama Meridianville, Alabama Moores Mill, Alabama New Hope, Alabama New Market, Alabama Owens Cross Roads, Alabama Redstone Arsenal, Alabama...

  7. Cullman County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cullman, Alabama Dodge City, Alabama Fairview, Alabama Garden City, Alabama Good Hope, Alabama Hanceville, Alabama Holly Pond, Alabama South Vinemont, Alabama West Point,...

  8. Covington County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Horn Hill, Alabama Libertyville, Alabama Lockhart, Alabama Onycha, Alabama Opp, Alabama Red Level, Alabama River Falls, Alabama Sanford, Alabama Retrieved from "http:...

  9. Jefferson County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Polymet Alloys Inc WBRC Places in Jefferson County, Alabama Adamsville, Alabama Argo, Alabama Bessemer, Alabama Birmingham, Alabama Brighton, Alabama Brookside, Alabama...

  10. Limestone County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ardmore, Alabama Athens, Alabama Decatur, Alabama Elkmont, Alabama Huntsville, Alabama Lester, Alabama Madison, Alabama Mooresville, Alabama Retrieved from "http:en.openei.orgw...

  11. 2014 Race to Zero Student Design Competition: Auburn University Profile (Blue)

    Broader source: Energy.gov [DOE]

    2014 Race to Zero Student Design Competition: Auburn University Profile (Blue), as posted on the U.S. Department of Energy website.

  12. Monroe County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Pine Pulp Biomass Facility Places in Monroe County, Alabama Beatrice, Alabama Excel, Alabama Frisco City, Alabama Monroeville, Alabama Vredenburgh, Alabama Retrieved from...

  13. Lamar County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Lamar County, Alabama Beaverton, Alabama Detroit, Alabama Kennedy, Alabama Millport, Alabama Sulligent, Alabama Vernon, Alabama...

  14. Blount County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nectar, Alabama Oneonta, Alabama Rosa, Alabama Smoke Rise, Alabama Snead, Alabama Susan Moore, Alabama Retrieved from "http:en.openei.orgwindex.php?titleBlountCounty,Alabama...

  15. Geneva County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Geneva, Alabama Hartford, Alabama Malvern, Alabama Samson, Alabama Slocomb, Alabama Taylor, Alabama Retrieved from "http:en.openei.orgwindex.php?titleGenevaCounty,Alabama...

  16. Barbour County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Barbour County, Alabama Bakerhill, Alabama Blue Springs, Alabama Clayton, Alabama Clio, Alabama Eufaula, Alabama Louisville, Alabama Retrieved from "http:en.openei.orgw...

  17. Houston County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Solar Hot Water and Power LLC Places in Houston County, Alabama Ashford, Alabama Avon, Alabama Columbia, Alabama Cottonwood, Alabama Cowarts, Alabama Dothan, Alabama Gordon,...

  18. Fayette County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Alabama Belk, Alabama Berry, Alabama Fayette, Alabama Glen Allen, Alabama Gu-Win, Alabama Winfield, Alabama Retrieved from "http:en.openei.orgw...

  19. Alabama Power Co (Alabama) EIA Revenue and Sales - February 2009...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for February...

  20. Alabama Power Co (Alabama) EIA Revenue and Sales - September...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - September 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for September...

  1. Alabama Power Co (Alabama) EIA Revenue and Sales - October 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for October...

  2. Alabama Power Co (Alabama) EIA Revenue and Sales - November 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for November...

  3. Alabama Power Co (Alabama) EIA Revenue and Sales - January 2009...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for January...

  4. Alabama Power Co (Alabama) EIA Revenue and Sales - January 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for January...

  5. Alabama Power Co (Alabama) EIA Revenue and Sales - December 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for December...

  6. Bibb County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype A. Places in Bibb County, Alabama Brent, Alabama Centreville, Alabama Vance, Alabama West Blocton, Alabama Woodstock, Alabama...

  7. Talladega County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Talladega County, Alabama Bon Air, Alabama Childersburg, Alabama Lincoln, Alabama Mignon, Alabama Munford, Alabama...

  8. Wilcox County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in Wilcox County, Alabama Camden, Alabama Oak Hill, Alabama Pine Apple, Alabama Pine Hill, Alabama Yellow Bluff, Alabama Retrieved from "http:...

  9. Choctaw County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Choctaw County, Alabama Butler, Alabama Gilbertown, Alabama Lisman, Alabama Needham, Alabama Pennington, Alabama...

  10. Clarke County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Clarke County, Alabama Coffeeville, Alabama Fulton, Alabama Grove Hill, Alabama Jackson, Alabama Thomasville, Alabama Retrieved from "http:en.openei.orgw...

  11. Franklin County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype A. Places in Franklin County, Alabama Hodges, Alabama Phil Campbell, Alabama Red Bay, Alabama Russellville, Alabama Vina, Alabama Retrieved from "http:en.openei.org...

  12. Lowndes County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Gordonville, Alabama Hayneville, Alabama Lowndesboro, Alabama Mosses, Alabama White Hall, Alabama Retrieved from "http:en.openei.orgwindex.php?titleLowndesCounty,Alabama...

  13. St. Clair County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in St. Clair County, Alabama Argo, Alabama Ashville, Alabama Leeds, Alabama Margaret, Alabama Moody, Alabama Odenville,...

  14. Winston County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arley, Alabama Double Springs, Alabama Haleyville, Alabama Lynn, Alabama Natural Bridge, Alabama Nauvoo, Alabama Retrieved from "http:en.openei.orgwindex.php?titleWinsto...

  15. Pickens County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Gordo, Alabama McMullen, Alabama Memphis, Alabama Pickensville, Alabama Reform, Alabama Retrieved from "http:en.openei.orgwindex.php?titlePickensCounty,Alabam...

  16. Sumter County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 3 Climate Zone Subtype A. Places in Sumter County, Alabama Cuba, Alabama Emelle, Alabama Epes, Alabama Gainesville, Alabama Geiger, Alabama Livingston,...

  17. Colbert County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Colbert County, Alabama Cherokee, Alabama Leighton, Alabama Littleville, Alabama Muscle Shoals, Alabama Sheffield, Alabama Tuscumbia,...

  18. Lauderdale County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Lauderdale County, Alabama Anderson, Alabama Florence, Alabama Killen, Alabama Lexington, Alabama Rogersville, Alabama...

  19. Alabama Power Co (Alabama) EIA Revenue and Sales - May 2008 ...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for May 2008....

  20. Alabama Power Co (Alabama) EIA Revenue and Sales - April 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for April 2008....

  1. Alabama Power Co (Alabama) EIA Revenue and Sales - August 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for August 2008....

  2. Alabama Power Co (Alabama) EIA Revenue and Sales - March 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for March 2008....

  3. Alabama Power Co (Alabama) EIA Revenue and Sales - March 2009...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - March 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for March 2009....

  4. Alabama Power Co (Alabama) EIA Revenue and Sales - June 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for June 2008....

  5. Alabama Power Co (Alabama) EIA Revenue and Sales - July 2008...

    Open Energy Info (EERE)

    Alabama Power Co (Alabama) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for July 2008....

  6. Alabama Power Co (Alabama) EIA Revenue and Sales - February 2008...

    Open Energy Info (EERE)

    Power Co (Alabama) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alabama Power Co for February 2008....

  7. Alabama Power- UESC Activities

    Broader source: Energy.gov [DOE]

    Presentationgiven at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meetingdiscusses Alabama Power and its utility energy service contract (UESC) projects and activities.

  8. Alabama/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Program No Alabama Gas Corporation - Residential Natural Gas Rebate Program (Alabama) Utility Rebate Program Yes Alabama Power - Residential Heat Pump and Weatherization Loan...

  9. Save Energy Now Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alabama Save Energy Now Alabama Map highlighting Alabama With a variety of energy-intensive industries, such as chemicals, metals, pulp, and paper located within the state, Alabama ranks eighth among states as the largest industrial energy user. Due to this high concentration of industry, the Alabama Department of Economic and Community Affairs (ADECA) formed a team, including the Alabama Technology Network (ATN) and the Alabama Industrial Assessment Center (AIAC), to inform industrial

  10. Geophysical exploration and hydrologic impact of the closed Gracelawn landfill in Auburn, ME

    SciTech Connect (OSTI)

    Wisniewski, D. . Geology Dept.)

    1993-03-01

    Several geophysical methods were used over portions of the Gracelawn landfill, in Auburn, Maine to determine the surface boundaries and subsurface structure of this closed landfill, and to determine the landfill's effects on groundwater quality. The landfill was originally a sand and gravel pit excavated in the 1950's and early 1960's, and was used as a landfill from 1964--1977. The site is unlined, has a clay cap, and has been graded and developed as a baseball park. Two seismic refraction lines were performed to obtain a minimum depth to bedrock of 80 m. Seismic velocities of methane gas-saturated trash ranged from 250 to 340 m/s, and sand velocities are approximately 800 m/s. Two electrical resistivity Wenner surveys over the trash yielded the depth to saturated material and thickness of the trash layers. Resistivity values for dry refuse ranged from 1,000-2,000 [Omega]*m. A third electrical resistivity survey yielded the thickness of unsaturated and saturated sands bordering the landfill. Dry sands were found to have a resistivity of 1,000 [Omega]*m, and saturated sands a resistivity of 500 [Omega]*m. Gravity and magnetic survey grids across the site revealed anomalies which were mapped to illustrate the irregular morphology of the buried trash as well as its surface boundaries. Residual magnetic anomalies are on the order of 2,000 nT. Residual gravity anomalies are up to 5 mGal. Groundwater elevations determined by the geophysical survey, combined with a survey of existing water monitoring well logs, indicate that the groundwater flow in the sand and gravel aquifer is to the southeast, away from the public water supply, Lake Auburn, which lies to the north of the site. However, correlations between the bedrock fracture analysis and the geophysical survey illustrate that there is potential for contamination of Lake Auburn via the bedrock aquifer.

  11. Alabama Offshore Natural Gas Processed in Alabama (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Processed in Alabama (Million Cubic Feet) Alabama Offshore Natural Gas Processed in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 53,348 53,771 49,474 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed

  12. Birmingham, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Recovery Act Smart Grid Projects in Birmingham, Alabama Southern Company Services, Inc. Smart Grid Project Registered Energy Companies in Birmingham, Alabama Polymet Alloys Inc...

  13. Electron-ion hybrid instability experiment upgrades to the Auburn Linear Experiment for Instability Studies

    SciTech Connect (OSTI)

    DuBois, A. M.; Arnold, I.; Thomas, E. Jr.; Tejero, E.; Amatucci, W. E.

    2013-04-15

    The Auburn Linear EXperiment for Instability Studies (ALEXIS) is a laboratory plasma physics experiment used to study spatially inhomogeneous flows in a magnetized cylindrical plasma column that are driven by crossed electric (E) and magnetic (B) fields. ALEXIS was recently upgraded to include a small, secondary plasma source for a new dual source, interpenetrating plasma experiment. Using two plasma sources allows for highly localized electric fields to be made at the boundary of the two plasmas, inducing strong E Multiplication-Sign B velocity shear in the plasma, which can give rise to a regime of instabilities that have not previously been studied in ALEXIS. The dual plasma configuration makes it possible to have independent control over the velocity shear and the density gradient. This paper discusses the recent addition of the secondary plasma source to ALEXIS, as well as the plasma diagnostics used to measure electric fields and electron densities.

  14. Alabama Onshore Natural Gas Processed in Alabama (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Processed in Alabama (Million Cubic Feet) Alabama Onshore Natural Gas Processed in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 100,491 33,921 35,487 31,116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed

  15. Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Alabama Offshore Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,978 3,721 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production,

  16. Alabama Onshore Natural Gas Plant Liquids Production Extracted in Alabama

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Alabama Onshore Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 3,132 3,323 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production,

  17. South Alabama Electric Cooperative- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    South Alabama Electric Cooperative (SAEC) is a part owner of Alabama Electric Cooperative which has a generation facility in Andalusia, Alabama. The Energy Resources Conservation Loan (ERC) helps...

  18. Origin State Destination State STB EIA STB EIA Alabama

    Gasoline and Diesel Fuel Update (EIA)

    Alabama Alabama W 13.59 W 63.63 21.4% 3,612 W 100.0% Alabama Georgia W 19.58 W 82.89 23.6% 538 W 99.9% Alabama Illinois W - - - - - - - Alabama Kentucky - W - W W W - W Alabama...

  19. SREL Reprint #3179

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Date of nest initiation mediates incubation costs of Wood Ducks (Aix sponsa) Gary R. Hepp1 and Robert A. Kennamer2 1School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama 36849, USA 2Savannah River Ecology Laboratory, Drawer E, Aiken, South Carolina 29802, USA Abstract: Incubation has a significant reproductive cost in birds that can limit both current and future reproductive success. We manipulated the incubation period of Wood Ducks (Aix sponsa) to examine how female

  20. SREL Reprint #3246

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Warm is better: incubation temperature influences apparent survival and recruitment of Wood Ducks (Aix sponsa) Gary R. Hepp1 and Robert A. Kennamer2 1School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama, USA 2Savannah River Ecology Laboratory, Aiken, South Carolina, USA Abstract: Avian parents that physically incubate their eggs must balance demands of self-maintenance with providing the proper thermal environment for egg development. Low incubation temperatures can

  1. SREL Reprint #3294

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Plasticity of incubation behaviors helps Wood Ducks (Aix sponsa) maintain an optimal thermal environment for developing embryos Maureen E. McClintock1, Gary R. Hepp1, and Robert A. Kennamer2 1School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama, USA 2Savannah River Ecology Laboratory, Aiken, South Carolina, USA Abstract: Optimal development of avian embryos occurs within a narrow range of incubation temperatures. Most parents that physically incubate their eggs through

  2. Headland, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Headland is a city in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  3. Haleburg, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Haleburg is a town in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  4. Dothan, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Dothan is a city in Dale County and Henry County and Houston County, Alabama. It falls under Alabama's 2nd congressional...

  5. Abbeville, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Abbeville is a city in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  6. Newville, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Newville is a town in Henry County, Alabama. It falls under Alabama's 2nd congressional district.12 References...

  7. Avon, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Avon is a town in Houston County, Alabama. It falls under Alabama's 2nd congressional...

  8. North Alabama Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    Place: Alabama Phone Number: (256) 437-2281 or 800-572-2900 Website: www.naecoop.com Facebook: https:www.facebook.compagesNorth-Alabama-Electric-Cooperative159082070791105...

  9. Categorical Exclusion Determinations: Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alabama Categorical Exclusion Determinations: Alabama Location Categorical Exclusion Determinations issued for actions in Alabama. DOCUMENTS AVAILABLE FOR DOWNLOAD October 28, 2015 CX-100394 Categorical Exclusion Determination ARRA Financing Program - AlabamaSAVES Award Number: DE- EE-0004122 CX(s) Applied: B5.16 Weatherization & Intergovernmental Programs Office Date: 10/28/2015 Location(s): AL Office(s): Golden Field Office September 10, 2015 CX-100360 Categorical Exclusion Determination

  10. Alabama -- SEP Data Dashboard | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Dashboard Alabama -- SEP Data Dashboard The data dashboard for Alabama -- SEP, a partner in the Better Buildings Neighborhood Program. File Alabama -- SEP Data Dashboard More Documents & Publications Massachusetts -- SEP Data Dashboard Austin Energy Data Dashboard Washington -- SEP Data Dashboard

  11. Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Fuels Education in Alabama to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Digg Find

  12. Recovery Act State Memos Alabama

    Broader source: Energy.gov (indexed) [DOE]

    Alabama For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  13. ,"Alabama Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  14. ,"Alabama Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  15. Alabama Residential Energy Code Field Study

    Broader source: Energy.gov [DOE]

    Lead Performer: Institute for Market Transformation – Washington, DCPartners: Alabama Center for Excellence in Clean Energy Technology, Calhoun Community College – Decatur, ALDOE Total Funding: ...

  16. Alabama/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Alabama Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  17. South Alabama Electric Cooperative - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility Residential Savings Category Geothermal Heat Pumps Heat Pumps Building Insulation Windows Doors Program Info Sector Name Utility Administrator South Alabama...

  18. Taylor, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    dataset (All States, all geography) US Census Bureau Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleTaylor,Alabama&oldid25085...

  19. Energy Incentive Programs, Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What load managementdemand response options are available to me? Alabama Power, a subsidiary of the Southern Company, offers a set of real time pricing programs. Under this ...

  20. Clean Cities: Alabama Clean Fuels coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the United States. Bentley actively strives to lead efforts to build an alternative fuel industry in Alabama and leverages public-private partnerships to accomplish this goal....

  1. Alabama Oil and Gas Board | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Board Jump to: navigation, search Logo: Alabama Oil and Gas Board Name: Alabama Oil and Gas Board Abbreviation: OGB Address: 420 Hackberry Lane Place: Tuscaloosa,...

  2. City of Huntsville, Alabama (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Huntsville, Alabama (Utility Company) (Redirected from Huntsville Utilities) Jump to: navigation, search Name: Huntsville City of Place: Alabama Phone Number: 1-866-478-8845 or...

  3. City of Bessemer Utilities, Alabama | Open Energy Information

    Open Energy Info (EERE)

    Bessemer Utilities, Alabama Jump to: navigation, search Name: City of Bessemer Utilities Place: Alabama Phone Number: (205) 481-4333 Website: www.bessemerutilities.com Outage...

  4. SEP Success Story: Local Program Helps Alabama Manufacturers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, ...

  5. SREL Reprint #3195

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Effects of Incubation Delay on Viability and Microbial Growth of Wood Duck (Aix sponsa) Eggs Johnathan G. Walls, Gary R. Hepp, and Lori G. Eckhardt School of Forestry and Wildlife Sciences, Auburn University, Auburn, Alabama 36849, USA Abstract: Egg viability in birds declines with increasing length of the delay in the start of incubation (i.e., incubation delay) and may be influenced by microbial infection and exposure of eggs to temperatures above physiological zero (>24°C). Onset of

  6. Alabama SEP Final Technical Report

    SciTech Connect (OSTI)

    Grimes, Elizabeth M.

    2014-06-30

    Executive Summary In the fall of 2010, the Alabama Department of Economic and Community Affairs (ADECA) launched the Multi-State Model for Catalyzing the National Home Energy Retrofit Market Project (Multi-State Project). This residential energy efficiency pilot program was a collaborative effort among the states of Alabama, Massachusetts, Virginia, and Washington, and was funded by competitive State Energy Program (SEP) awards through the U.S. Department of Energy (DOE). The objective of this project was to catalyze the home energy efficiency retrofit market in select areas within the state of Alabama. To achieve this goal, the project addressed a variety of marketplace elements that did not exist, or were underdeveloped, at the outset of the effort. These included establishing minimum standards and credentials for marketplace suppliers, educating and engaging homeowners on the benefits of energy efficiency and addressing real or perceived financial barriers to investments in whole-home energy efficiency, among others. The anticipated effect of the activities would be increased market demand for retrofits, improved audit to retrofit conversion rates and growth in overall community understanding of energy efficiency. The four-state collaborative was created with the intent of accelerating market transformation by allowing each state to learn from their peers, each of whom possessed different starting points, resources, and strategies for achieving the overall objective. The four partner states engaged the National Association of State Energy Officials (NASEO) to oversee a project steering committee and to manage the project evaluation for all four states. The steering committee, comprised of key program partners, met on a regular basis to provide overall project coordination, guidance, and progress assessment. While there were variances in program design among the states, there were several common elements: use of the Energy Performance Score (EPS) platform; an audit and home energy rating tool; emphasis on community based coordination and partnerships; marketing and outreach to increase homeowner participation; training for market actors; access to financing options including rebates, incentives, and loan products; and an in depth process evaluation to support continual program improvement and analysis. In Alabama, Nexus Energy Center operated energy efficiency retrofit programs in Huntsville and Birmingham. In the Huntsville community the AlabamaWISE program was available in five Alabama counties: Cullman, Lawrence, Limestone, Madison, and Morgan. In Birmingham, the program was available to residents in Jefferson and Shelby Counties. In both communities, the program was similar in terms of program design but tailored marketing and partnerships to address the unique local conditions and population of each community. ADECA and the Southeast Energy Efficiency Alliance (SEEA) provided overall project management services and common resources to the local program administrator Nexus Energy Center, including contracted services for contractor training, quality assurance testing, data collection and reporting, and compliance. The fundamental components of the AlabamaWISE program included a vertical contractor-based business model; comprehensive energy assessments; third-party quality assurance; rebates for installation of energy saving measures; accessible, low-interest financing; targeted and inbound marketing; Energy Performance Score (EPS) tool to engage and educate homeowners; training for auditors, contractors, and real estate professionals; and online resources for education and program enrollment. Program participants were eligible to receive rebates or financing toward the assessments and upgrades to their home provided they reached at least 20 percent deemed or modeled energy savings. The design of each program focused on addressing several known barriers including: limited homeowner knowledge on the benefits of energy efficiency, lack of financing options, lack of community support for energy efficiency programs, and lack of trained market actors including contractors and real estate professionals. The programs were able to make progress on addressing all of these barriers and were most successful in offering financing options and training market actors. The most challenging barriers proved to be the act of building a market for energy efficiency where none previously existed, convincing homeowners of the value in investing in energy efficiency (and therefore completing retrofits), engaging electric and natural gas utilities to partner on delivery, and achieving the overall project target of 1,365 completed retrofits. The components that proved to be the most valuable to program success were engaged contractor networks that could promote and endorse the program, partnerships with local business and organizations, and the access to rebates, incentives and financing mechanisms. The programs were successful in building relationships with a variety of community participants including: local contractors, Associations of REALTORS, home builders associations, universities, utilities, local and state governments, and other non-profit organizations. Throughout this program, 933 building audits and 795 building retrofits were completed making homes in Alabama more comfortable, less expensive to operate, more valuable to the marketplace, and safer and healthier for families. Continuing on this momentum, Nexus Energy Center plans to continue operating and expanding operations in Alabama as a Home Performance with ENERGY STAR sponsor and will continue to provide energy services and education to communities in Alabama.

