Sample records for atomizing type burners

  1. DEVELOPMENT OF A LOW PRESSURE, AIR ATOMIZED OIL BURNER WITH HIGH ATOMIZER AIR FLOW

    SciTech Connect (OSTI)

    BUTCHER,T.A.

    1998-01-01T23:59:59.000Z

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5--8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or FAB has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a torroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the tiring rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% 0{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  2. Development of a Low Pressure, Air Atomized Oil Burner with High Atomizer Air Flow: Progress Report FY 1997

    SciTech Connect (OSTI)

    Butcher, T.A.

    1998-01-01T23:59:59.000Z

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5-8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or ''FAB'' has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a toroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the firing rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% O{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  3. atomized oil burner: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in boilers 17 FINGERPRINTING INORGANIC ARSENIC AND ORGANOARSENIC COMPOUNDS IN IN SITU OIL SHALE RETORT AND PROCESS VOTERS USING A LIQUID CHROMATOGRAPH COUPLED WITH AN ATOMIC...

  4. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOE Patents [OSTI]

    Butcher, Thomas A. (Port Jefferson, NY); Celebi, Yusuf (Middle Island, NY); Fisher, Leonard (Colrain, MA)

    2000-09-15T23:59:59.000Z

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  5. Development of a full-flow burner regeneration type diesel particulate filter using SiC honeycomb

    SciTech Connect (OSTI)

    Okazoe, Hiroshi; Shimizu, Kenji; Watanabe, Yoshito; Santiago, E.; Kugland, P.; Ruth, W.

    1996-09-01T23:59:59.000Z

    A diesel particulate filter (DPF) for city buses was developed that combines a SiC filter and a full-now type burner for regeneration. Filter crack problems were averted by suppressing the peak temperature inside the filter to under 900 C. This was done by setting the maximum tolerable amount of collected particulate mass before regeneration at 50 g and controlling the burner so as to increase the regeneration gas temperature slowly up to a set value. This DPF was retrofitted to a Tokyo metropolitan bus to conduct a field test. The field test has been under way for half a year without any trouble or deterioration of system performance.

  6. Startup burner

    DOE Patents [OSTI]

    Zhao, Jian Lian (Belmont, MA); Northrop, William F. (Ann Arbor, MI); Bosco, Timothy (Dallas, TX); Rizzo, Vincent (Norfolk, MA); Kim, Changsik (Lexington, MA)

    2009-08-18T23:59:59.000Z

    A startup burner for rapidly heating a catalyst in a reformer, as well as related methods and modules, is disclosed.

  7. Diesel fuel burner for diesel emissions control system

    DOE Patents [OSTI]

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25T23:59:59.000Z

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  8. Front Burner- Issue 14

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 14 addresses the 2013 National Cybersecurity Awareness Month (NCSAM) Campaign and Phishing Scams.

  9. Front Burner- Issue 15

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 15 addresses the DOE eSCRM Program and Secure Online Shopping.

  10. actinide burner fuel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Great Britain developed standards for register type burners installed in fossil fuel fired electric generating... Cawte, A. D. 1979-01-01 3 Chemical and toxicological...

  11. High Efficiency Burners by Retrofit - A Simple Inexpensive Way to Improve Combustion Efficiency

    E-Print Network [OSTI]

    Rogers, W. T.

    1980-01-01T23:59:59.000Z

    Existing direct fired process heaters and steam boilers can have their efficiencies remarkably improved, and thus cut the fuel bill, by conversion from conventional type natural draft burners to high intensity, "forced draft" type burners...

  12. Front Burner- Issue 13

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 13 contained a message from the Associate Chief Information Officer (ACIO) for Cybersecurity as well as a listing of recommended cybersecurity practices.

  13. Front Burner- Issue 18

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 18 addresses keeping kids safe on the Internet, cyber crime, and DOE Cyber awareness and training initiatives.

  14. Front Burner- Issue 16

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 16 addresses Malware, the Worst Passwords of 2013, and the Flat Stanley and Stop.Think.Connect. Campaign.

  15. Combustor burner vanelets

    DOE Patents [OSTI]

    Lacy, Benjamin (Greer, SC); Varatharajan, Balachandar (Loveland, OH); Kraemer, Gilbert Otto (Greer, SC); Yilmaz, Ertan (Albany, NY); Zuo, Baifang (Simpsonville, SC)

    2012-02-14T23:59:59.000Z

    The present application provides a burner for use with a combustor of a gas turbine engine. The burner may include a center hub, a shroud, a pair of fuel vanes extending from the center hub to the shroud, and a vanelet extending from the center hub and/or the shroud and positioned between the pair of fuel vanes.

  16. Pulverized coal burner

    DOE Patents [OSTI]

    Sivy, Jennifer L. (Alliance, OH); Rodgers, Larry W. (Canton, OH); Koslosy, John V. (Akron, OH); LaRue, Albert D. (Uniontown, OH); Kaufman, Keith C. (Canton, OH); Sarv, Hamid (Canton, OH)

    1998-01-01T23:59:59.000Z

    A burner having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO.sub.x burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO.sub.x back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing.

  17. Pulverized coal burner

    DOE Patents [OSTI]

    Sivy, J.L.; Rodgers, L.W.; Koslosy, J.V.; LaRue, A.D.; Kaufman, K.C.; Sarv, H.

    1998-11-03T23:59:59.000Z

    A burner is described having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO{sub x} burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO{sub x} back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing. 8 figs.

  18. Burner control system

    SciTech Connect (OSTI)

    Cade, P.J.

    1981-01-06T23:59:59.000Z

    A burner control apparatus for use with a furnace installation that has an operating control to produce a request for burner operation, a flame sensor to produce a signal when flame is present in the monitored combustion chamber, and one or more devices for control of ignition and/or fuel flow. The burner control apparatus comprises lockout apparatus for de-energizing the control apparatus, a control device for actuating the ignition and/or fuel control devices, and a timing circuit that provides four successive and partially overlapping timing intervals of precise relation, including a purge timing interval, a pilot ignition interval, and a main fuel ignition interval. The present invention further includes a burner control system which verifies the proper operation of certain sensors in a burner or furnace including particularly the air flow sensor. Additionally, the present system also prevents an attempt to ignite a burner if a condition is detected which indicates that the air flow sensor has been bypassed or wedged in the actuated position.

  19. Low NO.sub.x burner system

    DOE Patents [OSTI]

    Kitto, Jr., John B. (North Canton, OH); Kleisley, Roger J. (Plain Twp., Stark County, OH); LaRue, Albert D. (Summit, OH); Latham, Chris E. (Knox Twp., Columbiana County, OH); Laursen, Thomas A. (Canton, OH)

    1993-01-01T23:59:59.000Z

    A low NO.sub.x burner system for a furnace having spaced apart front and rear walls, comprises a double row of cell burners on each of the front and rear walls. Each cell burner is either of the inverted type with a secondary air nozzle spaced vertically below a coal nozzle, or the non-inverted type where the coal nozzle is below the secondary air port. The inverted and non-inverted cells alternate or are provided in other specified patterns at least in the lower row of cells. A small percentage of the total air can be also provided through the hopper or hopper throat forming the bottom of the furnace, or through the boiler hopper side walls. A shallow angle impeller design also advances the purpose of the invention which is to reduce CO and H.sub.2 S admissions while maintaining low NO.sub.x generation.

  20. Ultralean low swirl burner

    DOE Patents [OSTI]

    Cheng, Robert K. (Kensington, CA)

    1998-01-01T23:59:59.000Z

    A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame.

  1. Ultralean low swirl burner

    DOE Patents [OSTI]

    Cheng, R.K.

    1998-04-07T23:59:59.000Z

    A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame. 11 figs.

  2. Development, Application and Performance of Venturi Register L. E. A. Burner System for Firing Oil and Gas Fuels 

    E-Print Network [OSTI]

    Cawte, A. D.

    1979-01-01T23:59:59.000Z

    as CEA Combustion, Ltd., to develop a more efficient suspended - flame burner. Subsequently, the CEGB (Central Electric Generating Board) in Great Britain developed standards for register type burners installed in fossil fuel fired electric generating...

  3. Slurry burner for mixture of carbonaceous material and water

    DOE Patents [OSTI]

    Nodd, D.G.; Walker, R.J.

    1985-11-05T23:59:59.000Z

    The present invention is intended to overcome the limitations of the prior art by providing a fuel burner particularly adapted for the combustion of carbonaceous material-water slurries which includes a stationary high pressure tip-emulsion atomizer which directs a uniform fuel into a shearing air flow as the carbonaceous material-water slurry is directed into a combustion chamber, inhibits the collection of unburned fuel upon and within the atomizer, reduces the slurry to a collection of fine particles upon discharge into the combustion chamber, and regulates the operating temperature of the burner as well as primary air flow about the burner and into the combustion chamber for improved combustion efficiency, no atomizer plugging and enhanced flame stability.

  4. Coal-water mixture fuel burner

    DOE Patents [OSTI]

    Brown, T.D.; Reehl, D.P.; Walbert, G.F.

    1985-04-29T23:59:59.000Z

    The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.

  5. Radial lean direct injection burner

    DOE Patents [OSTI]

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04T23:59:59.000Z

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  6. Catalyzed Ceramic Burner Material

    SciTech Connect (OSTI)

    Barnes, Amy S., Dr.

    2012-06-29T23:59:59.000Z

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant period in accomplishing these objectives. Our work in the area of Pd-based, methane oxidation catalysts has led to the development of highly active catalysts with relatively low loadings of Pd metal using proprietary coating methods. The thermal stability of these Pd-based catalysts were characterized using SEM and BET analyses, further demonstrating that certain catalyst supports offer enhanced stability toward both PdO decomposition and/or thermal sintering/growth of Pd particles. When applied to commercially available fiber mesh substrates (both metallic and ceramic) and tested in an open-air burner, these catalyst-support chemistries showed modest improvements in the NOx emissions and radiant output compared to uncatalyzed substrates. More significant, though, was the performance of the catalyst-support chemistries on novel media substrates. These substrates were developed to overcome the limitations that are present with commercially available substrate designs and increase the gas-catalyst contact time. When catalyzed, these substrates demonstrated a 65-75% reduction in NOx emissions across the firing range when tested in an open air burner. In testing in a residential boiler, this translated into NOx emissions of <15 ppm over the 15-150 kBtu/hr firing range.

  7. Acid gas burner

    SciTech Connect (OSTI)

    Polak, B.

    1991-04-23T23:59:59.000Z

    This patent describes a burner for combusting a waste gas. It comprises a throat section; a fire tube downstream from the throat section in communication therewith; an air duct section upstream from the throat section in communication therewith; a centrally located nozzle means for introduction of a fuel in the throat section in a downstream direction toward the fire tube; means upstream from the throat section for forming a downstream directed swirling combustion air stream substantially in an annular ring along the sidewalls of the throat section; and means for introducing a waste gas stream into the throat section downstream of the nozzle means in a forwardly biased but swirling direction opposite to that of the swirling combustion air stream.

  8. Criterion for burner design in thermal weed control 

    E-Print Network [OSTI]

    Gonzalez, Telca Marisa

    2001-01-01T23:59:59.000Z

    A covered infrared burner was designed and constructed so that it could be compared to an open-flame burner. Two covered burners, a high configuration and a low configuration, were constructed. A low configuration covered infrared burner, high...

  9. Burner ignition system

    DOE Patents [OSTI]

    Carignan, Forest J. (Bedford, MA)

    1986-01-21T23:59:59.000Z

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  10. RENEWABLES RESEARCH Boiler Burner Energy System Technology

    E-Print Network [OSTI]

    RENEWABLES RESEARCH Boiler Burner Energy System Technology (BBEST) for Firetube Boilers PIER Renewables Research September 2010 The Issue Researchers at Altex Technologies Corporation in Sunnyvale, industrial combined heat and power (CHP) boiler burner energy system technology ("BBEST"). Their research

  11. Light pulse in {Lambda}-type cold-atom gases

    SciTech Connect (OSTI)

    Wei Ran; Deng Youjin; Chen Shuai; Chen Zengbing; Pan Jianwei [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhao Bo [Institute for Theoretical physics, University of Innsbruck, A-6020 Innsbruck (Austria); Institute for Quantum Optics and Quantum Information of the Austrian Academy of Science, A-6020 Innsbruck (Austria)

    2010-04-15T23:59:59.000Z

    We investigate the behavior of the light pulse in {Lambda}-type cold-atom gases with two counter-propagating control lights with equal strength by directly simulating the dynamic equations and exploring the dispersion relation. Our analysis shows that, depending on the length L{sub 0} of the stored wave packet and the decay rate {gamma} of ground-spin coherence, the recreated light can behave differently. For long L{sub 0} and/or large {gamma}, a stationary light pulse is produced, while two propagating light pulses appear for short L{sub 0} and/or small {gamma}. In the {gamma}{yields}0 limit, the light always splits into two propagating pulses for a sufficiently long time. This scenario agrees with a recent experiment [Y.-W. Lin et al., Phys. Rev. Lett. 102, 213601 (2009)] where two propagating light pulses are generated in laser-cooled cold-atom ensembles.

  12. atom-type electrotopological-state indices: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mechanical calculations Chemistry Websites Summary: Automatic atom type and bond type perception in molecular mechanical calculations Junmei Wang a Department of Molecular...

  13. Uniform-burning matrix burner

    DOE Patents [OSTI]

    Bohn, Mark S. (Golden, CO); Anselmo, Mark (Arvada, CO)

    2001-01-01T23:59:59.000Z

    Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

  14. Slurry burner for mixture of carbonaceous material and water

    DOE Patents [OSTI]

    Nodd, Dennis G. (West Mifflin, PA); Walker, Richard J. (Bethel Park, PA)

    1987-01-01T23:59:59.000Z

    A carbonaceous material-water slurry burner includes a high pressure tip-emulsion atomizer for directing a carbonaceous material-water slurry into a combustion chamber for burning therein without requiring a support fuel or oxygen enrichment of the combustion air. Introduction of the carbonaceous material-water slurry under pressure forces it through a fixed atomizer wherein the slurry is reduced to small droplets by mixing with an atomizing air flow and directed into the combustion chamber. The atomizer includes a swirler located immediately adjacent to where the fuel slurry is introduced into the combustion chamber and which has a single center channel through which the carbonaceous material-water slurry flows into a plurality of diverging channels continuous with the center channel from which the slurry exits the swirler immediately adjacent to an aperture in the combustion chamber. The swirler includes a plurality of slots around its periphery extending the length thereof through which the atomizing air flows and by means of which the atomizing air is deflected so as to exert a maximum shear force upon the carbonaceous material-water slurry as it exits the swirler and enters the combustion chamber. A circulating coolant system or boiler feed water is provided around the periphery of the burner along the length thereof to regulate burner operating temperature, eliminate atomizer plugging, and inhibit the generation of sparklers, thus increasing combustion efficiency. A secondary air source directs heated air into the combustion chamber to promote recirculation of the hot combustion gases within the combustion chamber.

  15. Coleman Two Burner Stove The Coleman Matchlight 2-Burner Propane Stove is especially designed for outdoor

    E-Print Network [OSTI]

    Walker, Lawrence R.

    Coleman Two Burner Stove The Coleman Matchlight 2-Burner Propane Stove is especially designed-burner propane stove has a high-pressure regulator that ensures a constant flame regardless of weather propane stove has a removable nickel-chrome-plated grate that makes for easy cleaning. The aluminized

  16. Combined Heat and Power (CHP) Integrated with Burners for Packaged...

    Broader source: Energy.gov (indexed) [DOE]

    Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Providing Clean, Low-Cost,...

  17. Porous radiant burners having increased radiant output

    DOE Patents [OSTI]

    Tong, Timothy W. (Tempe, AZ); Sathe, Sanjeev B. (Tempe, AZ); Peck, Robert E. (Tempe, AZ)

    1990-01-01T23:59:59.000Z

    Means and methods for enhancing the output of radiant energy from a porous radiant burner by minimizing the scattering and increasing the adsorption, and thus emission of such energy by the use of randomly dispersed ceramic fibers of sub-micron diameter in the fabrication of ceramic fiber matrix burners and for use therein.

  18. Generation of genuine $?$-type four-particle entangled state of superconducting artificial atoms with broken symmetry

    E-Print Network [OSTI]

    Chun-Ling Leng; Qi Guo; Xin Ji; Shou Zhang

    2014-12-11T23:59:59.000Z

    We propose a scheme for generating a genuine $\\chi$-type four-particle entangled state of superconducting artificial atoms with broken symmetry by using one-dimensional transmission line resonator as a data bus. The $\\Delta$-type three-level artificial atom we use in the scheme is different from natural atom and has cyclic transitions. After suitable interaction time and simple operations, the desired entangled state can be obtained. Since artificial atomic excited states and photonic states are adiabatically eliminated, our scheme is robust against the spontaneous emissions of artificial atoms and the decays of transmission line resonator.

  19. Development of a 16-MW sub th coal-water/heavy oil burner for front-wall firing

    SciTech Connect (OSTI)

    Thambimuthu, K.V.; Whaley, H. (EMR Canada/CANMET, Ottawa (CA)); Bennet, A.; Jonasson, K.A. (NRC Canada, Ottawa (CA))

    1990-06-01T23:59:59.000Z

    The Canadian program of coal-water fuel (CWF) technology development has included the demonstration of commercial burners for CWF in both coal and oil-designed utility boilers. The demonstrations clearly showed that these burners were prototypes, and were, in fact, modified oil burners that were mismatched to the rheological properties of the CWF. As the demonstrations were proceeding, a simultaneous research program was undertaken in which the basic principles governing atomization and combustion of CWF were studied. Results from the fundamental studies which led to the development of a novel prototype dual fuel CWF/oil burner are described. In the various stages of development, the burner was scaled up from 1.5 MW{sub th} to an industrial scale of 16 MS{sub th} for demonstration in a 20-MW{sub (e)} oil-designed industrial utility boiler and for a single-burner commercial operation in an oil designed package steam boiler. A summary of the burner performance in these demonstrations is also given in this paper.

  20. Dual-water mixture fuel burner

    DOE Patents [OSTI]

    Brown, Thomas D. (Finleyville, PA); Reehl, Douglas P. (Pittsburgh, PA); Walbert, Gary F. (Library, PA)

    1986-08-05T23:59:59.000Z

    A coal-water mixture (CWM) burner includes a conically shaped rotating cup into which fuel comprised of coal particles suspended in a slurry is introduced via a first, elongated inner tube coupled to a narrow first end portion of the cup. A second, elongated outer tube is coaxially positioned about the first tube and delivers steam to the narrow first end of the cup. The fuel delivery end of the inner first tube is provided with a helical slot on its lateral surface for directing the CWM onto the inner surface of the rotating cup in the form of a uniform, thin sheet which, under the influence of the cup's centrifugal force, flows toward a second, open, expanded end portion of the rotating cup positioned immediately adjacent to a combustion chamber. The steam delivered to the rotating cup wets its inner surface and inhibits the coal within the CWM from adhering to the rotating cup. A primary air source directs a high velocity air flow coaxially about the expanded discharge end of the rotating cup for applying a shear force to the CWM in atomizing the fuel mixture for improved combustion. A secondary air source directs secondary air into the combustion chamber adjacent to the outlet of the rotating cup at a desired pitch angle relative to the fuel mixture/steam flow to promote recirculation of hot combustion gases within the ignition zone for increased flame stability.

  1. Advanced Burners and Combustion Controls for Industrial Heat Recovery Systems

    E-Print Network [OSTI]

    Ferri, J. L.

    ADVANCED BURNERS AND COMBUSTION CONTROLS FOR INDUSTRIAL HEAT RECOVERY SYSTEMS J.L.FERRI GTE PRODUCTS CORPORATION TOWANDA, PA ABSTRACT When recuperators are installed on indus trial furnaces, burners and ratio control systems must...ChieVi able not only through design, but also I because the burner internals are all;: ceramic and can wi thstand high tempera~ tures, particularly at low inputs (higih turndown) where the flame front recedes into the burner. A burner test furnace...

  2. Non-LTE Balmer line formation in late-type spectra: Effects of atomic processes involving hydrogen atoms

    E-Print Network [OSTI]

    P. S. Barklem

    2007-02-08T23:59:59.000Z

    (*** abridged ***) Context: The wings of Balmer lines are often used as effective temperature diagnostics for late-type stars under the assumption they form in local thermodynamic equilibrium. Aims: Our goal is to investigate the non-LTE formation of Balmer lines in late-type stellar atmospheres, to establish if the assumption of LTE is justified. Furthermore, we aim to determine which collision processes are important for the problem; in particular, the role of collision processes with hydrogen atoms is investigated. Method: A model hydrogen atom for non-LTE calculations has been constructed accounting for various collision processes using the best available data from the literature. The processes included are inelastic collisions with electrons and hydrogen atoms, mutual neutralisation and Penning ionisation. Non-LTE calculations are performed, and the relative importance of the collision processes is investigated. Results: Our calculations show electron collisions alone are not sufficient to establish LTE for the formation of Balmer line wings. The role of inelastic collisions with neutral hydrogen is unclear. The available data for these processes is of questionable quality, and different prescriptions for the rate coefficents give significantly different results for the Balmer line wings. Conclusions: Improved calculations or experimental data are needed for excitation and, particularly, ionisation of hydrogen atoms in low-lying states by hydrogen atom impact at near threshold energies. Until such data are available, the assumption of LTE for the formation of Balmer line wings in late-type stars is questionable.

  3. Reverberatory screen for a radiant burner

    DOE Patents [OSTI]

    Gray, Paul E. (North East, MD)

    1999-01-01T23:59:59.000Z

    The present invention relates to porous mat gas fired radiant burner panels utilizing improved reverberatory screens. The purpose of these screens is to boost the overall radiant output of the burner relative to a burner using no screen and the same fuel-air flow rates. In one embodiment, the reverberatory screen is fabricated from ceramic composite material, which can withstand higher operating temperatures than its metallic equivalent. In another embodiment the reverberatory screen is corrugated. The corrugations add stiffness which helps to resist creep and thermally induced distortions due to temperature or thermal expansion coefficient differences. As an added benefit, it has been unexpectedly discovered that the corrugations further increase the radiant efficiency of the burner. In a preferred embodiment, the reverberatory screen is both corrugated and made from ceramic composite material.

  4. Silane-propane ignitor/burner

    DOE Patents [OSTI]

    Hill, Richard W. (Livermore, CA); Skinner, Dewey F. (Livermore, CA); Thorsness, Charles B. (Livermore, CA)

    1985-01-01T23:59:59.000Z

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  5. Silane-propane ignitor/burner

    DOE Patents [OSTI]

    Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

    1983-05-26T23:59:59.000Z

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  6. Burners and combustion apparatus for carbon nanomaterial production

    DOE Patents [OSTI]

    Alford, J. Michael (Lakewood, CO); Diener, Michael D. (Denver, CO); Nabity, James (Arvada, CO); Karpuk, Michael (Boulder, CO)

    2007-10-09T23:59:59.000Z

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  7. Burners and combustion apparatus for carbon nanomaterial production

    DOE Patents [OSTI]

    Alford, J. Michael; Diener, Michael D; Nabity, James; Karpuk, Michael

    2013-02-05T23:59:59.000Z

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  8. Dicke-Type Energy Level Crossings in Cavity-Induced Atom Cooling: Another Superradiant Cooling

    E-Print Network [OSTI]

    Masao Hirokawa

    2008-12-19T23:59:59.000Z

    This paper is devoted to energy-spectral analysis for the system of a two-level atom coupled with photons in a cavity. It is shown that the Dicke-type energy level crossings take place when the atom-cavity interaction of the system undergoes changes between the weak coupling regime and the strong one. Using the phenomenon of the crossings we develop the idea of cavity-induced atom cooling proposed by the group of Ritsch, and we lay mathematical foundations of a possible mechanism for another superradiant cooling in addition to that proposed by Domokos and Ritsch. The process of our superradiant cooling can function well by cavity decay and by control of the position of the atom, at least in (mathematical) theory, even if there is neither atomic absorption nor atomic emission of photons.

  9. CHP Integrated with Burners for Packaged Boilers

    SciTech Connect (OSTI)

    Castaldini, Carlo; Darby, Eric

    2013-09-30T23:59:59.000Z

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the project’s subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial operation and has achieved all the performance goals.

  10. Advanced Burners and Combustion Controls for Industrial Heat Recovery Systems 

    E-Print Network [OSTI]

    Ferri, J. L.

    1988-01-01T23:59:59.000Z

    When recuperators are installed on industrial furnaces, burners and ratio control systems must continue to operate reliably under a wider range of conditions. Most currently available hot air burners use dilution air to prevent fuel decomposition...

  11. Quantum-projection-noise-limited interferometry with coherent atoms in a Ramsey-type setup

    SciTech Connect (OSTI)

    Doering, D.; McDonald, G.; Debs, J. E.; Figl, C.; Altin, P. A.; Bachor, H.-A.; Robins, N. P.; Close, J. D. [Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University, Canberra, 0200 (Australia); Department of Quantum Science, Research School of Physics and Engineering, Australian National University, Canberra, 0200 (Australia)

    2010-04-15T23:59:59.000Z

    Every measurement of the population in an uncorrelated ensemble of two-level systems is limited by what is known as the quantum projection noise limit. Here, we present quantum-projection-noise-limited performance of a Ramsey-type interferometer using freely propagating coherent atoms. The experimental setup is based on an electro-optic modulator in an inherently stable Sagnac interferometer, optically coupling the two interfering atomic states via a two-photon Raman transition. Going beyond the quantum projection noise limit requires the use of reduced quantum uncertainty (squeezed) states. The experiment described demonstrates atom interferometry at the fundamental noise level and allows the observation of possible squeezing effects in an atom laser, potentially leading to improved sensitivity in atom interferometers.

  12. Coherence Induced by Incoherent Pumping Field and Decay Process in Three-level $?$ Type Atomic System

    E-Print Network [OSTI]

    Bao-Quan Ou; Lin-Mei Liang; Cheng-Zu Li

    2007-12-25T23:59:59.000Z

    Following the method of Victor V. Kozlov et al.[PhysRevA. 74. 063829],we inspect the coherence induced by incoherent pump and spontaneous decay process in $\\Lambda$ type three-level atomic system with degenerated lower duplicate levels. The system shows a coherent population trapping state and multi-steady states characteristic in different conditions. Interestingly, two kinds of steady states generated by the system in different sets of pumping and decaying parameters, the "singlet" state and the "triplet" state, exhibit stable or unstable characteristics under the action of pumping field and vacuum reservoir, which promise fruitful applications to atomic coherence and interference in quantum optics.

  13. Refinery burner simulation design architecture summary.

    SciTech Connect (OSTI)

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01T23:59:59.000Z

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  14. Safety Topic: Bunsen Burners and Hotplates

    E-Print Network [OSTI]

    Cohen, Robert E.

    a medium to medium-high setting of the hot plate to heat most liquids, including water. Do not use the high setting to heat low-boiling liquids. The hot plate surface can reach a maximum temperature of 540 °C · Do.med.cornell.edu/ehs/updates/bunsen_burner_safety.htm #12;Hot Plate Procedures · Use only heat-resistant, borosilicate glassware, and check for cracks

  15. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    SciTech Connect (OSTI)

    Robert States

    2006-07-15T23:59:59.000Z

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  16. Method for reducing NOx during combustion of coal in a burner

    DOE Patents [OSTI]

    Zhou, Bing (Cranbury, NJ); Parasher, Sukesh (Lawrenceville, NJ); Hare, Jeffrey J. (Provo, UT); Harding, N. Stanley (North Salt Lake, UT); Black, Stephanie E. (Sandy, UT); Johnson, Kenneth R. (Highland, UT)

    2008-04-15T23:59:59.000Z

    An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

  17. Three-dimensional theory of quantum memories based on {Lambda}-type atomic ensembles

    SciTech Connect (OSTI)

    Zeuthen, Emil; Grodecka-Grad, Anna; Soerensen, Anders S. [QUANTOP, Danish National Research Foundation Center for Quantum Optics, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen O (Denmark)

    2011-10-15T23:59:59.000Z

    We develop a three-dimensional theory for quantum memories based on light storage in ensembles of {Lambda}-type atoms, where two long-lived atomic ground states are employed. We consider light storage in an ensemble of finite spatial extent and we show that within the paraxial approximation the Fresnel number of the atomic ensemble and the optical depth are the only important physical parameters determining the quality of the quantum memory. We analyze the influence of these parameters on the storage of light followed by either forward or backward read-out from the quantum memory. We show that for small Fresnel numbers the forward memory provides higher efficiencies, whereas for large Fresnel numbers the backward memory is advantageous. The optimal light modes to store in the memory are presented together with the corresponding spin waves and outcoming light modes. We show that for high optical depths such {Lambda}-type atomic ensembles allow for highly efficient backward and forward memories even for small Fresnel numbers F(greater-or-similar sign)0.1.

  18. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect (OSTI)

    Ray Chamberland; Aku Raino; David Towle

    2006-09-30T23:59:59.000Z

    For more than two decades, ALSTOM Power Inc. (ALSTOM) has developed a range of low cost, in-furnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes ALSTOM's internally developed TFS 2000 firing system, and various enhancements to it developed in concert with the U.S. Department of Energy (DOE). As of 2004, more than 200 units representing approximately 75,000 MWe of domestic coal fired capacity have been retrofit with ALSTOM low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coals to 0.10 lb/MMBtu for subbituminous coals, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing (retrofit) boiler equipment. If enacted, proposed Clear Skies legislation will, by 2008, require an average, effective, domestic NOx emissions rate of 0.16 lb/MMBtu, which number will be reduced to 0.13 lb/MMBtu by 2018. Such levels represent a 60% and 67% reduction, respectively, from the effective 2000 level of 0.40 lb/MMBtu. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. In light of these needs, ALSTOM, in cooperation with the DOE, is developing an enhanced combustion, low NOx pulverized coal burner which, when integrated with ALSTOM's state-of-the-art, globally air staged low NOx firing systems, will provide a means to achieve less than 0.15 lb/MMBtu NOx at less than 3/4 the cost of an SCR with low to no impact on balance of plant issues when firing a high volatile bituminous coal. Such coals can be more economic to fire than subbituminous or Powder River Basin (PRB) coals, but are more problematic from a NOx control standpoint as existing firing system technologies do not provide a means to meet current or anticipated regulations absent the use of an SCR. The DOE/ALSTOM program performed large pilot scale combustion testing in ALSTOM's Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut. During this work, the near-field combustion environment was optimized to maximize NOx reduction while minimizing the impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down under globally reducing conditions. Initially, ALSTOM utilized computational fluid dynamic modeling to evaluate a series of burner and/or near field stoichiometry controls in order to screen promising design concepts in advance of the large pilot scale testing. The third and final test, to be executed, will utilize several variants of the best nozzle tip configuration and compare performance with 3 different coals. The fuels to be tested will cover a wide range of coals commonly fired at US utilities. The completion of this work will provide sufficient data to allow ALSTOM to design, construct, and demonstrate a commercial version of an enhanced combustion low NOx pulverized coal burner. A preliminary cost/performance analysis of the developed enhanced combustion low NOx burner applied to ALSTOM's state-of-the-art TFS 2000 firing system was performed to show that the burner enhancements is a cost effective means to reduce NOx.

  19. advanced burner test: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    burner test First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Advanced Burners and Combustion Controls...

