Powered by Deep Web Technologies
Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Loadbearing Capacity of Cold Formed Steel Joists Subjected to Severe Heating  

E-Print Network (OSTI)

This paper discusses the behaviour of lightweight steel framed (LSF) unrestrained floors, protected with gypsum board ceilings, in five standard fire resistance tests. Parameters investigated in this test series were joist spacing, number of gypsum board layers in the ceiling membrane, floor cavity insulation and presence of concrete topping in the sub-floor. The fire resistance of LSF floors appears to be essentially governed by the ability of gypsum board to remain in place under fire exposure; other factors are of secondary importance. Retrospective numerical thermal-structural simulations of these tests show good agreement with measured temperature and deformation histories. The development of floor deflections is governed by the thermal bowing of steel joists except for the last one or two minutes in the tests, when "run-away" deformations develop due to the formation of inelastic hinges near mid-span. Evaluation of bending moment resistance of heated joists using current design provisions for cold formed steel structures, adjusted to account for the deterioration of strength and stiffness of steel at elevated temperatures, leads to conservative and fairly accurate predictions of fire resistance.

M.A. Sultan; Steel Joists; Subjected To; Severe Heating; F. Alfawakhiri; Mohamed A. Sultan

2001-01-01T23:59:59.000Z

2

Effect of radiant barriers and attic ventilation on residential attics and attic duct systems: New tools for measuring and modeling  

Science Conference Proceedings (OSTI)

A simple duct system was installed in an attic test module for a large scale climate simulator at a US national laboratory. The goal of the tests and subsequent modeling was to develop an accurate method of assessing duct system performance in the laboratory, enabling limiting conditions to be imposed at will and results to be applied to residential attics with attic duct systems. Steady-state tests were done at a severe summer and a mild winter condition. In all tests the roof surface was heated above ambient air temperatures by infrared lights. The attic test module first included then did not include the duct system. Attic ventilation from eave vents to a ridge vent was varied from none to values achievable by a high level of power ventilation. A radiant barrier was attached to the underside of the roof deck, both with and without the duct system in place. Tests were also done without the radiant barrier, both with and without the duct system. When installed, the insulated ducts ran along the floor of the attic, just above the attic insulation and along the edge of the attic near the eaves and one gable. These tests in a climate simulator achieved careful control and reproducibility of conditions. This elucidated dependencies that would otherwise be hidden by variations in uncontrolled variables. Based on the comparisons with the results of the tests at the mild winter condition and the severe summer condition, model predictions for attic air and insulation temperatures should be accurate within {+-} 10 F ({+-} 6 C). This is judged adequate for design purposes and could be better when exploring the effect of changes in attic and duct parameters at fixed climatic conditions.

Petrie, T.W.; Childs, P.W.; Christian, J.E.; Wilkes, K.E.

1998-07-01T23:59:59.000Z

3

Thermal Performance of Unvented Attics in Hot-Dry Climates: Results from Building America; Preprint  

DOE Green Energy (OSTI)

Unvented attics have become a more common design feature implemented by Building America partners in hot-dry climates of the United States. More attention is being focused on how this approach affects heating and cooling energy consumption. By eliminating the ridge and eave vents that circulate outside air through the attic and by moving the insulation from the attic floor to the underside of the roof, an unvented attic become a semi-conditioned space, creating a more benign environment for space conditioning ducts.

Hendron, R.; Farrar-Nagy, S.; Anderson, R.; Reeves, P.; Hancock, E.

2003-01-01T23:59:59.000Z

4

Effect of attic ventilation on the performance of radiant barriers  

Science Conference Proceedings (OSTI)

The objective of the experiments was to quantify how attic ventilation would affect the performance of a radiant barrier. Ceiling heat flux and space cooling load were both measured. Results of side-by-side radiant barrier experiments using two identical 13.38 m[sup 2] (nominal) test houses are presented in this paper. The test houses responded similarly to weather variations. Indoor temperatures of the test houses were controlled to within 0.2 [degrees] C. Ceiling heat fluxes and space cooling load were within a 2.5 percent difference between both test houses. The results showed that a critical attic ventilation flow rate of 1.3 (1/sec)/m[sup 2] of the attic floor existed after which the percentage reduction in ceiling heat fluxes produced by the radiant barriers did not change with increasing attic airflow rates. The ceiling heat flux reductions produced by the radiant barriers were between 25 and 35 percent, with 28 percent being the percent reduction observed most often in the presence of attic ventilation. The space-cooling load reductions observed were between two to four percent. All results compiled in this paper were for attics with unfaced fiberglass insulation with a resistance level of 3.35 m[sup 2]K/W (nominal) and for a perforated radiant barrier with low emissivities (less than 0.05) on both sides.

Medina, M.A.; O'Neal, D.L. (Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering); Turner, W.D. (Texas A and M Univ., College Station, TX (United States). Coll. of Engineering)

1992-11-01T23:59:59.000Z

5

Roof and Attic Design Guidelines for new and retrofit Construction of Homes in Hot and Coild Climates  

SciTech Connect

Some guidelines for improving the energy efficiency of roofs and attics are presented and are based on the research of the DOE Building Technology. The results of combined analytical and experimental studies were used to benchmark computer tools, which in turn, were used to simulate homes in hot and cold climates. Adding floor and roof insulation, above deck ventilation, radiant barriers, cool color shingle, metal or tile roofs, sealing the attic floor, sealing the duct system and sealing the attic were simulated to compute the cost of energy savings. Results are prioritized to help building owners make an informed economic decision when contemplating roof and attic retrofits. Sealing the attic floor is a top retrofit option. The sealed attic approach and a new prototype roof assembly an insulated and ventilated roof are good options for retrofit work but have paybacks ranging from 15 to 25 years. A new sealed attic concept was simulated and computations show its simple payback is about 10 to 12 years in hot and cold climates; its first cost is significantly reduced from that of a spray foam approach. For new construction the best option is to keep the ducts out of the attic, make sure the attic floor is sealed and add at least code level of insulation to the ceiling.

Desjarlais, Andre Omer [ORNL] [ORNL; LaFrance, Marc [International Energy Agency] [International Energy Agency

2013-01-01T23:59:59.000Z

6

Thermal Performance Evaluation of Attic Radiant Barrier Systems Using the Large Scale Climate Simulator (LSCS)  

SciTech Connect

Application of radiant barriers and low-emittance surface coatings in residential building attics can significantly reduce conditioning loads from heat flow through attic floors. The roofing industry has been developing and using various radiant barrier systems and low-emittance surface coatings to increase energy efficiency in buildings; however, minimal data are available that quantifies the effectiveness of these technologies. This study evaluates performance of various attic radiant barrier systems under simulated summer daytime conditions and nighttime or low solar gain daytime winter conditions using the large scale climate simulator (LSCS). The four attic configurations that were evaluated are 1) no radiant barrier (control), 2) perforated low-e foil laminated oriented strand board (OSB) deck, 3) low-e foil stapled on rafters, and 4) liquid applied low-emittance coating on roof deck and rafters. All test attics used nominal RUS 13 h-ft2- F/Btu (RSI 2.29 m2-K/W) fiberglass batt insulation on attic floor. Results indicate that the three systems with radiant barriers had heat flows through the attic floor during summer daytime condition that were 33%, 50%, and 19% lower than the control, respectively.

Shrestha, Som S [ORNL] [ORNL; Miller, William A [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL

2013-01-01T23:59:59.000Z

7

Performance Assessment of Photovoltaic Attic Ventilator Fans  

E-Print Network (OSTI)

Controlling summer attic heat gain is important to reducing air conditioning energy use in homes in hot-humid climates. Both heat transfer through ceilings and t attic duct systems can make up a large part of peak cooling demand, Attic ventilation has long been identified as a method to abate such heat gains. We present test results from using the photovoltaic (PV) attic ventilator fans in a test home to assess impact on attic and cooling energy performance.

Parker, D. S.; Sherwin, J. R.

2000-01-01T23:59:59.000Z

8

Inverted Attic Bulkhead for HVAC Ductwork | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inverted Attic Bulkhead for HVAC Ductwork Inverted Attic Bulkhead for HVAC Ductwork Inverted Attic Bulkhead for HVAC Ductwork, Roseville, California (Fact Sheet), Building America...

9

Simulated Attic Radiant Barrier Performance  

Science Conference Proceedings (OSTI)

A recent EPRI evaluation determined that attic radiant barriers installed under roof decks are increasingly effective in reducing cooling energy use as insolation increases and ceiling insulation thickness decreases. A savings worksheet included in this report allows rapid estimation of these energy cost impacts.

1991-03-29T23:59:59.000Z

10

An Evaluation of the Placement of the Placement of Radiant Barriers on their Effectiveness in Reducing Heat Transfer in Attics  

E-Print Network (OSTI)

Experimental tests were conducted to measure the influence of radiant barriers and the effect of the radiant barrier location on attic heat transfer. All the tests were conducted in an attic simulator at a steady state. The heat flux through the attic floor was measured at two different roof deck temperatures (120F and 140F). The temperature distribution within the base fibrous insulation was also measured. Three different solid kraft laminates with aluminum foil backing were tested. There was a 34 percent reduction (sample A) in heat flux through the ceiling for the case where the radiant barrier was placed 6 inches below the roof deck in addition to the base fibrous insulation (R-11), with the roof deck at 140 F. The reduction for the same sample with the radiant barrier placed on the studs of the attic floor was 46 percent. For all the three samples, the heat flux through the attic floor was reduced when the radiant barrier was placed on the attic floor studs.

Katipamula, S.; O'Neal, D.

1986-01-01T23:59:59.000Z

11

Conditioned Attics Overview | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Conditioned Attics Overview Conditioned Attics Overview Adequate attic ventilation is a long-standing requirement in building codes. However, conditioned, unvented attics have the potential to reduce residential energy needs and are allowed by code under certain conditions. Such assemblies are sometimes called cathedralized attics because, as with cathedral ceilings, the insulation is in the rafters and/or roof deck. Publication Date: Wednesday, May 13, 2009 ta_conditioned_attics_overview.pdf Document Details Affiliation: DOE BECP Document Number: PNNL-SA-57260 Focus: Compliance Building Type: Residential Code Referenced: International Energy Conservation Code (IECC) Document type: Technical Articles Target Audience: Architect/Designer Builder Code Official Contractor Engineer Contacts Web Site Policies

12

Humidity in Attics -- Sources and Control Methods  

Science Conference Proceedings (OSTI)

Guidelines for the control of moisture in attics are in a state of flux. The 1981 ASHRAE Handbook of Fundamentals gives only ''Past Practice'', and notes that such practice might not be currently valid. Furthermore, in the past it was assumed that the attic was an inert structure on which moisture would either condense or pass through unaffected. Results are presented which show that the attic is in a constant state of flux, absorbing and releasing moisture. A mathematical model for predicting the moisture content of attic wood members is presented. The model is used to predict hour-by-hour attic air humidity ratio, and seasonal wood moisture content. Results are compared with measured data. The application of the model to the re-calculation of attic ventilation standards is discussed, both with respect to condensation and wood rot.

Cleary, Peter

1984-07-01T23:59:59.000Z

13

Attic or Roof? An Evaluation of Two Advanced Weatherization Packages  

SciTech Connect

This project examines implementation of advanced retrofit measures in the context of a large-scale weatherization program and the archetypal Chicago brick bungalow. One strategy applies best practice air sealing methods and a standard insulation method to the attic floor. The other strategy creates an unvented roof assembly using materials and methods typically available to weatherization contractors. Through implementations of the retrofit strategies in a total of eight (8) test homes, the research found that the two different strategies achieve similar reductions in air leakage measurement (55%) and predicted energy performance (18%) relative to the pre-retrofit conditions.

Neuhauser, K.

2012-06-01T23:59:59.000Z

14

Next Generation Attics and Roof Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Next Generation Attics Next Generation Attics and Roof Systems William (Bill) Miller, Ph.D. ORNL WML@ORNL.GOV____ (865) 574-2013 April 4, 2013 Goals: Develop New Roof and Attic Designs  Reduce Space Conditioning Due to Attic  Convince Industry to Adopt Designs Building Envelope Program  Dr. William Miller  Dr. Som Shrestha  Kaushik Biswas, Ken Childs, Jerald Atchley, Phil Childs Andre Desjarlais (Group Leader) 32% Primary Energy 28% Primary Energy 2 | Building Technologies Office eere.energy.gov Purpose & Objectives

15

Influence of Attic Radiant Barrier Systems on Air Conditioning Demand in an Utility Pilot Project  

E-Print Network (OSTI)

A utility monitoring project has evaluated radiant barrier systems (RBS) as a new potential demand site management (DSM) program. The study examined how the retrofit of attic radiant barriers can be expected to alter utility residential space conditioning loads. An RBS consists of a layer of aluminum foil fastened to roof decking or roof trusses to block radiant heat transfer between the hot roof surface and the attic below. The radiant barrier can significantly lower summer heat transfer to the attic insulation and to the cooling duct system. Both of these mechanisms have strong potential impacts on cooling energy use as illustrated in Figures 1 and 2. The pilot project involved installation of RBS in nine homes that had been extensively monitored over the preceding year. The houses varied in conditioned floor area from 939 to 2,440 square feet; attic insulation varied from R-9 to R-30. The homes had shingle roofs with varying degrees of attic ventilation. The radiant barriers were installed during the summer of 2000. Data analysis on the pre and post cooling and heating consumption was used to determine impacts on energy use and peak demand for the utility. The average cooling energy savings from the RBS retrofit was 3.6 kWh/day, or about 9%. The average reduction in summer afternoon peak demand was 420 watts (or about 16%).

Parker, D. S.; Sherwin, J. R.

2002-01-01T23:59:59.000Z

16

Next Generation Roofs and Attics for Homes  

SciTech Connect

Prototype residential roof and attic assemblies were constructed and field tested in a mixed-humid U.S. climate. Summer field data showed that at peak day irradiance the heat transfer penetrating the roof deck dropped almost 90% compared with heat transfer for a conventional roof and attic assembly. The prototype assemblies use a combination of strategies: infrared reflective cool roofs, radiant barriers, above-sheathing ventilation, low-emittance surfaces, insulation, and thermal mass to reduce the attic air temperature and thus the heat transfer into the home. The prototype assemblies exhibited attic air temperatures that did not exceed the peak day outdoor air temperature. Field results were benchmarked against an attic computer tool and simulations made for the densely populated, hot and dry southeastern and central-basin regions of California. New construction in the central basin could realize a 12% drop in ceiling and air-conditioning annual load compared with a code-compliant roof and attic having solar reflectance of 0.25 and thermal emittance of 0.75. In the hot, dry southeastern region of California, the combined ceiling and duct annual load drops by 23% of that computed for a code-compliant roof and attic assembly. Eliminating air leakage from ducts placed in unconditioned attics yielded savings comparable to the best simulated roof and attic systems. Retrofitting an infrared reflective clay tile roof with 1 -in (0.032-m) of EPS foam above the sheathing and improving existing ductwork by reducing air leakage and wrapping ducts with insulation can yield annual savings of about $200 compared with energy costs for pre-1980 construction.

Miller, William A [ORNL; Kosny, Jan [ORNL

2008-01-01T23:59:59.000Z

17

A Hygrothermal Risk Analysis Applied to Residential Unvented Attics  

SciTech Connect

Aresidential building, constructed with an unvented attic, is acommonroof assembly in the United States.The expected hygrothermal performance and service life of the roof are difficult to estimate due to a number of varying parameters.Typical parameters expected to vary are the climate, direction, and slope of the roof as well as the radiation properties of the surface material. Furthermore, influential parameters are indoor moisture excess, air leakages through the attic floor, and leakages from air-handling unit and ventilation ducts. In addition, the type of building materials such as the insulation material and closed or open cell spray polyurethane foam will influence the future performance of the roof. A development of a simulation model of the roof assembly will enable a risk and sensitivity analysis, in which the most important varying parameters on the hygrothermal performance can be determined. The model is designed to perform probabilistic simulations using mathematical and hygrothermal calculation tools. The varying input parameters can be chosen from existing measurements, simulations, or standards. An analysis is applied to determine the risk of consequences, such as mold growth, rot, or energy demand of the HVAC unit. Furthermore, the future performance of the roof can be simulated in different climates to facilitate the design of an efficient and reliable roof construction with the most suitable technical solution and to determine the most appropriate building materials for a given climate

Pallin, Simon B [ORNL] [ORNL; Kehrer, Manfred [ORNL] [ORNL

2013-01-01T23:59:59.000Z

18

Modeling of Residential Attics with Radiant Barriers  

E-Print Network (OSTI)

This paper gives a summary of the efforts at ORNL in modeling residential attics with radiant barriers. Analytical models based on a system of macroscopic heat balances have been developed. Separate models have been developed for horizontal radiant barriers laid on top of the insulation, and for radiant barriers attached to the bottom of the top chords of the attic trusses. The models include features such as a radiation interchange analysis within the attic space, convective coupling with the ventilation air, and sorption/desorption of moisture at surfaces facing the attic enclosure. The paper gives details of the models and the engineering assumptions that were made in their development. The paper also reports on the status of efforts that are underway to verify the models by comparing their predictions with the results of laboratory and field tests on residential attics and test cells, both with and without radiant barriers. Comparisons are given for a number of selected sets of experimental data. Suggestions are given for needed model refinements and additional experimental data. Plans for utilization of the models for extrapolation to seasonal and annual performance in a variety of climatic conditions are also described.

Wilkes, K. E.

1988-01-01T23:59:59.000Z

19

AEDG Implementation Recommendations: Floors | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Floors Floors The Advanced Energy Design Guide (AEDG) for Small Office Buildings, 30% series, seeks to achieve 30% savings over ASHRAE Standard 90.1-1999. This guide focuses on improvements to small office buildings, less than 20,000ft2. The recommendations in this article are adapted from the implementation section of the guide and focus on mass floors; steel joist or wood frame floors; slab-on-grade floors. Publication Date: Wednesday, May 13, 2009 air_floors.pdf Document Details Affiliation: DOE BECP Focus: Compliance Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-1999 Document type: AEDG Implementation Recommendations Target Audience: Architect/Designer Builder Contractor Engineer State: All States Contacts Web Site Policies U.S. Department of Energy

20

A transient heat and mass transfer model of residential attics used to simulate radiant barrier retrofits. Part 2: Validation and simulations  

Science Conference Proceedings (OSTI)

A computer program was developed and used to implement the model described on Part 1 of this paper. The program used an iterative process to predict temperatures and heat fluxes using linear algebra principles. The results from the program were compared to experimental data collected during a three-year period. The model simulated different conditions such as variations in attic ventilation, variations in attic ceiling insulation, and different radiant barrier orientations for summer and winter seasons. It was observed that the model predicted with an error of less than 10% for most cases. This paper presents model results for nonradiant barrier cases as well as cases for radiant barriers installed horizontally on top of the attic floor (HRB) and for radiant barriers stapled to the attic rafters (TRB). Savings produced by radiant barriers and sensitivity analyses are also presented. The model results supported the experimental trend that emissivity was the single most significant parameter that affected the performance of radiant barriers.

Medina, M.A. [Texas A and M Univ., Kingsville, TX (United States). Dept. of Mechanical and Industrial Engineering

1998-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Numerical heat transfer attic model using a radiant barrier system  

Science Conference Proceedings (OSTI)

A two-dimensional, steady-state finite-element model was developed to simulate the thermal effects of the application of an attic radiant barrier system (ARBS) inside a ventilated residential attic. The attic is ventilated using the exhaust air from an evaporative cooler. The study uses a {kappa}-{epsilon} turbulent model to describe the velocity and temperature distributions in the attic. The ambient temperature and solar isolation densities on the outside inclined attic surfaces are used as driving functions for the model. The model also included the appropriate heat exchange modes of convection and radiation on these outside surfaces. Several recirculation zones were visually observed in the attic flow pattern. Also, the use of the ARBS seems to lower the heat transfer through the ceiling by 25--30%, but this effect decreases significantly as the outside ventilation rates are increased through the attic space. The 2D model revealed some interesting temperature distributions along the attic surfaces that could not have been predicted by the one-dimensional models. The lower emissivity ARBS seems to raise the temperature of the inclined attic surfaces as well as the temperature of the exhausted ventilation air.

Moujaes, S.F.; Alsaiegh, N.T.

2000-04-01T23:59:59.000Z

22

Inverted Attic Bulkhead for HVAC Ductwork, Roseville, California (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inverted Attic Bulkhead for Inverted Attic Bulkhead for HVAC Ductwork Roseville, California PROJECT INFORMATION Project Name: Long-Term Monitoring of Occupied Test House Location: Roseville, CA Partners: K. Hovnanian® Homes®, www.khov.com IBACOS www.ibacos.com Building Component: Envelope, structural, HVAC ducts Construction: New Application: New; single and/or multifamily Year Tested: 2012 Applicable Climate Zone(s): Hot-dry climate PERFORMANCE DATA HERS Index: 52 Projected Energy Savings: 11 million Btu/year heating and cooling savings Projected Energy Cost Savings: $116/year Modifying the truss system of a new home to accommodate ductwork within an inverted insulated bulkhead along the attic floor can save energy by placing

23

Analysis of Attic Radiant Barrier Systems Using Mathematical Models  

E-Print Network (OSTI)

During the past six years, the Florida Solar Energy Center (FSEC) has conducted extensive experimental research on radiant barrier systems (RBS). This paper presents recent research on the development of mathematical attic models. Two levels of modeling capability have been developed. A very simplified model based on ASHRAE procedures in used to study the sensitivity of RBS performance parameters, and a very detailed finite element model is used to study highly complex phenomena, including moisture adsorption and desorption in attics. The speed of the simple model allows a large range of attic parameters to be studies quickly, and the finite element model provides a detailed understanding of combined heat and moisture transport in attics. This paper concentrates on a parametric analysis of attic RBS using the simplified model. The development of the model is described, and results of the parametric analyses are presented and discussed. Preliminary results from the finite element model are also compared with measurements from a test attic to illustrate the effects of moisture adsorption and desorption in common attics.

Fairey, P.; Swami, M.

1988-01-01T23:59:59.000Z

24

Thermal Performance of Unvented Attics in Hot-Dry Climates  

DOE Green Energy (OSTI)

As unvented attics become a more common design feature implemented by Building America partners in hot-dry climates of the United States, more attention has been focused on how this approach affects heating and cooling energy consumption. The National Renewable Energy Laboratory (NREL) has conducted field testing and hourly building simulations for several Building America projects to evaluate energy use in vented and unvented attics in hot-dry climates. In summer, testing of the Las Vegas protoype house demonstrated that the thermal performance of an unvented attic is highly dependent on duct leakage.

Hendron, B.; Anderson, R.; Reeves, P.; Hancock, E.

2002-04-01T23:59:59.000Z

25

Cooling Energy Measurements of Houses with Attics Containing Radiant Barriers  

E-Print Network (OSTI)

Tests were conducted by Oak Ridge National Laboratory (ORNL) to determine the magnitude of the energy savings brought about by installing radiant barriers in the attics of single-family houses. The radiant barrier used for this test was a product with two reflective aluminum surfaces on a kraft paper base. The radiant barrier has the potential to reduce the radiant heat transfer component impinging on the fiberglass attic insulation. Working as a system in conjunction with an air space, the radiant barrier could theoretically block up to 95% of far-infrared radiation heat transfer. The experiment was conducted in three unoccupied research houses that are operated by ORNL. One house was used as the control house (no barrier was installed), while the other two were used to test the two different methods for installing the radiant barriers. In one house, the barrier was laid on top of the attic fiberglass batt insulation, and in the other house, the barrier was attached to the underside of the roof trusses. The attics of all three houses were insulated with kraft paper faced nominal R-19 fiberglass batt insulation. The results showed a savings in the cooling loads of 21% when the radiant barrier was laid on top of the attic fiberglass insulation and 13% with the radiant barrier attached to the underside of the roof trusses. The savings in electrical consumption was 17% and 9%, respectively. The electrical consumption data and the cooling load data indicated that the most effective way of installing the foil was to lay it on top of the fiberglass batt insulation. The radiant barriers reduced the measured peak ceiling heat fluxes by 39% for the case where the barrier was laid on top of the attic fiberglass insulation. The radiant barrier reduced the integrated heat flows from the attic to house by approximately 30-35% over a 7-day time period.

Levins, W. P.; Karnitz, M. A.; Knight, D. K.

1986-01-01T23:59:59.000Z

26

Moisture performance of sealed attics in the mixed-humid climate  

SciTech Connect

Oak Ridge National Laboratory studied 8 homes in the mixed-humid climate, 4 with vented attics and 4 with sealed attics. ORNL wanted to understand the moisture performance of the sealed attic and how it affected the interior environment. We found that the attic and interior of sealed attic homes were more humid than the attic and interior observed in vented attic homes. This is due to the lack of ventilation in the sealed attic. Historically attics have been vented to dehumidify the attic and interior of the home. A sealed attic design greatly reduces the venting potential and thus this drying pathway and can cause elevated interior moisture over a vented attic home. Despite the elevated attic and interior moisture in the sealed attic homes, so far no mold or material degradation has been found. The roof sheathing moisture content has stayed below 20%, indicating low potential for material degradation. Also the relative humidity at the roof sheathing has stayed within the ASHRAE 160 design criteria except for a short time during the 2011/2012 winter. This was due to a combination of the sealed attic design (minimal venting to the outside) and the duct work not being operated in the attic which usually provides a dehumidification pathway. It was also found that when the humidity was controlled using the HVAC system, it resulted in 7% more cooling energy consumption. In the mixed-humid climate this reduces the cost effectiveness of the sealed attic design as a solution for bringing ducts into a semi-conditioned space. Because of this we are recommending the other alternatives be used to bringing ducts into the conditioned space in both new construction and retrofit work in the mixed-humid climate.

Boudreaux, Philip R [ORNL] [ORNL; Pallin, Simon B [ORNL] [ORNL; Jackson, Roderick K [ORNL] [ORNL

2013-12-01T23:59:59.000Z

27

Cooling energy measurements of houses with attics containing radiant barriers  

Science Conference Proceedings (OSTI)

Tests were conducted by Oak Ridge National Laboratory (ORNL) to determine the magnitude of the energy savings brought about by installing radiant barriers in the attics of single-family houses. The radiant barrier used for this test was a product with two reflective aluminum surfaces on a kraft paper base. The radiant barrier has the potential to reduce the radiant heat transfer component impinging on the fiberglass attic insulation. Working as a system in conjunction with an air space, the radiant barrier could theoretically block up to 95% of far-infrared radiation heat transfer. The results showed a savings in the cooling loads of 21% when the radiant barrier was laid on top of the attic fiberglass insulation and 13% with the radiant barrier attached to the underside of the roof trusses. The savings in electrical consumption was 17% and 9%, respectively.

Levins, W.P.; Karnitz, M.A.; Knight, D.K.

1986-01-01T23:59:59.000Z

28

Measure Guideline: Air Sealing Attics in Multifamily Buildings  

SciTech Connect

This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

Otis, C.; Maxwell, S.

2012-06-01T23:59:59.000Z

29

Influence of Infrared Radiation on Attic Heat Transfer  

E-Print Network (OSTI)

An experimental study concerned with different modes of heal transfer in fibrous and cellulose insulating material is presented. A series of experiments were conducted using an attic simulator to determine the effects of ventilation on attic heat transfer, and the effect of infrared radiation on the thermal conductivity of the insulation system and on attic heat transfer. All the tests were performed at steady state conditions by controlling the roof deck temperature. Calculations are performed for insulation thicknesses between 1 inch (2.54cm) and 6.0 inches (15.24cm) and roof deck temperatures between 145F (62.78C) and 100F (36.78C). The temperature profiles within the insulation were measured by placing thermocouples at various levels within the insulation. The profiles for the cellulose insulation are linear. The profiles within the glass fiber insulation are non-linear due to the effect of infrared radiation. Also heat fluxes were measured through different insulation thicknesses and for different roof temperatures. It was found that a radiant barrier such as aluminum foil can reduce the heat flux significantly. Experimental results were compared to a Three-Region approximate solution developed at Oak Ridge National Laboratories (ORNL). The model was in good agreement with experimental results.

Katipamula, S.; Turner, W. D.; Murphy, W. E.; O'Neal, D. L.

1985-01-01T23:59:59.000Z

30

Energy Savings: Attics by Kristine Solomon, Posted Aug 2nd 2010 1:00PM  

E-Print Network (OSTI)

even more by installing a ridge-and-soffit ventilation system. Page 1 of 2Energy Savings: Attics - DIY's Green Home Guide. Page 2 of 2Energy Savings: Attics - DIY Life 9/14/2010http://www.diylife.com/2010

31

Inverted Attic Bulkhead for HVAC Ductwork, Roseville, California (Fact Sheet)  

SciTech Connect

K. Hovnanian Homes constructed a 2,253-ft single-story slab-on-grade ranch house for an occupied test house (new construction) in Roseville, California. One year of monitoring and analysis focused on the effectiveness of the space conditioning system at maintaining acceptable temperature and relative humidity levels in several rooms of the home, as well as room-to-room differences and the actual measured energy consumption by the space conditioning system. In this home, the air handler unit (AHU) and ducts were relocated to inside the thermal boundary. The AHU was relocated from the attic to a mechanical closet, and the ductwork was located inside an insulated and air-sealed bulkhead in the attic. To describe the performance and comfort in the home, the research team selected representative design days and extreme days from the annual data for analysis. To ensure that temperature differences were within reasonable occupant expectations, the team followed Air Conditioning Contractors of America guidance. At the end of the monitoring period, the occupant of the home had no comfort complaints in the home. Any variance between the modeled heating and cooling energy and the actual amounts used can be attributed to the variance in temperatures at the thermostat versus the modeled inputs.

Not Available

2013-10-01T23:59:59.000Z

32

Ducts in the Attic? What Were They Thinking? Preprint  

SciTech Connect

As energy-efficiency efforts focus increasingly on existing homes, we scratch our heads about construction decisions made 30, 40, 50-years ago and ask: 'What were they thinking?' A logical follow-on question is: 'What will folks think in 2050 about the homes we're building today?' This question can lead to a lively discussion, but the current practice that we find most alarming is placing ducts in the attic. In this paper, we explore through literature and analysis the impact duct location has on cooling load, peak demand, and energy cost in hot climates. For a typical new home in these climates, we estimate that locating ducts in attics rather than inside conditioned space increases the cooling load 0.5 to 1 ton, increases cooling costs 15% and increases demand by 0.75 kW. The aggregate demand to service duct loss in homes built in Houston, Las Vegas, and Phoenix during the period 2000 through 2009 is estimated to be 700 MW. We present options for building homes with ducts in conditioned space and demonstrate that these options compare favorably with other common approaches to achieving electricity peak demand and consumption savings in homes.

Roberts, D.; Winkler, J.

2010-08-01T23:59:59.000Z

33

Modeling attic humidity as a function of weather, building construction, and ventilation rates  

Science Conference Proceedings (OSTI)

A dynamic model for predicting attic relative humidity (RH) and roof-sheathing moisture content (MC) was developed for microcomputer application. The model accepts standard hourly weather data and building-design parameters as input. Model predictions gave good agreement with measured data from a house located in Madison, Wisconsin. Solar radiation varies with roof orientation and plays an important role in determining moisture transfer to and from the roof sheathing. Opposing roof surfaces must be differentiated in attic humidity models to account for the effect of solar radiation. The model described in this paper is capable of such differentiation. Snow accumulation on a roof can significantly alter the temperature and moisture conditions in an attic, but further research is needed to understand the effect of a snow layer on attic temperatures. Various scenarios were simulated with this model to determine the effect of building practice and ventilation strategies on roof sheathing MC. Direct control of RH in the living space by ventilation is very effective in lowering attic moisture conditions. Where natural ventilation is not adequate, a timer-controlled attic fan shows great promise for ensuring efficient and economical attic ventilation.

Gorman, T.M.

1987-01-01T23:59:59.000Z

34

Where to Insulate in a Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Where to Insulate in a Home Where to Insulate in a Home Where to Insulate in a Home November 26, 2013 - 1:34pm Addthis Examples of where to insulate. 1. In unfinished attic spaces, insulate between and over the floor joists to seal off living spaces below. (1A) attic access door 2. In finished attic rooms with or without dormer, insulate (2A) between the studs of "knee" walls, (2B) between the studs and rafters of exterior walls and roof, (2C) and ceilings with cold spaces above. (2D) Extend insulation into joist space to reduce air flows. 3. All exterior walls, including (3A) walls between living spaces and unheated garages, shed roofs, or storage areas; (3B) foundation walls above ground level; (3C) foundation walls in heated basements, full wall either interior or exterior.

35

Where to Insulate in a Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Where to Insulate in a Home Where to Insulate in a Home Where to Insulate in a Home November 26, 2013 - 1:34pm Addthis Examples of where to insulate. 1. In unfinished attic spaces, insulate between and over the floor joists to seal off living spaces below. (1A) attic access door 2. In finished attic rooms with or without dormer, insulate (2A) between the studs of "knee" walls, (2B) between the studs and rafters of exterior walls and roof, (2C) and ceilings with cold spaces above. (2D) Extend insulation into joist space to reduce air flows. 3. All exterior walls, including (3A) walls between living spaces and unheated garages, shed roofs, or storage areas; (3B) foundation walls above ground level; (3C) foundation walls in heated basements, full wall either interior or exterior.

36

Building America Top Innovations Hall of Fame Profile … Unvented, Conditioned Attics  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

additional heat loss and gain of ducts additional heat loss and gain of ducts in unconditioned, vented attics increases energy use for heating and cooling 10%. Additionally, duct air leakage has been measured to commonly exceed 20% of conditioned air flow, which results in a significant energy loss when ducts are in unconditioned space. In addition to influencing builders across the country to adopt unvented, conditioned attics, Building America research has helped influence code acceptance of this innovation since 2006. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.1 Building Science Solutions Unvented, Conditioned Attics The preference for a large segment of the U.S. housing industry has been to locate HVAC systems in unconditioned attics, but this is highly inefficient.

37

Look Up to See Your Bills Go Down: Making Your Attic More Efficient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Look Up to See Your Bills Go Down: Making Your Attic More Efficient Look Up to See Your Bills Go Down: Making Your Attic More Efficient Look Up to See Your Bills Go Down: Making Your Attic More Efficient July 18, 2011 - 5:29pm Addthis Allison Casey Senior Communicator, NREL This year at my house, we have been on a quest to make our attic more energy efficient. I think we realized just how much this unseen area contributes to our overall comfort -not to mention what we pay to heat and cool the house. The first thing we did was install more insulation this winter. In addition to the tax credits we'll be able to claim, there were several incentives available from our state and utility that made it a great time for us to make this improvement. Following the installation, we noticed an immediate improvement in the overall comfort of our home and the furnace seemed to

38

Look Up to See Your Bills Go Down: Making Your Attic More Efficient |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Look Up to See Your Bills Go Down: Making Your Attic More Efficient Look Up to See Your Bills Go Down: Making Your Attic More Efficient Look Up to See Your Bills Go Down: Making Your Attic More Efficient July 18, 2011 - 5:29pm Addthis Allison Casey Senior Communicator, NREL This year at my house, we have been on a quest to make our attic more energy efficient. I think we realized just how much this unseen area contributes to our overall comfort -not to mention what we pay to heat and cool the house. The first thing we did was install more insulation this winter. In addition to the tax credits we'll be able to claim, there were several incentives available from our state and utility that made it a great time for us to make this improvement. Following the installation, we noticed an immediate improvement in the overall comfort of our home and the furnace seemed to

39

Internal Microclimate Resulting From Ventilated Attics in Hot and Humid Regions  

E-Print Network (OSTI)

Ventilated spaces in the built environment create unique and beneficial microclimates. While the current trends in building physics suggest sealing attics and crawlspaces, comprehensive research still supports the benefits of the ventilated microclimate. Data collected at the University of Florida Energy Park show the attic environment of asphalt shingled roofs to be typically hotter than the outdoor conditions, but when properly ventilated sustains a much lower relative humidity. The hot, humid regions of the United States can utilize this internally convective, exchanging air mass to provide stable moisture levels within attic spaces. Positioning the buildings primary boundary at the ceiling deck allows for utilization of this buffer climate to minimize moisture trapping in insulation and maximize the insulations thermal benefits. This investigation concludes the conditions in a ventilated attic are stable through seasonal changes and promotes cost effective, energy efficient climate control of unconditioned spaces in hot, humid regions.

Mooney, B. L.; Porter, W. A.

2010-08-01T23:59:59.000Z

40

Radiant Barrier Insulation Performance in Full Scale Attics with Soffit and Ridge Venting  

E-Print Network (OSTI)

There is a limited data base on the full scale performance of radiant barrier insulation in attics. The performance of RBS have been shown to be dependent on attic ventilation characteristics. Tests have been conducted on a duplex located in Florida with soffit and ridge venting to measure attic performance. The unique features of these experiments are accurate and extensive instrumentation with heat flow meters, field verification of HFM calibration, extensive characterization of the installed ceiling insulation, ventilation rate measurements and extensive temperature instrumentation. The attics are designed to facilitate experimental changes without damaging the installed insulation. RBS performance has been measured for two natural ventilation levels for soffit and ridge venting. Previously, no full scale data have been developed for these test configurations. Test data for each of the test configurations was acquired for a minimum of two weeks with some acquired over a five week period. The Rl9 insulation performed as expected.

Ober, D. G.; Volckhausen, T. W.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Passive preheating of water-heater feed water (using attic heat)  

DOE Green Energy (OSTI)

Baseboard convectors were installed in a house attic to preheat water prior to entering the home water heater. The system was monitored and not found to be cost effective. (LEW)

Knudsen, E.T. Jr.

1982-01-01T23:59:59.000Z

42

Energy measurements of attic radiant barriers installed in single-family houses  

Science Conference Proceedings (OSTI)

Testing was conducted by the Oak Ridge National Laboratory to determine the energy savings attributable to radiant barriers installed in attics of unoccupied single-family houses. Three levels of fiberglass attic insulation (R-11 ,R-19, and R-30) were tested with two types of barrier installation (horizontal and truss). The results showed that horizontally installed radiant barriers were more effective than truss barriers in reducing heating and cooling loads. Measured cooling load reductions ranged form 0 to 22% (compared to same attic insulation insulation R-value with no radiant barrier) and heating load changes from /plus/4% to /minus/10% were measured (compared to same attic insulation R-value with no radiant barrier). Radiant barriers appeared to decrease the heating and cooling loads more when lesser amounts of insulation (R-11 and R-19) were present in an attic. Minimal changes were measured when R-30 was present in an attic. Long-term effects of dust on the performance of radiant barriers as well as the effects of moisture condensing on the surface of a radiant barrier during cold winter temperatures remain unanswered.

Levins, W.P.; Karnitz, M.A.

1988-07-01T23:59:59.000Z

43

Residential Attic Ventilation In A Hot And Humid Climate: Effects Of Increased Ventilation On Thermal Performance And Moisture Control.  

E-Print Network (OSTI)

?? The reality of the effect of natural ventilation in a residential attic cavity has been the topic of many debates and scholarly reports since (more)

Atherton, Stanley Arthur

2011-01-01T23:59:59.000Z

44

An attic-interior infiltration and interzone transport model of ahouse  

Science Conference Proceedings (OSTI)

A detailed model is developed for predicting the ventilation rates of the indoor, conditioned zone of a house and the attic zone. The complete set of algorithms is presented in a form for direct incorporation in a two zone ventilation model. One of the important predictions from this model is the leakage flow rate between the indoor and attic zones. Ventilation rates are predicted from a steady state mass flow rate balance for each zone where all individual flow rates through leakage sites are based on a power law expression for flow rate versus pressure difference. The envelope leakage includes distributed leakage associated with background leakage, localized leakage associated with vents and flues, and active fan ventilation. The predicted ventilation rates agree quite well with field measurements of ventilation rates in houses and attics with different leakage configurations, without the use of any empirically adjusted parameters or constants.

Walker, Iain S.; Forest, Tom W.; Wilson, David J.