  7. Alabama Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Browns Ferry Unit 1, Unit 2, Unit 3","3,309","24,771",65.3,"Tennessee Valley Authority" "Joseph M Farley Unit 1, Unit 2","1,734","13,170",34.7,"Alabama Power

  8. Final Technical Report. Upgrades to Alabama Power Company Hydroelectric Developments

    SciTech Connect (OSTI)

    Crew, James F.; Johnson, Herbie N.

    2015-03-31

    From 2010 to 2014, Alabama Power Company (“Alabama Power”) performed upgrades on four units at three of the hydropower developments it operates in east-central Alabama under licenses issued by the Federal Energy Regulatory Commission (“FERC”). These three hydropower developments are located on the Coosa River in Coosa, Chilton, and Elmore counties in east-central Alabama.

  9. SEP Success Story: Alabama Institute for Deaf and Blind to Launch...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alabama Institute for Deaf and Blind to Launch Lighting Project SEP Success Story: Alabama ... SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and ...

  10. Alternative Fuels Data Center: Alabama Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Alabama Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Alabama Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Alabama Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Alabama Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Alabama

  11. Alternative Fuels Data Center: Alabama City Leads With Biodiesel and

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Alabama City Leads With Biodiesel and Ethanol to someone by E-mail Share Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Facebook Tweet about Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Twitter Bookmark Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Google Bookmark Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Delicious Rank Alternative Fuels Data

  12. AlabamaSAVES Revolving Loan Program

    Broader source: Energy.gov [DOE]

    NOTE: Starting July 1, 2016, the AlabamaSAVES program will transition into a participating loan program. The program will continue to receive applications for the current program until March 31,...

  13. City of Tuskegee, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Tuskegee, Alabama (Utility Company) Jump to: navigation, search Name: City of Tuskegee Place: Alabama Phone Number: (334) 720-0799 or (334) 720-0700 Website: www.yourubt.com...

  14. City of Huntsville, Alabama (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Huntsville, Alabama (Utility Company) Jump to: navigation, search Name: Huntsville City of Place: Alabama Phone Number: 1-866-478-8845 or 256-535-1200 Website: www.hsvutil.org...

  15. City of Muscle Shoals, Alabama (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Shoals, Alabama (Utility Company) Jump to: navigation, search Name: City of Muscle Shoals Place: Alabama Phone Number: (256) 386-9293 Website: www.mseb.net Outage Hotline: (256)...

  16. ,"Alabama Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    2015 12:34:05 PM" "Back to Contents","Data 1: Alabama Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSALMMCF" "Date","Alabama...

  17. ,"Alabama Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:20 AM" "Back to Contents","Data 1: Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AL3" "Date","Alabama...

  18. ,"Alabama Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:19 AM" "Back to Contents","Data 1: Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035AL3" "Date","Alabama...

  19. Domestic Coal Distribution 2009 Q1 by Origin State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Q1 by Origin State: Alabama (1000 Short Tons) 1 58 Domestic Coal Distribution 2009 Q1 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity...

  20. Domestic Coal Distribution 2009 Q1 by Destination State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons) 1 64 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons)...

  1. Domestic Coal Distribution 2009 Q2 by Origin State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Q2 by Origin State: Alabama (1000 Short Tons) 1 58 Domestic Coal Distribution 2009 Q2 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity...

  2. Domestic Coal Distribution 2009 Q2 by Destination State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons) 1 61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons)...

  3. Alabama Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alabama Recovery Act State Memo Alabama Recovery Act State Memo Alabama has substantial natural resources, including gas, coal, biomass, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alabama are supporting a broad range of clean energy projects, from energy efficiency and the electric grid to renewable energy and carbon capture and

  4. Alabama State Historic Preservation Programmatic Agreement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Alabama State Historic Preservation Programmatic Agreement Alabama State Historic Preservation Programmatic Agreement Fully executed programmatic agreement between the U.S. Department of Energy, the Alabama Energy and Weatherization Offices and the Alabama State Historic Preservation Office regarding EECBG, SEP and WAP undertakings. PDF icon state_historic_preservation_programmatic_agreement_al.pdf More Documents & Publications New Hampshire State Historic Preservation

  5. Energy Upgrades to Alabama Trauma Center Help Improve Patient Care

    Broader source: Energy.gov [DOE]

    In Alabama, a Recovery Act grant is helping a hospital save energy while providing better care to its patients.

  6. ALABAMA GETS WISE ABOUT SELLING UPGRADES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ALABAMA GETS WISE ABOUT SELLING UPGRADES ALABAMA GETS WISE ABOUT SELLING UPGRADES ALABAMA GETS WISE ABOUT SELLING UPGRADES With goal of sharing knowledge about each state's efforts, the Alabama Department of Economic and Community Affairs (ADECA) teamed up with the National Association of State Energy Offices (NASEO) and the energy departments of Washington, Massachusetts, and Virginia to form a multistate residential energy efficiency collaborative. Using $3 million in seed funding from the

  7. Alabama -- SEP Summary of Reported Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of Reported Data Alabama -- SEP Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Alabama -- SEP. PDF icon Alabama Summary of Reported Data More Documents & Publications Virginia -- SEP Summary of Reported Data NYSERDA Summary of Reported Data Michigan -- SEP Summary of Reported Data

  8. Categorical Exclusion Determination (Georgia-Alabama-SouthCarolina System)

    Energy Savers [EERE]

    | Department of Energy Categorical Exclusion Determination (Georgia-Alabama-SouthCarolina System) Categorical Exclusion Determination (Georgia-Alabama-SouthCarolina System) PDF icon Proposed rate adjustment for the Georgia-Alabama-South Carolina System of Projects More Documents & Publications CX-001068: Categorical Exclusion Determination SOCO-4-E Wholesale Power Rate Schedule Regulation-1

  9. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increase Profits | Department of Energy Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8, 2014 - 11:30am Addthis ZF North America used Alabama E3 funding to create a recycling program that saves more than $100,000 a year in trash pickup and landfill fees. Pictured here are workers in the Tuscaloosa location, which provides Mercedes with complete axle systems. |

  10. DOE-Sponsored Project Begins Demonstrating CCUS Technology in Alabama |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Project Begins Demonstrating CCUS Technology in Alabama DOE-Sponsored Project Begins Demonstrating CCUS Technology in Alabama August 22, 2012 - 1:00pm Addthis Washington, DC - Carbon dioxide (CO2) injection has begun at the world's first fully integrated coal power and geologic storage project in southwest Alabama, with the goals of assessing integration of the technologies involved and laying the foundation for future use of CO2 for enhanced oil recovery (EOR). The

  11. SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs,

    Energy Savers [EERE]

    Reduce Waste and Increase Profits | Department of Energy Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8, 2014 - 10:06am Addthis ZF North America used Alabama E3 funding to create a recycling program that saves more than $100,000 a year in trash pickup and landfill fees. Pictured here are workers in the Tuscaloosa location, which provides

  12. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and

    Office of Environmental Management (EM)

    Increase Profits | Department of Energy Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8, 2014 - 11:30am Addthis ZF North America used Alabama E3 funding to create a recycling program that saves more than $100,000 a year in trash pickup and landfill fees. Pictured here are workers in the Tuscaloosa location, which provides Mercedes with complete axle systems. |

  13. DOE - Office of Legacy Management -- Alabama Ordnance Works - AL 02

    Office of Legacy Management (LM)

    Alabama Ordnance Works - AL 02 FUSRAP Considered Sites Site: Alabama Ordnance Works (AL.02 ) Eliminated from consideration under FUSRAP - Referred to DoD Designated Name: Not Designated Alternate Name: None Location: Sylacauga , Alabama AL.02-1 Evaluation Year: 1987 AL.02-1 Site Operations: Involved in the production of heavy water for the MED. AL.02-1 Site Disposition: Eliminated - No indication of residual radioactive contamination - Referred to DOD AL.02-1 Radioactive Materials Handled: None

  14. Alabama Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore California State Offshore Federal Offshore California Colorado Federal Offshore Gulf of Mexico Federal Offshore Alabama Federal Offshore Louisiana Federal Offshore Texas Kansas Louisiana Louisiana Onshore Louisiana Offshore Louisiana State Offshore Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Texas

  15. Alabama Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    Alaska Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other States Total Alabama Arizona Florida Illinois Indiana Kentucky Maryland Michigan Mississippi Missouri Nebraska Nevada New York Oregon South Dakota Tennessee Virginia Period-Unit: Monthly-Million Cubic Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History

  16. Alabama Pine Pulp Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleAlabamaPinePulpBiomassFacility&oldid397129" Feedback Contact needs updating Image needs updating...

  17. Clay County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.279527, -85.8486236 Show Map Loading map... "minzoom":false,"mappingservice":"googl...

  18. Walker County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Walker County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8563605, -87.3016132 Show Map Loading map... "minzoom":false,"mappin...

  19. EECBG Success Story: Managing Storm Aftermath in Alabama

    Broader source: Energy.gov [DOE]

    Thanks to a $2.5 million Energy Efficiency Conservation Block Grant (EECBG), Montgomery, Alabama will revamp its landfill sorting efforts and retrofit its historical city. Learn more.

  20. Chambers County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chambers County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9028048, -85.354965 Show Map Loading map... "minzoom":false,"mappi...

  1. Alabama -- SEP Summary of Reported Data | Department of Energy

    Energy Savers [EERE]

    -- SEP. PDF icon Alabama Summary of Reported Data More Documents & Publications Virginia -- SEP Summary of Reported Data NYSERDA Summary of Reported Data Michigan -- SEP...

  2. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated Natural Gas Proved Reserves, Wet After Lease...

  3. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014...

  4. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  5. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301981"...

  6. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed Methane Proved Reserves, Reserves Changes, and...

  7. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Electricfil Corporation, located in Elkmont, Alabama, used E3 funding to implement energy-efficient lighting upgrades, start a recycling program for waste within the facility and ...

  8. ALABAMA GETS WISE ABOUT SELLING UPGRADES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... In an effort to minimize expenditures, AlabamaWISE invested less in broad marketing ... Amplify efforts through program branding. A successful residential energy efficiency ...

  9. Central Alabama Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Central Alabama Electric Cooperative, a Touchstone Electric Cooperative, offers the Touchstone Energy Home Program. Touchstone Energy Homes with a dual-fuel or geothermal heat pump qualify for...

  10. Washington County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Washington County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.3422346, -88.2461183 Show Map Loading map......

  11. Energy Secretary Bodman Tours Alabama Red Cross Facility and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Bodman also joined Alabama Governor Bob Riley, religious leaders and Alabamans at Frazer United Methodist Church for a National Day of Prayer and Remembrance service to ...

  12. Alabama Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alabama Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  13. FUPWG Meeting Agenda - Mobile, Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mobile, Alabama FUPWG Meeting Agenda - Mobile, Alabama October 16-17, 2012 Hosted by Alabama Power Tuesday, October 16, 2012 8:30 am Welcome Greg Reardon, Alabama Power Bob Chappelle, Mobile Area Chamber of Commerce 8:45 am Chairman's Corner David McAndrew, FEMP 9:00 am Washington Update Tim Unruh, FEMP 9:30 am Air Force Real Property Agency Enhanced Use Lease Program Brian Brown, Air Force Real Property Agency Strategic Asset Utilization Dave Swanson, Air Force Real Property Agency Strategic

  14. ,"Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","129...

  15. ,"Alabama--State Offshore Natural Gas Marketed Production (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama--State Offshore Natural Gas Marketed Production (MMcf)",1,"Annual",2014 ,"Release Date:","1...

  16. Alabama Family Staying Nice and Cozy This Fall

    Broader source: Energy.gov [DOE]

    Recovery Act money to weatherize homes has resulted in much lower energy bills for Alabama families, including Mary, whose bill is about $300 cheaper now.

  17. ,"Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  18. ,"Alabama Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  19. SEP Success Story: Local Program Helps Alabama Manufacturers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEP Success Story: Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and ... Learn more. Addthis Related Articles SEP Success Story: Helping Wisconsin Small Businesses ...

  20. Perry County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Perry County, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.598888, -87.3016132 Show Map Loading map... "minzoom":false,"mappings...

  1. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  2. Reservoir characterization of the Smackover Formation in southwest Alabama

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.; Tew, B.H.

    1993-02-01

    The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- and improved-recovery methods from the Smackover of Alabama.

  3. Alabama Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Alabama Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 23 1990's 36 68 89 103 108 109 98 111 123 108 2000's 109 111 117 98 121 113 114 114 107 105 2010's 102 98 91 62 78 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane

  4. Alabama Institute for Deaf and Blind Biodiesel Project Green

    SciTech Connect (OSTI)

    Edmiston, Jessica L

    2012-09-28

    Through extensive collaboration, Alabama Institute for Deaf and Blind (AIDB) is Alabama's first educational entity to initiate a biodiesel public education, student training and production program, Project Green. With state and national replication potential, Project Green benefits local businesses and city infrastructures within a 120-mile radius; provides alternative education to Alabama school systems and to schools for the deaf and blind in Appalachian States; trains students with sensory and/or multiple disabilities in the acquisition and production of biodiesel; and educates the external public on alternative fuels benefits.

  5. Pike County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Pike County is a county in Alabama. Its FIPS County Code is 109. It is classified as ASHRAE...

  6. Alabama Power- Residential Heat Pump and Weatherization Loan Programs

    Broader source: Energy.gov [DOE]

    Alabama Power offers low-interest loans to residential customers to purchase and install new heat pumps and a variety of weatherization measures. The loans require no money down and can be used to...

  7. Origin State Destination State STB EIA STB EIA Alabama

    Gasoline and Diesel Fuel Update (EIA)

    81.4% Illinois Alabama W W W W W W W W Illinois Florida W W W W W W W W Transportation cost per short ton (nominal) Shipments with transportation rates over total shipments...

  8. Marion County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Marion County is a county in Alabama. Its FIPS County Code is 093. It is classified as ASHRAE...

  9. Henry County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Henry County is a county in Alabama. Its FIPS County Code is 067. It is classified as ASHRAE...

  10. Montgomery County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Montgomery County is a county in Alabama. Its FIPS County Code is 101. It is classified as...

  11. City of Evergreen, Alabama (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Evergreen Place: Alabama Phone Number: 251-578-1574 Website: www.evergreenal.orgindex.php Outage Hotline: 251-578-1574 References: EIA Form EIA-861 Final Data File for 2010 -...

  12. Butler County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Butler County is a county in Alabama. Its FIPS County Code is 013. It is classified as ASHRAE...

  13. Jackson County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson County is a county in Alabama. Its FIPS County Code is 071. It is classified as...

  14. Lee County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Lee County is a county in Alabama. Its FIPS County Code is 081. It is classified as ASHRAE...

  15. Alabama Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 499 497...

  16. Alabama Natural Gas in Underground Storage (Base Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Base Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 880 880 880 880...

  17. Two Alabama Elementary Schools Get Cool with New HVAC Units

    Broader source: Energy.gov [DOE]

    Addison Elementary School and Double Springs Elementary School in northwestern Alabama were warm. Some classrooms just didn’t cool fast enough. The buildings, which were built almost 20 years ago, were in need of new HVAC units.

  18. Alabama--State Offshore Natural Gas Dry Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    State Offshore Natural Gas Dry Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  19. Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oil Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  20. Federal Offshore--Alabama Natural Gas Withdrawals from Gas Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  1. Alabama--State Offshore Natural Gas Withdrawals from Gas Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals from Gas Wells (Million Cubic Feet) Alabama--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  2. Alabama Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Alabama Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2015 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: Email Us High School Regionals Alabama Regions Print Text Size: A

  3. Alabama Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Alabama Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2015 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: Email Us Middle School Regionals Alabama Regions Print

  4. Managing Storm Aftermath in Alabama | Department of Energy

    Office of Environmental Management (EM)

    Managing Storm Aftermath in Alabama Managing Storm Aftermath in Alabama June 18, 2010 - 3:19pm Addthis Montgomery's horizontal grinder has normal handling capacity of 108 tons per hour. | Photo Courtesy of Lynda Wool Montgomery's horizontal grinder has normal handling capacity of 108 tons per hour. | Photo Courtesy of Lynda Wool Lindsay Gsell Warm, humid climate and proximity to the Gulf of Mexico produce turbulent weather patterns that regularly bring tornadoes and hurricanes to Montgomery,

  5. Alabama Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Alabama Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 57,208 1970's 0 0 0 0 0 0 25,517 31,610 32,806 1980's 38,572 41,914 38,810 42,181 45,662 48,382 49,341 52,511 55,939 1990's 58,136 76,739 126,910 132,222 136,195 118,688 112,868 114,411 107,334 309,492 2000's 372,136 285,953 290,164 237,377 263,426 255,157 287,278 257,443 253,028 248,232 2010's 242,444 230,546 87,269 89,258 80,590 -

  6. Research and Services at the Alabama A&M University Research...

    Office of Environmental Management (EM)

    Research and Services at the Alabama A&M University Research Institute Research and Services at the Alabama A&M University Research Institute An overview of services and research...

  7. Solar LED Light Pilot Project Illuminates the Way in Alabama | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy LED Light Pilot Project Illuminates the Way in Alabama Solar LED Light Pilot Project Illuminates the Way in Alabama September 12, 2012 - 2:15pm Addthis Boaz, Alabama Mayor Tim Walker, along with state representatives and community leaders, cut the ribbon for the state's solar LED light pilot project. | Photo courtesy of Lionel Green, Sand Mountain Reporter. Boaz, Alabama Mayor Tim Walker, along with state representatives and community leaders, cut the ribbon for the state's solar

  8. Integrated Distribution Management System for Alabama Principal Investigator

    SciTech Connect (OSTI)

    Schatz, Joe

    2013-03-31

    Southern Company Services, under contract with the Department of Energy, along with Alabama Power, Alstom Grid (formerly AREVA T&D) and others moved the work product developed in the first phase of the Integrated Distribution Management System (IDMS) from Proof of Concept to true deployment through the activity described in this Final Report. This Project Integrated Distribution Management Systems in Alabama advanced earlier developed proof of concept activities into actual implementation and furthermore completed additional requirements to fully realize the benefits of an IDMS. These tasks include development and implementation of a Distribution System based Model that enables data access and enterprise application integration.

  9. Alabama (with State Offshore) Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Alabama (with State Offshore) Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production Alabama Shale Gas Proved Reserves, Reserves Changes, and Production Shale Gas

  10. Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Shale Proved Reserves (Billion Cubic Feet) Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 2 0 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Alabama Shale Gas Proved Reserves,

  11. Heavy liquid beneficiation developed for Alabama tar sands

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    The tar sand deposits in the State of Alabama contain about 1.8 billion barrels of measured and more than 4 billion barrels of speculative in-place bitumen. A comprehensive research program is in progress for the separation of bitumen from these deposits. In general, Alabama tar sands are oil wetted, low grade and highly viscous in nature. In view of these facts, a beneficiation strategy has been developed to recover bitumen enriched concentrate which can be used as a feed material for further processing. Heavy liquid separation tests and results are discussed. A 77% zinc bromide solution, specific gravity of 2.4, was used for the tests. 2 figures.

  12. Alabama Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 237 3 0 264 0 431 253 379 21 0 2010's 148 383 21 183 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Alabama Dry Natural Gas

  13. Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 140 1 6 246 29 419 188 302 10 2 2010's 263 573 11 357 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Alabama Dry Natural Gas Proved Reserves Dry

  14. Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Onshore Natural Gas Dry Production (Million Cubic Feet) Alabama--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 125,180 106,903 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Dry Production Alabama Onshore

  15. Vestas USA | Open Energy Information

    Open Energy Info (EERE)

    USA Jump to: navigation, search Name: Vestas USA Place: Rolling Meadows, Illinois Zip: IL 60008-4030 Sector: Wind energy Product: Vestas Wind Systems American arm. References:...

  16. SEP Success Story: Alabama Institute for Deaf and Blind to Launch Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy Alabama Institute for Deaf and Blind to Launch Lighting Project SEP Success Story: Alabama Institute for Deaf and Blind to Launch Lighting Project August 20, 2010 - 9:44am Addthis The Alabama Institute for Deaf and Blind is replacing almost 2,900 lights in 19 buildings across its campuses.| Photo courtesy of Alabama Institute for Deaf and Blind The Alabama Institute for Deaf and Blind is replacing almost 2,900 lights in 19 buildings across its campuses.| Photo

  17. EECBG Success Story: Alabama Justice Center Expands its Solar Capabilities

    Broader source: Energy.gov [DOE]

    At the T.K. Davis Justice Center in Opelika, Alabama, the county is making an effort to reduce costs and help the environment by installing renewable energy projects, including solar panels on the center’s roof and on poles around the property, thanks to funding from an Energy Efficiency and Conservation Block Grant (EECBG). Learn more.

  18. Arlington, VA 22209 USA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    600, 1901 North Moore Street Arlington, VA 22209 USA Phone: (703) 522-0086 * Fax: (703) 522-0548 governmentaffairs@hpba.org www.hpba.org U.S. Department of Energy Mr. Daniel Cohen ...

  19. Arlington, VA 22209 USA

    Energy Savers [EERE]

    22209 USA Phone: (703) 522-0086 * Fax: (703) 522-0548 Email: governmentaffairs@hpba.org Web Site: www.hpba.org Before the Department of Energy Docket No. EERE-2014-BT-STD-0036 RIN ...

  20. Electric Fuel Battery Corporation | Open Energy Information

    Open Energy Info (EERE)

    Fuel Battery Corporation Jump to: navigation, search Name: Electric Fuel Battery Corporation Place: Auburn, Alabama Zip: 36832 Product: Develops and manufactures BA-8180U high...