  20. Turbine Burners: Flameholding in Accelerating Flow W. A. Sirignano1

    E-Print Network [OSTI]

    Liu, Feng

    1 Turbine Burners: Flameholding in Accelerating Flow W. A. Sirignano1 , D. Dunn-Rankin2 , F. Liu3 B, Irvine Abstract A review of turbine-burner research and some relevant background issues is presented. Previous work on thermal cycle analysis for augmentative combustion in the passages of the turbine

  1. Photon storage in Lambda-type optically dense atomic media. III. Effects of inhomogeneous broadening

    E-Print Network [OSTI]

    Alexey V. Gorshkov; Axel Andre; Mikhail D. Lukin; Anders S. Sorensen

    2007-09-08T23:59:59.000Z

    In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)] and in the two preceding papers [Gorshkov et al., Phys. Rev. A 76, 033804 (2007); 76, 033805 (2007)], we used a universal physical picture to optimize and demonstrate equivalence between a wide range of techniques for storage and retrieval of photon wave packets in homogeneously broadened Lambda-type atomic media, including the adiabatic reduction of the photon group velocity, pulse-propagation control via off-resonant Raman techniques, and photon-echo-based techniques. In the present paper, we generalize this treatment to include inhomogeneous broadening. In particular, we consider the case of Doppler-broadened atoms and assume that there is a negligible difference between the Doppler shifts of the two optical transitions. In this situation, we show that, at high enough optical depth, all atoms contribute coherently to the storage process as if the medium were homogeneously broadened. We also discuss the effects of inhomogeneous broadening in solid state samples. In this context, we discuss the advantages and limitations of reversing the inhomogeneous broadening during the storage time, as well as suggest a way for achieving high efficiencies with a nonreversible inhomogeneous profile.

  2. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    SciTech Connect (OSTI)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30T23:59:59.000Z

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 ?m, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

  3. Low-Emissions Burner Technology using Biomass-Derived Liquid...

    Broader source: Energy.gov (indexed) [DOE]

    This factsheet describes a project that developed fuel-flexible, low-emissions burner technology capable of using biomass-derived liquid fuels, such as glycerin or fatty acids, as...

  4. Burner Designs and Controls for Variable Air Preheat Systems

    E-Print Network [OSTI]

    Lied, C. R.

    1981-01-01T23:59:59.000Z

    This paper will deal with various ways of reducing fuel costs for direct fired furnaces. Burner design relating to existing furnaces, new furnaces designed to operate initially on cold air with the ability to add preheated air in the future...

  5. J.R. Simplot: Burner Upgrade Project Improves Performance and...

    Broader source: Energy.gov (indexed) [DOE]

    how the J.R. Simplot Company saved energy and money by increasing the efficiency of the steam system in its potato processing plant in Caldwell, Idaho. J.R. Simplot: Burner Upgrade...

  6. Advanced Petrochemical Process Heating with the Pyrocore Burner

    E-Print Network [OSTI]

    Krill, W. V.; Minden, A. C.; Donaldson, L. W. Jr.

    natural gas or refinery process gas and designed to take full advantage of the Pyrocore burner's radiant heat transfer characteristics. This will result in a process heater with design and performance attributes that will be attractive to users...ADVANCED PETROCHEMICAL PROCESS HEATING WITH THE PYROCORE BURNER WAYNE V. KRILL ANDREW C. MINDEN LESLIE W. DONALDSON, JR. Vice President Project Engineer Manager, Process Systems Research Alzeta Corporation Alzeta Corporation Gas Research...

  7. Mg line formation in late-type stellar atmospheres: I. The model atom

    E-Print Network [OSTI]

    Osorio, Y; Lind, K; Belyaev, A K; Spielfiedel, A; Guitou, M; Feautrier, N

    2015-01-01T23:59:59.000Z

    Mg is often traced in late-type stars using lines of neutral magnesium, which is expected to be subject to departures from LTE. The astrophysical importance of Mg as well as its relative simplicity from an atomic physics point of view, makes it a prime target and test bed for detailed ab initio non-LTE modelling in stellar atmospheres. For the low-lying states of Mg i, electron collision data were calculated using the R-matrix method. Calculations for collisional broadening by neutral hydrogen were also performed where data were missing. These calculations, together with data from the literature, were used to build a model atom. First, the modelling was tested by comparisons with observed spectra of benchmark stars with well-known parameters. Second, the spectral line behaviour and uncertainties were explored by extensive experiments in which sets of collisional data were changed or removed. The modelled spectra agree well with observed spectra. The line-to-line scatter in the derived abundances shows improve...

  8. Detection of erythrocytes influenced by aging and type 2 diabetes using atomic force microscope

    SciTech Connect (OSTI)

    Jin, Hua; Xing, Xiaobo [Chemistry Department, Jinan University, Guangzhou 510632 (China)] [Chemistry Department, Jinan University, Guangzhou 510632 (China); Zhao, Hongxia [Chemistry Department, Jinan University, Guangzhou 510632 (China) [Chemistry Department, Jinan University, Guangzhou 510632 (China); Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510090 (China); Chen, Yong [Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031 (China)] [Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031 (China); Huang, Xun [Chemistry Department, Jinan University, Guangzhou 510632 (China)] [Chemistry Department, Jinan University, Guangzhou 510632 (China); Ma, Shuyuan [Chemistry Department, Jinan University, Guangzhou 510632 (China) [Chemistry Department, Jinan University, Guangzhou 510632 (China); The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Ye, Hongyan [Chemistry Department, Jinan University, Guangzhou 510632 (China)] [Chemistry Department, Jinan University, Guangzhou 510632 (China); Cai, Jiye, E-mail: tjycai@jnu.edu.cn [Chemistry Department, Jinan University, Guangzhou 510632 (China)] [Chemistry Department, Jinan University, Guangzhou 510632 (China)

    2010-01-22T23:59:59.000Z

    The pathophysiological changes of erythrocytes are detected at the molecular scale, which is important to reveal the onset of diseases. Type 2 diabetes is an age-related metabolic disorder with high prevalence in elderly (or old) people. Up to now, there are no treatments to cure diabetes. Therefore, early detection and the ability to monitor the progression of type 2 diabetes are very important for developing effective therapies. Type 2 diabetes is associated with high blood glucose in the context of insulin resistance and relative insulin deficiency. These abnormalities may disturb the architecture and functions of erythrocytes at molecular scale. In this study, the aging- and diabetes-induced changes in morphological and biomechanical properties of erythrocytes are clearly characterized at nanometer scale using atomic force microscope (AFM). The structural information and mechanical properties of the cell surface membranes of erythrocytes are very important indicators for determining the healthy, diseased or aging status. So, AFM may potentially be developed into a powerful tool in diagnosing diseases.

  9. Scalable control program for multiprecursor flow-type atomic layer deposition system

    SciTech Connect (OSTI)

    Selvaraj, Sathees Kannan [Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Takoudis, Christos G., E-mail: takoudis@uic.edu [Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 and Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States)

    2015-01-01T23:59:59.000Z

    The authors report the development and implementation of a scalable control program to control flow type atomic layer deposition (ALD) reactor with multiple precursor delivery lines. The program logic is written and tested in LABVIEW environment to control ALD reactor with four precursor delivery lines to deposit up to four layers of different materials in cyclic manner. The programming logic is conceived such that to facilitate scale up for depositing more layers with multiple precursors and scale down for using single layer with any one precursor in the ALD reactor. The program takes precursor and oxidizer exposure and purging times as input and controls the sequential opening and closing of the valves to facilitate the complex ALD process in cyclic manner. The program could be used to deposit materials from any single line or in tandem with other lines in any combination and in any sequence.

  10. Advanced burner test reactor preconceptual design report.

    SciTech Connect (OSTI)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16T23:59:59.000Z

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

  11. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect (OSTI)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30T23:59:59.000Z

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to be the most challenging of the three coals, with the Western bituminous coal predicted to beh

  12. Flame quality monitor system for fixed firing rate oil burners

    DOE Patents [OSTI]

    Butcher, Thomas A. (Pt. Jefferson, NY); Cerniglia, Philip (Moriches, NY)

    1992-01-01T23:59:59.000Z

    A method and apparatus for determining and indicating the flame quality, or efficiency of the air-fuel ratio, in a fixed firing rate heating unit, such as an oil burning furnace, is provided. When the flame brightness falls outside a preset range, the flame quality, or excess air, has changed to the point that the unit should be serviced. The flame quality indicator output is in the form of lights mounted on the front of the unit. A green light indicates that the flame is about in the same condition as when the burner was last serviced. A red light indicates a flame which is either too rich or too lean, and that servicing of the burner is required. At the end of each firing cycle, the flame quality indicator goes into a hold mode which is in effect during the period that the burner remains off. A yellow or amber light indicates that the burner is in the hold mode. In this mode, the flame quality lights indicate the flame condition immediately before the burner turned off. Thus the unit can be viewed when it is off, and the flame condition at the end of the previous firing cycle can be observed.

  13. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-09-04T23:59:59.000Z

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

  14. Photon storage in Lambda-type optically dense atomic media. II. Free-space model

    E-Print Network [OSTI]

    Alexey V. Gorshkov; Axel Andre; Mikhail D. Lukin; Anders S. Sorensen

    2007-09-08T23:59:59.000Z

    In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)], we presented a universal physical picture for describing a wide range of techniques for storage and retrieval of photon wave packets in Lambda-type atomic media in free space, including the adiabatic reduction of the photon group velocity, pulse-propagation control via off-resonant Raman techniques, and photon-echo based techniques. This universal picture produced an optimal control strategy for photon storage and retrieval applicable to all approaches and yielded identical maximum efficiencies for all of them. In the present paper, we present the full details of this analysis as well some of its extensions, including the discussion of the effects of non-degeneracy of the two lower levels of the Lambda system. The analysis in the present paper is based on the intuition obtained from the study of photon storage in the cavity model in the preceding paper [Gorshkov et al., Phys. Rev. A 76, 033804 (2007)].

  15. Photon storage in Lambda-type optically dense atomic media. I. Cavity model

    E-Print Network [OSTI]

    Alexey V. Gorshkov; Axel Andre; Mikhail D. Lukin; Anders S. Sorensen

    2007-09-08T23:59:59.000Z

    In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)], we used a universal physical picture to optimize and demonstrate equivalence between a wide range of techniques for storage and retrieval of photon wave packets in Lambda-type atomic media in free space, including the adiabatic reduction of the photon group velocity, pulse-propagation control via off-resonant Raman techniques, and photon-echo-based techniques. In the present paper, we perform the same analysis for the cavity model. In particular, we show that the retrieval efficiency is equal to C/(1+C) independent of the retrieval technique, where C is the cooperativity parameter. We also derive the optimal strategy for storage and, in particular, demonstrate that at any detuning one can store, with the optimal efficiency of C/(1+C), any smooth input mode satisfying T C gamma >> 1 and a certain class of resonant input modes satisfying T C gamma ~ 1, where T is the duration of the input mode and 2 gamma is the transition linewidth. In the two subsequent papers of the series, we present the full analysis of the free-space model and discuss the effects of inhomogeneous broadening on photon storage.

  16. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    E.G.Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

    2001-06-01T23:59:59.000Z

    An initial testing campaign was carried out during the summer of 2000 to evaluate the impact of multiburner firing on NOx emissions. Extensive data had been collected during the Fall of 1999 and Spring of 2000 using a single pulverized-coal (PC) burner, and this data collection was funded by a separate Department of Energy program, the Combustion 2000 Low Emission Boiler System (LEBS) project under the direction of DB Riley. This single-burner data was thus available for comparison with NOx emissions obtained while firing three burners at the same overall load and operating conditions. A range of operating conditions were explored that were compatible with single-burner data, and thus the emission trends as a function of air staging, burner swirl and other parameters will be described below. In addition, a number of burner-to-burner operational variations were explored that provided interesing insight on their potential impact on NOx emissions. Some of these variations include: running one burner very fuel rich while running the others fuel lean; varying the swirl of a single burner while holding others constant; increasing the firing rate of a single burner while decreasing the others. In general, the results to date indicated that multiburner firing yielded higher NOx emissions than single burner firing at the same fuel rate and excess air. At very fuel rich burner stoichiometries (SR < 0.75), the difference between multiple and single burners became indistinguishable. This result is consistent with previous single-burner data that showed that at very rich stoichiometries the NOx emissions became independent of burner settings such as air distributions, velocities and burner swirl.

  17. Development of quick repairing technique for ceramic burner in hot stove of blast furnace

    SciTech Connect (OSTI)

    Kondo, Atsushi; Doura, Kouji; Nakamura, Hirofumi [Sumitomo Metal Industries, Ltd., Wakayama (Japan). Wakayama Steel Works

    1997-12-31T23:59:59.000Z

    Refractories of ceramic burner in hot stoves at Wakayama No. 4 blast furnace were damaged. There are only three hot stoves, so repairing must be done in a short. Therefore, a quick repairing technique for ceramic burners has been developed, and two ceramic burners were repaired in just 48 hours.

  18. Study of the Effects of Ambient Conditions Upon the Performance of Fan Powered, Infrared Natural Gas Burners

    SciTech Connect (OSTI)

    Clark Atlanta University

    2002-12-02T23:59:59.000Z

    The objective of this investigation was to characterize the operation of a fan-powered, infrared burner (IR burner) at various gas compositions and ambient conditions, develop numerical model to simulate the burner performances, and provide design guidelines for appliances containing PIR burners for satisfactory performance.

  19. Fire suppression efficiency screening using a counterflow cylindrical burner

    SciTech Connect (OSTI)

    Yang, J.C.; Donnelly, M.K.; Prive, N.; Grosshandler, W.L.

    1999-07-01T23:59:59.000Z

    The design and validation of a counterflow cylindrical burner for fire suppression efficiency screening are described. The stability limits of the burner were mapped using various fuel (propane) and oxidizer (air) flows. The stability envelopes compared favorably with those reported in the literature. The apparatus was characterized using inert gases (argon, helium, and nitrogen), and the relative fire suppression efficiency ranking of these three gases was found to be commensurate with that from cup-burner tests. For liquid suppression experiments, a piezoelectric droplet generator was used to form droplets (<100 {micro}m). Water was used as a representative liquid suppressant to study the feasibility of using such a burner for screening liquid agents. Extinction was facilitated with the addition of water droplets, and the effect of water became more pronounced when its application rate was increased. Suppression experiments using water with and without nitrogen dilution in the oxidizer stream were also performed. Flame extinction due to the combined effect of water and nitrogen dilution was demonstrated.

  20. BURNER DEVELOPMENT AND OPERABILITY ISSUES ASSOCIATED WITH STEADY FLOWING SYNGAS

    E-Print Network [OSTI]

    Lieuwen, Timothy C.

    BURNER DEVELOPMENT AND OPERABILITY ISSUES ASSOCIATED WITH STEADY FLOWING SYNGAS FIRED COMBUSTORS-Mu¨nchen, Garching, Germany This article addresses the impact of syngas fuel composition on combustor blowout, flash flashback mechanisms are present in swirling flows, and the key thermophysical properties of a syngas

  1. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-08-20T23:59:59.000Z

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO{sub x} burner geometry's.

  2. Downhole burner systems and methods for heating subsurface formations

    DOE Patents [OSTI]

    Farmayan, Walter Farman (Houston, TX); Giles, Steven Paul (Damon, TX); Brignac, Jr., Joseph Phillip (Katy, TX); Munshi, Abdul Wahid (Houston, TX); Abbasi, Faraz (Sugarland, TX); Clomburg, Lloyd Anthony (Houston, TX); Anderson, Karl Gregory (Missouri City, TX); Tsai, Kuochen (Katy, TX); Siddoway, Mark Alan (Katy, TX)

    2011-05-31T23:59:59.000Z

    A gas burner assembly for heating a subsurface formation includes an oxidant conduit, a fuel conduit, and a plurality of oxidizers coupled to the oxidant conduit. At least one of the oxidizers includes a mix chamber for mixing fuel from the fuel conduit with oxidant from the oxidant conduit, an igniter, and a shield. The shield includes a plurality of openings in communication with the oxidant conduit. At least one flame stabilizer is coupled to the shield.

  3. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    E-Print Network [OSTI]

    Logue, Jennifer M.

    2014-01-01T23:59:59.000Z

    P. Sullivan (2009). Natural Gas Variability in California:Singer (2012). Impact of Natural Gas Appliances on PollutantPollutant Exposures in Natural Gas Cooking Burners, LBNL

  4. Experimental and numerical analysis of isothermal turbulent flows in interacting low NOx burners in coal-fired furnaces 

    E-Print Network [OSTI]

    Cvoro, Valentina

    Coal firing power stations represent the second largest source of global NOx emissions. The current practice of predicting likely exit NOx levels from multi-burner furnaces on the basis of single burner test rig data has been proven inadequate...

  5. CFCC radiant burner assessment. Final report, April 1, 1992--July 31, 1994

    SciTech Connect (OSTI)

    Schweizer, S.; Sullivan, J.

    1994-11-01T23:59:59.000Z

    The objective of this work was to identify methods of improving the performance of gas-fired radiant burners through the use of Continuous Fiber Ceramic Composites (CFCCs). Methods have been identified to improve the price and performance characteristics of the porous surface burner. Results are described.

  6. Check Burner Air to Fuel Ratios | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding RemovalCSSDepartment of Energy5-4-20129Burner Air to Fuel

  7. Full-scale demonstration Low-NO sub x Cell trademark Burner retrofit

    SciTech Connect (OSTI)

    Not Available

    1992-05-11T23:59:59.000Z

    The Low-NO{sub x} Cell{trademark} Burner operates on the principle of staged combustion. The lower burner of each two-nozzle cell is modified to accommodate all the fuel input previously handled by two nozzles. Secondary air, less than theoretically required for complete combustion, is introduced to the lower burner. The remainder of secondary air is directed to the upper port'' of each cell to complete the combustion process. B W/EPRI have thoroughly tested the LNCB{trademark} at two pilot scales (6 million Btu per hour and 100 million Btu per hour), and tested a single full-scale burner in a utility boiler. Combustion tests at two scales have confirmed NO{sub x} reduction with the low-NO{sub x} cell on the order of 50% relative to the standard cell burner at optimum operating conditions. The technology is now ready for full unit, full-scale demonstration.

  8. Photon storage in Lambda-type optically dense atomic media. IV. Optimal control using gradient ascent

    E-Print Network [OSTI]

    Alexey V. Gorshkov; Tommaso Calarco; Mikhail D. Lukin; Anders S. Sorensen

    2008-04-07T23:59:59.000Z

    We use the numerical gradient ascent method from optimal control theory to extend efficient photon storage in Lambda-type media to previously inaccessible regimes and to provide simple intuitive explanations for our optimization techniques. In particular, by using gradient ascent to shape classical control pulses used to mediate photon storage, we open up the possibility of high efficiency photon storage in the non-adiabatic limit, in which analytical solutions to the equations of motion do not exist. This control shaping technique enables an order-of-magnitude increase in the bandwidth of the memory. We also demonstrate that the often discussed connection between time reversal and optimality in photon storage follows naturally from gradient ascent. Finally, we discuss the optimization of controlled reversible inhomogeneous broadening.

  9. A modified Bitter-type electromagnet and control system for cold atom experiments

    SciTech Connect (OSTI)

    Luan, Tian; Zhou, Tianwei; Chen, Xuzong, E-mail: xuzongchen@pku.edu.cn [School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)] [School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China); Ma, Zhaoyuan, E-mail: zyma@siom.cas.cn [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)] [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-02-15T23:59:59.000Z

    We present a modified Bitter-type electromagnet which features high magnetic field, fine electronic properties and efficient heat removal. The electromagnet is constructed from a stack of copper layers separated by mica layers that have the same shape. A distinctive design of cooling channels on the insulating layers and the parallel ducts between the layers ensures low resistance for cooling water to flow. A continuous current control system is also made to regulate the current through the electromagnet. In our experiment, versatile electromagnets are applied to generate magnetic field and gradient field. From our measurements, a peak magnetic field of 1000 G and a peak gradient field of 80 G/cm are generated in the center of the apparatuses which are 7 cm and 5 cm away from the edge of each electromagnet with a current of 230 A and 120 A, respectively. With the effective feedback design in the current control system and cooling water flow of 3.8 l/min, the stability of the current through the electromagnets can reach 10{sup ?5}.

  10. Establishing criteria for the design of a combination parallel and cross-flaming covered burner 

    E-Print Network [OSTI]

    Stark, Christopher Charles

    2003-01-01T23:59:59.000Z

    with the data for the temperatures observed. The areas under the curve, above 100 degrees C and within an exposure time boundary were used to compute utilization factors. The utilization factors provided a relative comparison of burner efficiency...

  11. Low No sub x /SO sub x burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Moore, K.; Martin, L.; Smith, J.

    1991-05-01T23:59:59.000Z

    The Low NO{sub x}/SO{sub x} (LNS) Burner Retrofit for Utility Cyclone Boilers program consists of the retrofit and subsequent demonstration of the technology at Southern Illinois Power Cooperative's (SIPC's) 33-MW unit 1 cyclone boiler located near Marion, Illinois. The LNS Burner employs a simple innovative combustion process burning high-sulfur Illinois coal to provide substantial SO{sub 2} and NO{sub x} control within the burner. A complete series of boiler performance and characterization tests, called the baseline tests, was conducted in October 1990 on unit 1 of SIPC's Marion Station. The primary objective of the baseline test was to collect data from the existing plant that could provide a comparison of performance after the LNS Burner retrofit. These data could confirm the LNS Burner's SO{sub x} and NO{sub x} emissions control and any effect on boiler operation. Further, these tests would provide to the project experience with the operating characteristics of the host unit as well as engineering design information to minimize technical uncertainties in the application of the LNS Burner technology.

  12. Low NOx Burner Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect (OSTI)

    Andrew Seltzer

    2005-05-01T23:59:59.000Z

    The objective of the low NOx burner design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the burner design to ensure stable ignition, to provide safe operation, and to minimize pollutant formation. The burners were designed and analyzed using the Fluent computer program. Four burner designs were developed: (1) with no over-fire gas (OFG) and 65% flue gas recycle, (2) with 20% OFG and 65% flue gas recycle, (3) with no OFG and 56% flue gas recycle and (4) with 20% OFG and 56% flue gas recycle. A 3-D Fluent simulation was made of a single wall-fired burner and horizontal portion of the furnace from the wall to the center. Without primary gas swirl, coal burnout was relatively small, due to the low oxygen content of the primary gas stream. Consequently, the burners were modified to include primary gas swirl to bring the coal particles in contact with the secondary gas. An optimal primary gas swirl was chosen to achieve sufficient burnout.

  13. Study of the effects of ambient conditions upon the performance of fam powered, infrared, natural gas burners

    SciTech Connect (OSTI)

    Bai, Tiejun

    1996-10-01T23:59:59.000Z

    The objective of this investigation is to characterize the operation of a fan powered infrared burner (PIR burner) at various gas compositions and ambient conditions and develop design guidelines for appliances containing PIR burners for satisfactory performance. The fan powered infrared burner is a technology introduced more recently in the residential and commercial markets. It is a surface combustor that elevates the temperature of the burner head to a radiant condition. A variety of metallic and ceramic materials are used for the burner heads. It has been demonstrated that infrared burners produce low CO and NO{sub x} emissions in a controlled geometric space. This project consists of both experimental research and numerical analysis. To conduct the experiments, an experimental setup has been developed and installed in the Combustion Laboratory at Clerk Atlanta University (CAU). This setup consists of a commercial deep fat fryer that has been modified to allow in-situ radiation measurements on the surface of the infrared burner via a view port installed on the side wall of the oil vat. Proper instrumentation including fuel/air flow rate measurement, exhaust gas emission measurement, and radiation measurement has been developed. The project is progressing well. The scheduled tasks for this period of time were conducted smoothly. Specifically: 1. Baseline experimental study at CAU has been completed. The data are now under detailed analysis and will be reported in next quarterly report. 2. Theoretical formulation and analysis of the PIR burner performance model are continuing. Preliminary results have been obtained.

  14. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01T23:59:59.000Z

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that aims to predict the conversion of char-nitrogen to nitric oxide should allow for the conversion of char-nitrogen to HCN. The extent of the HCN conversion to NO or N{sub 2} will depend on the composition of the atmosphere surrounding the particle. A pilot-scale testing campaign was carried out to evaluate the impact of multiburner firing on NO{sub x} emissions using a three-burner vertical array. In general, the results indicated that multiburner firing yielded higher NO{sub x} emissions than single burner firing at the same fuel rate and excess air. Mismatched burner operation, due to increases in the firing rate of the middle burner, generally demonstrated an increase in NO{sub x} over uniform firing. Biased firing, operating the middle burner fuel rich with the upper and lower burners fuel lean, demonstrated an overall reduction in NO{sub x} emissions; particularly when the middle burner was operated highly fuel rich. Computational modeling indicated that operating the three burner array with the center burner swirl in a direction opposite to the other two resulted in a slight reduction in NO{sub x}.

  15. Preliminary safety evaluation of the advanced burner test reactor.

    SciTech Connect (OSTI)

    Dunn, F. E.; Fanning, T. H.; Cahalan, J. E.; Nuclear Engineering Division

    2006-09-15T23:59:59.000Z

    Results of a preliminary safety evaluation of the Advanced Burner Test Reactor (ABTR) pre-conceptual design are reported. The ABTR safety design approach is described. Traditional defense-in-depth design features are supplemented with passive safety performance characteristics that include natural circulation emergency decay heat removal and reactor power reduction by inherent reactivity feedbacks in accidents. ABTR safety performance in design-basis and beyond-design-basis accident sequences is estimated based on analyses. Modeling assumptions and input data for safety analyses are presented. Analysis results for simulation of simultaneous loss of coolant pumping power and normal heat rejection are presented and discussed, both for the case with reactor scram and the case without reactor scram. The analysis results indicate that the ABTR pre-conceptual design is capable of undergoing bounding design-basis and beyond-design-basis accidents without fuel cladding failures. The first line of defense for protection of the public against release of radioactivity in accidents remains intact with significant margin. A comparison and evaluation of general safety design criteria for the ABTR conceptual design phase are presented in an appendix. A second appendix presents SASSYS-1 computer code capabilities and modeling enhancements implemented for ABTR analyses.

  16. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, October 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Bai, T.

    1997-01-01T23:59:59.000Z

    This quarterly technical progress report describes work performed under DOE Grant No. DE-FG22-94MT94011 during the period September 1, 1996 to December 31, 1996 which covers the nineth quarter of the project. The objective of this investigation is to characterize the operation of a fan powered infrared burner (IR burner) at various gas compositions and ambient conditions and develop design guidelines for appliances containing PIR burners for satisfactory performance. The fan powered infrared burner is a technology introduced more recently in the residential and commercial markets. It is a surface combustor that elevates the temperature of the burner head to a radiant condition. A variety of metallic and ceramic materials are used for the burner heads. It has been demonstrated that infrared burners produce low CO and NO{sub x} emissions in a controlled geometric space. As the environmental regulations become more stringent, infrared burners are receiving increasing interests.

  17. Thermionic-cogeneration-burner assessment study. Second quarterly technical progress report, January-March 1983

    SciTech Connect (OSTI)

    Not Available

    1983-01-01T23:59:59.000Z

    The performance analysis work continued with the completion of the programming of the mathematical model and with the start of a series of parametric analyses. Initial studies predict that approximately 25 to 30% of the heat contained in the flue gas can be passed through the thermionic converters (TEC) and then be converted at 12 to 15% efficiency into electrical power. This results in up to 17 kWe per 1 million Btu/h burner firing rate. This is a 4 to 10 percent energy saving over power produced at the utility. The thermal burner design and construction have been completed, as well as initial testing on the furnace and preheat systems. The following industries are still considered viable options for use of the thermionic cogeneration burner: chlor-alkali, alumina-aluminum, copper refining, steel and gray iron, industries using resistance heating, electrolytic industries and electrochemical industries. Information gathered on these industries is presented.

  18. Gas-phase and catalytic combustion in heat-recirculating burners Jeongmin Ahn, Craig Eastwood, Lars Sitzki* and Paul D. Ronney

    E-Print Network [OSTI]

    1 Gas-phase and catalytic combustion in heat-recirculating burners Jeongmin Ahn, Craig Eastwood title: Extinction limits in excess enthalpy burners To be published in Proceedings of the Combustion-phase and catalytic combustion in heat-recirculating burners Jeongmin Ahn, Craig Eastwood, Lars Sitzki* and Paul D

  19. Development and validation of a combustion model for a fuel cell off-gas burner

    E-Print Network [OSTI]

    Collins, William Tristan

    2008-10-14T23:59:59.000Z

    Development and Validation of a Combustion Model for a Fuel Cell Off-Gas Burner W. Tristan Collins Magdalene College University of Cambridge A dissertation submitted to the University of Cambridge for the degree of Doctor of Philosophy June 2008... Development and Validation of a Combustion Model for a Fuel Cell Off-Gas Burner W. Tristan Collins A low-emissions power generator comprising a solid oxide fuel cell coupled to a gas turbine has been developed by Rolls-Royce Fuel Cell Systems. As part...

  20. Core design studies for advanced burner test reactor.

    SciTech Connect (OSTI)

    Yang, W. S.; Kim, T. K.; Hill, R. N.; Nuclear Engineering Division

    2008-01-01T23:59:59.000Z

    The U.S. government announced in February 2006 the Global Nuclear Energy Partnership (GNEP) to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. The advanced burner reactor (ABR) based on a fast spectrum is one of the three major technologies to be demonstrated in GNEP. In FY06, a pre-conceptual design study was performed to develop an advanced burner test reactor (ABTR) that supports development of a prototype full-scale ABR, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR were (1) to demonstrate reactor-based transmutation of transuranics (TRU) as part of an advanced fuel cycle, (2) to qualify the TRU-containing fuels and advanced structural materials needed for a full-scale ABR, (3) to support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. Based on these objectives, core design and fuel cycle studies were performed to develop ABTR core designs, which can accommodate the expected changes of the TRU feed and the conversion ratio. Various option and trade-off studies were performed to determine the appropriate power level and conversion ratio. Both ternary metal alloy (U-TRU-10Zr) and mixed oxide (UO{sub 2}-TRUO{sub 2}) fuel forms have been considered with TRU feeds from weapons-grade plutonium (WG-Pu) and TRU recovered from light water reactor spent fuel (LWR-SF). Reactor performances were evaluated in detail including equilibrium cycle core parameters, mass flow, power distribution, kinetic parameters, reactivity feedback coefficient, reactivity control requirements and shutdown margins, and spent fuel characteristics. Trade-off studies on power level suggested that about 250 MWt is a reasonable compromise to allow a low project cost, at the same time providing a reasonable prototypic irradiation environment for demonstrating TRU-based fuels. Preliminary design studies showed that it is feasible to design the ABTR to accommodate a wide range of conversion ratio (CR) by employing different assembly designs. The TRU enrichments required for various conversion ratios and the irradiation database suggested a phased approach with initial startup using conventional enrichment plutonium-based fuel and gradual transitioning to full core loading of transmutation fuel after its qualification phase (resulting in {approx}0.6 CR). The low CR transmutation fuel tests can be accommodated in the designated test assemblies, and if fully developed, core conversion to low CR fuel can be envisioned. Reference ABTR core designs with a rated power of 250 MWt were developed for ternary metal alloy and mixed oxide fuels based on WG-Pu feed. The reference core contains 54 driver, 6 test fuel, and 3 test material assemblies. For the startup core designs, the calculated TRU conversion ratio is 0.65 for the metal fuel core and 0.64 for the oxide fuel core. Both the metal and oxide cores show good performances. The metal fuel core requires an average TRU enrichment of 18.8% and yields a reactivity swing of 1.2 %{Delta}k over the 4-month cycle. The core average flux level is {approx}2.4 x 10{sup 15} n/cm{sup 2}s, and test assembly flux level is {approx}2.8 x 10{sup 15} n/cm{sup 2}s. Compared to the metal fuel core, the lower density oxide fuel core requires an average TRU enrichment of 21.8%, which results in a 780 kg TRU loading (as compared to 732 kg for metal) despite a {approx}9% smaller heavy metal inventory. The lower heavy metal inventory increases the burnup reactivity swing by {approx}10% and reduces the flux levels by {approx}8%. Alternative designs were also studied for a LWR-SF TRU feed and a low conversion ratio, including the recycle of the ABTR spent fuel TRU. The lower fissile contents of the LWR-SF TRU relative to the WG-Pu TRU significantly increase the required TRU enrichment of the startup cores to maintain the same cycle length. The even lower fissile fraction of the ABTR spent fuel TRU furt

  1. TURBULENT COMBUSTION MODELING OF COAL:BIOMASS BLENDS IN A SWIRL BURNER I -PRELIMINARY RESULTS

    E-Print Network [OSTI]

    Daripa, Prabir

    coal or by ex- haust clean up technology. For the power plants, the simplest solution is the preventive- ity well into the 21st century. This dependency on coal calls for better technologies to reduceTURBULENT COMBUSTION MODELING OF COAL:BIOMASS BLENDS IN A SWIRL BURNER I - PRELIMINARY RESULTS

  2. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    Cyclone furnaces operate with high excess air and at high temperature. The heat release during combustion is very high and as a result the boiler volume is much smaller than would be found in a conventional pc-fired system. The Marion Unit 1 boiler, at the level of the cyclone entry, has a small cross-section; about 5-feet in depth and about 20-feet in width. A boiler schematic showing the LNS Burner and relative location of the superheater region and overfire air ports is shown in Figure 1. The LNS Burner's combustion process is fundamentally different from that of the cyclone, and the combustion products are also different. The LNS Burner products enter the boiler as hot, fuel-rich gases. Additional overfire air must be added to complete this combustion step with care taken to avoid the formation of thermal NO{sub x}. If done correctly, S0{sub 2} is controlled and significant NO{sub x} reductions are achieved. Because of the small boiler volume, flow modelling was found to be necessary to insure that adequate mixing of LNS Burner combustion products with air can be accomplished to achieve NO{sub x} emissions goals. Design requirements for the air injection system for the Marion boiler were developed using FLUENT, a commercially available computational fluid dynamics (CFD) code. A series of runs were made to obtain a design for final air injection that met the process design goals as closely as possible.