2004-08-01T23:59:59.000Z

45

Effects of Radiant Barrier Systems on Ventilated Attics in a Hot and Humid Climate  

E-Print Network (OSTI)

Results of side-by-side radiant barrier experiments using two identical 144 ft2 (nominal) test houses are presented. The test houses responded very similarly to weather variations prior to the retrofit. The temperatures of the test houses were controlled to within 0.3F. Ceiling heat fluxes were within 2 percent for each house. The results showed that a critical attic ventilation flow rate (0.25 CFM/ft2 ) existed after which the percentage reduction produced by the radiant barrier systems was not sensitive to increased airflows. The ceiling heat flux reductions produced by the radiant barrier systems were between 25 and 34 percent, with 28 percent being the reduction observed most often in the presence of attic ventilation. All results presented in this paper were for attics with R-19 unfaced fiberglass insulation and for a perforated radiant barrier with low emissivities on both sides.

Medina, M. A.; O'Neal, D. L.; Turner, W. D.

1992-05-01T23:59:59.000Z

46

Energy measurements of single-family houses with attics containing radiant barriers  

Science Conference Proceedings (OSTI)

Radiant barriers were tested in attics of three unoccupied research houses which are located near Knoxville, Tennessee. The prime purpose of the testing was to determine the interaction, if any, between two types of radiant barriers, horizontal (barrier laid on top of attic insulation) and truss (barrier attached to underside of roof trusses), and three levels of fiberglass-batt attic insulation, R-11, R-19, and R-30. Testing of radiant barriers with R-19 fiberglass-batt attic insulation was done at the houses in the summer of 1985 and in the winter of 1985-86. The R-11 and R-30 testing was done in the summer of 1986. These results showed that horizontal barriers were more effective than truss barriers in reducing house cooling and heating loads. The summer of 1986 testing showed that increasing the attic insulation from R-11 to R-30 reduced the house cooling load (Btu) by approximately 16%. Adding a horizontal barrier to R-11 also reduced the cooling load compared to R-11 with no barrier by about 16%, while a truss barrier reduced it by 11%. A horizontal barrier with R-30 only reduced the cooling load by 2% compared to R-30 with no barrier, while an increase in the cooling load of 0.7% was measured with a truss barrier and R-30. Radiant barriers were not effective in reducing house cooling loads when R-30 attic insulation was present. The results from the summer of 1985 were integrated into the latest work through the use of a modeling effort using the building load simulation program, DOE-2.1B. This showed that R-19 insulation in conjunction with a horizontal barrier was (for Knoxville) the most effective barrier/insulation combination and could reduce the house cooling load by 25.1% compared to R-11 with no barrier.

Levins, W.P.; Karnitz, M.A.

1987-01-01T23:59:59.000Z

47

Cooling-energy measurements of unoccupied single-family houses with attics containing radiant barriers  

Science Conference Proceedings (OSTI)

Tests were conducted by Oak Ridge National Laboratory (ORNL) to determine the magnitude of the energy savings brought about by installing radiant barriers in the attics of single-family houses. The radiant barrier used for this test is a product with two reflective aluminum surfaces on a kraft paper base. The purpose of the radiant barrier is to reduce the radiant heat transfer component impinging on the fiberglass attic insulation. The radiant barrier works as a system in conjunction with an air space and can theoretically block up to 95% of far-infrared radiation heat transfer. The experiment was conducted in three unoccupied research houses that are operated by ORNL. Two variations on the installation of radiant barriers were studied. One house was used as the control house (no barrier was installed), while the other two were used to test the two different methods for installing the radiant barriers. In one house the barrier was laid on top of the attic fiberglass batt insulation, and in the other house, the barrier was attached to the underside of the roof trusses. The attics of all three houses were insulated with kraft-paper-faced R-19 fiberglass batt insulation. The results showed a savings in the cooling loads of 21% when the radiant barrier was laid on top of the attic fiberglass insulation and 13% with the radiant barrier attached to the underside of the roof trusses. The savings in electrical consumption were 17% and 9%, respectively. The electrical consumption data and the cooling load data indicate that the most effective way of installing the foil is to lay it on top of the fiberglass insulation. The radiant barriers reduced the measured peak ceiling heat fluxes by 39% for the case where the barrier was laid on top of the fiberglass insulation. The radiant barrier reduced the integrated heat flows from the attic to the house by approximately 30 to 35% over a 7-day time period.

Levins, W.P.; Karnitz, M.A.

1986-07-01T23:59:59.000Z

48

Effect of Radiant Barrier Technology on Summer Attic Heat Load in South Texas  

E-Print Network (OSTI)

The objective of the study was to experimentally evaluate the performance of radiant barriers in single-family occupied housing units in South Texas. Ceiling heat fluxes, attic air temperatures, indoor air temperatures, ambient air temperatures. roof temperatures, and solar radiation were measured. Results of the radiant barrier experiment using two side-by-side 600 ft2 units are presented. Attic fiberglass insulation of nominal R-11 was installed in the two apartments when the units were last remodeled in 1974. The test houses responded similarly to weather variations, that is, attic temperature and heat flux profiles were similar in magnitude prior to the retrofit. Residents of the housing units were asked to set the thermostats at 76F. Data were analyzed for periods of time which had the greatest attic temperatures (11 a.m. - 11 p.m.) and for which the indoor temperature differences were less than 1 percent. The results showed that radiant barriers reduced ceiling heat loads (on daily basis) by an average of 60 percent.

Ashley, R.; Garcia, O.; Medina, M. A.; Turner, W. D.

1994-01-01T23:59:59.000Z

49

Massachusetts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and labor up to 500. Measures eligible for incentives include attic insulation, wall insulation, rim joist insulation, air-sealing measures, window treatments and pipe...

50

Taunton Municipal Lighting Plant - Residential and Non-Profit...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Type Utility Rebate Program Rebate Amount Up to 50% of total cost: Attic insulation Wall insulation Rim joist insulation Air-sealing measures Window treatments Pipe...

51

Solar-assisted electric clothes dryer using a home attic as a heat source  

DOE Green Energy (OSTI)

This study was undertaken to determine the suitability of using a southeastern home attic as a means of reducing the energy consumption of an electric clothes dryer. An inexpensive duct (duplicable for $25) was constructed to collect hot attic air from the peak of a south facing roof and introduce it into the dryer inlet. Instrumentation was added to measure inlet temperatures and operating time/energy consumption of the dryer. Standardized test loads, in addition to normal laundry, were observed over the period of one year. The heat-on time of the dryer tested was shown to be reduced .16 to .35 minutes per /sup 0/C rise in inlet temperature. Inlet temperatures produced by the attic duct peaked at 56/sup 0/C(133/sup 9/F) in May/June and 40/sup 0/C(104/sup 0/F) in February. Based on peak temperatures available between 2 and 4 pm each month, a potential 20% yearly average savings could be realized. Economic viability of the system, dependant primarily on dryer usage, can be computed using a formula derived from the test results and included in the report.

Stana, J.M.

52

Heating energy measurements of unoccupied single-family houses with attics containing radiant barriers  

Science Conference Proceedings (OSTI)

Tests were conducted by Oak Ridge National Laboratory (ORNL) to determine the magnitude of the heating energy savings achieved by installing attic radiant barriers. The radiant barriers used for the test consist of a material with two reflective aluminum surfaces on a kraft paper base. The experiment was conducted in three unoccupied research houses operated by ORNL. Two variations in the installation of radiant barriers were studied. One house was used as the control house (no barrier was installed), while the other two were used to test the two methods for installing the radiant barriers. In one house, the radiant barrier was laid on top of the attic fiberglass batt insulation, and in the other house, the barrier was attached to the underside of the roof trusses. The attics of all three houses were insulated with a kraft-paper-faced R-19 fiberglass batt insulation. The winter test with the radiant barrier showed that the horizontal barrier was able to save space-heating electical energy in both the resistance and heat pump modes amounting to 10.1% and 8.5%, respectively. The roof truss radiant barrier increased consumption by 2.6% in the resistance mode and 4.0% in the heat pump mode. The horizontal orientation of the radiant barrier is the more energy-effective method of installation.

Levins, W.P.; Karnitz, M.A.

1987-01-01T23:59:59.000Z

53

APS Floor Coordinators  

NLE Websites -- All DOE Office Websites (Extended Search)

to: cee@aps.anl.gov SecurityPrivacy Notice APS Floor Coordinators LOM COORDINATORS CAT INFORMATION 431 A,B,D Vacant SRI-CAT, Sectors 1-3 C FC Office E SRI-CAT, Sector 4 432 A...

54

Sheraton Seattle Hotel Floor Plans  

Science Conference Proceedings (OSTI)

139th Annual Meeting & Exhibition. Sheraton Seattle Hotel Floor Plans. MEETING ROOMS. RESTROOMS. LEVEL 1. LEVEL. MEETING INFORMATION.

55

A transient heat and mass transfer model of residential attics used to simulate radiant barrier retrofits. Part 1: Development  

SciTech Connect

This paper describes a transient heat and mass transfer model of residential attics. The model is used to predict hourly ceiling heat gain/loss in residences with the purpose of estimating reductions in cooling and heating loads produced by radiant barriers. The model accounts for transient conduction, convection, and radiation and incorporates moisture and air transport across the attic. Environmental variables, such as solar loads on outer attic surfaces and sky temperatures, are also estimated. The model is driven by hourly weather data which include: outdoor dry bulb air temperature, horizontal solar and sky radiation, wind speed and direction, relative humidity (or dew point), and cloud cover data. The output of the model includes ceiling heat fluxes, inner and outer heat fluxes from all surfaces, inner and outer surface temperatures, and attic dry bulb air temperatures. The calculated fluxes have been compared to experimental data of side-by-side testing of attics retrofit with radiant barriers. The model predicts ceiling heat flows with an error of less than 10% for most cases.

Medina, M.A. [Texas A and M Univ., Kingsville, TX (United States). Dept. of Mechanical and Industrial Engineering; O`Neal, D.L. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering; Turner, W.D. [Texas Engineering Experiment Station, College Station, TX (United States). Energy Systems Lab.

1998-02-01T23:59:59.000Z

56

WOOD FLOORING 1. INTRODUCTION TO WARM AND WOOD FLOORING  

E-Print Network (OSTI)

This chapter describes the methodology used in EPAs Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for wood flooring beginning at the waste generation reference point. 1 The WARM GHG emission factors are used to compare the net emissions associated with wood flooring in the following three waste management alternatives: source reduction, combustion, and landfilling.

unknown authors

2012-01-01T23:59:59.000Z

57

Control of human induced floor vibrations  

E-Print Network (OSTI)

With the growing demand for open, column-free floor spaces and the advances in material strength, floor vibration serviceability criterion has been of growing importance within the past 20-30 years. All floor systems are ...

Homen, Sean Manuel

2007-01-01T23:59:59.000Z

58

Development of a Transient Heat and Mass Transfer Model of Residential Attics to Predict Energy Savings Produced by the Use of Radiant Barriers  

E-Print Network (OSTI)

A transient heat and mass transfer model was developed to predict ceiling heat gain/loss through the attic space in residences and to accurately estimate savings in cooling and heating loads produced by the use of radiant barriers. The model accounted for transient conduction, convection and radiation and incorporated moisture and air transport across the attic. Environmental variables such as solar loads on outer attic surfaces and sky temperatures were also estimated. The model was driven by hourly weather data which included: time, outdoor air temperature, horizontal sun and sky radiation, wind speed and direction, relative humidity (dew point), and cloud cover data. The outputs of the model were ceiling heat fluxes, inner and outer heat fluxes from all surfaces, inner and outer surface temperatures and attic air temperatures. Transient conduction was modeled using response factors. Response factors were calculated for each attic component based on construction type. Convective heat transfer was modeled using flat plate correlations found in the literature and radiative heat transfer was modeled using radiation enclosure theory. Moisture was incorporated via a condensation/evaporation model. A new procedure was developed to account for attic air stratification. Both forced and natural attic ventilation patterns were added to the model for three types of louver combination arrangements. An iterative technique was used to solve a set of simultaneous heat balance equations. The model predictions were compared to experimental data gathered throughout a three year experimental effort of side-by-side testing of attics retrofit with radiant barriers. The model was compared to the experimental data for a variety of situations which included: different attic insulation levels, various attic airflow rates, cooling and heating seasons, and different radiant barrier orientations. The model predicted ceiling heat flows within 10% for most cases. The model was used to run simulations and parametric studies under a diversity of climates, insulation levels and attic airflow patterns. Model predictions and results were presented on the basis of savings produced by the use of radiant barriers. Hourly, daily, and seasonal predictions by the model were in excellent agreement with observed experimental data and with literature.

Medina, M. A.

1992-12-01T23:59:59.000Z

59

Impact of Thermally Insulated Floors  

E-Print Network (OSTI)

Presently in Kuwait the code of practice for energy conservation in the air conditioned buildings implemented by the Ministry of Electricity and Water (MEW) which has been in effect since 1983 has no consideration taken for thermally insulating the floors of residential and commercial buildings with unconditioned basements. As a part of a comprehensive research program conducted by the Building and Energy Technologies Department of Kuwait Institute for Scientific Research for revision of the code this paper analyzes the effect of using un-insulated floors on the peak cooling demand and energy consumption of a middle income residential private villa and a onebedroom multi-story apartment building in Kuwait. These floors typically separate air-conditioned spaces with ambient environment or un-conditioned spaces. This was done using the ESP-r, a building's energy simulation program, in conjunction with typical meteorological year for Kuwait. The study compared such typical floors with three types of insulated floors. It was found that using an R- 10 floors in multi-story apartment buildings greatly reduce both the peak cooling demand as well as the energy consumption by about 15%, whereas only minimal savings (about 4%) were detected in the case of the residential villas.

Alghimlas, F.; Omar, E. A.

2004-01-01T23:59:59.000Z

60

News from the Expo floor  

Science Conference Proceedings (OSTI)

Sustainability, the recession, and challenges to the biodiesel industry were three major topics raised by a number of exhibitors at the 101st AOCS Annual Meeting & Expo in Phoenix, Arizona, USA, May 1619, 2010. News from the Expo floor Inform Magazine I

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Heating energy measurements of single-family houses with attics containing radiant barriers in combustion with R-11 and R-30 ceiling insulation  

Science Conference Proceedings (OSTI)

Tests were conducted by Oak Ridge National Laboratory to determine the heating energy performance of two levels of fiberglass-batt attic insulation (R-11 and R-30) in combination with truss and horizontally installed radiant barriers. The tests, a continuation of work started in the summer of 1985, were conducted in three unoccupied ranch-style houses in Karns, Tennessee, during the winter of 1986-87. The measured results of the heating tests showed that a horizontal radiant barrier used with R-11 attic insulation reduced the house heating load by 9.3% compared with R-11 with no radiant barrier, while a truss barrier showed essentially no change in the heating load. Horizontal and truss barriers each reduced the heating load by 3.5% when added to R-30 attic insulation. Moisture condensed on the bottom of the horizontal barrier during cold early morning weather but usually dissipated in the warmer afternoon hours at Karns and left no accumulation in the insulation. Depending on the level of attic insulation, an annual heating and cooling HVAC savings ranging from $5 to $65 is estimated to be attainable when a radiant barrier is installed in the attic at Karns. 8 refs., 64 figs., 18 tabs.

Levins, W.P.; Karnitz, M.A.

1988-08-01T23:59:59.000Z

62

NBTC Safety Orientation Second Floor Duffield Hall  

E-Print Network (OSTI)

­ EVACUATE THE BUILDING. IF THERE IS A GAS ALARM ­ EVACUATE THE FLOOR. IF THE GAS ALARM IS ON ALL FLOORS&S) - Laser Safety - Centrifuge Rotor Safety - Fire Extinguisher Education · ENTER THE LABS BY SWIPING YOUR ID

Wu, Mingming

63

Sheraton Seattle Hotel Floor Plans - TMS  

Science Conference Proceedings (OSTI)

LEARN NETWORK ADVANCE. Sheraton Seattle Hotel Floor Plans. MEETING ROOMS. RESTROOMS. LEVEL. PIKE ST. TOWER. UNION ST. TOWER.

64

From Shop Floor to Top Floor: Best Business Practices in Energy Efficiency  

Open Energy Info (EERE)

From Shop Floor to Top Floor: Best Business Practices in Energy Efficiency From Shop Floor to Top Floor: Best Business Practices in Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: From Shop Floor to Top Floor: Best Business Practices in Energy Efficiency Agency/Company /Organization: Pew Center on Global Climate Change Sector: Energy Focus Area: Energy Efficiency Topics: Policies/deployment programs Resource Type: Lessons learned/best practices Website: www.pewclimate.org/docUploads/PEW_EnergyEfficiency_FullReport.pdf References: From Shop Floor to Top Floor: Best Business Practices in Energy Efficiency[1] FROM SHOP FLOOR TO TOP FLOOR: BEST BUSINESS PRACTICES IN ENERGY EFFICIENCY. Pew Center on Global Climate Change. William R. Prindle. April 2010. In the last decade, rising and volatile energy prices coupled with

65

Energy Savings and Peak Demand Reduction of a SEER 21 Heat Pump vs. a SEER 13 Heat Pump with Attic and Indoor Duct Systems  

DOE Green Energy (OSTI)

This report describes results of experiments that were conducted in an unoccupied 1600 square foot house--the Manufactured Housing (MH Lab) at the Florida Solar Energy Center (FSEC)--to evaluate the delivered performance as well as the relative performance of a SEER 21 variable capacity heat pump versus a SEER 13 heat pump. The performance was evaluated with two different duct systems: a standard attic duct system and an indoor duct system located in a dropped-ceiling space.

Cummings, J.; Withers, C.

2011-12-01T23:59:59.000Z

66

CASE STUDY OF DUCT RETROFIT OF A 1985 HOME AND GUIDELINES FOR ATTIC AND CRAWL SPACE DUCT SEALING  

SciTech Connect

The U.S. Department of Energy (DOE) is fully committed to research for developing the information and capabilities necessary to provide cost-effective residential retrofits yielding 50% energy savings within the next several years. Heating, ventilation, and air conditioning (HVAC) is the biggest energy end use in the residential sector, and a significant amount of energy can be wasted through leaky ductwork in unconditioned spaces such as attics and crawl spaces. A detailed duct sealing case study is presented for one house along with nine brief descriptions of other duct retrofits completed in the mixed-humid climate. Costs and estimated energy savings are reported for most of the ten houses. Costs for the retrofits ranged from $0.92/ft2 to $1.80/ft2 of living space and estimated yearly energy cost savings due to the duct retrofits range from 1.8% to 18.5%. Lessons learned and duct sealing guidelines based on these ten houses, as well as close work with the HVAC industry in the mixed-humid climate of East Tennessee, northern Georgia, and south-central Kentucky are presented. It is hoped that the lessons learned and guidelines will influence local HVAC contractors, energy auditors, and homeowners when diagnosing or repairing HVAC duct leakage and will be useful for steering DOE s future research in this area.

Boudreaux, Philip R [ORNL; Christian, Jeffrey E [ORNL; Jackson, Roderick K [ORNL

2012-01-01T23:59:59.000Z

67

Improved Recovery from Gulf of Mexico Reservoirs, Volume 4, Comparison of Methane, Nitrogen and Flue Gas for Attic Oil. February 14, 1995 - October 13, 1996. Final Report  

SciTech Connect

Gas injection for attic oil recovery was modeled in vertical sandpacks to compare the process performance characteristics of three gases, namely methane, nitrogen and flue gas. All of the gases tested recovered the same amount of oil over two cycles of gas injection. Nitrogen and flue gas recovered oil more rapidly than methane because a large portion of the methane slug dissolved in the oil phase and less free gas was available for oil displacement. The total gas utilization for two cycles of gas injection was somewhat better for nitrogen as compared to methane and flue gas. The lower nitrogen utilization was ascribed to the lower compressibility of nitrogen.

Wolcott, Joanne; Shayegi, Sara

1997-01-13T23:59:59.000Z

68

Kalman-type positioning filters with floor plan information  

Science Conference Proceedings (OSTI)

A family of Kalman-type filters that estimate the user's position indoors, using range measurements and floor plan data, is presented. The floor plan information is formulated as a set of linear constraints and is used to truncate the Gaussian posterior ... Keywords: Kalman filter, floor plan, inequality constraints, nonlinear filtering, positioning

Tommi Perl; Simo Ali-Lytty

2008-11-01T23:59:59.000Z

69

Floor Support | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Floor Support Floor Support Service Responsible Person BLDG Extension (650) 926-XXXX Beam Status Duty Operator 120 926-2326 (BEAM) Duty Operator Cell Duty Operator 120 926-4040 Scheduling X-ray/VUV Macromolecular Crystallography Cathy Knotts Lisa Dunn 120 120 3191 2087 User Check-In/Badging Jackie Kerlegan 120 2079 User Financial Accounts Jackie Kerlegan 120 2079 Beam Lines/ VUV Bart Johnson 120 3858 Beam Lines/ X-ray Bart Johnson 120 3858 Beam Lines/ X-ray Mechanical Chuck Troxel, Jr. 120 2700 Beam Lines/ X-ray-VUV Electronics Alex Garachtchenko 120 3440 Beam Lines/ Macromolecular Crystallography Mike Soltis 277 3050 SMB XAS Beam Lines & Equipment Matthew Latimer Erik Nelson 274 274 4944 3938 MEIS XAS Beam Lines & Equipment Matthew Latimer

70

User ESH Support (UES)/Floor Coordinators  

NLE Websites -- All DOE Office Websites (Extended Search)

User ESH Support (UES) / Floor Coordinators User ESH Support (UES) / Floor Coordinators Bruce Glagola, Group Leader Building 431, Room Z005 Phone: 630-252-9797 Fax: 630-252-1664 E-mail: glagola@aps.anl.gov Nena Moonier Building 431, Room Z008 Phone: 630-252-8504 Fax: 630-252-1664 E-mail: nmoonier@aps.anl.gov Karen Kucer Building 401, Room C3257C Phone: 630-252-9091 Fax: 630-252-5948 E-mail: kucer@aps.anl.gov Floor Coordinators Bruno Fieramosca Building 432, Room C001 Phone: 630-252-0201 Fax: 630-252-1664 On-site page: 4-0201 E-mail: bgf@aps.anl.gov Shane Flood Building 436, Room C001 Phone: 630-252-0600 Fax: 630-252-1664 On-site pager: 4-0600 E-mail: saf@aps.anl.gov Patti Pedergnana Building 434, Room C001 Phone: 630-252-0401 Fax: 630-252-1664 On-site pager: 4-0401 E-mail: neitzke@aps.anl.gov Wendy VanWingeren Building 435, Room C001

71

Buildings Energy Data Book: 1.6 Embodied Energy of Building Assemblies  

Buildings Energy Data Book (EERE)

7 7 Embodied Energy of Floor Structures in the U.S. Floor Structure with Interior Ceiling Finish of Gypsum Board, Latex Paint Embodied Energy CO2 Equivalent (MMBtu/SF) (1) Emissions (lbs/SF) Glulam joist and plank decking 0.04 3.06 Precast Hollowcore 0.05 13.43 Wood I-joist 0.02 2.03 Open-web Steel Joist 0.06 7.94 Open-web Steel Joist with concrete topping 0.07 12.30 Precast Double-T 0.04 11.38 Precast Double-T with concrete topping 0.06 16.45 Steel Joist 0.06 8.82 Steel Joist with plywood decking 0.06 9.28 Suspended Concrete Slab 0.12 29.19 Wood Joist 0.02 1.65 Wood Joist with plywood decking 0.03 2.38 Wood Chord and Steel Web truss 0.05 5.91 Wood Truss 0.03 2.71 Floor Structure without Interior Ceiling Finish Glulam joist and plank decking 0.05 4.32 Precast Hollowcore 0.06 14.68 Wood I-joist 0.04 3.26

72

Natural Gas Price Uncertainty: Establishing Price Floors  

Science Conference Proceedings (OSTI)

This report presents the results of comprehensive calculations of ceiling and floor prices for natural gas. Ceiling prices are set by the price levels at which it is more economic to switch from natural gas to residual fuel oil in steam units and to distillate in combined cycle units. Switching to distillate is very rare, whereas switching to fuel oil is quite common, varying between winter and summer and increasing when natural gas prices are high or oil prices low. Monthly fuel use was examined for 89 ...

2007-01-11T23:59:59.000Z

73

Energy Saving in Office Building by Floor Integration System...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Saving in Office Building by Floor Integration System: Reducing Total Energy of HVAC and Lighting system using daylight Speaker(s): Yoshifumi Murakami Date: May 20, 2004 -...

74

Property:Building/FloorAreaChurchesChapels | Open Energy Information  

Open Energy Info (EERE)

Churches and chapels Retrieved from "http:en.openei.orgwindex.php?titleProperty:BuildingFloorAreaChurchesChapels&oldid285978" What links here Related changes Special pages...

75

Property:Building/FloorAreaGroceryShops | Open Energy Information  

Open Energy Info (EERE)

for Grocery shops Retrieved from "http:en.openei.orgwindex.php?titleProperty:BuildingFloorAreaGroceryShops&oldid286018" What links here Related changes Special pages...

76

Impact of Solar Heat Gain on Radiant Floor Cooling System Design  

E-Print Network (OSTI)

Bauman F. 2013. Impact of Solar Heat Gain on Radiant FloorBauman F. 2013. Impact of Solar Heat Gain on Radiant FloorBauman F. 2013. Impact of Solar Heat Gain on Radiant Floor

Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

2013-01-01T23:59:59.000Z

77

Property:Building/FloorAreaRestaurants | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/FloorAreaRestaurants Jump to: navigation, search This is a property of type Number. Floor area for Restaurants Pages using the property "Building/FloorAreaRestaurants" Showing 13 pages using this property. S Sweden Building 05K0007 + 1,990 + Sweden Building 05K0008 + 300 + Sweden Building 05K0013 + 215 + Sweden Building 05K0038 + 345 + Sweden Building 05K0046 + 200 + Sweden Building 05K0058 + 330 + Sweden Building 05K0060 + 256 + Sweden Building 05K0065 + 520 + Sweden Building 05K0081 + 98 + Sweden Building 05K0089 + 155 + Sweden Building 05K0098 + 170 + Sweden Building 05K0105 + 2,450 + Sweden Building 05K0114 + 400 + Retrieved from "http://en.openei.org/w/index.php?title=Property:Building/FloorAreaRestaurants&oldid=285973#SMWResults"

78

Property:Building/FloorAreaMiscellaneous | Open Energy Information  

Open Energy Info (EERE)

FloorAreaMiscellaneous FloorAreaMiscellaneous Jump to: navigation, search This is a property of type Number. Floor area for Miscellaneous Pages using the property "Building/FloorAreaMiscellaneous" Showing 25 pages using this property. S Sweden Building 05K0002 + 360 + Sweden Building 05K0005 + 110 + Sweden Building 05K0013 + 3,550 + Sweden Building 05K0016 + 445 + Sweden Building 05K0021 + 250 + Sweden Building 05K0025 + 254 + Sweden Building 05K0035 + 1,629 + Sweden Building 05K0037 + 175 + Sweden Building 05K0040 + 869 + Sweden Building 05K0044 + 1,234 + Sweden Building 05K0047 + 1,039 + Sweden Building 05K0051 + 1,489.92 + Sweden Building 05K0052 + 200 + Sweden Building 05K0062 + 140 + Sweden Building 05K0063 + 654 + Sweden Building 05K0068 + 746 + Sweden Building 05K0071 + 293 +

79

NSLS-II Source Properties and Floor Layout  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS-II Source Properties and Floor Layout NSLS-II Source Properties and Floor Layout April 12, 2010 Contents Basic Storage Ring Parameters Basic and Advanced Source Parameters Brightness Flux Photon Source Size and Divergence Power Infrared Sources Distribution of Sources Available for User Beamlines Floor Layout This document provides a summary of the current NSLS-II source and floor layout parameters. For a more complete description of the NSLS-II accelerator properties planned for NSLS-II, see the NSLS-II Preliminary Design Report Basic NSLS-II Storage Ring Parameters at NSLS-II website. We note that this document summarizes the present status of the design, but that the design continues to be refined and that these parameters may change as part of this process. NSLS-II is designed to deliver photons with high average spectral brightness in the 2 keV to 10 keV

80

Production system improvement : floor area reduction and cycle time analysis  

E-Print Network (OSTI)

A medical device company challenged a research team to reduce the manufacturing floor space required for an occlusion system product by one third. The team first cataloged equipment location and size, detailed the processes ...

Peterson, Jennifer J. (Jennifer Jeanne)

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Moisture Control in Insulated Raised Floor Systems in Southern Louisiana  

E-Print Network (OSTI)

polyisocyanurate foam, open-cell sprayed polyurethane foams of vary- ing vapor permeance, closed-cell sprayed in guidance for insulating raised floors in the hot and humid climate of the Gulf Houses with pier foundations

82

Test Plan for K Basin floor sludge consolidated sampling equipment  

SciTech Connect

The purpose of this document is to provide the test procedure for the function and acceptance testing of the K Basin Floor Sludge Consolidated Sampling Equipment. This equipment will be used to transfer K Basin floor sludge to a sludge sampling container for subsequent shipment to an analysis or testing facility. This equipment will provide sampling consistent with data quality objectives and sampling plans currently being developed.

OLIVER, J.W.

1998-10-30T23:59:59.000Z

83

Property:Building/FloorAreaHeatedGarages | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/FloorAreaHeatedGarages Jump to: navigation, search This is a property of type Number. Floor area for Heated garages (> 10 °C) Pages using the property "Building/FloorAreaHeatedGarages" Showing 15 pages using this property. S Sweden Building 05K0002 + 900 + Sweden Building 05K0007 + 400 + Sweden Building 05K0020 + 300 + Sweden Building 05K0022 + 3,300 + Sweden Building 05K0031 + 2,331 + Sweden Building 05K0033 + 465 + Sweden Building 05K0035 + 1,276 + Sweden Building 05K0037 + 130 + Sweden Building 05K0039 + 580 + Sweden Building 05K0047 + 1,076 + Sweden Building 05K0048 + 340 + Sweden Building 05K0061 + 90 + Sweden Building 05K0067 + 856 + Sweden Building 05K0093 + 2,880 +

84

Property:Building/TotalFloorArea | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/TotalFloorArea Jump to: navigation, search This is a property of type Number. Total floor area (BRA), m2 Pages using the property "Building/TotalFloorArea" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 7,160 + Sweden Building 05K0003 + 4,855 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,260 + Sweden Building 05K0006 + 13,048 + Sweden Building 05K0007 + 24,155 + Sweden Building 05K0008 + 7,800 + Sweden Building 05K0009 + 34,755 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 15,310 + Sweden Building 05K0012 + 22,565 + Sweden Building 05K0013 + 19,551 +

85

Energy Saving in Office Building by Floor Integration System: Reducing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Saving in Office Building by Floor Integration System: Reducing Energy Saving in Office Building by Floor Integration System: Reducing Total Energy of HVAC and Lighting system using daylight Speaker(s): Yoshifumi Murakami Date: May 20, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Naoya Motegi Information Technology that is featured by standard communication protocol like Lon Works, BACnet is very useful for managing building systems. Now we can collect much data quickly and easily and to analyze them in detail with this technology. Under the circumstances in that saving energy and reducing CO2 are required strongly, important thing is finding the effective information for building operation and control from collected data and the analysis of them. In our project, the floor integration controller that integrates the each building systems was proposed. It

86

Property:Building/FloorAreaShops | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/FloorAreaShops Jump to: navigation, search This is a property of type Number. Floor area for Shops Pages using the property "Building/FloorAreaShops" Showing 19 pages using this property. S Sweden Building 05K0002 + 900 + Sweden Building 05K0009 + 800 + Sweden Building 05K0012 + 1,587 + Sweden Building 05K0013 + 154 + Sweden Building 05K0017 + 3,150 + Sweden Building 05K0018 + 245 + Sweden Building 05K0019 + 5,600 + Sweden Building 05K0035 + 292 + Sweden Building 05K0046 + 530 + Sweden Building 05K0062 + 940 + Sweden Building 05K0081 + 530 + Sweden Building 05K0086 + 920 + Sweden Building 05K0088 + 1,170 + Sweden Building 05K0089 + 976 + Sweden Building 05K0092 + 360 +

87

Property:Building/FloorAreaOffices | Open Energy Information  

Open Energy Info (EERE)

FloorAreaOffices FloorAreaOffices Jump to: navigation, search This is a property of type Number. Floor area for Offices Pages using the property "Building/FloorAreaOffices" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 5,000 + Sweden Building 05K0003 + 4,360 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,150 + Sweden Building 05K0006 + 13,048 + Sweden Building 05K0007 + 21,765 + Sweden Building 05K0008 + 7,500 + Sweden Building 05K0009 + 33,955 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 14,080 + Sweden Building 05K0012 + 20,978 + Sweden Building 05K0013 + 15,632 + Sweden Building 05K0014 + 1,338.3 + Sweden Building 05K0015 + 1,550 + Sweden Building 05K0016 + 2,101 +

88

Thermal Behavior of Floor Tubes in a Kraft Recovery Boiler  

DOE Green Energy (OSTI)

The temperatures of floor tubes in a slope-floored black liquor recovery boiler were measured using an array of thermocouples located on the tube crowns. It was found that sudden, short duration temperature increases occurred with a frequency that increased with distance from the spout wall. To determine if the temperature pulses were associated with material falling from the convective section of the boiler, the pattern of sootblower operation was recorded and compared with the pattern of temperature pulses. During the period from September, 1998, through February, 1999, it was found that more than 2/3 of the temperature pulses occurred during the time when one of the fast eight sootblowers, which are directed at the back of the screen tubes and the leading edge of the first superheater bank, was operating.

Barker, R.E.; Choudhury, K.A.; Gorog, J.P.; Hall, L.M.; Keiser, J.R.; Sarma, G.B.

1999-09-12T23:59:59.000Z

89

SIMON: A mobile robot for floor contamination surveys  

SciTech Connect

The Robotics Development group at the Savannah River Site is developing an autonomous robot to perform radiological surveys of potentially contaminated floors. The robot scans floors at a speed of one-inch/second and stops, sounds an alarm, and flashes lights when contamination in a certain area is detected. The contamination of interest here is primarily alpha and beta-gamma. The contamination levels are low to moderate. The robot, a Cybermotion K2A, is radio controlled, uses dead reckoning to determine vehicle position, and docks with a charging station to replenish its batteries and calibrate its position. It has an ultrasonic collision avoidance system as well as two safety bumpers that will stop the robot's motion when they are depressed. Paths for the robot are preprogrammed and the robot's motion can be monitored on a remote screen which shows a graphical map of the environment. The radiation instrument being used is an Eberline RM22A monitor. This monitor is microcomputer based with a serial I/O interface for remote operation. Up to 30 detectors may be configured with the RM22A. For our purposes, two downward-facing gas proportional detectors are used to scan floors, and one upward-facing detector is used for radiation background compensation. SIMON is interfaced with the RM22A in such a way that it scans the floor surface at one-inch/second, and if contamination is detected, the vehicle stops, alarms, and activates a voice synthesizer. Future development includes using the contamination data collected to provide a graphical contour map of a contaminated area. 3 refs.

Dudar, E.; Teese, G.; Wagner, D.

1991-01-01T23:59:59.000Z

90

SIMON: A mobile robot for floor contamination surveys  

SciTech Connect

The Robotics Development group at the Savannah River Site is developing an autonomous robot to perform radiological surveys of potentially contaminated floors. The robot scans floors at a speed of one-inch/second and stops, sounds an alarm, and flashes lights when contamination in a certain area is detected. The contamination of interest here is primarily alpha and beta-gamma. The contamination levels are low to moderate. The robot, a Cybermotion K2A, is radio controlled, uses dead reckoning to determine vehicle position, and docks with a charging station to replenish its batteries and calibrate its position. It has an ultrasonic collision avoidance system as well as two safety bumpers that will stop the robot`s motion when they are depressed. Paths for the robot are preprogrammed and the robot`s motion can be monitored on a remote screen which shows a graphical map of the environment. The radiation instrument being used is an Eberline RM22A monitor. This monitor is microcomputer based with a serial I/O interface for remote operation. Up to 30 detectors may be configured with the RM22A. For our purposes, two downward-facing gas proportional detectors are used to scan floors, and one upward-facing detector is used for radiation background compensation. SIMON is interfaced with the RM22A in such a way that it scans the floor surface at one-inch/second, and if contamination is detected, the vehicle stops, alarms, and activates a voice synthesizer. Future development includes using the contamination data collected to provide a graphical contour map of a contaminated area. 3 refs.

Dudar, E.; Teese, G.; Wagner, D.

1991-12-31T23:59:59.000Z

91

PHASE CHANGE MATERIALS IN FLOOR TILES FOR THERMAL ENERGY STORAGE  

DOE Green Energy (OSTI)

Passive solar systems integrated into residential structures significantly reduce heating energy consumption. Taking advantage of latent heat storage has further increased energy savings. This is accomplished by the incorporation of phase change materials into building materials used in passive applications. Trombe walls, ceilings and floors can all be enhanced with phase change materials. Increasing the thermal storage of floor tile by the addition of encapsulated paraffin wax is the proposed topic of research. Latent heat storage of a phase change material (PCM) is obtained during a change in phase. Typical materials use the latent heat released when the material changes from a liquid to a solid. Paraffin wax and salt hydrates are examples of such materials. Other PCMs that have been recently investigated undergo a phase transition from one solid form to another. During this process they will release heat. These are known as solid-state phase change materials. All have large latent heats, which makes them ideal for passive solar applications. Easy incorporation into various building materials is must for these materials. This proposal will address the advantages and disadvantages of using these materials in floor tile. Prototype tile will be made from a mixture of quartz, binder and phase change material. The thermal and structural properties of the prototype tiles will be tested fully. It is expected that with the addition of the phase change material the structural properties will be compromised to some extent. The ratio of phase change material in the tile will have to be varied to determine the best mixture to provide significant thermal storage, while maintaining structural properties that meet the industry standards for floor tile.

Douglas C. Hittle

2002-10-01T23:59:59.000Z

92

Property:Building/FloorAreaTotal | Open Energy Information  

Open Energy Info (EERE)

FloorAreaTotal FloorAreaTotal Jump to: navigation, search This is a property of type Number. Total Pages using the property "Building/FloorAreaTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 7,160 + Sweden Building 05K0003 + 4,454 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,260 + Sweden Building 05K0006 + 14,348 + Sweden Building 05K0007 + 24,155 + Sweden Building 05K0008 + 7,800 + Sweden Building 05K0009 + 34,755 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 15,300 + Sweden Building 05K0012 + 22,565 + Sweden Building 05K0013 + 19,551 + Sweden Building 05K0014 + 1,338.3 + Sweden Building 05K0015 + 1,550 + Sweden Building 05K0016 + 2,546 +

93

Low Floor Americans with Disabilities Compliant Alternate Fuel Vehicle Project  

SciTech Connect

This project developed a low emission, cost effective, fuel efficient, medium-duty community/transit shuttle bus that meets American's with Disabilities Act (ADA) requirements and meets National Energy Policy Act requirements (uses alternative fuel). The Low Profile chassis, which is the basis of this vehicle is configured to be fuel neutral to accommodate various alternative fuels. Demonstration of the vehicle in Yellowstone Park in summer (wheeled operation) and winter (track operation) demonstrated the feasibility and flexibility for this vehicle to provide year around operation throughout the Parks system as well as normal transit operation. The unique configuration of the chassis which provides ADA access with a simple ramp and a flat floor throughout the passenger compartment, provides maximum access for all passengers as well as maximum flexibility to configure the vehicle for each application. Because this product is derived from an existing medium duty truck chassis, the completed bus is 40-50% less expensive than existing low floor transit buses, with the reliability and durability of OEM a medium duty truck.

James Bartel

2004-11-26T23:59:59.000Z

94

Property:Building/FloorAreaSchoolsChildDayCare | Open Energy...  

Open Energy Info (EERE)

Jump to: navigation, search This is a property of type Number. Floor area for Schools, including child day-care centres Pages using the property "Building...