  1. Solar Unlimited USA | Open Energy Information

    Open Energy Info (EERE)

    USA Jump to: navigation, search Logo: Solar Unlimited USA Name: Solar Unlimited USA Address: 2353 Park Ave. Place: Cedar City, Utah Zip: 84721 Region: Rockies Area Sector: Solar...

  2. Geo processors USA | Open Energy Information

    Open Energy Info (EERE)

    processors USA Jump to: navigation, search Name: Geo-processors USA Place: California Zip: 91204 Sector: Carbon Product: California based Geo-procesors USA has developed an...

  3. Federal Offshore--Alabama Natural Gas Gross Withdrawals (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Offshore--Alabama Natural Gas Gross Withdrawals (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 1990's 0 0 79,294 86,515 120,502 143,703 152,055 194,677 170,320 163,763 2000's 160,208 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  4. Alabama Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Alabama Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Alabama Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 59,051 56,685 42,925 34,164 35,674 45,488 41,614 1990's 37,229 35,972 51,219 75,474 70,489 54,964 493,069 583,370 560,414 544,020 2000's 521,215 376,241 370,753 348,722 304,212 285,237 274,176 259,062

  5. Slide 1 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Alabama

  6. EECBG Success Story: Solar LED Light Pilot Project Illuminates the Way in Alabama

    Broader source: Energy.gov [DOE]

    A strip of new solar-powered LED streetlights in Boaz, Alabama were installed with grant funds from the Alabama Department of Economic and Community Affairs and $221,900 from the Energy Department through the Energy Efficiency and Conservation Block Grant (EECBG) program. Learn more.

  7. Alabama Institute for Deaf and Blind to Launch Lighting Project

    Broader source: Energy.gov [DOE]

    For over a century, students at the Alabama Institute for Deaf and Blind (AIDB) have proudly displayed the school colors—blue and red—in the hallways, classrooms and dorm rooms. But this school year, they’re “Going Green.” The 152-year-old institute is replacing almost 2,900 lights in 19 buildings across its Talladega, Ala., campuses with energy-efficient fixtures, an upgrade expected to save the institute over $20,000 a year on utility bills.

  8. Federal Offshore--Alabama Natural Gas Marketed Production (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Marketed Production (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 79,294 86,515 120,502 143,703 152,055 194,677 170,320 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Marketed Production

  9. Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease

    Gasoline and Diesel Fuel Update (EIA)

    Condensate, Proved Reserves (Million Barrels) Proved Reserves (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 256 230 223 223 278 1990's 258 253 226 235 233 305 422 433 435 430 2000's 433 325 300 251 205 196 185 163 151 134 2010's 129 129 98 88 108 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  10. Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease

    Gasoline and Diesel Fuel Update (EIA)

    Condensate, Reserves Based Production (Million Barrels) Reserves Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 34 28 27 29 32 1990's 33 34 35 35 37 40 49 59 57 61 2000's 76 60 60 53 49 39 37 40 28 28 2010's 28 24 20 14 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  11. Gulf of Mexico Federal Offshore - Louisiana and Alabama

    Gasoline and Diesel Fuel Update (EIA)

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,875 1990's 5,098 5,085 4,637 4,570 4,982 5,385 5,492

  12. Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec.

  13. Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 22,897 1990's 17,952 16,943 15,369 15,181 16,226 16,279 16,627 16,241 15,427 14,950 2000's

  14. Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 4 2 2000's 2 4 1 2 2 2 0 0 0 0 2010's 0 1 2 2 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  15. Alabama (with State Offshore) Natural Gas Liquids Lease Condensate,

    Gasoline and Diesel Fuel Update (EIA)

    Reserves Based Production (Million Barrels) Reserves Based Production (Million Barrels) Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8 1980's 12 12 12 11 12 12 11 10 11 12 1990's 10 10 10 8 8 8 7 6 4 4 2000's 5 4 4 3 2 3 2 2 2 2 2010's 2 2 2 2 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  16. Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) Proved Reserves (Million Barrels) Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 182 1980's 193 167 158 166 152 143 139 132 130 130 1990's 122 110 118 103 91 72 67 59 50 50 2000's 46 32 29 27 21 30 15 21 14 16 2010's 18 19 18 14 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  17. Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 31 1980's 33 25 35 50 48 39 38 34 36 38 1990's 48 35 53 55 51 48 52 34 31 57 2000's 104 32 28 33 29 31 41 32 92 55 2010's 68 68 55 51 59 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  18. Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Reserves Based Production (Million Barrels) Alabama (with State Offshore) Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 3 3 4 4 4 4 4 4 4 4 1990's 4 4 4 4 4 4 4 4 4 8 2000's 10 3 3 2 2 2 3 2 7 5 2010's 6 6 5 6 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  19. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 23 25 1990's 25 23 30 46 56 44 38 30 28 27 2000's 29 26 31 32 32 29 18 20 19 29 2010's 38 48 100 46 141 - = No Data Reported; -- = Not Applicable; NA = Not

  20. Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 53 2010's 60 65 69 58 79 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec.

  1. Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Net Withdrawals (Million Cubic Feet) Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 185 30 66 -580 459 -459 132 -46 164 -422 1990's 456 -19 239 215 448 -164 -303 425 32 -219 2000's -285 -136 298 -47 19 114 -7 -209 -73 178 2010's -21 -75 -22 63 -206 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  2. Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Liquids, Proved Reserves (Million Barrels) Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 213 1980's 226 192 193 216 200 182 177 166 166 168 1990's 170 145 171 158 142 120 119 93 81 107 2000's 150 64 57 60 50 61 56 53 106 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  3. Recent two-stage coal liquefaction results from Wilsonville, Alabama

    SciTech Connect (OSTI)

    Rao, A.K.; Udani, L.H.; Nalitham, R.V.

    1985-01-01

    This paper presents results from two recent runs conducted at the Advanced Coal Liquefaction R and D facility of Wilsonville, Alabama. The first run was an extended demonstration of sub-bituminous coal liquefaction using an integrated two-stage liquefaction (ITSL) process. The second run employed a bituminous coal in a reconfigured two-stage process (RITLS) wherein the undeashed products from the first stage were hydrotreated prior to separation of coal ash. Good operability and satisfactory yield structure were demonstrated in both the runs.

  4. Alabama Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7 -12 -27 1980's 30 42 1990's 197 605 159 -644 27 -45 -44 -31 5 -17 2000's -56 36 72 -36 34 -27 -11 12 -71 46 2010's 32 -49 112 -274 502 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  5. Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 24 42 46 1980's 64 85 1990's 104 146 256 281 391 360 373 376 394 376 2000's 359 345 365 350 327 300 287 274 257 254 2010's 223 218 214 175 176 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  6. Alabama Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 50 42 44 1980's 64 12 1990's 1,014 229 35 378 80 118 177 34 19 1 2000's 175 169 289 315 131 85 146 123 59 20 2010's 28 3 0 0 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  7. Alabama Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 45 41 1980's 116 89 1990's 938 207 191 159 2,128 286 97 54 313 140 2000's 69 218 155 122 155 60 208 35 732 328 2010's 173 157 254 75 41 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  8. Alabama Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Alabama Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 18 35 129 1980's 69 119 1990's 759 773 545 44 2,101 481 502 348 309 215 2000's 74 78 130 588 162 135 234 163 283 99 2010's 206 455 99 67 140 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  9. Alabama Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) Alabama Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 655 908 754 353 838 512 581 465 607 512 1990's 893 511 501 612 944 524 979 960 501 564 2000's 729 504 871 655 509 493 704 868 1,003 1,676 2010's 946 754 562 822 1,664 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  10. Alabama Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) Alabama Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 470 878 688 933 379 971 449 511 444 934 1990's 437 530 262 396 497 688 1,282 535 469 783 2000's 1,014 641 573 607 528 606 698 1,078 1,076 1,498 2010's 968 829 583 759 1,869 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  11. LAPD Madison, Wisconsin USA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 th LAPD Madison, Wisconsin USA Sunday, 22 September 2013 Varsity Hall III, Union South 18:00-20:00 Reception and Registration Monday, 23 September 2013 Session I (8:30-12:30) Varsity Hall III, Union South Chairs: J-P. Booth, E. E. Scime Time Speaker Title Index 7:30-8:30 Continental Breakfast 8:30-8:45 D. J. Den Hartog Welcome 8:45-9:35 N. C. Luhmann, Jr. Millimeter Wave and THz Plasma Diagnostic Development AK (1) 9:35-10:00 L. Lin Laser-Based Faraday-Effect Measurement of Magnetic

  12. Alabama - Seds - U.S. Energy Information Administration (EIA...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Tools A-Z Index All Reports & Publications EIA Survey Forms EIA Beta Policies PrivacySecurity Copyright & Reuse Accessibility Related Sites U.S. Department of Energy USA.gov ...

  13. Worldwide Energy and Manufacturing USA Inc formerly Worldwide...

    Open Energy Info (EERE)

    and Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name: Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)...

  14. Gulf Of Mexico Natural Gas Processed in Alabama (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Alabama (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 117,738 96,587 95,078 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed Gulf of Mexico-Alabama

  15. Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 537 1990's 1,224 1,714 1,968 1,237 976 972 823 1,077 1,029 1,060 2000's 1,241 1,162 1,283 1,665 1,900 1,773 2,068 2,126 1,727 1,342 2010's 1,298 1,210 1,006 413 978 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  16. Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 530 514 652 1980's 636 648 1990's 4,125 5,414 5,802 5,140 4,830 4,868 5,033 4,968 4,604 4,287 2000's 4,149 3,915 3,884 4,301 4,120 3,965 3,911 3,994 3,290 2,871 2010's 2,629 2,475 2,228 1,597 2,036 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  17. Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals Total Offshore (Million Cubic Feet) Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 9 13 1990's 19,861 32,603 191,605 218,023 349,380 356,598 361,068 409,091 392,320 376,435 2000's 361,289 200,862 202,002 194,339 165,630 152,902 145,762 134,451 125,502 109,214 2010's 101,487 84,270 87,398 75,660 70,827 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  18. Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 693 1980's 682 683 1990's 4,184 5,460 5,870 5,212 4,898 4,930 5,100 5,013 4,643 4,365 2000's 4,269 3,958 3,922 4,345 4,159 4,006 3,963 4,036 3,379 2,948 2010's 2,724 2,570 2,304 1,670 2,121 - = No Data Reported; -- = Not Applicable; NA = Not

  19. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 680 1980's 659 658 1990's 4,159 5,437 5,840 5,166 4,842 4,886 5,062 4,983 4,615 4,338 2000's 4,241 3,931 3,891 4,313 4,127 3,977 3,945 4,016 3,360 2,919 2010's 2,686 2,522 2,204 1,624 1,980

  20. Alabama--State Offshore Natural Gas Marketed Production (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Marketed Production (Million Cubic Feet) Alabama--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 106,586 125,302 220,233 202,559 198,509 203,021 209,752 202,475 2000's 191,550 191,188 193,448 183,621 156,097 143,349 136,805 125,828 117,483 101,272 2010's 94,738 78,649 87,398 75,660 70,827 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  1. Alabama--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet) Alabama--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 222,009 228,298 229,483 223,527 221,233 220,674 212,470 207,863 2000's 200,255 191,119 184,500 176,571 173,106 164,304 160,381 155,167 152,051 146,751 2010's 139,215 134,305 128,312 120,666 110,226 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  2. Alabama--onshore Natural Gas Marketed Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Marketed Production (Million Cubic Feet) Alabama--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 169,220 176,208 174,537 173,399 180,277 185,574 182,641 179,227 2000's 171,917 165,622 162,613 162,524 159,924 153,179 149,415 144,579 140,401 134,757 2010's 128,194 116,932 128,312 120,666 110,226 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  3. Alabama Natural Gas % of Total Electric Utility Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Utility Deliveries (Percent) Alabama Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.17 0.13 0.23 0.23 0.29 0.60 0.53 2000's 0.81 1.29 1.98 1.68 2.14 1.79 2.34 2.57 2.46 3.30 2010's 3.81 4.53 4.40 4.08 4.23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  4. Alabama Natural Gas % of Total Residential Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Deliveries (Percent) Alabama Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.04 1.03 1.02 1.08 0.97 1.03 0.90 2000's 0.95 1.03 0.95 0.92 0.90 0.87 0.87 0.75 0.77 0.75 2010's 0.88 0.78 0.66 0.72 0.77 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  5. Alabama Natural Gas % of Total Vehicle Fuel Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Deliveries (Percent) Alabama Natural Gas % of Total Vehicle Fuel Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.44 0.20 0.15 0.08 0.71 0.57 0.57 2000's 0.57 0.52 0.52 0.52 0.52 0.67 0.47 0.36 0.32 0.29 2010's 0.37 0.64 0.64 0.63 0.63 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  6. Alabama Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Alabama Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 50 23 91 9 54 14 3 2 17 16 1990's 320 332 171 410 69 0 18 21 2 4 2000's 0 0 0 22 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  7. Alabama Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,600 4,154 4,227 4,139 5,314 5,021 4,277 1990's 6,171 4,907 8,391 8,912 9,381 10,468 10,492 7,020 7,650 9,954 2000's 10,410 9,593 9,521 11,470 11,809 11,291 12,045 11,345 11,136 10,460 2010's 10,163 10,367 12,389 12,456 10,055 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,806 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  9. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  10. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,418 - = No Data Reported; -- = Not Applicable; NA = Not

  11. Alabama Natural Gas Percentage Total Commercial Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Deliveries (Percent) Alabama Natural Gas Percentage Total Commercial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.90 0.88 0.87 0.92 1.01 0.86 0.91 2000's 0.80 0.87 0.80 0.80 0.85 0.84 0.86 0.78 0.80 0.78 2010's 0.87 0.80 0.74 0.77 0.79 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  12. Alabama Natural Gas Percentage Total Industrial Deliveries (Percent)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Deliveries (Percent) Alabama Natural Gas Percentage Total Industrial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.28 2.23 2.38 2.27 2.36 2.39 2.53 2000's 2.46 2.11 2.13 2.22 2.25 2.29 2.30 2.26 2.13 2.13 2010's 2.12 2.19 2.38 2.42 2.46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  13. Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 20,689 19,948 22,109 2000's 22,626 19,978 21,760 18,917 15,911 14,982 14,879 15,690 16,413 18,849 2010's 22,124 23,091 25,349 22,166 18,688 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  14. Alabama Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,129 1,178 1,249 1,303 1,564 1,634 1,875 1990's 3,710 3,720 4,477 4,453 3,747 3,806 2,827 2,468 2,391 5,336 2000's 5,377 3,491 4,148 3,293 3,914 3,740 6,028 6,269 6,858 6,470 2010's 6,441 6,939 6,616 6,804 6,462 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  15. Alabama Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Alabama Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 324,158 329,134 337,270 2000's 353,614 332,693 379,343 350,345 382,367 353,156 391,093 418,512 404,157 454,456 2010's 534,779 598,514 666,712 615,407 634,678 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  16. Scheuten Solar USA Inc | Open Energy Information

    Open Energy Info (EERE)

    USA Inc Jump to: navigation, search Name: Scheuten Solar USA, Inc. Place: Rancho Santa Margarita, California Zip: 92688 Sector: Solar Product: Manufacturer of Solar PV systems...

  17. Energy Pro USA | Open Energy Information

    Open Energy Info (EERE)

    Pro USA Jump to: navigation, search Name: Energy Pro USA Place: Chesterfield, Missouri Zip: MO 63017 Product: Energy Pro funds and implements demand side energy savings programs to...

  18. Windkraft Nord USA | Open Energy Information

    Open Energy Info (EERE)

    Nord USA Jump to: navigation, search Name: Windkraft Nord USA Place: San Diego, California Zip: 92122 Product: Subsidiary of WKN AG based in North America. References: Windkraft...

  19. Solar Millennium LLC USA | Open Energy Information

    Open Energy Info (EERE)

    LLC USA Jump to: navigation, search Name: Solar Millennium LLC (USA) Place: Berkeley, California Sector: Solar Product: California-based STEG power plant developer, parabolic...

  20. Coaltec Energy USA Inc | Open Energy Information

    Open Energy Info (EERE)

    Coaltec Energy USA Inc Jump to: navigation, search Name: Coaltec Energy USA, Inc. Place: Carterville, Illinois Zip: 62918 Sector: Biomass Product: Coaltec Energy provides energy...

  1. Think Solar USA | Open Energy Information

    Open Energy Info (EERE)

    Solar USA Jump to: navigation, search Name: Think Solar USA Product: Maker, installer and distributor of parabolic trough STEG power and hot water systems. References: Think Solar...

  2. Energy Optimizers USA | Open Energy Information

    Open Energy Info (EERE)

    Optimizers USA Jump to: navigation, search Name: Energy Optimizers USA Address: 6 S. 3rd Street Place: Tipp City, Ohio Zip: 45371 Sector: Biomass, Carbon, Geothermal energy,...

  3. AREA USA LLC | Open Energy Information

    Open Energy Info (EERE)

    AREA USA LLC Jump to: navigation, search Name: AREA USA LLC Place: Washington, DC Zip: 20004 Sector: Services Product: Washington, D.C.-based division of Fabiani & Company...

  4. Usina Santo Angelo USA | Open Energy Information

    Open Energy Info (EERE)

    Santo Angelo USA Jump to: navigation, search Name: Usina Santo Angelo (USA) Place: Pirajuba, Minas Gerais, Brazil Product: Minas Gerais-based ethanol and energy producer company....

  5. BROAD USA Inc | Open Energy Information

    Open Energy Info (EERE)

    BROAD USA Inc Jump to: navigation, search Name: BROAD USA, Inc Place: Hackensack, New Jersey Zip: 7601 Product: BROAD manufactures absorption chillers powered by clean and...

  6. Norvento USA LLC | Open Energy Information

    Open Energy Info (EERE)

    USA LLC Jump to: navigation, search Name: Norvento USA LLC Place: Boston, Massachusetts Product: Boston-based engineering consultancy and division of Norvento SA. Coordinates:...

  7. Sharp Electronics Corporation USA | Open Energy Information

    Open Energy Info (EERE)

    Electronics Corporation USA Jump to: navigation, search Name: Sharp Electronics Corporation (USA) Place: Huntington Beach, California Zip: 92647 Product: North American division of...

  8. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Alabama

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-29

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Alabama.

  9. M.; /Bern U.; Auty, D.J.; /Alabama U.; Barbeau, P.S.; /Stanford...

    Office of Scientific and Technical Information (OSTI)

    Neutrinoless Double-Beta Decay in 136Xe with EXO-200 Auger, M.; Bern U.; Auty, D.J.; Alabama U.; Barbeau, P.S.; Stanford U., Phys. Dept.; Beauchamp, E.; Laurentian U.;...

  10. Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  11. Microsoft Word - DOE-ID-13-048 Alabama EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 SECTION A. Project Title: Using Ionic Liquids for the Development of Renewable Biopolymer-Based Adsorbents for the Extraction of Uranium from Seawater and Testing Under Marine Conditions - University of Alabama SECTION B. Project Description The University of Alabama proposes to study the fundamental engineering parameters for a renewable high-performance adsorbent for the extraction of uranium from seawater based on a proven ionic liquid-chitin platform. Objectives include: 1) Understand how

  12. Microsoft Word - DOE-ID-15-061 Alabama EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    61 SECTION A. Project Title: Understanding the Interactions of Seawater Ions with Amidoxime through X-Ray Crystallography - The University of Alabama SECTION B. Project Description The University of Alabama (UA) proposes to understand how metal ions from seawater bind to uranium-selective amidoxime functionalized sorbents by experimentally determining the structures of metal complexes with molecules simulating the possible binding sites and characterizing these binding sites spectroscopically to

  13. Alabama Natural Gas Underground Storage Volume (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Underground Storage Volume (Million Cubic Feet) Alabama Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 1,379 1,377 1,113 1,113 1,140 1,182 1,218 1,436 2,028 1,955 1,766 1,365 1996 1,311 1,014 852 1,006 1,373 2,042 2,247 2,641 3,081 3,198 3,069 2,309 1997 1,778 1,594 1,619 1,749 2,020 2,113 2,156 2,443 2,705 2,956 2,713 2,713 1998 1,963 1,775 1,527 1,772 1,917 2,540 2,531 2,730 2,329 2,942 2,943 2,805 1999 1,992 1,878 1,566

  14. Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.13 0.13 0.13 1970's 0.14 0.15 0.35 0.38 0.74 0.87 0.99 1.47 1.50 2.04 1980's 3.19 4.77 3.44 4.28 3.73 3.71 2.89 2.97 2.65 2.72 1990's 2.75 2.33 2.29 2.46 2.17 1.82 2.62 2.67 2.21 2.32 2000's 3.99 4.23 3.48 5.93 6.66 9.28 7.57 7.44 9.65 4.32 2010's 4.46 - = No Data Reported; -- = Not Applicable;

  15. Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.20 0.20 1970's 0.20 0.22 0.23 0.26 0.29 0.32 0.47 0.72 1.10 1.32 1980's 1.84 2.59 3.00 3.10 3.15 3.12 3.11 2.37 2.30 2.60 1990's 2.17 3.02 2.24 2.34 2.13 1.93 2.63 2.95 2.55 2.21 2000's 3.13 4.90 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  16. Alabama Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Alabama Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 236 1970's 225 281 243 199 501 694 661 933 1,967 4,845 1980's 4,371 4,484 4,727 4,709 5,123 5,236 4,836 4,887 4,774 5,022 1990's 4,939 4,997 5,490 5,589 5,647 5,273 5,361 4,637 4,263 18,079 2000's 24,086 13,754 14,826 11,293 15,133 13,759 21,065 19,831 17,222 17,232 2010's 19,059 17,271 7,133 7,675 7,044 - =

  17. Alabama State Energy Program, Summary of Reported Data From July 1, 2010 - September 30, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Austin, T X S ummary o f R eported Data (July 1 , 2 010 - S eptember 3 0, 2 013) Better B uildings N eighborhood P rogram Report P roduced B y: U.S. D epartment o f E nergy March 2 014 Alabama State Energy P rogram Summary o f Reported D ata F rom July 1 , 2010 - September 3 0, 2013 Better B uildings Neighborhood Program Report Produced By: U.S. Department of Energy June 2014 ALABAMA STATE ENERGY PROGRAM SUMMARY OF REPORTED DATA ACKNOWLEDGMENTS This document presents a summary of data reported

  18. Euro Chef USA: Order (2014-CE-23004)

    Broader source: Energy.gov [DOE]

    DOE ordered Euro Chef USA Inc. to pay a $8,000 civil penalty after finding Euro Chef USA had failed to certify that certain models of cooking products comply with the applicable energy conservation standards.