  3. Establishing criteria for the design of a combination parallel and cross-flaming covered burner

    E-Print Network [OSTI]

    Stark, Christopher Charles

    2003-01-01T23:59:59.000Z

    it with the two open flame practices. This evaluation was performed by moving the burners over an area that would monitor the temperatures at specified heights and locations. Temperatures were measured using thermocouples placed at heights 7-mm, 150-mm, and 300...

  4. Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners

    E-Print Network [OSTI]

    iPage | i Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking. LBNL4885E #12;Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners distributions resulting from use of natural gas cooking appliances across households in California. The model

  5. Measurement and analysis of heating of paper with gas-fired infrared burner

    E-Print Network [OSTI]

    Husain, Abdullah Nadir

    2000-01-01T23:59:59.000Z

    . Gas-fired IR heaters produce combustion on the burner surface by ignition of a pre-mixed air and fuel streams. The combustion raises the surface temperature to ranges of 800-1,100°C to emit radiation, mainly in the medium IR range, which has a...

  6. The effects of moisture and particle size of feedlot biomass on co-firing burner performance 

    E-Print Network [OSTI]

    Chen, Chen-Jung

    2001-01-01T23:59:59.000Z

    increased from 350 ppm to 650 ppm while CO decreased from 46,000 ppm to 18,000 ppm (data measured at the first probe, 6" from the burner). The external water injection used to simulate high moisture FB decreased the pollutant emissions (NO[]) from 570 ppm...

  7. ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel

    DOE Patents [OSTI]

    Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

    2013-04-02T23:59:59.000Z

    The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

  8. Low No{sub x}/SO{sub x} burner retrofit for utility cyclone boilers. Baseline test report: Issue A

    SciTech Connect (OSTI)

    Moore, K.; Martin, L.; Smith, J.

    1991-05-01T23:59:59.000Z

    The Low NO{sub x}/SO{sub x} (LNS) Burner Retrofit for Utility Cyclone Boilers program consists of the retrofit and subsequent demonstration of the technology at Southern Illinois Power Cooperative`s (SIPC`s) 33-MW unit 1 cyclone boiler located near Marion, Illinois. The LNS Burner employs a simple innovative combustion process burning high-sulfur Illinois coal to provide substantial SO{sub 2} and NO{sub x} control within the burner. A complete series of boiler performance and characterization tests, called the baseline tests, was conducted in October 1990 on unit 1 of SIPC`s Marion Station. The primary objective of the baseline test was to collect data from the existing plant that could provide a comparison of performance after the LNS Burner retrofit. These data could confirm the LNS Burner`s SO{sub x} and NO{sub x} emissions control and any effect on boiler operation. Further, these tests would provide to the project experience with the operating characteristics of the host unit as well as engineering design information to minimize technical uncertainties in the application of the LNS Burner technology.

  9. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE's Clean Coal Technology Program Round II.

  10. Use of freeze-casting in advanced burner reactor fuel design

    SciTech Connect (OSTI)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin Madison, 1500 Engineering Drive, Madison, WI 53711 (United States); Burger, J.; Hunger, P. M.; Wegst, U. G. K. [Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755 (United States)

    2012-07-01T23:59:59.000Z

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models. Preliminary results show that criticality is achievable with freeze-cast fuel pins despite the significant amount of inert fuel matrix. Freeze casting is a promising method to achieve very precise fuel placement within fuel pins. (authors)

  11. Full-scale demonstration of low-NO{sub x} cell{trademark} burner retrofit. Final report

    SciTech Connect (OSTI)

    Eckhart, C.F.; Kitto, J.B.; Kleisley, R.J. [and others

    1994-07-01T23:59:59.000Z

    The objective of the Low-NO{sub x} Cell{trademark}Burner (LNCB{trademark}) demonstration is to evaluate the applicability of this technology for reducing NO{sub x} emissions in full-scale, cell burner-equipped boilers. More precisely, the program objectives are to: (1) Achieve at least a 50% reduction in NO{sub x} emissions. (2) Reduce NO{sub x} with no degradation to boiler performance or life of the unit. (3) Demonstrate a technically and economically feasible retrofit technology. Cell burner equipped boilers comprise 13% of the Pre-New Source Performance Standards (NSPS) coal-fired generating capacity. This relates to 34 operating units generating 23,639 MWe, 29 of which are opposed wall fired with two rows of two-nozzle cell burners on each wall. The host site was one of these 29. Dayton Power & Light offered use of J.M. Stuart Station`s Unit No. 4 as the host site. It was equipped with 24, two-nozzle cell burners arranged in an opposed wall configuration. To reduce NO{sub x} emissions, the LNCB{trademark} has been designed to delay the mixing of the fuel and combustion air. The delayed mixing, or staged combustion, reduces the high temperatures normally generated in the flame of a standard cell burner. A key design criterion for the burner was accomplishing delayed fuel-air mixing with no pressure part modifications to facilitate a {open_quotes}plug-in{close_quotes} design. The plug-in design reduces material costs and outage time required to complete the retrofit, compared to installing conventional, internally staged low-NO{sub x} burners.

  12. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    Work on process design was deferred pending a restart of the mainstream project activities. LNS Burner design effort was focussed mainly on the continued development of the slag screen model. Documentation of the LNS Burner thermal model also continued. Balance of plant engineering continued on the P ID's for the fuel preparation building HVAC system, lighter oil, limestone/fuel additive handling system, instrument and service air and fire protection systems. Work began on the preparation of system and sub-system descriptions. Schematic connection and wiring drawings and diagrams for the fuel handling system, flame scanner/igniter system and DCS control modification for the lighter oil pumps and Unit 1 circulating water pumps were completed.

  13. Evaluation of Fluid Conduction and Mixing within a Subassembly of the Actinide Burner Test Reactor

    SciTech Connect (OSTI)

    Cliff B. Davis

    2007-09-01T23:59:59.000Z

    The RELAP5-3D code is being considered as a thermal-hydraulic system code to support the development of the sodium-cooled Actinide Burner Test Reactor as part of the Global Nuclear Energy Partnership. An evaluation was performed to determine whether the control system could be used to simulate the effects of non-convective mechanisms of heat transport in the fluid, including axial and radial heat conduction and subchannel mixing, that are not currently represented with internal code models. The evaluation also determined the relative importance of axial and radial heat conduction and fluid mixing on peak cladding temperature for a wide range of steady conditions and during a representative loss-of-flow transient. The evaluation was performed using a RELAP5-3D model of a subassembly in the Experimental Breeder Reactor-II, which was used as a surrogate for the Actinide Burner Test Reactor.

  14. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  15. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    SciTech Connect (OSTI)

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-06-01T23:59:59.000Z

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants and they are typically used without venting. The objective of this study is to quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass balance model was applied to estimate time-dependent pollutant concentrations throughout homes and the "exposure concentrations" experienced by individual occupants. The model was applied to estimate nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for one week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs, NO{sub 2} and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of CO and NO{sub 2} were obtained from available databases. Ventilation rates, occupancy patterns, and burner use were inferred from household characteristics. Proximity to the burner(s) and the benefits of using venting range hoods were also explored. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying less than 10%. The simulation model estimates that in homes using NGCBs without coincident use of venting range hoods, 62%, 9%, and 53% of occupants are routinely exposed to NO{sub 2}, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3000, and 20 ppb for NO{sub 2}, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health-based standards.

  16. Coal Particle Flow Patterns for O2 Enriched, Low NOx Burners

    SciTech Connect (OSTI)

    Jennifer Sinclair Curtis

    2005-08-01T23:59:59.000Z

    This project involved a systematic investigation examining the effect of near-flame burner aerodynamics on standoff distance and stability of turbulent diffusion flames and the resultant NO{sub x} emissions from actual pulverized coal diffusion flames. Specifically, the scope of the project was to understand how changes in near-flame aerodynamics and transport air oxygen partial pressure can influence flame attachment and coal ignition, two properties essential to proper operation of low NO{sub x} burners. Results from this investigation utilized a new 2M tall, 0.5m in diameter combustor designed to evaluate near-flame combustion aerodynamics in terms of transport air oxygen partial pressure (Po{sub 2}), coal fines content, primary fuel and secondary air velocities, and furnace wall temperature furnish insight into fundamental processes that occur during combustion of pulverized coal in practical systems. Complementary cold flow studies were conducted in a geometrically similar chamber to analyze the detailed motion of the gas and particles using laser Doppler velocimetry. This final technical report summarizes the key findings from our investigation into coal particle flow patterns in burners. Specifically, we focused on the effects of oxygen enrichment, the effect of fines, and the effect of the nozzle velocity ratio on the resulting flow patterns. In the cold flow studies, detailed measurements using laser Doppler velocimetry (LDV) were made to determine the details of the flow. In the hot flow studies, observations of flame stability and measurements of NO{sub x} were made to determine the effects of the flow patterns on burner operation.

  17. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

    2000-04-01T23:59:59.000Z

    Coal continues to be one of the principal energy sources for electric power generation in the United States. One of the biggest environmental challenges involved with coal utilization is the reduction of nitrogen oxides (NO{sub x}) formed during coal combustion. The most economical method of NO{sub x} abatement in coal combustion is through burner modification. Air-staging techniques have been widely used in the development of low-NO{sub x} pulverized coal burners, promoting the conversion of NO{sub x} to N{sub 2} by delaying the mixing in the fuel-rich zone near the burner inlet. Previous studies have looked at the mechanisms of NO{sub x} evolution at relatively low temperatures where primary pyrolysis is dominant, but data published for secondary pyrolysis in the pulverized coal furnace are scarce. In this project, the nitrogen evolution behavior during secondary coal pyrolysis will be explored. The end result will be a complete model of nitrogen evolution and NO{sub x} precursor formation due to primary and secondary pyrolysis.

  18. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    Bai, Tiejun

    1995-04-01T23:59:59.000Z

    The objective of this investigation is to characterize the operation of fan powered infrared (PIR) burner at various barometric pressures (operating altitude) and gas compositions and develop design guidelines for appliances containing PIR burners for satisfactory performance. In this program, the theoretical basis for the behavior of PIR burners will be established through analysis of the combustion, heat and mass transfer, and other related processes that determine the performance of PIR burners. Based on the results of this study, a burner performance model for radiant output will be developed. The model will be applied to predict the performance of the selected burner and will also be modified and improved through comparison with experimental results. During this period, laboratory facilities that are necessary for conducting this research are completed. The student research assistants have started working in the laboratory. The selection of the test burner has completed. The preparation and instrumentation of this test burner is underway. The theoretical analysis and modeling of the fundamental combustion process of the PIR burner is progressing well. A study of the existing models are being conducted, which will yield specific direction and recommendations for the new model to be developed.

  19. COST-EFFECTIVE CONTROL OF NOx WITH INTEGRATED ULTRA LOW-NOx BURNERS AND SNCR

    SciTech Connect (OSTI)

    Hamid Farzan

    2001-07-01T23:59:59.000Z

    Coal-fired electric utilities are facing a serious challenge with regards to curbing their NO{sub x} emissions. At issue are the NO{sub x} contributions to the acid rain, ground level ozone, and particulate matter formation. Substantial NO{sub x} control requirements could be imposed under the proposed Ozone Transport Rule, National Ambient Air Quality Standards, and New Source Performance Standards. McDermott Technology, Inc. (MTI), Babcock and Wilcox (B and W), and Fuel Tech are teaming to provide an integrated solution for NO{sub x} control. The system will be comprised of an ultra low-NO{sub x} pulverized coal (PC) burner technology plus a urea-based, selective non-catalytic reduction (SNCR) system. This system will be capable of meeting a target emission limit of 0.15 lb NO{sub x}/10{sup 6} Btu and target ammonia (NH3) slip level targeted below 5 ppmV for commercial units. Our approach combines the best available combustion and post-combustion NO{sub x} control technologies. More specifically, B and W's DRB-4Z TM ultra low-NO{sub x} PC burner technology will be combined with Fuel Tech's NO{sub x}OUT (SNCR) and NO{sub x}OUT Cascade (SNCR/SCR hybrid) systems and jointly evaluated and optimized in a state-of-the-art test facility at MTI. Although the NO{sub x}OUT Cascade (SNCR/SCR hybrid) system will not be tested directly in this program, its potential application for situations that require greater NO{sub x} reductions will be inferred from other measurements (i.e., SNCR NO{sub x} removal efficiency plus projected NO{sub x} reduction by the catalyst based on controlled ammonia slip). Our analysis shows that the integrated ultra low-NO{sub x} burner and SNCR system has the lowest cost when the burner emissions are 0.25 lb NO{sub x}/10{sup 6} Btu or less. At burner NO{sub x} emission level of 0.20 lb NO{sub x}/10{sup 6} Btu, the levelized cost per ton of NO{sub x} removed is 52% lower than the SCR cost.

  20. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect (OSTI)

    None

    1998-07-01T23:59:59.000Z

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18%. The performance goal of 70/40 reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18%.

  1. The su(1,1) dynamical algebra from the Schrödinger ladder operators for N-dimensional systems: hydrogen atom, Mie-type potential, harmonic oscillator and pseudo-harmonic oscillator

    E-Print Network [OSTI]

    D. Martinez; J. C. Flores-Urbina; R. D. Mota; V. D. Granados

    2010-05-21T23:59:59.000Z

    We apply the Schr\\"odinger factorization to construct the ladder operators for hydrogen atom, Mie-type potential, harmonic oscillator and pseudo-harmonic oscillator in arbitrary dimensions. By generalizing these operators we show that the dynamical algebra for these problems is the $su(1,1)$ Lie algebra.

  2. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect (OSTI)

    None

    1998-09-01T23:59:59.000Z

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, especially NOX. The project involved operating gas reburning technology combined with low NO, burner technology (GR-LNB) on a coal-fired utility boiler. Low NOX burners are designed to create less NOX than conventional burners. However, the NO, control achieved is in the range of 30-60-40, and typically 50%. At the higher NO, reduction levels, CO emissions tend to be higher than acceptable standards. Gas Reburning (GR) is designed to reduce the level of NO. in the flue gas by staged fuel combustion. When combined, GR and LNBs work in harmony to both minimize NOX emissions and maintain an acceptable level of CO emissions. The demonstration was performed at Public Service Company of Colorado's (PSCO) Cherokee Unit 3, located in Denver, Colorado. This unit is a 172 MW. wall-fired boiler that uses Colorado bituminous, low-sulfur coal and had a pre GR-LNB baseline NOX emission of 0.73 lb/1 Oe Btu. The target for the project was a reduction of 70 percent in NOX emissions. Project sponsors included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation (EER). EER conducted a comprehensive test demonstration program over a wide range of boiler conditions. Over 4,000 hours of operation were achieved. Intensive measurements were taken to quantify the reductions in NOX emissions, the impact on boiler equipment and operability, and all factors influencing costs. The results showed that GR-LNB technology achieved excellent emission reductions. Although the performance of the low NOX burners (supplied by others) was somewhat less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 180A. The performance goal of 70% reduction was met on many test runs, but at higher gas heat inputs. The impact on boiler equipment was determined to be very minimal. Toward the end of the testing, the flue gas recirculation (used to enhance gas penetration into the furnace) system was removed and new high pressure gas injectors were installed. Further, the low NOX burners were modified and gave better NO. reduction performance. These modifications resulted in a similar NO, reduction performance (64%) at a reduced level of gas heat input (-13Yo). In addition, the OFA injectors were re-designed to provide for better control of CO emissions. Although not a part of this project, the use of natural gas as the primary fuel with gas reburning was also tested. The gas/gas reburning tests demonstrated a reduction in NOX emissions of 43% (0.30 lb/1 OG Btu reduced to 0.17 lb/1 OG Btu) using 7% gas heat input. Economics are a key issue affecting technology development. Application of GR-LNB requires modifications to existing power plant equipment and as a result, the capital and operating costs depend largely on site-specific factors such as: gas availability at the site, gas to coal delivered price differential, sulfur dioxide removal requirements, windbox pressure, existing burner throat diameters, and reburn zone residence time available. Based on the results of this CCT project, EER expects that most GR-LNB installations will achieve at least 60% NOX control when firing 10-15% gas. The capital cost estimate for installing a GR-LNB system on a 300 MW, unit is approximately $25/kW. plus the cost of a gas pipeline (if required). Operating costs are almost entirely related to the differential cost of the natural gas compared to coal.

  3. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, September 1--September 30, 1994

    SciTech Connect (OSTI)

    Bai, T.

    1994-10-01T23:59:59.000Z

    The objective of this investigation is to characterize the operation of fan powered infrared(PIR) burner at various barometric pressures (operating altitude) and gas compositions and develop design guidelines for appliances containing PIR burners for satisfactory performance. In this program, the theoretical basis for the behavior of PIR burners will be established through analysis of the combustion, heat and mass transfer, and other related processes which determine the performance of PIR burners. Based on the results of this study, a first order model of the performance of the burner, including radiant output will be developed. The model will be applied to predict the performance of the selected burner and modified through comparison with test results. Concurrently, an experimental setup will be devised and built. This experimental rig will be a modified appliance, capable of measuring the heat and combustion product output, as well as providing a means by which the radiant heat output can be measured. The burner will be selected from an existing commercial appliance, a commercial deep fat fryer, and will be of a scale that will be compatible with the laboratory facilities in the Combustion Laboratory at Clark Atlanta University. Theoretical analysis and formulation of the PIR burner performance model has been started and the development of the test facilities and experimental setup has also been initiated. These are described.

  4. Hot repair of ceramic burner on hot blast stoves at USS/Kobe`s {number_sign}3 blast furnace

    SciTech Connect (OSTI)

    Bernarding, T.F.; Chemorov, M.; Shimono, S.; Phillips, G.R.

    1997-12-31T23:59:59.000Z

    During the 1992 reline of the No. 3 blast furnace, three new stoves were constructed. The design of the stoves, equipped with internal ceramic burners, was for providing a hot blast temperature of 2,000 F at a wind rate of 140,000 SCFM. After 3 years the performance had deteriorated so the burners were cleaned. When a second cleaning did not improve the performance of No. 3 blast furnace, it was decided to repair the refractory while still hot. The paper describes the hot repair procedures, taking a stove off for repairs, maintenance heat up during repairs, two stove operation, stove commissioning, repair of a ceramic burner, and wet gas prevention.

  5. Full-scale demonstration Low-NO{sub x} Cell{trademark} Burner retrofit. Quarterly report No. 6, January 1, 1992--March 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-05-11T23:59:59.000Z

    The Low-NO{sub x} Cell{trademark} Burner operates on the principle of staged combustion. The lower burner of each two-nozzle cell is modified to accommodate all the fuel input previously handled by two nozzles. Secondary air, less than theoretically required for complete combustion, is introduced to the lower burner. The remainder of secondary air is directed to the upper ``port`` of each cell to complete the combustion process. B&W/EPRI have thoroughly tested the LNCB{trademark} at two pilot scales (6 million Btu per hour and 100 million Btu per hour), and tested a single full-scale burner in a utility boiler. Combustion tests at two scales have confirmed NO{sub x} reduction with the low-NO{sub x} cell on the order of 50% relative to the standard cell burner at optimum operating conditions. The technology is now ready for full unit, full-scale demonstration.

  6. The impact of conversion to low-NO{sub x} burners on ash characteristics

    SciTech Connect (OSTI)

    Robi, T.L.; Hower, J.C.; Graham, U.M.; Groppo, J.G.; Rathbone, R.F.; Taulbee, D.N. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Medina, S.S. [East Kentucky Power Cooperative, Winchester, KY (United States)

    1995-12-31T23:59:59.000Z

    A research initiative focusing on the changes in coal-combustion byproducts that result from the conversion of coal-fired boilers to low-NO{sub x} burners has been implemented at the Center for Applied Energy Research (CAER). This paper presents selected results from the first such study, the conversion of East Kentucky Power`s 116 MW, wall-fired unit {number_sign}1 at the John Sherman Cooper Station in Pulaski County, Kentucky. Samples of the coal feedstock and fly ash recovered in several downstream collection vessels were collected prior to and following conversion and extensively analyzed. The results presented in this report include total carbon, petrography, mineralogy, particle size, and leaching characteristics. The major changes noted in the fly-ash properties include an increase in carbon content, a slight increase in particle size, and a decrease in glassy components in the ash following conversion. Those changes induced by the conversion to low-NO{sub x} burners are evaluated in terms of the potential impact on the marketability of the fly ash.

  7. Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners

    SciTech Connect (OSTI)

    Lobscheid, Agnes; Singer, Brett C.; Klepeis, Neil E.

    2011-06-01T23:59:59.000Z

    We developed a physics-based data-supported model to investigate indoor pollutant exposure distributions resulting from use of natural gas cooking appliances across households in California. The model was applied to calculate time-resolved indoor concentrations of CO, NO2 and formaldehyde resulting from cooking burners and entry with outdoor air. Exposure metrics include 1-week average concentrations and frequency of exceeding ambient air quality standards. We present model results for Southern California (SoCal) using two air-exchange scenarios in winter: (1) infiltration-only, and (2) air exchange rate (AER) sampled from lognormal distributions derived from measurements. In roughly 40percent of homes in the SoCal cohort (N=6634) the 1-hour USEPA NO2 standard (190 ?g/m3) was exceeded at least once. The frequency of exceeding this standard was largely independent of AER assumption, and related primarily to building volume, emission rate and amount of burner use. As expected, AER had a more substantial impact on one-week average concentrations.

  8. Multi-ported, internally recuperated burners for direct flame impingement heating applications

    SciTech Connect (OSTI)

    Abbasi, Hamid A. (Naperville, IL); Kurek, Harry (Dyer, IN); Chudnovsky, Yaroslav (Skokie, IL); Lisienko, Vladimir G. (Ekaterinburg, RU); Malikov, German K. (Ekaterinburg, RU)

    2010-08-03T23:59:59.000Z

    A direct flame impingement method and apparatus employing at least one multi-ported, internally recuperated burner. The burner includes an innermost coaxial conduit having a first fluid inlet end and a first fluid outlet end, an outermost coaxial conduit disposed around the innermost coaxial conduit and having a combustion products outlet end proximate the first fluid inlet end of the innermost coaxial conduit and a combustion products inlet end proximate the first fluid outlet end of the innermost coaxial conduit, and a coaxial intermediate conduit disposed between the innermost coaxial conduit and the outermost coaxial conduit, whereby a second fluid annular region is formed between the innermost coaxial conduit and the intermediate coaxial conduit and a combustion products annular region is formed between the intermediate coaxial conduit and the outermost coaxial conduit. The intermediate coaxial conduit has a second fluid inlet end proximate the first fluid inlet end of the innermost coaxial conduit and a second fluid outlet end proximate the combustion products inlet end of the outermost coaxial conduit.

  9. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOE Patents [OSTI]

    Tuthill, Richard Sterling (Bolton, CT); Bechtel, II, William Theodore (Scotia, NY); Benoit, Jeffrey Arthur (Scotia, NY); Black, Stephen Hugh (Duanesburg, NY); Bland, Robert James (Clifton Park, NY); DeLeonardo, Guy Wayne (Scotia, NY); Meyer, Stefan Martin (Troy, NY); Taura, Joseph Charles (Clifton Park, NY); Battaglioli, John Luigi (Glenville, NY)

    2002-01-01T23:59:59.000Z

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  10. Development of self-tuning residential oil-burner. Oxygen sensor assessment and early prototype system operating experience

    SciTech Connect (OSTI)

    McDonald, R.J.; Butcher, T.A.; Krajewski, R.F.

    1998-09-01T23:59:59.000Z

    This document is the first topical report dealing with a new project leading towards the development of a self-tuning residential oil burner. It was initiated under the Statement of Work for the Oil Heat Research and Development Program, for Fiscal Year 1997 as defined in the Combustion Equipment Technology Program, under the management of Brookhaven National Laboratory (BNL). In part, this work is based on research reported by BNL in 1990, suggesting various options for developing control strategies in oil heat technology leading to the enhanced efficiency of oil-fired heating systems. BNL has been addressing these concepts in order of priority and technology readiness. The research described in this report is part of an ongoing project and additional work is planned for the future assuming adequate program funding is made available. BNL has continued to investigate all types of sensor technologies associated with combustion systems including all forms of oxygen measurement techniques. In these studies the development of zirconium oxide oxygen sensors has been considered over the last decade. The development of these sensors for the automotive industry has allowed for cost reductions based on quantity of production that might not have occurred otherwise. This report relates BNL`s experience in testing various zirconium oxide sensors, and the results of tests intended to provide evaluation of the various designs with regard to performance in oil-fired systems. These tests included accuracy when installed on oil-fired heating appliances and response time in cyclic operating mode. An evaluation based on performance criteria and cost factors was performed. Cost factors in the oil heat industry are one of the most critical issues in introducing new technology.

  11. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    SciTech Connect (OSTI)

    Choudhuri, Ahsan

    2013-05-30T23:59:59.000Z

    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO{sub 2} from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H{sub 2} concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO{sub 2} and H{sub 2}O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient g{sub F}) values for CH{sub 4}-O{sub 2}-CO{sub 2} flames. The scaling relation (𝐠{sub F} = 𝐜 𝐒{sub 𝐋}{sup 2}/𝛂) for different burner diameters was obtained for various diameter burners. The report shows that results correlated linearly with a scaling value of c =0.0174. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH{sub 4}/21%O{sub 2}/79%N{sub 2} and CH{sub 4}/38%O{sub 2}/72%CO{sub 2} mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of CH{sub 4}/air and CH{sub 4}/38%O{sub 2}/72%CO{sub 2} combustion. The velocity fluctuations, turbulence intensities and local propagation velocities along the combustion chamber have been determined. The turbulent intensities increase as we move away from the combustor axis. CH{sub 4}-38%O{sub 2}-72%CO{sub 2} flames have low radial velocity and turbulent intensity distributions at different axial distances when compared with CH{sub 4}-Air flames.

  12. First archeointensity determinations on Maya incense burners from Palenque temples, Mexico: New data to constrain the Mesoamerica secular

    E-Print Network [OSTI]

    Demouchy, Sylvie

    First archeointensity determinations on Maya incense burners from Palenque temples, Mexico: New´sica, Universidad Nacional Autonoma de Mexico, Me´xico D.F., Mexico c Instituto Nacional de Antropologia e Historia, Me´xico D.F., Mexico d Institut Charles Gerhardt, Laboratoire des Agre´gats, Interfaces et Mate

  13. Simulation of Nitrogen Emissions in a Low Swirl Burner J. B. Bell, M. S. Day, X. Gao, M. J. Lijewski

    E-Print Network [OSTI]

    Bell, John B.

    Simulation of Nitrogen Emissions in a Low Swirl Burner J. B. Bell, M. S. Day, X. Gao, M. J nitrogen emissions. The simulation shows how the cellular burn- ing structures characteristic of lean premixed hydrogen combustion lead to enhancements in the NOx emissions from these flames. Analysis

  14. Development of a Low NOx Burner System for Coal Fired Power Plants Using Coal and Biomass Blends 

    E-Print Network [OSTI]

    Gomez, Patsky O.

    2010-01-16T23:59:59.000Z

    &M University (TAMU) demonstrated that cofiring coal with feedlot biomass (FB) in conventional burners produced lower or similar levels of NOx but increased CO. The present research deals with i) construction of a small scale 29.31 kW (100,000 BTU/hr) LNB...

  15. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect (OSTI)

    Bai, T.; Yeboah, Y.D.; Sampath, R.

    1995-10-01T23:59:59.000Z

    The objective of this investigation is to characterize the operation of fan powered infrared burner (PIR) at various gas compositions and ambient conditions and develop design guidelines for appliances in containing PIR burners for satisfactory performance. During this period, experimental setup with optical and electronic instrumentation that is necessary for measuring the radiant heat output and the emission gas output of the burner has been established. The radiation measurement instrument, an FTIR, has been purchased and installed in the porous burner experimental system. The radiation measurement capability of the FTIR was tested and found to be satisfactory. A standard blackbody source, made by Graseby Infrared, was employed to calibrate the FTIR. A collection duct for emission gas measurement was fabricated and connected to the existing Horiba gas analyzer. Test runs are being conducted for flue gas analysis. A number of published research papers on modeling of porous burners were reviewed. The physical mechanism and theoretical analysis of the combustion process of the PIR burner was formulated. The numerical modeling, and implementation of a PIR burner code at CAU`s computing facility is in progress.

  16. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly report, April 1, 1996 - June 30, 1996

    SciTech Connect (OSTI)

    Bai, T.; Yeboah, Y.D.; Sampath, R.

    1996-07-01T23:59:59.000Z

    A porous radiant burner testing facility consisting of a commercial deep-fat fryer, an FTIR based spectral radiance measurement system, a set of flue gas analysis components, and a fuel gas mixing station was constructed. The measurement capabilities of the system were tested using methane and the test results were found to be consistent with the literature. Following the validation of the measurement system, various gas mixtures were tested to study the effect of gas compositions have on burner performance. Results indicated that the emissions vary with fuel gas composition and air/fuel ratio. The maximum radiant efficiency of the burner was obtained close to air/fuel ratio of 1.

  17. Atomic and molecular supernovae

    SciTech Connect (OSTI)

    Liu, W.

    1997-12-01T23:59:59.000Z

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  18. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    SciTech Connect (OSTI)

    Jon Carmack (062056); Kemal O. Pasamehmetoglu (103171); David Alberstein

    2008-02-01T23:59:59.000Z

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  19. Mechanical swirler for a low-NO.sub.x, weak-swirl burner

    DOE Patents [OSTI]

    Cheng, Robert K. (Kensington, CA); Yegian, Derek T. (Berkeley, CA)

    1999-01-01T23:59:59.000Z

    Disclosed is a mechanical swirler for generating diverging flow in lean premixed fuel burners. The swirler of the present invention includes a central passage with an entrance for accepting a feed gas, a flow balancing insert that introduces additional pressure drop beyond that occurring in the central passage in the absence of the flow balancing insert, and an exit aligned to direct the feed gas into a combustor. The swirler also has an annular passage about the central passage and including one or more vanes oriented to impart angular momentum to feed gas exiting the annular passage. The diverging flow generated by the swirler stabilizes lean combustion thus allowing for lower production of pollutants, particularly oxides of nitrogen.