95

STATISTICAL ANALYSIS OF TANK 5 FLOOR SAMPLE RESULTS  

SciTech Connect

Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F?Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume?proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non?overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primary sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, and the radionuclide1, elemental, and chemical concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above their MDCs. The identification of distributions and the selection of UCL95 procedures generally followed the protocol in Singh, Armbya, and Singh [2010]. When all of an analytes measurements lie below their MDCs, only a summary of the MDCs can be provided. The measurement results reported by SRNL are listed in Appendix A, and the results of this analysis are reported in Appendix B. The data were generally found to follow a normal distribution, and to be homogenous across composite samples.

Shine, G.

2012-08-03T23:59:59.000Z

96

STATISTICAL ANALYSIS OF TANK 5 FLOOR SAMPLE RESULTS  

SciTech Connect

Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F?Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume?proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non?overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primary sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, and the radionuclide, elemental, and chemical concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above their MDCs. The identification of distributions and the selection of UCL95 procedures generally followed the protocol in Singh, Armbya, and Singh [2010]. When all of an analytes measurements lie below their MDCs, only a summary of the MDCs can be provided. The measurement results reported by SRNL are listed in Appendix A, and the results of this analysis are reported in Appendix B. The data were generally found to follow a normal distribution, and to be homogenous across composite samples.

Shine, E.

2012-08-01T23:59:59.000Z

97

STATISTICAL ANALYSIS OF TANK 5 FLOOR SAMPLE RESULTS  

Science Conference Proceedings (OSTI)

Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primary sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, radionuclide, inorganic, and anion concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above their MDCs. The identification of distributions and the selection of UCL95 procedures generally followed the protocol in Singh, Armbya, and Singh [2010]. When all of an analyte's measurements lie below their MDCs, only a summary of the MDCs can be provided. The measurement results reported by SRNL are listed in Appendix A, and the results of this analysis are reported in Appendix B. The data were generally found to follow a normal distribution, and to be homogeneous across composite samples.

Shine, E.

2012-03-14T23:59:59.000Z

98

Statistical Analysis Of Tank 5 Floor Sample Results  

Science Conference Proceedings (OSTI)

Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primary sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, and the radionuclide, elemental, and chemical concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above their MDCs. The identification of distributions and the selection of UCL95 procedures generally followed the protocol in Singh, Armbya, and Singh [2010]. When all of an analyte's measurements lie below their MDCs, only a summary of the MDCs can be provided. The measurement results reported by SRNL are listed in Appendix A, and the results of this analysis are reported in Appendix B. The data were generally found to follow a normal distribution, and to be homogenous across composite samples.

Shine, E. P.

2012-08-01T23:59:59.000Z

99

Ubiquitous Indoor Localization and Worldwide Automatic Construction of Floor Plans  

E-Print Network (OSTI)

Although GPS has been considered a ubiquitous outdoor localization technology, we are still far from a similar technology for indoor environments. While a number of technologies have been proposed for indoor localization, they are isolated efforts that are way from a true ubiquitous localization system. A ubiquitous indoor positioning system is envisioned to be deployed on a large scale worldwide, with minimum overhead, to work with heterogeneous devices, and to allow users to roam seamlessly from indoor to outdoor environments. Such a system will enable a wide set of applications including worldwide seamless direction finding between indoor locations, enhancing first responders' safety by providing anywhere localization and floor plans, and providing a richer environment for location-aware social networking applications. We describe an architecture for the ubiquitous indoor positioning system (IPS) and the challenges that have to be addressed to materialize it. We then focus on the feasibility of automating ...

Youssef, Moustafa; Elkhouly, Reem; Lotfy, Amal

2012-01-01T23:59:59.000Z

100

Strategy Guideline: Quality Management in Existing Homes; Cantilever Floor Example  

SciTech Connect

This guideline is designed to highlight the QA process that can be applied to any residential building retrofit activity. The cantilevered floor retrofit detailed in this guideline is included only to provide an actual retrofit example to better illustrate the QA activities being presented. The goal of existing home high performing remodeling quality management systems (HPR-QMS) is to establish practices and processes that can be used throughout any remodeling project. The research presented in this document provides a comparison of a selected retrofit activity as typically done versus that same retrofit activity approached from an integrated high performance remodeling and quality management perspective. It highlights some key quality management tools and approaches that can be adopted incrementally by a high performance remodeler for this or any high performance retrofit. This example is intended as a template and establishes a methodology that can be used to develop a portfolio of high performance remodeling strategies.

Taggart, J.; Sikora, J.; Wiehagen, J.; Wood, A.

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Experimental Study of the Floor Radiant Cooling System Combined with Displacement Ventilation  

E-Print Network (OSTI)

As a comfortable and energy-efficient air conditioning system, the application of floor radiant heating system is used increasingly greatly in the north of China. As a result, the feasibility of floor radiant cooling has gained more attention. To examine the thermodynamic performance of the floor radiant cooling system, we measured the operational conditions including the minimum floor surface temperature, the cooling capacity, and the indoor temperature field distribution under different outdoor temperatures in Beijing. Because the ground temperature changes with the mean temperature of the supplied and returned water and room temperature, the mean temperature of the supplied and retuned water was obtained. Finally, we analyzed the phenomenon of dewing and developed measures for preventing it. The dry air layer near the floor formed by a displacement ventilation system can effectively prevent dews on the surface of the floor in the wet and hot days in summer. In addition, for the sake of the displacement ventilation system, the heat transfer effect between floor and space is enhanced. Our analysis pointed out that floor radiant cooling system combined with displacement ventilation ensures good comfort and energy efficiency.

Ren, Y.; Li, D.; Zhang, Y.

2006-01-01T23:59:59.000Z

102

Not Your Father's Weatherization: Q&A with Contractor Mike Richart...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

receive one or more of the following improvements: attic insulation, floor insulation, wall insulation, duct insulation, door or window replacements, building envelope air...

103

Clark Public Utilities - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Windows, Doors, & Skylights Solar Maximum Rebate Windows: 500 Insulation: 400 for each type (floor, attic, and wall) Air Sealing Envelope: 100 Program...

104

Property:Building/FloorAreaUnheatedRentedPremises | Open Energy Information  

Open Energy Info (EERE)

FloorAreaUnheatedRentedPremises FloorAreaUnheatedRentedPremises Jump to: navigation, search This is a property of type Number. Floor area for Unheated but rented-out premises (garages) < 10 °C Pages using the property "Building/FloorAreaUnheatedRentedPremises" Showing 6 pages using this property. S Sweden Building 05K0021 + 700 + Sweden Building 05K0050 + 760 + Sweden Building 05K0058 + 1,200 + Sweden Building 05K0080 + 2,000 + Sweden Building 05K0081 + 700 + Sweden Building 05K0102 + 234 + Retrieved from "http://en.openei.org/w/index.php?title=Property:Building/FloorAreaUnheatedRentedPremises&oldid=285964#SMWResults" What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

105

Numerical Simulation of Thermal Performance of Floor Radiant Heating System with Enclosed Phase Change Material  

E-Print Network (OSTI)

In the present paper, a kind of enclosed phase change material (PCM) used in solar and low-temperature hot water radiant floor heating is investigated. On the basis of obtaining the best performance of PCM properties, a new radiant heating structure of the energy storage floor is designed,which places heat pipes in the enclosed phase change material (PCM) layer, without concrete in it. The PCM thermal storage time is studied in relation to the floor surface temperature under different low-temperature hot water temperatures. With the method of enthalpy , the PCM thermal storage time is studied under different supply water temperatures, supply water flows, distances between water wipe in the floor construction, floor covers and insulation conditions.

Qiu, L.; Wu, X.

2006-01-01T23:59:59.000Z

106

Experiment System Analysis of an Indirect Expansion Solar Assisted Water Source Heat Pump Radiant Floor Heating System  

Science Conference Proceedings (OSTI)

A solar assisted water source heat pump for Radiant Floor Heating (SWHP-RFH) experimental system with heat pipe vacuum tube solar collector as heating source and radiant floor as terminal device is proposed in the paper. The Mathematics Model of dynamic ... Keywords: solar energy, water source heat pump, radiant floor heating systems, system dynamic COP

Qu Shilin; Ma Fei; Liu Li; Yue Jie

2009-10-01T23:59:59.000Z

107

Production system improvement at a medical devices company : floor layout reduction and manpower analysis  

E-Print Network (OSTI)

Due to the low demand and the need to introduce other production lines in the floor, the medical devices company wants to optimize the utilization of space and manpower for the occlusion system product. This thesis shows ...

AlEisa, Abdulaziz A. (Abdulaziz Asaad)

2012-01-01T23:59:59.000Z

108

Pressure Fluctuations on the Open-Ocean Floor off the Gulf of California: Tides, Earthquakes, Tsunamis  

Science Conference Proceedings (OSTI)

This paper supplements an initial article on sea-floor pressure observations conducted with a sensitive though not perfectly stable transducer. A variety of examples are used to demonstrate that a wide range of research subjects in the fields ...

Jean H. Filloux

1983-05-01T23:59:59.000Z

109

Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating System  

E-Print Network (OSTI)

The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but also makes people feel more comfortable. First, the authors devised an experimental scheme and set up the laboratory. Second, we collected a great deal of data on the system in different situations. Finally, we conclude that such heating system is feasible and one of the best heating methods.

Wu, Z.; Li, D.

2006-01-01T23:59:59.000Z

110

Next Generation Attics and Roof Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Milestone Status 1 Test Plan approved by KB Home and Owens Corning Complete 2 Cold climate demonstration switched to hot climate. Instrument and commission data...

111

Heat pumps and under floor heating as a heating system for Finnish low-rise residential buildings.  

E-Print Network (OSTI)

??In bachelors thesis the study of under floor heating system with ground source heat pump for the heat transfers fluid heating is considered. The case (more)

Chuduk, Svetlana

2010-01-01T23:59:59.000Z

112

Analysis of sludge from K East basin floor and weasel pit  

Science Conference Proceedings (OSTI)

Sludge samples from the floor of the Hanford K East Basin fuel storage pool have been retrieved and analyzed. Both chemical and physical properties have been determined. The results are to be used to determine the disposition of the bulk of the sludge and possibly assess the impact of residual sludge on dry storage of the associated intact metallic uranium fuel elements.

Makenas, B.J., Westinghouse Hanford

1996-05-04T23:59:59.000Z

113

Achieving effective floor control with a low-bandwidth gesture-sensitive videoconferencing system  

Science Conference Proceedings (OSTI)

Multiparty videoconferencing with even a small number of people is often infeasible due to the high network bandwidth required. Bandwidth can be significantly reduced if most of the advantages of using full-motion video can be achieved with low-frame-rate ... Keywords: floor control, frame rate, multiparty videoconferencing

Milton Chen

2002-12-01T23:59:59.000Z

114

Wind-Wave Nonlinearity Observed at the Sea Floor. Part I: Forced-Wave Energy  

Science Conference Proceedings (OSTI)

This is Part 1 of a study of nonlinear effects on natural wind waves. Array measurements of pressure at the sea floor and middepth, collected 30 km offshore in 13-m depth, are compared to an existing theory for weakly nonlinear surface gravity ...

T. H. C. Herbers; R. T. Guza

1991-12-01T23:59:59.000Z

115

Development of Energy Trading Floors - Implications for Company Operations and Regional Energy Markets: Report Series on Fuel and Po wer Market Integration  

Science Conference Proceedings (OSTI)

A variety of different firms have established energy trading floors over the past several years, to such an extent that trading floors are increasingly being viewed as a mandatory part of the generation business. Increasing in number and scope, trading floors are undergoing rapid evolution, with inevitable -- but as yet uncertain -- impacts on alignment of fuel and power prices. This report provides a snapshot of the development and implications of energy trading floors, drawing on leading examples from ...

1998-04-15T23:59:59.000Z

116

Pore-Level Modeling of Carbon Dioxide Infiltrating the Ocean Floor  

NLE Websites -- All DOE Office Websites (Extended Search)

Infiltrating the Ocean Floor Infiltrating the Ocean Floor Grant S. Bromhal, Duane H. Smith, US DOE, National Energy Technology Laboratory, Morgantown, WV 26507-0880; M. Ferer, Department of Physics, West Virginia University, Morgantown, WV 26506-6315 Ocean sequestration of carbon dioxide is considered to be a potentially important method of reducing greenhouse gas emissions (US DOE, 1999). Oceans are currently the largest atmospheric carbon dioxide sink; and certainly, enough storage capacity exists in the oceans to hold all of the CO 2 that we can emit for many years. Additionally, technologies exist that allow us to pump liquid CO 2 into the oceans at depths between one and two kilometers for extended periods of time and five times that deep for shorter durations. The biggest unknown in the ocean sequestration process, however, is the fate and

117

Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System  

E-Print Network (OSTI)

Today energy sources are decreasing and saving energy conservation becomes more important. Therefore, it becomes an important investigative direction how to use reproducible energy sources in the HVAC field. The feasibility and necessity of using solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter.

Liu, G.; Guo, Z.; Hu, S.

2006-01-01T23:59:59.000Z

118

Floor response spectra for seismic qualification of Kozloduy VVER 440-230 NPP  

Science Conference Proceedings (OSTI)

In this paper the floor response spectra generation methodology for Kozloduy NPP, Unit 1-2 of VVER 440-230 is presented. The 2D coupled soil-structure interaction models are used combined with a simplified correction of the final results for accounting of torsional effects. Both time history and direct approach for in-structure spectra generation are used and discussion of results is made.

Kostov, M.K. [Bulgarian Academy of Sciences, Sofia (BG). Central Lab. for Seismic Mechanics and Earthquake Engineering; Ma, D.C. [Argonne National Lab., IL (United States); Prato, C.A. [Univ. of Cordoba (AR); Stevenson, J.D. [Stevenson and Associates, Cleveland, OH (US)

1993-08-01T23:59:59.000Z

119

Floor Plan  

Science Conference Proceedings (OSTI)

VAW Aluminium. Technology. EDAX/TSL. KHD Humboldt. Wedag AG. Moeller. GmbH. SciDoc. Inc. Kluwer Academic. Publishers. Edison. Welding Inst. Resco.

120

Evening Temperature Rises on Valley Floors and Slopes: Their Causes and Their Relationship to the Thermally Driven Wind System  

Science Conference Proceedings (OSTI)

At slope and valley floor sites in the Owens Valley of California, the late afternoon near-surface air temperature decline is often followed by a temporary temperature rise before the expected nighttime cooling resumes. The spatial and temporal ...

C. David Whiteman; Sebastian W. Hoch; Gregory S. Poulos

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Method and apparatus for recovering a gas from a gas hydrate located on the ocean floor  

DOE Patents (OSTI)

A method and apparatus for recovering a gas from a gas hydrate on the ocean floor includes a flexible cover, a plurality of steerable base members secured to the cover, and a steerable mining module. A suitable source for inflating the cover over the gas hydrate deposit is provided. The mining module, positioned on the gas hydrate deposit, is preferably connected to the cover by a control cable. A gas retrieval conduit or hose extends upwardly from the cover to be connected to a support ship on the ocean surface.

Wyatt, Douglas E. (Aiken, SC)

2001-01-01T23:59:59.000Z

122

Commissioning Tools for Heating/Cooling System in Residence - Verification of Floor Heating System and Room Air Conditioning System Performance  

E-Print Network (OSTI)

Tools of evaluating the performance of floor heating and room air conditioner are examined as a commissioning tool. Simple method is needed to check these performance while in use by residents, because evaluation currently requires significant time and effort. Therefore, this paper proposes a) two methods of evaluating the floor heating efficiency from the room / crawl space temperature and the energy consumption and b) method of evaluating COP of the room air conditioner from the data measured at the external unit. Case studies in which these tools were applied to actual residences are presented to demonstrate their effectiveness.

Miura, H.; Hokoi, S.; Iwamae, A.; Umeno, T.; Kondo, S.

2004-01-01T23:59:59.000Z

123

STATE OF INDIANA OFFICE OF THE GOVERNOR State House, Second Floor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDIANA INDIANA OFFICE OF THE GOVERNOR State House, Second Floor Indianapolis, Indiana 46204 Mitchell E. Daniels, Jr. Governor March 12,2009 The Honorable Steven Chu Secretary U.S. Department of Energy 1000 Independence Avenue, S. W Washington, D.C. 20585 Re: State Energy Program Assurances Dear Secretary Chu: As a condition of receiving our State's share of the $3.1 billion funding for the State Energy Program (SEP) under the American Recovery and Renewal Act of 2009 (H.R. I)(ARRA), I am providing the following assurances. I have requested our public utility commission (the Indiana Utility Regulatory Commission) to consider additional actions to promote energy efficiency, consistent with the federal statutory language contained in H.R. 1 and their obligations to

124

Report Period: EIA ID NUMBER: Instructions: (e.g., Street Address, Bldg, Floor, Suite)  

U.S. Energy Information Administration (EIA) Indexed Site

Report Period: Report Period: EIA ID NUMBER: Instructions: (e.g., Street Address, Bldg, Floor, Suite) Secure File Transfer option available at: (e.g., PO Box, RR) Electronic Transmission: The PC Electronic Data Reporting Option (PEDRO) is available. Zip Code: - If interested in software, call (202) 586-9659. Email form to: Fax form to: (202) 586-9772 - - Mail form to: Oil & Gas Survey - - U.S. Department of Energy Ben Franklin Station PO Box 279 Washington, DC 20044-0279 Questions? Call toll free: 1-800-638-8812 OOG.SURVEYS@eia.doe.gov Contact Name: Version No.: 2013.01 Date of this Report: Mo Day State: Year Phone No.: DOMESTIC CRUDE OIL FIRST PURCHASE REPORT Company Name: A completed form must be filed by the 30th calendar day following the end of the report

125

Stress Analysis of Floor Slab from Hyster 550 FS Lift Truck with 55 Kip Pay Load  

Science Conference Proceedings (OSTI)

The objective of this calculation is to determine the probable moments and stresses that will be induced into the slab on grade floor at building 2404WA from operation of a Hyster 550 FS lift truck having tire pressures of 124 psi while moving and placing SWDB boxes within building 2404WA. It was found that the probable reinforcing steel stress induced in the grade 60 reinforcing steel for the 124 psi tire pressure is about 35.55 ksi and the factor of safety against yield is about 1.7:l. The probable maximum concrete compression stress is expected to be about 2.21 ksi resulting in a factor of safety of about 2.04:1 against concrete compression failure. Slab on grade design is not subject to building code factors of safety requirements.

BLACK, D.G.

2003-06-05T23:59:59.000Z

126

Columbia River PUD - Residential Energy Efficiency Rebate Programs...  

Open Energy Info (EERE)

Windows: 6.00 per sq ft WallFloor Insulation: 0.65sq ft Attic Insulation: 0.02R-Value per square foot Heat Pump Water Heaters: 300-500unit Eligible System Size...

127

Southwest Gas Corporation - Southwest Gas Corporation - Residential...  

Open Energy Info (EERE)

Insulation: 0.15sq ft Floor Insulation: 0.30sq ft Builders Energy Star Certified Home: 450 Natural Gas Tankless Water Heater: 450 Attic Insulation: 0.15sq ft Equipment...

128

Case study field evaluation of a systems approach to retrofitting a residential HVAC system  

E-Print Network (OSTI)

ceiling insulation and air sealing the building shell, whichThe sealing included: air-sealing of the attic floor plane (outdoor air damper. Figure 16 shows the duct sealing using

Walker, Iain S.; McWiliams, Jennifer A.; Konopacki, Steven J.

2003-01-01T23:59:59.000Z

129

Home Energy Article: A Systems Approach to Retrofitting Residential HVAC Systems  

E-Print Network (OSTI)

The sealing included air-sealing the attic floor plane (2air circulation fan. Other recommendations about sealing andaerosol sealing. The supply ducts were sealed to 4% of air

McWilliams, Jennifer A.; Walker, Iain S.

2005-01-01T23:59:59.000Z

130

A systems approach to retrofitting residential HVAC systems  

E-Print Network (OSTI)

The sealing included: air-sealing the attic floor plane (2was 9% of air handler flow. The sealing of the envelope wasaerosol sealing. The supply ducts were sealed to 4% of air

McWilliams, J.A.; Walker, I.S.

2004-01-01T23:59:59.000Z

131

Flathead Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clothes Washer (Gas Water Heater): 20 Attic Insulation: 0.08 - 1.32 per square foot Wall Insulation: 0.95 per square foot Under Floor Insulation: 1.02 per square foot...

132

Section 4.2.2 Insulation: Greening Federal Facilities; Second...  

NLE Websites -- All DOE Office Websites (Extended Search)

can easily be added to attics or under floors, but retrofitting cavity insulation in walls is usually expensive and disruptive. It is less disruptive to add wall insulation on...

133

Southwest Gas Corporation - Residential and Builder Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heater: 450 Natural Gas Clothes Dryer: 30 Windows: 0.95sq ft Attic Insulation: 0.15sq ft Floor Insulation: 0.30sq ft Builders Energy Star Certified Home: 450...

134

Grant County PUD - Residential Energy Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Freezer Decommissioning: 100 CFLs: Retail cost per bulb not including tax Attic Insulation: 0.45 - 1.10square foot Floor Insulation: 0.75 - 0.90square foot Wall...

135

Columbia Water and Light - Home Performance with Energy Star...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1,200 Air Sealing: 420 Duct Sealing: 300 WindowsDoors: 500 AtticWallFloor Insulation: 500 each (unless otherwise noted on website) ACHeat Pump: 1,600 Program...

136

Chelan County PUD - Residential Weatherization Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Rebate Amount WindowsPatio Doors: 3 per square foot installed WallFloor Insulation: 0.25 per square foot if existing insulation is R-5 or less CeilingAttic...

137

Columbia River PUD - Commercial Energy Efficiency Rebate Programs...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Floor Insulation: 0.25 per sq ft Attic Insulation: 0.45 per sq ft Windows: 3.00 per square foot Water Heaters: 200 Clothes Washer: 20 - 50 depending on type and efficiency...

138

Crack Width Analysis of Floor Slabs from Hyster 550 FS Lift Truck with 55 Kip Pay Load  

Science Conference Proceedings (OSTI)

This calculation determines the probable crack width experienced by the slab on grade floor at Building 2404WA from a Hyster 550 FS lift truck having tire pressures of 124 psi while moving and placing Standard Waste Disposal Boxes within the building.

BLACK, D.G.

2003-06-05T23:59:59.000Z

139

An assessment of a partial pit ventilation system to reduce emission under slatted floor - Part 1: Scale model study  

Science Conference Proceedings (OSTI)

Emissions of ammonia and greenhouse gases from naturally ventilated livestock houses cause contamination of the surrounding atmospheric environment. Requests to reduce ammonia emissions from livestock farms are growing in Denmark. It is assumed that ... Keywords: Livestock, Pit ventilation, Scale model, Slatted floor, Tracer gas, Wind tunnel

Wentao Wu; Peter Kai; Guoqiang Zhang

2012-04-01T23:59:59.000Z

140

Pressure Fluctuations on the Open Ocean Floor Over a Broad Frequency Range: New Program and Early Results  

Science Conference Proceedings (OSTI)

A two-month ocean-floor pressure record obtained 330 km to the east of the main island of Hawaii by means of a Bourdon tube-type transducer with optical readout is discussed in detail. An approach to subtraction of the drift component associated ...

J. H. Filloux

1980-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Experimental Study on Operating Characteristic of the System of Ground Source Heat Pump Combined with Floor Radiant Heating of Capillary Tube  

Science Conference Proceedings (OSTI)

At first, the article presented particularly the working theory of the system of ground source heat pump combined with floor radiant heating of capillary tube, the characteristic of soil layers and the arrangement form of capillary tube mat and the floor ... Keywords: Ground source heat pump, Capillary tube, Radiant heating, Characteristic, Experiment

Yunzhun Fu; Cai Yingling; Jing Li; Yeyu Wang

2009-10-01T23:59:59.000Z

142

Inspection of the objects on the sea floor by using 14 MeV tagged neutrons  

SciTech Connect

Variety of objects found on the sea floor needs to be inspected for the presence of materials which represent the threat to the environment and to the safety of humans. We have demonstrated that the sealed tube 14 MeV neutron generator with the detection of associated alpha particles can be used underwater when mounted inside ROV equipped with the hydraulic legs and variety of sensors for the inspection of such objects for the presence of threat materials. Such a system is performing the measurement by using the NaI gamma detector and an API-120 neutron generator which could be rotated in order to maximize the inspected target volume. The neutron beam intensity during the 10-30 min. measurements is usually 1 x 10{sup 7} n/s in 4{pi}. In this report the experimental results for some of commonly found objects containing TNT explosive or its simulant are presented. The measured gamma spectra are dominant by C, O and Fe peaks enabling the determination of the presence of explosives inside the ammunition shell. Parameters influencing the C/O ratio are discussed in some details. (authors)

Valkovic, V. [A.C.T.d.o.o., Prilesje 4, Zagreb (Croatia); Sudac, D.; Obhodas, J. [Dept. of Experimental Physics, Inst. Ruder Boskovic, Zagreb (Croatia); Matika, D. [Inst. for Researches and Development of Defense Systems, Zagreb (Croatia); Kollar, R. [A.C.T.d.o.o., Prilesje 4, Zagreb (Croatia); Nad, K.; Orlic, Z. [Dept. of Experimental Physics, Inst. Ruder Boskovic, Zagreb (Croatia)

2011-07-01T23:59:59.000Z

143

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium was established in 1999 to assemble leaders in gas hydrates research. The group is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently received increased attention and the group of researchers working on the station has expanded to include several microbial biologists. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments are planned for fall 2005 and center about the use of the vessel M/V Ocean Quest and its two manned submersibles. The subs will be used to effect bottom surveys, emplace sensors and sea floor experiments and make connections between sensor data loggers and the integrated data power unit (IDP). Station/observatory completion is anticipated for 2007 following the construction, testing and deployment of the horizontal line arrays, not yet funded. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA).

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

2006-03-01T23:59:59.000Z

144

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION P  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-06NT42877 Semiannual Progress Report HYDRATE RESEARCH ACTIVITIES THAT BOTH SUPPORT AND DERIVE FROM THE MONITORING STATION/SEA-FLOOR OBSERVATORY, MISSISSIPPI CANYON 118, NORTHERN GULF OF MEXICO Submitted by: CENTER FOR MARINE RESOURCES AND ENVIRONMENTAL TECHNOLOGY 111 BREVARD HALL, UNIVERSITY, MS 38677 Principal Author: Carol Lutken, PI Prepared for: United States Department of Energy National Energy Technology Laboratory August, 2011 Office of Fossil Energy ii HYDRATE RESEARCH ACTIVITIES THAT BOTH SUPPORT AND DERIVE FROM THE MONITORING STATION/SEA-FLOOR OBSERVATORY, MISSISSIPPI CANYON 118, NORTHERN GULF OF MEXICO SEMIANNUAL PROGRESS REPORT 1 JANUARY, 2011 THROUGH 30 JUNE, 2011

145

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION P  

NLE Websites -- All DOE Office Websites (Extended Search)

2NT00041628 2NT00041628 Final Report Covering research during the period 1 June, 2002 through 30 September, 2008 Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project Submitted by: University of Mississippi Center for Marine Resources and Environmental Technology 310 Lester Hall, University, MS 38677 Principal Authors: J. Robert Woolsey, Thomas M. McGee, Carol B. Lutken Prepared for: United States Department of Energy National Energy Technology Laboratory January, 2009 Office of Fossil Energy ii SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT DOE Award Number DE-FC26-02NT41628 FINAL TECHNICAL REPORT

146

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect

A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has already succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to innovate research methods and construct necessary instrumentation. As funding for this project, scheduled to commence December 1, 2002, had only been in place for less than half of the reporting period, project progress has been less than for other reporting periods. Nevertheless, significant progress has been made and several cruises are planned for the summer/fall of 2003 to test equipment, techniques and compatibility of systems. En route to reaching the primary goal of the Consortium, the establishment of a monitoring station on the sea floor, the following achievements have been made: (1) Progress on the vertical line array (VLA) of sensors: Software and hardware upgrades to the data logger for the prototype vertical line array, including enhanced programmable gains, increased sampling rates, improved surface communications, Cabling upgrade to allow installation of positioning sensors, Incorporation of capability to map the bottom location of the VLA, Improvements in timing issues for data recording. (2) Sea Floor Probe: The Sea Floor Probe and its delivery system, the Multipurpose sled have been completed; The probe has been modified to penetrate the <1m blanket of hemipelagic ooze at the water/sea floor interface to provide the necessary coupling of the accelerometer with the denser underlying sediments. (3) Electromagnetic bubble detector and counter: Initial tests performed with standard conductivity sensors detected nonconductive objects as small as .6mm, a very encouraging result, Components for the prototype are being assembled, including a dedicated microcomputer to control power, readout and logging of the data, all at an acceptable speed. (4) Acoustic Systems for Monitoring Gas Hydrates: Video recordings of bubbles emitted from a seep in Mississippi Canyon have been made from a submersible dive and the bubbles analyzed with respect to their size, number, and rise rate; these measurements will be used to determine the parameters to build the system capable of measuring gas escaping at the site of the monitoring station; A scattering system and bubble-producing device, being assembled at USM, will be tested in the next two months, and the results compared to a physical scattering model. (5) Mid-Infrared Sensor for Continuous Methane Monitoring: Progress has been made toward minimizing system maintenance through increased capacity and operational longevity, Miniaturization of many components of the sensor systems has been completed, A software package has been designed especially for the MIR sensor data evaluation, Custom electronics have been developed that reduce power consumption and, therefore, increase the length of time the system can remain operational. (6) Seismo-acoustic characterization of sea floor properties and processes at the hydrate monitoring station. (7) Adaptation of the acoustic-logging device, developed as part of the European Union-funded research project, Sub-Gate, for monitoring temporal variations in seabe

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

2004-03-01T23:59:59.000Z

147

Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 (MC118) in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. These delays caused scheduling and deployments difficulties but many sensors and instruments were completed during this period. Software has been written that will accommodate the data that the station retrieves, when it begins to be delivered. In addition, new seismic data processing software has been written to treat the peculiar data to be received by the vertical line array (VLA) and additional software has been developed that will address the horizontal line array (HLA) data. These packages have been tested on data from the test deployments of the VLA and on data from other, similar, areas of the Gulf (in the case of the HLA software). The CMRET has conducted one very significant research cruise during this reporting period: a March cruise to perform sea trials of the Station Service Device (SSD), the custom Remotely Operated Vehicle (ROV) built to perform several of the unique functions required for the observatory to become fully operational. March's efforts included test deployments of the SSD and Florida Southern University's mass spectrometer designed to measure hydrocarbon gases in the water column and The University of Georgia's microbial collector. The University of Georgia's rotational sea-floor camera was retrieved as was Specialty Devices storm monitor array. The former was deployed in September and the latter in June, 2006. Both were retrieved by acoustic release from a dispensable weight. Cruise participants also went prepared to recover any and all instruments left on the sea-floor during the September Johnson SeaLink submersible cruise. One of the pore-fluid samplers, a small ''peeper'' was retrieved successfully and in fine condition. Other instrumentation was left on the sea-floor until modifications of the SSD are complete and a return cruise is accomplished.

J. Robert Woolsey; Thomas M. McGee; Carol Blanton Lutken; Elizabeth Stidham

2007-03-31T23:59:59.000Z

148

Numerical analysis of heat transfer by conduction and natural convection in loose-fill fiberglass insulation--effects of convection on thermal performance  

SciTech Connect

A two-dimensional code for solving equations of convective heat transfer in porous media is used to analyze heat transfer by conduction and convection in the attic insulation configuration. The particular cases treated correspond to loose-fill fiberglass insulation, which is characterized by high porosity and air permeability. The effects of natural convection on the thermal performance of the insulation are analyzed for various densities, permeabilities, and thicknesses of insulation. With convection increasing the total heat transfer through the insulation, the thermal resistance was found to decrease as the temperature difference across the insulating material increases. The predicted results for the thermal resistance are compared with data obtained in the large-scale climate simulator at the Roof Research Center using the attic test module, where the same phenomenon has already been observed. The way the wood joists within the insulation influence the start of convection is studied for differing thermophysical and dynamic properties of the insulating material. The presence of wood joists induces convection at a lower temperature difference.

Delmas, A.A.; Wilkes, K.E.

1992-04-01T23:59:59.000Z

149

Fatigue analysis of stringer to floor beam connections in through plate girder and through truss railroad bridges  

E-Print Network (OSTI)

The objective of this thesis is to determine fatigue stresses in the stringer to floor beam connections of through plate girder (TPG) and through truss (TT) bridges in order to predict failure. Field observations by the Association of American Railroads (AAR) indicate failure in the stringer to floor beam connections of both the TPG and TT bridges, although a higher frequency of failure appears in the TT bridges. Accordingly, this study includes 1) creating analytical models for the TPG and TT bridges, 2) determining member internal forces, 3) developing force envelopes, 4) determining maximum internal stresses, and 5) comparing these results to field observations. First, bridge models for the TPG and TT bridge were assembled using a finite element analysis program in order to evaluate member internal forces. The TPG bridge model was taken from the plans of an existing bridge designed in 1912 and located near TX Highway 21 between College Station and Caldwell, TX. The TT bridge model was taken from the plans of an existing bridge designed in 1902 in the Chicago Office of the American Bridge Company. Next, a finite element analysis was conducted to obtain member internal forces. The resulting forces were compiled to create axial load, shear force, and moment envelopes. These envelopes were constructed to provide the magnitudes and location of the maximum forces required for analysis. These forces were also used to develop maximum tensile stresses for the rivets in the floor beams. After examining the results, the following conclusions were drawn. Axial load was predicted to be a source of higher failure frequency within TT bridges versus TPG bridges. Lower chord deformation in the TT bridge caused elongation of the floor system that, in turn, produced axial loads in the bridge members. The TPG bridge members, however, carried no axial load. Shear force was not predicted to be a contributing factor for increased connection failure rates in the TT bridges as compared to the TPG bridges, but bending moment was. This result, however, was sensitive to the degree of fixity in the stringer to floor beam connection.

Evans, Leslie Virginia

1999-01-01T23:59:59.000Z

150

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort was made to locate and retain the services of a suitable vessel and submersibles or Remotely Operated Vehicles (ROVs) following the storms and the loss of the contracted vessel, the M/V Ocean Quest and its two submersibles, but these efforts have been fruitless due to the demand for these resources in the tremendous recovery effort being made in the Gulf area. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA).

J. Robert Woolsey; Tom McGee; Carol Lutken; Elizabeth Stidham

2006-06-01T23:59:59.000Z

151

DIY FLOATING FLOOR CHECKLIST The information below is general in nature and will only give you a basic guide to the process involved.  

E-Print Network (OSTI)

DIY FLOATING FLOOR CHECKLIST The information below is general in nature and will only give you Takeextracarewhenusingpowertools Formoredetailedtipshavealookatour: · General safety tips http://news.domain.com.au/domain/ diy/diy

Peters, Richard

152

Walking on daylight : the application of translucent floor systems as a means of achieving natural daylighting in mid and low rise architecture  

E-Print Network (OSTI)

This thesis is concerned with the introduction of quality daylight to buildings by means of translucency in the horizontal planes or floors within the building. Since people began to build, the concept of translucency in ...

Widder, James

1985-01-01T23:59:59.000Z

153

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

Science Conference Proceedings (OSTI)

A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has already succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to innovate research methods and construct necessary instrumentation. As funding for this project, scheduled to commence December 1, 2002, had only been in place for less than half of the reporting period, project progress has been less than for other reporting periods. Nevertheless, significant progress has been made and several cruises are planned for the summer/fall of 2003 to test equipment, techniques and compatibility of systems. En route to reaching the primary goal of the Consortium, the establishment of a monitoring station on the sea floor, the following achievements have been made: (1) Progress on the vertical line array (VLA) of sensors: Software and hardware upgrades to the data logger for the prototype vertical line array, including enhanced programmable gains, increased sampling rates, improved surface communications, Cabling upgrade to allow installation of positioning sensors, Incorporation of capability to map the bottom location of the VLA, Improvements in timing issues for data recording. (2) Sea Floor Probe: The Sea Floor Probe and its delivery system, the Multipurpose sled have been completed; The probe has been modified to penetrate the Systems for Monitoring Gas Hydrates: Video recordings of bubbles emitted from a seep in Mississippi Canyon have been made from a submersible dive and the bubbles analyzed with respect to their size, number, and rise rate; these measurements will be used to determine the parameters to build the system capable of measuring gas escaping at the site of the monitoring station; A scattering system and bubble-producing device, being assembled at USM, will be tested in the next two months, and the results compared to a physical scattering model. (5) Mid-Infrared Sensor for Continuous Methane Monitoring: Progress has been made toward minimizing system maintenance through increased capacity and operational longevity, Miniaturization of many components of the sensor systems has been completed, A software package has been designed especially for the MIR sensor data evaluation, Custom electronics have been developed that reduce power consumption and, therefore, increase the length of time the system can remain operational. (6) Seismo-acoustic characterization of sea floor properties and processes at the hydrate monitoring station. (7) Adaptation of the acoustic-logging device, developed as part of the European Union-funded research project, Sub-Gate, for monitoring temporal variations in seabe

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

2004-03-01T23:59:59.000Z

154

Energy impacts of attic duct retrofits in Sacramento houses  

Science Conference Proceedings (OSTI)

Inefficiencies in air distribution systems have been identified as a major source of energy loss in US sunbelt homes. Research indicates that approximately 30--40% of the thermal energy delivered to the ducts passing through unconditioned spaces is lost through air leakage and conduction through the duct walls. Field experiments over the past several years have well documented the expected levels of air leakage and the extent to which that leakage can be reduced by retrofit. Energy savings have been documented to a more limited extent, based upon a few field studies and simulation model results. Simulations have also indicated energy loss through ducts during the off cycle caused by thermosiphon-induced flows, however this effect had not been confirmed experimentally. A field study has been initiated to separately measure the impacts of combined duct leak sealing and insulation retrofits, and to optimize a retrofit protocol for utility DSM programs. This paper describes preliminary results from 6 winter and 5 summer season houses. These retrofits cut overall duct leakage area approximately 64%, which translated to a reduction in envelope ELA of approximately 14%. Wrapping ducts and plenums with R-6 insulation translated to a reduction in average flow-weighted conduction losses of 33%. These experiments also confirmed the appropriateness of using duct ELA and operating pressures to estimate leakage flows for the population, but indicated significant variations between these estimates and measured flows on a house by house basis. In addition, these experiments provided a confirmation of the predicted thermosiphon flows, both under winter and summer conditions. Finally, average material costs were approximately 20% of the total retrofit costs, and estimates of labor required for retrofits based upon these experiments were: 0.04 person-hrs/cm{sup 2} of duct sealed and 0.21 person-hrs/m{sup 2} of duct insulated.

Jump, D.; Modera, M. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

1994-08-01T23:59:59.000Z

155

Moisture Measurements in Residential Attics Containing Radiant Barriers  

Science Conference Proceedings (OSTI)

Horizontal radiant barriers, rigorously tested during a typical Tennessee winter, allowed moisture to dissipate on a diurnal cycle and caused no structural, wet insulation, or stained-ceiling problems.