  19. USA Manufacturing: Order (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE ordered USA Manufacturing to pay a $8,000 civil penalty after finding USA Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  20. FRONIUS USA LLC | Open Energy Information

    Open Energy Info (EERE)

    48116 USA, Michigan Sector: Solar Product: Focused on welding machines and solar inverters. References: FRONIUS USA LLC1 This article is a stub. You can help OpenEI by...

  1. Absolute Energy USA | Open Energy Information

    Open Energy Info (EERE)

    USA Jump to: navigation, search Name: Absolute Energy (USA) Place: St. Ansgar, Iowa Zip: 50472 Product: Absolute Energy has built a 100 million gallon per year ethanol plant on the...

  2. PNE Wind USA Inc | Open Energy Information

    Open Energy Info (EERE)

    USA Inc Jump to: navigation, search Name: PNE Wind USA Inc Place: Chicago, Illinois Zip: 60601 Sector: Wind energy Product: Chicago-based subsidiary of wind farm project developer,...

  3. Hisense USA: Order (2010-CE-1211)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE issued an Order after entering into a Compromise Agreement with Hisense USA Corp. after finding Hisense USA had failed to certify that certain models of residential refrigerators, refrigerator-freezers, and freezers comply with the applicable energy conservation standards.

  4. OTB USA Inc | Open Energy Information

    Open Energy Info (EERE)

    OTB USA Inc Jump to: navigation, search Name: OTB USA Inc Address: 1871 Suffolk Rd. Place: Columbus, Ohio Zip: 43221 Sector: Solar Product: Other:Capital Equipment Phone Number:...

  5. Auburn, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.1945385, -71.8356271 Show Map Loading map... "minzoom":false,"mappingservice"...

  6. Auburn, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.906114, -95.8160968 Show Map Loading map... "minzoom":false,"mappingservice":"google...

  7. Assessment of the geothermal/geopressure potential of the Gulf Coastal Plan of Alabama. Final report

    SciTech Connect (OSTI)

    Wilson, G.V.; Wang, G.C.; Mancini, E.A.; Benson, D.J.

    1980-01-01

    Geothermal and geopressure as well as geologic and geophysical data were studied to evaluate the potential for future development of geothermal resources underlying the Alabama Coastal Plain. Wire-line log data compiled and interpreted from more than 1300 oil and gas test wells included maximum recorded temperatures, mud weights, rock resistivities as related to geopressure, formation tops, fault locations, and depths to basement rock. The Alabama Coastal Plain area is underlain by a conduction dominated, deep sedimentary basin where geothermal gradients are low to moderate (1.0 to 1.8/sup 0/F/100 feet). In some areas of southwest Alabama, abnormally high temperatures are found in association with geopressured zones within the Haynesville Formation of Jurassic age; however, rocks of poor reservoir quality dominate this formation, with the exception of a 200-square-mile area centered in southernmost Clarke County where a porous and permeable sand unit is encased within massive salt deposits of the lower Haynesville. The results of a petrograhic study of the Smackover Formation, which underlies the Haynesville, indicate that this carbonate rock unit has sufficient porosity in some areas to be considered a potential geothermal reservoir. Future development of geothermal resources in south Alabama will be restricted to low or moderate temperature, non-electric applications, which constitute a significant potential energy source for applications in space heating and cooling and certain agricultural and industrial processes.

  8. Energy Secretary Bodman Tours Alabama Red Cross Facility and Attends National Day of Prayer and Remembrance Service with Governor Riley

    Broader source: Energy.gov [DOE]

    MONTGOMERY, AL – Today, Secretary of Energy Samuel W. Bodman traveled to Montgomery, Alabama, to commemorate a National Day of Prayer and Remembrance in honor of victims of Hurricane Katrina.      ...

  9. H2USA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USA H2USA In 2013 many auto manufacturers announced fuel cell electric vehicle (FCEV) commercialization plans; Toyota, Hyundai, General Motors, Honda, Mercedes/Daimler, and others have committed to putting FCEVs on the road, some as early as the 2015-2017 timeframe. While the cars are coming, hydrogen infrastructure remains the greatest challenge to commercialization of FCEVs. To address this challenge, in 2013 DOE, along with automakers and other key stakeholders, launched H2USA, a new

  10. Computerized economic and statistical investigation of the Alabama liquid asphalt market for public entities

    SciTech Connect (OSTI)

    Morgan, J.E. Jr.

    1986-01-01

    This study outlines the development of an economic data base and techniques utilized in identifying noncompetitive practices in the sealed bid market for liquid asphalt products purchased by public entities in the State of Alabama. It describes the organization of data and methods for displaying salient characteristics of market conduct and performance. Likely areas of anticompetitive activity are identified from an examination of conditional factors influencing collusion in a market and of circumstantial evidence of collusive behavior of the vendors. Methods of detecting and analyzing suspicious behavior are indicated and applied to selected data. The conclusion reached was that collusion was present in the Alabama liquid asphalt market during 1971-1978. An antitrust action was initiated by the State. Damages were calculated from the data base using a GLM regression model. An out-of-court settlement was negotiated by the defendant vendors.

  11. Sol-Up USA, LLC | Open Energy Information

    Open Energy Info (EERE)

    Sol-Up USA, LLC Jump to: navigation, search Logo: Sol-Up USA, LLC Name: Sol-Up USA, LLC Address: 3355 West Spring Mountain Road, Suite 3 Place: Las Vegas, NV Zip: 89102 Sector:...

  12. China Solar Clean Energy Solutions Inc formerly Deli Solar USA...

    Open Energy Info (EERE)

    Inc formerly Deli Solar USA Inc Jump to: navigation, search Name: China Solar & Clean Energy Solutions Inc ( formerly Deli Solar (USA) Inc) Place: Connecticut Zip: 6039 Sector:...

  13. Naturener USA LLC formerly Great Plains Wind Energy | Open Energy...

    Open Energy Info (EERE)

    USA LLC formerly Great Plains Wind Energy Jump to: navigation, search Name: Naturener USA, LLC (formerly Great Plains Wind & Energy) Place: San Francisco, California Zip: 94111...

  14. USA Science and Engineering Festival: Inspiring and Educating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USA Science and Engineering Festival: Inspiring and Educating the Clean Energy Workforce of Tomorrow USA Science and Engineering Festival: Inspiring and Educating the Clean Energy...

  15. HERA USA Inc formerly Ergenics Inc | Open Energy Information

    Open Energy Info (EERE)

    USA Inc (formerly Ergenics Inc) Place: Ringwood, New Jersey Zip: 7456 Sector: Hydro, Hydrogen Product: Ergenics is a USA based company with extensive experience in the development...

  16. Mitsubishi Electric and Electronics USA Inc | Open Energy Information

    Open Energy Info (EERE)

    and Electronics USA Inc Jump to: navigation, search Name: Mitsubishi Electric and Electronics USA Inc Place: Cypress, California Zip: 90630 Sector: Solar Product: Markets and...

  17. E ON Climate Renewables North America formerly Airtricity USA...

    Open Energy Info (EERE)

    Climate Renewables North America formerly Airtricity USA Jump to: navigation, search Name: E.ON Climate & Renewables North America (formerly Airtricity USA) Place: Chicago,...

  18. FRV USA formerly Fotowatio Renewable Ventures LLC | Open Energy...

    Open Energy Info (EERE)

    USA formerly Fotowatio Renewable Ventures LLC Jump to: navigation, search Name: FRV USA (formerly Fotowatio Renewable Ventures LLC) Place: San Francisco, California Zip: 94104...

  19. Calyxo USA Solar Fields LLC | Open Energy Information

    Open Energy Info (EERE)

    USA Solar Fields LLC Jump to: navigation, search Name: Calyxo USA (Solar Fields LLC) Place: Perrysburg, Ohio Zip: 43551 Sector: Solar Product: Producer of cadmium telluride...

  20. Acciona Wind Energy USA LLC | Open Energy Information

    Open Energy Info (EERE)

    USA LLC Jump to: navigation, search Name: Acciona Wind Energy USA LLC Place: Chicago, Illinois Zip: 60631 Sector: Wind energy Product: US wind farms developer subsidiary of Acciona...

  1. Macquarie Funds Management USA Inc | Open Energy Information

    Open Energy Info (EERE)

    Macquarie Funds Management USA Inc Jump to: navigation, search Name: Macquarie Funds Management (USA) Inc. Place: Carlsbad, California Zip: 92008 Product: Fund of funds arm of...

  2. USA Manufacturing: Proposed Penalty (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that USA Manufacturing failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards.

  3. Solar Systems USA | Open Energy Information

    Open Energy Info (EERE)

    up":"","inlineLabel":"","visitedicon":"" Hide Map References: Solar Systems USA Online Solar Panel Retailer1 This article is a stub. You can help OpenEI by expanding it. Solar...

  4. Hisense USA: Proposed Penalty (2010-CE-1211)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE alleged in a Notice of Proposed Civil Penalty that Hisense USA Corp. failed to certify a variety of residential refrigerators, refrigerator-freezers, and freezers as compliant with the applicable energy conservation standards.

  5. LES' URENCO-USA Facility | Department of Energy

    Energy Savers [EERE]

    LES' URENCO-USA Facility LES' URENCO-USA Facility PowerPoint slides on LES's URENCO-USA Facility PDF icon LES' URENCO-USA Facility More Documents & Publications Excess Uranium Management 2014 Review of the Potential Impact of DOE Excess Uranium Inventory On the Commercial Markets Memorandum Memorializing Ex Parte Communication

  6. The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    This reports presents the operating results for Run 252 at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. This run operated in the Close-Coupled Integrated Two-Stage Liquefaction mode (CC-ITSL) using Illinois No. 6 bituminous coal. The primary run objective was demonstration of unit and system operability in the CC-ITSL mode with catalytic-catalytic reactors and with ash recycle. Run 252 began on 26 November 1986 and continued through 3 February 1987. During this period 214.4 MF tons of Illinois No. 6 coal were fed in 1250 hours of operation. 3 refs., 29 figs., 18 tabs.

  7. Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected

    Gasoline and Diesel Fuel Update (EIA)

    Future Production (Million Barrels) Expected Future Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 336 309 289 297 1990's 261 292 246 255 267 191 199 352 341 403 2000's 487 460 483 347 410 407 390 365 313 301 2010's 340 354 369 292 367 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  8. Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Based Production (Million Barrels) Reserves Based Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 42 46 44 45 1990's 42 46 41 45 46 31 35 64 63 75 2000's 88 87 89 67 78 59 65 68 52 61 2010's 66 57 54 42 47 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  9. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease

    Gasoline and Diesel Fuel Update (EIA)

    Condensate Proved Reserves (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3,704 2010's 4,043 4,567 4,602 4,591 4,352 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  10. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant

    Gasoline and Diesel Fuel Update (EIA)

    Liquids, Proved Reserves (Million Barrels) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 614 566 532 512 575 1990's 519 545 472 490 500 496 621 785 776 833 2000's 921 785 783 598 615 603 575 528 464 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  11. ,"Alabama Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5030al2m.xls"

  12. Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Alabama Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 2 66 1980's 0 8 1990's 3 0 1 0 0 130 0 14 0 0 2000's 0 2 4 4 0 0 7 17 1 0 2010's 0 0 0 0 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  13. Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Alabama Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 40 4 13 1980's 1 5 1990's 433 35 95 0 1 0 0 0 10 0 2000's 0 42 0 0 3 0 0 0 2 0 2010's 3 2 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: New

  14. Alabama Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -67 -133 -30 123 233 669 826 998 743 933 994 633 1997 156 40 226 203 337 -48 -197 -301 -376 -242 -356 405 1998 185 181 -92 24 -103 427 374 288 -376 -14 230 91 1999 29 103 39 -69 257 -156 88 -31 772 82 214 164 2000 63 175 802 599 219 615 462 381 -131 -196

  15. ,"Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2010 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  16. ,"Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  17. ,"Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  18. ,"Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  19. ,"Alabama Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  20. ,"Alabama Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  1. ,"Alabama Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  2. ,"Alabama Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Gross Withdrawals Total Offshore (MMcf)",1,"Annual",2014 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","na1090_sal_2a.xls"

  3. ,"Alabama Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  4. ,"Alabama Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290al2m.xls"

  5. ,"Alabama Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  6. ,"Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  7. ,"Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  8. ,"Alabama Share of Total U.S. Natural Gas Delivered to Consumers"

    U.S. Energy Information Administration (EIA) Indexed Site

    Share of Total U.S. Natural Gas Delivered to Consumers" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Share of Total U.S. Natural Gas Delivered to Consumers",5,"Annual",2014,"6/30/1993" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016"

  9. ,"Federal Offshore--Alabama Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Alabama Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  10. ,"Federal Offshore--Alabama Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Alabama Natural Gas Marketed Production (MMcf)",1,"Annual",1998 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  11. Federal Offshore--Louisiana and Alabama Crude Oil Reserves in Nonproducing

    Gasoline and Diesel Fuel Update (EIA)

    Reservoirs (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Federal Offshore--Louisiana and Alabama Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 1,128 1,133 2000's 1,267 2,352 2,530 2,801 2,581 2,591 1,816 2,231 2,229 2,013 2010's 1,595 2,597 2,130 2,406 2,204 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  12. Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,260 1990's 22,679 21,611 19,653 19,383 20,835 21,392 21,856 21,934 20,774 19,598 2000's 19,788 19,721 18,500 16,728 14,685 13,665 11,824 11,090 10,450 9,362 2010's 8,896 8,156

  13. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet

    Gasoline and Diesel Fuel Update (EIA)

    After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,772 1990's 23,050 22,028 20,006 19,751 21,208 21,664 22,119 22,428 21,261 20,172 2000's 20,466 20,290 19,113 17,168 15,144 14,073 12,201 11,458

  14. Alabama Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Alabama Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 173 2,278 4,498 1990's 4,967 4,112 4,868 4,950 5,043 5,213 5,470 11,432 5,009 8,141 2000's 4,753 4,608 4,882 4,604 4,744 4,891 4,832 4,722 4,999 5,160 2010's 5,494 5,313 5,126 5,935 5,941 - = No Data

  15. Alabama--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet) Alabama--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 9 13 1990's 19,861 32,603 112,311 131,508 228,878 212,895 209,013 214,414 222,000 212,673 2000's 201,081 200,862 202,002 194,339 165,630 152,902 145,762 134,451 125,502 109,214 2010's 101,487 84,270 87,398 75,660 70,827 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  16. Alabama Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 162 152 150 1970's 214 476 1,070 1,329 1,301 1,968 2,714 5,444 3,371 21,454 1980's 9,990 5,804 5,037 4,729 5,332 5,476 5,442 6,878 6,655 6,152 1990's 9,881 8,627 12,868 13,365 0 14,274 13,319 9,488 10,041 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  17. Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.74 6.46 4.60 4.24 3.51 2.92 2.42 1.98 2000's -- -- -- -- 17.32 19.17 2010's 16.24 11.45 17.99 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  18. DuraLamp USA: Order (2010-CE-0912)

    Broader source: Energy.gov [DOE]

    DOE ordered DuraLamp USA, Inc. to pay a $2,500 civil penalty after finding DuraLamp USA had failed to certify that model PAR 30, an incandescent reflector lamp, complies with the applicable energy conservation standards.

  19. Ultra Soy of America DBA USA Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Ultra Soy of America DBA USA Biofuels Jump to: navigation, search Name: Ultra Soy of America (DBA USA Biofuels) Place: Fort Wayne, Indiana Zip: 46898 Sector: Biofuels Product: An...

  20. Smeg USA: Order (2011-CE-14/1909)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE ordered Smeg USA, Inc. to pay a $6,000 civil penalty after finding Smeg USA had failed to certify that certain models of dishwashers and refrigerators comply with the applicable energy conservation standards.

  1. Program in Functional Genomics of Autoimmunity and Immunology of yhe University of Kentucky and the University of Alabama

    SciTech Connect (OSTI)

    Alan M Kaplan

    2012-10-12

    This grant will be used to augment the equipment infrastructure and core support at the University of Kentucky and the University of Alabama particularly in the areas of genomics/informatics, molecular analysis and cell separation. In addition, we will promote collaborative research interactions through scientific workshops and exchange of scientists, as well as joint exploration of the role of immune receptors as targets in autoimmunity and host defense, innate and adaptive immune responses, and mucosal immunity in host defense.

  2. Alabama Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 221.1 244.8 179.6 64.8 86.8 112.2 130.5 1997 36.2 10.9 111.7 57.1 68.4 -5.0 -17.0 -19.4 -19.9 -12.1 -19.0 36.2 1998 31.5 45.0 -21.4 4.3 -12.4 46.2 38.7 23.0 -24.8 -0.8 15.1 6.0 1999 3.8 17.6 11.5 -11.9 35.3 -11.6 6.5 -2.0 67.7 4.7 12.2 10.2 2000 7.9 25.4 213.4 116.8 22.2 51.5 32.4 25.3

  3. Closeout Report: Experimental High Energy Physics Group at the University of South Alabama

    SciTech Connect (OSTI)

    Jenkins, Charles M; Godang, Romulus

    2013-06-25

    The High Energy Physics group at the University of South Alabama has been supported by this research grant (DE-FG02-96ER40970) since 1996. One researcher, Dr. Merrill Jenkins, has been supported on this grant during this time worked on fixed target experiments at the Fermi National Accelerator Laboratory, west of Chicago, Illinois. These experiments have been E-705, E-771, E-871 (HyperCP) and E-921 (CKM) before it was canceled for budgetary reasons. After the cancellation of CKM, Dr. Jenkins joined the Compact Muon Solenoid (CMS) experiment as an associate member via the High Energy Physics Group at the Florida State University. A second, recently tenured faculty member, Dr. Romulus Godang joined the group in 2009 and has been supported by this grant since then. Dr. Godang is working on the BaBaR experiment at SLAC and has joined the Belle-II experiment located in Japan at KEK. According to the instructions sent to us by our grant monitor, we are to concentrate on the activities over the last three years in this closeout report.

  4. USA Biomass Power Producers Alliance | Open Energy Information

    Open Energy Info (EERE)

    Biomass Power Producers Alliance Jump to: navigation, search Name: USA Biomass Power Producers Alliance Place: Sacramento, California Sector: Biomass Product: National trade...

  5. Ormat Technologies Inc. North Brawley, California USA | Open...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Ormat Technologies Inc. North Brawley, California USA Citation Ormat...

  6. Euro Chef USA: Proposed Penalty (2014-CE-23004)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Euro Chef USA Inc. failed to certify cooking products as compliant with the applicable energy conservation standards.

  7. DOE Analysis Related to H2USA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Fuel Cell Technologies Program Overview: 2012 DOE Polymer and Composite ...

  8. International Energy Services USA Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: International Energy Services USA Inc Place: Washington, Washington, DC Sector: Renewable Energy Product: Owns various renewable energy...

  9. File:INL-geothermal-west-usa.pdf | Open Energy Information

    Open Energy Info (EERE)

    INL-geothermal-west-usa.pdf Jump to: navigation, search File File history File usage Western United States Geothermal Resources Size of this preview: 653 599 pixels. Other...

  10. Global Assessment of Hydrogen Technologies Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

    2007-12-01

    This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOEs high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

  11. ,"Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  12. ,"Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  13. ,"Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  14. ,"Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015"

  15. ,"Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  16. ,"Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  17. Deputy Secretary Daniel Poneman USA Today Op-Ed September 13...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deputy Secretary Daniel Poneman USA Today Op-Ed September 13, 2011 Deputy Secretary Daniel Poneman USA Today Op-Ed September 13, 2011 PDF icon 091411Poneman USA Today op-ed.pdf...

  18. City of Auburn, IN Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    system, including installing a smart meter network, enhancing reliable and fast communication capabilities, upgrading cyber security technologies, expanding grid monitoring and...

  19. Indiana's 3rd congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Companies in Indiana's 3rd congressional district NuFuels LLC Ultra Soy of America DBA USA Biofuels Utility Companies in Indiana's 3rd congressional district City of Auburn,...

  20. Chevron U.S.A. Inc.- 14-119-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed August 27, 2014 by Chevron U.S.A. Inc. (Chevron), requesting blanket authorization to export liquefied natural gas (LNG)...

  1. TianRun USA Inc | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Sector: Wind energy Product: Minnesota-based investment arm of Goldwind Science & Technology, Beijing Tianrun invested USD 3m to set up the TianRun USA subsidiary in...

  2. DuraLamp USA: Proposed Penalty (2010-CE-0912)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE alleged in a Notice of Proposed Civil Penalty that DuraLamp USA, Inc. failed to certify a variety of general service fluorescent lamps as compliant with the applicable energy conservation standards.

  3. Smeg USA: Proposed Penalty (2011-CE-14/1909)

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE alleged in a Notice of Proposed Civil Penalty that Smeg USA, Inc. failed to certify a variety of dishwashers and refrigerators as compliant with the applicable energy conservation standards.