  20. Mechanical swirler for a low-NO{sub x}, weak-swirl burner

    DOE Patents [OSTI]

    Cheng, R.K.; Yegian, D.T.

    1999-03-09T23:59:59.000Z

    Disclosed is a mechanical swirler for generating diverging flow in lean premixed fuel burners. The swirler of the present invention includes a central passage with an entrance for accepting a feed gas, a flow balancing insert that introduces additional pressure drop beyond that occurring in the central passage in the absence of the flow balancing insert, and an exit aligned to direct the feed gas into a combustor. The swirler also has an annular passage about the central passage and including one or more vanes oriented to impart angular momentum to feed gas exiting the annular passage. The diverging flow generated by the swirler stabilizes lean combustion thus allowing for lower production of pollutants, particularly oxides of nitrogen. 16 figs.

  1. Combustion optimization of low NO{sub x} burners at PEPCO`s Morgantown Station

    SciTech Connect (OSTI)

    Maines, P.; Schnetzler, D.; Bilmanis, A. [Potomac Electric Power Company, Newburg, MD (United States)] [and others

    1996-01-01T23:59:59.000Z

    PEPCO`s Morgantown Station, in planning for the upcoming CAA regulations, entered into a Tailored Collaboration project with EPRI, the purpose of which is to optimize the ABB/CE LNCFS III firing system at Morgantown to achieve the greatest possible NO{sub x} reductions, with minimum degradation in heat rate. Controlled parameters of optimization include: distribution of overfire air, burner and SOFA tilt angles, mill bias, furnace oxygen, windbox pressure, boiler cleanliness and secondary air damper biasing. To develop the necessary parametric relationships, Lehigh University and PEPCO conducted tests on the boiler, varying the parameters individually and in combination. From these tests, the optimal operating conditions were determined and new control algorithms were developed and programmed into the unit`s DCS system. The results of the full load parametric testing are discussed in this paper.

  2. Type B Accident Investigation Board Report of the July 7, 1997, Industrial Accident at the Knolls Atomic Power Laboratory Windsor Site, Windsor, Connecticut

    Broader source: Energy.gov [DOE]

    On Monday, July 7, 1997, at approximately 10:47 a. m., an asbestos abatement subcontractor laborer working at the Knolls Atomic Power Laboratory-Windsor Site stepped on and fell backward through an unprotected rooftop skylight in the northwest quadrant of Building 5 (see Figure #1).

  3. Firing microfine coal with a low NOx, RSFC burner in an industrial boiler designed for oil and gas

    SciTech Connect (OSTI)

    Thornhock, D.E.; Patel, R.; Borio, R.W. [Combustion Engineering, Inc., Windsor, CT (United States). ABB Power Plant Labs.; Miller, B.G.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center

    1996-12-31T23:59:59.000Z

    ABB Power Plant Laboratories (ABB-PPL) working under a US Department of Energy-Pittsburgh Energy Technology Center (DOE-PETC) contract has carried out tests with the Radially Stratified Flame Core (RSFC) burner which was licensed from the Massachusetts Institute of Technology who developed and patented the RSFC burner. Tests were carried out in a small industrial boiler, designed for oil and natural gas, located at the Energy and Fuels Research Center of Penn State University who was working as a subcontractor to ABB-PPL. The paper presents results from the long-term testing task in the DOE-PETC program with particular attention being paid to the challenges faced in maintaining high combustion efficiencies while achieving low NOx in a small industrial boiler designed for firing oil or natural gas. The paper will also address the issue of ash management when firing coal in a boiler designed for fuels having essentially no ash.

  4. EPA's (Environmental Protection Agency's) program for evaluation and demonstration of low-cost retrofit LIMB (Limestone Injection Multistage Burner) technology

    SciTech Connect (OSTI)

    Stern, R.D.

    1987-09-01T23:59:59.000Z

    This paper discusses program objectives, approaches, current status and results, future activities, and schedules for EPA's program for research and development, field evaluation, and demonstration of Limestone Injection Multistage Burner (LIMB) technology. Primary emphasis is on: (1) the full-scale demonstration being conducted on Ohio Edison's 104-MW wall-fired Edgewater Station Unit 4; (2) evaluation on a 50 million Btu/hr tangentially fired prototype nearing completion; (3) on-going field evaluation on Richmond Power and Light's 61-MW tangentially fired Whitewater Valley Generating Station Unit 2. The new program for demonstration on Virginia Electric Power's 180-MW tangentially fired Yorktown II Plant is also described. The LIMB process is based on injecting dry sorbents into the boiler for direct capture of SO/sub 2/ from the combustion gases. LIMB combines sorbent injection for SO/sub 2/ control with the use of low-NOx burners, in which staged combustion is utilized for NOx control.

  5. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Public design report

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    This Public Design Report provides available nonproprietary design information on the Low NO{sub x}SO{sub x} Burner Retrofit of Utility Cyclone Boilers project. In addition to the design aspects, the history of the project, the organization of the project, and the role of the funding parties are discussed. An overview of the Low NO{sub x}SO{sub x} (LNS) Burner, the cyclone boiler and the Southern Illinois Power Cooperative host site is presented. A detailed nonproprietary description of the individual process steps, plant systems, and resulting performance then follows. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions and requirements are given for each unit. The plant demonstration program and start up provisions, the environmental considerations and control, monitoring and safety factors that are considered are also addressed.

  6. Modeling The NOx Emissions In A Low NOx Burner While Fired With Pulverized Coal And Dairy Biomass Blends

    E-Print Network [OSTI]

    Uggini, Hari

    2012-07-16T23:59:59.000Z

    Hydrogen Cyanide HHV Higher Heating Value LNB Low NOx Burner PRB Powder River Basin TAMU Texas A&M University CABEL Coal And Biomass Energy Laboratory ER Equivalence Ratio VM Volatile Matter FC Fixed Carbon OFA Over Fired Air (tertiary air... ......................................... 33 5.1 Numerical model algorithm ..................................................................... 47 5.2 Pure PRB NO vs. overall ER ................................................................... 49 5.3 Oxygen concentration along...

  7. Dynamics of entropy and nonclassicality features of the interaction between a $\\diamondsuit$-type four-level atom and a single-mode field in the presence of intensity-dependent coupling and Kerr nonlinearity

    E-Print Network [OSTI]

    H R Baghshahi; M K Tavassoly; A Behjat

    2014-08-13T23:59:59.000Z

    The interaction between a $\\diamondsuit$-type four-level atom and a single-mode field in the presence of Kerr medium with intensity-dependent coupling involving multi-photon processes has been studied. Using the generalized (nonlinear) Jaynes-Cummings model, the exact analytical solution of the wave function for the considered system under particular condition, has been obtained when the atom is initially excited to the topmost level and the field is in a coherent state. Some physical properties of the atom-field entangled state such as linear entropy showing the entanglement degree, Mandel parameter, mean photon number and normal squeezing of the resultant state have been calculated. The effects of Kerr medium, detuning and the intensity-dependent coupling on the temporal behavior of the latter mentioned nonclassical properties have been investigated. It is shown that by appropriately choosing the evolved parameters in the interaction process, each of the above nonclassicality features, which are of special interest in quantum optics as well as quantum information processing, can be revealed.

  8. Remote atom entanglement in a fiber-connected three-atom system

    E-Print Network [OSTI]

    Guo Yan-Qing; Chen Jing; Song He-Shan

    2008-05-28T23:59:59.000Z

    An Ising-type atom-atom interaction is obtained in a fiber-connected three-atom system. The interaction is effective when $\\Delta\\approx \\gamma _{0}\\gg g$. The preparations of remote two-atom and three-atom entanglement governed by this interaction are discussed in specific parameters region. The overall two-atom entanglement is very small because of the existence of the third atom. However, the three-atom entanglement can reach a maximum very close to 1.

  9. On the energy of electric field in hydrogen atom

    E-Print Network [OSTI]

    Yuri Kornyushin

    2009-07-30T23:59:59.000Z

    It is shown that hydrogen atom is a unique object in physics having negative energy of electric field, which is present in the atom. This refers also to some hydrogen-type atoms: hydrogen anti-atom, atom composed of proton and antiproton, and positronium.

  10. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

    2000-04-01T23:59:59.000Z

    Reduction of NO{sub x} emission is an important environmental issue in pulverized coal combustion. Final emissions of NO{sub x} are strongly affected by the nitrogen release during devolatilization, which is the first stage of coal combustion. The most cost-effective approach to NO{sub x} reduction is air-staging which can also operate with additional down-stream techniques such as reburning [1]. Air staging promotes the conversion of NO{sub x} precursors (HCN, NH{sub 3}, etc.) to N{sub 2} by delaying the oxygen supply to the greatest extent when those nitrogen species are released during devolatilization. Such a delay gives the primary volatiles a chance to undergo secondary reactions, including tar cracking and soot formation. Secondary reactions of volatiles largely determine the fate of the ultimate NO{sub x} production from pyrolysis, therefore a detailed investigation into the transformation of nitrogen species during secondary reactions and effects of soot on nitrogen release is critical for design and implementation of new pollution control strategies. Current nitrogen models (including the CPD model at BYU) only simulate the nitrogen release during primary pyrolysis, which happens at low temperatures. This project helps to build a nitrogen release model that accounts for secondary reactions and the effects of soot at temperatures relevant to industrial burners.

  11. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; M.P. Heap; T.H. Fletcher; H. Zhang

    2000-04-01T23:59:59.000Z

    Reduction of NO{sub x} emission is an important environmental issue in pulverized coal combustion. The most cost-effective approach to NO{sub x} reduction is air-staging which can also operate with additional down-stream techniques such as reburning [1]. Air staging promotes the conversion of NO{sub x} precursors (HCN, NH{sub 3}, etc.) to N{sub 2} by delaying the oxygen supply to the greatest extent when those nitrogen species are released during devolatilization. Such a delay gives the primary volatiles a chance to undergo secondary reactions, including tar cracking and soot formation. Secondary reactions of volatiles largely determine the fate of the ultimate NO{sub x} production from pyrolysis, therefore a detailed investigation into the transformation of nitrogen species during secondary reactions and effects of soot on nitrogen release is critical for design and implementation of new pollution control strategies. Current nitrogen models (including the CPD model at BYU) only simulate the nitrogen release during primary pyrolysis, which happens at low temperatures. This project helps to build a nitrogen release model that accounts for secondary reactions and the effects of soot at temperatures relevant to industrial burners.

  12. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    SciTech Connect (OSTI)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30T23:59:59.000Z

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  13. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, October--December 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-31T23:59:59.000Z

    Cyclone furnaces operate with high excess air and at high temperature. The heat release during combustion is very high and as a result the boiler volume is much smaller than would be found in a conventional pc-fired system. The Marion Unit 1 boiler, at the level of the cyclone entry, has a small cross-section; about 5-feet in depth and about 20-feet in width. A boiler schematic showing the LNS Burner and relative location of the superheater region and overfire air ports is shown in Figure 1. The LNS Burner`s combustion process is fundamentally different from that of the cyclone, and the combustion products are also different. The LNS Burner products enter the boiler as hot, fuel-rich gases. Additional overfire air must be added to complete this combustion step with care taken to avoid the formation of thermal NO{sub x}. If done correctly, S0{sub 2} is controlled and significant NO{sub x} reductions are achieved. Because of the small boiler volume, flow modelling was found to be necessary to insure that adequate mixing of LNS Burner combustion products with air can be accomplished to achieve NO{sub x} emissions goals. Design requirements for the air injection system for the Marion boiler were developed using FLUENT, a commercially available computational fluid dynamics (CFD) code. A series of runs were made to obtain a design for final air injection that met the process design goals as closely as possible.

  14. Molecular and atomic gas in dust lane early-type galaxies - I: Low star-formation efficiencies in minor merger remnants

    E-Print Network [OSTI]

    Davis, Timothy A; Allison, James R; Shabala, Stanislav S; Ting, Yuan-Sen; Lagos, Claudia del P; Kaviraj, Sugata; Bourne, Nathan; Dunne, Loretta; Eales, Steve; Ivison, Rob J; Maddox, Steve; Smith, Daniel J B; Smith, Matthew W L; Temi, Pasquale

    2015-01-01T23:59:59.000Z

    In this work we present IRAM-30m telescope observations of a sample of bulge-dominated galaxies with large dust lanes, which have had a recent minor merger. We find these galaxies are very gas rich, with H2 masses between 4x10^8 and 2x10^10 Msun. We use these molecular gas masses, combined with atomic gas masses from an accompanying paper, to calculate gas-to-dust and gas-to-stellar mass ratios. The gas-to-dust ratios of our sample objects vary widely (between ~50 and 750), suggesting many objects have low gas-phase metallicities, and thus that the gas has been accreted through a recent merger with a lower mass companion. We calculate the implied minor companion masses and gas fractions, finding a median predicted stellar mass ratio of ~40:1. The minor companion likely had masses between ~10^7 - 10^10 Msun. The implied merger mass ratios are consistent with the expectation for low redshift gas-rich mergers from simulations. We then go on to present evidence that (no matter which star-formation rate indicator ...

  15. PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY

    SciTech Connect (OSTI)

    S. T. Khericha

    2007-04-01T23:59:59.000Z

    The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to ‘Data Call’ for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.

  16. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect (OSTI)

    D. E. Shropshire

    2009-01-01T23:59:59.000Z

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  17. Atom Interferometry

    ScienceCinema (OSTI)

    Mark Kasevich

    2010-01-08T23:59:59.000Z

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton?s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  18. Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation

    SciTech Connect (OSTI)

    R. Demler

    2006-04-01T23:59:59.000Z

    Accurate, cost-efficient monitoring instrumentation has long been considered essential to the operation of power plants. Nonetheless, for the monitoring of coal flow, such instrumentation has been sorely lacking and technically difficult to achieve. With more than half of the electrical power in the United States currently supplied by coal, energy generated by this resource is critical to the US economy. The demand for improvement in this area has only increased as a result of the following two situations: First, deregulation has produced a heightened demand for both reduced electrical cost and improved grid connectivity. Second, environmental concerns have simultaneously resulted in a need for both increased efficiency and reduced carbon and NOx emissions. A potential approach to addressing both these needs would be improvement in the area of combustion control. This would result in a better heat rate, reduced unburned carbon in ash, and reduced NOx emissions. However, before feedback control can be implemented, the ability to monitor coal flow to the burners in real-time must be established. While there are several ''commercially available'' products for real-time coal flow measurement, power plant personnel are highly skeptical about the accuracy and longevity of these systems in their current state of development. In fact, following several demonstration projects of in-situ coal flow measurement systems in full scale utility boilers, it became obvious that there were still many unknown influences on these instruments during field applications. Due to the operational environment of the power plant, it has been difficult if not impossible to sort out what parameters could be influencing the various probe technologies. Additionally, it has been recognized for some time that little is known regarding the performance of coal flow splitters, even where rifflers are employed. Often the coal flow distribution from these splitters remains mal-distributed. There have been mixed results in the field using variable orifices in coal pipes. Development of other coal flow control devices has been limited. An underlying difficulty that, to date, has hindered the development of an accurate instrument for coal flow measurements is the fact that coal flow is characterized by irregular temporal and spatial variation. However, despite the inherent complexity of the dynamic system, the system is in fact deterministic. Therefore, in principle, the coal flow can be deduced from the dynamics it exhibits. Nonetheless, the interactions are highly nonlinear, rendering standard signal processing approaches, which rely on techniques such as frequency decomposition, to be of little value. Foster-Miller, Inc. has developed a methodology that relates the complex variation in such systems to the information of interest. This technology will be described in detail in Section 2. A second concern regarding the current measurement systems is installation, which can be labor-intensive and cost-prohibitive. A process that does not require the pulverizer to be taken off line would be highly desirable. Most microwave and electrostatic methods require drilling up to 20 holes in the pipe, all with a high degree of precision so as to produce a proper alignment of the probes. At least one electrostatic method requires a special spool piece to be fitted into each existing coal pipe. Overall, these procedures are both difficult and very expensive. An alternative approach is pursued here, namely the development of an instrument that relies on an acoustic signal captured by way of a commercial accelerometer. The installation of this type of sensor is both simpler and less invasive than other techniques. An accelerometer installed in a pipe wall need not penetrate through the wall, which means that the system may be able to remain on line during the installation. Further, due to the fact that the Dynamical Instruments technology, unlike other systems, does not rely on uniformity of the air or coal profile, the installation location need not be on a long, straight run

  19. Coherent Atom Optics with fast metastable rare gas atoms

    SciTech Connect (OSTI)

    Grucker, J.; Baudon, J.; Karam, J.-C.; Perales, F.; Vassilev, G.; Ducloy, M. [Laboratoire de Physique des Lasers, Universite Paris 13, Avenue J.B. Clement, 93430-Villetaneuse (France); Bocvarski, V. [Institute of Physics, Pregrevica 118, 11080 - Belgrade-Zemun (Serbia and Montenegro)

    2006-12-01T23:59:59.000Z

    Coherent atom optics experiments making use of an ultra-narrow beam of fast metastable atoms generated by metastability exchange are reported. The transverse coherence of the beam (coherence radius of 1.7 {mu}m for He*, 1.2 {mu}m for Ne*, 0.87 {mu}m for Ar*) is demonstrated via the atomic diffraction by a non-magnetic 2{mu}m-period reflection grating. The combination of the non-scalar van der Waals (vdW) interaction with the Zeeman interaction generated by a static magnetic field gives rise to ''vdW-Zeeman'' transitions among Zeeman sub-levels. Exo-energetic transitions of this type are observed with Ne*(3P2) atoms traversing a copper micro-slit grating. They can be used as a tunable beam splitter in an inelastic Fresnel bi-prism atom interferometer.

  20. Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado

    SciTech Connect (OSTI)

    None

    1998-07-01T23:59:59.000Z

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. The performance goal of 70% reduction was met on many test runs, but at a higher reburn gas heat input. S02 emissions, based on coal replacement, were reduced by 18Y0. Toward the end of the program, a Second Generation gas injection system was installed. Higher injector gas pressures were used that eliminated the need for flue gas recirculation as used in the first generation design. The Second Generation GR resulted in similar NOX reduction performance as that for the First Generation. With an improvement in the LNB performance in combination with the new gas injection system , the reburn gas could be reduced to 12.5% of the total boiler heat input to achieve al 64?40 reduction in NO, emissions. In addition, the OFA injectors were modified to provide for better mixing to lower CO emissions.

  1. Preliminary core design studies for the advanced burner reactor over a wide range of conversion ratios.

    SciTech Connect (OSTI)

    Hoffman, E. A.; Yang, W. S.; Hill, R. N.; Nuclear Engineering Division

    2008-05-05T23:59:59.000Z

    A consistent set of designs for 1000 MWt commercial-scale sodium-cooled Advance Burner Reactors (ABR) have been developed for both metal and oxide-fueled cores with conversion ratios from breakeven (CR=1.0) to fertile-free (CR=0.0). These designs are expected to satisfy thermal and irradiation damage limits based on the currently available data. The very low conversion ratio designs require fuel that is beyond the current fuel database, which is anticipated to be qualified by and for the Advanced Burned Test Reactor. Safety and kinetic parameters were calculated, but a safety analysis was not performed. Development of these designs was required to achieve the primary goal of this study, which was to generate representative fuel cycle mass flows for system studies of ABRs as part of the Global Nuclear Energy Partnership (GNEP). There are slight variations with conversion ratio but the basic ABR configuration consists of 144 fuel assemblies and between 9 and 22 primary control assemblies for both the metal and oxide-fueled cores. Preliminary design studies indicated that it is feasible to design the ABR to accommodate a wide range of conversion ratio by employing different assembly designs and including sufficient control assemblies to accommodate the large reactivity swing at low conversion ratios. The assemblies are designed to fit within the same geometry, but the size and number of fuel pins within each assembly are significantly different in order to achieve the target conversion ratio while still satisfying thermal limits. Current irradiation experience would allow for a conversion ratio of somewhat below 0.75. The fuel qualification for the first ABR should expand this experience to allow for much lower conversion ratios and higher bunrups. The current designs were based on assumptions about the performance of high and very high enrichment fuel, which results in significant uncertainty about the details of the designs. However, the basic fuel cycle performance trends such as conversion ratio and mass flow parameters are less sensitive to these parameters and the current results should provide a good basis for static and dynamic system analysis. The conversion ratio is fundamentally a ratio of the macroscopic cross section of U-238 capture to that of TRU fission. Since the microscopic cross sections only change moderately with fuel design and isotopic concentration for the fast reactor, a specific conversion ratio requires a specific enrichment. The approximate average charge enrichment (TRU/HM) is 14%, 21%, 33%, 56%, and 100% for conversion ratios of 1.0, 0.75, 0.50, 0.25, and 0.0 for the metal-fueled cores. The approximate average charge enrichment is 17%, 25%, 38%, 60%, and 100% for conversion ratios of 1.0, 0.75, 0.50, 0.25, and 0.0 for the oxide-fueled core. For the split batch cores, the maximum enrichment will be somewhat higher. For both the metal and oxide-fueled cores, the reactivity feedback coefficients and kinetics parameters seem reasonable. The maximum single control assembly reactivity faults may be too large for the low conversion ratio designs. The average reactivity of the primary control assemblies was increased, which may cause the maximum reactivity of the central control assembly to be excessive. The values of the reactivity coefficients and kinetics parameters show that some values appear to improve significantly at lower conversion ratios while others appear far less favorable. Detailed safety analysis is required to determine if these designs have adequate safety margins or if appropriate design modifications are required. Detailed system analysis data has been generated for both metal and oxide-fueled core designs over the entire range of potential burner reactors. Additional data has been calculated for a few alternative fuel cycles. The systems data has been summarized in this report and the detailed data will be provided to the systems analysis team so that static and dynamic system analyses can be performed.

  2. Measuring Atomic Properties with an Atom Interferometer

    E-Print Network [OSTI]

    Roberts, Tony David

    2006-06-28T23:59:59.000Z

    Two experiments are presented which measure atomic properties using an atom interferometer. The interferometer splits the sodium de Broglie wave into two paths,

  3. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, June--September 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-31T23:59:59.000Z

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE`s Clean Coal Technology Program Round II.

  4. DEVELOPMENT OF SELF-TUNING RESIDENTIAL OIL/BURNER - OXYGEN SENSOR ASSESSMENT AND EARLY PROTOTYPE SYSTEM OPERATING EXPERIENCE

    SciTech Connect (OSTI)

    MCDONALD,R.J.; BUTCHER,T.A.; KRAJEWSKI,R.F.

    1998-09-01T23:59:59.000Z

    This document is the first topical report dealing with a new project leading towards the development of a self-tuning residential oil burner. It was initiated under the Statement of Work for the Oil Heat Research and Development Program, for Fiscal Year 1997 as defined in the Combustion Equipment Technology Program, under the management of Brookhaven National Laboratory (BNL). In part, this work is based on research reported by BNL in 1990, suggesting various options for developing control strategies in oil heat technology leading to the enhanced efficiency of oil-fired heating systems. BNL has been addressing these concepts in order of priority and technology readiness. The research described in this report is part of an ongoing project and additional work is planned for the future assuming adequate program funding is made available.

  5. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion for Sodium-Cooled Fast Reactors/Advanced Burner Reactors

    SciTech Connect (OSTI)

    Sienicki, James J.; Moisseytsev, Anton; Cho, Dae H.; Momozaki, Yoichi; Kilsdonk, Dennis J.; Haglund, Robert C.; Reed, Claude B.; Farmer, Mitchell T. [Argonne National Laboratory 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

    2007-07-01T23:59:59.000Z

    An optimized supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle power converter has been developed for the 100 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) eliminating the potential for sodium-water reactions and achieving a small power converter and turbine generator building. Cycle and plant efficiencies of 39.1 and 38.3 %, respectively, are calculated for the ABTR core outlet temperature of 510 deg. C. The ABTR S-CO{sub 2} Brayton cycle will incorporate Printed Circuit Heat Exchanger{sup TM} units in the Na-to-CO{sub 2} heat exchangers, high and low temperature recuperators, and cooler. A new sodium test facility is being completed to investigate the potential for transient plugging of narrow sodium channels typical of a Na-to-CO{sub 2} heat exchanger under postulated off-normal or accident conditions. (authors)

  6. Atomic magnetometer

    DOE Patents [OSTI]

    Schwindt, Peter (Albuquerque, NM); Johnson, Cort N. (Albuquerque, NM)

    2012-07-03T23:59:59.000Z

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  7. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, April--June 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    Work on process design was deferred pending a restart of the mainstream project activities. LNS Burner design effort was focussed mainly on the continued development of the slag screen model. Documentation of the LNS Burner thermal model also continued. Balance of plant engineering continued on the P&ID`s for the fuel preparation building HVAC system, lighter oil, limestone/fuel additive handling system, instrument and service air and fire protection systems. Work began on the preparation of system and sub-system descriptions. Schematic connection and wiring drawings and diagrams for the fuel handling system, flame scanner/igniter system and DCS control modification for the lighter oil pumps and Unit 1 circulating water pumps were completed.

  8. Subwavelength Transportation of Light with Atomic Resonances

    E-Print Network [OSTI]

    Chui, Siu-Tat; Jo, Gyu-Boong

    2015-01-01T23:59:59.000Z

    We propose and investigate a new type of optical waveguide made by an array of atoms without involving conventional Bragg scattering or total internal reflection. A finite chain of atoms collectively coupled through their intrinsic resonance supports a propagating mode with minimal radiative loss when the array spacing $a$ is around 0.6$\\lambda_0/2\\pi$ where $\\lambda_0$ is the wavelength of the nearly resonant optical transition. We find that the transportation is robust with respect to position fluctuation and remains possible when the atoms are placed on a circle. Our result paves the way to implement the subwavelength transportation of light in integrated optical circuits with cold atoms.

  9. Radiation-Induced Segregation and Phase Stability in Candidate Alloys for the Advanced Burner Reactor

    SciTech Connect (OSTI)

    Gary S. Was; Brian D. Wirth

    2011-05-29T23:59:59.000Z

    Major accomplishments of this project were the following: 1) Radiation induced depletion of Cr occurs in alloy D9, in agreement with that observed in austenitic alloys. 2) In F-M alloys, Cr enriches at PAG grain boundaries at low dose (<7 dpa) and at intermediate temperature (400°C) and the magnitude of the enrichment decreases with temperature. 3) Cr enrichment decreases with dose, remaining enriched in alloy T91 up to 10 dpa, but changing to depletion above 3 dpa in HT9 and HCM12A. 4) Cr has a higher diffusivity than Fe by a vacancy mechanism and the corresponding atomic flux of Cr is larger than Fe in the opposite direction to the vacancy flux. 5) Cr concentration at grain boundaries decreases as a result of vacancy transport during electron or proton irradiation, consistent with Inverse Kirkendall models. 6) Inclusion of other point defect sinks into the KLMC simulation of vacancy-mediated diffusion only influences the results in the low temperature, recombination dominated regime, but does not change the conclusion that Cr depletes as a result of vacancy transport to the sink. 7) Cr segregation behavior is independent of Frenkel pair versus cascade production, as simulated for electron versus proton irradiation conditions, for the temperatures investigated. 8) The amount of Cr depletion at a simulated planar boundary with vacancy-mediated diffusion reaches an apparent saturation value by about 1 dpa, with the precise saturation concentration dependent on the ratio of Cr to Fe diffusivity. 9) Cr diffuses faster than Fe by an interstitial transport mechanism, and the corresponding atomic flux of Cr is much larger than Fe in the same direction as the interstitial flux. 10) Observed experimental and computational results show that the radiation induced segregation behavior of Cr is consistent with an Inverse Kirkendall mechanism.

  10. atom-atom collisions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Safronova, Marianna 3 Atom-atom correlations in colliding Bose-Einstein condensates Quantum Physics (arXiv) Summary: We analyze atom-atom correlations in the s-wave...

  11. Assessment of the release of atomic Na from a burning black liquor droplet using quantitative PLIF

    SciTech Connect (OSTI)

    Saw, Woei L.; Nathan, Graham J. [Centre for Energy Technology, The Environment Institute, School of Mechanical Engineering, The University of Adelaide, SA 5005 (Australia); Ashman, Peter J.; Alwahabi, Zeyad T. [Centre for Energy Technology, The Environment Institute, School of Chemical Engineering, The University of Adelaide, SA 5005 (Australia)

    2009-07-15T23:59:59.000Z

    The quantitative measurement of atomic sodium (Na) release, at high concentration, from a burning black liquor droplet has been demonstrated using a planar laser-induced fluorescence (PLIF) technique, corrected for fluorescence trapping. The local temperature of the particle was measured to be approximately 1700 C, at a height of 10 mm above a flat flame burner. The PLIF technique was used to assess the temporal release of atomic Na from the combustion of black liquor and compare it with the Na concentration in the remaining smelt. A first-order model was made to provide insight using a simple Plug Flow Reactor model based on the independently measured concentration of residual Na in the smelt as a function of time. This model also required the dilution ratio of the combustion products in the flat flame entrained into the plume gas from the black liquor particle to be estimated. The key findings of these studies are: (i) the peak concentration of atomic Na from the combustion of the black liquor droplets is around 1.4 ppm; (ii) very little atomic Na is present during the drying, devolatilisation or char combustion stages; and (iii) the presence of atomic Na during smelt phase dominates over that from the other combustion stages. (author)

  12. Investigation of polarization spectroscopy for detecting atomic hydrogen in flames 

    E-Print Network [OSTI]

    Kulatilaka, Waruna Dasal

    2002-01-01T23:59:59.000Z

    stabilized on near-adiabatic calibration burner (the Hencken burner). The LIPS signal was found to be nearly proportional to the square of the pump beam intensity over a wide range of flame equivalence ratios. Spectral line shapes of hydrogen 1S-4P...

  13. Atomizing nozzle and process

    DOE Patents [OSTI]

    Anderson, I.E.; Figliola, R.S.; Molnar, H.M.

    1993-07-20T23:59:59.000Z

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  14. Achieving New Source Performance Standards (NSPS) Emission Standards Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion

    SciTech Connect (OSTI)

    Wayne Penrod

    2006-12-31T23:59:59.000Z

    The objective of this project was to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub X} emission levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project plan consisted of the integration of low-NO{sub X} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the use of sophisticated neural networks or other artificial intelligence technologies and complex software to optimize several operating parameters, including NO{sub X} emissions, boiler efficiency, and CO emissions. The program was set up in three phases. In Phase I, the boiler was equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler was equipped with burner modifications designed to reduce NO{sub X} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler was to be equipped with an overfire air system to permit deep reductions in NO{sub X} emissions. Integration of the overfire air system with the improvements made in Phases I and II would permit optimization of boiler performance, output, and emissions. This report summarizes the overall results from Phases I and II of the project. A significant amount of data was collected from the combustion sensors, coal flow monitoring equipment, and other existing boiler instrumentation to monitor performance of the burner modifications and the coal flow balancing equipment.

  15. The Manhattan Project: Making the atomic bomb

    SciTech Connect (OSTI)

    Gosling, F.G.

    1994-09-01T23:59:59.000Z

    This article is a short history of the origins and development of the American atomic bomb program during World War II. Beginning with the scientific developments of the pre-war years, the monograph details the role of US government in conducting a secret, nationwide enterprise that took science from the laboratory and into combat with an entirely new type of weapon. The monograph concludes with a discussion of the immediate postwar period, the debate over the Atomic Energy Act of 1946, and the founding of the Atomic Energy Commission.

  16. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    SciTech Connect (OSTI)

    Noam Lior; Stuart W. Churchill

    2003-10-01T23:59:59.000Z

    The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at the Gordon Conference on Modern Development in Thermodynamics. The results obtained are very encouraging for the development of the RCSC as a commercial burner for significant reduction of NO{sub x} emissions, and highly warrants further study and development.