1989-08-21T23:59:59.000Z

156

DOE Solar Decathlon: Santa Clara University  

NLE Websites -- All DOE Office Websites (Extended Search)

Santa Clara University Santa Clara University Radiant House sd13.scu.edu Radiant House is driven by three E's: efficiency, economics, and elegance. The house incorporates bamboo and takes it to a new level by using the sustainable material for structural wall and joist systems. Radiant House is an elegant, adaptable, and affordable house with a versatile great room, a large deck and patio area, and clean separation between private and public spaces. Design Philosophy Radiant House was guided by the belief that sustainable living can be affordable, appealing, and accessible to everyone. With an open floor plan and ramps leading to and from the house, Radiant House is fully accessible and features spacious rooms and an adaptable floor plan and furnishings. Features A structural wall and joist system is composed of a blend of

157

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

Science Conference Proceedings (OSTI)

A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Noteworthy achievements one year into the extended life of this cooperative agreement include: (1) Progress on the vertical line array (VLA) of sensors: (1a) Repair attempts of the VLA cable damaged in the October >1000m water depth deployment failed; a new design has been tested successfully. (1b) The acoustic modem damaged in the October deployment was repaired successfully. (1c) Additional acoustic modems with greater depth rating and the appropriate surface communications units have been purchased. (1d) The VLA computer system is being modified for real time communications to the surface vessel using radio telemetry and fiber optic cable. (1e) Positioning sensors--including compass and tilt sensors--were completed and tested. (1f) One of the VLAs has been redesigned to collect near sea floor geochemical data. (2) Progress on the Sea Floor Probe: (2a) With the Consortium's decision to divorce its activities from those of the Joint Industries Program (JIP), due to the JIP's selection of a site in 1300m of water, the Sea Floor Probe (SFP) system was revived as a means to emplace arrays in the shallow subsurface until arrangements can be made for boreholes at >1000m water depth. (2b) The SFP penetrometer has been designed and construction begun. (2c) The SFP geophysical and pore-fluid probes have been designed. (3) Progress on the Acoustic Systems for Monitoring Gas Hydrates: (3a) Video recordings of bubbles emitted from a seep in Mississippi Canyon have been analyzed for effects of currents and temperature changes. (3b) Several acoustic monitoring system concepts have been evaluated for their appropriateness to MC118, i.e., on the deep sea floor. (3c) A mock-up system was built but was rejected as too impractical for deployment on the sea floor. (4) Progress on the Electromagnetic Bubble Detector and Counter: (4a) Laboratory tests were performed using bubbles of different sizes in waters of different salinities to test the sensitivity of the. Differences were detected satisfactorily. (4b) The system was field tested, first at the dock and then at the shallow water test site at Cape Lookout Bight where methane bubbles from the sea floor, naturally, in 10m water depth. The system successfully detected peaks in bubbling as spike decreases in conductivity. (5) Progress on the Mid-Infrared Sensor for Continuous Methane Monitoring: (5a) Modeling and design of an optics platform complementary to the constructed electronics platform for successful incorporation into ''sphereIR'' continues. AutoCAD design and manual construction of mounting pieces for major optical components have been completed. (5b) Initial design concepts for IR-ATR sensor probe geometries have been established and evaluated. Initial evaluations of a horizontal ATR (HATR) sensing probe with fiber optic guiding light have been performed and validate the design concept as a potentially viable deep sea sensing pr

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

2005-11-01T23:59:59.000Z

158

Floor Sweeper-Scrubbers: Demonstration of Advanced Lead-Acid Batteries and High-Power Charging in Commercial Warehouse Operations  

Science Conference Proceedings (OSTI)

Electric walk-behind and riding floor scrubbers are in widespread and growing use in the commercial and industrial building sectors. This demonstration indicates that the weight, bulk, and battery capacity of existing equipment could be significantly reduced in equipment used for certain "spot-cleaning" and other limited use duty-cycles. Further, results show that for sealed lead-acid batteries, recharge rates on the same order as discharge rates are sufficient for extending peak daily run-time to 200 pe...

2001-07-11T23:59:59.000Z

159

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The primary objective of the group has been to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently achieved reality via the National Institute for Undersea Science and Technology's (NIUST) solicitation for proposals for research to be conducted at the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, have had to be postponed and the use of the vessel M/V Ocean Quest and its two manned submersibles sacrificed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort is being made to locate and retain the services of a replacement vessel and submersibles or Remotely Operated Vehicles (ROVs) but these efforts have been fruitless due to the demand for these resources in the tremendous recovery effort being made in the Gulf area. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA). Subcontractors with FY03 funding fulfilled their technical reporting requirements in the previous report (41628R10). Only unresolved matching funds issues remain and will be addressed in the report of the University of Mississippi's Office of Research and Sponsored Programs.

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

2006-05-18T23:59:59.000Z

160

Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The CMRET has conducted several research cruises during this reporting period: one in April, one in June, one in September. April's effort was dedicated to surveying the mound at MC118 with the Surface-Source-Deep-Receiver (SSDR) seismic surveying system. This survey was completed in June and water column and bottom samples were collected via box coring. A microbial filtering system developed by Consortium participants at the University of Georgia was also deployed, run for {approx}12 hours and retrieved. The September cruise, designed to deploy, test, and in some cases recover, geochemical and microbial instruments and experiments took place aboard Harbor Branch's Seward Johnson and employed the Johnson SeaLink manned submersible. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA). Subcontractors with FY03 funding fulfilled their technical reporting requirements in a previously submitted report (41628R10). Only unresolved matching funds issues remain and will be addressed in the report of the University of Mississippi's Office of Research and Sponsored Programs. In addition, Barrodale Computing Services Ltd. (BCS) completed their work; their final report is the bulk of the semiannual report that precedes (abstract truncated)

Carol Lutken

2006-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Where radiant barriers really shine  

Science Conference Proceedings (OSTI)

Manufactures of radiant barrier materials claim their products significantly cut cooling costs by reducing summertime radiant heat gain through attics and ceilings. A new study confirms that radiant barriers can indeed conserve cooling energy. However, the study`s authors found that radiant barriers are much more effective at reducing energy losses from attic air conditioner duct runs than at directly lowering heat transfer through the attic floor into conditioned living space. Furthermore the study demonstrated that radiant barrier savings can be significant even in a new well-weatherized house and that these saving may justify specifying smaller capacity cooling systems. This article discusses the findings of the study.

Engel, R.

1996-07-01T23:59:59.000Z

162

Sampling and analysis plan for sludge located on the floor and in the pits of the 105-K basins  

Science Conference Proceedings (OSTI)

This Sampling and Analysis Plan (SAP) provides direction for the sampling of the sludge found on the floor and in the remote pits of the 105-K Basins to provide: (1) basic data for the sludges that have not been characterized to-date and (2) representative Sludge material for process tests to be made by the SNF Project/K Basins sludge treatment process subproject. The sampling equipment developed will remove representative samples of the radioactive sludge from underwater at the K Basins, depositing them in shielded containers for transport to the Hanford Site laboratories. Included in the present document is the basic background logic for selection of the samples to meet the requirements established in the Data Quality Objectives (DQO), HNF-2033, for this sampling activity. The present document also includes the laboratory analyses, methods, procedures, and reporting that will be required to meet the DQO.

BAKER, R.B.

1998-11-20T23:59:59.000Z

163

Investigation of the fire performance of building insulation in full-scale and laboratory fire tests  

SciTech Connect

Twenty-two insulations are exposed to fire tests including the 25 ft Tunnel test, the Attic Floor Radiant Panel test and actual fire conditions of a simulated attic configuration. The insulations consisted of a number of cellulose fiber insulations, utilizing various chemical treatments, glass fiber and mineral fiber insulations. The fire performance characteristics of the insulations were measured in each of the three test scenarios and the report compares their results.

Kleinfelder, W.A.

1984-04-01T23:59:59.000Z

164

Support of Gulf of Mexico Hydrate Research Consortium: Activities of Support Establishment of a Sea Floor Monitoring Station Project  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research that shared the need for a way to conduct investigations of gas hydrates and their stability zone in the Gulf of Mexico in situ on a more-or-less continuous basis. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (SFO) on the sea floor in the northern Gulf of Mexico, in an area where gas hydrates are known to be present at, or just below, the sea floor and to discover the configuration and composition of the subsurface pathways or 'plumbing' through which fluids migrate into and out of the hydrate stability zone (HSZ) to the sediment-water interface. Monitoring changes in this zone and linking them to coincident and perhaps consequent events at the seafloor and within the water column is the eventual goal of the Consortium. This mission includes investigations of the physical, chemical and biological components of the gas hydrate stability zone - the sea-floor/sediment-water interface, the near-sea-floor water column, and the shallow subsurface sediments. The eventual goal is to monitor changes in the hydrate stability zone over time. Establishment of the Consortium succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among those involved in gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative methods and construct necessary instrumentation. Following extensive investigation into candidate sites, Mississippi Canyon 118 (MC118) was chosen by consensus of the Consortium at their fall, 2004, meeting as the site most likely to satisfy all criteria established by the group. Much of the preliminary work preceding the establishment of the site - sensor development and testing, geophysical surveys, and laboratory studies - has been reported in agency documents including the Final Technical Report to DOE covering Cooperative Agreement DEFC26-00NT40920 and Semiannual Progress Reports for this award, DE-FC26-02NT41628. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in MC118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. SFO completion, now anticipated for 2009-10, has, therefore, been delayed. Although delays caused scheduling and deployment difficulties, many sensors and instruments were completed during this period. Software has been written that will accommodate the data that the station retrieves, when it begins to be delivered. In addition, new seismic data processing software has been written to treat the peculiar data to be received by the vertical line array (VLA) and additional software has been developed that will address the horizontal line array (HLA) data. These packages have been tested on data from the test deployments of the VLA and on data from other, similar, areas of the Gulf (in the case of the HLA software). During the life of this Cooperative Agreement (CA), the CMRET conducted many cruises. Early in the program these were executed primarily to survey potential sites and test sensors and equipment being developed for the SFO. When MC118 was established as the observatory site, subsequent cruises focused on this location. Beginning in 2005 and continuing to the present, 13 research cruises to MC118 have been conducted by the Consortium. During September, 2006, the Consortium was able to secure 8 days aboard the R/V Seward Johnson with submersible Johnson SeaLink, a critical chapter in the life of the Observatory project as important documentation, tests, recoveries and deployments were accomplished during this trip (log appended). Consortium members have participated materially in a number of additional cruises including several of the NIUST autonomous underwater vehicle (AUV), Ea

J. Robert Woolsey; Thomas McGee; Carol Lutken

2008-05-31T23:59:59.000Z

165

Results of the radiological survey at the former Herring-Hall-Marvin Safe Company (3rd floor), 1550 Grand Boulevard, Hamilton, Ohio (HO001)  

SciTech Connect

At the request of the US Department of Energy (DOE), a group from the Oak Ridge National Laboratory conducted a radiological survey at the former Herring-Hall-Marvin Safe Company (third floor), 1550 Grand Boulevard, Hamilton, Ohio (HO001) in August 1993. The purpose of the survey was to determine whether the property was contaminated with radioactive residues, principally {sup 238}U, derived from the former Manhattan Engineer District project. The survey included gamma scans; direct and transferable measurements of alpha, beta, and gamma radiation levels; and debris sampling for radionuclide analyses. Results of the survey demonstrated {sup 238}U surface contamination in excess of the DOE criteria for surface contamination. The third floor was generally contaminated over 25 percent of its area with isolated spots in the remaining area. Although three isolated spots of contamination were found in areas other than on the third floor (in the same southeastern comer of the facility), they were remediated by sampling. Based on the survey results, this site is recommended for remediation.

Murray, M.E.; Johnson, C.A.

1994-03-01T23:59:59.000Z

166

Exhibit Floor Plan  

Science Conference Proceedings (OSTI)

Jan 7, 2010 ... Techmo Car S.p.A. 310. APT Aluminium and Aluminium Journal. 601 ... Hydro Aluminium. 608. Outotec. 319. Hertwich Engineering. 612.

167

Exhibit Floor Plan  

Science Conference Proceedings (OSTI)

Jan 25, 2007 ... Tri State. Ref. SMV. Natl Elec. Carbon. Blasch. Carl Zeiss. Micro. Imaging. Mid- ... LP Royer ... New. Orleans. C&VB. Graphite. Machining. Xothermic. MetSoc ... York. Linings. Carl Zeiss. SMT. Darco. Southern. Bruno. Presezzi.

168

Exhibit Floor Plan  

Science Conference Proceedings (OSTI)

Feb 20, 2008 ... Industries. Bloom. Engr. Murlin. Chemical. North ... Ovens BV. SMV AS. HRV. Engr. AUMUND ... Industries. Parker. Hannifin. KBM. Affilips BV.

169

Exhibition Hall Floor Plan  

Science Conference Proceedings (OSTI)

Jan 13, 2005 ... Industry. 645. FEI. Cytec. Industries. ENERGOPROM. MAS Inc. Parker ... STAS. Thermal. Ceramics. Thermcon. Ovens. Thorpe. Technologies.

170

Exhibit Floor Plan - TMS  

Science Conference Proceedings (OSTI)

Manufacturing. Alum Times. LANL. Elsevier. Science. Holton. Process. Engineering. Resources. Norsmelt. Murlin Chem Kabert. Metallurg. Aluminium. Pechiney.

171

Taunton Municipal Lighting Plant - Residential and Non-Profit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Taunton Municipal Lighting Plant - Residential and Non-Profit Taunton Municipal Lighting Plant - Residential and Non-Profit Weatherization Program (Massachusetts) Taunton Municipal Lighting Plant - Residential and Non-Profit Weatherization Program (Massachusetts) < Back Eligibility Nonprofit Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Maximum Rebate General: $500 Each customer will be eligible for one rebate per the three year project window. Program Info Start Date 1/1/2012 Expiration Date 12/31/2012 State Massachusetts Program Type Utility Rebate Program Rebate Amount Up to 50% of total cost: Attic insulation Wall insulation Rim joist insulation Air-sealing measures Window treatments Pipe/duct insulation Provider Customer Care Taunton Municipal Lighting Plant (TMLP) offers the 'House N Home' Thermal

172

On the evolutionary conservation of hydrogen bonds made by buried polar amino acids: the hidden joists, braces and trusses of protein architecture  

E-Print Network (OSTI)

, 80#7;#7;profilin#7;1acf, 2acg, 1ypra, 1a0k, 1awia #7;110#7;#7;S-lectin#7;1hlca, 1slta, 1gana, 3gala, 1a3k #7;66#7;#7;serine proteinase - bacterial#7;2sfa, 2sga, 3sgbe, 1hpga, 2alp #7;18, 34, 67, 149#7;#7;soybean trypsin inhibitor (Kunitz)#7;1tie, 1wba... , 80#7;#7;profilin#7;1acf, 2acg, 1ypra, 1a0k, 1awia #7;110#7;#7;S-lectin#7;1hlca, 1slta, 1gana, 3gala, 1a3k #7;66#7;#7;serine proteinase - bacterial#7;2sfa, 2sga, 3sgbe, 1hpga, 2alp #7;18, 34, 67, 149#7;#7;soybean trypsin inhibitor (Kunitz)#7;1tie, 1wba...

Worth, Catherine L; Blundell, Tom L

2010-05-31T23:59:59.000Z

173

Neutron-induced prompt gamma activation analysis (PGAA) of metalsand non-metals in ocean floor geothermal vent-generated samples  

DOE Green Energy (OSTI)

Neutron-induced prompt gamma activation analysis (PGAA) hasbeen used to analyze ocean floor geothermal vent-generated samples thatare composed of mixed metal sulfides, silicates, and aluminosilicates.The modern application of the PGAA technique is discussed, and elementalanalytical results are given for 25 elements observed in the samples. Theelemental analysis of the samples is consistent with the expectedmineralogical compositions, and very consistent results are obtained forcomparable samples. Special sensitivity to trace quantities of hydrogen,boron, cadmium, dysprosium, gadolinium, and samarium isdiscussed.

Perry, D.L.; Firestone, R.B.; Molnar, G.L.; Revay, Zs.; Kasztovszky, Zs.; Gatti, R.C.; Wilde, P.

2002-12-05T23:59:59.000Z

174

Slum upgrading in India and Kenya: investigating the sustainability  

E-Print Network (OSTI)

and red-herring vendors in the front parlours, cobblers in the back; a bird-fancier in the first floor, three families on the second, starvation in the attics, Irishmen in the passage, a musician in the front kitchen, a charwoman and five hungry...

Cronin, Victoria Louise Molly

2012-04-10T23:59:59.000Z

175

Avista Utilities (Gas) - Prescriptive Commercial Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1,000 - 3,000 Ovens: 800 - 2,500 Griddle: 200 Dishwashers: 500 - 2,000 Attic Insulation: 0.17sq ft - 0.45sq ft Wall Insulation: 0.75sq ft Floor Insulation: 0.63 sq...

176

ARRA Proposed Award: The Affordable Multifamily Retrofit Initiative (the Initiative)  

E-Print Network (OSTI)

but not limited to: attic, wall and floor insulation; building envelope sealing; duct sealing and repair; Energy,993,029 Leverage Funding: $6,120,000 Retrofit Target: 26 Multifamily Buildings / 1600 Multifamily Units; radiant barriers; EnergyStar window replacement; domestic hot water replacement, insulation

177

Engineering Evaluation Report on K-311-1 Floor Subsidence (2008 Annual Report) at the East Tennessee Technology Park, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

The purpose of this task is to evaluate the effect of floor settlement on building structure, piping, and equipment foundations between column lines 1 and 2 and B and K of Bldg. K-311-1 (see Fig. A-1 in Appendix A) at East Tennessee Technology Park (ETTP), Oak Ridge, Tennessee. Revision 0 of this document covers the 2005 annual inspection. Revision 1 addresses the 2006 annual inspection, Revision 2 addresses the 2007 annual inspection, and Revision 3 covers the 2008 annual inspection, as indicated by the changed report title. A civil survey and visual inspection were performed. Only a representative number of points were measured during the 2008 survey. The exact location of a number of survey points in Table A-1 could not be accurately determined in the 2008 survey since these points had not been spray painted since 2003. The points measured are deemed adequate to support the conclusions of this report. Based on the survey and observations, there has been no appreciable change in the condition of the unit since the 2007 inspection. The subsidence of the floor presents concerns to the building structure due to the possible indeterminate load on the pipe gallery framing. Prior to demolition activities that involve the piping or removal of the equipment, such as vent, purge and drain and foaming, engineering involvement in the planning is necessary. The piping connected to the equipment is under stress, and actions should be implemented to relieve this stress prior to disturbing any of the equipment or associated piping. In addition, the load on the pipe gallery framing needs to be relieved prior to any activities taking place in the pipe gallery. Access to this area and the pipe gallery is not allowed until the stress is released.

Knott R.B.

2008-11-13T23:59:59.000Z

178

DTE Energy (Gas) - Residential Energy Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DTE Energy (Gas) - Residential Energy Efficiency Program DTE Energy (Gas) - Residential Energy Efficiency Program DTE Energy (Gas) - Residential Energy Efficiency Program < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Water Heating Windows, Doors, & Skylights Cooling Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Air Sealing: up to $150 Floor Insulation: $50 - $100 Bandjoist Insulation: $50 - $100 Above Grade Wall/Knee Wall Insulation: $250 Crawl Space/Wall/Band Joist Insulation: $100 Ceiling Insulation: $125 - $250 Window Replacement: $30/window; $60/picture window or sliding glass door Programmable Thermostat: $10-$20

179

PowerChoice Residential Customer Response to TOU Rates  

E-Print Network (OSTI)

Reflective window coating Radiant barrier in attic Plantedwindow coating (10) Radiant barrier in attic (11) Planted

Peters, Jane S.

2010-01-01T23:59:59.000Z

180

Advanced House Framing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced House Framing Advanced House Framing Advanced House Framing April 13, 2012 - 7:57pm Addthis Two-story home using advanced framing techniques. Two-story home using advanced framing techniques. Advanced house framing means materials, labor, and heating and cooling cost savings because the approach: Uses less lumber and generates less waste than typical framing methods. Increases energy efficiency by replacing lumber with insulation material, resulting in a higher whole-wall R-value through reduced thermal bridging and increased insulation. How does it work? Advanced framing works structurally by aligning framing members directly over each other to transfer the load from roof trusses or rafters to second floor wall studs, to floor joists, to first floor studs to the foundation,

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Measure Guideline: Implementing a Plenum Truss for a Compact Air Distribution System  

SciTech Connect

This Measure Guideline presents the steps to implement a compact duct system inside an attic bulkhead (plenum truss) of a one-story, slab-on-grade (SOG) home. In a compact duct design, ductwork runs are reduced in length to yield a smaller and more compact duct system. Less energy will be lost through ductwork if the ducts are contained within the thermal enclosure of the house. These measures are intended for the production builder working to meet the 2012 International Energy Conservation Code (IECC) requirements and keep the ductwork within the thermal enclosure of the house. This measure of bringing the heating, ventilation and air conditioning (HVAC) equipment and ductwork within the thermal enclosure of the house is appropriate for the builder wishing to avoid cathedralizing the insulation in the attic space (i.e., locating it at the underside of the roof deck rather than along the attic floor) or adding dropped soffits.

Burdick, A.

2013-10-01T23:59:59.000Z

182

Roof-and-attic system delivers year-round efficiency | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Center OLCFOak Ridge Leadership Computing Facility SNSSpallation Neutron Source Science & Discovery Advanced Materials Clean Energy National Security Neutron Science Nuclear...

183

Unvented Attic Increases Energy Efficiency and Reduces Duct Losses - Sun Lake at Banning, California  

SciTech Connect

New houses in the Sun Lakes at Banning subdivision are designed by Pulte Homes with technical support from the Building Science Consortium as part of the U.S. Department of Energy's Building America Program. These homes save their homeowners money by applying the principles of ''whole-building'' design, which considers the house as a complete system instead of separate components.

Anderson, R.; Wells, N.

2001-09-05T23:59:59.000Z

184

Field measurement of the interactions between heat pumps and attic duct systems in residential buildings  

SciTech Connect

Research efforts to improve residential heat-pump performance have tended to focus on laboratory and theoretical studies of the machine itself, with some limited field research having been focused on in-situ performance and installation issues. One issue that has received surprisingly little attention is the interaction between the heat pump and the duct system to which it is connected. This paper presents the results of a field study that addresses this interaction. Field performance measurements before and after sealing and insulating the duct systems were made on three heat pumps. From the pre-retrofit data it was found that reductions in heat-pump capacity due to low outdoor temperatures and/or coil frosting are accompanied by lower duct-system energy delivery efficiencies. The conduction loss reductions, and thus the delivery temperature improvements, due to adding duct insulation were found to vary widely depending on the length of the particular duct section, the thermal mass of that duct section, and the cycling characteristics of the heat-pump. In addition, it was found that the use of strip-heat back-up decreased after the retrofits, and that heat-pump cycling increased dramatically after the retrofits, which respectively increase and decrease savings due to the retrofits. Finally, normalized energy use for the three systems which were operated consistently pre- and post-retrofit showed an average reduction of 19% after retrofit, which corresponds to a chance in overall distribution-system efficiency of 24%.

Modera, M.P.; Jump, D.A. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

1994-11-01T23:59:59.000Z

185

Roof-and-attic system delivers year-round efficiency | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

at ORNL improves efficiency using controls for radiation, convection, and insulation, including a passive ventilation system that pulls air from the underbelly of the...

186

Building America Top Innovations Hall of Fame Profile … Attic Air Sealing Guidelines  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Terminology Terminology Air Barrier Material (ABM) --- A does not allow air to pass throu plywood/OSB, foam board, duc lumber. Backing --- Any material that s be sprayed so as to provide an glass batts. Baffle (B) --- Manufactured chu direct ventilation air flow up an foam board or cardboard. Thermal Blocking --- Any rigid heat sources like chimneys or metal and gypsum board. Fasteners --- Staples, screws o

187

Exhibit Floor Plan (PDF) - TMS  

Science Conference Proceedings (OSTI)

Jan 27, 2011 ... Exxon Mobil Oil Corp. Fives Solios. FL Smidth. GE Global Research. Graftech. Harbin Dongsheng. Harbison-Walker Refractories. Hatch.

188

1 Argentina Australia & New Zealand Education Argentina Buenos Aires Paraguay 647 piso 4 Of. 17 & 18 C1057AAG Buenos Aires +54 11 4311 9828 +54 11 4311 9828 arocha@australianzeducation.com 2 Australia IDP Education Australia Australia Sydney Ground Floor,  

E-Print Network (OSTI)

Ambala Plot No10, 2nd Floor Opp. Komal Petrol Station Old Session Court Road, Jain Nagar Ambala City,+91 171 6451757 ambala.planet@gmail.com 129 India Planet Education India Lucknow Mark Education 3rd

University of Technology, Sydney

189

Case study field evaluation of a systems approach to retrofitting a residential HVAC system  

E-Print Network (OSTI)

facing windows Radiant barrier in attic, low absorptivityfacing windows Radiant barrier in attic, low absorptivityfacing windows Radiant barrier in attic, low absorptivity

Walker, Iain S.; McWiliams, Jennifer A.; Konopacki, Steven J.

2003-01-01T23:59:59.000Z

190

Tips: Insulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Insulation Tips: Insulation May 2, 2012 - 6:03pm Addthis Where to Insulate. Adding insulation in the areas shown here may be the best way to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or basement insulation. Where to Insulate. Adding insulation in the areas shown here may be the best way to improve your home's energy efficiency. Insulate either the attic floor or under the roof. Check with a contractor about crawl space or basement insulation. Insulation is made from a variety of materials, and it usually comes in four types: rolls and batts, loose-fill, rigid foam, and foam-in-place. Rolls and Batts Rolls and batts -- or blankets -- are flexible products made from mineral

191

Opportunities for Energy Conservation and Improved Comfort From Wind Washing Retrofits in Two-Story Homes - Part I  

E-Print Network (OSTI)

Wind washing is a general term referring to diminished thermal control caused by air movement over or through a thermal barrier. The primary focus of this paper is towards a specific type of wind washing where wind can push attic air into the floor cavity between first and second stories of the home through ineffective (or missing) air barriers separating attic space from the floor cavity. A second type of wind washing studied in this project involved insulation batts on knee walls where space between the batts and the wall board allowed air movement against the gypsum wall board. During hot weather, the first type of wind washing pushes hot air into the floor cavity (between the first and second stories) thereby heating ceiling, floor, and interior wall surfaces (see Figures 1 and 2). Condensation may occur on cold supply duct surfaces within the floor cavity resulting in ceiling moisture damage. In cold climates, cold air from wind washing can chill surfaces within the interior floor space and result in frozen water pipes. Through the summer of 2009, a field study tested thirty-two two-story homes and found significant wind washing potential in 40% of the homes. Part I of this paper will highlight the evaluation methods used and the extent of wind washing found in this study. Repairs and energy monitoring were completed in six of these homes to evaluate retrofit methods and cost effectiveness of retrofit solutions. These results are discussed in Part II of this paper.

Withers, C. R. Jr.; Cummings, J. B.

2010-08-01T23:59:59.000Z

192

Polybrominated dibenzo-p-dioxins/dibenzofurans and polybrominated diphenyl ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue from an electronic waste recycling facility and in soils from a chemical industrial complex in eastern China  

SciTech Connect

In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust, soil, and leaves (of plants on the grounds of the facility) from a large-scale electronic wastes (e-waste) recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18,500 pg/g dw for electronic shredder residues, 716-80,0000 pg/g dw for soil samples, and 89,600-14,3000 pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of {Sigma}PBDD/Fs and {Sigma}PBDEs (r = 0.769, p < 0.01) and between SPBDD/Fs and the previously reported SPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by PBDD/Fs via soil/dust ingestion and dermal exposures in e-waste recycling facilities were higher than the intakes of TEQs contributed by PCDD/Fs, calculated in our previous study. 45 refs., 2 figs., 2 tabs.

Jing Ma; Rudolf Addink; Sehun Yun; Jinping Cheng; Wenhua Wang; Kurunthachalam Kannan [Shanghai Jiao Tong University, Shanghai (China). School of Environmental Science and Engineering

2009-10-01T23:59:59.000Z

193

Plancher solaire direct mixte \\`a double r\\'eseau en habitat bioclimatique - Conception et bilan thermique r\\'eel. Double direct solar floor heating in boclimatic habitation - Design and real energetical balance  

E-Print Network (OSTI)

This study presents a new direct solar floor heating technique with double heating network wich allows simultaneous use of solar and supply energy. Its main purpose is to store and to diffuse the whole available solar energy while regulating supply energy by physical means without using computer controlled technology. This solar system has been tested in real user conditions inside a bioclimatic house to study the interaction of non-inertial and passive walls on the solar productivity. Daily, monthly and annual energy balances were drawn up over three years and completed by real-time measurements of several physical on-site parameters. As a result the expected properties of this technique were improved. The use of per-hour solar productivity, saved primary energy and corrected solar covering ratio is recommended to analyze the performances of this plant and to allow more refined comparisons with other solar systems

De Larochelambert, Thierry

2009-01-01T23:59:59.000Z

194

Home Energy Article: A Systems Approach to Retrofitting Residential HVAC Systems  

E-Print Network (OSTI)

facing windows Radiant barrier in attic, low absorbtivityto reduce solar loads Add radiant barrier in attic, or low

McWilliams, Jennifer A.; Walker, Iain S.

2005-01-01T23:59:59.000Z

195

A systems approach to retrofitting residential HVAC systems  

E-Print Network (OSTI)

facing windows Radiant barrier in attic, low absorbtivityto reduce solar loads Add radiant barrier in attic, or low

McWilliams, J.A.; Walker, I.S.

2004-01-01T23:59:59.000Z

196

1. Large Scale Climate Simulator (Building 3144) The LSCS tests roof and/or attic assemblies weighing up to  

E-Print Network (OSTI)

) The RGHB performs advanced thermal testing of full-size wall/fenestration systems. It accommodates systems content in materials, vapor pressure, temperature, heat flux, humidity, and condensation. 7. MAXLAB MAXLAB. It is adequate for testing in most residential and light commercial buildings. 12. Duct Blaster A Duct Blaster

Oak Ridge National Laboratory

197

Cowlitz County PUD - Residential Weatherization Plus Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cowlitz County PUD - Residential Weatherization Plus Program Cowlitz County PUD - Residential Weatherization Plus Program Cowlitz County PUD - Residential Weatherization Plus Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Windows, Doors, & Skylights Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Site-Built Home Attic Insulation, existing below R-19: $0.70/sq. ft. Attic Insulation, existing R-19 or above: $0.40/sq. ft. Floor Insulation: $0.40/sq. ft. Wall Insulation (blown in): $0.70/sq. ft. Knee Wall Insulation (batts): $0.25/sq. ft. Replacement Windows: $6.00/sq. ft.

198

Tips: Air Ducts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Ducts Air Ducts Tips: Air Ducts June 24, 2013 - 7:23pm Addthis Air Ducts: Out of Sight, Out of Mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy and money. Air Ducts: Out of Sight, Out of Mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy and money. Your air ducts are one of the most important systems in your home, and if the ducts are poorly sealed or insulated they are likely contributing to higher energy bills. Your home's duct system is a branching network of tubes in the walls, floors, and ceilings; it carries the air from your home's furnace and central air conditioner to each room. Ducts are made of sheet metal, fiberglass, or other materials.

199

Missouri Gas Energy (MGE) - Home Performance with ENERGY STAR | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Missouri Gas Energy (MGE) - Home Performance with ENERGY STAR Missouri Gas Energy (MGE) - Home Performance with ENERGY STAR Missouri Gas Energy (MGE) - Home Performance with ENERGY STAR < Back Eligibility Construction Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Heating & Cooling Commercial Heating & Cooling Maximum Rebate Total Incentives: $600 ($1200 with KCP&L rebate) Wall Insulation: $600 Floor Insulation: $400 Attic Insulation: $500 Air Sealing: $400 Duct Sealing: $200 Window or Door: $400 Program Info Funding Source MGE State Missouri Program Type Utility Rebate Program Rebate Amount Single Family Energy Assessment: $400/unit Multi Family Energy Assessment: $200/unit Attic Insulation: $0.01-$0.02 x R-Value Added x sq. ft.

200

City of San Marcos - Energy Efficient Home Rebate Program (Texas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of San Marcos - Energy Efficient Home Rebate Program (Texas) City of San Marcos - Energy Efficient Home Rebate Program (Texas) City of San Marcos - Energy Efficient Home Rebate Program (Texas) < Back Eligibility Residential Savings Category Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Texas Program Type Utility Rebate Program Rebate Amount Air Conditioner SEER 14.5: $75/ton Air Conditioner SEER 15.0: $100/ton Air Conditioner SEER 16.0: $125/ton Air Conditioner SEER 17.0: $150/ton Heat Pump SEER 14.5: $100/ton Heat Pump SEER 15.0: $125/ton Heat Pump SEER 16.0: $150/ton Heat Pump SEER 17.0: $175/ton Attic Floor Insulation: (square feet of application area)x(R-value added)x(0.0075) Attic Spray Foam Insulation: (square feet of application area)x(R-value

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Solar heated building structure  

Science Conference Proceedings (OSTI)

A solar heated building structure comprises an exterior shell including side walls and a roof section with the major portion of the roof section comprised of light transmitting panels or panes of material to permit passage of sunlight into the attic section of the building structure. The structure is provided with a central vertical hollow support column containing liquid storage tanks for the circulation and collection of heated water from a flexible conduit system located on the floor of the attic compartment. The central column serves as a heating core for the structure and communicates by way of air conduits or ducts with the living areas of the structure. Fan means are provided for continuously or intermittently circulating air over the hot water storage tanks in the core to transfer heat therefrom and distribute the heated air into the living areas.

Rugenstein, R.W.

1980-03-11T23:59:59.000Z

202

Southwest Gas Corporation - Residential and Builder Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Gas Corporation - Residential and Builder Efficiency Southwest Gas Corporation - Residential and Builder Efficiency Rebate Program (Arizona) Southwest Gas Corporation - Residential and Builder Efficiency Rebate Program (Arizona) < Back Eligibility Construction Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Residential: 2 per household Program Info State Arizona Program Type Utility Rebate Program Rebate Amount Residential Natural Gas Tankless Water Heater: $450 Natural Gas Clothes Dryer: $30 Windows: $0.95/sq ft Attic Insulation: $0.15/sq ft Floor Insulation: $0.30/sq ft Builders Energy Star Certified Home: $450 Natural Gas Tankless Water Heater: $450 Attic Insulation: $0.15/sq ft

203

Floor-supply displacement ventilation system  

E-Print Network (OSTI)

Research on indoor environments has received more attention recently because reports of symptoms and other health complaints related to indoor environments have been increasing. Heating, ventilating, and air-conditioning ...

Kobayashi, Nobukazu, 1967-

2001-01-01T23:59:59.000Z

204

Hilton New Orleans Riverside Floor Plan - TMS  

Science Conference Proceedings (OSTI)

ONT ENTRANCE. THIRD LEVEL. Ascot. Belle Chasse. The Court Assembly. Durham. Elmwood. Jasperwood. Magnolia. Melrose. Napoleon Ballroom. Newberry.

205

Fire Resistance Tests of Floor Truss Systems  

Science Conference Proceedings (OSTI)

... Trade Center Disaster: The Con Ed Substation in World ... 4.1.1 Span of Test Assembly ... The Underwriters Laboratories of Canada fire testing facility in ...

206

Fire Resistance Testing of WTC Floor System  

Science Conference Proceedings (OSTI)

... NYC Building Code Provisions (Fire Resistance in hours) ... [1] Letter dated October 30, 1969 from Robert J. Linn (Manager, Project Planning, The ...

2010-05-28T23:59:59.000Z

207

Improving shop floor visualization and metrics  

E-Print Network (OSTI)

Within the Technical Operations division of Novartis Pharmaceuticals, there is an aggressive vision to be the "Toyota" of the Pharma Industry by 2010. To accomplish this, PharmOps Switzerland has embraced operational ...

Lawler, Maureen E. (Maureen Elizabeth)

2010-01-01T23:59:59.000Z

208

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

4 4 Ownership (1) Owned 54.9 104.5 40.3 78% Rented 77.4 71.7 28.4 22% Public Housing 75.7 62.7 28.7 2% Not Public Housing 77.7 73.0 28.4 19% 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008 2005 Residential Delivered Energy Consumption Intensities, by Ownership of Unit Per Square Per Household Per Household Percent of Foot (thousand Btu) (million Btu) Members (million Btu) Total Consumption

209

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

1 1 2005 Energy Expenditures per Household, by Housing Type and Square Footage ($2010) Per Household Single-Family 1.16 Detached 1.16 Attached 1.20 Multi-Family 1.66 2 to 4 units 1.90 5 or more units 1.53 Mobile Home 1.76 All Homes 1.12 Note(s): Source(s): 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-1 part1; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for

210

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

2 2 2005 Household Energy Expenditures, by Vintage ($2010) | Year | Prior to 1950 887 | 22% 1950 to 1969 771 | 22% 1970 to 1979 736 | 16% 1980 to 1989 741 | 16% 1990 to 1999 752 | 16% 2000 to 2005 777 | 9% | Average 780 | Total 100% Note(s): Source(s): 1.24 2,003 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008 for 2005 expenditures; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price inflators.

211

Avista Utilities (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Programs Avista Utilities (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Appliances & Electronics Water Heating Maximum Rebate Incentives should not exceed 50% of the actual measure cost Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Natural Gas Furnace/Boiler: $400 Water Heater: $30 Floor and Wall Insulation: $0.50/sq. ft. Attic and Ceiling Insulation: $0.25/sq. ft. ENERGY STAR rated homes: $650 - $900 Replacement of Electric Straight Resistance Space Heat: $750 Provider

212

Columbia Gas of Virginia - Home Savings Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia Gas of Virginia - Home Savings Rebate Program Columbia Gas of Virginia - Home Savings Rebate Program Columbia Gas of Virginia - Home Savings Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info State Virginia Program Type Utility Rebate Program Rebate Amount Energy Star Gas Storage Water Heater: $50 Energy Star Gas Tankless Water Heater: $300 High Efficiency Gas Furnace: $300 High Efficiency Windows (Replacement): $1/sq. ft. Attic and Floor Insulation (Replacement): $0.30/sq. ft. Duct Insulation (Replacement): $200 - $250/site Provider Columbia Gas of Virginia

213

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs (Idaho) Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs (Idaho) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Incentives should not exceed 50% of the actual measure cost. Program Info State Idaho Program Type Utility Rebate Program Rebate Amount Replacement of Electric Straight Resistance: $750 Air Source Heat Pump: $100 Variable Speed Motor: $100 Refrigerator/Freezer Recycling: $30 Water Heater: $30 Floor and Wall Insulation: $0.50/sq. ft. Attic and Ceiling Insulation: $0.25/sq. ft.

214

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Incentives will not exceed 50% of the actual measure cost Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $100 Variable Speed Motor: $100 Water Heater: $30 Replacement of Electric Straight Resistance: $750 Floor and Wall Insulation: $0.50/sq. ft. Attic and Ceiling Insulation: $0.25/sq. ft.

215

Coweta-Fayette EMC - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coweta-Fayette EMC - Residential Energy Efficiency Rebate Program Coweta-Fayette EMC - Residential Energy Efficiency Rebate Program Coweta-Fayette EMC - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Double-Pane/Storm Windows: $500 Programmable Thermostat: $50 per home Program Info State Georgia Program Type Utility Rebate Program Rebate Amount Existing Homes Electric Heat Pumps: $150 - $300 Dual Fuel Heat Pumps: $200 Geothermal Heat Pumps: $1000 Water Heaters: $250 Attic Insulation: $90 - $150 Floor Insulation: $150 Double-Pane/Storm Windows: $50/window Programmable Thermostat: $25/unit

216

Radiant barriers in houses: Energy, comfort, and moisture considerations in a northern climate  

Science Conference Proceedings (OSTI)

The purpose of this study was to determine the conditions under which radiant barrier utilization in attics is appropriate technology in building construction for a northern climate in Utah. A sample of 12 appropriate houses with radiant barriers were selected using predetermined criteria. Another 12 houses without radiant barriers were selected as a control sample and paired with the first 12 houses using predetermined criteria. The research involved three different types of data and analyses. First, a questionnaire survey was completed by the occupants of the 12 sample houses, with radiant barriers. The survey included such factors as: (1) comfort, (2) energy, and (3) potential increased moisture content as perceived by the occupants. Second, a t-test was used to calculate the statistical comparison of utility usage between the 12 sample houses with radiant barriers and the 12 control houses without radiant barriers. Third, the moisture content of the wood framing above and below the radiant barriers was measured over a three month period during the winter months. Data analysis indicated: (1) occupants did perceive that more comfort resulted from the installation of radiant barriers, (2) occupants did not observe additional moisture artifacts after the installation of radiant barriers, (3) occupants did perceive cost savings from utility benefits resulting from the use of radiant barriers, especially in cooling the houses in summer, (4) there was no significant difference between utility usage of houses with radiant barriers and houses without radiant barriers, (5) the moisture content in the ceiling joists of all 24 houses, except one, had a moisture content measurement less than eight percent, and (6) houses with radiant barriers have higher humidity levels within the living space than houses without radiant barrier installation.

Mendenhall, R.L.