  4. De'Longhi USA: Order (2010-CE-2114)

    Broader source: Energy.gov [DOE]

    DOE issued an Order after entering into a Compromise Agreement with De'Longhi USA, Inc. to resolve a case involving the failure to certify that a variety of dehumidifiers comply with the applicable energy conservation standards.

  5. De'Longhi USA: Proposed Penalty (2010-CE-2114)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that De'Longhi USA, Inc. failed to certify a variety of dehumidifiers as compliant with the applicable energy conservation standards.

  6. 2012 USA Science & Engineering Festival | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USA Science & Engineering Festival View larger image IMG 0658 View larger image IMG 0659 View larger image IMG 0664 View larger image IMG 0667 View larger image IMG 0682 View...

  7. PROJECT PROFILE: Fraunhofer USA, Center for Sustainable Energy Systems CSE

    Energy Savers [EERE]

    (SHINES) | Department of Energy Fraunhofer USA, Center for Sustainable Energy Systems CSE (SHINES) PROJECT PROFILE: Fraunhofer USA, Center for Sustainable Energy Systems CSE (SHINES) Title: SunDial - An Integrated SHINES System to Enable High-Penetration Feeder-Level Photovoltaics Fraunhofer logo.png Funding Opportunity: Sustainable and Holistic Integration of Energy Storage and Solar PV SunShot Subprogram: Systems Integration Location: Boston, Massachusetts Partners: National Grid, EnerNOC

  8. USA Science and Engineering Festival: Inspiring and Educating the Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Workforce of Tomorrow | Department of Energy USA Science and Engineering Festival: Inspiring and Educating the Clean Energy Workforce of Tomorrow USA Science and Engineering Festival: Inspiring and Educating the Clean Energy Workforce of Tomorrow April 23, 2014 - 9:52am Addthis The Energy Department has several free resources that help educators teach students about clean energy including (clockwise, from top left) the <a

  9. EA-332 Nexen Marketing U.S.A. Inc. | Department of Energy

    Energy Savers [EERE]

    Nexen Marketing U.S.A. Inc. EA-332 Nexen Marketing U.S.A. Inc. Order authorizing Nexen Marketing U.S.A. Inc. to export electric energy to Canada PDF icon EA-332 Nexen Marketing U.S.A. Inc. More Documents & Publications EA-332-A

  10. EA-332-A Nexen Marketing U.S.A. Inc. | Department of Energy

    Energy Savers [EERE]

    -A Nexen Marketing U.S.A. Inc. EA-332-A Nexen Marketing U.S.A. Inc. Order authorizing Nexen Marketing U.S.A. Inc. to export electric energy to Canada PDF icon EA-332-A Nexen Marketing U.S.A. Inc. More Documents & Publications EA-332

  11. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic

  12. Geologic setting, petrophysical characteristics, and regional heterogeneity patterns of the Smackover in southwest Alabama. Draft topical report on Subtasks 2 and 3

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Mann, S.D.; Tew, B.H.

    1992-06-01

    This is the draft topical report on Subtasks 2 and 3 of DOE contract number DE-FG22-89BC14425, entitled ``Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity.`` This volume constitutes the final report on Subtask 3, which had as its primary goal the geological modeling of reservoir heterogeneity in Smackover reservoirs of southwest Alabama. This goal was interpreted to include a thorough analysis of Smackover reservoirs, which was required for an understanding of Smackover reservoir heterogeneity. This report is divided into six sections (including this brief introduction). Section two, entitled ``Geologic setting,`` presents a concise summary of Jurassic paleogeography, structural setting, and stratigraphy in southwest Alabama. This section also includes a brief review of sedimentologic characteristics and stratigraphic framework of the Smackover, and a summary of the diagenetic processes that strongly affected Smackover reservoirs in Alabama. Section three, entitled ``Analytical methods,`` summarizes all nonroutine aspects of the analytical procedures used in this project. The major topics are thin-section description, analysis of commercial porosity and permeability data, capillary-pressure analysis, and field characterization. ``Smackover reservoir characteristics`` are described in section four, which begins with a general summary of the petrographic characteristics of porous and permeable Smackover strata. This is followed by a more-detailed petrophysical description of Smackover reservoirs.

  13. Eni USA Gas Marketing LLC- FE Dkt. No.- 15-13-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed January 21, 2015 by Eni USA Gas Marketing LLC (ENI USA Gas Marketing), requesting blanket authorization to export...

  14. Solar World USA not SolarWorld AG | Open Energy Information

    Open Energy Info (EERE)

    World USA not SolarWorld AG Jump to: navigation, search Name: Solar World USA (not SolarWorld AG) Place: Colorado Springs, Colorado Zip: 80907 Sector: Solar Product: Solar World...

  15. SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 PDF icon October 2015 More ...

  16. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Li-Ion Polymer Battery Cell Manufacturing Plant in USA Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  17. FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S.A. Achieves Compressed Air System Energy-Reduction Goals with a Three-Phased Strategy FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System Energy-Reduction Goals...

  18. Upcoming H2USA Workshop: Hydrogen Fueling Station Component Listings

    Broader source: Energy.gov [DOE]

    H2USA will host an online workshop about hydrogen fueling station component listings on April 22 from 2 to 3:30 p.m. Eastern Daylight Time. This workshop will focus on the need for components for hydrogen fueling stations to be listed by Nationally Recognized Testing Laboratories (NRTLs).

  19. National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the Total Energy USA 2012 meeting in Houston, Texas, on November 27, 2012. PDF icon National Fuel Cell and Hydrogen Energy Overview More Documents & Publications U.S. Department of Energy Fuel Cell Activities: Progress and Future Directions: Total Energy USA 2012 Overview of Hydrogen and Fuel

  20. ENG-Canada-USA Government Procurement (clean 11 Feb 2010 printed) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy ENG-Canada-USA Government Procurement (clean 11 Feb 2010 printed) ENG-Canada-USA Government Procurement (clean 11 Feb 2010 printed) PDF icon ENG-Canada-USA Government Procurement (clean 11 Feb 2010 printed) More Documents & Publications DOE F 551.1 hd_hydrogen_2007.xls Energy Storage Systems 2010 Update Conference

  1. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2004-01-01

    Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in Alabama emit approximately 31 MMst (2.4 Tcf) of CO{sub 2} annually. The total sequestration capacity of the Black Warrior coalbed methane fairway at 350 psi is about 189 MMst (14.9 Tcf), which is equivalent to 6.1 years of greenhouse gas emissions from the coal-fired power plants. Applying the geologic screening model indicates that significant parts of the coalbed methane fairway are not accessible because of fault zones, coal mines, coal reserves, and formation water with TDS content less than 3,000 mg/L. Excluding these areas leaves a sequestration potential of 60 MMst (4.7 Tcf), which is equivalent to 1.9 years of emissions. Therefore, if about10 percent of the flue gas stream from nearby power plants is dedicated to enhanced coalbed methane recovery, a meaningful reduction of CO{sub 2} emissions can be realized for nearly two decades. If the fresh-water restriction were removed for the purposes of CO{sub 2} sequestration, an additional 10 MMst (0.9 Tcf) of CO{sub 2} could feasibly be sequestered. The amount of unswept coalbed methane in the fairway is estimated to be 1.49 Tcf at a pressure of 50 psi. Applying the screening model results in an accessible unswept gas resource of 0.44 Tcf. Removal of the fresh-water restriction would elevate this number to 0.57 Tcf. If a recovery factor of 80 percent can be realized, then enhanced recovery activities can result in an 18 percent expansion of coalbed methane reserves in the Black Warrior basin.

  2. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next

  3. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  4. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014

  5. Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA August 2010 Jody K. Nelson PDF icon Vascular Flora of the Rocky Flats Area, Jefferson County, Colorado, USA More Documents & Publications Smooth Brome Monitoring at Rocky Flats-2005 Results EA-0847: Final Environmental Assessment Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site

  6. MOU signed between CIAE and Jefferson National Lab, USA. (China Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry News, General News) | Jefferson Lab https://www.jlab.org/news/articles/mou-signed-between-ciae-and-jefferson-national-lab-usa-china-nuclear-industry-news-ge... MOU signed between CIAE and Jefferson National Lab, USA. (News) Recently, the deputy director of Jefferson National Lab, USA visited the China Institute of Atomic Energy (CIAE). An MOU on the collaboration between the two institutions were signed during the visit. The medium-and-high energy physics group at CIAE has been

  7. EXC-12-0010 - In the Matter of DLU Lighting USA | Department of Energy

    Office of Environmental Management (EM)

    10 - In the Matter of DLU Lighting USA EXC-12-0010 - In the Matter of DLU Lighting USA On September 6, 2012, OHA issued a decision denying an Application for Exception filed by DLU Lighting USA (DLU) for relief from the provisions of 10 C.F.R. Part 430, Energy Conservation Program: Energy Conservation Standards and Test Procedures for General Service Fluorescent Lamps and Incandescent Reflector Lamps (Lighting Efficiency Standards). In its exception request, DLU asserted that it will suffer a

  8. Recent Photovoltaic Performance Data in the USA (Presentation)

    SciTech Connect (OSTI)

    Jordan, D.

    2014-03-01

    This paper presents performance data from nearly 50,000 Photovoltaic systems totaling 1.7 Gigawatts installed capacity in the USA from 2009 to 2012. 90% of the systems performed to within 10% or better of expected performance. Only 2-4% of the data indicate issues significantly affecting the system performance. Special causes of underperformance and their impacts are delineated by reliability category. Delays and interconnections dominate project-related issues particularly in the first year, but total less than 0.5% of all systems. Hardware-related issues are dominated by inverter problems totaling less than 0.4% and underperforming modules to less than 0.1%.

  9. DOW CHEMICAL U.S.A. + WESTERN DIVISION

    Office of Legacy Management (LM)

    DOW CHEMICAL U.S.A. + WESTERN DIVISION 2855 MITCHELL DRIVE WALNUT CREEK. CtyLlFORNlA 94598 October 29,1976 415 944-2300 (., L,'; ! - J. 022 . William J. Thornton Health Protection Branch Safety and Environmental Control Division U.S. Energy Research and Development Administration Oak Ridge Operations P. 0. Box E Oak Ridge, Tennessee 37830 Dear Mr. Thornton: This letter is in response to your request of September 24,1976 for information on records of radiological condition of the laboratories at

  10. SREL Reprint #3277

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Energetic constraints and parental care: Is corticosterone indicative of energetic costs of incubation in a precocial bird? Sarah E. DuRant1,2, William A. Hopkins1, Gary R. Hepp3, and L. Michael Romero2 1Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg VA 24061, USA 2Department of Biology, Tufts University, Medford, MA 02155, USA 3School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849, USA Abstract: Suppression of the adrenocortical response (e.g.,

  11. SREL Reprint #3341

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Evaluating the effect of sample type on American alligator (Alligator mississippiensis) analyte values in a point-of-care blood analyser Matthew T. Hamilton1,2, John W. Finger Jr1,3, Megan E. Winzeler1, and Tracey D. Tuberville1 1Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA 2Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA 3Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA Abstract: The

  12. Comparison of the ENERGYGAUGE USA and BEopt Building Energy Simulation Programs

    SciTech Connect (OSTI)

    Parker, Danny S.; Cummings, Jamie E.

    2009-08-01

    This report compares two hourly energy simulation softwares, BEopt and Energy Gauge USA, to ensure accuracy and evaluate agreement on the impact of various energy efficiency improvements.

  13. 189,"Alabama Electric Coop Inc",1,"Lowman","Chatom",100,19.94,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",500

    U.S. Energy Information Administration (EIA) Indexed Site

    189,"Alabama Electric Coop Inc",1,"Lowman","Chatom",100,19.94,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",500 189,"Alabama Electric Coop Inc",2,"Chatom","Waynesboro",42.7,32.11,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",469 189,"Alabama Electric Coop

  14. 189,"Alabama Electric Coop Inc",1,"Lowman","Chatom",100,19.94,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",500

    U.S. Energy Information Administration (EIA) Indexed Site

    189,"Alabama Electric Coop Inc",1,"Lowman","Chatom",100,19.94,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",500 189,"Alabama Electric Coop Inc",2,"Chatom","Waynesboro",42.7,32.11,"OH","AC",230,230,1351.5,"ACSR","Single",1,1,"Wooden H-Frame",469 189,"Alabama Electric Coop

  15. Domestic* Foreign* Total Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    754 6,007 Mississippi 3,603 - 3,603 Missouri 596 - 596 Montana 39,612 653 40,265 New Mexico 26,262 - 26,262 North Dakota 30,055 - 30,055 Ohio 21,155 635 21,790 Oklahoma 1,782...

  16. Alabama Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    4.46 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 6.46 5.80 5.18 4.65 4.93 NA 1984-2015 Residential 15.79 15.08 16.20 15.47 14.59 13.95 1967-2015 Commercial 13.34 12.36 12.56 12.35 11.92 11.03 1967-2015 Industrial 6.64 5.57 4.35 4.98 5.49 3.94 1997-2015 Vehicle Fuel 16.24 11.45 17.99 1990-2012 Electric Power 4.85 W 3.09 4.14 4.74 3.06 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 2,629 2,475 2,228 1,597 2,036 1977-2014 Adjustments 32 -49 112 -274

  17. Alabama Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  18. Alabama Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    4.46 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 6.46 5.80 5.18 4.65 4.93 NA 1984-2015 Residential Price 15.79 15.08 16.20 15.47 14.59 13.95 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 99.0 1989-2015 Commercial Price 13.34 12.36 12.56 12.35 11.92 11.03 1967-2015 Percentage of Total Commercial Deliveries included in Prices 79.3 78.9 76.2 76.6 78.4 77.6 1990-2015 Industrial Price 6.64 5.57 4.35 4.98 5.49 3.94

  19. Alabama Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    0 1 2 2 15 1996-2014 Lease Condensate (million bbls) 0 0 0 0 1 0 1998-2014 Total Gas (billion cu ft) 126 162 102 40 73 36 1996-2014 Nonassociated Gas (billion cu ft) 126 162 101 38 71 26 1996-2014 Associated Gas (billion cu ft) 0 0 1 2 2 1

  20. ,"Alabama Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","3312016" ,"Excel File Name:","ngprisumdcusalm.xls" ,"Available from Web Page:","http:www.eia.govdnavngngprisumdcusalm.htm" ,"Source:","Energy ...

  1. Alabama Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Citygate Price 3.80 4.04 3.81 3.83 3.61 3.27 1989-2015 Residential Price 20.35 20.60 20.38 19.12 17.67 14.30 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 68.8 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 11.89 11.93 11.75 11.40 11.47 10.73 1989-2015 Percentage of Total Commercial Deliveries included in Prices 70.5 69.7 69.7 68.6 69.9 76.2 1989-2015 Industrial Price 3.82 3.91 3.68 3.48 3.33 3.48

  2. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2003-01-01

    Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and reactivity of supercritical CO{sub 2} in coal-bearing strata is unknown, and potential exists for supercritical conditions to develop below a depth of 2,480 feet following abandonment of the coalbed methane fields. High-pressure adsorption isotherms confirm that coal sorbs approximately twice as much CO{sub 2} as CH{sub 4} and approximately four times as much CO{sub 2} as N{sub 2}. Analysis of isotherm data reveals that the sorption performance of each gas can vary by a factor of two depending on rank and ash content. Gas content data exhibit extreme vertical and lateral variability that is the product of a complex burial history involving an early phase of thermogenic gas generation and an ongoing stage of late biogenic gas generation. Production characteristics of coalbed methane wells are helpful for identifying areas that are candidates for carbon sequestration and enhanced coalbed methane recovery. Many geologic and engineering factors, including well construction, well spacing, and regional structure influence well performance. Close fault spacing limits areas where five-spot patterns may be developed for enhanced gas recovery, but large structural panels lacking normal faults are in several gas fields and can be given priority as areas to demonstrate and commercialize carbon sequestration technology in coalbed methane reservoirs.

  3. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Li-Ion Polymer Battery Cell Manufacturing Plant in USA Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt001_es_koo_2012_p.pdf More Documents & Publications Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA Li-Ion Battery Cell Manufacturing 2010 DOE, Li-Ion Battery Cell Manufacturing

  4. Reply Comments of T-Mobile USA, Inc. | Department of Energy

    Energy Savers [EERE]

    T-Mobile USA, Inc. Reply Comments of T-Mobile USA, Inc. T-Mobile USA, Inc. ("T-Mobile") hereby submits these reply comments in response to the above-captioned Request for Information ("RFI")1 issued by the Department of Energy ("DOE"). T-Mobile appreciates the opportunity to submit reply comments and commends the DOE for undertaking a comprehensive examination of the communications requirements necessary to deploy smart grid technology so consumers can experience

  5. NATIONAL GEODATABASE OF TIDAL STREAM POWER RESOURCE IN USA

    SciTech Connect (OSTI)

    Smith, Brennan T; Neary, Vincent S; Stewart, Kevin M

    2012-01-01

    A geodatabase of tidal constituents is developed to present the regional assessment of tidal stream power resource in the USA. Tidal currents are numerically modeled with the Regional Ocean Modeling System (ROMS) and calibrated with the available measurements of tidal current speeds and water level surfaces. The performance of the numerical model in predicting the tidal currents and water levels is assessed by an independent validation. The geodatabase is published on a public domain via a spatial database engine with interactive tools to select, query and download the data. Regions with the maximum average kinetic power density exceeding 500 W/m2 (corresponding to a current speed of ~1 m/s), total surface area larger than 0.5 km2 and depth greater than 5 m are defined as hotspots and documented. The regional assessment indicates that the state of Alaska (AK) has the largest number of locations with considerably high kinetic power density, followed by, Maine (ME), Washington (WA), Oregon (OR), California (CA), New Hampshire (NH), Massachusetts (MA), New York (NY), New Jersey (NJ), North and South Carolina (NC, SC), Georgia (GA), and Florida (FL).

  6. Pieridae Energy (USA) Ltd. FE Dkt. No. 14-179-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on October 24, 2014, by Pieridae Energy (USA) Ltd (Pieridae) requesting long-term, multi-contract authority as further...

  7. U.S. Department of Energy Awards a Contract to USA Repository...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy Awards a Contract to USA Repository Services for Management and Operating Contractor Support for the Yucca Mountain Project October 30, 2008 - 4:14pm ...

  8. Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels

    SciTech Connect (OSTI)

    Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

    2012-01-01

    This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

  9. M.; Weaver, J.N.; Wiedemann, H. (Stanford Univ., CA (USA). Stanford

    Office of Scientific and Technical Information (OSTI)

    the 2 MeV microwave gun for the SSRL 150 MeV linac Borland, M.; Weaver, J.N.; Wiedemann, H. (Stanford Univ., CA (USA). Stanford Synchrotron Radiation Lab.); Green, M.C.; Nelson,...

  10. EXS-16-0009- In the Matter of Alcatel-Lucent USA

    Broader source: Energy.gov [DOE]

    On February 23, 2016, OHA granted an Application for Stay filed by Alcatel-Lucent USA (Alcatel).  Alcatel requested a stay of enforcement of DOE's February 2014 Energy Conservation Standards for...

  11. Overview of Station Analysis Tools Developed in Support of H2USA

    Broader source: Energy.gov [DOE]

    Access the recording and download presentation slides from the Fuel Cell Technologies Office webinar "Overview of Station Analysis Tools Developed in Support of H2USA" held on May 12, 2015.

  12. 2007-2009 USA Emission Solutions for Heavy-Duty Diesel Engines | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy -2009 USA Emission Solutions for Heavy-Duty Diesel Engines 2007-2009 USA Emission Solutions for Heavy-Duty Diesel Engines 2002 DEER Conference Presentation: Southwest Research Institute PDF icon 2002_deer_leet.pdf More Documents & Publications Low Emisssions Potential of EGR-SCR-DPF and Advanced Fuel Formulations - A Progress Report State-of-the-Art and Emergin Truck Engine Technologies Variable Charge Motion for 2007-2010 Heavy Duty Diesel Engines

  13. Waste-to-energy: A review of the status and benefits in USA

    SciTech Connect (OSTI)

    Psomopoulos, C.S. Bourka, A.; Themelis, N.J.

    2009-05-15

    The USA has significant experience in the field of municipal solid waste management. The hierarchy of methodologies for dealing with municipal solid wastes consists of recycling and composting, combustion with energy recovery (commonly called waste-to-energy) and landfilling. This paper focuses on waste-to-energy and especially its current status and benefits, with regard to GHG, dioxin and mercury emissions, energy production and land saving, on the basis of experience of operating facilities in USA.

  14. Listeriosis Prevention Knowledge Among Pregnant Women in the USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ogunmodede, Folashade; Jones, Jeffery L.; Scheftel, Joni; Kirkland, Elizabeth; Schulkin, Jay; Lynfield, Ruth

    2005-01-01

    Background: Listeriosis is a food-borne disease often associated with ready-to-eat foods. It usually causes mild febrile gastrointestinal illness in immunocompetent persons. In pregnant women, it may cause more severe infection and often crosses the placenta to infect the fetus, resulting in miscarriage, fetal death or neonatal morbidity. Simple precautions during pregnancy can prevent listeriosis. However, many women are unaware of these precautions and listeriosis education is often omitted from prenatal care. Methods: Volunteer pregnant women were recruited to complete a questionnaire to assess their knowledge of listeriosis and its prevention, in two separate studies. One study was a nationalmore » survey of 403 women from throughout the USA, and the other survey was limited to 286 Minnesota residents. Results: In the multi-state survey, 74 of 403 respondents (18%) had some knowledge of listeriosis, compared with 43 of 286 (15%) respondents to the Minnesota survey. The majority of respondents reported hearing about listeriosis from a medical professional. In the multi-state survey, 33% of respondents knew listeriosis could be prevented by not eating delicatessen meats, compared with 17% in the Minnesota survey ( p = 0.01). Similarly, 31% of respondents to the multi-state survey compared with 19% of Minnesota survey respondents knew listeriosis could be prevented by avoiding unpasteurized dairy products (p = 0.05). As for preventive behaviors, 18% of US and 23% of Minnesota respondents reported avoiding delicatessen meats and ready-to-eat foods during pregnancy, whereas 86% and 88%, respectively, avoided unpasteurized dairy products. Conclusions: Most pregnant women have limited knowledge of listeriosis prevention. Even though most respondents avoided eating unpasteurized dairy products, they were unaware of the risk associated with ready-to-eat foods. Improved education of pregnant women regarding the risk and sources of listeriosis in pregnancy is needed.« less

  15. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Annual report, March 1996--March 1997

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Groshong, R.H.