  17. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    SciTech Connect (OSTI)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30T23:59:59.000Z

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high-flow operation to natural circulation. Low-flow coolant events are the most difficult to design for because they involve the most complex thermal-hydraulic behavior induced by the dominance of thermal-buoyancy forces acting on the coolants. Such behavior can cause multiple-component flow interaction phenomena, which are not adequately understood or appreciated by reactor designers as to their impact on reactor performance and safety. Since the early 1990s, when DOE canceled the U.S. Liquid Metal Fast Breeder Reactor (LMFBR) program, little has been done experimentally to further understand the importance of the complex thermal-buoyancy phenomena and their impact on reactor design or to improve the ability of three-dimensional (3-D) transient computational fluid dynamics (CFD) and structures codes to model the phenomena. An improved experimental data base and the associated improved validated codes would provide needed design tools to the reactor community. The improved codes would also facilitate scale-up from small-scale testing to prototype size and would facilitate comparing performance of one reactor/component design with another. The codes would also have relevance to the design and safety of water-cooled reactors. To accomplish the preceding, it is proposed to establish a national GNEP-LMR research and development center at Argonne having as its foundation state-of-art science-based infrastructure consisting of: (a) thermal-hydraulic experimental capabilities for conducting both water and sodium testing of individual reactor components and complete reactor in-vessel models and (b) a computational modeling development and validation capability that is strongly interfaced with the experimental facilities. The proposed center would greatly advance capabilities for reactor development by establishing the validity of high-fidelity (i.e., close to first principles) models and tools. Such tools could be used directly for reactor design or for qualifying/tuning of lower-fidelity models, which now require costly experimental qualification for each different type of design

  18. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; K.A. Davis; T.H. Fletcher; H. Zhang

    2001-06-01T23:59:59.000Z

    During the last reporting period the experimental setup in the University of Utah Laminar-Flow Drop Tube was modified to allow for batch experiments. This modification was made in order to guarantee complete conversion of the char in the reactor. Once the setup was optimized, the effect of particle size, oxygen concentration, type of char and NO bulk concentration on the conversion of char-N to NO was evaluated. In this report, we present the results obtained for different chars and for different NO background concentrations. The effect of oxygen and particle size is currently being analyzed and will be presented in the final report. Experiments were performed with three different carbonaceous materials and were conducted at temperatures close to that of pulverized combustion conditions (1700 K) in a laminar drop tube reactor under inert and oxidizing atmospheres. The results obtained show that the process of NO reduction on the char surface plays an important role on the total amount of char-N converted to NOx. This effect tends to reduce as the NO background concentration is reduced and doesn't seem to strongly depend on the nature of the char. Some of these results were presented at the 2nd Joint Meeting of the US Sections of the Combustion Institute, held in March of 2001. In addition to the experimental observations on char-N conversion to NO, a single particle model was developed and the predictions of the model were compared with the experimental results. Although the model predicts the linear reduction on the conversion of char-N to NO, it overpredicts the general value. A higher value for the rate of NO destruction on char surface doesn't seem to explain this phenomenon, which may be more related to the availability of char surface for the destruction of NO.

  19. Atomic swelling upon compression

    E-Print Network [OSTI]

    V. K. Dolmatov; J. L. King

    2012-08-18T23:59:59.000Z

    The hydrogen atom under the pressure of a spherical penetrable confinement potential of a decreasing radius $r_{0}$ is explored, as a case study. A novel counter-intuitive effect of atomic swelling rather than shrinking with decreasing $r_{0}$ is unraveled, when $r_{0}$ reaches, and remains smaller than, a certain critical value. Upon swelling, the size of the atom is shown to increase by an order of magnitude, or more, compared to the size of the free atom. Examples of changes of photoabsorption properties of confined hydrogen atom upon its swelling are uncovered and demonstrated.

  20. Experimental and numerical study of the accuracy of flame-speed measurements for methane/air combustion in a slot burner

    SciTech Connect (OSTI)

    Selle, L.; Ferret, B. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); Poinsot, T. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); CERFACS, Toulouse (France)

    2011-01-15T23:59:59.000Z

    Measuring the velocities of premixed laminar flames with precision remains a controversial issue in the combustion community. This paper studies the accuracy of such measurements in two-dimensional slot burners and shows that while methane/air flame speeds can be measured with reasonable accuracy, the method may lack precision for other mixtures such as hydrogen/air. Curvature at the flame tip, strain on the flame sides and local quenching at the flame base can modify local flame speeds and require corrections which are studied using two-dimensional DNS. Numerical simulations also provide stretch, displacement and consumption flame speeds along the flame front. For methane/air flames, DNS show that the local stretch remains small so that the local consumption speed is very close to the unstretched premixed flame speed. The only correction needed to correctly predict flame speeds in this case is due to the finite aspect ratio of the slot used to inject the premixed gases which induces a flow acceleration in the measurement region (this correction can be evaluated from velocity measurement in the slot section or from an analytical solution). The method is applied to methane/air flames with and without water addition and results are compared to experimental data found in the literature. The paper then discusses the limitations of the slot-burner method to measure flame speeds for other mixtures and shows that it is not well adapted to mixtures with a Lewis number far from unity, such as hydrogen/air flames. (author)

  1. PARTICULATE CHARACTERIZATION AND ULTRA LOW-NOx BURNER FOR THE CONTROL OF NO{sub x} AND PM{sub 2.5} FOR COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Ralph Bailey; Hamid Sarv; Jim Warchol; Debi Yurchison

    2001-09-30T23:59:59.000Z

    In response to the serious challenge facing coal-fired electric utilities with regards to curbing their NO{sub x} and fine particulate emissions, Babcock and Wilcox and McDermott Technology, Inc. conducted a project entitled, ''Particulate Characterization and Ultra Low-NO{sub x} Burner for the Control of NO{sub x} and PM{sub 2.5} for Coal Fired Boilers.'' The project included pilot-scale demonstration and characterization of technologies for removal of NO{sub x} and primary PM{sub 2.5} emissions. Burner development and PM{sub 2.5} characterization efforts were based on utilizing innovative concepts in combination with sound scientific and fundamental engineering principles and a state-of-the-art test facility. Approximately 1540 metric tonnes (1700 tons) of high-volatile Ohio bituminous coal were fired. Particulate sampling for PM{sub 2.5} emissions characterization was conducted in conjunction with burner testing. Based on modeling recommendations, a prototype ultra low-NO{sub x} burner was fabricated and tested at 100 million Btu/hr in the Babcock and Wilcox Clean Environment Development Facility. Firing the unstaged burner with a high-volatile bituminous Pittsburgh 8 coal at 100 million Btu/hr and 17% excess air achieved a NO{sub x} goal of 0.20 lb NO{sub 2}/million Btu with a fly ash loss on ignition (LOI) of 3.19% and burner pressure drop of 4.7 in H{sub 2}O for staged combustion. With the burner stoichiometry set at 0.88 and the overall combustion stoichiometry at 1.17, average NO{sub x} and LOI values were 0.14 lb NO{sub 2}/million Btu and 4.64% respectively. The burner was also tested with a high-volatile Mahoning 7 coal. Based on the results of this work, commercial demonstration is being pursued. Size classified fly ash samples representative of commercial low-NO{sub x} and ultra low-NO{sub x} combustion of Pittsburgh 8 coal were collected at the inlet and outlet of an ESP. The mass of size classified fly ash at the ESP outlet was sufficient to evaluate the particle size distribution, but was of insufficient size to permit reliable chemical analysis. The size classified fly ash from the inlet of the ESP was used for detailed chemical analyses. Chemical analyses of the fly ash samples from the ESP outlet using a high volume sampler were performed for comparison to the size classified results at the inlet. For all test conditions the particulate removal efficiency of the ESP exceeded 99.3% and emissions were less than the NSPS limits of {approx}48 mg/dscm. With constant combustion conditions, the removal efficiency of the ESP increased as the ESP voltage and Specific Collection Area (SCA) increased. The associated decrease in particle emissions occurred in size fractions both larger and smaller than 2.5 microns. For constant ESP voltage and SCA, the removal efficiency for the ultra low-NO{sub x} combustion ash (99.4-99.6%) was only slightly less than for the low-NO{sub x} combustion ash (99.7%). The decrease in removal efficiency was accompanied by a decrease in ESP current. The emission of PM{sub 2.5} from the ESP did not change significantly as a result of the change in combustion conditions. Most of the increase in emissions was in the size fraction greater than 2.5 microns, indicating particle re-entrainment. These results may be specific to the coal tested in this program. In general, the concentration of inorganic elements and trace species in the fly ash at the ESP inlet was dependent on the particle size fraction. The smallest particles tended to have higher concentrations of inorganic elements/trace species than larger particles. The concentration of most elements by particle size range was independent of combustion condition and the concentration of soluble ions in the fly ash showed little change with combustion condition when evaluated on a carbon free basis.

  2. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    SciTech Connect (OSTI)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28T23:59:59.000Z

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when used in a reburning process. Computer simulations for coal: LB blends were performed by modifying an existing computer code to include the drying and phosphorus (P) oxidation models. The gasification studies revealed that there is bed agglomeration in the case of chicken litter biomass due to its higher alkaline oxide content in the ash. Finally, the results of the economic analysis show that considerable fuel cost savings can be achieved with the use of biomass. In the case of higher ash and moisture biomass, the fuel cost savings is reduced.

  3. atomic systems s-states: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the atomic and solid-state systems. This is achieved by capacitively coupling a superconduct- ing wire van der Wal, Caspar H. 119 Three-level ?-type atomic systems with a...

  4. Improved graphite furnace atomizer

    DOE Patents [OSTI]

    Siemer, D.D.

    1983-05-18T23:59:59.000Z

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  5. Atomic Collapse Observed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists Observe Atomic Collapse State Quantum Mechanics Prediction Confirmed in Graphene Using NERSC's Hopper April 26, 2013 | Tags: Hopper, Materials Science Contact: Linda...

  6. Danish Atomic Energy Commission Research Establishment Riso

    E-Print Network [OSTI]

    roquott frem: Library of tho DmMi Atomic Enorgy Commlwton (AtornonorglkomrniMtonwM BtoHotok), RioA, DK, impregnated with four types of plastic, poly(methylmethacrylate), polyCstyrene/acrylonitril), polyester twice as much as conventional Danish face Btrip parquet flooring. Available on request from the Library

  7. Producing and Detecting Correlated atoms

    E-Print Network [OSTI]

    Christoph I. Westbrook; Martijn Schellekens; Aurélien Perrin; Valentina Krachmalnicoff; Jose Carlos Viana Gomes; Jean-Baptiste Trebbia; Jérôme Estève; Hong Chang; Isabelle Bouchoule; Denis Boiron; Alain Aspect; Tom Jeltes; John McNamara; Wim Hogervorst; Wim Vassen

    2006-09-04T23:59:59.000Z

    We discuss experiments to produce and detect atom correlations in a degenerate or nearly degenerate gas of neutral atoms. First we treat the atomic analog of the celebrated Hanbury Brown Twiss experiment, in which atom correlations result simply from interference effects without any atom interactions.We have performed this experiment for both bosons and fermions. Next we show how atom interactions produce correlated atoms using the atomic analog of spontaneous four-wavemixing. Finally, we briefly mention experiments on a one dimensional gas on an atom chip in which correlation effects due to both interference and interactions have been observed.

  8. astrophysically abundant atoms: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atomic data available so far and check the Mg abundances from individual lines in the Sun, four well studied A-type stars, and three reference metal-poor stars. With the adopted...

  9. RisB Report No. 248 Danish Atomic Energy Commission

    E-Print Network [OSTI]

    . Gjellerup, 87, SSIvgade, DK-1307 Copenhagen K, Denmark Awrilable on exchange from: Library, Danish Atomic of the Boundary Layer Analysis in 2. 2.1 28 2.4. 2. Classification of Vortex Tubes According to Flow Type 29 3

  10. Titanium subhydride potassium perchlorate (TiH1.65/KClO4) burn rates from hybrid closed bomb-strand burner experiments.

    SciTech Connect (OSTI)

    Cooper, Marcia A.; Oliver, Michael S.

    2012-08-01T23:59:59.000Z

    A hybrid closed bomb-strand burner is used to measure the burning behavior of the titanium subhydride potassium perchlorate pyrotechnic with an equivalent hydrogen concentration of 1.65. This experimental facility allows for simultaneous measurement of the closed bomb pressure rise and pyrotechnic burn rate as detected by electrical break wires over a range of pressures. Strands were formed by pressing the pyrotechnic powders to bulk densities between 60% and 90% theoretical maximum density. The burn rate dependance on initial density and vessel pressure are measured. At all initial strand densities, the burn is observed to transition from conductive to convective burning within the strand. The measured vessel pressure history is further analyzed following the closed bomb analysis methods developed for solid propellants.

  11. The Manhattan Project: Making the Atomic Bomb. 1999 edition.

    SciTech Connect (OSTI)

    Gosling, F.G.

    1999-01-01T23:59:59.000Z

    ``The Manhattan Project: Making the Atomic Bomb`` is a short history of the origins and development of the American atomic bomb program during World War II. Beginning with the scientific developments of the pre-war years, the monograph details the role of the United States government in conducting a secret, nationwide enterprise that took science from the laboratory and into combat with an entirely new type of weapon. The monograph concludes with a discussion of the immediate postwar period, the debate over the Atomic Energy Act of 1946, and the founding of the Atomic Energy Commission.

  12. Metal atomization spray nozzle

    DOE Patents [OSTI]

    Huxford, T.J.

    1993-11-16T23:59:59.000Z

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  13. Atomizing nozzle and method

    DOE Patents [OSTI]

    Ting, Jason (Ames, IA); Anderson, Iver E. (Ames, IA); Terpstra, Robert L. (Ames, IA)

    2000-03-16T23:59:59.000Z

    A high pressure close-coupled gas atomizing nozzle includes multiple discrete gas jet discharge orifices having aerodynamically designed convergent-divergent geometry with an first converging section communicated to a gas supply manifold and to a diverging section by a constricted throat section to increase atomizing gas velocity. The gas jet orifices are oriented at gas jet apex angle selected relative to the melt supply tip apex angle to establish a melt aspiration condition at the melt supply tip.

  14. Optical atomic magnetometer

    DOE Patents [OSTI]

    Budker, Dmitry; Higbie, James; Corsini, Eric P

    2013-11-19T23:59:59.000Z

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  15. Atomic mass compilation 2012

    SciTech Connect (OSTI)

    Pfeiffer, B., E-mail: bpfeiffe@uni-mainz.de [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Venkataramaniah, K. [Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam (India)] [Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam (India); Czok, U. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen (Germany)] [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen (Germany); Scheidenberger, C. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany) [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen (Germany)

    2014-03-15T23:59:59.000Z

    Atomic mass reflects the total binding energy of all nucleons in an atomic nucleus. Compilations and evaluations of atomic masses and derived quantities, such as neutron or proton separation energies, are indispensable tools for research and applications. In the last decade, the field has evolved rapidly after the advent of new production and measuring techniques for stable and unstable nuclei resulting in substantial ameliorations concerning the body of data and their precision. Here, we present a compilation of atomic masses comprising the data from the evaluation of 2003 as well as the results of new measurements performed. The relevant literature in refereed journals and reports as far as available, was scanned for the period beginning 2003 up to and including April 2012. Overall, 5750 new data points have been collected. Recommended values for the relative atomic masses have been derived and a comparison with the 2003 Atomic Mass Evaluation has been performed. This work has been carried out in collaboration with and as a contribution to the European Nuclear Structure and Decay Data Network of Evaluations.

  16. Universal bosonic tetramers of dimer-atom-atom structure

    E-Print Network [OSTI]

    A. Deltuva

    2012-03-28T23:59:59.000Z

    Unstable four-boson states having an approximate dimer-atom-atom structure are studied using momentum-space integral equations for the four-particle transition operators. For a given Efimov trimer the universal properties of the lowest associated tetramer are determined. The impact of this tetramer on the atom-trimer and dimer-dimer collisions is analyzed. The reliability of the three-body dimer-atom-atom model is studied.

  17. Universal bosonic tetramers of dimer-atom-atom structure

    E-Print Network [OSTI]

    Deltuva, A

    2012-01-01T23:59:59.000Z

    Unstable four-boson states having an approximate dimer-atom-atom structure are studied using momentum-space integral equations for the four-particle transition operators. For a given Efimov trimer the universal properties of the lowest associated tetramer are determined. The impact of this tetramer on the atom-trimer and dimer-dimer collisions is analyzed. The reliability of the three-body dimer-atom-atom model is studied.

  18. PASSIVE CONTROL OF PARTICLE DISPERSION IN A PARTICLE-LADEN CIRCULAR JET USING ELLIPTIC CO-ANNULAR FLOW: A MEANS FOR IMPROVING UTILIZATION AND EMISSION REDUCTIONS IN PULVERIZED COAL BURNER

    SciTech Connect (OSTI)

    Ahsan R. Choudhuri

    2003-06-01T23:59:59.000Z

    A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.

  19. EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety County, Kansas

    Broader source: Energy.gov [DOE]

    The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflower’s Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas. The Holcomb Station would be modified in three distinct phases to demonstrate the synergistic effect of layering NOx control technologies.

  20. Atomic Force Microscope

    SciTech Connect (OSTI)

    Day, R.D.; Russell, P.E.

    1988-12-01T23:59:59.000Z

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  1. Iowa Powder Atomization Technologies

    ScienceCinema (OSTI)

    None

    2013-03-01T23:59:59.000Z

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  2. Iowa Powder Atomization Technologies

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  3. Riso-M-1662 Danish Atomic Energy Commission

    E-Print Network [OSTI]

    of a simple, inexpensive cryostat of the "cold-finger" type is described. It is specifically intended to Library 100 Standard distribution Abstract to Available on request from the Library of the Danish Atomic articles e. g.'' 2 \\ Two types are most commonly used: "cold-gas-stream" and "cold-finger" cryostats

  4. Elements & Compounds Atoms (Elements)

    E-Print Network [OSTI]

    Frey, Terry

    #12;Elements & Compounds #12;Atoms (Elements) Molecules (Compounds) Cells Elements & Compounds #12 #12;First shell Second shell Third shell Hydrogen 1H Lithium 3Li Sodium 11Na Beryllium 4Be Magnesium energy Higher energy (a) A ball bouncing down a flight of stairs provides an analogy for energy levels

  5. Effect of Co-Firing Torrefied Woody Biomass with Coal in a 30 kWt Downfired Burner 

    E-Print Network [OSTI]

    Thanapal, Siva S

    2014-04-25T23:59:59.000Z

    .g. grindability) properties of raw biomass. A simple three component parallel reaction model (TCM) was formulated to study the effect of heating rate, temperature, residence time and type of biomass on torrefaction process. Typically inert environment (e.g. N_(2...

  6. Atom-by-atom nucleation and growth of graphene nanopores

    E-Print Network [OSTI]

    Golovchenko, Jene A.

    Atom-by-atom nucleation and growth of graphene nanopores Christopher J. Russoa,b and J. A February 17, 2012 (received for review December 9, 2011) Graphene is an ideal thin membrane substrate structures in graphene with atomic preci- sion. It consists of inducing defect nucleation centers with ener

  7. Comprehensive report to Congress: Clean Coal Technology program: Evaluation of gas reburning and low-NO sub x burners on a wall-fired boiler

    SciTech Connect (OSTI)

    Not Available

    1990-09-01T23:59:59.000Z

    This report briefly describes the Gas Reburning and Low-NO{sub x} Burners technology which is a low-cost technology that can be applied in both retrofit and new applications. This demonstration will be conducted on a utility boiler in Colorado at Cherokee Station {number sign}3; however, the technology is applicable to industrial boilers and other combustion systems. Although this technology is primarily a NO{sub x} reduction technology, some reductions in other emissions will take place. Since 15--20% of the coal is replaced with natural gas, SO{sub 2} and particulate emissions are reduced commensurately. Also the lower carbon-to-hydrogen ratio of natural gas compared to coal reduces CO{sub 2} emissions. The formation of NO{sub x} is controlled by several factors: (1) the amount of nitrogen that is chemically bound in the fuel; (2) the flame temperature; (3) the residence time that combustion products remain at very high temperatures; and (4) the amount of excess oxygen available, especially at the hottest parts of the flame. Decreasing any of these parameters, tends to reduce NO{sub x} formation. 6 figs., 1 tab.

  8. Atomic phenomena in dense plasmas

    SciTech Connect (OSTI)

    Weisheit, J.C.

    1981-03-01T23:59:59.000Z

    The following chapters are included: (1) the plasma environment, (2) perturbations of atomic structure, (3) perturbations of atomic collisions, (4) formation of spectral lines, and (5) dielectronic recombination. (MOW)

  9. atoms: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory...

  10. Calibration of a single atom detector for atomic micro chips

    E-Print Network [OSTI]

    A. Stibor; S. Kraft; T. Campey; D. Komma; A. Günther; J. Fortágh; C. J. Vale; H. Rubinsztein-Dunlop; C. Zimmermann

    2007-02-13T23:59:59.000Z

    We experimentally investigate a scheme for detecting single atoms magnetically trapped on an atom chip. The detector is based on the photoionization of atoms and the subsequent detection of the generated ions. We describe the characterization of the ion detector with emphasis on its calibration via the correlation of ions with simultaneously generated electrons. A detection efficiency of 47.8% (+-2.6%) is measured, which is useful for single atom detection, and close to the limit allowing atom counting with sub-Poissonian uncertainty.

  11. Finding New Thermoelectric Compounds Using Crystallographic Data: Atomic Displacement Parameters

    SciTech Connect (OSTI)

    Chakoumakos, B.C.; Mandrus, D.G.; Sales, B.C.; Sharp, J.W.

    1999-08-29T23:59:59.000Z

    A new structure-property relationship is discussed which links atomic displacement parameters (ADPs) and the lattice thermal conductivity of clathrate-like compounds. For many clathrate-like compounds, in which one of the atom types is weakly bound and ''rattles'' within its atomic cage, room temperature ADP information can be used to estimate the room temperature lattice thermal conductivity, the vibration frequency of the ''rattler'', and the temperature dependence of the heat capacity. Neutron data and X-ray crystallography data, reported in the literature, are used to apply this analysis to several promising classes of thermoelectric materials.

  12. A microfabricated atomic clock

    SciTech Connect (OSTI)

    Knappe, Svenja; Shah, Vishal; Schwindt, Peter D.D.; Hollberg, Leo; Kitching, John; Liew, Li-Anne; Moreland, John [Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305-3328 (United States); Electromagnetics Division, National Institute of Standards and Technology, Boulder, Colorado 80305-3328 (United States)

    2004-08-30T23:59:59.000Z

    Fabrication techniques usually applied to microelectromechanical systems (MEMS) are used to reduce the size and operating power of the core physics assembly of an atomic clock. With a volume of 9.5 mm{sup 3}, a fractional frequency instability of 2.5x10{sup -10} at 1 s of integration, and dissipating less than 75 mW of power, the device has the potential to bring atomically precise timing to hand-held, battery-operated devices. In addition, the design and fabrication process allows for wafer-level assembly of the structures, enabling low-cost mass-production of thousands of identical units with the same process sequence, and easy integration with other electronics.

  13. Delay in Atomic Photoionization

    SciTech Connect (OSTI)

    Kheifets, A. S. [Research School of Physical Sciences, Australian National University, Canberra ACT 0200 (Australia); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030 (United States); Ivanov, I. A. [Research School of Physical Sciences, Australian National University, Canberra ACT 0200 (Australia)

    2010-12-03T23:59:59.000Z

    We analyze the time delay between emission of photoelectrons from the outer valence ns and np subshells in noble gas atoms following absorption of an attosecond extreme ultraviolet pulse. Various processes such as elastic scattering of the photoelectron on the parent ion and many-electron correlation affect the apparent 'time zero' when the photoelectron leaves the atom. This qualitatively explains the time delay between photoemission from the 2s and 2p subshells of Ne as determined experimentally by attosecond streaking [Science 328, 1658 (2010)]. However, with our extensive numerical modeling, we were only able to account for less than half of the measured time delay of 21{+-}5 as. We argue that the extreme ultraviolet pulse alone cannot produce such a large time delay and it is the streaking IR field that is most likely responsible for this effect.

  14. Optics and interferometry with atoms and molecules

    E-Print Network [OSTI]

    Cronin, Alexander D.

    Interference with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory fields technique used in atomic ...

  15. Atomic Collapse Observed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumni AlumniFederalAshley BoyleAn overhead viewAtom-split it

  16. Atomic Energy Commission Takes Over Responsibility for all Atomic...

    National Nuclear Security Administration (NNSA)

    Takes Over Responsibility for all Atomic Energy Programs | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  17. Quantum transport in ultracold atoms

    E-Print Network [OSTI]

    Chih-Chun Chien; Sebastiano Peotta; Massimiliano Di Ventra

    2015-04-11T23:59:59.000Z

    Ultracold atoms confined by engineered magnetic or optical potentials are ideal systems for studying phenomena otherwise difficult to realize or probe in the solid state because their atomic interaction strength, number of species, density, and geometry can be independently controlled. This review focuses on quantum transport phenomena in atomic gases that mirror and oftentimes either better elucidate or show fundamental differences with those observed in mesoscopic and nanoscopic systems. We discuss significant progress in performing transport experiments in atomic gases, contrast similarities and differences between transport in cold atoms and in condensed matter systems, and survey inspiring theoretical predictions that are difficult to verify in conventional setups. These results further demonstrate the versatility offered by atomic systems in the study of nonequilibrium phenomena and their promise for novel applications.

  18. Stationary light in cold atomic gases

    E-Print Network [OSTI]

    Gor Nikoghosyan; Michael Fleischhauer

    2009-09-16T23:59:59.000Z

    We discuss stationary light created by a pair of counter-propagating control fields in Lambda-type atomic gases with electromagnetically induced transparency for the case of negligible Doppler broadening. In this case the secular approximation used in the discussion of stationary light in hot vapors is no longer valid. We discuss the quality of the effective light-trapping system and show that in contrast to previous claims it is finite even for vanishing ground-state dephasing. The dynamics of the photon loss is in general non exponential and can be faster or slower than in hot gases.

  19. Bogoliubov theory and bosonic atoms

    E-Print Network [OSTI]

    Phan Thanh Nam

    2011-09-13T23:59:59.000Z

    We formulate the Bogoliubov variational principle in a mathematical framework similar to the generalized Hartree-Fock theory. Then we analyze the Bogoliubov theory for bosonic atoms in details. We discuss heuristically why the Bogoliubov energy should give the first correction to the leading energy of large bosonic atoms.

  20. ccsd00000983 Quantum state transfer between elds and atoms

    E-Print Network [OSTI]

    ground state sublevels appears as a good candidate for the storage and manipulation of quantum can be mapped onto the long-lived atomic spin associated to the ground state sublevels of the #3;-type without dissipation through the medium. However, the storage has only been demonstrated for classical

  1. A Note Basis Properties for Fractional Hydrogen Atom Equation

    E-Print Network [OSTI]

    E. Bas; F. Metin

    2013-07-24T23:59:59.000Z

    In this paper, spectral analysis of fractional Sturm Liouville problem defined on (0,1], having the singularity of type at zero and research the fundamental properties of the eigenfunctions and eigenvalues for the operator. We show that the eigenvalues and eigenfunctions of the problem are real and orthogonal, respectively. Furthermore,we give some important theorems and lemmas for fractional hydrogen atom equation.

  2. In-situ control system for atomization

    DOE Patents [OSTI]

    Anderson, I.E.; Figliola, R.S.; Terpstra, R.L.

    1995-06-13T23:59:59.000Z

    Melt atomizing apparatus comprising a melt supply orifice for supplying the melt for atomization and gas supply orifices proximate the melt supply orifice for supplying atomizing gas to atomize the melt as an atomization spray is disclosed. The apparatus includes a sensor, such as an optical and/or audio sensor, for providing atomization spray data, and a control unit responsive to the sensed atomization spray data for controlling at least one of the atomizing gas pressure and an actuator to adjust the relative position of the gas supply orifice and melt supply in a manner to achieve a desired atomization spray. 3 figs.

  3. Spectral Emission of Moving Atom

    E-Print Network [OSTI]

    J. X. Zheng-Johansson

    2008-03-17T23:59:59.000Z

    A renewed analysis of the H.E. Ives and G.R. Stilwell's experiment on moving hydrogen canal rays (J. Opt. Soc. Am., 1938, v.28, 215) concludes that the spectral emission of a moving atom exhibits always a redshift which informs not the direction of the atom's motion. The conclusion is also evident from a simple energy relation: atomic spectral radiation is emitted as an orbiting electron consumes a portion of its internal energy on transiting to a lower-energy state which however has in a moving atom an additional energy gain; this results in a redshift in the emission frequency. Based on auxiliary experimental information and a scheme for de Broglie particle formation, we give a vigorous elucidation of the mechanism for deceleration radiation of atomic electron; the corresponding prediction of the redshift is in complete agreement with the Ives and Stilwell's experimental formula.

  4. Polarizable Atomic Multipole-Based AMOEBA Force Field for Proteins Jiajing Zhang,

    E-Print Network [OSTI]

    Ponder, Jay

    Polarizable Atomic Multipole-Based AMOEBA Force Field for Proteins Yue Shi, Zhen Xia, Jiajing Zhang is presented. The current version (AMOEBA- 2013) utilizes permanent electrostatic multipole moments through- ments. The atomic multipole electrostatic parameters for each amino acid residue type are derived from

  5. A new collimator design for energetic neutral atom instruments Michael A. Gruntman

    E-Print Network [OSTI]

    Gruntman, Mike

    A new collimator design for energetic neutral atom instruments Michael A. Gruntman Department (Received 31 August 1993; accepted 3 December 1993) A new type of collimator design is described for energetic neutral atom instruments for space research applications. The collimator consists of annular

  6. Supersonic coal water slurry fuel atomizer

    DOE Patents [OSTI]

    Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Balsavich, John (Foxborough, MA)

    1991-01-01T23:59:59.000Z

    A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

  7. Award Types

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugust AugustInstruments on theAward Types Types of

  8. Detection of transient fluorine atoms

    SciTech Connect (OSTI)

    Loge, G.W.; Nereson, N.; Fry, H.A.

    1986-01-01T23:59:59.000Z

    A KrF eximer laser with a fluence of 50 mJ/cm/sup 2/ was used to photolyze either uranium hexafluoride or molecular fluorine, yielding a transient number density of fluorine atoms. The rise and decay of the atomic fluorine density was observed by transient absorption of a 25-..mu..m Pb-salt diode laser. To prevent the diode laser wavelength from drifting out of resonance with the atomic fluorine line, part of the beam was split off and sent through a microwave discharge fluorine atom cell. This allowed a wavelength modulation-feedback technique to be used to lock the diode laser wavelength onto the atomic line. The remaining diode laser beam was made collinear with the eximer laser beam using a LiF window with a 45/sup 0/ angle of incidence to reflect the infrared beam while transmitting most of the uv beam. Using this setup along with a transient digitizer to average between 100 and 200 transient absorption profiles, fluorine atom number densities on the order of 10/sup 14/ cm/sup -3/ in a 1.7 m pathlength were detected. The signals observed were about a factor of two less than expected from known photolysis and atomic fluorine absorption cross-sections. 2 refs., 4 figs.

  9. Anticipating the atom: popular perceptions of atomic power before Hiroshima

    E-Print Network [OSTI]

    d'Emal, Jacques-Andre Christian

    1994-01-01T23:59:59.000Z

    Before Hiroshima made the Bomb an object of popular concern, possible implications and applications of atomic physics had been discussed in the public forum. The new science of X-rays and radium promised the possibilities of unlimited energy...

  10. atomization atomic absorption: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cells to modern observations of dust clouds in stellar nebulas and Bose-Einstein condensates. Here we show the first absorption imaging of a single atom isolated in vacuum. The...