1990-01-01T23:59:59.000Z

217

Comparative Summer Thermal Performance of Finished and Unfinished Metal Roofing Products with Composition Shingles  

E-Print Network (OSTI)

This paper presents an overview of results from experimental research conducted at FSEC's Flexible Roofing Facility in the summer of 2002. The Flexible Roof Facility (FRF) is a test facility in Cocoa, Florida designed to evaluate a combination of five roofing systems against a control roof using dark shingles. The intent of the testing is to evaluate how roofing systems impact residential cooling energy use. Recent testing emphasizes evaluation of how increasingly popular metal roofing systems, both finished and unfinished, might compare with other more traditional roofing types. All of the test cells had R-19 insulation installed on the attic floor except in the double roof configuration which had R-19 of open cell foam blown onto the underside of the roof decking. The test results were used to determine relative thermal performance of various roofing systems under typical Florida summer conditions. Measured impacts included changes to ceiling heat flux and attic air temperature which influences loads from unintended attic air leakage and duct heat gain. We also develop an analysis method to estimate total cooling energy benefits of different roofing systems considering the various impacts. The results show that all the options perform better than dark composition shingles. White metal performs best with an estimated cooling energy reduction of about 15%, but the spectrally selective metal shingles (12%) and unfinished Galvalume roofs (11%) do surprisingly well. Galvanized roofing did less well than Galvalume (7% reduction) and worse performance in the second year of exposure was observed due to corrosion of the zinc surface. The sealed attic with a double roof produced an estimated cooling energy reduction of only 2% -- largely due to increases in ceiling flux.

Parker, D. S.; Sherwin, J.; Sonne, J.

2004-01-01T23:59:59.000Z

218

END POINT IMPLEMENTATION EXAMPLES End Point Implementation Examples  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

provide access to the attic. The large thermostatically controlled attic exhaust fan (approximately 3 ft. in diameter) is located on the South end of the facility is de-...

219

Homeowner Best Practices Guide for Residential Retrofits  

E-Print Network (OSTI)

to reduce solar loads Add radiant barrier in attic, or lowfacing windows Radiant barrier in attic, low absorbtivityattic: by adding radiant barriers (in predominantly cooling

Walker, Iain S.

2011-01-01T23:59:59.000Z

220

Sensitivity of forced air distribution system efficiency to climate, duct location, air leakage and insulation  

E-Print Network (OSTI)

locations: Attic Attic with a radiant barrier (ductsbelow radiant barrier) Uninsulated Crawlspace vented) with cool roof/radiant barrier temperature reduction

Walker, Iain

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Research Results from A Few Alternate Methods of Interior Duct Systems in Factory Built Housing Located In the Hot Humid Climate  

E-Print Network (OSTI)

The U.S. Department of Energys (DOE) Building America1 Industrialized Housing Partnership (BAIHP) has collaborated with two of its industry partners to work on a portion of the project that relates to the construction and evaluation of prototype interior duct systems. In 2006, work began on a duct system design that would locate the entire length of duct work within the air and thermal barriers of the envelope. One of these designs incorporated a high-side supply register that connects to the conventional floor duct. The other design utilized a single soffit located within the conditioned space at the marriage line. The Florida Solar Energy Centers (FSEC) Manufactured Housing Lab (MHLab) was retrofitted with an interior soffit duct. The duct system was added on so that either the attic duct system or the new interior duct system would be able to supply air to the conditioned space using the same mechanical equipment. The initial results of this work show approximately a 10% to 20% heating/cooling savings when compared to conventional attic duct work construction techniques and nearly 7% savings when compared to a conventional in-floor system.

Moyer, N.; Stroer, D.; Hoak, D.; McIlvaine, J.; Chandra, S.

2008-12-01T23:59:59.000Z

222

Faced with rising fuel costs, building and home owners are looking for energy-efficient solutions. Improving the building envelope (roof or attic system, walls,  

E-Print Network (OSTI)

efficiency. · ORNL established test facilities to measure essential property values needed by WUFI, enabling Instationär), the model has been validated with data from natural exposure field test facilities in Germany of envelope assemblies. These facilities enable researchers to measure heat, air, and moisture penetration

Oak Ridge National Laboratory

223

Faced with rising fuel costs, building and home owners are looking for energy-efficient solutions. Improving the building envelope (roof or attic system, walls,  

E-Print Network (OSTI)

-durable products to increase energy efficiency. · ORNL established test facilities to measure essential property Instationär), the model has been validated with data from natural exposure field test facilities in Germany of envelope assemblies. These facilities enable researchers to measure heat, air, and moisture penetration

Oak Ridge National Laboratory

224

Preliminary Study of a Vented Attic Radiant Barrier System in Hot, Humid Climates Using Side-by-Side, Full-Scale Test Houses  

E-Print Network (OSTI)

A series of side-by-side tests was performed using two full scale test houses to determine the effectiveness of a Vented Radiant Barrier System (VRBS) in reducing the ceiling heat flux during the summer cooling season in North Florida. Another series of side-by-side tests was conducted to evaluate the effect of a VRBS on ceiling heat losses under typical North Florida winter conditions. The effect of a VRBS on the expected life of roof shingles was also evaluated.

Lear, W. E.; Barrup, T. E.; Davis, K. E.

1987-01-01T23:59:59.000Z

225

Metal roofing Shingle roofing  

E-Print Network (OSTI)

of electricity for air-conditioning. One of the causes for the high usage of air-conditioning is a hot attic because the thermal energy is retained due to poor ventilation. Objective Reduce the high usage of air to the attic and lower the temperature of the attic space. 2. Lower attic temperatures will correlate to lower

Hutcheon, James M.

226

Review and comparison of web- and disk-based tools for residential energy analysis  

E-Print Network (OSTI)

recommendation; moisture; radiant barrier selection. WouldRoof Attic radiant barrier Roof color, reflectance, or

Mills, Evan

2002-01-01T23:59:59.000Z

227

Structural analysis of automating measurements of floor gradients  

E-Print Network (OSTI)

It is useful for one owning or buying a house to be able to assess its structure and identify the existence and severity of any damage. No previously existing method appears to make this assessment easily available. This ...

Caplan, Noah S

2011-01-01T23:59:59.000Z

228

1752 Columbia Rd. NW, Fourth Floor Washington, DC 20009  

E-Print Network (OSTI)

.powershift.org Driving clean energy market breakthroughs and building the grassroots base to stop global warming. SAN-profit organization dedicated to promoting clean energy to address air pollution. BENEFITS TO CONSUMERS San Diego kW system that they install. Because Energy Efficient Mortgages create an incentive for consumers

Kammen, Daniel M.

229

Scheduling and shop floor control in commercial airplane manufacturing  

E-Print Network (OSTI)

Boeing is the premier manufacturer of commercial jetliners and a leader in defense and space systems. Competition in commercial aircraft production is increasing and in order to retain their competitive position, Boeing ...

Sahney, Vikram Neal

2005-01-01T23:59:59.000Z

230

Testing of Selected Self-Leveling Compounds for Floors  

Science Conference Proceedings (OSTI)

... was not attempted, because the rank would depend on the tight given to each ... The mixes were neat self-leveling compounds without added sand. ...

1997-09-03T23:59:59.000Z

231

Trans ID No. TO: Accounting Services, Third Floor Lakeshore Center  

E-Print Network (OSTI)

Hole Oceanographic Institution, MS-23, Woods Hole, Massachusetts 02543-1541, U.S.A., Internet: dick@cod

232

Production system improvement : floor area reduction and visual management  

E-Print Network (OSTI)

This thesis suggests on the development process of a new layout design and visual management tools to improve the efficiency of a production line in a medical device company. Lean production philosophy and common lean ...

Chen, Zhuling, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

233

Production system improvement : floor area reduction and inventory optimization  

E-Print Network (OSTI)

This thesis shows improvements of a medical device production system. The demand at the Medical Device Manufacturing Company (MDMC) is low for the occlusion system product and there is a need to introduce other production ...

Yang, Tianying, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

234

Forest Floor Decomposition Following Hurricane Litter Inputs in  

E-Print Network (OSTI)

ACPD 7, 12573­12616, 2007 Clouds and aerosols in Puerto Rico J. D. Allan et al. Title Page Abstract Discussions Clouds and aerosols in Puerto Rico ­ a new evaluation J. D. Allan 1,2 , D. Baumgardner 3 , G. B Institute for Tropical Ecosystem Studies, University of Puerto Rico, San Juan, Puerto Rico 5 Institute

Ostertag, Rebecca

235

Multi-Floor Layout Problem with Elevators 22-Feb-2007  

E-Print Network (OSTI)

Feb 22, 2007 ... hot climates. The focus of this ...... Montreuil, B., 1987, Integrating design of cell layout, input/output I/O point configuration, and flow network of...

236

Modeling thermal comfort with radiant floors and ceilings  

E-Print Network (OSTI)

limits for heated ceilings. ASHRAE Transactions 86(2): 141-Radiation and discomfort. ASHRAE Journal Griffiths, I. S.active human sub- jects. ASHRAE Transactions 74: 131 -143.

2009-01-01T23:59:59.000Z

237

11th FloorView ............................ 2 Network & Communications  

E-Print Network (OSTI)

electrical engineering. Later he joined the Metropolitan Vick- ers ("Metrovick") Electrical Company as an apprentice for two years, but subsequently went to St John's College, Cambridge, and took the Mathematical with a local electrical company, primed Cockcroft for his future success. He joined Ernest Rutherford, who had

Gent, Universiteit

238

An optical spectrum analyzer with quantum limited noise floor  

E-Print Network (OSTI)

Interactions between atoms and lasers provide the potential for unprecedented control of quantum states. Fulfilling this potential requires detailed knowledge of frequency noise in optical oscillators with state-of-the-art stability. We demonstrate a technique that precisely measures the noise spectrum of an ultra-stable laser using optical lattice-trapped $^{87}$Sr atoms as a quantum projection noise-limited reference. We determine the laser noise spectrum from near DC to 100 Hz via the measured fluctuations in atomic excitation, guided by a simple and robust theory model. The noise spectrum yields a 26(4) mHz linewidth at a central frequency of 429 THz, corresponding to an optical Q of $1.6\\times10^{16}$. This approach improves upon optical heterodyne beats between two similar laser systems by providing information unique to a single laser, and complements the traditionally used Allan deviation which evaluates laser performance at relatively long time scales. We use this technique to verify the reduction of...

Bishof, Michael; Martin, Michael J; Ye, Jun

2013-01-01T23:59:59.000Z

239

Weatherizing Wilkes-Barre | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

as far as possible, we will dense-pack down. This is a typical home where we could do spray-foam insulation around the rim joist. Where most of your air comes in your home is...

240

Idaho Power - Residential Energy Efficiency Rebate Programs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Power - Residential Energy Efficiency Rebate Programs Idaho Power - Residential Energy Efficiency Rebate Programs Idaho Power - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Sealing Your Home Ventilation Heating Heat Pumps Commercial Lighting Lighting Program Info State Oregon Program Type Utility Rebate Program Rebate Amount ENERGY STAR Home Builder Incentive: $1500 ENERGY STAR Manufactured Home (Electrically Heated): $500 Air Sealing/Duct Sealing: $0.30/ln ft Attic Insulation: $0.15/sq. ft. Wall Insulation: $0.50/sq. ft. Floor Insulation: $0.50/sq. ft. Light Fixtures: Discounts; see program web site Clothes Washers: $50

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

House Spiders  

NLE Websites -- All DOE Office Websites (Extended Search)

Spiders Spiders Nature Bulletin No. 206-A November 13, 1965 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation HOUSE SPIDERS Nothing humiliates a housewife more than to spy a dusty streamer of cobwebs dangling from the ceiling when she has "company". With a cloth on the end of her broom, or a vacuum cleaner, she wages continual war on spiders. The spider itself frequently escapes by darting into a hide-away or dropping by a thread of silk to the floor where it may play "possum" until things have quieted down. But in basements, in unused rooms, in attics, between windows and screens, beneath porches, and in garages or other out buildings, many small spiders live their interesting lives.

242

Energy Efficiency and Conservation Block Grant Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AK-TRIBE-LEISNOI VILLAGE-WOODY ISLAND TRIBAL COUNCIL AK-TRIBE-LEISNOI VILLAGE-WOODY ISLAND TRIBAL COUNCIL Location: Tribe AK-TRIBE-LEISNOI VILLAGE-WOODY ISLAND TRIBAL COUNCIL AK American Recovery and Reinvestment Act: Proposed Action or Project Description The Leisnoi Village-Woody Island Tribal Council proposes to 1) conduct energy efficiency audits and 2) conduct building retrofits/energy upgrades to the Tribal Council Building. The energy audits would be conducted on residential and commercial buildings. The building retrofits to the Tribal Council Building (constructed in 1979) would involve removing and replacing insulation and sealing all penetrations; installing insulation on the walls and plastic on the floor of the crawl space, as needed, and installing an additional door and vents in the crawl space; installing gable vents in the attic for proper ventilation;

243

Columbia River PUD - Commercial Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia River PUD - Commercial Energy Efficiency Rebate Programs Columbia River PUD - Commercial Energy Efficiency Rebate Programs Columbia River PUD - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Local Government Nonprofit State Government Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Commercial Lighting Lighting Heating & Cooling Commercial Heating & Cooling Water Heating Windows, Doors, & Skylights Maximum Rebate General: Rebate amounts cannot exceed 50% of the total project cost Lighting: Rebate amounts cannot exceed 70% of the total project cost Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Lighting: Varies greatly Wall/Floor Insulation: $0.25 per sq ft Attic Insulation: $0.45 per sq ft

244

Idaho Power - Residential Energy Efficiency Rebate Programs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Programs Residential Energy Efficiency Rebate Programs Idaho Power - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Construction Design & Remodeling Heating Heat Pumps Commercial Lighting Lighting Program Info State Idaho Program Type Utility Rebate Program Rebate Amount Ductless Heat Pumps: $750 Clothes washer $50 Refrigerator $30 Refrigerator Recycling: $30 Freezer $20 Attic Insulation: $0.15/sq. ft. Wall Insulation: $0.50/sq. ft. Floor Insulation: $0.50/sq. ft. Air/Duct Sealing: $0.30/linear foot Air Source Heat Pump: $200 - $250 (Existing Homes); $300 - $400 (New Homes)

245

Questar Gas - Residential Energy Efficiency Rebate Programs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maximum Rebate Maximum Rebate Limit of two rebates per appliance type Program Info Start Date 3/1/2011 State Utah Program Type Utility Rebate Program Rebate Amount Gas Furnace: $200 - $400 Gas Storage Water Heater: $50-$100 Gas Condensing Water Heater: $350 Gas Boiler: $400 -$600 Tankless Gas Water Heater: $350 Clothes Washer: $50 Windows: $0.95/sq. ft. Insulation (Wall): $0.30/sq. ft. Insulation (Floor): $0.20/sq. ft. Insulation (Attic): $0.07 - $0.25/sq. ft. Duct Sealing/Insulation: $100 + $5.25/ln. ft. Air Sealing: $100 + $.20/sq. ft. Programmable Thermostat: $30 In-Home Energy Audit: Discounted to $25 Provider Questar Gas Questar Gas provides rebates for energy efficient appliances and heating equipment, and certain weatherization measures through the ThermWise program. This equipment includes clothes washers, water heaters, furnaces,

246

Puget Sound Energy - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Puget Sound Energy - Residential Energy Efficiency Rebate Programs Puget Sound Energy - Residential Energy Efficiency Rebate Programs Puget Sound Energy - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Floor/Attic/Wall Insulation: $400 for each form of insulation Duct Insulation: $200 for each form of insulation Windows: $750 Heat Pump Water Heater: Energy Star rated Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Ductless Heat Pumps: $1,200 Geothermal Heat Pump: $1,500 Air-Source Heat Pumps: $200 - $800 Heat Pump Sizing and Lock-Out Control: $300

247

Cascade Natural Gas - Conservation Incentives for Existing Homes |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Homes Existing Homes Cascade Natural Gas - Conservation Incentives for Existing Homes < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Floor Insulation: $0.45 per sq. ft. Wall Insulation: $0.40 per sq. ft. Ceiling or Attic Insulation: $0.25 per sq. ft. High Efficiency Natural Gas Furnace: $150 Duct Sealing: $150 High Efficiency Natural Gas Furnace and Duct Sealing: $400 High Efficiency Natural Gas Hearth: $70 Conventional Natural Gas Water Heater: $40 Combination Domestic Water/Hydronic Space Heating System (using Tankless

248

Delaware correctional center: exhibit building. Final technical report  

Science Conference Proceedings (OSTI)

This project involved the design, manufacture and display of exhibits that explain how active and passive solar energy systems work. 20 identical exhibits contain the following: a model suburan house, built of balsa wood and cardboard, which features a phtovoltaic attic fan that actually works, a passive solar hot water heater, a greenhouse, trombe wall, energy-efficient design and super-insulation; a hinged 8' x 8' illustrated backboard with floor-plans, charts, illustrations and text that explain the systems working in the model house; a script for an oral presentation that a teacher or lecturer could use with an audience; and a flyer that an interested person can take home from the exhibit.

Brabner, J.

1983-05-12T23:59:59.000Z

249

Latent heat accumulating greenhouse  

Science Conference Proceedings (OSTI)

This invention relates to a latent heat accumulating greenhouse utilizing solar heat. The object of the invention is to provide a greenhouse which is simple in construction, of high efficiency for heat absorbing and capable of much absorbing and accumulating of heat. A heat accumulating chamber partitioned by transparent sheets is provided between the attic and a floor surface facing north in the greenhouse. A blower fan is disposed to confront an opening provided at the lower portion in said heat accumulating chamber. Also, in the heat accumulating chamber, a heat accumulating unit having a large number of light transmitting windows and enclosing a phase transformation heat accumulating material such as CaC1/sub 2/.6H/sub 2/O, Na/sub 2/SO/sub 4/.10H/sub 2/O therein is detachably suspended in a position close to windowpanes at the north side.

Yano, N.; Ito, H.; Makido, I.

1985-04-16T23:59:59.000Z

250

City of Bainbridge Island - (Re)Power Bainbridge Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » City of Bainbridge Island - (Re)Power Bainbridge Rebate Program (Washington) City of Bainbridge Island - (Re)Power Bainbridge Rebate Program (Washington) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Water Heating Program Info State District of Columbia Program Type Local Rebate Program Rebate Amount Attic Insulation: $.25 per sq/ft up to $400 Wall Insulation: $.25 per sq/ft up to $400 Floor Insulation: $.25 per sq/ft up to $400 Duct Insulation: $.25 per sq/ft up to $400 Whole House Air Sealing: $300 Hot Water Boiler: $300 Steam Boiler: $300 Furnace: $200 Furnace with EMC: $300

251

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

0 0 Region (1) Northeast 73.5 122.2 47.7 24% New England 77.0 129.4 55.3 7% Middle Atlantic 72.2 119.7 45.3 17% Midwest 58.9 113.5 46.0 28% East North Central 61.1 117.7 47.3 20% West North Central 54.0 104.1 42.9 8% South 51.5 79.8 31.6 31% South Atlantic 47.4 76.1 30.4 16% East South Central 56.6 87.3 36.1 6% West South Central 56.6 82.4 31.4 9% West 56.6 77.4 28.1 18% Mountain 54.4 89.8 33.7 6% Pacific 58.0 71.8 25.7 11% U.S. Average 58.7 94.9 37.0 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet.

252

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

1 1 Type (1) Single-Family: 55.4 106.6 39.4 80.5% Detached 55.0 108.4 39.8 73.9% Attached 60.5 89.3 36.1 6.6% Multi-Family: 78.3 64.1 29.7 14.9% 2 to 4 units 94.3 85.0 35.2 6.3% 5 or more units 69.8 54.4 26.7 8.6% Mobile Homes 74.6 70.4 28.5 4.6% All Housing Types 58.7 95.0 37.0 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008. 2005 Residential Delivered Energy Consumption Intensities, by Housing Type

253

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

2 2 Year Built (1) Prior to 1950 74.5 114.9 46.8 24% 1950 to 1969 66.0 96.6 38.1 23% 1970 to 1979 59.4 83.4 33.5 15% 1980 to 1989 51.9 81.4 32.3 14% 1990 to 1999 48.2 94.4 33.7 16% 2000 to 2005 44.7 94.7 34.3 8% Average 58.7 95.0 40.0 Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008. 2005 Residential Delivered Energy Consumption Intensities, by Vintage Per Square Per Household Per Household

254

Zip-Code Insulation Program (ZIP), (Version 2. 0) (for microcomputers). Software  

Science Conference Proceedings (OSTI)

Zip 2.0 (the ZIP Code Insulation Program) provides users with customized estimates of economic levels of residential insulation for any location in the United States, keyed to the first three digits of its Zip Code. It currently calculates economic levels of insulation for attic floors, exterior wood-frame and masonry walls, floors over unheated areas, slab floors, and basement and crawlspace walls, ductwork in unconditioned spaces, and water heaters. Climate parameters are contained in a file on the ZIP diskette and automatically retrieved when the program is run. The user must designate the type of heating and cooling equipment present in the house. Default energy and insulation price data are also retrieved from the ZIP diskette, but these can be overridden to correspond to local prices. A comprehensive report is displayed with the economic R-values, advisory material, and a list of the user's input assumptions. An economic analysis can be conducted for either new or existing houses. The program can be run for a single Zip Code and specified heating and cooling system. It can also be run in a batch mode for any number of consecutive Zip Codes in order to provide a table of economic insulation levels for use at the state or national level.

Not Available

1991-05-01T23:59:59.000Z

255

ZIP - The ZIP-Code Insulation Program (version 1. 0) economic insulation levels for new and existing houses by three-digit ZIP code: Users guide and reference manual  

SciTech Connect

ZIP 1.0 (the ZIP-code Insulation program) is a computer program developed to support the DOE Insulation Fact Sheet by providing users with customized estimates of economic levels of residential insulation. These estimates can be made for any location in the United States by entering the first three digits of its ZIP Code. The program and supporting files are contained on a single 5.25-in. diskette for use with microcomputers having an MS-DOS operating system capability. The ZIP program currently calculates economic levels of insulation for attic floors, exterior wood-frame and masonry walls, floor over unheated areas, slab floors, and basement and crawlspace wells. The economic analysis can be conducted for either new or existing houses. Climate parameters are contained in a file on the ZIP diskette and automatically retrieved when the program is run. Regional energy and insulation price data are also retrieved from the ZIP diskette, but these can be overridden to more closely correspond to local prices. Zip can be run for a single ZIP Code and specified heating and cooling system. It can also be run in a ''batch'' mode for any number of consecutive ZIP Codes in order to provide a table of economic insulation levels for use at the state or national level. 4 tabs.

Petersen, S.R.

1989-01-01T23:59:59.000Z

256

ZIP: Zip-code Insulation Program (for microcomputers). Software  

SciTech Connect

ZIP (the ZIP-code Insulation Program) is a computer program developed to support the DoE Insulation Fact Sheet by providing users with customized estimates of economic levels of residential insulation for any location in the United States, keyed to the first three digits of its ZIP Code. The ZIP program currently calculates economic levels of insulation for attic floors, exterior wood-frame and masonry walls, floors over unheated areas, slab floors, and basement and crawlspace walls. The economic analysis can be conducted for either new or existing houses. Climate parameters are contained in a file on the ZIP diskette and automatically retrieved when the program is run. Regional energy and insulation price data are also retrieved from the ZIP diskette, but these can be overridden to more closely correspond to local prices. ZIP can be run for a single ZIP Code and specified heating and cooling system. It can also be run in a batch mode for any number of consecutive ZIP Codes in order to provide a table of economic insulation levels for use at the state or national level. Software Description: The software is written in the Basic programming language for implementation on the COMPAQ Portable II or compatible machines using MS DOS operating system.

Petersen, S.R.

1989-01-01T23:59:59.000Z

257

Delivering tons to the register: Energy efficient design and operation of residential cooling systems  

E-Print Network (OSTI)

and sealing the attic. Introduction Residential central airsealing, refrigerant charge addition, and correction of reduced airsealing the attic and insulating the roof) is a practical way to improve air

Siegel, Jeffrey; Walker, Iain; Sherman, Max

2000-01-01T23:59:59.000Z

258

Cool roofs as an energy conservation measure for federal buildings  

E-Print Network (OSTI)

of asphalt shingle, plywood, with an attic cavity andbuilt-up roofs with inch plywood, attic space, and an R-11a combination of stucco, plywood, insulation and gypsum, or

Taha, Haider; Akbari, Hashem

2003-01-01T23:59:59.000Z

259

Columbia Rural Electric Association - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ductless Heat Pump (with Zonal Electric): 1,000 Geothermal Heat Pump: 1,500 Attic Insulation (Single Family): 0.05 - 0.85sq. ft. Attic Insulation (Multi-Family): 0.11 -...

260

Energy Saving Potentials and Air Quality Benefits of Urban Heat IslandMitigation  

E-Print Network (OSTI)

Solar Absorptance, Attic, and Duct Insulation on Cooling and Heating Energy Use in Single-Family New Residential Buildings,

Akbari, Hashem

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Cool Colored Roofs to Save Energy and Improve Air Quality  

E-Print Network (OSTI)

Solar Absorptance, Attic, and Duct Insulation on Cooling and Heating Energy Use in Single-Family New Residential Buildings,

Akbari, Hashem; Levinson, Ronnen; Miller, William; Berdahl, Paul

2005-01-01T23:59:59.000Z

262

Status of cool roof standards in the United States  

E-Print Network (OSTI)

solar absorptance, attic, and duct insulation on cooling and heating energy use in single- family new residential buildings.

Akbari, Hashem; Levinson, Ronnen

2008-01-01T23:59:59.000Z

263

Opportunities for Saving Energy and Improving Air Quality in Urban Heat Islands  

E-Print Network (OSTI)

Solar Absorptance, Attic, and Duct Insulation on Cooling and Heating Energy Use in Single-Family New Residential Buildings,

Akbari, Hashem

2008-01-01T23:59:59.000Z

264

Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements  

E-Print Network (OSTI)

modeled without an attic radiant barrier that was present inPre-Coating Condition radiant barrier wood deck ventilated

Levinson, Ronnen; Akbari, Hashem; Konopacki, Steve; Bretz, Sarah

2002-01-01T23:59:59.000Z

265

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... attic ventilation; HUD Manufactured Home Construction; safety ... HUD) Standards for manufactured housing. ... combination of passive measures to be ...

266

ZIP. Economic Insulation Levels for Houses  

SciTech Connect

ZIP was developed to support the calculations and database used to estimate the economic levels of insulation published in the U.S. Department of Energy`s Insulation Fact Sheet. The program allows the user to estimate economic levels of insulation for attics, exterior walls, floors over unheated areas, slab floors, and basement and crawlspace walls for new and existing houses in any 3-digit zip code location in the U.S., based on local climate data, local prices for energy and insulation, and the type and estimated efficiency of its heating and cooling system. ZIP recognizes five different heating systems: natural gas, oil furnaces, electric furnaces, electric baseboard, and electric heat pump and two cooling systems: central and window electric air conditioners. An evaporative cooling system can also be specified, but this is not treated as a true air-conditioning system. In addition, the user can specify the approximate operating efficiency of the heating and cooling systems (low, medium, high, or very high). ZIP can be run for a single zip code and specified heating and cooling system or in a batch mode for any number of consecutive zip codes to provide a table of economic insulation levels for use at the state or national level.

McElroy, D. [Oak Ridge National Lab., TN (United States)

1989-01-01T23:59:59.000Z

267

ZIP. Economic Insulation Levels for Houses  

SciTech Connect

ZIP was developed to support the calculations and database used to estimate the economic levels of insulation published in the U.S. Department of Energy's Insulation Fact Sheet. The program allows the user to estimate economic levels of insulation for attics, exterior walls, floors over unheated areas, slab floors, and basement and crawlspace walls for new and existing houses in any 3-digit zip code location in the U.S., based on local climate data, local prices for energy and insulation, and the type and estimated efficiency of its heating and cooling system. ZIP recognizes five different heating systems: natural gas, oil furnaces, electric furnaces, electric baseboard, and electric heat pump and two cooling systems: central and window electric air conditioners. An evaporative cooling system can also be specified, but this is not treated as a true air-conditioning system. In addition, the user can specify the approximate operating efficiency of the heating and cooling systems (low, medium, high, or very high). ZIP can be run for a single zip code and specified heating and cooling system or in a batch mode for any number of consecutive zip codes to provide a table of economic insulation levels for use at the state or national level.

McElroy, D. (Oak Ridge National Lab., TN (United States))

1989-01-01T23:59:59.000Z

268

Building Design and Operation for Improving Thermal Comfort in Naturally Ventilated Buildings in a Hot-Humid Climate  

E-Print Network (OSTI)

The goal of this research was to develop new techniques for designing and operating unconditioned buildings in a hot-humid climate that could contribute to an improvement of thermal performance and comfort condition. The recommendations proposed in this research will also be useful for facility managers on how to maintain unconditioned buildings in this climate. This study investigated two unconditioned Thai Buddhist temples located in the urban area of Bangkok, Thailand. One is a 100-year-old, high-mass temple. The other is a 5-year-old, lower-mass temple. The indoor measurements revealed that the thermal condition inside both temples exceed the ASHRAE-recommended comfort zone. Surprisingly, the older temple maintained a more comfortable indoor condition due to its thermal inertia, shading, and earth contacts. A baseline thermal and airflow model of the old temple was established using a calibrated computer simulation method. To accomplish this, HEATX, a 3-D Computational Fluid Dynamics (CFD) code, was coupled with the DOE-2 thermal simulation program. HEATX was used to calculate the airflow rate and the surface convection coefficients for DOE-2, and DOE-2 was used to provide physical input variables to form the boundary conditions for HEATX. In this way calibrated DOE-2/CFD simulation model was accomplished, and the baseline model was obtained. To investigate an improved design, four design options were studied: 1) a reflective or low-solar absorption roof, 2) R-30 ceiling insulation, 3) shading devices, and 4) attic ventilation. Each was operated using three modes of ventilation. The low-absorption roof and the R-30 ceiling insulation options were found to be the most effective options, whereas the shading devices and attic ventilation were less effective options, regardless of which ventilation mode was applied. All design options performed much better when nighttime-only ventilation was used. Based on this analysis, two prototype temples was proposed (i.e., low-mass and high-mass temples). From the simulation results of the two prototypes, design and operation guidelines are proposed, which consist of: 1) increased wall and ceiling insulation, 2) white-colored, low-absorption roof, 3) slab-on-ground floor, 4) shading devices, 5) nighttime-only ventilation, 6) attic ventilation, and 7) wider openings to increase the natural ventilation air flow windows, wing walls, and vertical fins.

Sreshthaputra, Atch

2007-11-29T23:59:59.000Z

269

Toward Iconic Vibrotactile Information Display Using Floor Surfaces Yon Visell Alvin Law Jeremy R. Cooperstock  

E-Print Network (OSTI)

may be helpful to guide the discussion: e-mail: yon@cim.mcgill.ca e-mail:alvinlaw@cim.mcgill.ca e-mail:jer@cim

Cooperstock, Jeremy R.

270

Supporting agile supply chains using a service-oriented shop floor  

Science Conference Proceedings (OSTI)

The globalized nature of current business environments led to the emergence of new networked enterprise organizational paradigms (supply chains, extended enterprises, virtual enterprises, collaborative networks, etc.) to meet changing requirements and ... Keywords: Ambient intelligence, Reconfigurable supply chain, Self-actions, Service-oriented architectures, Supply chain management

Luis Ribeiro; Jose Barata; Armando Colombo

2009-09-01T23:59:59.000Z

271

Status Report on Studies of Recovery Boiler Composite Floor Tube Cracking  

DOE Green Energy (OSTI)

likelihood of cracking. This report is the latest in a series of progress reports presented on this project.

Eng, P.; Frederick, L.A.; Hoffmann, C.M.; Keiser, J.R.; Mahmood, J.; Maziasz, P.J.; Prescott, R.; Sarma, G.B.; Singbeil, D.L.; Singh, P.M.; Swindeman, R.W.; Wang, X.-L.

1999-09-12T23:59:59.000Z

272

Improved global bathymetry, global sea floor roughness, and deep ocean mixing  

E-Print Network (OSTI)

General Bathymetric Chart of the Oceans (GEBCO) Hom. http://Chart of the Arctic Ocean (IBCAO). http://www.ngdc.noaa.gov/in the South Atlantic ocean, Tectonophysics, 210, 235-253.

Becker, Joseph Jeffrey

2008-01-01T23:59:59.000Z

273

Improved Global Bathymetry, Global Sea Floor Roughness, and Deep Ocean Mixing  

E-Print Network (OSTI)

General Bathymetric Chart of the Oceans (GEBCO) Hom. http://Chart of the Arctic Ocean (IBCAO). http://www.ngdc.noaa.gov/in the South Atlantic ocean, Tectonophysics, 210, 235-253.

Becker, Joseph J

2008-01-01T23:59:59.000Z

274

The Implications of a Gasoline Price Floor for the California Budget and Greenhouse Gas Emissions  

E-Print Network (OSTI)

ects of a transportation fuel surcharge that moves inverselyis implementing a fuel surcharge going to be a further dragFPSP would be a surcharge on transportation fuels that moves

Borenstein, Severin

2008-01-01T23:59:59.000Z

275

Wednesday, 3:30 -4:30 p.m. Hardin Hall First Floor Auditorium  

E-Print Network (OSTI)

at watercenter.unl.edu The University of Nebraska-Lincoln does not discriminate based on gender, age, disability, Colorado School of Mines Interdependence of Groundwater Dynamics and Land-Energy Feedbacks Under Climate

Nebraska-Lincoln, University of

276

Influence of raised floor on zone design cooling load in commercial buildings.  

E-Print Network (OSTI)

US ASHRAE, ASHRAE Handbook - Fundamentals, American Society18, table 18 of ASHRAE Handbook - Fundamentals [8]. Table 1

Schiavon, Stefano; Lee, Kwang Ho; Bauman, Fred; Webster, Tom

2010-01-01T23:59:59.000Z

277

ENERGY ANALYSISF FOR WORKSHOPS WITH FLOOR-SUPPLY DISPLACEMENT VENTILATION UNDER THE U.S. CLIMATES  

E-Print Network (OSTI)

to be changing the space configuration and usages. Computers and Lau, J. and Chen, Q. 2006. "Energy analysis climatic regions for the energy analysis. The five climatic regions represent the most typical weathers building. Fig. 5 shows the monthly energy consumption of a typical workshop in Nashville, TN and New

Chen, Qingyan "Yan"

278

Vertical displacement of the storage ring floor due to building distortion in the Photon Factory  

Science Conference Proceedings (OSTI)

The Light Source Building of the Photon Factory was found to distort so much as to induce the displacement of magnets in the storage ring. This resulted in drifting of the beam orbit. It was considered that the building was distorted by the variations of thermal stress

Tomotaro Katsura; Yutaka Fujita

1991-01-01T23:59:59.000Z

279

Innovative accessible sunken floor systems for multi-story steel buildings  

E-Print Network (OSTI)

With the demands of telecommunications and computer equipment, building owners and designers are facing an increasingly difficult problem for wire management in today's electronic workplace. This thesis is to investigate ...

Kwan, Henry K

1987-01-01T23:59:59.000Z

280

THE ROLE OF DEAD WOOD IN MAINTAINING ARTHROPOD DIVERSITY ON THE FOREST FLOOR.  

Science Conference Proceedings (OSTI)

AbstractDead wood is a major component of forests and contributes to overall diversity, primarily by supporting insects that feed directly on or in it. Further, a variety of organisms benefit by feeding on those insects. What is not well known is how or whether dead wood influences the composition of the arthropod community that is not solely dependent on it as a food resource, or whether woody debris influences prey available to generalist predators. One group likely to be affected by dead wood is ground-dwelling arthropods. We studied the effect of adding large dead wood to unburned and frequently burned pine stands to determine if dead wood was used more when the litter and understory plant community are removed. We also studied the effect of annual removal of dead wood from large (10-ha) plots over a 5-year period on ground-dwelling arthropods. In related studies, we examined the relationships among an endangered woodpecker that forages for prey on live trees, its prey, and dead wood in the forest. The results of these and other studies show that dead wood can influence the abundance and diversity of the ground-dwelling arthropod community and of prey available to generalist predators not foraging directly on dead trees.

Hanula, James L.; Horn, Scott; Wade, Dale D.

2006-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Testing and optimizing the performance of a floor-based task conditioning system  

E-Print Network (OSTI)

H. Zhang, and A . Baharlo CEDR-R06-94 Energy and BuildingsBerkeley, California CEDR-R06-94 March 2,1993 ABSTRACT

Bauman, Fred; Arens, Edward A; Tanabe, S.; Zhang, H.; Baharlo, A.

1995-01-01T23:59:59.000Z

282

Impact of Solar Heat Gain on Radiant Floor Cooling System Design  

E-Print Network (OSTI)

Y. Chen, The effect of solar radiation on dynamic thermaldependant upon solar radiation, ASHRAE Transactions, (2006)M. Filippi, B.W. Olesen, Solar radiation and cooling load

Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

2013-01-01T23:59:59.000Z

283

The Implications of a Gasoline Price Floor for the California Budget and Greenhouse Gas Emissions  

E-Print Network (OSTI)

Gas Daily Quantity Daily GhG Emissions Oil Price Price elasGas Daily Quantity Daily GhG Emissions Oil Price Price elasDaily Quantity Daily GhG Emissions Surcharge Revenues Oil

Borenstein, Severin

2008-01-01T23:59:59.000Z

284

Influence of raised floor on zone design cooling load in commercial buildings.  

E-Print Network (OSTI)

design day zone cooling load profile is evaluated for anThe zone cooling load profiles and the thermal performanceaffects the zone cooling load profile and the peak cooling

Schiavon, Stefano; Lee, Kwang Ho; Bauman, Fred; Webster, Tom

2010-01-01T23:59:59.000Z

285

Geometric, topological & semantic analysis of multi-building floor plan data  

E-Print Network (OSTI)

Generating a comprehensive model of a university campus or other large urban space is a challenging undertaking due to the size, geometric complexity, and levels of rich semantic information contained in inhabited environments. ...

Whiting, Emily J

2006-01-01T23:59:59.000Z

286

Macquarie University Design Standards ANNEXURE 23 POLICY FOR CARPET & OTHER FLOOR FINISH TO MINOR,  

E-Print Network (OSTI)

WOOL SIAM J. DISCRETE MATH. c 2002 Society for Industrial and Applied Mathematics Vol. 15, No. 3, pp to a history of splits and merges, the voting structure is rather complicated, with many committees of the techniques of [31] and [15] are not applicable #12;418 DAVID PELEG AND AVISHAI WOOL in our case

Wang, Yan

287

Wall Play: a novel wall/floor interaction concept for mobile projected gaming  

Science Conference Proceedings (OSTI)

Currently we see the emergence of the first commercial projector phones. Besides the standard use case of projecting media content, they are also promising as a platform for new types of mobile gaming. In this paper, we present a novel interaction concept ... Keywords: concept, gaming, mobile, projection, projector phone

Christian Winkler; Patrick Hutflesz; Clemens Holzmann; Enrico Rukzio

2012-09-01T23:59:59.000Z

288

The Implications of a Gasoline Price Floor for the California Budget and Greenhouse Gas Emissions  

E-Print Network (OSTI)

Emissions Surcharge Revenues Oil Price Price elas= -0.1 elasEmissions Surcharge Revenues Oil Price Price elas= -0.1 elasotherwise result if oil prices remain at current levels. . o

Borenstein, Severin

2008-01-01T23:59:59.000Z

289

Efficient 3D building model generation from 2D floor plans  

E-Print Network (OSTI)

3D building models are beneficial to architects, interior designers, and ordinary people in visualizing indoor space in three dimensions. 3D building models appear to be more aesthetic to ordinary people than architectural ...