    1997-08-01

    Gilbertown Field is the oldest oil field in Alabama and produces oil from chalk of the Upper Cretaceous Selma Group and from sandstone of the Eutaw Formation along the southern margin of the Gilbertown fault system. Most of the field has been in primary recovery since establishment, but production has declined to marginally economic levels. This investigation applies advanced geologic concepts designed to aid implementation of improved recovery programs. The Gilbertown fault system is detached at the base of Jurassic salt. The fault system began forming as a half graben and evolved in to a full graben by the Late Cretaceous. Conventional trapping mechanisms are effective in Eutaw sandstone, whereas oil in Selma chalk is trapped in faults and fault-related fractures. Burial modeling establishes that the subsidence history of the Gilbertown area is typical of extensional basins and includes a major component of sediment loading and compaction. Surface mapping and fracture analysis indicate that faults offset strata as young as Miocene and that joints may be related to regional uplift postdating fault movement. Preliminary balanced structural models of the Gilbertown fault system indicate that synsedimentary growth factors need to be incorporated into the basic equations of area balance to model strain and predict fractures in Selma and Eutaw reservoirs.

  16. Hydrothermal energy extraction, Auburn, New York: Final report: Volume 2, Chapters 6-10

    SciTech Connect (OSTI)

    Castor, T.P.

    1988-03-01

    This paper discusses a hydrothermal energy extraction system in detail. General topics covered are: Reservoir circulation loop; HVAC buffer loop; and automatic temperature control system. (LSP)

  17. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Alabama. Preliminary background report

    SciTech Connect (OSTI)

    Feurer, D.A.; Weaver, C.L.; Gallagher, K.C.; Hejna, D.; Rielley, K.J.

    1980-01-01

    The Alabama legislature has created the Public Service Commission which has general supervisory powers over utilities. The PSC consists of a president and two associates, who are elected to four-year terms. The PSC has no jurisdiction over municipal utilities and, as a result, local governments retain the power to regulate the operation of their municipally-owned utilities. Municipalities also retain their police power over streets and highways within their territory. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  18. UCRL-JC- I250 M. Dreicer, USA; A. Aaricrog, Riso National Laboratory,

    Office of Scientific and Technical Information (OSTI)

    ? . UCRL-JC- I250 M. Dreicer, USA; A. Aaricrog, Riso National Laboratory, Radiology and Agroecoiogy, Russia; L. Anspaugh, LLNL, USA; N . P . Arkhipov the RIA "Pripyate," Ukraine; K J. Johansson, University of Agricul fic and Technical Cen This paper was prepared for submittal to the European Commission, M A , WHO International Conference, Vienna, Austria "One Decade After Chernobyl: Summing up the Consequences of the Accide April 8-12, 1996 u64211tVl.O (3.96) ON O f W f S DOCU 2 .

  19. U.S. Department of Energy Awards a Contract to USA Repository Services for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management and Operating Contractor Support for the Yucca Mountain Project | Department of Energy a Contract to USA Repository Services for Management and Operating Contractor Support for the Yucca Mountain Project U.S. Department of Energy Awards a Contract to USA Repository Services for Management and Operating Contractor Support for the Yucca Mountain Project October 30, 2008 - 4:14pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) today awarded a $2.5 billion management

  20. Preliminary Analysis of Modules Deployed at PV-USA for 18-24 Years |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Preliminary Analysis of Modules Deployed at PV-USA for 18-24 Years Preliminary Analysis of Modules Deployed at PV-USA for 18-24 Years Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps1_pvusa_pineda.pdf More Documents & Publications Cost of Capital Developments in High Efficiency Engine Technologies and an Introduction to SwRI's Dedicated EGR Concept Vehicle Technologies Office Merit Review 2014: Trip

  1. SEMI-ANNUAL REPORTS FOR GASFIN DEVELOPMENT USA, LLC - FE DKT. NO. 13-06-LNG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - ORDER 3253 | Department of Energy GASFIN DEVELOPMENT USA, LLC - FE DKT. NO. 13-06-LNG - ORDER 3253 SEMI-ANNUAL REPORTS FOR GASFIN DEVELOPMENT USA, LLC - FE DKT. NO. 13-06-LNG - ORDER 3253 PDF icon April 2013 PDF icon October 2013 PDF icon April 2014 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 SEMI-ANNUAL REPORTS FOR - EOS LNG - FTA - FE DKT. NO.

  2. SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG -

    Energy Savers [EERE]

    ORDER 3639 | Department of Energy PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR DOMINION COVE POINT, LP - DKt. NO. 11-115-LNG - ORDER 3019 SEMI-ANNUAL REPORTS FOR GULF COAST LNG EXPORT, LLC - FE DKT. NO. 12-05-LNG - ORDER 3163 SEMI-ANNUAL REPORTS FOR DOWNEAST LNG, INC. - FT DKT. NO. 14-172-LNG - ORDER NO. 3600

  3. ORDER 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC |

    Energy Savers [EERE]

    Department of Energy 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC ORDER 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC OPINION AND ORDER GRANTING LONG-TERM, MULTI-CONTRACT AUTHORIZATION TO EXPORT U.S.-SOURCED NATURAL GAS BY PIPELINE TO CANADA FOR LIQUEFACTION AND RE-EXPORT IN THE FORM OF LIQUEFIED NATURAL GAS TO NON-FREE TRADE AGREEMENT COUNTRIES On February 5, 2016, the Energy Department issued an authorization to Bear Head LNG Corporation and Bear Head LNG

  4. Webinar: DOE Analysis Related to H2USA | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DOE Analysis Related to H2USA," originally presented on July 24, 2013. In addition to this text version of the audio, you can access the presentation slides. Sunita Satyapal: [Audio starts mid-sentence] ...companies typically have internal models that cannot be shared publically while the focus of the DOE model is on transparency and accessibility of the analysis as well as the assumption. [Next slide] So if we go to the next slide as a quick overview of H2USA, which many know is being

  5. LG Electronics U.S.A. v. DOE, Stipulation of Voluntary Dismissal

    Broader source: Energy.gov [DOE]

    LG Electronics U.S.A., Inc. v. U.S. Dept. of Energy, Civil Action Number 1:09-cv-02297-JDB - LG voluntarily dismissed its claims against the DOE and agrees to remove the ENERGY STAR labels from various refrigerator-freezers.

  6. Site Characterization for CO{sub 2} Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama

    SciTech Connect (OSTI)

    Clark, Peter; Pashin, Jack; Carlson, Eric; Goodliffe, Andrew; McIntyre-Redden, Marcella; Mann, Steven; Thompson, Mason

    2012-08-31

    Coal-fired power plants produce large quantities of carbon dioxide. In order to mitigate the greenhouse gas emissions from these power plants, it is necessary to separate and store the carbon dioxide. Saline formations provide a potential sink for carbon dioxide and delineating the capacity of the various known saline formations is a key part of building a storage inventory. As part of this effort, a project was undertaken to access the storage capacity of saline reservoirs in the Black Warrior Basin of Alabama. This basin has been a productive oil and gas reservoir that is well characterized to the west of the two major coal-fired power plants that are north of Birmingham. The saline zones were thought to extend as far east as the Sequatchie Anticline which is just east of the power plants. There is no oil or gas production in the area surrounding the power plants so little is known about the formations in that area. A geologic characterization well was drilled on the Gorgas Power Plant site, which is the farthest west of two power plants in the area. The well was planned to be drilled to approximately 8,000 feet, but drilling was halted at approximately 5,000 feet when a prolific freshwater zone was penetrated. During drilling, a complete set of cores through all of the potential injection zones and the seals above these zones were acquired. A complete set of openhole logs were run along with a vertical seismic profile (VSP). Before drilling started two approximately perpendicular seismic lines were run and later correlated with the VSP. While the zones that were expected were found at approximately the predicted depths, the zones that are typically saline through the reservoir were found to be saturated with a light crude oil. Unfortunately, both the porosity and permeability of these zones were small enough that no meaningful hydrocarbon production would be expected even with carbon dioxide flooding. iv While this part of the basin was found to be unsuitable for carbon dioxide injection, there is still a large storage capacity in the basin to the west of the power plants. It will, however, require pipeline construction to transport the carbon dioxide to the injection sites.

  7. Alabama Offshore-Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 53,348 53,771 49,474 2012-2014 Total Liquids Extracted (Thousand Barrels) 2,695 2,767 2,519 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 3,978 3,721

  8. Alabama Onshore-Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    2011 2012 2013 2014 View History Natural Gas Processed (Million Cubic Feet) 100,491 33,921 35,487 31,116 2011-2014 Total Liquids Extracted (Thousand Barrels) 2,614 2,781 2,620 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 3,132 3,323

  9. Google Earth locations of USA and seafloor hydrothermal vents with associated rare earth element data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Andrew Fowler

    2016-02-10

    Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"

  10. Issued by Sandia National Laboratories, Albuquerque, New Mexico, USA for the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9-4908 P Issued by Sandia National Laboratories, Albuquerque, New Mexico, USA for the US National Nuclear Security Administration (NNSA) Office of Research & Development for National Security Science & Technology, NA-121. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. ON THE COVER: Peridynamics simulation of uniaxial pull

  11. Bear Head LNG Corporation and Bear Head LNG (USA), LLC- FE Dkt No. 15-14-NG

    Broader source: Energy.gov [DOE]

    On January 23, 2015, Bear Head LNG Corporation and Bear Head LNG (USA), LLC (together, “Bear Head LNG”), filed an application for long-term, multi-contract authorization to engage in imports from,...

  12. Energy Efficiency is Beautiful! L'Oréal USA Joins Better Plants with Aggressive Energy Efficiency Commitment

    Broader source: Energy.gov [DOE]

    The Department of Energy welcomed L'Oréal USA to the Better Buildings, Better Plants Program (Better Plants) and it is a beautiful partnership. As the nation’s largest cosmetics manufacturer, L...

  13. Alabama Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","5,043",15.6,"37,941",24.9 "Coal","11,441",35.3,"63,050",41.4 "Hydro and Pumped

  14. Alabama Nuclear Profile - Browns Ferry

    U.S. Energy Information Administration (EIA) Indexed Site

    Browns Ferry" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,101","8,072",83.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel"

  15. Alabama Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    48,232 242,444 230,546 87,269 89,258 80,590 1969-2014 Total Liquids Extracted (Thousand Barrels) 11,667 13,065 12,265 5,309 5,548 5,139 1983-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 17,232 19,059 17,271 7,133 7,675 7,04

  16. Estimates of the Global Indirect Energy-Use Emission Impacts of USA Biofuel Policy

    SciTech Connect (OSTI)

    Oladosu, Gbadebo A

    2012-01-01

    This paper evaluates the indirect energy-use emission implications of increases in the use of biofuels in the USA between 2001 and 2010 as mandates within a dynamic global computable general equilibrium model. The study incorporates explicit markets for biofuels, petroleum and other fossil fuels, and accounts for interactions among all sectors of an 18-region global economy. It considers bilateral trade, as well as the dynamics of capital allocation and investment. Simulation results show that the biofuel mandates in the USA generate an overall reduction in global energy use and emissions over the simulation period from 2001 to 2030. Consequently, the indirect energy-use emission change or emission leakage under the mandate is negative. That is, global emission reductions are larger than the direct emission savings from replacing petroleum with biofuels under the USA RFS2 over the last decade. Under our principal scenario this enhanced the direct emission reduction from biofuels by about 66%. The global change in lifecycle energy-use emissions for this scenario was estimated to be about 93 million tons of CO2e in 2010, 45 million tons of CO2e in 2020, and an increase of 5 million tons of CO2e in 2030, relative to the baseline scenario. Sensitivity results of six alternative scenarios provided additional insights into the pattern of the regional and global effects of biofuel mandates on energy-use emissions.

  17. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama -- Year 2. Annual report, March 1997--March 1998

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.

    1998-09-01

    Gilbertown Field is the oldest oil field in Alabama and has produced oil from fractured chalk of the Cretaceous Selma Group and glauconitic sandstone of the Eutaw Formation. Nearly all of Gilbertown Field is still in primary recovery, although waterflooding has been attempted locally. The objective of this project is to analyze the geologic structure and burial history of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas in order to suggest ways in which oil recovery can be improved. Indeed, the decline of oil production to marginally economic levels in recent years has made this type of analysis timely and practical. Key technical advancements being sought include understanding the relationship of requisite strain to production in Gilbertown reservoirs, incorporation of synsedimentary growth factors into models of area balance, quantification of the relationship between requisite strain and bed curvature, determination of the timing of hydrocarbon generation, and identification of the avenues and mechanisms of fluid transport.

  18. 63,01,1,1,,10,1,"ALABAMA POWER CO","BANKHEAD DM",0,,19500,1293,,,94,26502,0,0,28822,0,0,32683,0,0,28931,0,0,6736,0,0,7563,0,0,13317,0,0,10181,0,0,6601,0,0,8862,0,0,12066,0,0,25204,0,0,0002,7,50022,"WAT","HY"

    U.S. Energy Information Administration (EIA) Indexed Site

    63,01,1,1,,10,1,"ALABAMA POWER CO","BANKHEAD DM",0,,19500,1293,,,94,26502,0,0,28822,0,0,32683,0,0,28931,0,0,6736,0,0,7563,0,0,13317,0,0,10181,0,0,6601,0,0,8862,0,0,12066,0,0,25204,0,0,0002,7,50022,"WAT","HY" 63,01,1,2,2,10,35,"ALABAMA POWER CO","BARRY",0,"LIGHT

  19. Overview of Station Analysis Tools Developed in Support of H2USA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5/12/2015 U.S. DEPARTMENT OF ENERGY FUEL CELL TECHNOLOGIES OFFICE Overview of Station Analysis Tools Developed in Support of H2USA Presenter(s): Amgad Elgowainy, PhD Marc Melaina, PhD 5/12/2015 Fuel Cell Technologies Office | 2 5/12/2015 Question and Answer * Please type your questions into the question box hydrogenandfuelcells.energy.gov Fuel Cell Technologies Office | 3 5/12/2015 * Welcome and House Keeping - 5 minutes * Hydrogen Refueling Station Analysis Model (HRSAM) - 20 minutes - Amgad

  20. WM2015 Conference, March, 15-19, 2015, Phoenix, Arizona, USA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March, 15-19, 2015, Phoenix, Arizona, USA † Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy. Impacts of an Additional Exhaust Shaft on WIPP

  1. USA National Phenology Network: Plant and Animal Life-Cycle Data Related to Climate Change

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Phenology refers to recurring plant and animal life cycle stages, such as leafing and flowering, maturation of agricultural plants, emergence of insects, and migration of birds. It is also the study of these recurring plant and animal life cycle stages, especially their timing and relationships with weather and climate. Phenology affects nearly all aspects of the environment, including the abundance and diversity of organisms, their interactions with one another, their functions in food webs, and their seasonable behavior, and global-scale cycles of water, carbon, and other chemical elements. Phenology records can help us understand plant and animal responses to climate change; it is a key indicator. The USA-NPN brings together citizen scientists, government agencies, non-profit groups, educators, and students of all ages to monitor the impacts of climate change on plants and animals in the United States. The network harnesses the power of people and the Internet to collect and share information, providing researchers with far more data than they could collect alone.[Extracts copied from the USA-NPN home page and from http://www.usanpn.org/about].

  2. Switchgrass Cultivar/Ecotype Selection and Management for Biofuels in the Upper Southeast USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lemus, Rocky; Parrish, David J.; Wolf, Dale D.

    2014-01-01

    Switchgrass ( Panicum virgatum L.), a perennial warm-season grass indigenous to the eastern USA, has potential as a biofuels feedstock. The objective of this study was to investigate the performance of upland and lowland switchgrass cultivars under different environments and management treatments. Four cultivars of switchgrass were evaluated from 2000 to 2001 under two management regimes in plots established in 1992 at eight locations in the upper southeastern USA. Two management treatments included 1) a single annual harvest (in late October to early November) and a single application of 50 kg N/ha/yr and 2) two annual harvests (in midsummer andmore » November) and a split application of 100 kg N/ha/yr. Biomass yields averaged 15 Mg/ha/yr and ranged from 10 to 22 Mg/ha/yr across cultivars, managements, locations, and years. There was no yield advantage in taking two harvests of the lowland cultivars (Alamo and Kanlow). When harvested twice, upland cultivars (Cave-in-Rock and Shelter) provided yields equivalent to the lowland ecotypes. Tiller density was 36% lower in stands cutting only once per year, but the stands appeared vigorous after nine years of such management. Lowland cultivars and a one-cutting management (after the tops have senesced) using low rates of applied N (50 kg/ha) are recommended.« less

  3. Comparison of Daytime and Nighttime Populations Adjacent to Interstate Highways in Metropolitan Areas Using LandScan USA

    SciTech Connect (OSTI)

    Johnson, Paul E

    2007-01-01

    An article of similar title was published in the International Journal of Radioactive Materials Transport in 1999. The study concluded that the daytime and nighttime populations are not substantially different for the metropolitan areas examined. This study revisits the issue, but using the LandScan USA high resolution population distribution data, which includes daytime and night-time population. Segments of Interstate highway beltways, along with the direct route through the city, for Atlanta, St. Louis, and Kansas City are examined with an 800m buffer from either side of the highways. The day/night ratio of population is higher using the LandScan USA data. LandScan USA daytime and night-time data will be incorporated into the TRAGIS routing model in future.

  4. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Alabama, Eastern Gulf Coastal Plan (Phase II)

    SciTech Connect (OSTI)

    Ernest A. Mancini; Joe Benson; David Hilton; David Cate; Lewis Brown

    2006-05-29

    The principal research efforts for Phase II of the project were drilling an infill well strategically located in Section 13, T. 10 N., R. 2 W., of the Womack Hill Field, Choctaw and Clarke Counties, Alabama, and obtaining fresh core from the upper Smackover reservoir to test the feasibility of implementing an immobilized enzyme technology project in this field. The Turner Land and Timber Company 13-10 No. 1 well was successfully drilled and tested at a daily rate of 132 barrels of oil in Section 13. The well has produced 27,720 barrels of oil, and is currently producing at a rate of 60 barrels of oil per day. The 13-10 well confirmed the presence of 175,000 barrels of attic (undrained) oil in Section 13. As predicted from reservoir characterization, modeling and simulation, the top of the Smackover reservoir in the 13-10 well is structurally high to the tops of the Smackover in offsetting wells, and the 13-10 well has significantly more net pay than the offsetting wells. The drilling and testing of the 13-10 well showed that the eastern part of the field continues to have a strong water drive and that there is no need to implement a pressure maintenance program in this part of the Womack Hill Field at this time. The success achieved in drilling and testing the 13-10 infill well demonstrates the benefits of building a geologic model to target areas in mature fields that have the potential to contain undrained oil, thus increasing the productivity and profitability of these fields. Microbial cultures that grew at 90 C and converted ethanol to acid were recovered from fresh cuttings from the Smackover carbonate reservoir in an analogous field to the Womack Hill Field in southwest Alabama; however, no viable microorganisms were found in the Smackover cores recovered from the drilling of the 13-10 well in Womack Hill Field. Further evaluation is, therefore, required prior to implementing an immobilized enzyme technology project in the Womack Hill Field.

  5. Risk Assessment of Geologic Formation Sequestration in The Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    Lee, Si-Yong; McPherson, Brian

    2013-08-01

    The purpose of this report is to describe the outcome of a targeted risk assessment of a candidate geologic sequestration site in the Rocky Mountain region of the USA. Specifically, a major goal of the probabilistic risk assessment was to quantify the possible spatiotemporal responses for Area of Review (AoR) and injection-induced pressure buildup associated with carbon dioxide (CO?) injection into the subsurface. Because of the computational expense of a conventional Monte Carlo approach, especially given the likely uncertainties in model parameters, we applied a response surface method for probabilistic risk assessment of geologic CO? storage in the Permo-Penn Weber formation at a potential CCS site in Craig, Colorado. A site-specific aquifer model was built for the numerical simulation based on a regional geologic model.

  6. Predictive Technology Development and Crash Energy Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ACC 100 Predictive Technology Development and Crash Energy Management Khaled W. Shahwan, PhD - Project Leader Chair - ACC100 Chrysler Technology Center - Scientific Labs. Chrysler LLC Auburn Hills, Michigan, USA This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID: lm_09_kia 2 * Materials' cost & availability * Materials' characterization & testing standards * Universally robust and truly predictive modeling tools * Complex

  7. Reliability and Geographic Trends of 50,000 Photovoltaic Systems in the USA: Preprint

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2014-09-01

    This paper presents performance and reliability data from nearly 50,000 photovoltaic (PV) systems totaling 1.7 gigawatts installed capacity in the USA from 2009 to 2012 and their geographic trends. About 90% of the normal systems and about 85% of all systems, including systems with known issues, performed to within 10% or better of expected performance. Although considerable uncertainty may exist due to the nature of the data, hotter climates appear to exhibit some degradation not seen in the more moderate climates. Special causes of underperformance and their impacts are delineated by reliability category. Hardware-related issues are dominated by inverter problems (totaling less than 0.5%) and underperforming modules (totaling less than 0.1%). Furthermore, many reliability categories show a significant decrease in occurrence from year 1 to subsequent years, emphasizing the need for higher-quality installations but also the need for improved standards development. The probability of PV system damage because of hail is below 0.05%. Singular weather events can have a significant impact such as a single lightning strike to a transformer or the impact of a hurricane. However, grid outages are more likely to have a significant impact than PV system damage when extreme weather events occur.