  11. A high-flux BEC source for mobile atom interferometers

    E-Print Network [OSTI]

    Jan Rudolph; Waldemar Herr; Christoph Grzeschik; Tammo Sternke; Alexander Grote; Manuel Popp; Dennis Becker; Hauke Müntinga; Holger Ahlers; Achim Peters; Claus Lämmerzahl; Klaus Sengstock; Naceur Gaaloul; Wolfgang Ertmer; Ernst M. Rasel

    2015-06-16T23:59:59.000Z

    Quantum sensors based on coherent matter-waves are precise measurement devices whose ultimate accuracy is achieved with Bose-Einstein condensates (BEC) in extended free fall. This is ideally realized in microgravity environments such as drop towers, ballistic rockets and space platforms. However, the transition from lab-based BEC machines to robust and mobile sources with comparable performance is a challenging endeavor. Here we report on the realization of a miniaturized setup, generating a flux of $4 \\times 10^5$ quantum degenerate $^{87}$Rb atoms every 1.6$\\,$s. Ensembles of $1 \\times 10^5$ atoms can be produced at a 1$\\,$Hz rate. This is achieved by loading a cold atomic beam directly into a multi-layer atom chip that is designed for efficient transfer from laser-cooled to magnetically trapped clouds. The attained flux of degenerate atoms is on par with current lab-based BEC experiments while offering significantly higher repetition rates. Additionally, the flux is approaching those of current interferometers employing Raman-type velocity selection of laser-cooled atoms. The compact and robust design allows for mobile operation in a variety of demanding environments and paves the way for transportable high-precision quantum sensors.

  12. Chemical factors influencing selenium atomization

    E-Print Network [OSTI]

    Buren, Mary Sue

    1980-01-01T23:59:59.000Z

    Atomization. (August 1980) Mary Sue Buren, B, S. , Angelo State University Chairman of Advisory Comm1ttee: Dr. Thomas M. Vickrey Selenium in an acid1c matrix was analyzed using graphite furnace atom1c absorption with Zeeman-effect background correct1on.... Nickel(II} and lanthanum( III) were introduced as matrix modifiers to determine their effect on interferences 1n selenium atom1zation. In add1tion to matr1x mod1ficat1on, surface coating the graphite furnace with z1rconium and tantalum salts was also...

  13. Chemical factors influencing selenium atomization 

    E-Print Network [OSTI]

    Buren, Mary Sue

    1980-01-01T23:59:59.000Z

    Atomization. (August 1980) Mary Sue Buren, B, S. , Angelo State University Chairman of Advisory Comm1ttee: Dr. Thomas M. Vickrey Selenium in an acid1c matrix was analyzed using graphite furnace atom1c absorption with Zeeman-effect background correct1on.... Nickel(II} and lanthanum( III) were introduced as matrix modifiers to determine their effect on interferences 1n selenium atom1zation. In add1tion to matr1x mod1ficat1on, surface coating the graphite furnace with z1rconium and tantalum salts was also...

  14. Heterogeneous Catalysis on Atomically Dispersed Supported Metals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalysis on Atomically Dispersed Supported Metals: CO2 Reduction on Multifunctional Pd Catalysts. Heterogeneous Catalysis on Atomically Dispersed Supported Metals: CO2 Reduction...

  15. Imaging atoms in 3-D

    ScienceCinema (OSTI)

    Ercius, Peter

    2014-06-27T23:59:59.000Z

    Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

  16. Imaging atoms in 3-D

    SciTech Connect (OSTI)

    Ercius, Peter

    2013-10-31T23:59:59.000Z

    Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

  17. Confinement induced binding of noble gas atoms

    SciTech Connect (OSTI)

    Khatua, Munmun; Pan, Sudip; Chattaraj, Pratim K., E-mail: pkc@chem.iitkgp.ernet.in [Department of Chemistry and Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302 (India)

    2014-04-28T23:59:59.000Z

    The stability of Ng{sub n}@B{sub 12}N{sub 12} and Ng{sub n}@B{sub 16}N{sub 16} systems is assessed through a density functional study and ab initio simulation. Although they are found to be thermodynamically unstable with respect to the dissociation of individual Ng atoms and parent cages, ab initio simulation reveals that except Ne{sub 2}@B{sub 12}N{sub 12} they are kinetically stable to retain their structures intact throughout the simulation time (500 fs) at 298 K. The Ne{sub 2}@B{sub 12}N{sub 12} cage dissociates and the Ne atoms get separated as the simulation proceeds at this temperature but at a lower temperature (77 K) it is also found to be kinetically stable. He-He unit undergoes translation, rotation and vibration inside the cavity of B{sub 12}N{sub 12} and B{sub 16}N{sub 16} cages. Electron density analysis shows that the He-He interaction in He{sub 2}@B{sub 16}N{sub 16} is of closed-shell type whereas for the same in He{sub 2}@B{sub 12}N{sub 12} there may have some degree of covalent character. In few cases, especially for the heavier Ng atoms, the Ng-N/B bonds are also found to have some degree of covalent character. But the Wiberg bond indices show zero bond order in He-He bond and very low bond order in cases of Ng-N/B bonds. The energy decomposition analysis further shows that the ?E{sub orb} term contributes 40.9% and 37.3% towards the total attraction in the He{sub 2} dimers having the same distances as in He{sub 2}@B{sub 12}N{sub 12} and He{sub 2}@B{sub 16}N{sub 16}, respectively. Therefore, confinement causes some type of orbital interaction between two He atoms, which akins to some degree of covalent character.

  18. Recent Progress in ultracold atoms

    E-Print Network [OSTI]

    Baltisberger, Jay H.

    , cold gas experiments 2. How to make a BEC out of fermions 3. Recent Progress: Controlling Interaction (Feshbach Resonance) 4. From BCS to BEC: Rotating trap and spin- polarized condensates. 5. Future research and Einstein What is Bose-Einstein condensation (BEC)? #12;300 K to 1 mK 109 atoms 1 mK to 1 mK 108 106 atoms

  19. Absorption properties of identical atoms

    E-Print Network [OSTI]

    Pedro Sancho

    2013-07-31T23:59:59.000Z

    Emission rates and other optical properties of multiparticle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas.

  20. Generation, characterization and use of atom-resonant indistinguishable photon pairs

    E-Print Network [OSTI]

    Morgan W. Mitchell

    2015-02-26T23:59:59.000Z

    We describe the generation of atom-resonant indistinguishable photon pairs using nonlinear optical techniques, their spectral purification using atomic filters, characterization using multi-photon interference, and application to quantum-enhanced sensing with atoms. Using either type-I or type-II cavity-enhanced spontaneous parametric down-conversion, we generate pairs of photons in the resonant modes of optical cavities with linewidths comparable to the 6 MHz natural linewidth of the D$_1$ line of atomic rubidium. The cavities and pump lasers are tuned so that emission occurs in a mode or a pair of orthogonally-polarized modes that are resonant to the D$_1$ line, at 794.7 nm. The emission from these frequency-degenerate modes is separated from other cavity emission using ultra-narrow atomic frequency filters, either a Faraday anomalous dispersion optical filter (FADOF) with a 445MHz linewidth and 57 dB of out-of-band rejection or an induced dichroism filter with an 80 MHz linewidth and $\\ge$35dB out-of-band rejection. Using the type-I source, we demonstrate interference of photon pair amplitudes against a coherent state and a new method for full characterization of the temporal wave-function of narrow-band photon pairs. With the type-II source we demonstrate high-visibility super-resolving interference, a high-fidelity atom-tuned NooN state, and quantum enhanced sensing of atoms using indistinguishable photon pairs.

  1. Molecular formations in ultracold mixtures of interacting and noninteracting atomic gases

    E-Print Network [OSTI]

    T. Nishimura; A. Matsumoto; H. Yabu

    2008-08-06T23:59:59.000Z

    Atom-molecule equilibrium for molecular formation processes is discussed for boson-fermion, fermion-fermion, and boson-boson mixtures of ultracold atomic gases in the framework of quasichemical equilibrium theory. After presentation of the general formulation, zero-temperature phase diagrams of the atom-molecule equilibrium states are calculated analytically; molecular, mixed, and dissociated phases are shown to appear for the change of the binding energy of the molecules. The temperature dependences of the atom or molecule densities are calculated numerically, and finite-temperature phase structures are obtained of the atom-molecule equilibrium in the mixtures. The transition temperatures of the atom or molecule Bose-Einstein condensations are also evaluated from these results. Quantum-statistical deviations of the law of mass action in atom-molecule equilibrium, which should be satisfied in mixtures of classical Maxwell-Boltzmann gases, are calculated, and the difference in the different types of quantum-statistical effects is clarified. Mean-field calculations with interparticle interactions (atom-atom, atom-molecule, and molecule-molecule) are formulated, where interaction effects are found to give the linear density-dependent term in the effective molecular binding energies. This method is applied to calculations of zero-temperature phase diagrams, where new phases with coexisting local-equilibrium states are shown to appear in the case of strongly repulsive interactions.

  2. Properties of Atomic Gas in Spiral Galaxies

    E-Print Network [OSTI]

    Robert Braun

    1998-04-29T23:59:59.000Z

    (Abridged) Although both Warm (WNM, 10^4 K) and Cool (CNM, about 100 K) atomic phases coexist in many environments, the dominant mass contribution within a galaxy's star-forming disk (R_25) is that of the CNM. Mass fractions of 60 to 90% are found within R_25, in the form of moderately opaque filaments with a face-on surface covering factor 15%. The kinetic temperature of the CNM increases systematically with galactocentric radius, from some 50 to 200 K, as expected for a radially declining thermal pressure in the galaxy mid-plane. Galaxies of different Hubble type form a nested distribution in T_K(R), apparently due to the mean differences in pressure which result from the different stellar and gas surface densities. The opaque CNM disappears abruptly near R_25, where the low thermal pressure can no longer support the condensed atomic phase. The CNM is apparently a prerequisite for star formation. Median line profiles of the CNM display an extremely narrow line core (FWHM about 6 km/s) together with broad Lorentzian wings (FWHM about 30 km/s). The line core is consistent with only opacity broadening of a thermal profile. The spatial distribution of CNM linewidths is not random. High linewidths occur in distinct shell-like structures with diameter of 100's of pc to kpc's, which show some correlation with diffuse H-alpha shells. The primary source of ``turbulent'' linewidth in the atomic ISM appears to be organized motions due to localized energy injection on a scale of a few 100 pc.

  3. Accelerometer using atomic waves for space applications

    E-Print Network [OSTI]

    of Bose-Einstein condensation (BEC) of a dilute gas of trapped atoms in a single quantum state [18, 19, 20 of such devices in the field of navigation, surveying and analysis of earth structures. Matter-wave interferometry that the use of Bose-Einstein condensed atoms will bring the science of atom optics, and in particular atom

  4. Testing Gravity with Cold-Atom Interferometers

    E-Print Network [OSTI]

    G. W. Biedermann; X. Wu; L. Deslauriers; S. Roy; C. Mahadeswaraswamy; M. A. Kasevich

    2014-12-10T23:59:59.000Z

    We present a horizontal gravity gradiometer atom interferometer for precision gravitational tests. The horizontal configuration is superior for maximizing the inertial signal in the atom interferometer from a nearby proof mass. In our device, we have suppressed spurious noise associated with the horizonal configuration to achieve a differential acceleration sensitivity of 4.2$\\times10^{-9}g/\\sqrt{Hz}$ over a 70 cm baseline or 3.0$\\times10^{-9}g/\\sqrt{Hz}$ inferred per accelerometer. Using the performance of this instrument, we characterize the results of possible future gravitational tests. We complete a proof-of-concept measurement of the gravitational constant with a precision of 3$\\times10^{-4}$ that is competitive with the present limit of 1.2$\\times10^{-4}$ using other techniques. From this measurement, we provide a statistical constraint on a Yukawa-type fifth force at 8$\\times$10$^{-3}$ near the poorly known length scale of 10 cm. Limits approaching 10$^{-5}$ appear feasible. We discuss improvements that can enable uncertainties falling well below 10$^{-5}$ for both experiments.

  5. Atomic Cascade in Muonic and Hadronic Hydrogen Atoms

    E-Print Network [OSTI]

    T. S. Jensen; V. P. Popov; V. N. Pomerantsev

    2007-12-18T23:59:59.000Z

    The atomic cascade in $\\mu^- p$ and $\\pi^- p$ atoms has been studied with the improved version of the extended cascade model in which new quantum mechanical calculations of the differential and integral cross sections of the elastic scattering, Stark transitions and Coulomb de-excitation have been included for the principal quantum number values $n\\le 8$ and the relative energies $E \\ge 0.01$ eV. The $X$-ray yields and kinetic energy distributions are compared with the experimental data.

  6. Quantum Electrodynamics of Atomic Resonances

    E-Print Network [OSTI]

    Miguel Ballesteros; Jérémy Faupin; Jürg Fröhlich; Baptiste Schubnel

    2015-03-09T23:59:59.000Z

    A simple model of an atom interacting with the quantized electromagnetic field is studied. The atom has a finite mass $m$, finitely many excited states and an electric dipole moment, $\\vec{d}_0 = -\\lambda_{0} \\vec{d}$, where $\\| d^{i}\\| = 1,$ $ i=1,2,3,$ and $\\lambda_0$ is proportional to the elementary electric charge. The interaction of the atom with the radiation field is described with the help of the Ritz Hamiltonian, $-\\vec{d}_0\\cdot \\vec{E}$, where $\\vec{E}$ is the electric field, cut off at large frequencies. A mathematical study of the Lamb shift, the decay channels and the life times of the excited states of the atom is presented. It is rigorously proven that these quantities are analytic functions of the momentum $\\vec{p}$ of the atom and of the coupling constant $\\lambda_0$, provided $|\\vec{p}| < mc$ and $| \\Im\\vec{p} |$ and $| \\lambda_{0} |$ are sufficiently small. The proof relies on a somewhat novel inductive construction involving a sequence of `smooth Feshbach-Schur maps' applied to a complex dilatation of the original Hamiltonian, which yields an algorithm for the calculation of resonance energies that converges super-exponentially fast.

  7. Degeneracy Breaking of Hydrogen Atom

    E-Print Network [OSTI]

    Agung Trisetyarso; Pantur Silaban

    2014-11-21T23:59:59.000Z

    The three dimensional rotation group, SO(3), is a symmetry group of the normal hydrogen atom. Each reducible representation of this group can be associated with a degenerate energy level. If this atom is placed in an external magnetic field, the interaction between the orbital magnetic moment with this field will lead to a symmetry breaking where the symmetry group of the atom is a new group distinct from the SO(3) group. This phenomenon describes the normal Zeeman effect, where a degenerate energy level splits into several new energy levels. It is explicitly shown that each of the new energy levels can be associated with an irreducible representation of the new symmetry group.

  8. Atomizing, continuous, water monitoring module

    DOE Patents [OSTI]

    Thompson, Cyril V. (Knoxville, TN); Wise, Marcus B. (Kingston, TN)

    1997-01-01T23:59:59.000Z

    A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid.

  9. Atomizing, continuous, water monitoring module

    DOE Patents [OSTI]

    Thompson, C.V.; Wise, M.B.

    1997-07-08T23:59:59.000Z

    A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid. 3 figs.

  10. Nanoplasmonic Lattices for Ultracold atoms

    E-Print Network [OSTI]

    M. Gullans; T. Tiecke; D. E. Chang; J. Feist; J. D. Thompson; J. I. Cirac; P. Zoller; M. D. Lukin

    2014-07-25T23:59:59.000Z

    We propose to use sub-wavelength confinement of light associated with the near field of plasmonic systems to create nanoscale optical lattices for ultracold atoms. Our approach combines the unique coherence properties of isolated atoms with the sub-wavelength manipulation and strong light-matter interaction associated with nano-plasmonic systems. It allows one to considerably increase the energy scales in the realization of Hubbard models and to engineer effective long-range interactions in coherent and dissipative many-body dynamics. Realistic imperfections and potential applications are discussed.

  11. An ultra-bright atom laser

    E-Print Network [OSTI]

    V. Bolpasi; N. K. Efremidis; M. J. Morrissey; P. Condylis; D. Sahagun; M. Baker; W. von Klitzing

    2013-11-25T23:59:59.000Z

    We present a novel, ultra-bright atom-laser and ultra-cold thermal atom beam. Using rf-radiation we strongly couple the magnetic hyperfine levels of 87Rb atoms in a magnetically trapped Bose-Einstein condensate. At low rf-frequencies gravity opens a small hole in the trapping potenital and a well collimated, extremely bright atom laser emerges from just below the condensate. As opposed to traditional atom lasers based on weak coupling, this technique allows us to outcouple atoms at an arbitrarily large rate. We demonstrate an increase in flux per atom in the BEC by a factor of sixteen compared to the brightest quasi-continuous atom laser. Furthermore, we produce by two orders of magnitude the coldest thermal atom beam to date (200 nK).

  12. ELECTRONIC SPUTTERING: FROM ATOMIC PHYSICS

    E-Print Network [OSTI]

    Johnson, Robert E.

    ELECTRONIC SPUTTERING: FROM ATOMIC PHYSICS TO CONTINUUM MECHANICS Ejection of simple and complex molecules from surfaces probes the response of condensed matter to electronic excitations and has and Engineering Physics at the University of Virginia, Charlottesville. Bo Sundqvist holds the Chair in Ion

  13. Photoabsorption by Ions and Atoms

    SciTech Connect (OSTI)

    Manson, Steven T. [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303 (United States)

    2004-12-01T23:59:59.000Z

    Recent progress in theoretical and experimental investigations of photoabsorption by atoms and ions is presented. Specifically, examples of near-chaotic behavior in photoionization of positive ions, low-energy manifestations of nondipole effects, high-energy breakdown of the single particle picture and new phenomenology uncovered in the inner-shell photoabsorption by negative ions are discussed.

  14. Realization of a superconducting atom chip

    E-Print Network [OSTI]

    Thomas Nirrengarten; Angie Qarry; Cédric Roux; Andreas Emmert; Gilles Nogues; Michel Brune; Jean-Michel Raimond; Serge Haroche

    2006-10-09T23:59:59.000Z

    We have trapped rubidium atoms in the magnetic field produced by a superconducting atom chip operated at liquid Helium temperatures. Up to $8.2\\cdot 10^5$ atoms are held in a Ioffe-Pritchard trap at a distance of 440 $\\mu$m from the chip surface, with a temperature of 40 $\\mu$K. The trap lifetime reaches 115 s at low atomic densities. These results open the way to the exploration of atom--surface interactions and coherent atomic transport in a superconducting environment, whose properties are radically different from normal metals at room temperature.

  15. Test of the universality of free fall with atoms in different spin Orientations

    E-Print Network [OSTI]

    Duan, Xiao-Chun; Deng, Xiao-Bing; Yao, Hui-Bin; Shao, Cheng-Gang; Luo, Jun; Hu, and Zhong-Kun

    2015-01-01T23:59:59.000Z

    We report a test of the universality of free fall (UFF) related to spin-gravity coupling effects by comparing the gravity acceleration of the $^{87}$Rb atoms in $m_F=+1$ versus that in $m_F=-1$, where the corresponding spin orientations are opposite. A Mach-Zehnder-type atom interferometer is exploited to sequentially measure the free fall acceleration of the atoms in these two sublevels, and the resultant E$\\rm{\\ddot{o}}$tv$\\rm{\\ddot{o}}$s ratio determined by this work is ${\\eta_S} =(-0.2\\pm1.5)\\times 10^{-5}$. The interferometer using atoms in $m_F=+1$ or $m_F=-1$ is highly sensitive to magnetic field inhomogeneity, which limits the current experimental precision of our UFF test. The work here provides a stepping stone for future higher precision UFF test related to different spin orientations on atomic basis.

  16. Correlation of atomic packing with the boson peak in amorphous alloys

    SciTech Connect (OSTI)

    Yang, W. M. [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Liu, H. S., E-mail: liuhaishun@126.com, E-mail: blshen@seu.edu.cn, E-mail: runweili@nimte.ac.cn, E-mail: jiangjz@zju.edu.cn; Zhao, Y. C. [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Liu, X. J. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Chen, G. X.; Man, Q. K.; Chang, C. T.; Li, R. W., E-mail: liuhaishun@126.com, E-mail: blshen@seu.edu.cn, E-mail: runweili@nimte.ac.cn, E-mail: jiangjz@zju.edu.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Dun, C. C. [Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109 (United States); Shen, B. L., E-mail: liuhaishun@126.com, E-mail: blshen@seu.edu.cn, E-mail: runweili@nimte.ac.cn, E-mail: jiangjz@zju.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China); Inoue, A. [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); and others

    2014-09-28T23:59:59.000Z

    Boson peaks (BP) have been observed from phonon specific heats in 10 studied amorphous alloys. Two Einstein-type vibration modes were proposed in this work and all data can be fitted well. By measuring and analyzing local atomic structures of studied amorphous alloys and 56 reported amorphous alloys, it is found that (a) the BP originates from local harmonic vibration modes associated with the lengths of short-range order (SRO) and medium-range order (MRO) in amorphous alloys, and (b) the atomic packing in amorphous alloys follows a universal scaling law, i.e., the ratios of SRO and MRO lengths to solvent atomic diameter are 3 and 7, respectively, which exact match with length ratios of BP vibration frequencies to Debye frequency for the studied amorphous alloys. This finding provides a new perspective for atomic packing in amorphous materials, and has significant implications for quantitative description of the local atomic orders and understanding the structure-property relationship.

  17. Quantum Simulations of Lattice Gauge Theories using Ultracold Atoms in Optical Lattices

    E-Print Network [OSTI]

    Zohar, Erez; Reznik, Benni

    2015-01-01T23:59:59.000Z

    Can high energy physics can be simulated by low-energy, nonrelativistic, many-body systems, such as ultracold atoms? Such ultracold atomic systems lack the type of symmetries and dynamical properties of high energy physics models: in particular, they manifest neither local gauge invariance nor Lorentz invariance, which are crucial properties of the quantum field theories which are the building blocks of the standard model of elementary particles. However, it turns out, surprisingly, that there are ways to configure atomic system to manifest both local gauge invariance and Lorentz invariance. In particular, local gauge invariance can arise either as an effective, low energy, symmetry, or as an "exact" symmetry, following from the conservation laws in atomic interactions. Hence, one could hope that such quantum simulators may lead to new type of (table-top) experiments, that shall be used to study various QCD phenomena, as the con?nement of dynamical quarks, phase transitions, and other effects, which are inacc...

  18. Atomic Classification of 6D SCFTs

    E-Print Network [OSTI]

    Jonathan J. Heckman; David R. Morrison; Tom Rudelius; Cumrun Vafa

    2015-05-04T23:59:59.000Z

    We use F-theory to classify possibly all six-dimensional superconformal field theories (SCFTs). This involves a two step process: We first classify all possible tensor branches allowed in F-theory (which correspond to allowed collections of contractible spheres) and then classify all possible configurations of seven-branes wrapped over them. We describe the first step in terms of "atoms" joined into "radicals" and "molecules," using an analogy from chemistry. The second step has an interpretation via quiver-type gauge theories constrained by anomaly cancellation. A very surprising outcome of our analysis is that all of these tensor branches have the structure of a linear chain of intersecting spheres with a small amount of possible decoration at the two ends. The resulting structure of these SCFTs takes the form of a generalized quiver consisting of ADE-type nodes joined by conformal matter. A collection of highly non-trivial examples involving E8 small instantons probing an ADE singularity is shown to have an F-theory realization. This yields a classification of homomorphisms from ADE subgroups of SU(2) into E8 in purely geometric terms, largely matching results obtained in the mathematics literature from an intricate group theory analysis.

  19. Role of atomic collisions in fusion

    SciTech Connect (OSTI)

    Post, D.E.

    1982-04-01T23:59:59.000Z

    Atomic physics issues have played a large role in controlled fusion research. A general discussion of the present role of atomic processes in both magnetic and inertial controlled fusion work is presented.

  20. Preliminary steps to the Atomic Energy Commission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program to the newly created Atomic Energy Commission. He had succeeded in ending the war, but the transition to peacetime use of atomic energy was not something the Army was...

  1. atomic kitteni lauljatar: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory...

  2. atoms barrasiye barhamkoneshhaye: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory...

  3. atomic mass spectrometry: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Negative *) Atomic composition Graham, Nick 3 Prospects in Analytical Atomic Spectrometry CERN Preprints Summary: Tendencies in five main branches of atomic spectrometry...

  4. Institute for Atom-Efficient Chemical Transformations Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adsorbed in a zirconium oxide nanobowl. The brown atoms are surface oxygen and the coral atoms are zirconium. Carbon, oxygen, and hydrogen atoms of fructose molecules are...

  5. Towards a high-precision atomic gyroscope

    E-Print Network [OSTI]

    Van Camp, Mackenzie A. (Mackenzie Anne)

    2013-01-01T23:59:59.000Z

    In this thesis, I report on the design and construction of the Rubidium Atomic Gyroscope Experiment (RAGE) at Draper Lab.

  6. Atomic Ordering Enhanced Electrocatalytic Activity of Nanoalloys...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ordering Enhanced Electrocatalytic Activity of Nanoalloys for Oxygen Reduction Reaction. Atomic Ordering Enhanced Electrocatalytic Activity of Nanoalloys for Oxygen Reduction...

  7. Chaotic Behaviour of Atomic Energy Levels

    E-Print Network [OSTI]

    A. Yilmaz; G. Hacibekiroglu; E. Bolcal; Y. Polatoglu

    2008-04-01T23:59:59.000Z

    The authors of this paper studied Schrodinger wave equation to investiagate the chaotic behavior of atomic energy levels in relation with three quantum numbers n, l, m by means of derived inequality. It could give rise to the siplitting of atomic spectral lines. Keywords: Chaos, Schrodinger wave equation, atomic energy levels

  8. Riso Report No. Danish Atomic Energy Commission

    E-Print Network [OSTI]

    Jagiellonski Institute of Physics Krakow, Poland and P. A. Lindgård Mogensen The Danish Atomic EnergyfM O o 8- OL '·O c/i Riso Report No. Danish Atomic Energy Commission Research Establishment Riso/t on exchangefrom: Library, Danish Atomic Energy Commission, Risd, Roskilde, Denmark #12;May, 1966 Ris6 Report No

  9. Driven Ratchets for Cold Atoms

    E-Print Network [OSTI]

    Renzoni, F

    2011-01-01T23:59:59.000Z

    Brownian motors, or ratchets, are devices which "rectify" Brownian motion, i.e. they can generate a current of particles out of unbiased fluctuations. The ratchet effect is a very general phenomenon which applies to a wide range of physical systems, and indeed ratchets have been realized with a variety of solid state devices, with optical trap setups as well as with synthetic molecules and granular gases. The present article reviews recent experimental realizations of ac driven ratchets with cold atoms in driven optical lattices. This is quite an unusual system for a Brownian motor as there is no a real thermal bath, and both the periodic potential for the atoms and the fluctuations are determined by laser fields. Such a system allowed us to realize experimentally rocking and gating ratchets, and to precisely investigate the relationship between symmetry and transport in these ratchets, both for the case of periodic and quasiperiodic driving.

  10. Driven Ratchets for Cold Atoms

    E-Print Network [OSTI]

    F. Renzoni

    2011-12-05T23:59:59.000Z

    Brownian motors, or ratchets, are devices which "rectify" Brownian motion, i.e. they can generate a current of particles out of unbiased fluctuations. The ratchet effect is a very general phenomenon which applies to a wide range of physical systems, and indeed ratchets have been realized with a variety of solid state devices, with optical trap setups as well as with synthetic molecules and granular gases. The present article reviews recent experimental realizations of ac driven ratchets with cold atoms in driven optical lattices. This is quite an unusual system for a Brownian motor as there is no a real thermal bath, and both the periodic potential for the atoms and the fluctuations are determined by laser fields. Such a system allowed us to realize experimentally rocking and gating ratchets, and to precisely investigate the relationship between symmetry and transport in these ratchets, both for the case of periodic and quasiperiodic driving.

  11. The Future of Atomic Energy

    DOE R&D Accomplishments [OSTI]

    Fermi, E.

    1946-05-27T23:59:59.000Z

    There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

  12. Gauge invariant hydrogen atom Hamiltonian

    E-Print Network [OSTI]

    Wei-Min Sun; Xiang-Song Chen; Xiao-Fu Lu; Fan Wang

    2010-06-22T23:59:59.000Z

    For quantum mechanics of a charged particle in a classical external electromagnetic field, there is an apparent puzzle that the matrix element of the canonical momentum and Hamiltonian operators is gauge dependent. A resolution to this puzzle is recently provided by us in [2]. Based on the separation of the electromagnetic potential into pure gauge and gauge invariant parts, we have proposed a new set of momentum and Hamiltonian operators which satisfy both the requirement of gauge invariance and the relevant commutation relations. In this paper we report a check for the case of the hydrogen atom problem: Starting from the Hamiltonian of the coupled electron, proton and electromagnetic field, under the infinite proton mass approximation, we derive the gauge invariant hydrogen atom Hamiltonian and verify explicitly that this Hamiltonian is different from the Dirac Hamiltonian, which is the time translation generator of the system. The gauge invariant Hamiltonian is the energy operator, whose eigenvalue is the energy of the hydrogen atom. It is generally time-dependent. In this case, one can solve the energy eigenvalue equation at any specific instant of time. It is shown that the energy eigenvalues are gauge independent, and by suitably choosing the phase factor of the time-dependent eigenfunction, one can ensure that the time-dependent eigenfunction satisfies the Dirac equation.

  13. NAAP Hydrogen Atom 1/9 The Hydrogen Atom Student Guide

    E-Print Network [OSTI]

    Farritor, Shane

    Name: NAAP ­ Hydrogen Atom 1/9 The Hydrogen Atom ­ Student Guide Background Material Carefully read and the Quantum model represent the Hydrogen atom. In some cases they both describe things in the same way frequency, smaller energy, and the same velocity through space as a blue photon". #12;NAAP ­Hydrogen Atom 2

  14. Fast transport, atom sample splitting and single-atom qubit supply in two-dimensional arrays

    E-Print Network [OSTI]

    Birkl, Gerhard

    Fast transport, atom sample splitting and single-atom qubit supply in two-dimensional arrays architecture for neutral atom quantum information processing, quantum simulation and the manipulation of ultra-cold implemented functions. We introduce piezo-actuator-based transport of atom ensembles over distances of more

  15. Designing frequency-dependent relaxation rates and Lamb shift for a giant artificial atom

    E-Print Network [OSTI]

    Anton Frisk Kockum; Per Delsing; Göran Johansson

    2014-06-02T23:59:59.000Z

    In traditional quantum optics, where the interaction between atoms and light at optical frequencies is studied, the atoms can be approximated as point-like when compared to the wavelength of light. So far, this relation has also been true for artificial atoms made out of superconducting circuits or quantum dots, interacting with microwave radiation. However, recent and ongoing experiments using surface acoustic waves show that a single artificial atom can be coupled to a bosonic field at several points wavelengths apart. Here, we theoretically study this type of system. We find that the multiple coupling points give rise to a frequency dependence in the coupling strength between the atom and its environment, and also in the Lamb shift of the atom. The frequency dependence is given by the discrete Fourier transform of the coupling point coordinates and can therefore be designed. We discuss a number of possible applications for this phenomenon, including tunable coupling, single-atom lasing, and other effects that can be achieved by designing the relative coupling strengths of different transitions in a multi-level atom.