Kashlev, Dmitry

2008-01-01T23:59:59.000Z

290

K Basins floor sludge retrieval system knockout pot basket fuel burn accident  

SciTech Connect

The K Basins Sludge Retrieval System Preliminary Hazard Analysis Report (HNF-2676) identified and categorized a series of potential accidents associated with K Basins Sludge Retrieval System design and operation. The fuel burn accident was of concern with respect to the potential release of contamination resulting from a runaway chemical reaction of the uranium fuel in a knockout pot basket suspended in the air. The unmitigated radiological dose to an offsite receptor from this fuel burn accident is calculated to be much less than the offsite risk evaluation guidelines for anticipated events. However, because of potential radiation exposure to the facility worker, this accident is precluded with a safety significant lifting device that will prevent the monorail hoist from lifting the knockout pot basket out of the K Basin water pool.

HUNT, J.W.

1998-11-11T23:59:59.000Z

291

PH Sensitive Polymers for Improving Reservoir Sweep and Conformance Control in Chemical Flooring  

SciTech Connect

There is an increasing opportunity to recover bypassed oil from depleted, mature oilfields in the US. The recovery factor in many reservoirs is low due to inefficient displacement of the oil by injected fluids (typically water). The use of chemical flooding methods to increase recovery efficiencies is severely constrained by the inability of the injected chemicals to contact the bypassed oil. Low sweep efficiencies are the primary cause of low oil recoveries observed in the field in chemical flooding operations even when lab studies indicate high oil recovery efficiency. Any technology that increases the ability of chemical flooding agents to better contact the remaining oil and reduce the amount of water produced in conjunction with the produced oil will have a significant impact on the cost of producing oil domestically in the US. This translates directly into additional economically recoverable reserves, which extends the economic lives of marginal and mature wells. The objective of this research project was to develop a low-cost, pH-triggered polymer for use in IOR processes to improve reservoir sweep efficiency and reservoir conformance in chemical flooding. Rheological measurements made on the polymer solution, clearly show that it has a low viscosity at low pH and exhibits a sudden increase in viscosity (by 2 orders of magnitude or more) at a pH of 3.5 to 4. This implies that the polymer would preferentially flow into zones containing water since the effective permeability to water is highest in these zones. As the pH of the zone increases due to the buffering capacity of the reservoir rock, the polymer solution undergoes a liquid to gel transition causing a sharp increase in the viscosity of the polymer solution in these zones. This allows operationally robust, in-depth conformance treatment of such water bearing zones and better mobility control. The rheological properties of HPAM solutions were measured. These include: steady-shear viscosity and viscoelastic behavior as functions of pH; shear rate; polymer concentration; salinity, including divalent ion effects; polymer molecular weight; and degree of hydrolysis. A comprehensive rheological model was developed for HPAM solution rheology in terms of: shear rate; pH; polymer concentration; and salinity, so that the spatial and temporal changes in viscosity during the polymer flow in the reservoir can be accurately modeled. A series of acid coreflood experiments were conducted to understand the geochemical reactions relevant for both the near-wellbore injection profile control and for conformance control applications. These experiments showed that the use hydrochloric acid as a pre-flush is not viable because of the high reaction rate with the rock. The use of citric acid as a pre-flush was found to be quite effective. This weak acid has a slow rate of reaction with the rock and can buffer the pH to below 3.5 for extended periods of time. With the citric acid pre-flush the polymer could be efficiently propagated through the core in a low pH environment i.e. at a low viscosity. The transport of various HPAM solutions was studied in sandstones, in terms of permeability reduction, mobility reduction, adsorption and inaccessible pore volume with different process variables: injection pH, polymer concentration, polymer molecular weight, salinity, degree of hydrolysis, and flow rate. Measurements of polymer effluent profiles and tracer tests show that the polymer retention increases at the lower pH. A new simulation capability to model the deep-penetrating mobility control or conformance control using pH-sensitive polymer was developed. The core flood acid injection experiments were history matched to estimate geochemical reaction rates. Preliminary scale-up simulations employing linear and radial geometry floods in 2-layer reservoir models were conducted. It is clearly shown that the injection rate of pH-sensitive polymer solutions can be significantly increased by injecting it at a pH below 3.5 (at a fixed bottom-hole pressure). This improvement in injectivity by a fa

Mukul Sharma; Steven Bryant; Chun Huh

2008-03-31T23:59:59.000Z

292

A Sea Floor Gravity Survey of the Sleipner Field to Monitor CO2 Migration  

Science Conference Proceedings (OSTI)

Carbon dioxide gas (CO{sub 2}) is a byproduct of many wells that produce natural gas. Frequently the CO{sub 2} separated from the valuable fossil fuel gas is released into the atmosphere. This adds to the growing problem of the climatic consequences of greenhouse gas contamination. In the Sleipner North Sea natural gas production facility, the separated CO{sub 2} is injected into an underground saline aquifer to be forever sequestered. Monitoring the fate of such sequestered material is important - and difficult. Local change in Earth's gravity field over the injected gas is one way to detect the CO{sub 2} and track its migration within the reservoir over time. The density of the injected gas is less than that of the brine that becomes displaced from the pore space of the formation, leading to slight but detectable decrease in gravity observed on the seafloor above the reservoir. Using equipment developed at Scripps Institution of Oceanography, we have been monitoring gravity over the Sleipner CO{sub 2} sequestration reservoir since 2002. We surveyed the field in 2009 in a project jointly funded by a consortium of European oil and gas companies and the US Department of Energy. The value of gravity at some 30 benchmarks on the seafloor, emplaced at the beginning of the monitoring project, was observed in a week-long survey with a remotely operated vehicle. Three gravity meters were deployed on the benchmarks multiple times in a campaign-style survey, and the measured gravity values compared to those collected in earlier surveys. A clear signature in the map of gravity differences is well correlated with repeated seismic surveys.

Mark Zumberge

2011-09-30T23:59:59.000Z

293

Section 7.1.5 Floor Coverings: Greening Federal Facilities; Second...  

NLE Websites -- All DOE Office Websites (Extended Search)

or grates at all entries with heavy traffic. Mats or grates greatly reduce the amount of sand, grit, and hydrocarbon pollutants tracked into the building. Reducing sand and grit...

294

Duke Energy - Residential and Builder Energy Efficiency Rebate...  

Open Energy Info (EERE)

200 (home owner); 100 (dealer) New Home Air-source Heat Pump: 300 (builder) New Home Geothermal Heat Pump: 300 (builder) New Home Air Conditioner: 300 (builder) Attic...

295

Wisconsin | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rewards Program to eligible residents for purchasing and installing furnaces, boilers, heat pumps, air sealing, attic insulation, and water heaters. Improvements must meet...

296

Georgia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Existing Home Rebate Program offers rebates for attic insulation upgrades, HVAC tune-ups, hybrid water heaters, and appliance recycling. In order to qualify for the...

297

Denton Municipal Electric - GreenSense Energy Efficiency Rebate...  

Open Energy Info (EERE)

Comprehensive MeasuresWhole Building, Heat pumps, Programmable Thermostats, Windows, Geothermal Heat Pumps, Attic Reflective Barrier, Solar Screens Active Incentive Yes...

298

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

R factors; attic ventilation; basement and crawl space ventilation; the use of storm windows and doors or windows and doors using thermal glass; proper caulking and sealing of...

299

Duke Energy - Residential and Builder Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pump: 300 (builder) New Home Air Conditioner: 300 (builder) Attic Insulation and Air Sealing: 250 Duct Sealing: 100 Heat Pump and Air Conditioner Tune Up: 50 AC...

300

Homeowner Best Practices Guide for Residential Retrofits  

E-Print Network (OSTI)

thermal performance, Air sealing of the building envelope isare: sealing around the edge of the bag (to prevent airair. However there are some caveats regarding sealing attics

Walker, Iain S.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book (EERE)

Square footage includes attic, garage, and basement square footage. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008. Share of Average Home Size (1) Average Home Size...

302

Energy Efficiency Report: Chapter 2: Introduction  

U.S. Energy Information Administration (EIA)

Consider another example: A household undertakes measures such as adding storm doors, high-efficiency light bulbs, and attic insulation. At the same ...

303

NIST Manuscript Publication Search  

Science Conference Proceedings (OSTI)

... at evaluating the ability of vents to resist firebrand intrusion into attic and crawl ... and air is pulled through the vent using a fan placed downstream. ...

2010-01-25T23:59:59.000Z

304

NIST Manuscript Publication Search  

Science Conference Proceedings (OSTI)

... In 4 of the 11 cases, the heating and air-conditioning system fan was operating. One test case was performed with an attic fan operating. ...

2003-08-01T23:59:59.000Z

305

NIST Tech Beat - June 16, 2004  

Science Conference Proceedings (OSTI)

... other partitions, shows that the attic was already aflame when the firefighters arrived on the scene, that the use of the positive pressure fan had no ...

306

ENERGY STAR Certified Homes, Version 3 (Rev. 07) Inspection Checklists...  

NLE Websites -- All DOE Office Websites (Extended Search)

surfaces, regardless of slope (e.g., cathedral ceilings, tray ceilings, conditioned attic roof decks, flat ceilings, sloped ceilings), must meet the requirements for ceilings. 11....

307

Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE  

NLE Websites -- All DOE Office Websites (Extended Search)

to meet the elements of these specifications but are constructing multifamily buildings, flat roof residential structures, or buildings without attic access, or using alternatives...

308

CX-008201: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to install and upgrade insulation in eight residential units. Attic insulation and crawl space insulation will be included. Residential units were built between 1983 and...

309

Lumbee River EMC - Residential Weatherization Loan Program |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

windows and doors * attic ventilation fans * water heaters * foundation vents * insulation and or mastic sealing of duct work * a heat pump * a gas pack * insulation of...

310

Alliant Energy Interstate Power and Light (Gas) - Residential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Attic and Wall Insulation: 1000 Program Information Minnesota Program Type Utility Rebate Program Rebate...

311

Building Technologies Office: Building Envelope Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy efficiency. Research in building envelope technologies includes: Foundations Insulation Roofing and Attics Walls Foundations Photo of the concrete foundation of a building...

312

Evaluation of aerial thermography to discriminate loft insulation in residential housing .  

E-Print Network (OSTI)

??This thesis examines the use of aerial thermography data to discriminate loft (attic) insulation levels in residential housing, with ventilated pitched roofs, in the UK. (more)

Allinson, David

2007-01-01T23:59:59.000Z

313

Nebraska Public Power District - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

For Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Attic Insulation: 300 Program Information Nebraska Program Type Utility Rebate Program Rebate Amount...

314

UES - Residential Efficiency Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

repairs or 550 for performance repairs Air Sealing: 250 Air Sealing andor Attic Insulation: 800 Program Information Funding Source Arizona Corporation Commission Arizona...

315

Kentucky | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

provided for qualifying heating and cooling equipment installation or service, attic insulation with air sealing, and duct insulation and sealing. Duke Energy Kentucky's electric...

316

U.S. Department of Energy NEPA Categorical Exclusion Determination...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Hoh Tribal Business Committee of Washington proposes to install and upgrade insulation in eight residential units. Attic insulation and crawl space insulation will be...

317

Energy savings estimates and cost benefit calculations for high performance relocatable classrooms  

E-Print Network (OSTI)

Roof) coating for the radiant barrier in the attic space.barrier. Other possible heating systems compatible with the IDEC cooling system, such as electric ceiling radiant

Rainer, Leo I.; Hoeschele, Marc A.; Apte, Michael G.; Shendell, Derek G.; Fisk, William J.

2003-01-01T23:59:59.000Z

318

Sarasota County - Get Energy Smart Retrofit Program (Florida...  

Open Energy Info (EERE)

Lighting, Refrigerators, Water Heaters, Windows, Geothermal Heat Pumps, Solar Water Heat, Energy Savings Device Kit, Home Energy Audit, Solar Attic Fan Active Incentive No...

319

Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels  

E-Print Network (OSTI)

1 Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels Solar Thermal R-35 Rim Joist Area 5" open cell spray foam 2" mineral wool insulation blanket R-10 Basement Slab electric WH #12;NZERTF Gaithersburg, MD Solar Photovoltaic Array Roof Mounted South half of main roof

Oak Ridge National Laboratory

320

Occupancy Simulation in Three Residential Research Houses  

Science Conference Proceedings (OSTI)

Three houses of similar floor plan are being compared for energy consumption. The first house is a typical builder house of 2400 ft2 (223 m2) in east Tennessee. The second house contains retrofits available to a home owner such as energy efficient appliances, windows and HVAC, as well as an insulated attic which contains HVAC duct work. The third house was built using optimum-value framing construction with photovoltaic modules and solar water heating. To consume energy researchers have set up appliances, lights, and plug loads to turn on and off automatically according to a schedule based on the Building America Research Benchmark Definition. As energy efficiency continues to be a focus for protecting the environment and conserving resources, experiments involving whole house energy consumption will be done. In these cases it is important to understand how to simulate occupancy so that data represents only house performance and not human behavior. The process for achieving automated occupancy simulation will be discussed. Data comparing the energy use of each house will be presented and it will be shown that the third house used 66% less and the second house used 36% less energy than the control house in 2010. The authors will discuss how energy prudent living habits can further reduce energy use in the third house by 23% over the average American family living in the same house.

Boudreaux, Philip R [ORNL; Gehl, Anthony C [ORNL; Christian, Jeffrey E [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Building America Top Innovations 2013 Profile … Buried and Encapsulated Ducts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

match the performance of ducts in conditioned space. match the performance of ducts in conditioned space. For years builders have designed their homes with the HVAC ducts in the attic. There is plenty of space up there to run the ducts, and if the air handler is located in the attic as well, it is not taking up valuable square footage inside the home. The only problem is vented attics can be very hot in the summer and very cold in the winter. Estimated thermal losses through ducts installed in unconditioned attics range from 10% to 45%, contributing significantly to homeowners' heating and cooling costs. The Consortium for Advanced Residential Buildings (CARB), a Building America research team led by Steven Winter Associates, has done extensive research on the feasibility of insulating ducts that are located in the attic and has

322

Building America Top Innovations 2013 Profile … Buried and Encapsulated Ducts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

meet the code requirements for ducts in conditioned space. meet the code requirements for ducts in conditioned space. For years builders have designed their homes with the HVAC ducts in the attic. There is plenty of space up there to run the ducts and if the air handler is located in the attic as well, it's not taking up valuable square footage inside the home. The only problem is uninsulated attics can be very hot in the summer and very cold in the winter. Estimated thermal losses through ducts installed in unconditioned attics range from 10% to 45%, contributing significantly to homeowners' heating and cooling costs. The Consortium for Advanced Residential Buildings (CARB), a Building America research team led by Steven Winter Associates, has done extensive research on the feasibility of insulating ducts that are located in the attic and has

323

A Prototype Roof Deck Designed to Self-Regulate Deck Temperature and Reduce Heat Transfer  

SciTech Connect

A prototype roof and attic assembly exploits the use of radiation, convection and insulation controls to reduce the heat transfer penetrating its roof deck by almost 85% of the heat transfer crossing a conventional roof and attic assembly. The assembly exhibited attic air temperatures that did not exceed the peak day outdoor ambient temperature. The design includes a passive ventilation scheme that pulls air from the soffit and attic into an inclined air space above the deck. The design complies with fire protection codes because the air intake is internal and closed to the elements. Field data were benchmarked against an attic computer tool and simulations made for new and retrofit home constructions in hot, moderate and cold climates to access economics for the assembly.

Miller, William A [ORNL

2011-01-01T23:59:59.000Z

324

A Prototype Roof Deck Designed to Self-Regulate Deck Temperature and Reduce Heat Transfer  

Science Conference Proceedings (OSTI)

A prototype roof and attic assembly exploits the use of radiation, convection and insulation controls to reduce its peak day heat transfer by almost 85 percent of the heat transfer crossing a conventional roof and attic assembly. The assembly exhibits attic air temperatures that do not exceed the maximum daily outdoor ambient temperature. The design includes a passive ventilation scheme that pulls air from the soffit and attic into an inclined air space above the roof deck. The design complies with fire protection codes because the air intake is internal and closed to the elements. Field data were benchmarked against an attic computer tool and simulations made for new and retrofit constructions in hot, moderate and cold climates to gauge the cost of energy savings and potential payback.

Miller, William A [ORNL

2011-01-01T23:59:59.000Z

325

The real consequences of an ocean floor collapse A collapse of the ocean floor in the Gulf of Mexico is in our near future but all depends on how such  

E-Print Network (OSTI)

to place relief wells to pump out the oil and methane gas may seem like a good solution but it also the well. Should this scenario occur, then the prediction is that a vast amount of oil and methane the mixture of oil and Corexit. Both products will obviously affect the local population in the aftermath

Belogay, Eugene A.

326

he chain of calamity now known as Japan's Triple Disaster began with a massive rupture in the ocean floor.  

E-Print Network (OSTI)

that pumped water to cool the reactors. Radioac- tive decay in the reactors continued to generate heat. 50 miles from the epicenter, the trembling lasted a full six minutes. When it finally stopped, parts of the main island of Honshu had moved eight meters, or 26 feet, to the east. Damage from the earthquake

Anderson, Donald M.

327

Marine geophysical study of cyclic sedimentation and shallow sill intrusion in the floor of the Central Gulf of California  

E-Print Network (OSTI)

heterogeneity of the Aleutian margin (1965-4822 m), Progressforaminifera from the Aleutian Margin and the Southern

Kluesner, Jared W.

2011-01-01T23:59:59.000Z

328

Probabilistic Tracking of Pedestrian Movements via In-Floor Force Sensing Rishi Rajalingham, Yon Visell, Jeremy R. Cooperstock  

E-Print Network (OSTI)

Visell, Jeremy R. Cooperstock Centre for Intelligent Machines and CIRMMT, McGill University rishi@cim.mcgill.ca, yon@cim.mcgill.ca, jer@cim.mcgill.ca Abstract This article presents a probabilistic approach

Cooperstock, Jeremy R.

329

Fundamentals of Natural Gas and Species Flows from Hydrate Dissociation - Applications to Safety and Sea Floor Instability  

SciTech Connect

Semi-analytical computational models for natural gas flow in hydrate reservoirs were developed and the effects of variations in porosity and permeability on pressure and temperature profiles and the movement of a dissociation front were studied. Experimental data for variations of gas pressure and temperature during propane hydrate formation and dissociation for crushed ice and mixture of crushed ice and glass beads under laboratory environment were obtained. A thermodynamically consistent model for multiphase liquid-gas flows trough porous media was developed. Numerical models for hydrate dissociation process in one dimensional and axisymmetric reservoir were performed. The computational model solved the general governing equations without the need for linearization. A detail module for multidimensional analysis of hydrate dissociation which make use of the FLUENT code was developed. The new model accounts for gas and liquid water flow and uses the Kim-Boshnoi model for hydrate dissociation.

Goodarz Ahmadi

2006-09-30T23:59:59.000Z

330

Marine geophysical study of cyclic sedimentation and shallow sill intrusion in the floor of the Central Gulf of California  

E-Print Network (OSTI)

drilling results found extensive evidence of sill-driven fluid-Drilling results confirmed (Kastner, 1982) that vertical discharge hydrothermal fluids

Kluesner, Jared W.

2011-01-01T23:59:59.000Z

331

Comparison of Physical Activity Levels In a 6th Grade Hip-Hop Dance and Floor Hockey Unit of Instruction.  

E-Print Network (OSTI)

??Promoting physical activity in children is a major national health objective with schools being identified as a place to intervene. This study examined physical activity (more)

Stevens, Jessica Lyn

2008-01-01T23:59:59.000Z

332

Marine geophysical study of cyclic sedimentation and shallow sill intrusion in the floor of the Central Gulf of California  

E-Print Network (OSTI)

and sills of the western Karoo, South Africa. S. Afr. J.and sills of the western Karoo, South Africa. S. Afr. J.vent complexes in the Karoo Basin, South Africa. J. Geol.

Kluesner, Jared W.

2011-01-01T23:59:59.000Z

333

Marine geophysical study of cyclic sedimentation and shallow sill intrusion in the floor of the Central Gulf of California  

E-Print Network (OSTI)

whom I can bounce ideas. Sandy will always be a close friendwhile the reflector-rich sandy units were being deposited,several 2-3 cm thick basal sandy silt layers found in the

Kluesner, Jared W.

2011-01-01T23:59:59.000Z

334

Homeowners' demand for home insulation  

SciTech Connect

The survey was conducted to provide guidance based on the views and experience of a national sample of homeowners about the insulation of their homes. The telephone survey was conducted with 1,012 homeowners between January 12 and 22, 1978 in the East, Midwest, South, and West regions of the U.S. From the survey data were compiled on plans for installing home insulation with emphasis on attic insulation; how many homes now have various types of insulation; recent experiences in obtaining attic insulation--its cost, material used, when installed, whether installed by the homeowner or a contractor; the kinds of insulation thought to be needed--attic insulation, wall insulation, storm doors and windows; whether homeowners planning attic insulation feel that they have the necessary information to do the work themselves or if they feel they know enough to make the necessary arrangements with a contractor; the effect of higher fuel costs on likelihood of installing attic insulation; shortages of insulating materials; what sources of information are relied on when planning attic insulation; attitudes toward having utility companies install insulation to be paid for by means of utility bills; how much trust homeowners have in the advice of government, utility companies, insulation manufacturers, insulation installers, and retail stores about how much insulation is needed; the likely effect of a tax credit on plans to insulate the attic; and the concern about energy shortages.

1978-04-01T23:59:59.000Z

335

Solar assisted heat pump system with volume solar collector. Technical report  

DOE Green Energy (OSTI)

The system uses the attic of the house with a large south facing window as the solar collector. An air-to-water heat pump uses the attic air as a heat source to heat a volume of storage water during the heating season. During the cooling season the attic is ventilated and the heat pump uses the attic air as a heat sink while cooling the storage water. The computer program was developed to include a heat exchanger in the attic which could by-pass the heat pump condenser cooling water, thus permitting direct heat exchange between the attic air and the storage water whenever a favorable temperature existed. The program also accounts for the effect of the incidence angle of insolation and the effect of the number of glass plates on the transmittance and absorptance of the collector and windows. Other refinements include: the use of a sophisticated nighttime setback thermostat, account of internal heat generation and infiltration loss. Among all of the parameter variations, the use of an attic heat exchanger resulted in the maximum savings in the heating/cooling energy consumption of the house. The use of double-glazed windows too, resulted in substantial energy savings. The total energy consumption was found to depend strongly on the infiltration rate. The program was also used to simulate the same system under weather conditions existing at several different geographic areas.

Sabnis, J.S.; Hickox, W.J.; Drucker, E.E.; Ucar, M.; LaGraff, J.E.

1978-09-01T23:59:59.000Z

336

Cooling season energy measurements of dust and ventilation effects on radiant barriers  

Science Conference Proceedings (OSTI)

Cooling season tests were conducted in three unoccupied ranch-style houses in Karns, Tennessee, to determine the effects on attic radiant barrier performance incurred by changes in attic ventilation area ratio, attic ventilation type, and the buildup of dust on horizontal radiant barriers. All three houses had R-19 fiberglass batt insulation in their attics. Horizontal radiant barriers were artificially dusted and the dusted barriers showed measurable performance degradations, although the dusted barriers were still superior to no radiant barriers. Dust loadings of 0.34 and 0.74 mg/cm{sup 2} reduced a clean radiant barrier surface emissivity of 0.055 to 0.125 and 0.185, respectively. Total house cooling load increases amounted to 2.3 and 8.4% compared to house loads with clean horizontal barriers, respectively. When compared to R-19 with no horizontal radiant barrier conditions, the dusted horizontal radiant barriers reduced cooling loads by about 7%. Testing showed that increasing the attic ventilation area ratio from the minimum recommended of 1/300 (1 ft{sup 2} of effective ventilation area per 300 ft{sup 2} of attic area) to 1/150 had little if any effect on the house cooling load with either truss or horizontal barriers present in the attics. Radiant barriers, however, still reduced the house cooling load. 18 refs., 17 figs., 26 tabs.

Levins, W.P.; Karnitz, M.A. (Oak Ridge National Lab., TN (USA)); Hall, J.A. (Tennessee Valley Authority, Chattanooga, TN (USA))

1990-03-01T23:59:59.000Z

337

Analysis in Support of the Radiant Barrier Fact Sheet 2010 Update  

Science Conference Proceedings (OSTI)

Quantifying the benefits of radiant barriers is complex because the benefits depend upon the climate, attic geometry, duct arrangements, and other building parameters. Homeowners, however, require simplified guidance regarding building envelope options, even those options that seem to have no simple answers. An extensive parametric evaluation of radiant barrier installation alternatives was made using a newly expanded and benchmarked version of an attic simulation program. To complement this anal- ysis, a detailed numerical analysis of radiation heat transfer within the attic and within the small space bounded by the rafters and the sheathing was completed. The results provide guidance for homeowners and builders.

Stovall, Therese K [ORNL; Shrestha, Som S [ORNL; Arimilli, Rao V [ORNL; Yarbrough, David W [ORNL; Pearson, Thomas [ASHRAE, Student Member

2010-01-01T23:59:59.000Z

338

Denton Municipal Electric - GreenSense Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Denton Municipal Electric - GreenSense Energy Efficiency Rebate Denton Municipal Electric - GreenSense Energy Efficiency Rebate Program Denton Municipal Electric - GreenSense Energy Efficiency Rebate Program < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Heat Pumps Windows, Doors, & Skylights Maximum Rebate Solar Screens: $200 Energy Efficient Windows: $500 Programmable Thermostat: $50 Attic Insulation (Retrofit): $400 Attic Insulation (New Construction): $400 Program Info State Texas Program Type Utility Rebate Program Rebate Amount Central AC: $600/unit Central Heat Pumps: $700/unit Geothermal Heat Pumps: $700/unit Attic Reflective Radiant Barrier: $200 - $300

339

The North Carolina Field Test: Field performance of the preliminary version of an advanced weatherization audit for the Department of Energy`s Weatherization Assistance Program  

SciTech Connect

The field performance of weatherizations based on a newly-developed advanced technique for selecting residential energy conservation measures was tested alongside current Retro-Tech-based weatherizations in North Carolina. The new technique is computer-based and determines measures based on the needs of an individual house. In addition, it recommends only those measures that it determines will have a benefit-to-cost ratio greater than 1 for the house being evaluated. The new technique also considers the interaction of measures in computing the benefit-to-cost ratio of each measure. The two weatherization approaches were compared based on implementation ease, measures installed, labor and cost requirements, and both heating and cooling energy savings achieved. One-hundred and twenty houses with the following characteristics participated: the occupants were low-income, eligible for North Carolina`s current weatherization program, and responsible for their own fuel and electric bills. Houses were detached single-family dwellings, not mobile homes; were heated by kerosene, fuel oil, natural gas, or propane; and had one or two operating window air conditioners. Houses were divided equally into one control group and two weatherization groups. Weekly space heating and cooling energy use, and hourly indoor and outdoor temperatures were monitored between November 1989 and September 1990 (pre-period) and between December 1990 and August 1991 (post-period). House consumption models were used to normalize for annual weather differences and a 68{degrees}F indoor temperature. Control group savings were used to adjust the savings determined for the weatherization groups. The two weatherization approaches involved installing attic and floor insulations in near equivalent quantities, and installing storm windows and wall insulation in drastically different quantities. Substantial differences also were found in average air leakage reductions for the two weatherization groups.

Sharp, T.R.

1994-06-01T23:59:59.000Z

340

Buildings Energy Data Book: 1.6 Embodied Energy of Building Assemblies  

Buildings Energy Data Book (EERE)

4 4 Embodied Energy of Commercial Wood-Based Roof Assemblies in the U.S. Embodied Energy CO2 Equivalent (MMBtu/SF) (1) Emissions (lbs/SF) Glulam Joist with Plank Decking with EPDM membrane 0.16 11.05 with PVC membrane 0.25 20.70 with Modified bitumen membrane 0.25 21.78 with 4-Ply built-up roofing 0.43 41.49 with Steel Roofing 0.10 10.05 Wood I-Joist with WSP Decking with EPDM membrane 0.14 10.10 with PVC membrane 0.23 19.75 with Modified bitumen membrane 0.24 20.81 with 4-Ply built-up roofing 0.42 40.54 with Steel Roofing 0.09 9.11 Solid Wood Joist with WSP Decking with EPDM membrane 0.15 10.36 with PVC membrane 0.24 20.02 with Modified bitumen membrane 0.24 21.10 with 4-Ply built-up roofing 0.43 40.81 with Steel Roofing 0.10 9.39 Wood Chord/Steel Web Truss with WSP Decking with EPDM membrane 0.17

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Income Tax Deduction for Solar-Powered Roof Vents or Fans (Indiana...  

Open Energy Info (EERE)

1232012 References DSIRE1 Summary Indiana allows taxpayers to take a deduction on solar-powered roof fans (or vent, also sometimes called an attic fan) installed in a home...

342

Evolution of cool-roof standards in the United States  

E-Print Network (OSTI)

solar absorptance, attic, and duct insulation on cooling and heating energy use in single-family new residential buildings.solar- reflective roof on the heating- and cooling-energy uses of a residential-building

Akbari, Hashem

2008-01-01T23:59:59.000Z

343

Radiant Barrier Performance during the Heating Season  

E-Print Network (OSTI)

Results of winter experiments conducted in Central Texas are presented. The experiments were side-by-side tests using two identical 144 ft2 houses which responded similarly to weather variations prior to any retrofits. Two radiant barrier orientations were tested, horizontal barrier and barrier against the rafters, in vented and non-vented attics. The results compiled in this paper are for attics with R-19 fiberglass insulation. The data showed that radiant barriers were still effective during the winter season. During a typical day radiant barriers prevented approximately 9-17 percent of the indoor heat from escaping into the attic. No significant difference in moisture accumulation was detected in the attic with the radiant barrier.

Medina, M. A.; O'Neal, D. L.; Turner, W. D.

1992-05-01T23:59:59.000Z

344

City of Palo Alto Utilities - Commercial Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- 80door LED Lighting: Custom Occupancy Sensors: 20 - 55unit Window Film: 1.35square foot AtticRoofWall Insulation: 0.15square foot Dishwasher: 50 - 500 Ozone...

345

Avista Utilities (Electric) - Residential Energy Efficiency Rebate...  

Open Energy Info (EERE)

Insulation: 0.50sq. ft. Attic and Ceiling Insulation: 0.25sq. ft. Energy Star New Home: 650 Installation Requirements Insulation: New insulation that increases the R-Value...

346

Ventilation Effectiveness Research at UT-Typer Lab Houses  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Effectiveness Research Ventilation Effectiveness Research at UT-Tyler Lab Houses Source Of Outside Air, Distribution, Filtration Armin Rudd Twin (almost) Lab Houses at UT-Tyler House 2: Unvented attic, House 1: Vented attic lower loads + PV Ventilation Effectiveness Research 30 April 2013 2 * 1475 ft 2 , 3-bedroom houses * House 2 was mirrored plan * 45 cfm 62.2 ventilation rate * Garage connected to house on only one wall * Access to attic via pull-down stairs in garage * Further access to House 2 unvented attic through gasket sealed door Ventilation Effectiveness Research 30 April 2013 3 Testing Approach  Building enclosure and building mechanical systems characterization by measurement of building enclosure air leakage, central air distribution system airflows, and ventilation system airflows.

347

IID Energy - Residential Energy Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Residential Energy Efficiency Rebate Program IID Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Windows, Doors, & Skylights Maximum Rebate Central AC/Heat Pumps (Early Retirement/Replacement): $2,500 Program Info State California Program Type Utility Rebate Program Rebate Amount Attic Insulation (in pre-1978 houses): $0.60/sq ft Attic Insulation (in post-1978 houses): $0.15/sq ft Electric Attic Fan: $50 Solar Attic Fan: $125 Refrigerator: $50/unit Room Air Conditioner: $50/unit Dual Pane Windows: $2.00/sq ft Variable Speed Pool Pumps: $200 - $350/unit Central AC/Heat Pumps: $100 - $145/unit

348

Bats in the House  

NLE Websites -- All DOE Office Websites (Extended Search)

in the House Name: Michelle Location: NA Country: NA Date: NA Question: We are aware of having at least one and possibly more bats living in our attic. Recently (after they have...

349

Income Tax Deduction for Solar-Powered Roof Vents or Fans  

Energy.gov (U.S. Department of Energy (DOE))

Indiana allows taxpayers to take a deduction on solar-powered roof fans (or vent, also sometimes called an attic fan) installed in a home that the taxpayer owns or leases. The deduction is for 50%...

350

Cedarburg Light and Water Utility - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

300 Water Heaters: 25 - 100 Tankless Water Heaters: 100 Heat Pump Water Heater: 300 Air SealingAttic Insulation: Up to 300 Energy Star Home Performance: 33.3% of cost up to...

351

City of Danville Utilities - Business Energy Efficiency Rebates...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Amount Lighting: 0.175watt reduced New Occupancy Sensors: 0.05watt controlled LED Exit Sign: 14unit Air ConditioningHeat Pump Units: 40 - 60 Room AC: 25 Attic...

352

Guadalupe Valley Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washer: 50 Dishwasher: 50 Heat Pumps: 550-650unit (depending on efficiency) AtticWall Insulation: 0.20sq. ft. Window Solar ScreenFilm: 0.50sq. ft. Heat Pump Water...

353

Linn County Rural Electric Cooperative - Commercial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

dryer installed Energy Star Television: 50 Attic Insulation: 60% of cost, up to 600 Wall Insulation: 60% of cost, up to 600 Foundation Insulation: 60% of cost, up to 600...

354

La Lorraine Artiste: Nature, Industry, and the Nation in the Work of mile Gall and the cole de Nancy  

E-Print Network (OSTI)

temps semblables sont: le grenier, lasile, la patrie desIbid. , 84. Lair vieux grenier. Quoted in Charpentier,air of an old attic (grenier), 170 recalling his comment to

Dandona, Jessica Marie

2010-01-01T23:59:59.000Z

355

Energy 101: Home Energy Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a tight fit, you're losing energy and money. Next the technician might head up to your attic to check for leaks in the top of your home barrier. That trap door could be a...

356

Department of Energy Letter Forwarding the Los Alamos National...  

NLE Websites -- All DOE Office Websites (Extended Search)

are independent. The HVAC systems supply 100'7o outside air to the laboratories, offices, attic spaces, and basement areas. Except for the Administration Wing, the systems operate...

357

Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(often required by building codes) will help to reduce your use of air conditioning, and attic fans may also help keep cooling costs down. Learn More Whole-House Ventilation...

358

Building Energy Software Tools Directory: ZIP  

NLE Websites -- All DOE Office Websites (Extended Search)

ZIP ZIP logo. Program for estimating the economic levels or R-values of insulation in new or existing single family homes. Calculates economic levels of insulation for attics;...

359

The Equivalent Thermal Resistance of Tile Roofs with and without Batten Systems  

Science Conference Proceedings (OSTI)

Clay and concrete tile roofs were installed on a fully instrumented attic test facility operating in East Tennessee s climate. Roof, attic and deck temperatures and heat flows were recorded for each of the tile roofs and also on an adjacent attic cavity covered with a conventionally pigmented and direct-nailed asphalt shingle roof. The data were used to benchmark a computer tool for simulation of roofs and attics and the tool used to develop an approach for computing an equivalent seasonal R-value for sub-tile venting. The approach computed equal heat fluxes through the ceilings of roofs having different combinations of surface radiation properties and or building constructions. A direct nailed shingle roof served as a control for estimating the equivalent thermal resistance of the air space. Simulations were benchmarked to data in the ASHRAE Fundamentals for the thermal resistance of inclined and closed air spaces.

Miller, William A [ORNL] [ORNL

2013-01-01T23:59:59.000Z

360

Solar Dynamics | Open Energy Information  

Open Energy Info (EERE)

Dynamics Jump to: navigation, search Name Solar Dynamics Place Ottumwa, Iowa Zip IA 52501 Sector Solar Product Solar Dynamics is a US-based solar powered attic roof vents...

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Turlock Irrigation District - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clothes Washers: 35 Sun Screens: 1.00square foot Whole House Fans: 75 Solar Attic Fan: 100 Radiant Barrier: 0.10square foot Shade Tree: 20 each (3 max) Turlock...

362

Ameren Illinois (Gas) - Residential Energy Efficiency Rebates...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heater: 50 or 75 Programmable Thermostat: 25 AirDuct Sealing: Up to 1200 Attic Insulation: Up to 1400 Wall Insulation: Up to 2400 Ameren Illinois Utilities (AmerenIP,...

363

Thermal performance of clean horizontal radiant barriers under winter conditions: Laboratory measurements and mathematical modeling  

Science Conference Proceedings (OSTI)

Several field experiments have been performed on attic radiant barriers under winter conditions; however, most of them have been confined to the fairly mild climates of Florida, Oklahoma, and Tennessee. Only one field experiment in a very cold climate (Canada) has been performed. In addition, no previous laboratory experiments under winter conditions have been performed on an attic both with and without a radiant barrier. This paper presents the results of laboratory measurements of the thermal performance of clean horizontal radiant barriers in a simulated residential attic module under nighttime or low solar gain daytime winter conditions. Comparing tests under the same conditions with and without a radiant barrier shows that the addition of a clean horizontal radiant barrier to insulation at the R-22 to R-25 level decreases the ceiling heat flow by 6 to 8%. The experimental results were found to be in very good agreement with predictions made with a mathematical model for the thermal performance of attics.

Wilkes, K.E.; Childs, P.W.

1992-01-01T23:59:59.000Z

364

Thermal performance of clean horizontal radiant barriers under winter conditions: Laboratory measurements and mathematical modeling  

Science Conference Proceedings (OSTI)

Several field experiments have been performed on attic radiant barriers under winter conditions; however, most of them have been confined to the fairly mild climates of Florida, Oklahoma, and Tennessee. Only one field experiment in a very cold climate (Canada) has been performed. In addition, no previous laboratory experiments under winter conditions have been performed on an attic both with and without a radiant barrier. This paper presents the results of laboratory measurements of the thermal performance of clean horizontal radiant barriers in a simulated residential attic module under nighttime or low solar gain daytime winter conditions. Comparing tests under the same conditions with and without a radiant barrier shows that the addition of a clean horizontal radiant barrier to insulation at the R-22 to R-25 level decreases the ceiling heat flow by 6 to 8%. The experimental results were found to be in very good agreement with predictions made with a mathematical model for the thermal performance of attics.

Wilkes, K.E.; Childs, P.W.

1992-08-01T23:59:59.000Z

365

Save Energy Now (SEN) Assessment Helps Expand Energy Management Program at Shaw Industries: Flooring Company Saves $872,000 Annually by Improving Steam System Efficiency  

Science Conference Proceedings (OSTI)

This case study describes how the Shaw Industries plant #20 in Dalton, Georgia, achieved annual savings of $872,000 and 93,000 MMBtu after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its steam system.