  8. Enhancing Disaster Management: Development of a Spatial Database of Day Care Centers in the USA

    SciTech Connect (OSTI)

    Singh, Nagendra; Tuttle, Mark A; Bhaduri, Budhendra L

    2015-01-01

    Children under the age of five constitute around 7% of the total U.S. population and represent a segment of the population, which is totally dependent on others for day-to-day activities. A significant proportion of this population spends time in some form of day care arrangement while their parents are away from home. Accounting for those children during emergencies is of high priority, which requires a broad understanding of the locations of such day care centers. As concentrations of at risk population, the spatial location of day care centers is critical for any type of emergency preparedness and response (EPR). However, until recently, the U.S. emergency preparedness and response community did not have access to a comprehensive spatial database of day care centers at the national scale. This paper describes an approach for the development of the first comprehensive spatial database of day care center locations throughout the USA utilizing a variety of data harvesting techniques to integrate information from widely disparate data sources followed by geolocating for spatial precision. In the context of disaster management, such spatially refined demographic databases hold tremendous potential for improving high resolution population distribution and dynamics models and databases.

  9. Sluiceway Operations for Adult Steelhead Downstream Passage at The Dalles Dam, Columbia River, USA

    SciTech Connect (OSTI)

    Khan, Fenton; Royer, Ida M.; Johnson, Gary E.; Tackley, Sean C.

    2013-10-01

    This study evaluated adult steelhead (Oncorhynchus mykiss; fallbacks and kelts) downstream passage at The Dalles Dam in the Columbia River, USA, during the late fall, winter, and early spring months between 2008 and 2011. The purpose of the study was to determine the efficacy of operating the dam’s ice-and-trash sluiceway during non-spill months to provide a relatively safe, non-turbine, surface outlet for overwintering steelhead fallbacks and downstream migrating steelhead kelts. We applied the fixed-location hydroacoustic technique to estimate fish passage rates at the sluiceway and turbines of the dam. The spillway was closed during our sampling periods, which generally occurred in late fall, winter, and early spring. The sluiceway was highly used by adult steelhead (91–99% of total fish sampled passing the dam) during all sampling periods. Turbine passage was low when the sluiceway was not operated. This implies that lack of a sluiceway route did not result in increased turbine passage. However, when the sluiceway was open, adult steelhead used it to pass through the dam. The sluiceway may be operated during late fall, winter, and early spring to provide an optimal, non-turbine route for adult steelhead (fallbacks and kelts) downstream passage at The Dalles Dam.

  10. Rare earth elements in chloride-rich groundwater, Palo Duro Basin, Texas, USA

    SciTech Connect (OSTI)

    Gosselin, D.C. ); Smith, M.R.; Lepel, E.A. ); Laul, J.C. )

    1992-04-01

    Rare earth element (REE) data for groundwater samples from the Deep-Basin Brine aquifer of the Palo Duro Basin, Texas, USA, illustrates the potential use of REE for inferring groundwater flow paths through different geologic materials. The REE content of the groundwaters range over 2.5 orders of magnitude and are depleted by 10{sup 2} to 10{sup 5} relative to aquifer materials. The shale-normalized REE patterns for groundwater that have primarily interacted with arkosic sandstones (granite wash) are flat with similar heavy REE (HREE) enrichments ((Lu/La){sub n} = 0.60 to 0.80). The samples with highest REE contents and REE patterns, which are enriched in the intermediate REEs (IREEs; Sm-Tb) reflect variable degrees of interaction with carbonate rocks. The IREE enrichment is the result of fluid interaction with Fe-Mn coatings on carbonate minerals and/or secondary minerals in fractures and vugs. The chloride complex. (LnCl{sup 2+}), and free-ions are the predominant REE species, accounting for over 95% of the REEs. Carbonate and sulfate species account for the other 5% and have very little influence on the behavior of the REEs. Although this study indicates a potentially important role for the REEs in understanding geochemical transport and groundwater movement, it also indicates the necessity for developing a better understanding of REE speciation in high ionic strength solutions.

  11. Enhancing Disaster Management: Development of a Spatial Database of Day Care Centers in the USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, Nagendra; Tuttle, Mark A.; Bhaduri, Budhendra L.

    2015-07-30

    Children under the age of five constitute around 7% of the total U.S. population and represent a segment of the population, which is totally dependent on others for day-to-day activities. A significant proportion of this population spends time in some form of day care arrangement while their parents are away from home. Accounting for those children during emergencies is of high priority, which requires a broad understanding of the locations of such day care centers. As concentrations of at risk population, the spatial location of day care centers is critical for any type of emergency preparedness and response (EPR). However,more » until recently, the U.S. emergency preparedness and response community did not have access to a comprehensive spatial database of day care centers at the national scale. This paper describes an approach for the development of the first comprehensive spatial database of day care center locations throughout the USA utilizing a variety of data harvesting techniques to integrate information from widely disparate data sources followed by geolocating for spatial precision. In the context of disaster management, such spatially refined demographic databases hold tremendous potential for improving high resolution population distribution and dynamics models and databases.« less

  12. Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture

    SciTech Connect (OSTI)

    Seaman, John

    2013-01-14

    The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittals Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

  13. Identification of multiple mercury sources to stream sediments near Oak Ridge, TN, USA

    SciTech Connect (OSTI)

    Donovan, Patrick M.; Blum, Joel D.; Demers, Jason D.; Gu, Baohua; Brooks, Scott C.; Peryam, John

    2014-03-03

    In this paper, sediments were analyzed for total Hg concentration (THg) and isotopic composition from streams and rivers in the vicinity of the Y-12 National Security Complex (Y12) in Oak Ridge, TN (USA). In the stream directly draining Y12, where industrial releases of mercury (Hg) have been documented, high THg (3.26 to 60.1 ?g/g) sediments had a distinct Hg isotopic composition (?202Hg of 0.02 0.15 and ?199Hg of -0.07 0.03; mean 1SD, n=12) compared to sediments from relatively uncontaminated streams in the region (?202Hg = -1.40 0.06 and ?199Hg of 0.26 0.03; mean 1SD, n=6). Additionally, several streams that are nearby but do not drain Y12 had sediments with intermediate THg (0.06 to 0.21 ?g/g) and anomalous ?202Hg (as low as -5.07). We suggest that the low ?202Hg values in these sediments provide evidence for the contribution of an additional Hg source to sediments, possibly derived from atmospheric deposition. In sediments directly downstream of Y12 this third Hg source is not discernible and the Hg isotopic composition can be largely explained by the mixing of low THg sediments with high THg sediments contaminated by Y12 discharges.

  14. EA-1188: Chevron U.S.A., Inc. and Santa Fe Energy Resources, Inc. Midway Valley 3D Seismic Project, Kern County, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposed Midway Valley 3D Geophysical Exploration Project. Chevron U.S.A., Inc. and Santa Fe Energy Resources are proposing to conduct seismic...

  15. 63,01,1,1,,10,1,"ALABAMA POWER CO","BANKHEAD DM",0,,50022,0,0,1287,,,88,22224000,0,0,20634000,0,0,9147000,0,0,14437000,0,0,2358000,0,0,3480000,0,0,3690000,0,0,4063000,0,0,9620000,0,0,7972000,0,0,16963000,0,0,16934000,0,0,0002,7,00195,"WAT","HY"

    U.S. Energy Information Administration (EIA) Indexed Site

    7,,,88,22224000,0,0,20634000,0,0,9147000,0,0,14437000,0,0,2358000,0,0,3480000,0,0,3690000,0,0,4063000,0,0,9620000,0,0,7972000,0,0,16963000,0,0,16934000,0,0,0002,7,00195,"WAT","HY" 63,01,1,2,2,10,35,"ALABAMA POWER CO","BARRY",0,"LIGHT

  16. 63,01,1,1,,10,1,"ALABAMA POWER CO","BANKHEAD DM",0,,50022,0,0,1288,,,89,34306000,0,0,30460000,0,0,35598000,0,0,22584000,0,0,10719000,0,0,23268000,0,0,28733000,0,0,6470000,0,0,9711000,0,0,9934000,0,0,20961000,0,0,25222000,0,0,0002,7,00195,"WAT","HY"

    U.S. Energy Information Administration (EIA) Indexed Site

    8,,,89,34306000,0,0,30460000,0,0,35598000,0,0,22584000,0,0,10719000,0,0,23268000,0,0,28733000,0,0,6470000,0,0,9711000,0,0,9934000,0,0,20961000,0,0,25222000,0,0,0002,7,00195,"WAT","HY" 63,01,1,2,2,10,35,"ALABAMA POWER CO","BARRY",0,"LIGHT

  17. Identification of multiple mercury sources to stream sediments near Oak Ridge, TN, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Donovan, Patrick M.; Blum, Joel D.; Demers, Jason D.; Gu, Baohua; Brooks, Scott C.; Peryam, John

    2014-03-03

    In this paper, sediments were analyzed for total Hg concentration (THg) and isotopic composition from streams and rivers in the vicinity of the Y-12 National Security Complex (Y12) in Oak Ridge, TN (USA). In the stream directly draining Y12, where industrial releases of mercury (Hg) have been documented, high THg (3.26 to 60.1 μg/g) sediments had a distinct Hg isotopic composition (δ202Hg of 0.02 ± 0.15‰ and Δ199Hg of -0.07 ± 0.03‰; mean ± 1SD, n=12) compared to sediments from relatively uncontaminated streams in the region (δ202Hg = -1.40 ± 0.06‰ and Δ199Hg of –0.26 ± 0.03‰; mean ± 1SD,more » n=6). Additionally, several streams that are nearby but do not drain Y12 had sediments with intermediate THg (0.06 to 0.21 μg/g) and anomalous δ202Hg (as low as -5.07‰). We suggest that the low δ202Hg values in these sediments provide evidence for the contribution of an additional Hg source to sediments, possibly derived from atmospheric deposition. In sediments directly downstream of Y12 this third Hg source is not discernible and the Hg isotopic composition can be largely explained by the mixing of low THg sediments with high THg sediments contaminated by Y12 discharges.« less

  18. A retrospective tiered environmental assessment of the Mount Storm Wind Energy Facility, West Virginia,USA

    SciTech Connect (OSTI)

    Efroymson, Rebecca Ann; Day, Robin; Strickland, M. Dale

    2012-11-01

    Bird and bat fatalities from wind energy projects are an environmental and public concern, with post-construction fatalities sometimes differing from predictions. Siting facilities in this context can be a challenge. In March 2012 the U.S. Fish and Wildlife Service (USFWS) released Land-based Wind Energy Guidelines to assess collision fatalities and other potential impacts to species of concern and their habitats to aid in siting and management. The Guidelines recommend a tiered approach for assessing risk to wildlife, including a preliminary site evaluation that may evaluate alternative sites, a site characterization, field studies to document wildlife and habitat and to predict project impacts, post construction studies to estimate impacts, and other post construction studies. We applied the tiered assessment framework to a case study site, the Mount Storm Wind Energy Facility in Grant County, West Virginia, USA, to demonstrate the use of the USFWS assessment approach, to indicate how the use of a tiered assessment framework might have altered outputs of wildlife assessments previously undertaken for the case study site, and to assess benefits of a tiered ecological assessment framework for siting wind energy facilities. The conclusions of this tiered assessment for birds are similar to those of previous environmental assessments for Mount Storm. This assessment found risk to individual migratory tree-roosting bats that was not emphasized in previous preconstruction assessments. Differences compared to previous environmental assessments are more related to knowledge accrued in the past 10 years rather than to the tiered structure of the Guidelines. Benefits of the tiered assessment framework include good communication among stakeholders, clear decision points, a standard assessment trajectory, narrowing the list of species of concern, improving study protocols, promoting consideration of population-level effects, promoting adaptive management through post-construction assessment and mitigation, and sharing information that can be used in other assessments.

  19. Microclimatic performance of a free-air warming and CO? enrichment experiment in windy Wyoming, USA

    SciTech Connect (OSTI)

    LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco; Liang, Wenju

    2015-02-06

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO?) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0C day/night) and growing season free-air CO? enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5C day/night) but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms? average) and significant daily and seasonal temperature fluctuations (as much as 30C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO? had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO?. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.

  20. Microclimatic performance of a free-air warming and CO₂ enrichment experiment in windy Wyoming, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco; Liang, Wenju

    2015-02-06

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO₂) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO₂ enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night)more » but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms⁻¹ average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO₂ had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO₂. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.« less

  1. SNR Denton US LLP 1301 K Street, NW Suite 600, East Tower Washington, DC 20005-3364 USA

    Broader source: Energy.gov (indexed) [DOE]

    SNR Denton US LLP 1301 K Street, NW Suite 600, East Tower Washington, DC 20005-3364 USA Thomas C. Jensen Partner thomas.jensen@snrdenton.com D +1 202 408 3956 M 703 304 5211 T +1 202 408 6400 F +1 202 408 6399 snrdenton.com March 28, 2012 BY E-MAIL Lamont Jackson Office of Electricity Delivery and Energy Reliability Mail Code: OE-20 U.S. Department of Energy 1000 Independence Avenue SW Washington, DC 20585 Re: OE Docket No. RRTT-IR-001 Dear Mr. Jackson:: This letter is submitted on behalf of PPL

  2. Venezuela-MEM/USA-DOE Fossil Energy Report IV-11: Supporting technology for enhanced oil recovery - EOR thermal processes

    SciTech Connect (OSTI)

    Venezuela

    2000-04-06

    This report contains the results of efforts under the six tasks of the Tenth Amendment anti Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Energy Agreement. This report is presented in sections (for each of the six Tasks) and each section contains one or more reports that were prepared to describe the results of the effort under each of the Tasks. A statement of each Task, taken from the Agreement Between Project Managers, is presented on the first page of each section. The Tasks are numbered 68 through 73. The first through tenth report on research performed under Annex IV Venezuela MEM/USA-DOE Fossil Energy Report Number IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, IV-8, IV-9, IV-10 contain the results of the first 67 Tasks. These reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, October 1991, February 1993, March 1995, and December 1997, respectively.

  3. Epizootic ulcerative syndrome caused by Aphanomyces invadans in captive bullseye snakehead Channa marulius collected from south Florida, USA

    SciTech Connect (OSTI)

    Saylor, Ryan; Miller, Debra; Vandersea, Mark; Bevelhimer, Mark S; Schofield, Pamela; Bennett, Wayne

    2010-02-01

    Epizootic ulcerative syndrome (EUS) caused by the oomycete Aphanomyces invadans is an invasive, opportunistic disease of both freshwater and estuarine fishes. Originally documented as the cause of mycotic granulomatosis of ornamental fishes in Japan and as the cause of EUS of fishes in southeast Asia and Australia, this pathogen is also present in estuaries and freshwater bodies of the Atlantic and gulf coasts of the USA. We describe a mass mortality event of 343 captive juvenile bullseye snakehead Channa marulius collected from freshwater canals in Miami-Dade County, Florida. Clinical signs appeared within the first 2 d of captivity and included petechiae, ulceration, erratic swimming, and inappetence. Histological examination revealed hyphae invading from the skin lesions deep into the musculature and internal organs. Species identification was confirmed using a species-specific PCR assay. Despite therapeutic attempts, 100% mortality occurred. This represents the first documented case of EUS in bullseye snakehead fish collected from waters in the USA. Future investigation of the distribution and prevalence of A. invadans within the bullseye snakehead range in south Florida may give insight into this pathogen-host system.

  4. AlabamaWISE Home Energy Program

    Broader source: Energy.gov [DOE]

    The program also provides financing for energy efficiency measures identified in the assessment. To be eligible for the loan, the homeowner must have a minimum credit score of 660 and must be a...

  5. Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    MWh Coal Power 55,659,872 MWh Gas Power 32,369,863 MWh Petroleum Power 163,054 MWh Nuclear Power 39,716,204 MWh Other 7,137 MWh Total Energy Production 142,960,819 MWh...

  6. ,"Alabama Lease Condensate Proved Reserves, Reserve Changes,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  7. Alabama Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 35 99 241 1970's 452 1,085 2,860 2,718 3,383 1980's 3,134 3,805 8,304 11,042 12,557 14,769 18,238 17,850 23,444 28,256 1990's 28,540 30,689 29,996 31,179 33,961 30,949 22,601 17,724 14,002 13,793 2000's 13,988 12,758 10,050 4,062 1,307 478 301 311 475 783 2010's 736 531 0

  8. Alabama Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 2,458 2,389 2,720 2,493 2,406 2,588 2,821 2,744 2,725 1,738 2,719 2,889 1992 2,814 2,535 2,529 2,618 2,573 2,492 2,655 2,556 2,255 2,467 2,183 2,320 1993 2,339 2,156 2,542 2,270 2,745 2,742 2,772 2,790 2,755 2,719 2,632 2,717 1994 2,547 2,348 2,769 2,473 2,990 2,986 3,019 3,039 3,001 2,961 2,867 2,959 1995 2,321 2,140 2,523 2,254 2,725 2,722 2,751 2,770 2,735 2,699 2,613 2,697 1996 2,244 1,340 2,142 2,001 2,003 1,786 1,891 2,000 1,957

  9. Alabama Justice Center Expands its Solar Capabilities

    Broader source: Energy.gov [DOE]

    At the T.K. Davis Justice Center in Opelika, Ala., the county is making an effort to reduce costs and help the environment by installing renewable energy projects, including solar panels on the center’s roof and on poles around the property.

  10. Alabama Dry Natural Gas Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    2,871 2,629 2,475 2,228 1,597 2,036 1977-2014 Adjustments 46 32 -49 112 -274 502 1977-2014 Revision Increases 99 206 455 99 67 140 1977-2014 Revision Decreases 328 173 157 254 75 41 1977-2014 Sales 2 263 573 11 357 2 2000-2014 Acquisitions 0 148 383 21 183 0 2000-2014 Extensions 20 28 3 0 0 2 1977-2014 New Field Discoveries 0 3 2 0 0 0 1977-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 14 1977-2014 Estimated Production 254 223 218 214 175 176

  11. Alabama Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    8 1,018 1,016 1,017 1,025 1,030

  12. Alabama Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    534,779 598,514 666,712 615,407 634,678 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 10,163 10,367 12,389 12,456 10,055 1983-2014 Plant Fuel 6,441 6,939 6,616 6,804 6,462 1983-2014 Pipeline & Distribution Use 22,124 23,091 25,349 22,166 18,688 1997-2014 Volumes Delivered to Consumers 496,051 558,116 622,359 573,981 599,473 640,707 1997-2015 Residential 42,215 36,582 27,580 35,059 38,971 31,794 1967-2015 Commercial 27,071 25,144 21,551 25,324 27,515 24,519 1967-2015 Industrial 144,938

  13. Alabama Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    6,286 -7,357 2,456 5,002 -5,603 -3,817 1968-2015 Injections 23,026 22,766 21,195 17,966 34,286 33,004 1968-2015 Withdrawals 16,740 15,408 23,651 22,968 28,683 29,187 1968

  14. Alabama Underground Natural Gas Storage Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    43,600 43,600 43,600 43,600 43,600 43,600 2002-2015 Total Working Gas Capacity 33,150 33,150 33,150 33,150 33,150 33,150 2012-2015 Total Number of Existing Fields 2 2 2 2 2 2

  15. Tennessee Valley Authority (Alabama) | Open Energy Information

    Open Energy Info (EERE)

    396,141 24 22,005 396,141 24 2008-12 21,402 332,767 24 21,402 332,767 24 2008-11 23,132 375,492 22 23,132 375,492 22 2008-10 26,207 406,129 22 26,207 406,129 22 2008-09 20,896...