  16. Assignment Types UTS LIBRARY

    E-Print Network [OSTI]

    University of Technology, Sydney

    Assignment Types UTS LIBRARY February 2013 Academic Writing Guide Part 2 ­ Assignment Types: This section outlines the basic types of written assignments, providing structural elements and examples. #12;2 II. Assignment Types 1. Essay Writing

  17. Ultracold Atoms: How Quantum Field Theory Invaded Atomic Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgram |Frank CasellaEnergyUltracold Atoms: How Quantum

  18. Engineering Atomic Quantum Reservoirs for Photons

    E-Print Network [OSTI]

    Susanne Pielawa; Luiz Davidovich; David Vitali; Giovanna Morigi

    2010-04-06T23:59:59.000Z

    We present protocols for creating entangled states of two modes of the electromagnetic field, by using a beam of atoms crossing microwave resonators. The atoms are driven by a transverse, classical field and pump correlated photons into (i) two modes of a cavity and (ii) the modes of two distant cavities. The protocols are based on a stochastic dynamics, characterized by random arrival times of the atoms and by random interaction times between atoms and cavity modes. The resulting effective model yields a master equation, whose steady state is an entangled state of the cavity modes. In this respect, the atoms act like a quantum reservoir, pulling the cavity modes into an entangled, Einstein-Podolski-Rosen (EPR) state, whose degree of entanglement is controlled by the intensity and the frequency of the transverse field. This scheme is robust against stochastic fluctuations in the atomic beam, and it does not require atomic detection nor velocity selection.

  19. Engineering Atomic Quantum Reservoirs for Photons

    E-Print Network [OSTI]

    Pielawa, Susanne; Vitali, David; Morigi, Giovanna

    2010-01-01T23:59:59.000Z

    We present protocols for creating entangled states of two modes of the electromagnetic field, by using a beam of atoms crossing microwave resonators. The atoms are driven by a transverse, classical field and pump correlated photons into (i) two modes of a cavity and (ii) the modes of two distant cavities. The protocols are based on a stochastic dynamics, characterized by random arrival times of the atoms and by random interaction times between atoms and cavity modes. The resulting effective model yields a master equation, whose steady state is an entangled state of the cavity modes. In this respect, the atoms act like a quantum reservoir, pulling the cavity modes into an entangled, Einstein-Podolski-Rosen (EPR) state, whose degree of entanglement is controlled by the intensity and the frequency of the transverse field. This scheme is robust against stochastic fluctuations in the atomic beam, and it does not require atomic detection nor velocity selection.

  20. atomic recoil laser: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Recoil Laser Quantum Physics (arXiv) Summary: We formulate a wave atom optics theory of the Collective Atomic Recoil Laser, where the atomic center-of-mass motion...

  1. Atomic Structure Calculations from the Los Alamos Atomic Physics Codes

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cowan, R. D.

    The well known Hartree-Fock method of R.D. Cowan, developed at Los Alamos National Laboratory, is used for the atomic structure calculations. Electron impact excitation cross sections are calculated using either the distorted wave approximation (DWA) or the first order many body theory (FOMBT). Electron impact ionization cross sections can be calculated using the scaled hydrogenic method developed by Sampson and co-workers, the binary encounter method or the distorted wave method. Photoionization cross sections and, where appropriate, autoionizations are also calculated. Original manuals for the atomic structure code, the collisional excitation code, and the ionization code, are available from this website. Using the specialized interface, you will be able to define the ionization stage of an element and pick the initial and final configurations. You will be led through a series of web pages ending with a display of results in the form of cross sections, collision strengths or rates coefficients. Results are available in tabular and graphic form.

  2. Direct visualization of atomically precise nitrogen-doped graphene nanoribbons

    SciTech Connect (OSTI)

    Zhang, Yi; Zhang, Yanfang; Li, Geng; Lu, Jianchen; Du, Shixuan, E-mail: sxdu@iphy.ac.cn, E-mail: feng@mpip-mainz.mpg.de; Gao, Hong-Jun [Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); Lin, Xiao [University of Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100049 (China); Berger, Reinhard; Feng, Xinliang, E-mail: sxdu@iphy.ac.cn, E-mail: feng@mpip-mainz.mpg.de; Müllen, Klaus [Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz (Germany)

    2014-07-14T23:59:59.000Z

    We have fabricated atomically precise nitrogen-doped chevron-type graphene nanoribbons by using the on-surface synthesis technique combined with the nitrogen substitution of the precursors. Scanning tunneling microscopy and spectroscopy indicate that the well-defined nanoribbons tend to align with the neighbors side-by-side with a band gap of 1.02?eV, which is in good agreement with the density functional theory calculation result. The influence of the high precursor coverage on the quality of the nanoribbons is also studied. We find that graphene nanoribbons with sufficient aspect ratios can only be fabricated at sub-monolayer precursor coverage. This work provides a way to construct atomically precise nitrogen-doped graphene nanoribbons.

  3. General Atomics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas:Webinars/Puesta en Marcha,Geary,GenSelfandAtomics

  4. Atoms can be divided into three categories: polar, non-polar and hydrogen atom

    E-Print Network [OSTI]

    Pei-Lin You

    2010-10-10T23:59:59.000Z

    Since the time of Rutherford 1911) physicists and chemists commonly believed that with no electric field, the nucleus of an atom is at the centre of the electron cloud, atoms do not have permanent electric dipole moment (EDM), so that there is no polar atom in nature. In the fact, the idea is untested hypothesis. After ten years of intense research, our experiments showed that atoms can be divided into three categories: polar, non-polar and hydrogen atom. Alkali atoms are all polar atoms. The EDM of a Sodium, Potassium, Rubidium and Cesium atom in the ground state have been obtained as follows: d(Na)=1.28*10 to-8 power e.cm; d(K)=1.58*10 to-8 power e.cm; d(Rb)=1.70 *10 to-8 power e.cm; d(Cs)=1.86*10 to-8 power e.cm. All kind of atoms are non-polar atoms except for alkali and hydrogen atoms. Hydrogen atom is quite distinct from the others. The ground state in hydrogen is non-polar atom(d=0) but the excited state is polar atom, for example, the first excited state has a large EDM: d(H)=3ea=1.59*10 to-8 power e.cm (a is Bohr radius).

  5. Types of Costs Types of Cost Estimates

    E-Print Network [OSTI]

    Boisvert, Jeff

    · Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408: Mining% accuracy. ­ 2-5% of pre-production capital Types of Cost Estimates #12;3. Definitive ­ Based on definitive-even $ Production Level Fixed Cost Break-even $ Production Level Cost-Revenue Relationships · Capital Costs (or

  6. Sensing mode atomic force microscope

    DOE Patents [OSTI]

    Hough, Paul V. C.; Wang, Chengpu

    2006-08-22T23:59:59.000Z

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  7. Sensing mode atomic force microscope

    DOE Patents [OSTI]

    Hough, Paul V.; Wang, Chengpu

    2004-11-16T23:59:59.000Z

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  8. Sensing mode atomic force microscope

    DOE Patents [OSTI]

    Hough, Paul V. C. (Port Jefferson, NY); Wang, Chengpu (Upton, NY)

    2003-01-01T23:59:59.000Z

    An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.

  9. Hydrogen Atom in Relativistic Motion

    E-Print Network [OSTI]

    M. Jarvinen

    2005-04-11T23:59:59.000Z

    The Lorentz contraction of bound states in field theory is often appealed to in qualitative descriptions of high energy particle collisions. Surprisingly, the contraction has not been demonstrated explicitly even in simple cases such as the hydrogen atom. It requires a calculation of wave functions evaluated at equal (ordinary) time for bound states in motion. Such wave functions are not obtained by kinematic boosts from the rest frame. Starting from the exact Bethe-Salpeter equation we derive the equal-time wave function of a fermion-antifermion bound state in QED, i.e., positronium or the hydrogen atom, in any frame to leading order in alpha. We show explicitly that the bound state energy transforms as the fourth component of a vector and that the wave function of the fermion-antifermion Fock state contracts as expected. Transverse photon exchange contributes at leading order to the binding energy of the bound state in motion. We study the general features of the corresponding fermion-antifermion-photon Fock states, and show that they do not transform by simply contracting. We verify that the wave function reduces to the light-front one in the infinite momentum frame.

  10. MATERIALS WITH COMPLEX ELECTRONIC/ATOMIC STRUCTURES

    SciTech Connect (OSTI)

    D. M. PARKIN; L. CHEN; ET AL

    2000-09-01T23:59:59.000Z

    We explored both experimentally and theoretically the behavior of materials at stresses close to their theoretical strength. This involves the preparation of ultra fine scale structures by a variety of fabrication methods. In the past year work has concentrated on wire drawing of in situ composites such as Cu-Ag and Cu-Nb. Materials were also fabricated by melting alloys in glass and drawing them into filaments at high temperatures by a method known as Taylor wire technique. Cu-Ag microwires have been drawn by this technique to produce wires 10 {micro}m in diameter that consist of nanoscale grains of supersaturated solid solution. Organogels formed from novel organic gelators containing cholesterol tethered to squaraine dyes or trans-stilbene derivatives have been studied from several different perspectives. The two types of molecules are active toward several organic liquids, gelling in some cases at w/w percentages as low as 0.1. While relatively robust, acroscopically dry gels are formed in several cases, studies with a variety of probes indicate that much of the solvent may exist in domains that are essentially liquid-like in terms of their microenvironment. The gels have been imaged by atomic force microscopy and conventional and fluorescence microscopy, monitoring both the gelator fluorescence in the case of the stilbene-cholesterol gels and, the fluorescence of solutes dissolved in the solvent. Remarkably, our findings show that several of the gels are composed of similarly appearing fibrous structures visible at the nano-, micro-, and macroscale.

  11. Phases of Atom-Molecule Vortex Matter

    SciTech Connect (OSTI)

    Woo, S. J.; Bigelow, N. P. [Department of Physics and Astronomy, University of Rochester, Rochester, New York (United States); Park, Q-Han [Department of Physics, Korea University, Seoul (Korea, Republic of)

    2008-03-28T23:59:59.000Z

    We study ground state vortex configurations in a rotating atom-molecule Bose-Einstein condensate. It is found that the coherent coupling between the atomic and molecular condensates can render a pairing of atomic and molecular vortices into a composite structure that resembles a carbon dioxide molecule. Structural phase transitions of vortex lattices are also explored through different physical parameters including the rotational frequency of the system.

  12. Method for enhanced atomization of liquids

    DOE Patents [OSTI]

    Thompson, Richard E. (27121 Puerta del Oro, Mission Viejo, CA 92691); White, Jerome R. (44755 Wyandotte, Hemet, CA 92544)

    1993-01-01T23:59:59.000Z

    In a process for atomizing a slurry or liquid process stream in which a slurry or liquid is passed through a nozzle to provide a primary atomized process stream, an improvement which comprises subjecting the liquid or slurry process stream to microwave energy as the liquid or slurry process stream exits the nozzle, wherein sufficient microwave heating is provided to flash vaporize the primary atomized process stream.

  13. CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT

    Office of Legacy Management (LM)

    Westinghouse Atomic 1 U.S. Department of Energy Interim Residual Contamination and Waste Control Guidelines for bormerly Utilized Sites Remedial Action Program (FUSRAP) d Remote...

  14. Atomic 'mismatch' creates nano 'dumbbells' | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic 'mismatch' creates nano 'dumbbells' By Jared Sagoff * December 4, 2014 Tweet EmailPrint ARGONNE, Ill. - Like snowflakes, nanoparticles come in a wide variety of shapes and...

  15. Atomic Energy and Nuclear Materials Program (Tennessee)

    Broader source: Energy.gov [DOE]

    The Atomic Energy and Nuclear Materials section of the Tennessee Code covers all of the regulations, licenses, permits, siting requirements, and practices relevant to a nuclear energy development. ...

  16. Classical and Quantum Chaos in Atom Optics

    E-Print Network [OSTI]

    Farhan Saif

    2006-04-10T23:59:59.000Z

    The interaction of an atom with an electromagnetic field is discussed in the presence of a time periodic external modulating force. It is explained that a control on atom by electromagnetic fields helps to design the quantum analog of classical optical systems. In these atom optical systems chaos may appear at the onset of external fields. The classical and quantum chaotic dynamics is discussed, in particular in an atom optics Fermi accelerator. It is found that the quantum dynamics exhibits dynamical localization and quantum recurrences.

  17. United States Atomic Energy Commission formed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    weapons problem, the United States worked to establish its own formal organization. The transition from military civilian control of nuclear energy was defined in the Atomic...

  18. Distribution Category: Atomic, Molecular, and Chemical Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic, Molecular, and Chemical Physics (UC-411) ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, TIlinois 60439 ANLI APSILS-151 RESULTS OF DESIGN CALCULATIONS FOR THE...

  19. Remote preparation of an atomic quantum memory

    E-Print Network [OSTI]

    Wenjamin Rosenfeld; Stefan Berner; Juergen Volz; Markus Weber; Harald Weinfurter

    2006-08-29T23:59:59.000Z

    Storage and distribution of quantum information are key elements of quantum information processing and quantum communication. Here, using atom-photon entanglement as the main physical resource, we experimentally demonstrate the preparation of a distant atomic quantum memory. Applying a quantum teleportation protocol on a locally prepared state of a photonic qubit, we realized this so-called remote state preparation on a single, optically trapped 87Rb atom. We evaluated the performance of this scheme by the full tomography of the prepared atomic state, reaching an average fidelity of 82%.

  20. Gas Atomization of Stainless Steel - Slow Motion

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    Stainless steel liquid atomized by supersonic argon gas into a spray of droplets at ~1800ºC. Atomization of metal requires high pressure gas and specialized chambers for cooling and collecting the powders without contamination. The critical step for morphological control is the impingement of the gas on the melt stream. The video is a black and white high speed video of a liquid metal stream being atomized by high pressure gas. This material was atomized at the Ames Laboratory's Materials Preparation Center http://www.mpc.ameslab.gov

  1. Simple basis for hydrogenic atoms in magnetic fields

    SciTech Connect (OSTI)

    Gallas, J.A.C.

    1984-01-01T23:59:59.000Z

    A field-dependent hydrogenic basis is used to obtain the evolution of the energy spectrum of atoms in strong (approx.10/sup 8/ G) and uniform magnetic fields. The basis allows results to be derived analytically. Numerical values for the first 13 excited states of hydrogen are found to be in very good agreement with much more elaborate calculations of Smith et al. and of Brandi. In addition, the possibility of having a remnant type of degeneracy in the presence of the magnetic field is investigated.

  2. Magnetic Charge of the Stark States of Hydrogen Atoms

    E-Print Network [OSTI]

    T. Pradhan

    2008-09-28T23:59:59.000Z

    It is conjectured that Stark states of excited hydrogen atom posses magnetic charge for which the quantum mechanical operator is $${\\cal G}_{op} = {e\\over \\hbar} (\\vec\\sigma\\cdot\\vec A)$$ where $\\vec A$ is the Runge-Lenz vector. The expectation value $g$ of this operator for Stark states is found to be $$ g = e(n_1-n_2)$$ which obeys a Dirac-Saha type quantization formula $${eg\\over c} = (n_1-n_2)\\alpha$$ where $\\alpha$ is the fine structure constant and $n_1$ and $n_2$ are parabolic quantum numbers. An experimental arrangement is outlined to test this conjecture.

  3. Entanglement in helium atom confined in an impenetrable cavity

    E-Print Network [OSTI]

    Przemyslaw Koscik; Jayanta K. Saha

    2015-05-24T23:59:59.000Z

    We explore ground-state entanglement properties of helium atom confined at the center of an impenetrable spherical cavity of varying radius by using explicitly correlated Hylleraas-type basis set. Results for the dependencies of the von Neumann and linear entanglement entropic measures on the cavity radius are discussed in details. Some highly accurate numerical results for the von Neumann and linear entropy are reported for the first time. It is found that the transition to the strong confinement regime is manifested by the entropies as an appearance of the inflection points on their variations.

  4. CARBON ATOM DISTRIBUTION IN A DUAL PHASE STEEL: AN ATOM PROBE STUDY

    E-Print Network [OSTI]

    Barnard, S.J.

    2014-01-01T23:59:59.000Z

    ATOM DISTRIBUTION IN A DUAL PHASE STEEL: AN ATOM PROBE STUDY~4720 1 U.S.A. IntroductioE. Dual Phase steels are currentlymartensite-austenite dual phase steel, although the results

  5. Vibrational Modes of Adsorbed Atoms

    E-Print Network [OSTI]

    LAWRENCE, WR; Allen, Roland E.

    1977-01-01T23:59:59.000Z

    of adsorbed atoms. vi rational modes *Present address: S h University of H c ool of Scienc City, Tex. ouston at Clear La ', r e e and Technology Lake City, Clea Lak %. R. wrence and R. E. Allen published). Allen, Phys. Rev. B (to be 2G. P... are about t r Ne on Kr. The d ou he same as fo mode labeled 2V a as large in the f' t X is almost erst (adsorbate) la e od( b t t)l pure surface mod e ayer. The 1H mode at X is a 4, this mode bec m e. Just to the r'right of X in Fig. e ecomes a...

  6. Types of Commissioning

    Broader source: Energy.gov [DOE]

    Several commissioning types exist to address the specific needs of equipment and systems across both new and existing buildings. The following commissioning types provide a good overview.

  7. Semiclassical Szego limit of resonance clusters for the hydrogen atom Stark Hamiltonian

    E-Print Network [OSTI]

    Peter D. Hislop; Carlos Villegas-Blas

    2011-04-22T23:59:59.000Z

    We study the weighted averages of resonance clusters for the hydrogen atom with a Stark electric field in the weak field limit. We prove a semiclassical Szego-type theorem for resonance clusters showing that the limiting distribution of the resonance shifts concentrates on the classical energy surface corresponding to a rescaled eigenvalue of the hydrogen atom Hamiltonian. This result extends Szego-type results on eigenvalue clusters to resonance clusters. There are two new features in this work: first, the study of resonance clusters requires the use of non self-adjoint operators, and second, the Stark perturbation is unbounded so control of the perturbation is achieved using localization properties of coherent states corresponding to hydrogen atom eigenvalues.

  8. Atomic mix in directly driven inertial confinement implosions

    SciTech Connect (OSTI)

    Wilson, D. C.; Ebey, P. S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Sangster, T. C.; Shmayda, W. T.; Yu. Glebov, V. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Lerche, R. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2011-11-15T23:59:59.000Z

    Directly driven implosions on the Omega laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have measured the presence of atomic mix using D+T neutron yield rates from plastic capsules with and without deuterated layers, and a nearly pure tritium fuel containing 0.7% deuterium. In 15, 19, and 24 {mu}m thick plastic shells, D+T neutron yields increased by factors of 86, 112, and 24 when the 1.2 {mu}m thick inner layer was deuterated. Based on adjusting a fully atomic mix modvfel to fit yield degradation in the un-deuterated capsule and applying it to the capsule with the deuterated layer, atomic mixing accounts for 40-75% of the yield degradation due to mix. For the first time, the time dependence of mixed mass was measured by the ratio of the yield rates from both types of capsules. As expected, the amount of mix grows throughout the D+T burn.

  9. Optimized Dynamical Decoupling in ?-Type n-Level Quantum Systems

    E-Print Network [OSTI]

    Linping Chan; Shuang Cong

    2014-04-28T23:59:59.000Z

    In this paper, we first design a type of Bang-Bang (BB) operation group to reduce the phase decoherence in a {\\Xi}-type n-level quantum system based on the dynamical decoupling mechanism. Then, we derive two kinds of dynamical decoupling schemes: periodic dynamical decoupling (PDD) and Uhrig dynamical decoupling (UDD). We select the non-diagonal element of density matrix as a reference index, and investigate the behavior of quantum coherence of the {\\Xi}-type n-level atom under these two dynamical decoupling schemes proposed. At last, we choose a {\\Xi}-type six-level atom as a system controlled, and use the decoupling schemes proposed to suppress the phase decoherence. The simulation experiments and the comparison results are given.

  10. Relativistic atomic physics at the SSC

    SciTech Connect (OSTI)

    NONE

    1990-12-31T23:59:59.000Z

    This report discusses the following proposed work for relativistic atomic physics at the Superconducting Super Collider: Beam diagnostics; atomic physics research; staffing; education; budget information; statement concerning matching funds; description and justification of major items of equipment; statement of current and pending support; and assurance of compliance.

  11. Atomic processes in high-density plasmas

    SciTech Connect (OSTI)

    More, R.M.

    1982-12-21T23:59:59.000Z

    This review covers dense atomic plasmas such as that produced in inertial confinement fusion. The target implosion physics along with the associated atomic physics, i.e., free electron collision phenomena, electron states I, electron states II, and nonequilibrium plasma states are described. (MOW)

  12. Interaction of trapped ions with trapped atoms

    E-Print Network [OSTI]

    Grier, Andrew T. (Andrew Todd)

    2011-01-01T23:59:59.000Z

    In this thesis, I present results from two Paul-trap based ion traps carried out in the Vuleti? laboratory: the Atom-Ion trap for collision studies between cold atoms and cold ions, and the Cavity-Array trap for studying ...

  13. Photoassociative molecular spectroscopy for atomic radiative lifetimes.

    E-Print Network [OSTI]

    Boyer, Edmond

    very far apart, in so-called long- range molecular states, their mutual interaction is ruled by plain atomic properties. The high- resolution spectroscopic study of some molecular excited states populated by photoassociation of cold atoms (photoassociative spectroscopy) gives a good illustration of this property

  14. Atom probe field ion microscopy and related topics: A bibliography 1992

    SciTech Connect (OSTI)

    Russell, K.F.; Godfrey, R.D.; Miller, M.K.

    1993-12-01T23:59:59.000Z

    This bibliography contains citations of books, conference proceedings, journals, and patents published in 1992 on the following types of microscopy: atom probe field ion microscopy (108 items); field emission microscopy (101 items); and field ion microscopy (48 items). An addendum of 34 items missed in previous bibliographies is included.

  15. On The Method of Precise Calculations Of Energy Levels of Hydrogen-like Atoms

    E-Print Network [OSTI]

    N. A. Boikova; Y. N. Tyukhtyaev; R. N. Faustov

    2003-11-22T23:59:59.000Z

    We describe a method for deriving logarithmic corrections in the mass ratio to the S-level of a hydrogen-like atom. With this method, a number of new corrections of this type are calculated analitically for the first time.

  16. True atomic-scale imaging of a spinel Li{sub 4}Ti{sub 5}O{sub 12}(111) surface in aqueous solution by frequency-modulation atomic force microscopy

    SciTech Connect (OSTI)

    Kitta, Mitsunori, E-mail: m-kitta@aist.go.jp; Kohyama, Masanori [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Onishi, Hiroshi [Department of Chemistry, Graduate School of Science, Kobe University 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-09-15T23:59:59.000Z

    Spinel-type lithium titanium oxide (LTO; Li{sub 4}Ti{sub 5}O{sub 12}) is a negative electrode material for lithium-ion batteries. Revealing the atomic-scale surface structure of LTO in liquid is highly necessary to investigate its surface properties in practical environments. Here, we reveal an atomic-scale image of the LTO(111) surface in LiCl aqueous solution using frequency-modulation atomic force microscopy. Atomically flat terraces and single steps having heights of multiples of 0.5?nm were observed in the aqueous solution. Hexagonal bright spots separated by 0.6?nm were also observed on the flat terrace part, corresponding to the atomistic contrast observed in the ultrahigh vacuum condition, which suggests that the basic atomic structure of the LTO(111) surface is retained without dramatic reconstruction even in the aqueous solution.

  17. Sagnac interferometry with a single atomic clock

    E-Print Network [OSTI]

    Stevenson, R; Bishop, T; Lesanovsky, I; Fernholz, T

    2015-01-01T23:59:59.000Z

    We theoretically discuss an implementation of a Sagnac interferometer with cold atoms. In contrast to currently existing schemes our protocol does not rely on any free propagation of atoms. Instead it is based on superpositions of fully confined atoms and state-dependent transport along a closed path. Using Ramsey sequences for an atomic clock, the accumulated Sagnac phase is encoded in the resulting population imbalance between two internal (clock) states. Using minimal models for the above protocol we analytically quantify limitations arising from atomic dynamics and finite temperature. We discuss an actual implementation of the interferometer with adiabatic radio-frequency potentials that is inherently robust against common mode noise as well as phase noise from the reference oscillator.

  18. Sagnac interferometry with a single atomic clock

    E-Print Network [OSTI]

    R. Stevenson; M. Hush; T. Bishop; I. Lesanovsky; T. Fernholz

    2015-04-21T23:59:59.000Z

    We theoretically discuss an implementation of a Sagnac interferometer with cold atoms. In contrast to currently existing schemes our protocol does not rely on any free propagation of atoms. Instead it is based on superpositions of fully confined atoms and state-dependent transport along a closed path. Using Ramsey sequences for an atomic clock, the accumulated Sagnac phase is encoded in the resulting population imbalance between two internal (clock) states. Using minimal models for the above protocol we analytically quantify limitations arising from atomic dynamics and finite temperature. We discuss an actual implementation of the interferometer with adiabatic radio-frequency potentials that is inherently robust against common mode noise as well as phase noise from the reference oscillator.

  19. Types of Costs Types of Cost Estimates

    E-Print Network [OSTI]

    Boisvert, Jeff

    05-1 · Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408-Revenue Relationships · Capital Costs (or first cost or capital investment): ­ Expenditures made to acquire or develop capital assets ­ Three main classes of capital costs: 1. Depreciable Investment: · Investment allocated

  20. Engineering atom-atom thermal entanglement via two-photon process

    E-Print Network [OSTI]

    Y. Q. Guo; L. Zhou; H. S. Song

    2005-09-21T23:59:59.000Z

    We study the system that two atoms simultaneously interact with a single-mode thermal field via different couplings and different spontaneous emission rates when two-photon process is involved. It is found that we indeed can employ the different couplings to produce the atom-atom thermal entanglement in two-photon process. The different atomic spontaneous emission rates are also utilizable in generating thermal entanglement. We also investigate the effect of the cavity leakage. To the initial atomic state $|ee> ,$a slight leakage can relieve the restriction of interaction time and we can obtain a large and steady entanglement.

  1. Laser trapping of {sup 21}Na atoms

    SciTech Connect (OSTI)

    Lu, Zheng-Tian

    1994-09-01T23:59:59.000Z

    This thesis describes an experiment in which about four thousand radioactive {sup 21}Na (t{sub l/2} = 22 sec) atoms were trapped in a magneto-optical trap with laser beams. Trapped {sup 21}Na atoms can be used as a beta source in a precision measurement of the beta-asymmetry parameter of the decay of {sup 21}Na {yields} {sup 21}Ne + {Beta}{sup +} + v{sub e}, which is a promising way to search for an anomalous right-handed current coupling in charged weak interactions. Although the number o trapped atoms that we have achieved is still about two orders of magnitude lower than what is needed to conduct a measurement of the beta-asymmetry parameter at 1% of precision level, the result of this experiment proved the feasibility of trapping short-lived radioactive atoms. In this experiment, {sup 21}Na atoms were produced by bombarding {sup 24}Mg with protons of 25 MeV at the 88 in. Cyclotron of Lawrence Berkeley Laboratory. A few recently developed techniques of laser manipulation of neutral atoms were applied in this experiment. The {sup 21}Na atoms emerging from a heated oven were first transversely cooled. As a result, the on-axis atomic beam intensity was increased by a factor of 16. The atoms in the beam were then slowed down from thermal speed by applying Zeeman-tuned slowing technique, and subsequently loaded into a magneto-optical trap at the end of the slowing path. The last two chapters of this thesis present two studies on the magneto-optical trap of sodium atoms. In particular, the mechanisms of magneto-optical traps at various laser frequencies and the collisional loss mechanisms of these traps were examined.

  2. Atomic magnetometer for human magnetoencephalograpy.

    SciTech Connect (OSTI)

    Schwindt, Peter; Johnson, Cort N.

    2010-12-01T23:59:59.000Z

    We have developed a high sensitivity (<5 fTesla/{radical}Hz), fiber-optically coupled magnetometer to detect magnetic fields produced by the human brain. This is the first demonstration of a noncryogenic sensor that could replace cryogenic superconducting quantum interference device (SQUID) magnetometers in magnetoencephalography (MEG) and is an important advance in realizing cost-effective MEG. Within the sensor, a rubidium vapor is optically pumped with 795 laser light while field-induced optical rotations are measured with 780 nm laser light. Both beams share a single optical axis to maximize simplicity and compactness. In collaboration with neuroscientists at The Mind Research Network in Albuquerque, NM, the evoked responses resulting from median nerve and auditory stimulation were recorded with the atomic magnetometer and a commercial SQUID-based MEG system with signals comparing favorably. Multi-sensor operation has been demonstrated with two AMs placed on opposite sides of the head. Straightforward miniaturization would enable high-density sensor arrays for whole-head magnetoencephalography.

  3. Reliable reduction of Fermi-level pinning at atomically matched metal/Ge interfaces by sulfur treatment

    SciTech Connect (OSTI)

    Kasahara, K.; Yamada, S.; Miyao, M. [Department of Electronics, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Sakurai, T.; Sawano, K.; Nohira, H. [Advanced Research Laboratories, Tokyo City University, 8-15-1 Todoroki, Tokyo 158-0082 (Japan); Hamaya, K., E-mail: hamaya@ee.es.osaka-u.ac.jp [Department of Electronics, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan)

    2014-04-28T23:59:59.000Z

    This study demonstrates that by using a sulfur (S) treatment on the Ge surface, a reduction in Fermi level pinning can reproducibly be achieved at atomically matched metal/Ge(111) interfaces. The Schottky barrier height for p-type Ge can be controlled by changing the metal work function despite the metal/Ge junctions. The results indicate that the combination of atomic-arrangement matching and S treatment can remove extrinsic factors influencing Fermi level pinning at metal/Ge interfaces.

  4. Quantum Simulations of Lattice Gauge Theories using Ultracold Atoms in Optical Lattices

    E-Print Network [OSTI]

    Erez Zohar; J. Ignacio Cirac; Benni Reznik

    2015-03-08T23:59:59.000Z

    Can high energy physics can be simulated by low-energy, nonrelativistic, many-body systems, such as ultracold atoms? Such ultracold atomic systems lack the type of symmetries and dynamical properties of high energy physics models: in particular, they manifest neither local gauge invariance nor Lorentz invariance, which are crucial properties of the quantum field theories which are the building blocks of the standard model of elementary particles. However, it turns out, surprisingly, that there are ways to configure atomic system to manifest both local gauge invariance and Lorentz invariance. In particular, local gauge invariance can arise either as an effective, low energy, symmetry, or as an "exact" symmetry, following from the conservation laws in atomic interactions. Hence, one could hope that such quantum simulators may lead to new type of (table-top) experiments, that shall be used to study various QCD phenomena, as the con?nement of dynamical quarks, phase transitions, and other effects, which are inaccessible using the currently known computational methods. In this report, we review the Hamiltonian formulation of lattice gauge theories, and then describe our recent progress in constructing quantum simulation of Abelian and non-Abelian lattice gauge theories in 1 + 1 and 2 + 1 dimensions using ultracold atoms in optical lattices.

  5. Scattering properties of dark atoms and molecules

    E-Print Network [OSTI]

    James M. Cline; Zuowei Liu; Guy D. Moore; Wei Xue

    2014-01-15T23:59:59.000Z

    There has been renewed interest in the possibility that dark matter exists in the form of atoms, analogous to those of the visible world. An important input for understanding the cosmological consequences of dark atoms is their self-scattering. Making use of results from atomic physics for the potentials between hydrogen atoms, we compute the low-energy elastic scattering cross sections for dark atoms. We find an intricate dependence upon the ratio of the dark proton to electron mass, allowing for the possibility to "design" low-energy features in the cross section. Dependences upon other parameters, namely the gauge coupling and reduced mass, scale out of the problem by using atomic units. We derive constraints on the parameter space of dark atoms by demanding that their scattering cross section does not exceed bounds from dark matter halo shapes. We discuss the formation of molecular dark hydrogen in the universe, and determine the analogous constraints on the model when the dark matter is predominantly in molecular form.