Not Available

2008-07-01T23:59:59.000Z

366

A Tactile Luminous Floor Used as a Playful Space's Skin* Tobi Delbrck, Adrian M. Whatley, Rodney Douglas, Kynan Eng, Klaus Hepp and Paul F.M.J. Verschure  

E-Print Network (OSTI)

sensing detector (On-Trak); LED, blue light emitting diode (Digi-key); SP, short pass filter (Edmund

Delbruck, Tobi

367

As Ceasar Santucci gazed out from the 16th floor of the Kuwait Plaza Hotel, he surveyed the ruins of downtown Kuwait . He was distressed to  

E-Print Network (OSTI)

the price of crude oil and reasserted Iraq's claim to oil in a disputed border area inside Kuwait. During, he was among the first of hundreds of U.S . Army soldiers and civilians who, over the ensuing months, and trading. Oil wealth later transformed Kuwait into a modern nation with a high standard of living. Oil

US Army Corps of Engineers

368

ow Jane E. Luckhardt 621 Capitol Moll, 18'" Floor iIuck ha ,dtlg1downey bro nd.com Sacramento, CA 95814  

E-Print Network (OSTI)

and the International Electrotechnical Commission (IEC) are working on future standards. Turbine Sound Power Measurement-scale wind turbine sound power levels is the International Electrotechnical Commission IEC 61400-11 StandardWind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory

369

CHEMISTRY 101 `Chemistry for the Consumer' Instructor: Earle R. Adams: earle.adams@umontana.edu office CP117 first floor of the  

E-Print Network (OSTI)

relation to matter: Nuclear energy versus conventional energies: coal, wind, oil. Discussion on board preservation and its connection to energy. The connection of water as the great ,,solvent' and chemical of lifeH of common consumer goods. Energy: What is energy and how does energy permeate everything in science and why

Chu, Xi

370

Downtown Campus | 835 Market St., 6th floor | Powell St. BART/Muni www.cel.sfsu.edu | 415-405-7700  

E-Print Network (OSTI)

to the work I do everyday as a paralegal. Particularly important, I learned through the program how-405-7700 Graduate Benefit See page 2 paralegal studies sF state aBa approved academic Certificate program www.cel.sfsu.edu/paralegal/ "The program holds you to top standards: if you can succeed in it, you will be well prepared

371

Dust and ventilation effects on radiant barriers: Cooling season energy measurements  

Science Conference Proceedings (OSTI)

Cooling season tests were conducted in three unoccupied ranch-style houses in Karns, Tennessee, to determine the effects on attic radiant barrier performance incurred by changes in attic ventilation area ratio, attic ventilation type, and the buildup of dust on horizontal radiant barriers. All three houses had R-19 fiberglass batt insulation in their attics. Horizontal radiant barriers were artificially dusted and the dusted barriers showed measurable performance degradations, although the dusted barriers were still superior to no radiant barriers. Dust loadings of 0.34 and 0.74 mg/cm{sup 2} reduced a clean radiant barrier surface emissivity of 0.055 to 0.125 and 0.185, respectively. Total house cooling load increases amounted to 2.3 and 8.4% compared to house loads with clean horizontal barriers, respectively. When compared to R-19 with no horizontal radiant barrier conditions, the dusted horizontal radiant barriers reduced cooling loads by about 7%. Testing showed that increasing the attic ventilation area ratio from the minimum recommended of 1/300 to 1/150 had little if any effect on the house cooling load with either truss or horizontal barriers present in the attics. Radiant barriers, however, still reduced the house cooling load. There was essentially no difference in house cooling load reduction between either ridge/soffit or gable/soffit vent type with a truss radiant barrier, as both reduced cooling loads by about 8% when compared to no radiant barrier conditions. The attic-ventilation-type testing was done with a ventilation area ratio of 1/150.

Levins, W.P.; Karnitz, M.A. (Oak Ridge National Lab., TN (USA)); Hall, J.A. (Tennessee Valley Authority, Knoxville, TN (USA))

1990-05-01T23:59:59.000Z

372

KRFTWRK Global Human Electricity  

E-Print Network (OSTI)

went further into piezoelectric energy-generating floors at4. REFERENCES [1] Piezoelectric energy-generating floors at

Prohaska, Rainer

2009-01-01T23:59:59.000Z

373

Energy-conserving and passive-solar construction details  

DOE Green Energy (OSTI)

Diagrams are presented which show construction details for insulating foundations, walls, joists, roofs, and other components of energy-conserving residential and light commercial buildings; glazing systems; installing thermal mass; rock beds; and a passive hot air collector. The emphasis is on using commercially available building materials in new applications to minimize costs and maximize thermal design. The costs are given which are typical of what builders have incurred in different parts of the country. The thermal performance figures and comments are included. (LEW)

Taylor, R D

1981-04-01T23:59:59.000Z

374

Estimates of Energy Cost Savings Achieved from 2009 IECC Code-Compliant, Single Family Residences in Texas  

E-Print Network (OSTI)

This report presents estimates of the energy cost savings to be achieved from 2009 International Energy Conservation Code (IECC) code-compliant, single-family residences in Texas compared to the pre-2009 IECC codes, including: the 2001 IECC, the 2006 IECC, and the 2006 IECC w/ Houston amendments (w/ HA). A series of simulations were performed using an ESL simulation model (BDL version 4.01.07 of IC3) based on the DOE-2.1e simulation and the appropriate TMY2 weather files for three counties representing three 2009 IECC Climate Zones across Texas: Harris County for Climate Zone 2, Tarrant County for Climate Zone 3, and Potter County for Climate Zone 4. Two options based on the choice of heating fuel type were considered: (a) an electric/gas house (gas-fired furnace for space heating, and gas water heater for domestic water heating), and (b) a heat pump house (heat pump for space heating, and electric water heater for domestic water heating). The base-case building was assumed to be a 2,325 sq. ft., square-shape, one story, single-family, detached house with a floor-to-ceiling height of 8 feet. The house has an attic with a roof pitched at 23 degrees. The base-case building envelope and system characteristics were determined from the general characteristics and the climate-specific characteristics as specified in the 2001 IECC, the 2006 IECC, the 2006 IECC w/HA, and the 2009 IECC. In addition, to facilitate a better comparison with the 2009 code, several modifications were applied to the pre-2009 IECC codes. As a result, the estimated annual energy cost savings per house associated with the 2009 IECC compared to the 2001 and 2006 IECC are: (a) an electric/gas house: $462/year and $206/year for Harris County, $432/year and $216/year for Tarrant County, and $576/year and $153/year for Potter County and (b) a heat pump house: $490/year and $203/year for Harris County, $487/year and $226/year for Tarrant County, and $680/year and $155/year for Potter County. The corresponding % savings of total energy cost of a 2009 IECC code-compliant house are: (a) an electric/gas house: 22.7% and 10.1% for Harris County, 21.8% and 10.9% for Tarrant County, and 28.9% and 7.7% for Potter County and (b) a heat pump house: 21.6% and 8.9% for Harris County, 20.9% and 9.7% for Tarrant County, and 25.7% and 5.8% for Potter County.

Kim, H.; Baltazar, J. C.; Haberl, J.

2011-01-01T23:59:59.000Z

375

BTRIC - Tools & Calculators - ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Calculators Calculators Attic Radiant Barrier Calculator Low-Slope Roof Calculator for Commercial Buildings (6/05) - estimates annual energy cost savings Moisture Control for Low-Slope Roofing (5/04) - determine if a roof design needs a vapor retarder or if the roofing system can be modified to enhance its tolerance for small leaks Modified Zone Method Roof Savings Calculator (12/12) - for commerical and residential buildings using whole-building energy simulations Solar Reflectance Index (SRI) Calculator (6/06) Steep-Slope Roof Calculator on Residential Buildings (6/05) - estimate annual energy cost savings Whole-Wall R-Value Calculator 2.0 (10/06) ZIP-Code R-Value Recommendation Calculator (1/08) Roofs/Attics Attic Radiant Barrier Fact Sheet (Jan 2011) Cool Roofs Will Revolutionize the Building Industry Fact Sheet

376

Insulation Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE/CE-0180 DOE/CE-0180 2008 Department of Energy Assistant Secretary Energy Efficiency and Renewable Energy Contents: Introduction Why Insulate Your House? How Insulation Works Which Kind of Insulation is Best? What Is an R-Value? Reading the Label Insulation Product Types Insulating a New House Where and How Much Air Sealing Moisture Control and Ventilation Installation Issues Precautions Attics Walls Design Options Crawlspaces and Slabs Advanced Wall Framing Metal Framing Insulating Concrete Forms Massive Walls Structural Insulated Panels External Insulation Finish System Attic Ventilation or a Cathedralized Attic Adding Insulation to an Existing House Where and How Much How Much Insulation Do I Already Have? Air Sealing Moisture Control and Ventilation Insulation Installation, the Retrofit Challenge

377

Effect of Return Air Leakage on Air Conditioner Performance in Hot/Humid Climates  

E-Print Network (OSTI)

An experimental study was conducted to quantify the effect of return air leakage from hot/humid attic spaces on the performance of a residential air conditioner. Tests were conducted in psychrometric facilities where temperatures and humidities could be controlled closely. Return air leakage from hot attic spaces was simulated by assuming adiabatic mixing of the indoor air at normal conditions with the attic air at high temperatures. Effective capacity and Energy Efficiency Ratio both decreased with increased return air leakage. However, power consumption was relatively constant for all variables except outdoor temperature, which meant that for the same power consumption, the unit delivered much lower performance when there was return air leakage. The increase in sensible heat ratio (SHR) with increasing leakage showed one of the most detrimental effects of return air leakage on performance.

O'Neal, D. L.; Rodriguez, A.; Davis, M.; Kondepudi, S.

1996-01-01T23:59:59.000Z

378

Sustainable Retrofit of Residential Roofs Using Metal Roofing Panels, Thin-Film Photovoltaic Laminates, and PCM Heat Sink Technology  

DOE Green Energy (OSTI)

During September-October 2009, research teams representing Metal Construction Association (the largest North American trade association representing metal building manufacturers, builders, and material suppliers), CertainTeed (one of the largest U.S. manufacturers of thermal insulation and building envelope materials), Unisolar (largest U.S. producer of amorphous silicone photo-voltaic (PV) laminates), Phase Change Energy (manufacturer of bio-based PCM), and Oak Ridge National Laboratory (ORNL) installed three experimental attics utilizing different roof retrofit strategies in the ORNL campus. The main goal of this project was experimental evaluation of a newly-developed sustainable re-roofing technology utilizing amorphous silicone PV laminates integrated with metal roof and PCM heat sink. The experimental attic with PV laminate was expected to work during the winter time as a passive solar collector with PCM storing solar heat, absorbed during the day, and increasing overall attic air temperature during the night.

Kosny, Jan [ORNL; Miller, William A [ORNL; Childs, Phillip W [ORNL; Biswas, Kaushik [ORNL

2011-01-01T23:59:59.000Z

379

Analysis of annual thermal and moisture performance of radiant barrier systems  

Science Conference Proceedings (OSTI)

This report summarizes a project to model the annual thermal and moisture performance of radiant barrier systems installed in residential attics. A previously developed model for the thermal performance of attics with radiant barriers was modified to allow estimates of moisture condensation on the underside of radiant barriers that are laid directly on top of existing attic insulation. The model was partially validated by comparing its predictions of ceiling heat flows and moisture condensation with data and visual observations made during a field experiment with full-size houses near Knoxville, Tennessee. Since the model predictions were found to be in reasonable agreement with the experimental data, the models were used to estimate annual energy savings and moisture accumulation rates for a wide variety of climatic conditions. The models results have been used to identify locations where radiant barriers are cost effective and also where radiant barriers have potential for causing moisture problems. 58 refs., 20 figs., 32 tabs.

Wilkes, K.E.

1991-04-01T23:59:59.000Z

380

Analysis of annual thermal and moisture performance of radiant barrier systems  

Science Conference Proceedings (OSTI)

This report summarizes a project to model the annual thermal and moisture performance of radiant barrier systems installed in residential attics. A previously developed model for the thermal performance of attics with radiant barriers was modified to allow estimates of moisture condensation on the underside of radiant barriers that are laid directly on top of existing attic insulation. The model was partially validated by comparing its predictions of ceiling heat flows and moisture condensation with data and visual observations made during a field experiment with full-size houses near Knoxville, Tennessee. Since the model predictions were found to be in reasonable agreement with the experimental data, the models were used to estimate annual energy savings and moisture accumulation rates for a wide variety of climatic conditions. The model results have been used to identify locations where radiant barriers are cost effective and also where radiant barriers have potential for causing moisture problems. 58 refs., 20 figs., 32 tabs.

Wilkes, K.E. (Oak Ridge National Lab., TN (United States))

1991-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

CPS Energy - Residential Energy Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CPS Energy - Residential Energy Efficiency Rebate Program CPS Energy - Residential Energy Efficiency Rebate Program CPS Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Sealing Your Home Ventilation Commercial Lighting Lighting Other Heat Pumps Program Info State Texas Program Type Utility Rebate Program Rebate Amount Energy Audits: Varies Central AC/Heat Pump: $110 - $225/ton, varies by efficiency rating Refrigerator Recycling: $65 Refrigerator Replacement: $35 Room A/C (window unit): $50 - $100, varies by capacity Attic/Foam Attic Insulation: $0.25/sq. ft. installed DIY-Attic Insulation: $0.15/sq.ft. installed

382

Number | Open Energy Information  

Open Energy Info (EERE)

Number Number Jump to: navigation, search Properties of type "Number" Showing 200 properties using this type. (previous 200) (next 200) A Property:AvgAnnlGrossOpCpcty Property:AvgTempGeoFluidIntoPlant Property:AvgWellDepth B Property:Building/FloorAreaChurchesChapels Property:Building/FloorAreaGroceryShops Property:Building/FloorAreaHealthServices24hr Property:Building/FloorAreaHealthServicesDaytime Property:Building/FloorAreaHeatedGarages Property:Building/FloorAreaHotels Property:Building/FloorAreaMiscellaneous Property:Building/FloorAreaOffices Property:Building/FloorAreaOtherRetail Property:Building/FloorAreaResidential Property:Building/FloorAreaRestaurants Property:Building/FloorAreaSchoolsChildDayCare Property:Building/FloorAreaShops Property:Building/FloorAreaSportCenters

383

Dominion East Ohio (Gas) - Home Performance Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dominion East Ohio (Gas) - Home Performance Program Dominion East Ohio (Gas) - Home Performance Program Dominion East Ohio (Gas) - Home Performance Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Appliances & Electronics Water Heating Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Furnace: $300-$400 Boiler: $250-$300 Duct Sealing: $40/hour Air Sealing: $40/hour Programmable Thermostat: $30/thermostat Storage Water Heater: $100 Tankless Water Heater: $150 Condensing Water Heater: $125 Water Heater Tank Insulation: $10 Attic Access Insulation: $30 Wall/Attic/Duct Insulation: $0.30/sq. ft.

384

Buried and Encapsulated Ducts, Jacksonville, Florida (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buried and Encapsulated Ducts Buried and Encapsulated Ducts Jacksonville, Florida PROJECT INFORMATION Project Name: Buried and Encapsulated Ducts Location: Jacksonville, FL Partners: BASF http://www.basf.com Consortium for Advanced Residential Buildings www.carb-swa.com Building Component: Ductwork and Attic Insulation Application: New and/or Retrofit; Single-Family Year Tested: 2010-2011 Applicable Climate Zone(s): All Climates in IECC Moisture Regime A. PERFORMANCE DATA Cost of Energy-Efficiency Measure (including labor): $2,439 Projected Energy Savings: 34% cooling and heating savings Projected Energy Cost Savings: $11/month or $135/year Ductwork installed in unconditioned attics can significantly increase the overall

385

Progress Energy Carolinas - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Progress Energy Carolinas - Residential Energy Efficiency Rebate Progress Energy Carolinas - Residential Energy Efficiency Rebate Program Progress Energy Carolinas - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Ventilation Heat Pumps Windows, Doors, & Skylights Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Air duct repair and replacement: Up to $190 Attic insulation upgrade and attic sealing: $500 Geothermal heat pump replacement: $300 HVAC Audit: $100 High-efficiency heat pump replacement: $300 High-efficiency central AC replacement: $300 Refrigerator/Freezer Recycling: $50/unit Provider Progress Energy Carolinas

386

Newfoundland Greenhome: energy efficient design for a cold foggy climate  

Science Conference Proceedings (OSTI)

St. John's Newfoundland has a cold, ocean moderated climate. During much of the September to May heating season cloud cover and fog reduce possible sunshine by 70%. This was important in determining design strategy. First priority was given to energy conservation, second to solar gain and third to thermal mass. The living space is super-insulated with a small area of south facing windows and other energy conserving features. Most solar gain takes place outside the living space in the large attached Greenhouse and solar attic. Solar heated air is transferred from the Attic to the cement and rock thermal storage under level 1 by a thermostatically controlled fan.

Evans, J.W.; Mellin, R.E.

1980-01-01T23:59:59.000Z

387

Status of cool roof standards in the United States  

E-Print Network (OSTI)

roofs (Table 5.5 of ASHRAE 90.2- Climate Zone Roof U-FactorASHRAE 2004a) tabulates thermal transmittance multipliers by U.S. climate zones (ASHRAE 2007). ceilings with attics wood frame steel frame climate conventional cool conventional cool zone

Akbari, Hashem; Levinson, Ronnen

2008-01-01T23:59:59.000Z

388

Appalachian Energy Center Appalachian State University  

E-Print Network (OSTI)

research. One such publication and presentation was the Revised Duct Design presentation and power point while reducing installation costs and saving space. The major potential benefit for two story homes with open stairwells would be the option to move the air handler from the attic into the space

Rose, Annkatrin

389

Fact Sheet Radiant barriers and interior radiation control  

E-Print Network (OSTI)

the insulation, the radiant barrier will lose most of its effectiveness in reducing heating and cooling loads in central Florida. Subsequent monitoring and data analysis showed cooling energy savings of 9%, peak load with air-conditioning ductwork in the attic in the deep south (such as in Miami in Zone 1 or Austin in Zone

Oak Ridge National Laboratory

390

battery, map parcel, med  

E-Print Network (OSTI)

Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

Rosenthal, Jeffrey S.

391

Servant dictionary battery, map  

E-Print Network (OSTI)

Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

Rosenthal, Jeffrey S.

392

The Effects of Infrared-Blocking Pigments and Deck Venting on Stone-Coated Metal Residential Roofs  

Science Conference Proceedings (OSTI)

Field data show that stone-coated metal shakes and S-mission tile, which exploit the use of infraredblocking color pigments (IrBCPs), along with underside venting reduce the heat flow penetrating the conditioned space of a residence by 70% compared with the amount of heat flow penetrating roofs with conventional asphalt shingles. Stone-coated metal roof products are typically placed on battens and counter-battens and nailed through the battens to the roof deck. The design provides venting on the underside of the metal roof that reduces the heat flow penetrating a home. The Metal Construction Association (MCA) and its affiliate members installed stone-coated metal roofs with shake and S-mission tile profiles and a painted metal shake roof on a fully instrumented attic test assembly at Oak Ridge National Laboratory (ORNL). Measurements of roof, deck, attic, and ceiling temperatures; heat flows; solar reflectance; thermal emittance; and ambient weather were recorded for each of the test roofs and also for an adjacent attic cavity covered with a conventional pigmented and direct nailed asphalt shingle roof. All attic assemblies had ridge and soffit venting; the ridge was open to the underside of the stone-coated metal roofs. A control assembly with a conventional asphalt shingle roof was used for comparing deck and ceiling heat transfer rates.

Miller, William A [ORNL

2006-01-01T23:59:59.000Z

393

Cooling season energy measurements of dust and ventilation effects on radiant barriers  

Science Conference Proceedings (OSTI)

Cooling season tests were conducted in three unoccupied ranch-style houses in Karns, Tennessee, to determine the effects on attic radiant barrier performance incurred by changes in attic ventilation area ratio, attic ventilation type, and the buildup of dust on horizontal radiant barriers. All three houses had R-19 fiberglass batt insulation in their attics. Horizontal radiant barriers were artificially dusted and the dusted barriers showed measurable performance degradations, although the dusted barriers were still superior to no radiant barriers. Dust loadings of 0.34 and 0.74 mg/cm{sup 2} reduced a clean radiant barrier surface emissivity of 0.055 to 0.125 and 0.185, respectively. Total house cooling load increases amounted to 2.3 and 8.4% compared to house loads with clean horizontal barriers, respectively. When compared to R-19 with no horizontal radiant barrier conditions, the dusted horizontal radiant barriers reduced cooling loads by about 7%. 18 refs., 18 figs., 30 tabs.

Levins, W.P.; Karnitz, M.A. (Oak Ridge National Lab., TN (USA)); Hall, J.A. (Tennessee Valley Authority, Knoxville, TN (USA))

1990-02-01T23:59:59.000Z

394

Released: June 2006  

U.S. Energy Information Administration (EIA) Indexed Site

0. Number of Floors, Number of Buildings and Floorspace for Non-Mall Buildings, 2003" 0. Number of Floors, Number of Buildings and Floorspace for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)",,,,,,"Total Floorspace (million square feet)" ,"All Build- ings*","One Floor","Two Floors","Three Floors","Four to Nine Floors","Ten or More Floors","All Build- ings*","One Floor","Two Floors","Three Floors","Four to Nine Floors","Ten or More Floors" "All Buildings* ...............",4645,3136,1031,339,128,12,64783,25981,16270,7501,10085,4947 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2014,411,115,"Q","N",6789,5192,1217,343,"Q","N"

395

Energy efficient data centers  

E-Print Network (OSTI)

Sealing floor openings can improve efficiency by directing airSealing floor openings can improve efficiency by directing airSealing floor openings can improve efficiency by directing air

Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

2004-01-01T23:59:59.000Z

396

Development of a California commercial building benchmarking database  

E-Print Network (OSTI)

Used to determine the climate zone. Floor Area. This is usedBuilding Activity, Climate Zone, and Floor Area. A number ofbuildings with. Climate Zone. The California Energy

Kinney, Satkartar; Piette, Mary Ann

2002-01-01T23:59:59.000Z

397

NIST WTC 7 Investigation Finds Building Fires Caused ...  

Science Conference Proceedings (OSTI)

... the building superstructure to the columns of the electric substation (over which ... floor framing and/or composite floor systems." Engineers, the team ...

2011-08-15T23:59:59.000Z

398

NIST Releases WTC 7 Investigation Report for Public ...  

Science Conference Proceedings (OSTI)

... the building superstructure to the columns of the electric substation (over which ... floor framing and/or composite floor systems. Engineers, the team ...

2011-08-12T23:59:59.000Z

399

Intertek  

Science Conference Proceedings (OSTI)

... Floor Coverings in Reducing Impact Sound Transmission Through Concrete Floors. [08/P60] ANSI S12.51 Determination of Sound Power Levels of ...

2013-08-23T23:59:59.000Z

400

Volatile organic compound concentrations and emission rates measured over one year in a new manufactured house  

E-Print Network (OSTI)

living area. The subfloor is plywood; 17 % of the floor areafiberboard passage doors, and plywood sub flooring underA possible source is the plywood subfloor. However, terpene

Hodgson, Alfred T.; Nabinger, Steven J.; Persily, Andrew K.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DOE Solar Decathlon: 2005 Contests and Scoring - Dwelling  

NLE Websites -- All DOE Office Websites (Extended Search)

work and home. Main floor master suites ensure that houses remain livable as homeowners age. The building industry constantly adapts to lifestyle changes with new floor...

402

CEBAF Center - Cavity Display  

NLE Websites -- All DOE Office Websites (Extended Search)

CEBAF Center - Cavity Display Building Exterior 1st Floor Cafeteria Cavity Display CEBAF Center Auditorium Eating Area UserInternational Liaison Office 2nd Floor Computer Center...

404

Demo: touch-less interaction with medical images using hand & foot gestures  

Science Conference Proceedings (OSTI)

Keywords: floor sensor, gesture-based interaction, touch-less interaction in hospital, wearable sensor

Shahram Jalaliniya, Jeremiah Smith, Miguel Sousa, Lars Bthe, Thomas Pederson

2013-09-01T23:59:59.000Z

405

Appendices  

Science Conference Proceedings (OSTI)

... Environmental conditions, Orientation of space, complexity, deteriorating environmental conditions ... people according to floors/ internal spaces, etc. ...

2010-07-19T23:59:59.000Z

406

Energy Efficiency Indicators Methodology Booklet  

E-Print Network (OSTI)

washing machine, dishwashers and TV) Unit consumptionelectric and gas ranges, dishwasher water heating Floor

Sathaye, Jayant

2010-01-01T23:59:59.000Z

407

Glossary | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

R-value R-value A measure (h ft2 °F/Btu) of thermal resistance, or how well a material or series of materials resists the flow of heat. The R-value is the reciprocal of the U-factor. Radiant Heating System A heating system that transfers heat to objects and surfaces within the heated space primarily (greater than 50%) by infrared radiation. Raised Truss Raised truss refers to any roof/ceiling construction that allows the insulation to achieve its full thickness over the plate line of exterior walls. Several constructions allow for this, including elevating the heel (sometimes referred to as an energy truss, raised-heel truss, or Arkansas truss), use of cantilevered or oversized trusses, lowering the ceiling joists, or framing with a raised rafter plate. Rated Lamp Wattage

408

Deep Residential Retrofits in East Tennessee  

SciTech Connect

Executive Summary Oak Ridge National Laboratory (ORNL) is furthering residential energy retrofit research in the mixed-humid climate of East Tennessee by selecting 10 homes and guiding the homeowners in the energy retrofit process. The homeowners pay for the retrofits, and ORNL advises which retrofits to complete and collects post-retrofit data. This effort is in accordance with the Department of Energy s Building America program research goal of demonstrating market-ready energy retrofit packages that reduce home energy use by 30 50%. Through this research, ORNL researchers hope to understand why homeowners decide to partake in energy retrofits, the payback of home energy retrofits, and which retrofit packages most economically reduce energy use. Homeowner interviews help the researchers understand the homeowners experience. Information gathered during the interviews will aid in extending market penetration of home energy retrofits by helping researchers and the retrofit industry understand what drives homeowners in making positive decisions regarding these retrofits. This report summarizes the selection process, the pre-retrofit condition, the recommended retrofits, the actual cost of the retrofits (when available), and an estimated energy savings of the retrofit package using EnergyGauge . Of the 10 households selected to participate in the study, only five completed the recommended retrofits, three completed at least one but no more than three of the recommended retrofits, and two households did not complete any of the recommended retrofits. In the case of the two homes that did none of the recommended work, the pre-retrofit condition of the homes and the recommended retrofits are reported. The five homes that completed the recommended retrofits are monitored for energy consumption of the whole house, appliances, space conditioning equipment, water heater, and most of the other circuits with miscellaneous electric loads (MELs) and lighting. Thermal comfort is also monitored, with temperature and humidity measured in all conditioned zones, attics, crawlspaces, and unconditioned basements. In some homes, heat flux transducers are installed on the basement walls to help determine the insulating qualities of the technologies and practices. EnergyGauge is used to estimate the pre-retrofit and post-retrofit home energy rating system (HERS) index and reduction in energy consumption and energy bill. In a follow-up report, data from the installed sensors will be presented and analyzed as well as a comparison of the post-retrofit energy consumption of the home to the EnergyGauge model of the post-retrofit home. Table ES1 shows the retrofits that were completed at the eight households where some or all of the recommended retrofits were completed. Home aliases are used to keep the homeowners anonymous. Some key findings of this study thus far are listed as follows. Some homeowners (50%) are not willing to spend the money to reach 30 50% energy savings. Quality of retrofit work is significantly variable among contractors which impact the potential energy savings of the retrofit. Challenges exist in defining house volume and floor area. Of the five homes that completed all the recommended retrofits, energy bill savings was not the main driver for energy retrofits. In no case were the retrofits cost neutral given a 15 year loan at 7% interest for the retrofit costs.

Boudreaux, Philip R [ORNL; Hendrick, Timothy P [ORNL; Christian, Jeffrey E [ORNL; Jackson, Roderick K [ORNL

2012-04-01T23:59:59.000Z

409

Southern Power District - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southern Power District - Residential Energy Efficiency Rebate Southern Power District - Residential Energy Efficiency Rebate Programs Southern Power District - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Program Info State Nebraska Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $100- $300 Geothermal Heat Pump: $400 Heat Pump (14 Seer minimum): $50 contractor rebate Attic Insulation: $0.15/sq. ft. HVAC Tune-Up: $30 Provider Southern Power District Southern Power District (SPD) offers rebates for the purchase and installation of efficient air source heat pumps, geothermal heat pumps, attic insulation, and HVAC tune-ups. Contractors who install 14 Seer or

410

Radiant Barriers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Barriers Barriers Radiant Barriers May 30, 2012 - 2:07pm Addthis What does this mean for me? Properly installed radiant barriers can reduce your cooling costs. Radiant barriers are easiest to install in new construction, but can be installed in your existing house, especially if it has an open attic. How does it work? Radiant barriers work by reflecting radiant heat away from living spaces. Radiant barriers are installed in homes -- usually in attics -- primarily to reduce summer heat gain and reduce cooling costs. The barriers consist of a highly reflective material that reflects radiant heat rather than absorbing it. They don't, however, reduce heat conduction like thermal insulation materials. How They Work Heat travels from a warm area to a cool area by a combination of

411

Energy Efficiency and Conservation Block Grant Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OK-TRIBE-IOWA TRIBE OF OKLAHOMA Energy Efficiency and Conservation Block Grant Program Location: Tribe OK-TRIBE-IOWA TRIBE OF OKLAHOMA OK American Recovery and Reinvestment Act: Proposed Action or Project Description The Iowa Tribe of Oklahoma proposes to develop an energy efficiency strategy and also attend workshops and training on retrofitting tribal buildings. In addition, building retrofits would be conducted on tribal buildings built around the 1989-2003 time period and would include: attic insulation, door weather stripping, caulk windows, repair air conditioning (A/C) units and replace line insulation, increase attic ventilation, replace and repair doors, replace inefficient A/C units with energy efficient units, install window film, roof insulation, hot water tank replacements and insulate lines, and installation of automatic controls

412

Austin Energy - Residential Energy Efficiency Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Energy - Residential Energy Efficiency Rebate Program Austin Energy - Residential Energy Efficiency Rebate Program Austin Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Up to 20% of the cost of improvements, up to $1,575 Bonus incentives up to $700 Program Info State Texas Program Type Utility Rebate Program Rebate Amount Central AC/Heat Pump: $350 - $600 Package Unit AC/Heat Pump: $400 - $550 Weatherization Bonus: $250 - $500 Solar Screens/Solar Film: $1/sq. ft. Attic Insulation to R-38: varies by original R-value Radiant Barrier: $0.10/sq. ft. of accessible attic space

413

CX-008199: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Categorical Exclusion Determination 9: Categorical Exclusion Determination CX-008199: Categorical Exclusion Determination Oklahoma TRIBE-IOWA TRIBE OF OKLAHOMA CX(s) Applied: A9, A11, B2.5, B5.1 Date: 04/23/2012 Location(s): Oklahoma Offices(s): Energy Efficiency and Renewable Energy Energy Efficiency and Conservation Block Grant. The Iowa Tribe of Oklahoma proposes to develop an energy efficiency strategy and also attend workshops and training on retrofitting tribal buildings. In addition, building retrofits would be conducted on tribal buildings built around the 1989-2003 time period and would include: attic insulation, door weather stripping, caulk windows, repair air conditioning (A/C) units and replace line insulation, increase attic ventilation, replace and repair doors, replace inefficient A/C units with energy efficient units, install window film,

414

U.S. Department of Energy NEPA Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KY-County-Bullitt KY-County-Bullitt Location: County Bullitt KY American Recovery and Reinvestment Act: Proposed Action or Project Description 1) Development of an energy efficiency and conservation strategy (completed), 2) retrofit the Annex building (1979) by installation of a new roof structure and roof with attic ventilation, addition of new attic insulation, and replacement of the HVAC system with a more energy efficient system, 3) replacement of the inaccurate natural gas meter at the Community Action/Red Cross Building, 4) retrofit the pumps and controls for five sanitary sewer lift stations Conditions: None Categorical Exclusion(s) Applied: A9, A11, B2.5, B5.1 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21

415

How Are You Keeping Your Home Cool This Summer? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Keeping Your Home Cool This Summer? Keeping Your Home Cool This Summer? How Are You Keeping Your Home Cool This Summer? July 21, 2011 - 8:06am Addthis This week, Allison shared her experience of adding insulation to her attic. The result? A better-insulated home with less use of her air conditioning system. It's one of several things she's doing to keep her home cool during the summer (though insulation is effective year round). How are you keeping your home cool this summer? Have you taken any steps to improve the efficiency of your attic? Each week, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles How Do You Shade Your Home in the Summer?

416

Silicon Valley Power - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Residential Energy Efficiency Rebate Program Silicon Valley Power - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Commercial Heating & Cooling Program Info State California Program Type Utility Rebate Program Rebate Amount Attic Insulation: $175 Ceiling Fan: $35 each Heat Pump Water Heater: up to $1,000 LED Bulbs: $15/bulb installed Pool Pump: $200 Refrigerator: $50 Refrigerator recycling: $35 Room AC: $25 Room AC Recycling: $25 Solar Attic Fan: $100 Whole House Fan: $200 Provider Silicon Valley Power Silicon Valley Power offers rebates to residential customers for the purchase of a variety of energy efficient products including:

417

Insulation Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Materials Insulation Materials Insulation Materials May 30, 2012 - 10:08am Addthis Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Rigid foam board adds R-value to this wall in a Florida home. | Photo courtesy of FSEC/IBACOS. Rigid foam board adds R-value to this wall in a Florida home. | Photo

418

How Are You Keeping Your Home Cool This Summer? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Are You Keeping Your Home Cool This Summer? How Are You Keeping Your Home Cool This Summer? How Are You Keeping Your Home Cool This Summer? July 21, 2011 - 8:06am Addthis This week, Allison shared her experience of adding insulation to her attic. The result? A better-insulated home with less use of her air conditioning system. It's one of several things she's doing to keep her home cool during the summer (though insulation is effective year round). How are you keeping your home cool this summer? Have you taken any steps to improve the efficiency of your attic? Each week, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles How Do You Shade Your Home in the Summer?

419

NREL: News Feature - Weatherization Work Guidelines Launched  

NLE Websites -- All DOE Office Websites (Extended Search)

Weatherization Work Guidelines Launched Weatherization Work Guidelines Launched September 30, 2013 Photo of a man in a suit blowing insulation into an attic. Enlarge image William Stewart with Veterans Green Jobs blows cellulose insulation in the attic of a home A recent collaboration between the Energy Department, NREL, and the home energy performance industry is supporting the weatherization workforce with consistent on-the-job tools and accreditations that lead to better-defined career paths. Credit: Dennis Schroeder Getting up and going to work is hard enough every day. But add to your burden the need to remember every step of your job down to the smallest detail - and the fact that if you want to change careers, your lack of credentials might mean starting from scratch. These are the challenges

420

CX-003452: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

52: Categorical Exclusion Determination 52: Categorical Exclusion Determination CX-003452: Categorical Exclusion Determination Oklahoma - Tribe - Iowa Tribe of Oklahoma CX(s) Applied: A9, A11, B2.5, B5.1 Date: 08/11/2010 Location(s): Oklahoma Office(s): Energy Efficiency and Renewable Energy Energy Efficiency and Conservation Block Grant Program. The Iowa Tribe of Oklahoma proposes to develop an energy efficiency strategy and also attend workshops and training on retrofitting tribal buildings. In addition, building retrofits would be conducted on tribal buildings built around the 1989-2003 time period and would include: attic insulation, door weather stripping, caulk windows, repair air conditioning (A/C) units and replace line insulation, increase attic ventilation, replace and repair doors, replace inefficient A/C units with energy efficient units, install window

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CenterPoint Energy (Gas) - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CenterPoint Energy (Gas) - Residential Energy Efficiency Rebate CenterPoint Energy (Gas) - Residential Energy Efficiency Rebate Program CenterPoint Energy (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate Air Sealing/Weatherization: $350 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Forced-air furnaces: $150-$400 Natural gas boiler: $300 Natural gas condensing boiler: $500 Natural gas water heater: $70-$100 Storage tank indirect water heater: $200 Attic Air Sealing: 50% of cost, up to $200 Attic/Wall Insulation: 50% of cost, up to $150 Energy Audit: Reduced Cost

422

CX-007374: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

374: Categorical Exclusion Determination 374: Categorical Exclusion Determination CX-007374: Categorical Exclusion Determination Nevada-TRIBE-YOMBA SHOSHONE TRIBE CX(s) Applied: B2.5, B5.1 Date: 12/08/2011 Location(s): Nevada Offices(s): Energy Efficiency and Renewable Energy Energy Efficiency and Conservation Block Grant. The Yomba Shoshone Tribe of the Yomba Reservation of Nevada proposes to provide Tribal residences with energy efficient weatherization materials consisting of compact fluorescent light bulbs and ultra saver shower heads. The Tribe also proposes to install solar attic fans, utilizing Tribal staff, to circulate the air in the attics on the Tribal residences and on the Tribal buildings. The residences and Tribal buildings being retrofitted are not on or eligible for listing on the National Register of Historic Places.

423

Coast Electric Power Association - Comfort Advantage Home Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coast Electric Power Association - Comfort Advantage Home Program Coast Electric Power Association - Comfort Advantage Home Program Coast Electric Power Association - Comfort Advantage Home Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount 300 - 500, varies by home efficiency 150 per additional qual$300 - $500, varies by home efficiency Geothermal Heat Pumps: $400 - $500 Additional Heat Pump Units (When Required): $150ified heat pump system Provider Coast Electric Power Association Coast Electric Power Association (CEPA) provides rebates on heat pumps to new homes which meet certain weatherization standards. To qualify for this rebate the home must have: * Attic insulation of at least R-38 or encapsulated foam attic insulation

424

City of Palo Alto Utilities - Smart Energy Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Palo Alto Utilities - Smart Energy Rebate Program City of Palo Alto Utilities - Smart Energy Rebate Program City of Palo Alto Utilities - Smart Energy Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate Offer is limited to one rebate per CPAU account per program period, for each qualifying measure Program Info State California Program Type Utility Rebate Program Rebate Amount Dishwashers: $50 Refrigerators: $50 Refrigerator Recycling Bonus: $35 Clothes Washers: $125 Power Strips: $10 Gas Furnaces: $200 Central AC Replacement: $200 - $300 Solar Attic Fan: $25 Boilers: $300 Attic/Roof/Wall Insulation: $150 - $200

425

Geek-Up[3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery 3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery Geek-Up[3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery March 4, 2011 - 5:03pm Addthis An Attic black-figured amphora, currently in the British Museum, of the type that will be studied at SLAC. | Photo by Marie-Lan Nguyen, Courtesy of SLAC National Accelerator Laboratory An Attic black-figured amphora, currently in the British Museum, of the type that will be studied at SLAC. | Photo by Marie-Lan Nguyen, Courtesy of SLAC National Accelerator Laboratory Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs Last week, Bonneville Power Administration dispatchers in the Dittmer Control Center celebrated a milestone - for the first time, wind

426

Non-profit Making a Difference in Louisiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-profit Making a Difference in Louisiana Non-profit Making a Difference in Louisiana Non-profit Making a Difference in Louisiana March 12, 2010 - 4:58pm Addthis SMILE Weatherization Coordinator Venice Roberts shows client Shelia Sturgis an attic tent, which conserves energy and decreases costs. | Photo by Susannah Malbreau SMILE Weatherization Coordinator Venice Roberts shows client Shelia Sturgis an attic tent, which conserves energy and decreases costs. | Photo by Susannah Malbreau Change is in the air at SMILE Community Action Agency. The non-profit received a $3 million American Recovery and Reinvestment Act grant for its weatherization program. With the needed boost in funding Louisiana-based SMILE can increase its reach. SMILE targets five unique parishes, helping locals conserve energy and save

427

Training Program Graduates Weatherization-Ready Workers | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Training Program Graduates Weatherization-Ready Workers Training Program Graduates Weatherization-Ready Workers Training Program Graduates Weatherization-Ready Workers April 29, 2010 - 5:45pm Addthis Daniel Tello demonstrates how to prepare an attic space for insulation using skills learned from the First Choice Program. | Photo courtesy of HCDC, Human Capital Development Corp., Inc. and Scott Anderson Daniel Tello demonstrates how to prepare an attic space for insulation using skills learned from the First Choice Program. | Photo courtesy of HCDC, Human Capital Development Corp., Inc. and Scott Anderson Lindsay Gsell On graduation day, students at Human Capital Development Corp., Inc. (HCDC) leave with more than just a diploma. They receive a hard hat, tool belt, hammer, utility knife and a tape measure. Graduates from Racine, Wis.-based HCDC First Choice Program are literally

428

Insulation Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Materials Insulation Materials May 30, 2012 - 10:08am Addthis Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Cellulose, a fiber insulation material with a high recycled content, is blown into a home attic. | Photo courtesy of Cellulose Insulation Manufacturers Association. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Blown-in fiberglass insulation thoroughly fills the stud cavities in this home. | Photo courtesy of Bob Hendron, NREL. Rigid foam board adds R-value to this wall in a Florida home. | Photo courtesy of FSEC/IBACOS. Rigid foam board adds R-value to this wall in a Florida home. | Photo

429

U.S. Department of Energy NEPA Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OK-TRIBE-IOWA TRIBE OF OKLAHOMA OK-TRIBE-IOWA TRIBE OF OKLAHOMA Location: Tribe OK-TRIBE-IOWA TRIBE OF OKLAHOMA OK American Recovery and Reinvestment Act: Proposed Action or Project Description: The Iowa Tribe of Oklahoma proposes to develop an energy efficiency strategy and also attend workshops and training on retrofitting tribal buildings. In addition, building retrofits would be conducted on tribal buildings built around the 1989-2003 time period and would include: attic insulation, door weather stripping, caulk windows, repair air conditioning (A/C) units and replace line insulation, increase attic ventilation, replace and repair doors, replace inefficient A/C units with energy efficient units, install window film, roof insulation, hot water tank replacements and insulate lines, and installation of automatic controls

430

Estimating the Payback Period of Additional Insulation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Payback Period of Additional Insulation the Payback Period of Additional Insulation Estimating the Payback Period of Additional Insulation June 24, 2012 - 1:17pm Addthis Adding insulation in the attic of an existing home often results in a favorable payback. | Photo courtesy of Lieko Earle, NREL PIX 19612. Adding insulation in the attic of an existing home often results in a favorable payback. | Photo courtesy of Lieko Earle, NREL PIX 19612. What does this mean for me? Even if you hire a contractor to do the work, adding insulation to your home will likely have an attractive payback. If you can gather the information and plug it into an equation, you can determine the payback of adding insulation to your home. Use the equation below to estimate the cost effectiveness of adding insulation in terms of the "years to payback" for savings in heating costs.