  16. Alabama Nuclear Profile - Joseph M Farley

    U.S. Energy Information Administration (EIA) Indexed Site

    Joseph M Farley" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,874,"6,577",85.9,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" 2,860,"6,592",87.5,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  17. Alabama Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Delivered to Consumers 1,032 1,030 1,030 1,030 1,029 1,029 2013

  18. Alabama Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    56,930 54,897 50,117 49,292 50,501 54,716 2001-2015 Residential 702 694 671 934 2,031 3,411 1989-2015 Commercial 1,088 1,131 1,174 1,513 2,317 2,366 1989-2015 Industrial 15,749 15,311 14,897 15,292 15,100 15,670 2001-2015 Vehicle Fuel 19 19 18 19 18 19 2010-2015 Electric Power 39,373 37,742 33,356 31,534 31,034 33,249

  19. Alabama Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    60 50 61 56 53 106 1979-2008 Adjustments -2 -5 0 9 -13 76 1979-2008 Revision Increases 8 4 2 5 2 9 1979-2008 Revision Decreases 3 2 1 5 2 26 1979-2008 Sales 4 5 14 17 4 0 2000-2008 Acquisitions 4 0 28 5 16 1 2000-2008 Extensions 5 2 1 3 2 2 1979-2008 New Field Discoveries 0 0 0 0 0 0 1979-2008 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 1979-2008 Estimated Production 5 4 5 5 4 9

  20. Alabama Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    785,005 778,985 772,892 767,396 765,957 769,418 1986-2014 Sales 778,985 772,892 767,396 765,957 769,418 1997-2014 Transported 0 0 0 0 0 1997-2014 Commercial Number of Consumers 67,674 68,163 67,696 67,252 67,136 67,806 1986-2014 Sales 68,017 67,561 67,117 67,006 67,677 1998-2014 Transported 146 135 135 130 129 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 359 397 371 320 377 406 1967-2014 Industrial Number of Consumers 3,057 3,039 2,988 3,045 3,143 3,244 1986-2014 Sales 2,758

  1. Alabama Supplemental Supplies of Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    Synthetic 1980-2003 Propane-Air 1980-2003 Biomass 1993-2003

  2. Alabama Underground Natural Gas Storage Capacity

    Gasoline and Diesel Fuel Update (EIA)

    6,900 32,900 35,400 35,400 35,400 43,600 1995-2014 Salt Caverns 15,900 21,900 21,900 21,900 21,900 30,100 1999-2014 Aquifers 0 0 1999-2014 Depleted Fields 11,000 11,000 13,500 13,500 13,500 13,500 1999-2014 Total Working Gas Capacity 20,900 25,150 27,350 27,350 27,350 33,150 2008-2014 Salt Caverns 11,900 16,150 16,150 16,150 16,150 21,950 2008-2014 Aquifers 0 0 2012-2014 Depleted Fields 9,000 9,000 11,200 11,200 11,200 11,200 2008-2014 Total Number of Existing Fields 2 2 2 2 2 2 1995-2014 Salt

  3. ,"Alabama Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  4. Alabama Underground Natural Gas Storage - All Operators

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    29,436 30,170 31,141 30,084 32,501 32,916 1995-2015 Base Gas 9,640 9,640 9,640 9,640 9,640 9,640 1995-2015 Working Gas 19,796 20,530 21,501 20,444 22,861 23,276 1995-2015 Net...

  5. Tuscaloosa, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    lse,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers":"","locations":"text":"","title":"","link":null,"lat":33.2098407,"lon":-87.5691735,"alt":0,"address":"","i...

  6. Alabama Power Co | Open Energy Information

    Open Energy Info (EERE)

    Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes...

  7. Canada-USA Salmon Shelf Survival Study, 2007-2008 Annual Report.

    SciTech Connect (OSTI)

    Trudel, Marc; Tucker, Strahan; Morris, John

    2009-03-09

    Historically, salmon stocks from the Columbia River and Snake River formed one of the most valuable fisheries on the west coast of North America. However, salmon and steelhead returns sharply declined during the 1980s and 1990s to reach nearly 1 million fish. Although several factors may be responsible for the decline of Columbia River salmon and steelhead, there is increasing evidence that these drastic declines were primarily attributable to persistently unfavorable ocean conditions. Hence, an understanding of the effects of ocean conditions on salmon production is required to forecast the return of salmon to the Columbia River basin and to assess the efficacy of mitigation measures such as flow regulation on salmon resources in this system. The Canadian Program on High Seas Salmon has been collecting juvenile salmon and oceanographic data off the west coast of British Columbia and Southeast Alaska since 1998 to assess the effects of ocean conditions on the distribution, migration, growth, and survival of Pacific salmon. Here, we present a summary of the work conducted as part of the Canada-USA Salmon Shelf Survival Study during the 2008 fiscal year and compare these results with those obtained from previous years. The working hypothesis of this research is that fast growth enhances the marine survival of salmon, either because fast growing fish quickly reach a size that is sufficient to successfully avoid predators, or because they accumulate enough energy reserves to better survive their first winter at sea, a period generally considered critical in the life cycle of salmon. Sea surface temperature decreased from FY05 to FY08, whereas, the summer biomass of phytoplankton increased steadily off the west coast of Vancouver Island from FY05 to FY08. As in FY07, zooplankton biomass was generally above average off the west coast of Vancouver Island in FY08. Interestingly, phytoplankton and zooplankton biomass were higher in FY08 than was expected from the observed nutrient concentration that year. This suggests nutrients were more effectively by phytoplankton in FY08. In addition, the abundance of lipid-rich northern copepods increased from FY05 to FY08, whereas lipid-poor southern copepods showed the opposite pattern, suggesting that growth conditions were more favorable to juvenile salmon in FY08 than in previous years. However, growth indices for juvenile coho salmon were near the 1998-2008 average, both off the west coast of Vancouver Island and Southeast Alaska, indicating that additional factors beside prey quality affect juvenile salmon growth in the marine environment. Catches of juvenile Chinook, sockeye and chum salmon off the west coast of Vancouver Island in June-July 2008 were the highest on record during summer since 1998, suggesting that early marine survival for the 2008 smolt year was high. Interestingly, the proportion of hatchery fish was high (80-100%) among the juvenile Columbia River Chinook salmon caught off the British Columbia coast during summer, suggest that relatively few wild Chinook salmon are produced in the Columbia River Chinook. In addition, we also recovered two coded-wire tagged juvenile Redfish Lake sockeye salmon in June 2008 off the west coast of British Columbia. As relatively few Redfish Lake sockeye smolts are tagged each year, this also suggests that early marine survival was high for these fish, and may result in a high return in 2009 if they mature at age three, or in 2010 if they mature at age four. To date, our research shows that different populations of Columbia River salmon move to different locations along the coastal zone where they establish their ocean feeding grounds and overwinter. We further show that ocean conditions experienced by juvenile Columbia River salmon vary among regions of the coast, with higher plankton productivity and temperatures off the west coast of Vancouver Island than in Southeast Alaska. Hence, different stocks of juvenile salmon originating from the Columbia River and Snake River are exposed to different ocean conditions and may respond differ

  8. Superfund Record of Decision (EPA Region 3): USA Aberdeen, Operable Unit One, Michaelsville, MD. (Second remedial action), June 1992

    SciTech Connect (OSTI)

    Not Available

    1992-06-30

    The 20-acre USA Aberdeen Michaelsville Landfill is a municipal landfill located along the Chesapeake Bay in Harford County, Maryland. The site is in the northern portion of the Aberdeen Proving Ground (APG) in the Aberdeen Area (AA) between Michaelsville Road and Trench Warfare Road. The majority of materials reportedly disposed of at the site included domestic trash, trash from nonindustrial sources at APG, solvents, waste motor oils, PCB transformer oils, wastewater treatment sludges, pesticides containing thallium, insecticides containing selenium, and rodenticides containing antimony. The ROD addresses protection of the ground water by minimizing leachate flow and preventing current or future exposure to waste materials as the first of two OUs planned for the site. The primary contaminants of concern affecting the soil are organics, including pesticides; and metals, including chromium and lead.

  9. A Ten Step Protocol and Plan for CCS Site Characterization, Based on an Analysis of the Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    McPherson, Brian; Matthews, Vince

    2013-09-15

    This report expresses a Ten-Step Protocol for CO2 Storage Site Characterization, the final outcome of an extensive Site Characterization analysis of the Rocky Mountain region, USA. These ten steps include: (1) regional assessment and data gathering; (2) identification and analysis of appropriate local sites for characterization; (3) public engagement; (4) geologic and geophysical analysis of local site(s); (5) stratigraphic well drilling and coring; (6) core analysis and interpretation with other data; (7) database assembly and static model development; (8) storage capacity assessment; (9) simulation and uncertainty assessment; (10) risk assessment. While the results detailed here are primarily germane to the Rocky Mountain region, the intent of this protocol is to be portable or generally applicable for CO2 storage site characterization.

  10. FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System Energy-Reduction Goals with a Three-Phased Strategy

    Broader source: Energy.gov [DOE]

    This case study describes how FUJIFILM Hunt Chemicals U.S.A. implemented a comprehensive, compressed air system energy-reduction strategy at its Dayton, Tennessee, manufacturing facility and saved more than 1,240,000 kilowatt hours of energy between 2008 and 2011.

  11. High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Biomass Program Review High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations DE-EE0001036 S. Taylor (Auburn University), R. Rummer (USDA Forest Service), F. Corley (Corley Land Services), G. Somerville (Tigercat), O. Fasina (Auburn University), J. Fulton (Auburn University), T. McDonald (Auburn University), M. Smidt (Auburn University), T. Gallagher (Auburn University) This project is designing and demonstrating a high productivity system to harvest, process,

  12. Effects of overstory composition and prescribed fire on fuel loading across a heterogeneous managed landscape in the southeastern USA.

    SciTech Connect (OSTI)

    Parresol, Bernard, R.; Scott, Joe, H.; Andreu, Anne; Prichard, Susan; Kurth, Laurie

    2012-01-01

    In the southeastern USA, land use history, forest management and natural geomorphic features have created heterogeneous fuel loads. This apparent temporal and spatial variation in fuel loads make it difficult to reliably assess potential fire behavior from remotely sensed canopy variables to determine risk and to prescribe treatments. We examined this variation by exploring the relationships between overstory forest vegetation attributes, recent fire history, and selected surface fuel components across an 80,000 ha contiguous landscape. Measurements of dead and live vegetation components of surface fuels were obtained from 624 permanent plots, or about 1 plot per 100 ha of forest cover. Within forest vegetation groups, we modeled the relationship between individual surface fuel components and overstory stand age, basal area, site quality and recent fire history, then stochastically predicted fuel loads across the landscape using the same linkage variables. The fraction of the plot variation, i.e., R2, explained by predictive models for individual fuel components ranged from 0.05 to 0.66 for dead fuels and 0.03 to 0.97 for live fuels in pine dominated vegetation groups. Stand age and basal area were generally more important than recent fire history for predicting fuel loads. Mapped fuel loads using these regressor variables showed a very heterogeneous landscape even at the scale of a few square kilometers. The mapped patterns corresponded to stand based forest management disturbances that are reflected in age, basal area, and fire history. Recent fire history was significant in explaining variation in litter and duff biomass. Stand basal area was positively and consistently related to dead fuel biomass in most groups and was present in many predictive equations. Patterns in live fuel biomass were related to recent fire history, but the patterns were not consistent among forest vegetation groups. Age and basal area were related to live fuels in a complex manner that is likely confounded with periodic disturbances that disrupt stand dynamics. This study complements earlier hazardous fuels research in the southeastern USA, and indicates that succession, disturbance, site quality and decomposition interact with forest management practices to create variable spatial and temporal conditions. The inclusion of additional land use, disturbance history, and soil-topographic variables coupled to improved sampling methods may increase precision and subsequent fuel mapping.

  13. Compatibility issues of potential payloads for the USA/9904/B(U)F-85 RTG transportation system (RTGTS) for the 'Pluto Express' mission

    SciTech Connect (OSTI)

    Miller, Roger G.; Barklay, Chadwick D.; Howell, Edwin I.; Frazier, Timothy A.

    1997-01-10

    The specific electric power system for the 'Pluto Express' mission has yet to be specified. However, electric power will be provided by either radioisotopic thermoelectric generators (RTG), radioisotope thermophotovoltaic systems (RTPV), alkali metal thermal to electrical conversion (AMTEC) systems, radioisotope Stirling systems, or a combination of these. The selected radioisotopic power system will also be transported using the USA/9904/B(U)F-85, Radioisotope Thermoelectric Generator (RTG) Transportation System (RTGTS). As a result, all of the potential payloads present uniquely different environmental and physical configuration requirements. This paper presents the major compatibility issues of the potential payloads for the USA/9904/B(U)F-85 RTG Transportation System for the 'Pluto Express' mission.

  14. Logistical concepts associated with international shipments using the USA/9904/B(U)F RTG Transportation System (RTGTS)

    SciTech Connect (OSTI)

    Barklay, C.D.; Miller, R.G.; Pugh, B.K.; Howell, E.I.

    1997-01-01

    Over the last 30 years, radioisotopes have provided heat from which electrical power is generated. For space missions, the isotope of choice has generally been {sup 238}PuO{sub 2}, its long half-life making it ideal for supplying power to remote satellites and spacecraft like the Voyager, Pioneer, and Viking missions, as well as the recently launched Galileo and Ulysses missions, and the presently planned Cassini mission. Electric power for future space missions will be provided by either radioisotopic thermoelectric generators (RTG), radioisotope thermophotovoltaic systems (RTPV), alkali metal thermal to electrical conversion (AMTEC) systems, radioisotope Stirling systems, or a combination of these. The type of electrical power system has yet to be specified for the {open_quotes}Pluto Express{close_quotes} mission. However, the current plan does incorporate the use of Russian launch platforms for the spacecraft. The implied tasks associated with this plan require obtaining international certification for the transport of the radioisotopic power system, and resolving any logistical issues associated with the actual shipment of the selected radioisotopic power system. This paper presents a conceptual summary of the logistical considerations associated with shipping the selected radioisotopic power system using the USA/9904/B(U)F-85, Radioisotope Thermoelectric Generator Transportation System (RTGTS). {copyright} {ital 1997 American Institute of Physics.}

  15. Logistical concepts associated with international shipments using the USA/9904/B(U)F RTG Transportation System (RTGTS)

    SciTech Connect (OSTI)

    Barklay, Chadwick D.; Miller, Roger G.; Pugh, Barry K.; Howell, Edwin I.

    1997-01-10

    Over the last 30 years, radioisotopes have provided heat from which electrical power is generated. For space missions, the isotope of choice has generally been {sup 238}PuO{sub 2}, its long half-life making it ideal for supplying power to remote satellites and spacecraft like the Voyager, Pioneer, and Viking missions, as well as the recently launched Galileo and Ulysses missions, and the presently planned Cassini mission. Electric power for future space missions will be provided by either radioisotopic thermoelectric generators (RTG), radioisotope thermophotovoltaic systems (RTPV), alkali metal thermal to electrical conversion (AMTEC) systems, radioisotope Stirling systems, or a combination of these. The type of electrical power system has yet to be specified for the 'Pluto Express' mission. However, the current plan does incorporate the use of Russian launch platforms for the spacecraft. The implied tasks associated with this plan require obtaining international certification for the transport of the radioisotopic power system, and resolving any logistical issues associated with the actual shipment of the selected radioisotopic power system. This paper presents a conceptual summary of the logistical considerations associated with shipping the selected radioisotopic power system using the USA/9904/B(U)F-85, Radioisotope Thermoelectric Generator Transportation System (RTGTS)

  16. Evaluating the Suitability for CO2 Storage at the FutureGen 2.0 Site, Morgan County, Illinois, USA

    SciTech Connect (OSTI)

    Bonneville, Alain; Gilmore, Tyler J.; Sullivan, E. C.; Vermeul, Vincent R.; Kelley, Mark E.; White, Signe K.; Appriou, Delphine; Bjornstad, Bruce N.; Gerst, Jacqueline L.; Gupta, Neeraj; Horner, Jacob A.; McNeil, Caitlin; Moody, Mark A.; Rike, William M.; Spane, Frank A.; Thorne, Paul D.; Zeller, Evan R.; Zhang, Z. F.; Hoffman, Jeffrey; Humphreys, Kenneth K.

    2013-08-05

    FutureGen 2.0 site will be the first near-zero emission power plant with fully integrated long-term storage in a deep, non-potable saline aquifer in the United States. The proposed FutureGen 2.0 CO2 storage site is located in northeast Morgan County, Illinois, U.S.A., forty-eight kilometres from the Meredosia Energy Center where a large-scale oxy-combustion demonstration will be conducted. The demonstration will involve > 90% carbon capture, which will produce more than one million metric tons (MMT) of CO2 per year. The CO2 will be compressed at the power plant and transported via pipeline to the storage site. To examine CO2 storage potential of the site, a 1,467m characterization well (FGA#1) was completed in December 2011. The target reservoir for CO2 storage is the Mt. Simon Sandstone and Elmhurst Sandstone Member of the lower Eau Claire Formation for a combined thickness of 176 m. Confining beds of the overlying Lombard and Proviso Members (upper Eau Claire Formation) reach a thickness of 126 m. Characterization of the target injection zone and the overlying confining zone was based on wellbore data, cores, and geophysical logs, along with surface geophysical (2-D seismic profiles, magnetic and gravity), and structural data collected during the initial stage of the project . Based on this geological model, 3D simulations of CO2 injection and redistribution were conducted using STOMP-CO2, a multiphase flow and transport simulator. After this characterization stage, it appears that the injection site is a suitable geologic system for CO2 sequestration and that the injection zone is sufficient to receive up to 33 MMT of CO2 at a rate of 1.1 MMT/yr. GHGT-11 conference

  17. Quantification of total mercury in liver and heart tissue of Harbor Seals (Phoca vitulina) from Alaska USA

    SciTech Connect (OSTI)

    Marino, Kady B. [Department of Chemistry, Roger Williams University, Bristol, RI 02809 (United States)] [Department of Chemistry, Roger Williams University, Bristol, RI 02809 (United States); Hoover-Miller, Anne; Conlon, Suzanne; Prewitt, Jill [Alaska SeaLife Center, City of Seward, AK (United States)] [Alaska SeaLife Center, City of Seward, AK (United States); O'Shea, Stephen K., E-mail: soshea@rwu.edu [Department of Chemistry, Roger Williams University, Bristol, RI 02809 (United States)

    2011-11-15

    This study quantified the Hg levels in the liver (n=98) and heart (n=43) tissues of Harbor Seals (Phoca vitulina) (n=102) harvested from Prince William Sound and Kodiak Island Alaska. Mercury tissue dry weight (dw) concentrations in the liver ranged from 1.7 to 393 ppm dw, and in the heart from 0.19 to 4.99 ppm dw. Results of this study indicate liver and heart tissues' Hg ppm dw concentrations significantly increase with age. Male Harbor Seals bioaccumulated Hg in both their liver and heart tissues at a significantly faster rate than females. The liver Hg bioaccumulation rates between the harvest locations Kodiak Island and Prince William Sound were not found to be significantly different. On adsorption Hg is transported throughout the Harbor Seal's body with the partition coefficient higher for the liver than the heart. No significant differences in the bio-distribution (liver:heart Hg ppm dw ratios (n=38)) values were found with respect to either age, sex or geographic harvest location. In this study the age at which Hg liver and heart bioaccumulation levels become significantly distinct in male and female Harbor Seals were identified through a Tukey's analysis. Of notably concern to human health was a male Harbor Seal's liver tissue harvested from Kodiak Island region. Mercury accumulation in this sample tissue was determined through a Q-test to be an outlier, having far higher Hg concentrarion (liver 392 Hg ppm dw) than the general population sampled. - Highlights: Black-Right-Pointing-Pointer Mercury accumulation in the liver and heart of seals exceed food safety guidelines. Black-Right-Pointing-Pointer Accumulation rate is greater in males than females with age. Black-Right-Pointing-Pointer Liver mercury accumulation is greater than in the heart tissues. Black-Right-Pointing-Pointer Mercury determination by USA EPA Method 7473 using thermal decomposition.

  18. An evaluation of health risk to the public as a consequence of in situ uranium mining in Wyoming, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ruedig, Elizabeth; Johnson, Thomas E.

    2015-08-30

    In the United States there is considerable public concern regarding the health effects of in situ recovery uranium mining. These concerns focus principally on exposure to contaminants mobilized in groundwater by the mining process. However, the risk arising as a result of mining must be viewed in light of the presence of naturally occurring uranium ore and other constituents which comprise a latent hazard. The United States Environmental Protection Agency recently proposed new guidelines for successful restoration of an in situ uranium mine by limiting concentrations of thirteen groundwater constituents: arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, nitrate (asmore » nitrogen), molybdenum, radium, total uranium, and gross α activity. We investigated the changes occurring to these constituents at an ISR uranium mine in Wyoming, USA by comparing groundwater quality at baseline measurement to that at stability (post-restoration) testing. Of the groundwater constituents considered, only uranium and radium-226 showed significant (p < 0.05) deviation from site-wide baseline conditions in matched-wells. Uranium concentrations increased by a factor of 5.6 (95% CI 3.6–8.9 times greater) while radium-226 decreased by a factor of about one half (95% CI 0.42–0.75 times less). Change in risk was calculated using the RESRAD (onsite) code for an individual exposed as a resident-farmer; total radiation dose to a resident farmer decreased from pre-to post-mining by about 5.2 mSv y–1. As a result, higher concentrations of uranium correspond to increased biomarkers of nephrotoxicity, however the clinical significance of this increase is unclear.« less

  19. Modeling of In-stream Tidal Energy Development and its Potential Effects in Tacoma Narrows, Washington, USA

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.; Geerlofs, Simon H.

    2014-10-01

    Understanding and providing proactive information on the potential for tidal energy projects to cause changes to the physical system and to key water quality constituents in tidal waters is a necessary and cost-effective means to avoid costly regulatory involvement and late stage surprises in the permitting process. This paper presents a modeling study for evaluating the tidal energy extraction and its potential impacts on the marine environment in a real world site - Tacoma Narrows of Puget Sound, Washington State, USA. An unstructured-grid coastal ocean model, fitted with a module that simulates tidal energy devices, was applied to simulate the tidal energy extracted by different turbine array configurations and the potential effects of the extraction at local and system-wide scales in Tacoma Narrows and South Puget Sound. Model results demonstrated the advantage of an unstructured-grid model for simulating the far-field effects of tidal energy extraction in a large model domain, as well as assessing the near-field effect using a fine grid resolution near the tidal turbines. The outcome shows that a realistic near-term deployment scenario extracts a very small fraction of the total tidal energy in the system and that system wide environmental effects are not likely; however, near-field effects on the flow field and bed shear stress in the area of tidal turbine farm are more likely. Model results also indicate that from a practical standpoint, hydrodynamic or water quality effects are not likely to be the limiting factor for development of large commercial-scale tidal farms. Results indicate that very high numbers of turbines are required to significantly alter the tidal system; limitations on marine space or other environmental concerns are likely to be reached before reaching these deployment levels. These findings show that important information obtained from numerical modeling can be used to inform regulatory and policy processes for tidal energy development.

  20. Gulf of Mexico Federal Offshore Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Includes Federal Offshore Alabama, Louisiana,