431

City of Danville Utilities - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Danville Utilities - Residential Energy Efficiency Rebate City of Danville Utilities - Residential Energy Efficiency Rebate Program (Virginia) City of Danville Utilities - Residential Energy Efficiency Rebate Program (Virginia) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate HVAC Tune-Up: 1 incentive per 3 years Program Info Start Date 06/15/2011 State Virginia Program Type Utility Rebate Program Rebate Amount Clothes Washer: $50 Refrigerator: $30 Central AC: $145 - $250 Air Source Heat Pumps: $350 Heat Pump Water Heater: $100 High Efficiency Water Heater: $25 HVAC Tune-Up: $55 Attic Insulation (Tier 1): $0.08/sq ft Attic Insulation (Tier 2): $0.15/sq ft

432

Encapsulated and Buried Ducts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Encapsulated and Buried Ducts Robb Aldrich Steven Winter Associates, Inc. Why Buried Ducts?  Ductwork thermal losses can range from 10-45%  Interior ducts current solution, but may be impractical, expensive, or increase envelope loads Insulation & Air Barrier First Tests - Florida Early Buried Duct Tests (FL) Condensation? Master Bedroom Duct in Attic 10 15 20 25 30 35 40 45 50 55 Duct Top Temp Duct Side Temp Duct Bot. Temp Duct Side Dewpoint Duct Bot. Dewpoint Attic Temp 7/8/2000 7/8/2000 7/8/2000 7/8/2000 7/8/2000 7/8/2000 7/9/2000 0:00 4:00 8:00 12:00 16:00 20:00 0:00 Time California: Much drier, no Problem Implementation Getting it Right... in Florida A Solution for Humid Climates Encapsulated, then Buried Research Questions  What are the effective R-values?

433

Testing Protocols and Results: Airport Sound Program Experience and BPI-Resnet Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testing Protocols & Results: Testing Protocols & Results: Airport Sound Program Experience and BPI/RESNET Development Spring 2012 Residential Energy Efficiency Stakeholder Meeting: Combustion Safety in Tight Houses Jim Fitzgerald Center for Energy and Environment Building Performance Institute Page 2  Weatherization, custom windows & central air conditioning  Attic insulation, wall insulation, and attic air sealing - borrowed specs from energy programs and used weatherization contractors  Average house leakage: 7.8 ACH50 before 5.4 ACH50 after MSP secret: this Airport Sound Program does weatherization work to reduce sound All Tightening of Existing Homes Can Affect Combustion Appliance Safety Tightening work was done on 3000 homes with no testing, what could possibly go wrong?

434

U.S. Department of Energy NEPA Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CA-TRIBE-CAHTO INDIAN TRIBE OF THE LAYTONVILLE RANCHERIA, CA-TRIBE-CAHTO INDIAN TRIBE OF THE LAYTONVILLE RANCHERIA, CALIFORNIA Location: Tribe CA-CAHTO INDIAN TRIBE OF THE LAYTONVILLE RANCHERIA, CALIFORNIA CA American Recovery and Reinvestment Act: Proposed Action or Project Descriptio The Cahto Tribe of the Laytonville Rancheria will weatherize and replace/upgrade existing heating, ventilating, and air conditioning systems in two four-bedroom homes to reduce propane usage by 50%. Activities will include conducting blower door tests to determine leakage, removing existing attic insulation, removing duct system and furnace, air sealing the houses, replacing the furnace including installation of a new duct system, installing new ceiling insulation, constructing a new platform in the attic for the furnace

435

Radiant Barriers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Barriers Radiant Barriers Radiant Barriers May 30, 2012 - 2:07pm Addthis What does this mean for me? Properly installed radiant barriers can reduce your cooling costs. Radiant barriers are easiest to install in new construction, but can be installed in your existing house, especially if it has an open attic. How does it work? Radiant barriers work by reflecting radiant heat away from living spaces. Radiant barriers are installed in homes -- usually in attics -- primarily to reduce summer heat gain and reduce cooling costs. The barriers consist of a highly reflective material that reflects radiant heat rather than absorbing it. They don't, however, reduce heat conduction like thermal insulation materials. How They Work Heat travels from a warm area to a cool area by a combination of

436

Sawnee EMC - Residential Energy Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sawnee EMC - Residential Energy Efficiency Rebate Program Sawnee EMC - Residential Energy Efficiency Rebate Program Sawnee EMC - Residential Energy Efficiency Rebate Program < Back Eligibility Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Appliances & Electronics Water Heating Maximum Rebate Attic Insulation Upgrades: $200 HVAC Tune-Up: $25 HVAC Tune-Up with Duct Sealing: $100 Energy Star Home: $500 Program Info Expiration Date 12/31/2012 State Georgia Program Type Utility Rebate Program Rebate Amount Attic Insulation Upgrades: 50% of project cost up to $200 Refrigerator/Freezer Recycling: $30 Hybrid Water Heater: $100 HVAC Tune-Up: 50% of cost, up to $25 HVAC Tune-Up with Duct Sealing: $100

437

CX-001783: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

83: Categorical Exclusion Determination 83: Categorical Exclusion Determination CX-001783: Categorical Exclusion Determination Kentucky-County-Bullitt CX(s) Applied: A9, A11, B2.5, B5.1 Date: 04/19/2010 Location(s): Bullitt County, Kentucky Office(s): Energy Efficiency and Renewable Energy Energy Efficiency and Conservation Block Grant for: 1) Development of an energy efficiency and conservation strategy (completed), 2) retrofit the Annex building (1979) by installation of a new roof structure and roof with attic ventilation, addition of new attic insulation, and replacement of the Heating Ventilation and Air Conditioning system with a more energy efficient system, 3) replacement of the inaccurate natural gas meter at the Community Action/Red Cross Building, 4) retrofit the pumps and controls for

438

Performance Testing of Radiant Barriers (RB) with R11, R19, and R30 Cellulose and Rock Wool Insulation  

E-Print Network (OSTI)

TVA has previously conducted testing to determine the effects of attic RBs when used with R19 fiberglass insulation during summer and winter conditions. This previous testing, and the testing described in this paper, used five small test cells exposed to ambient conditions. Heat flux transducers measured heat transfer between the attic and conditioned space. The objective of the testing described in this paper was to determine summer and winter RB performance when used with cellulose and rock wool insulations at R-vale levels of R11, R19, and R30. In addition, several summer side-by-side tests were conducted to determine the effects of: dust on RB performance, a low-emissivity paint, a high-emissivity material (black plastic) laid directly on top of the insulation, and single-sided RB placed on top of the insulation (RBT) with the reflective side down.

Hall, J. A.

1988-01-01T23:59:59.000Z

439

Membranes Improve Insulation Efficiency  

E-Print Network (OSTI)

It has been determined from extensive tests involving test models and home attics that loose fill and fiber batt insulation does not function as expected by the industry. The reason for this deficiency is current test methods do not accurately predict the magnitude of air infiltration into fiber insulation as used in home attics, radiant heat infiltration into the insulation during summer, or radiant heat loss through the insulation during winter conditions. The use of (1) moisture permeable membranes over the insulation, and (2) layered membranes between fiber batts to form closed cells in the insulation both dramatically improve the efficiency of the fiber insulation. The efficiency of this insulation will be improved to an even greater degree if these membranes reflect radiant heat as well as reduce convection air currents. Extensive tests have also been conducted which show that if moisture permeable membranes are used over fiber insulation, the moisture content of the insulation will be reduced.

Bullock, C. A.

1986-01-01T23:59:59.000Z

440

Nebraska Public Power District - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nebraska Public Power District - Residential Energy Efficiency Nebraska Public Power District - Residential Energy Efficiency Rebate Programs Nebraska Public Power District - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Attic Insulation: $300 Program Info State Nebraska Program Type Utility Rebate Program Rebate Amount Air-Source Heat Pumps: 14 SEER - $200, 15 SEER - $400, 16+ SEER $600 Ground Source Heat Pumps: $1,200 Variable Capacity Ground Source Heat Pumps: $1,700 Heat Pump > 14 SEER (Contractor): $50 Cooling System Tune-Up: $30 Attic Insulation: $0.15/sq. ft. Provider Nebraska Public Power District The Nebraska Public Power District offers rebates to homeowners who purchase energy efficient heat pumps, upgrade their insulation, and/or have

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Estimating the Payback Period of Additional Insulation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating the Payback Period of Additional Insulation Estimating the Payback Period of Additional Insulation Estimating the Payback Period of Additional Insulation June 24, 2012 - 1:17pm Addthis Adding insulation in the attic of an existing home often results in a favorable payback. | Photo courtesy of Lieko Earle, NREL PIX 19612. Adding insulation in the attic of an existing home often results in a favorable payback. | Photo courtesy of Lieko Earle, NREL PIX 19612. What does this mean for me? Even if you hire a contractor to do the work, adding insulation to your home will likely have an attractive payback. If you can gather the information and plug it into an equation, you can determine the payback of adding insulation to your home. Use the equation below to estimate the cost effectiveness of adding insulation in terms of the "years to payback" for savings in heating costs.

442

Laboratory Testing of Aerosol for Enclosure Air Sealing  

Science Conference Proceedings (OSTI)

Space conditioning energy use can be significantly reduced by addressing uncontrolled infiltration and exfiltration through the envelope of a building. A process for improving the air tightness of a building envelope by sealing shell leaks with an aerosol sealing technology is presented. Both retrofit and new construction applications are possible through applying this process either in attics and crawlspaces or during rough-in stage.

Harrington, C.; Modera, M.

2012-05-01T23:59:59.000Z

443

Savings in electric cooling energy by the use of a whole-house fan. Final report  

Science Conference Proceedings (OSTI)

Hour-by-hour cooling performances of a typical ranch house, with and without the use of a whole-house fan, were compared for the climate conditions throughout the contiguous United States. The comparative analyses were made by the use of NBSWHF, a modified version of NBSLD, to simulate the complex thermal coupling of whole-house-fan ventilated attic space. The calculations were performed for two operational modes: a cyclic fan mode and a stepwise continuous mode.

Kusuda, T.; Bean, J.W.

1981-05-01T23:59:59.000Z

444

Summer tips for saving energy and money. [20 tips for homeowners  

SciTech Connect

The National Bureau of Standards has compiled the list of 20 tips to help homeowners save energy and stay comfortable in summer. Research shows that some of the most important measures are to reduce heat gain from the attic, reduce internal heat generation in the house, shade windows from solar radiation, and use whole-house fans to take advantage of natural temperature cycles and to provide ventilation. Turning up the thermostat on air conditioners is also important.

Jacobs, M.

1977-07-01T23:59:59.000Z

445

Expensive Moisture/Insulation System Problems at Several Central Florida and South Texas Nursing Homes  

E-Print Network (OSTI)

These nursing homes were designed and built in the 80's and 90's. They experienced similar design and construction deficiencies and expensive repairs. Some of the issues to be discussed in this paper are the interactions of architectural and HVAC shortcomings that result in a synergistic increase in mold, mildew, corrosion and rot. ASHRAE 62 requires 24 hour per day toilet exhaust and fresh air. What do you do to control humidity when the A/C duty cycles when the thermostat is satisfied? There needs to be humidity control designed into the HVAC system. Architects and contractors frequently take a "head in the sand" approach to wall and attic vapor barriers. This needs to be looked at realistically. We have seen several nursing homes whose moisture/sheet rock damage was severe due to design defects that allowed free interchange of hot humid air between the attic and the space inside interior partitions. Allowing air interchange between the attic and outdoors: can cause overheating of water in pipes in attics where temperaturs reach 150 F. increases condensation due to inadequate details in mechanical insulation on ducts and pipes Vinyl wall covering is well known to be a disaster in this climate but interior decorators continue to specify it on various walls. HVAC balance needs to be considered. Frequently the kitchen exhaust design is not coordinated with the HVAC engineer. There needs to be a reasonable balance between air in and air out of the building. When air is allowed to flow through the insulation system R value is reduced to near 0. In order to prevent mold and mildew and expensive failures, along with even more expensive lawsuits, the HVAC system design and the insulation system design must be integrated.

Lotz, W. A.

2000-01-01T23:59:59.000Z

446

Dust and Ventilation Effects on Radiant Barriers: Cooling Season Energy Measurements  

Science Conference Proceedings (OSTI)

This study on the effects of attic ventilation area and type and dust buildup on horizontal and truss radiant barriers in insulated homes can help utilities reduce cooling season electric energy requirements. Increasing the ventilation area ratio and changing ventilation types had little effect on radiant barrier performance. Dust did degrade performance, but insulated homes with radiant barriers still had lower energy requirements than those without radiant barriers.

1990-05-15T23:59:59.000Z

447

Steep-Slope Assembly Testing of Clay and Concrete Tile With and Without Cool Pigmented Colors  

Science Conference Proceedings (OSTI)

Cool color pigments and sub-tile venting of clay and concrete tile roofs significantly impact the heat flow crossing the roof deck of a steep-slope roof. Field measures for the tile roofs revealed a 70% drop in the peak heat flow crossing the deck as compared to a direct-nailed asphalt shingle roof. The Tile Roofing Institute (TRI) and its affiliate members are keenly interested in documenting the magnitude of the drop for obtaining solar reflectance credits with state and federal "cool roof" building efficiency standards. Tile roofs are direct-nailed or are attached to a deck with batten or batten and counter-batten construction. S-Misson clay and concrete tile roofs, a medium-profile concrete tile roof, and a flat slate tile roof were installed on fully nstrumented attic test assemblies. Temperature measures of the roof, deck, attic, and ceiling, heat flows, solar reflectance, thermal emittance, and the ambient weather were recorded for each of the tile roofs and also on an adjacent attic cavity covered with a conventional pigmented and directnailed asphalt shingle roof. ORNL measured the tile's underside temperature and the bulk air temperature and heat flows just underneath the tile for batten and counter-batten tile systems and compared the results to the conventional asphalt shingle.

Miller, William A [ORNL

2005-11-01T23:59:59.000Z

448

Flying Squirrels and Houses  

NLE Websites -- All DOE Office Websites (Extended Search)

Flying Squirrels and Houses Flying Squirrels and Houses Name: Kathy Location: N/A Country: N/A Date: N/A Question: How do you get rid of flying squirrels in the attic of a Cape style home that has limited access to the attic? There is blown in insulation so we cannot see to the end of the house where we hear them, nor can a person crawl in to see anything. We have used d-con bars, mouse traps and have-a-heart traps in the crawl spaces we can reach, but have caught nothing. Replies: Place a statue of an owl near the entrance the squirrels are using. Owls are their motal enemies and this technique works for birds as well. Steve Sample You will not be able to solve this problem until you find the way they go in and out. Usually the easiest way is to look for light coming in from outside while in the dark attic, but if you can't see it that way do a thorough search of the outside. A flying squirrel does not need a very big hole, maybe 2" or less diameter. They go out at night so once you find the hole close it up at night while they are out. Good luck.

449

Buried and Encapsulated Ducts, Jacksonville, Florida (Fact Sheet)  

SciTech Connect

Ductwork installed in unconditioned attics can significantly increase the overall heating and cooling costs of residential buildings. In fact, estimated duct thermal losses for single-family residential buildings with ductwork installed in unconditioned attics range from 10% to 45%. In a study of three single-story houses in Florida, the Building America research team Consortium for Advanced Residential Buildings (CARB) investigated the strategy of using buried and/or encapsulated ducts (BED) to reduce duct thermal losses in existing homes. The BED strategy consists of burying ducts in loose-fill insulation and/or encapsulating them in closed cell polyurethane spray foam (ccSPF) insulation. There are three possible combinations of BED strategies: (1) buried ducts; (2) encapsulated ducts (with ccSPF); and (3) buried and encapsulated ducts. The best solution for each situation depends on the climate, age of the house, and the configuration of the HVAC system and attic. For new construction projects, the team recommends that ducts be both encapsulated and buried as the minimal planning and costs required for this will yield optimal energy savings. The encapsulated/buried duct strategy, which utilizes ccSPF to address condensation concerns, is an approach that was developed specifically for humid climates.

Not Available

2013-11-01T23:59:59.000Z

450

Development of a Roof Savings Calculator  

SciTech Connect

A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned and can provide annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof types at arbitrary inclinations. There are options for above sheathing ventilation, radiant barriers and low-emittance surfaces. The tool also accommodates HVAC ducts either in the conditioned space or in the attic with custom air leakage rates. Multiple layers of thermal mass, ceiling insulation and other parameters can be compared side-by-side to generate energy/cost savings between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft Irwin, CA.

New, Joshua Ryan [ORNL; Miller, William A [ORNL; Huang, Joe [Lawrence Berkeley National Laboratory (LBNL); Erdem, Ender [Lawrence Berkeley National Laboratory (LBNL)

2011-01-01T23:59:59.000Z

451

Development of a Roof Savings Calculator  

SciTech Connect

A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned and can provide estimated annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof types at arbitrary inclinations. There are options for above sheathing ventilation, radiant barriers, and low-emittance surfaces. The tool also accommodates HVAC ducts either in the conditioned space or in the attic with custom air leakage rates. Multiple layers of building materials, ceiling and deck insulation, and other parameters can be compared side-by-side to generate an energy/cost savings estimate between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft. Irwin, CA.

New, Joshua Ryan [ORNL; Miller, William A [ORNL; Desjarlais, Andre Omer [ORNL; Erdem, Ender [Lawrence Berkeley National Laboratory (LBNL); Huang, Joe [Lawrence Berkeley National Laboratory (LBNL)

2011-01-01T23:59:59.000Z

452

Analysis of annual energy savings due to radiant barriers  

Science Conference Proceedings (OSTI)

Radiant barriers are receiving increasing attention as an energy conservation measure for residential buildings, especially for warmer climates. They are being actively promoted for use in residential attics, sometimes with exaggerated claims about savings in utility bills that will results from their installation. In order to provide consumers with factual information that would assist them in deciding upon an investment in a radiant barrier, the Department of Energy, along with an industry advisory panel, has developed a Radiant Barrier Fact Sheet. A major part of this fact sheet is estimates of energy savings that might be expected from radiant barriers in various climates. This paper presents the details of the methodology underlying the energy savings estimates, and gives a summary of values listed in the Fact Sheet. The energy savings estimates were obtained from calculations using a detailed attic thermal model coupled with DOE-2.1C. A life cycle cost analysis was performed to estimate the present value savings on utility fuel costs. The results show that the fuel cost savings vary significantly with the level of conventional insulation already in the attic and from one climate to another.

Wilkes, K.E.

1990-01-01T23:59:59.000Z

453

Performance Testing of Radiant Barriers  

E-Print Network (OSTI)

TVA has conducted a study to determine the effects of radiant barriers (RBI (i.e., material with a low emissivity surface facing an air space), when used with fiberglass, on attic heat transfer during summer and winter. This study employed five small test cells exposed to ambient conditions and having attics with gable and soffit vents. Three different RB configurations were tested and compared to the non-RR configuration. Heat flux transducers determined the heat transfer between the attic and conditioned space. The results showed that all RB con figurations significantly reduced heat gain through the ceiling during the summer. Reductions in heat gain during daylight and peak electric load hours were especially attractive. Roof temperatures for the RB configurations were only slightly higher than for the non-RB case. Heat transfer reductions for the RB configurations in the winter were smaller than those for the summer but were still significant in many, but not all, situations. Savings during night and peak electric load hours were especially attractive.

Hall, J. A.

1986-01-01T23:59:59.000Z

454

LIGHTING CONTROLS: SURVEY OF MARKET POTENTIAL  

E-Print Network (OSTI)

Cost Floor Space Cost per square foot 800,000 square feet hrCOST FLOOR SPACE COST PER SQUARE FOOT square feet 5.2.4$ 1.85 per square foot, respectively, for a cost-effective

Verderber, R.R.

2010-01-01T23:59:59.000Z

455

Columbia Rural Electric Association - Residential Energy Efficiency...  

Open Energy Info (EERE)

ft. Floor Insulation (Multi-Family): 0.07 - 0.43sq. ft. Floor Insulation (Manufactured Home): 0.24sq. ft. Window Replacement: 6sq. ft. Eligible System Size Refrigerator...

456

No Slide Title  

Science Conference Proceedings (OSTI)

... in the air went up. (Floor in the 60's) Observations of Survivors Still on Floor at 9:03 Power outage/flick 37% Fallen Ceiling tiles 29% Jet Fuel 20% ...

457

UCL Science Library Map Engineering  

E-Print Network (OSTI)

UCL Science Library Map Floor 4 Engineering Engineering Periodicals Guter Collection Sta Training Room Floor 3 Chemistry Computer Science Geology Geosciences Periodicals History of Science Maths Maths Periodicals Physical Sciences Periodicals Physics Computer Cluster Group Study Area Information Library

Crawford, Ian

458

SASSI Subtraction Method Effects at Various DOE projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

284'x265'x39' Embedded 18' 1970's construction Thin basement floor with spread footings Flat slab interior floor supported by columns with capitals CJCAssociates 5 TA-55 Soil...

459

Ultrasonic methods for rail inspection  

E-Print Network (OSTI)

Blocks (a) Open Floor with Plywood Protection (b) Ballastthe strong floor was protected with a layer of plywood.With the plywood in place, the rebar cages were placed and

Phillips, Robert Ronald

2012-01-01T23:59:59.000Z

460

Effect of Research on Lighting for Modern Dance  

E-Print Network (OSTI)

washing out the floor projections. The Three Body Problem,show, is a movement and projection driven analysis of theof the constant floor projection and the semi-randomized

Grabowski, Andrew

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

33 MGN NETL Site Building 33 Chemical Resistant Flooring Project Building 33 is the current chemical handling facility and the flooring needs re-coated. 04 05 2010 Benjamin May...

462

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NETL SOD FENETL Contract No. Pending Final Award NETLSOD 2011 David A. Schmidt 270 days NETL: Pittsburgh, PA (B83 1st Floor) B83 1st Floor Renovation - Phase II Completion...

463

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Not Assigned Yet Not Procured Yet FE OIOSOD 2014 Colleen Butcher NETL, South Park Twp, PA Building 58 Third Floor Mezzanine Enclosure Enclose the third floor mezzanine of B 58....

464

Meadowlark House  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large windows and open floor Large windows and open floor plan in main living area provide natural daylight * LED light bulbs reduce energy consumption * East-west orientation optimizes natural lighting and passive heating * Energy recovery ventilator reduces energy requirements for interior heating and cooling * Air-tight building envelope prevents air leakage and moisture infiltration * Superinsulation in walls, ceilings, and floor slab with R-value for walls (R-40), foundation floor slab (R-50),

465

Tile structures having phase change material (PCM) component for ...  

Tile structures having phase change material (PCM) component for use in floorings and ceilings United States Patent Application

466

Combined Heat and Power ecopower micro CHP  

Science Conference Proceedings (OSTI)

... (Grandkids) ? Full in-floor radiant heating system in the house ? Geothermal system as backup. ? In 20 months of ecopower ...

2012-10-07T23:59:59.000Z

467

Evaluation of the Gas Production Potential of Marine Hydrate Deposits in the Ulleung Basin of the Korean East Sea  

E-Print Network (OSTI)

produced water can be disposed of near the ocean floor, but such releases may have to meet environmental regulations

Moridis, George J.; Reagan, Matthew T.; Kim, Se-Joon; Seol, Yongkoo; Zhang, Keni

2007-01-01T23:59:59.000Z

468

Geothermal System Overview ASHRAE Headquarters Building  

E-Print Network (OSTI)

and a corridor zone on floor 1 · Heating / cooling area for VRF ­ 18,226 sq. ft. ­ All zones on floor 1 (minus: 288.6 kBtu/hr · All zones on floor 2 and a corridor zone on floor 1 · Loads for VRF system ­ Heating,000.0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Geo HP vs VRF 2010 System Power (kWh) Geo HP VRF #12

Oak Ridge National Laboratory

469

Research Activities 2011 21 Innovations Available for Collaboration  

E-Print Network (OSTI)

) and plywood were used for the walls and floors due to their stability and resistance to becoming deformed

Takada, Shoji

470

Cleaning Products and Air Fresheners: Emissions and Resulting Concentrations of Glycol Ethers and Terpenoids  

E-Print Network (OSTI)

include wood framing with plywood underlying the floor, twowith low-VOC paint. The plywood subfloor was covered with

Singer, Brett C.; Destaillat, Hugo; Hodgson, Alfred T.; Nazaroff, William W.

2005-01-01T23:59:59.000Z

471

THE CONSTRUCTION OF THE FACILITY FOR THE TESTINGS OF THE TFTR NEUTRAL BEAM INJECTOR  

E-Print Network (OSTI)

similar raised floor of plywood con struction extends fromsections of moveable plywood, and there is ready access to

Haughian, J.

2010-01-01T23:59:59.000Z

472

Thermal decay in underfloor air distribution (UFAD) systems: Fundamentals and influence on system performance  

E-Print Network (OSTI)

room surfaces, and solar radiation striking the floor in theafternoon is due to the solar radiation reaching the west

Lee, Kwang Ho; Schiavon, Stefano; Bauman, Fred; Webster, Tom

2012-01-01T23:59:59.000Z

473

Technical Investigation of the May 22, 2011, Tornado in Joplin ...  

Science Conference Proceedings (OSTI)

... shelters, full or partial basements, crawl spaces, the first floors of apartment complexes or duplexes, and internal locations within ...

2012-12-07T23:59:59.000Z

474

NSLS Ring Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

Ring Parameters VUV Ring Parameters X-Ray Ring Parameters Booster Ring Parameters Map of Experimental Floor (jpg)...

475

Microsoft Word - ESCO_Industry_Report_26Aug2013.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

... 2 Table A- 2. CBECS data query parameters used to compile addressable floor area for market segments (excluding...

476

Fire Suppression Systems  

Science Conference Proceedings (OSTI)

... docks and an electrical substation that provided ... pump, located on the ground floor, supplied ... sizes under normally expected operating conditions. ...

477

Thermal Performance of Phase Change Wallboard for Residential Cooling Application  

E-Print Network (OSTI)

shielded by means of a radiant barrier. The floor is made ofVented, shielded by radiant barrier Wallboard: Conventional

Feustel, H.E.

2011-01-01T23:59:59.000Z

478

Assessing Microgen in Canada  

Science Conference Proceedings (OSTI)

... certifications in Canada ? Integration with radiant floor heating and Latento XXL thermal storage tank with aquastat CHP controller ...

2012-12-28T23:59:59.000Z

479

QuickTime VR  

Science Conference Proceedings (OSTI)

QuickTime VR. Christine Piatko and Sandy Ressler. ... Sandy Ressler's Office. Plant Floor of Black & Decker in Fayetteville NC. ...

480

China energy, environment, and climate study: Background issues paper  

E-Print Network (OSTI)

2 of floor space in passive solar houses, replacing 44 TJ/yrdioxide emissions. Houses with passive solar design (mainly

Sinton, Jonathan E.; Fridley, David G.; Logan, Jeffrey; Guo, Yuan; Wang, Bangcheng; Xu, Qing

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "attic floor joists" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Additions to a Design Tool for Visualizing the Energy Implications of Californias Climates  

E-Print Network (OSTI)

passive heat and summer night 'coolth' such as slab floors, high mass walls, stone fireplace A whole-house

Milne, Murray; Liggett, Robin rliggett@ucla.edu; Benson, Andrew; Bhattacharya, Yasmin

2009-01-01T23:59:59.000Z

482

Becker, K., Malone, M.J., et al., 1998 Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 174B  

E-Print Network (OSTI)

(drill-pipe measurement from rig floor, mbrf): 4457.1 Total depth (drill-pipe measurement from rig floor, mbrf): 4526.6 Distance between rig floor and sea level (m): 11.6 Water depth (drill-pipe measurement Unit II (63.5-69.5 mbsf): Aphyric basalt Principal results: Sixty-four meters of sediment and 0.58 m

483

Genetic and tabu search approaches for optimizing the hall call-Car allocation problem in elevator group systems  

Science Conference Proceedings (OSTI)

The most common problem in vertical transportation using elevator group appears when a passenger wants to travel from a floor to other different floor in a building. The passenger makes a hall call by pressing a landing call button installed at the floor ... Keywords: Car dispatching, Elevator, Elevator group system, Genetic algorithm, Lift, Tabu search, Vertical transportation

Berna Bolat; Pablo Corts

2011-03-01T23:59:59.000Z

484

The mad hatter's cocktail party: a social mobile audio space supporting multiple simultaneous conversations  

Science Conference Proceedings (OSTI)

This paper presents a mobile audio space intended for use by gelled social groups. In face-to-face interactions in such social groups, conversational floors change frequently, e.g., two participants split off to form a new conversational floor, a participant ... Keywords: audio space, conversation analysis, floor management

Paul M. Aoki; Matthew Romaine; Margaret H. Szymanski; James D. Thornton; Daniel Wilson; Allison Woodruff

2003-04-01T23:59:59.000Z

485

continued on Page 3 CSU/Japan Partnership Explores  

E-Print Network (OSTI)

,you stacked the dishes on the floor,then someone picked them up from the floor and put them in the dishwasher, then took them out of the dishwasher and stacked them back on the floor. That is the sort of work method we

486

 

U.S. Energy Information Administration (EIA) Indexed Site

0. Number of Floors, Number of Buildings and Floorspace for Non-Mall Buildings, 2003 0. Number of Floors, Number of Buildings and Floorspace for Non-Mall Buildings, 2003 Number of Buildings (thousand) Total Floorspace (million square feet) All Build- ings* One Floor Two Floors Three Floors Four to Nine Floors Ten or More Floors All Build- ings* One Floor Two Floors Three Floors Four to Nine Floors Ten or More Floors All Buildings* ............................... 4,645 3,136 1,031 339 128 12 64,783 25,981 16,270 7,501 10,085 4,947 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 2,014 411 115 Q N 6,789 5,192 1,217 343 Q N 5,001 to 10,000 .............................. 889 564 239 70 Q N 6,585 4,150 1,814 504 Q N 10,001 to 25,000 ............................ 738 399 248 74 18 Q 11,535 6,160 3,966 1,115 292 Q

487

POST ISSUE PAID-UP CAPITAL OF OUR COMPANY ASSUMING THAT THE GREEN SHOE OPTION IS NOT EXERCISED AND 16.26% ASSUMING THAT THE GREEN SHOE OPTION IS EXERCISED IN FULL. PRICE BAND: Rs. [?]/- TO Rs. [?]/- PER EQUITY SHARE OF FACE VALUE RS. 10/- EACH THE FLOOR P  

E-Print Network (OSTI)

Please read Section 60B of the Companies Act, 1956 (This Draft Red Herring Prospectus will be updated upon filing with the RoC) 100 % Book Building Issue (We were incorporated as Prince Foundations Private Limited on February 27, 2004. Our status was subsequently changed to a public limited company by way of a special resolution of the members passed at the Extra-Ordinary general meeting held on March 07, 2007. The fresh certificate of incorporation consequent to the change of name was granted to us on April 23, 2007 by the Registrar of Companies, Tamil Nadu, Chennai. For details of the change in our name and registered office, please refer to the chapter titled

Draft Red; Herring Prospectus

2007-01-01T23:59:59.000Z

488

Radiant Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Basics Radiant Heating Basics Radiant Heating Basics August 19, 2013 - 10:33am Addthis Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat directly from the hot surface to the people and objects in the room via the radiation of heat, which is also called infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating. Despite the name, radiant floor heating systems also depend heavily on convection, the natural circulation of heat within a room, caused by heat rising from the floor. Radiant floor

489

Radiant Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiant Heating Basics Radiant Heating Basics Radiant Heating Basics August 19, 2013 - 10:33am Addthis Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat directly from the hot surface to the people and objects in the room via the radiation of heat, which is also called infrared radiation. Radiant heating is the effect you feel when you can feel the warmth of a hot stovetop element from across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating. Despite the name, radiant floor heating systems also depend heavily on convection, the natural circulation of heat within a room, caused by heat rising from the floor. Radiant floor

490

Modeling the effects of reflective roofing  

SciTech Connect

Roofing materials which are highly reflective to sunlight are currently being developed. Reflective roofing is an effective summertime energy saver in warm and sunny climates. It has been demonstrated to save up to 40% of the energy needed to cool a building during the summer months. Buildings without air conditioning can reduce their indoor temperatures and improve occupant comfort during the summer if highly reflective roofing materials are used. But there are questions about the tradeoff between summer energy savings and extra wintertime energy use due to reduced heat collection by the roof. These questions are being answered by simulating buildings in various climates using the DOE-2 program (version 2.1E). Unfortunately, DOE-2 does not accurately model radiative, convective and conductive processes in the roof-attic. Radiative heat transfer from the underside of a reflective roof is much smaller than that of a roof which absorbs heat from sunlight, and must be accounted for in the building energy model. Convection correlations for the attic and the roof surface must be fine tuned. An equation to model the insulation`s conductivity dependence on temperature must also be added. A function was written to incorporate the attic heat transfer processes into the DOE-2 building energy simulation. This function adds radiative, convective and conductive equations to the energy balance of the roof. Results of the enhanced DOE-2 model were compared to measured data collected from a school bungalow in a Sacramento Municipal Utility District monitoring project, with particular attention paid to the year-round energy effects.

Gartland, L.M.; Konopacki, S.J.; Akbari, H. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

1996-08-01T23:59:59.000Z

491

Performance study of a thermal-envelope house: Phase II. Cooling performance. Final report  

Science Conference Proceedings (OSTI)

The thermal envelope house is shown to perform much better than conventional houses without mechanical refrigeration and better than one would expect from most passively cooled houses in the hot-humid climate of Georgia. Peak temperatures inside the house were 8 to 15/sup 0/F below peak ambient temperatures. Peak inside temperature measured during the test period was 80/sup 0/F with an outside ambient peak of 93/sup 0/F. Air flow rates within the envelope were less than 1 ft/sec even when the attic fan was operating. The earth cooling tubes provided noticeable sensible cooling to the house. Exit temperatures from the cooling tubes were between 72 to 76/sup 0/F, depending upon the air velocity through the tubes. The thermal chimney performed poorly as an air mover, especially when used to induce flow through the earth cooling tubes. The performance of the earth cooling tube could be improved by using the attic fan to increase the air flow through the cooling tubes and to insure it flowed in the cooling tube, through the envelope and out the thermal chimney. Being an exhaust fan, the attic fan created a negative pressure in the house. While this increased air flow through the cooling tubes, it also increased air infiltration through the building shell, thus increasing load. The humidity level within the living space remains relatively high year-round due to low rates of air infiltration and water vapor transmission through the building skin. The problem is aggravated during the summer by the introduction of cool moist air from the cooling tubes to the envelope and frequently to the inner space. While the cooling tubes are able to reduce the sensible load, and they are incapable of significantly reducing humidity or latent loads. This results in relatively comfortable air temperatures but uncomfortable humidities within the living space.

Akridge, J.M.; Benton, C.C.

1981-01-01T23:59:59.000Z

492

Alliant Energy Interstate Power and Light (Gas) - Residential Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light (Gas) - Residential Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Sealing Your Home Ventilation Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Attic and Wall Insulation: $1000 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount ENERGY STAR New Construction: $600-$3500/home Home Energy Audit: Free Boilers: $150 or $400 depending on AFUE Furnaces: $250 or $400 depending on AFUE Programmable Thermostats: $25

493

Xcel Energy (Gas) - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Programs Residential Energy Efficiency Rebate Programs Xcel Energy (Gas) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Maximum Rebate Insulation: $300 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Furnace: $80-$120 Boilers: $100 Storage Water Heater: $25-$90 Tankless Water Heater: $100 Attic/Wall Insulation, Sealing and Weatherstripping: 20% of cost Energy Audits: $60-$120 Home Performance with ENERGY STAR: average rebate amount is $710 Provider Xcel Energy Xcel Energy residential customers in Colorado can qualify for cash

494

UniSource Energy - Contractor Energy Efficiency Rebate Program (Arizona) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UniSource Energy - Contractor Energy Efficiency Rebate Program UniSource Energy - Contractor Energy Efficiency Rebate Program (Arizona) UniSource Energy - Contractor Energy Efficiency Rebate Program (Arizona) < Back Eligibility Construction Installer/Contractor Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate Air Sealing with Attic Insulation: $800 Duct Sealing: $350 (prescriptive); $650 (performance measured) Air Sealing: $250 Shade Screens or Solar Film: $250 Program Info State Arizona Program Type Utility Rebate Program Rebate Amount BrightSave Home Energy Analysis: Discounted HVAC Replacement: $250

495

Vectren Energy Delivery of Ohio (Gas) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vectren Energy Delivery of Ohio (Gas) - Residential Energy Vectren Energy Delivery of Ohio (Gas) - Residential Energy Efficiency Rebates Vectren Energy Delivery of Ohio (Gas) - Residential Energy Efficiency Rebates < Back Eligibility Construction Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Furnace: $150 - $275 Boiler: $300 Storage Water Heater: $125 Tankless Water Heater: $150 Programmable Thermostat: $20 Attic Insulation: Up to $600 Wall Insulation: Up to $700 Air Sealing: Up to $250 Provider Vectren Energy Delivery of Ohio Vectren Energy Delivery offers residential natural gas customers in Ohio

496

Peoples Gas - Residential Rebate Program (Illinois) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peoples Gas - Residential Rebate Program (Illinois) Peoples Gas - Residential Rebate Program (Illinois) Peoples Gas - Residential Rebate Program (Illinois) < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Water Heating Maximum Rebate 100% of project cost Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Furnace: $300 -$500 Boiler: varies, depending on size and efficiency Boiler Controls: $100/unit Complete HVAC System Replacement: $650 - $1,000 Water Heater (Tankless): $450 Water Heater (Indirect): $275 Water Heater (Storage Tank): $100 Attic Insulation: $0.10/sq ft Programmable Thermostat: $50

497

TEP - Residential Energy Efficiency Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TEP - Residential Energy Efficiency Rebate Program TEP - Residential Energy Efficiency Rebate Program TEP - Residential Energy Efficiency Rebate Program < Back Eligibility Construction Installer/Contractor Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate Air Sealing with Attic Insulation: $800 Duct Sealing: $350 (prescriptive); $650 (performance measured) Air Sealing: $250 Shade Screens or Solar Film: $250 Program Info State Arizona Program Type Utility Rebate Program Rebate Amount BrightSave Home Energy Analysis: Discounted HVAC Replacement: $250 HVAC Equipment Early Retirement and Retrofit: $900

498

Cedar Falls Utilities - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Residential Energy Efficiency Rebate Program Cedar Falls Utilities - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Appliance Recycling: 2 rebates per residential account, per appliance type annually Ceiling Fan Light Kits: $20 per light kit; 6 per account per year Central A/C: $400 Air Source Heat Pump: $600 Attic/Ceiling Insulation: $1,000 Air Sealing/Caulking/Weather Stripping: $200 CFL: 50% of cost, up to $5 (10 per customer per year)

499

Lakeland Electric - Residential Conservation Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakeland Electric - Residential Conservation Rebate Program Lakeland Electric - Residential Conservation Rebate Program Lakeland Electric - Residential Conservation Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weather