  6. Scattering properties of dark atoms and molecules

    E-Print Network [OSTI]

    Cline, James M; Moore, Guy; Xue, Wei

    2013-01-01T23:59:59.000Z

    There has been renewed interest in the possibility that dark matter exists in the form of atoms, analogous to those of the visible world. An important input for understanding the cosmological consequences of dark atoms is their self-scattering. Making use of results from atomic physics for the potentials between hydrogen atoms, we compute the low-energy elastic scattering cross sections for dark atoms. We find an intricate dependence upon the ratio of the dark proton to electron mass, allowing for the possibility to "design" low-energy features in the cross section. Dependences upon other parameters, namely the gauge coupling and reduced mass, scale out of the problem by using atomic units. We derive constraints on the parameter space of dark atoms by demanding that their scattering cross section does not exceed bounds from dark matter halo shapes. We discuss the formation of molecular dark hydrogen in the universe, and determine the analogous constraints on the model when the dark matter is predominantly in ...

  7. Ps-atom scattering at low energies

    E-Print Network [OSTI]

    Fabrikant, I I

    2015-01-01T23:59:59.000Z

    A pseudopotential for positronium-atom interaction, based on electron-atom and positron-atom phase shifts, is constructed, and the phase shifts for Ps-Kr and Ps-Ar scattering are calculated. This approach allows us to extend the Ps-atom cross sections, obtained previously in the impulse approximation [Phys. Rev. Lett. 112, 243201 (2014)], to energies below the Ps ionization threshold. Although experimental data are not available in this low-energy region, our results describe well the tendency of the measured cross sections to drop with decreasing velocity at $v<1$ a.u. Our results show that the effect of the Ps-atom van der Waals interaction is weak compared to the polarization interaction in electron-atom and positron-atom scattering. As a result, the Ps scattering length for both Ar and Kr is positive, and the Ramsauer-Townsend minimum is not observed for Ps scattering from these targets. This makes Ps scattering quite different from electron scattering in the low-energy region, in contrast to the inter...

  8. Studying coherence in ultra-cold atomic gases

    E-Print Network [OSTI]

    Miller, Daniel E. (Daniel Edward)

    2007-01-01T23:59:59.000Z

    This thesis will discuss the study of coherence properties of ultra-cold atomic gases. The atomic systems investigated include a thermal cloud of atoms, a Bose-Einstein condensate and a fermion pair condensate. In each ...

  9. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    E-Print Network [OSTI]

    Ming-Xia Huo; Nie Wei; David A. W. Hutchinson; Leong Chuan Kwek

    2014-08-11T23:59:59.000Z

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  10. 1984 Bibliography of atomic and molecular processes

    SciTech Connect (OSTI)

    Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.; Griffin, P.M.; Havener, C.C.; Howard, A.M.; Kirkpatrick, M.I.; McDaniel, E.W.; Meyer, F.W.; Morgan, T.J. (comps.)

    1985-04-01T23:59:59.000Z

    This annotated bibliography includes papers on atomic and molecular processes published during 1984. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  11. 1985 bibliography of atomic and molecular processes

    SciTech Connect (OSTI)

    Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.; Griffin, P.M.; Havener, C.C.; Howald, A.M.; Kirkpatrick, M.I.; McDaniel, E.W.; Meyer, F.W.; Morgan, T.J. (comps.)

    1986-06-01T23:59:59.000Z

    This annotated bibliography includes papers on atomic and molecular processes published during 1985. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  12. Gain narrowing in few-atom systems

    E-Print Network [OSTI]

    Tom Savels; Allard P. Mosk; Ad Lagendijk

    2006-05-31T23:59:59.000Z

    Using a density matrix approach, we study the simplest systems that display both gain and feedback: clusters of 2 to 5 atoms, one of which is pumped. The other atoms supply feedback through multiple scattering of light. We show that, if the atoms are in each other's near-field, the system exhibits large gain narrowing and spectral mode redistribution. The observed phenomena are more pronounced if the feedback is enhanced. Our system is to our knowledge the simplest exactly solvable microscopic system which shows the approach to laser oscillation.

  13. Cold Light from Hot Atoms and Molecules

    SciTech Connect (OSTI)

    Lister, Graeme [OSRAM SYLVANIA, CRSL, 71 Cherry Hill Drive, Beverly, MA (United States); Curry, John J. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    2011-05-11T23:59:59.000Z

    The introduction of rare earth atoms and molecules into lighting discharges led to great advances in efficacy of these lamps. Atoms such as Dy, Ho and Ce provide excellent radiation sources for lighting applications, with rich visible spectra, such that a suitable combination of these elements can provide high quality white light. Rare earth molecules have also proved important in enhancing the radiation spectrum from phosphors in fluorescent lamps. This paper reviews some of the current aspects of lighting research, particularly rare earth chemistry and radiation, and the associated fundamental atomic and molecular data.

  14. An Atom Trap Relying on Optical Pumping

    E-Print Network [OSTI]

    P. Bouyer; P. Lemonde; M. Ben Dahan; A. Michaud; C. Salomon; J. Dalibard

    2005-09-21T23:59:59.000Z

    We have investigated a new radiation pressure trap which relies on optical pumping and does not require any magnetic field. It employs six circularly polarized divergent beams and works on the red of a $J_{g} \\longrightarrow J_{e} = J_{g} + 1$ atomic transition with $J_{g} \\geq 1/2$. We have demonstrated this trap with cesium atoms from a vapour cell using the 852 nm $J_{g} = 4 \\longrightarrow J_{e} = 5$ resonance transition. The trap contained up to $3 \\cdot 10^{7}$ atoms in a cloud of $1/\\sqrt{e}$ radius of 330 $\\mu$m.

  15. 1982 bibliography of atomic and molecular processes

    SciTech Connect (OSTI)

    Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.; Gregory, D.C.; Kirkpatrick, M.I.; McDaniel, E.W.; McKnight, R.H.; Meyer, F.W.; Morgan, T.J.; Phaneuf, R.A. (comps.)

    1984-05-01T23:59:59.000Z

    This annotated bibliography includes papers on atomic and molecular processes published during 1982. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  16. Interaction of an aluminum atom with a closed subshell metal atom: Spectroscopic analysis of AlZn

    E-Print Network [OSTI]

    Morse, Michael D.

    Interaction of an aluminum atom with a closed subshell metal atom: Spectroscopic analysis of Al-block main group element, aluminum, and the 3d series of transi- tion metal atoms. Although the bonding in Al

  17. acoustic wave atomization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of fluid and acoustic computations, hybrid methodologies still Kohlenbach, Ulrich 12 Propagation of atomic matter waves inside an atom wave guide Quantum Physics (arXiv)...

  18. atomic emission spectrometry: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    not the direction of the atom's motion. The conclusion is also evident from a simple energy relation: atomic spectral radiation is emitted as an orbiting electron consumes a...

  19. atomic photoabsorption process: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    individual sites within atom-trap arrays. Cecilia Muldoon; Lukas Brandt; Jian Dong; Dustin Stuart; Edouard Brainis; Matthew Himsworth; Axel Kuhn 2012-03-21 306 Atomic...

  20. Structure of ?-Alumina: Toward The Atomic Level Understanding...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -Alumina: Toward The Atomic Level Understanding Of Transition Alumina Phases. Structure of -Alumina: Toward The Atomic Level Understanding Of Transition Alumina Phases....

  1. Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions...

    National Nuclear Security Administration (NNSA)

    Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline Atomic Energy Commission Explores Peaceful Uses of ... Atomic Energy Commission Explores Peaceful...

  2. Atomic-Structural Synergy for Catalytic CO Oxidation over Palladium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic-Structural Synergy for Catalytic CO Oxidation over Palladium-Nickel Nanoalloys. Atomic-Structural Synergy for Catalytic CO Oxidation over Palladium-Nickel Nanoalloys....

  3. atomic carbon nanowires: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page Topic Index 1 Electron Transport Properties of Atomic Carbon Nanowires between Graphene Electrodes CERN Preprints Summary: Long, stable and free-standing linear atomic...

  4. Isolation, Characterization of an Intermediate in an Oxygen Atom...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of an Intermediate in an Oxygen Atom-Transfer Reaction, and the Determination of the Bond Isolation, Characterization of an Intermediate in an Oxygen Atom-Transfer...

  5. atom trap trace: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 An atom trap trace analysis system for measuring krypton contamination in xenon dark matter detectors Physics Websites Summary: An atom trap trace analysis system for measuring...

  6. Materials, Modules, and Systems: An Atoms to Autos Approach to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials, Modules, and Systems: An Atoms to Autos Approach to Automotive Thermoelectric Systems Development Materials, Modules, and Systems: An Atoms to Autos Approach to...

  7. atomic number: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and relative number squeezing in dissociation of spatially inhomogeneous molecular condensates Physics Websites Summary: Atom-atom correlations and relative number squeezing in...

  8. atomic number density: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and relative number squeezing in dissociation of spatially inhomogeneous molecular condensates Quantum Physics (arXiv) Summary: We study atom-atom correlations and relative...

  9. atomic mass number: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and relative number squeezing in dissociation of spatially inhomogeneous molecular condensates Physics Websites Summary: Atom-atom correlations and relative number squeezing in...

  10. atomic number electron: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and relative number squeezing in dissociation of spatially inhomogeneous molecular condensates Physics Websites Summary: Atom-atom correlations and relative number squeezing in...

  11. atom interferometry measurement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bose-condensed atoms . Open Access Theses and Dissertations Summary: ??Bose-Einstein condensates are coherent matter waves, produced by cooling gaseous atomic clouds to ultra-low...

  12. atomic wave packets: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistics of atomic populations in output coupled wave packets from Bose-Einstein condensates: Four-wave mixing Physics Websites Summary: Statistics of atomic populations in...

  13. atomic number range: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and relative number squeezing in dissociation of spatially inhomogeneous molecular condensates Physics Websites Summary: Atom-atom correlations and relative number squeezing in...

  14. atom interferometry progress: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bose-condensed atoms . Open Access Theses and Dissertations Summary: ??Bose-Einstein condensates are coherent matter waves, produced by cooling gaseous atomic clouds to ultra-low...

  15. Types of Reuse

    Broader source: Energy.gov [DOE]

    The following provides greater detail regarding the types of reuse pursued for LM sites. It should be noted that many actual reuses combine several types of the uses listed below.

  16. Velocity selection of ultra-cold atoms with Fabry-Perot laser devices: improvements and limits

    E-Print Network [OSTI]

    A. Ruschhaupt; F. Delgado; J. G. Muga

    2005-02-28T23:59:59.000Z

    We discuss a method to select the velocities of ultra-cold atoms with a modified Fabry-Perot type of device made of two effective barriers and a well created, respectively, by blue and red detuned lasers. The laser parameters may be used to select the peak and width of the transmitted velocity window. In particular, lowering the central well provides a peak arbitrarily close to zero velocity having a minimum but finite width. The low-energy atomic scattering off this laser device is parameterized and approximate formulae are found to describe and explain its behaviour.

  17. Adsorption of Atoms and Molecules Physisorption

    E-Print Network [OSTI]

    Glashausser, Charles

    Adsorption of Atoms and Molecules Physisorption Chemisorption Surface Bonding Kinetics of Adsorption/Diffusion/Desorption (Scattering Dynamics) #12;Outcomes of Collision Process Rebound (elastically or inelastically) Elastic Scattering Inelastic Scattering Accomodation (thermalizing) Adsorption E V(r) r

  18. Atomic physics: An almost lightless laser

    E-Print Network [OSTI]

    Vuletic, Vladan

    Lasers are often described in terms of a light field circulating in an optical resonator system. Now a laser has been demonstrated in which the field resides primarily in the atomic medium that is used to generate the light.

  19. FREQUENCY DEPENDENT MULTIPOLE POLARIZABILITIES OF ATOMIC SYSTEMS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1259 FREQUENCY DEPENDENT MULTIPOLE POLARIZABILITIES OF ATOMIC SYSTEMS S. I. EASA and G. C. SHUKLA et d'helium. Abstract. 2014 A variational calculation for frequency dependent multipole 1978, Classification Physics Abstracts 31.10 The calculation of multipole polarizabilities

  20. Electronic transport in atomically thin layered materials

    E-Print Network [OSTI]

    Baugher, Britton William Herbert

    2014-01-01T23:59:59.000Z

    Electronic transport in atomically thin layered materials has been a burgeoning field of study since the discovery of isolated single layer graphene in 2004. Graphene, a semi-metal, has a unique gapless Dirac-like band ...

  1. Accurate capacitive metrology for atomic force microscopy

    E-Print Network [OSTI]

    Mazzeo, Aaron D. (Aaron David), 1979-

    2005-01-01T23:59:59.000Z

    This thesis presents accurate capacitive sensing metrology designed for a prototype atomic force microscope (AFM) originally developed in the MIT Precision Motion Control Lab. The capacitive measurements use a set of ...

  2. Quantum Structures of the Hydrogen Atom

    E-Print Network [OSTI]

    J. Jeknic-Dugic; M. Dugic; A. Francom; M. Arsenijevic

    2014-05-28T23:59:59.000Z

    Modern quantum theory introduces quantum structures (decompositions into subsystems) as a new discourse that is not fully comparable with the classical-physics counterpart. To this end, so-called Entanglement Relativity appears as a corollary of the universally valid quantum mechanics that can provide for a deeper and more elaborate description of the composite quantum systems. In this paper we employ this new concept to describe the hydrogen atom. We offer a consistent picture of the hydrogen atom as an open quantum system that naturally answers the following important questions: (a) how do the so called "quantum jumps" in atomic excitation and de-excitation occur? and (b) why does the classically and seemingly artificial "center-of-mass + relative degrees of freedom" structure appear as the primarily operable form in most of the experimental reality of atoms?

  3. United Nations Atomic Energy Commission stalls out

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    commission would be short-lived and would not result in the desired control of atomic energy. In the wake of the disappointing results of the Moscow meeting, the United States...

  4. Moving closer to the Atomic Energy Commission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in some way. On October 3, 1945 the president addressed Congress on the subject of atomic energy. Here he first mentioned the need for international agreements. Attempts were made...

  5. Quantum micro-mechanics with ultracold atoms

    E-Print Network [OSTI]

    Thierry Botter; Daniel Brooks; Subhadeep Gupta; Zhao-Yuan Ma; Kevin L. Moore; Kater W. Murch; Tom P. Purdy; Dan M. Stamper-Kurn

    2008-10-21T23:59:59.000Z

    In many experiments isolated atoms and ions have been inserted into high-finesse optical resonators for the study of fundamental quantum optics and quantum information. Here, we introduce another application of such a system, as the realization of cavity optomechanics where the collective motion of an atomic ensemble serves the role of a moveable optical element in an optical resonator. Compared with other optomechanical systems, such as those incorporating nanofabricated cantilevers or the large cavity mirrors of gravitational observatories, our cold-atom realization offers direct access to the quantum regime. We describe experimental investigations of optomechanical effects, such as the bistability of collective atomic motion and the first quantification of measurement backaction for a macroscopic object, and discuss future directions for this nascent field.

  6. Remote-State Prparation eines einzelnen Atoms

    E-Print Network [OSTI]

    Weinfurter, Harald

    Remote-State Präparation eines einzelnen Atoms Diplomarbeit am Department für Physik der Ludwig . . . . . . . . . . . . . . . . . . . . . 8 1.3.3 Remote-State-Präparation . . . . . . . . . . . . . . . . . . . . . 11 1.3.4 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3 Remote-State-Präparation 31 3.1 Einleitung

  7. Electrical Analogs of Atomic Radiative Decay Processes

    E-Print Network [OSTI]

    Fontana, Peter R.; Srivastava, Rajendra P.

    1977-03-01T23:59:59.000Z

    Simple electrical circuits are analyzed, and the results show that for high frequencies they have frequency and time responses identical to the spontaneous radiative decays of atoms. As an illustration of the analogy a two-circuit electrical system...

  8. Atomic vapor spectroscopy in integrated photonic structures

    E-Print Network [OSTI]

    Ritter, Ralf; Pernice, Wolfram; Kübler, Harald; Pfau, Tilman; Löw, Robert

    2015-01-01T23:59:59.000Z

    We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided light is coupled to a vapor of rubidium atoms via the evanescent tail of the waveguide mode. We use grating couplers to couple between the waveguide mode and the radiating wave, which allow for addressing arbitrary coupling positions on the chip surface. The evanescent atom-light interaction can be numerically simulated and shows excellent agreement with our experimental data. This work demonstrates a next step towards miniaturization and integration of alkali atom spectroscopy and provides a platform for further fundamental studies of complex waveguide structures.

  9. Hydrogen atom in rotationally invariant noncommutative space

    E-Print Network [OSTI]

    Kh. P. Gnatenko; V. M. Tkachuk

    2014-11-03T23:59:59.000Z

    We consider the noncommutative algebra which is rotationally invariant. The hydrogen atom is studied in a rotationally invariant noncommutative space. We find the corrections to the energy levels of the hydrogen atom up to the second order in the parameter of noncommutativity. The upper bound of the parameter of noncommutativity is estimated on the basis of the experimental results for 1s-2s transition frequency.

  10. Atomic resolution images of graphite in air

    SciTech Connect (OSTI)

    Grigg, D.A.; Shedd, G.M.; Griffis, D.; Russell, P.E.

    1988-12-01T23:59:59.000Z

    One sample used for proof of operation for atomic resolution in STM is highly oriented pyrolytic graphite (HOPG). This sample has been imaged with many different STM`s obtaining similar results. Atomic resolution images of HOPG have now been obtained using an STM designed and built at the Precision Engineering Center. This paper discusses the theoretical predictions and experimental results obtained in imaging of HOPG.

  11. Controlling the Ratchet Effect for Cold Atoms

    E-Print Network [OSTI]

    Anatole Kenfack; Jiangbin Gong; Arjendu K. Pattanayak

    2007-11-27T23:59:59.000Z

    Low-order quantum resonances manifested by directed currents have been realized with cold atoms. Here we show that by increasing the strength of an experimentally achievable delta-kicking ratchet potential, quantum resonances of a very high order may naturally emerge and can induce larger ratchet currents than low-order resonances, with the underlying classical limit being fully chaotic. The results offer a means of controlling quantum transport of cold atoms.

  12. ac-driven atomic quantum motor

    E-Print Network [OSTI]

    A. V. Ponomarev; S. Denisov; P. Hanggi

    2009-06-09T23:59:59.000Z

    We invent an ac-driven quantum motor consisting of two different, interacting ultracold atoms placed into a ring-shaped optical lattice and submerged in a pulsating magnetic field. While the first atom carries a current, the second one serves as a quantum starter. For fixed zero-momentum initial conditions the asymptotic carrier velocity converges to a unique non-zero value. We also demonstrate that this quantum motor performs work against a constant load.

  13. From Lattice Gauge Theories to Hydrogen Atoms

    E-Print Network [OSTI]

    Manu Mathur; T. P. Sreeraj

    2014-10-13T23:59:59.000Z

    Using canonical transformations we obtain a complete and most economical realization of the loop or physical Hilbert space of pure $SU(2)_{2+1}$ lattice gauge theory in terms of Wigner coupled Hilbert spaces of hydrogen atoms. One hydrogen atom is assigned to every plaquette of the lattice. The SU(2) gauge theory loop basis states over a plaquette are the bound energy eigenstates $|n l m>$ of the corresponding hydrogen atom. The Wigner couplings of these hydrogen atom energy eigenstates on different plaquettes provide a complete SU(2) gauge theory loop basis on the entire lattice. The loop basis is invariant under simultaneous rotations of all hydrogen atoms. The dual description of this basis diagonalizes all Wilson loop operators and is given in terms of hyperspherical harmonics on the SU(2) group manifold $S^3$. The SU(2) loop dynamics is governed by a "SU(2) spin Hamiltonian" without any gauge fields. The relevance of the hydrogen atom basis and its dynamical symmetry group SO(4,2) in SU(2) loop dynamics in weak coupling continuum limit ($g^2\\rightarrow 0$) is emphasized.

  14. Excess optical quantum noise in atomic sensors

    E-Print Network [OSTI]

    Irina Novikova; Eugeniy E. Mikhailov; Yanhong Xiao

    2014-10-14T23:59:59.000Z

    Enhanced nonlinear optical response of a coherent atomic medium is the basis for many atomic sensors, and their performance is ultimately limited by the quantum fluctuations of the optical read-out. Here we demonstrate that off-resonant interactions can significantly modify the quantum noise of the optical field, even when their effect on the mean signal is negligible. We illustrate this concept by using an atomic magnetometer based on the nonlinear Faraday effect: the rotation of the light polarization is mainly determined by the resonant light-induced spin alignment, which alone does not change the photon statistics of the optical probe. Yet, we found that the minimum noise of output polarization rotation measurements is above the expected shot noise limit. This excess quantum noise is due to off-resonant coupling and grows with atomic density. We also show that the detection scheme can be modified to reduce the measured quantum noise (even below the shot-noise limit) but only at the expense of the reduced rotational sensitivity. These results show the existence of previously unnoticed factors in fundamental limitations in atomic magnetometry and could have impacts in many other atom-light based precision measurements.

  15. Atoms 2014, 2, 157-177; doi:10.3390/atoms2020157 OPEN ACCESS

    E-Print Network [OSTI]

    Atoms 2014, 2, 157-177; doi:10.3390/atoms2020157 OPEN ACCESS atomsISSN 2218-2004 www]: = ne2 ¯h2 - dt1 t1 - dt2E(t1)·E(t2)ei (t1-t2) (3) where E(t1)·E(t2) = 2 3 0 vf(v)dv max 0 dE(t1

  16. Atoms for peace and war, 1953-1961: Eisenhower and the Atomic Energy Commission

    SciTech Connect (OSTI)

    Hewlett, Richard G.; Holl, Jack M.

    1989-12-01T23:59:59.000Z

    This third volume in the official history of the U.S. Atomic Energy Commission covers the years of the Eisenhower Administration.

  17. Effect of Induced Spin-Orbit Coupling for Atoms via Laser Fields

    E-Print Network [OSTI]

    Xiong-Jun Liu; Mario F. Borunda; Xin Liu; Jairo Sinova

    2008-11-17T23:59:59.000Z

    We propose an experimental scheme to study spin-orbit coupling effects in a of two-dimensional (2D) Fermi atomic gas cloud by coupling its internal electronic states (pseudospins) to radiation in a delta configuration. The induced spin-orbit coupling can be of the Dresselhaus and Rashba type with and without a Zeeman term. We show that the optically induced spin-orbit coupling can lead to a spin-dependent effective mass under appropriate condition, with one of them able to be tuned between positive and negative effective mass. As a direct observable we show that in the expansion dynamics of the atomic cloud the initial atomic cloud splits into two clouds for the positive effective mass case regime, and into four clouds for the negative effective mass regime.

  18. 29Counting Atoms in a Molecule The complex molecule Propanal

    E-Print Network [OSTI]

    29Counting Atoms in a Molecule The complex molecule Propanal was discovered in a dense interstellar is the ratio of carbon atoms to hydrogen atoms in propanal? Problem 4 - If the mass of a hydrogen atom of a propanal molecule in AMUs? Problem 5 - What is the complete chemical formula for propanal? C3 H __ O

  19. ATOMIC PHYSICS DMITRY BUDKER | DEREK F. KIMBALL | DAVID P. DEMILLE

    E-Print Network [OSTI]

    Pines, Alexander

    symmetries, atomic magnetometers and frequency comb metrology with ultra-short laser pulses. Dmitry Budker

  20. Isolating and moving single atoms using silicon nanocrystals

    DOE Patents [OSTI]

    Carroll, Malcolm S. (Albuquerque, NM)

    2010-09-07T23:59:59.000Z

    A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.

  1. Atomic-level imaging, processing and characterization of semiconductor surfaces

    DOE Patents [OSTI]

    Kazmerski, L.L.

    1995-08-22T23:59:59.000Z

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe. 8 figs.

  2. Atomic-level imaging, processing and characterization of semiconductor surfaces

    DOE Patents [OSTI]

    Kazmerski, Lawrence L. (Lakewood, CO)

    1995-01-01T23:59:59.000Z

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe.

  3. Chapter 44. Cooling and Trapping Neutral Atoms Cooling and Trapping Neutral Atoms

    E-Print Network [OSTI]

    transition. This year, we made progress in developing novel detection and cooling techniques. 1. SpinChapter 44. Cooling and Trapping Neutral Atoms 44-1 Cooling and Trapping Neutral Atoms RLE Groups in optical lattices. Additional cooling methods will be needed to reach this very interesting temperature

  4. Hydrogen atom as a quantum-classical hybrid system

    E-Print Network [OSTI]

    Fei Zhan; Biao Wu

    2013-02-15T23:59:59.000Z

    Hydrogen atom is studied as a quantum-classical hybrid system, where the proton is treated as a classical object while the electron is regarded as a quantum object. We use a well known mean-field approach to describe this hybrid hydrogen atom; the resulting dynamics for the electron and the proton is compared to their full quantum dynamics. The electron dynamics in the hybrid description is found to be only marginally different from its full quantum counterpart. The situation is very different for the proton: in the hybrid description, the proton behaves like a free particle; in the fully quantum description, the wave packet center of the proton orbits around the center of mass. Furthermore, we find that the failure to describe the proton dynamics properly can be regarded as a manifestation of the fact that there is no conservation of momentum in the mean-field hybrid approach. We expect that such a failure is a common feature for all existing approaches for quantum-classical hybrid systems of Born-Oppenheimer type.

  5. Hydrogen atom in de Sitter spaces

    E-Print Network [OSTI]

    O. V. Veko; K. V. Kazmerchuk; E. M. Ovsiyuk; V. M. Red'kov; A. M. Ishkhanyan

    2014-12-28T23:59:59.000Z

    The hydrogen atom theory is developed for the de Sitter and anti de Sitter spaces on the basis of the Klein-Gordon-Fock wave equation in static coordinates. In both models, after separation of the variables, the problem is reduced to the general Heun equation, a second order linear differential equation having four regular singular points. A qualitative examination shows that the energy spectrum for the hydrogen atom in the de Sitter space should be quasi-stationary, and the atom should be unstable. We derive an approximate expression for energy levels within the quasi-classical approach and estimate the probability of decay of the atom. A similar analysis shows that in the anti de Sitter model the hydrogen atom should be stable in the quantum-mechanical sense. Using the quasi-classical approach, we derive approximate formulas for energy levels for this case as well. Finally, we present the extension to the case of a spin 1/2 particle for both de Sitter models. This extension leads to complicated differential equations with 8 singular points.

  6. Method and apparatus for atomic imaging

    DOE Patents [OSTI]

    Saldin, Dilano K. (Milwaukee, WI); de Andres Rodriquez, Pedro L. (Madrid, ES)

    1993-01-01T23:59:59.000Z

    A method and apparatus for three dimensional imaging of the atomic environment of disordered adsorbate atoms are disclosed. The method includes detecting and measuring the intensity of a diffuse low energy electron diffraction pattern formed by directing a beam of low energy electrons against the surface of a crystal. Data corresponding to reconstructed amplitudes of a wave form is generated by operating on the intensity data. The data corresponding to the reconstructed amplitudes is capable of being displayed as a three dimensional image of an adsorbate atom. The apparatus includes a source of a beam of low energy electrons and a detector for detecting the intensity distribution of a DLEED pattern formed at the detector when the beam of low energy electrons is directed onto the surface of a crystal. A device responsive to the intensity distribution generates a signal corresponding to the distribution which represents a reconstructed amplitude of a wave form and is capable of being converted into a three dimensional image of the atomic environment of an adsorbate atom on the crystal surface.

  7. Dynamic polarizabilities of rare-earth-metal atoms and dispersion coefficients for their interaction with helium atoms

    E-Print Network [OSTI]

    Chu, Xi

    Dynamic polarizabilities of rare-earth-metal atoms and dispersion coefficients; published 29 March 2007 The dynamic scalar and tensor polarizabilities of the rare-earth-metal atoms coefficients for the interactions of the rare-earth-metal atoms with helium atoms. The static polarizabilities

  8. Optical pumping of a lithium atomic beam for atom interferometry J. Gillot, A. Gauguet, M. Buchner, and J. Vigue

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Optical pumping of a lithium atomic beam for atom interferometry J. Gillot, A. Gauguet, M. B.vigue@irsamc.ups-tlse.fr (Dated: May 29, 2013) We apply optical pumping to prepare the lithium beam of our atom interferometer in a single hyperfine-Zeeman sublevel: we use two components of the D1-line for pumping the 7 Li atoms

  9. Atomic Scale Characterization of Compound Semiconductors using Atom Probe Tomography: Preprint

    SciTech Connect (OSTI)

    Gorman, B. P.; Guthrey, H.; Norman, A. G.; Al-Jassim, M.; Lawrence, D.; Prosa, T.

    2011-07-01T23:59:59.000Z

    Internal interfaces are critical in determining the performance of III-V multijunction solar cells. Studying these interfaces with atomic resolution using a combination of transmission electron microscopy (TEM), atom probe tomography (APT), and density functional calculations enables a more fundamental understanding of carrier dynamics in photovoltaic (PV) device structures. To achieve full atomic scale spatial and chemical resolution, data acquisition parameters in laser pulsed APT must be carefully studied to eliminate surface diffusion. Atom probe data with minimized group V ion clustering and expected stoichiometry can be achieved by adjusting laser pulse power, pulse repetition rate, and specimen preparation parameters such that heat flow away from the evaporating surface is maximized. Applying these improved analysis conditions to III-V based PV gives an atomic scale understanding of compositional and dopant profiles across interfaces and tunnel junctions and the initial stages of alloy clustering and dopant accumulation. Details on APT experimental methods and future in-situ instrumentation developments are illustrated.

  10. Entropy and complexity analysis of hydrogenic Rydberg atoms

    SciTech Connect (OSTI)

    Lopez-Rosa, S. [Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, 18071-Granada (Spain) [Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, 18071-Granada (Spain); Departamento de Fisica Aplicada II, Universidad de Sevilla, 41012-Sevilla (Spain); Toranzo, I. V.; Dehesa, J. S. [Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, 18071-Granada (Spain) [Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, 18071-Granada (Spain); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, 18071-Granada (Spain); Sanchez-Moreno, P. [Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, 18071-Granada (Spain) [Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, 18071-Granada (Spain); Departamento de Matematica Aplicada, Universidad de Granada, 18071-Granada (Spain)

    2013-05-15T23:59:59.000Z

    The internal disorder of hydrogenic Rydberg atoms as contained in their position and momentum probability densities is examined by means of the following information-theoretic spreading quantities: the radial and logarithmic expectation values, the Shannon entropy, and the Fisher information. As well, the complexity measures of Cramer-Rao, Fisher-Shannon, and Lopez Ruiz-Mancini-Calvet types are investigated in both reciprocal spaces. The leading term of these quantities is rigorously calculated by use of the asymptotic properties of the concomitant entropic functionals of the Laguerre and Gegenbauer orthogonal polynomials which control the wavefunctions of the Rydberg states in both position and momentum spaces. The associated generalized Heisenberg-like, logarithmic and entropic uncertainty relations are also given. Finally, application to linear (l= 0), circular (l=n- 1), and quasicircular (l=n- 2) states is explicitly done.

  11. Atomic multipole relaxation rates near surfaces

    E-Print Network [OSTI]

    J. A. Crosse; Stefan Scheel

    2010-08-13T23:59:59.000Z

    The spontaneous relaxation rates for an atom in free space and close to an absorbing surface are calculated to various orders of the electromagnetic multipole expansion. The spontaneous decay rates for dipole, quadrupole and octupole transitions are calculated in terms of their respective primitive electric multipole moments and the magnetic relaxation rate is calculated for the dipole and quadrupole transitions in terms of their respective primitive magnetic multipole moments. The theory of electromagnetic field quantization in magnetoelectric materials is used to derive general expressions for the decay rates in terms of the dyadic Green function. We focus on the decay rates in free space and near an infinite half space. For the decay of atoms near to an absorbing dielectric surface we find a hierarchy of scaling laws depending on the atom-surface distance z.

  12. Atom interferometry in an optical cavity

    E-Print Network [OSTI]

    Paul Hamilton; Matt Jaffe; Justin M. Brown; Lothar Maisenbacher; Brian Estey; Holger Müller

    2014-09-25T23:59:59.000Z

    We propose and demonstrate a new scheme for atom interferometry, using light pulses inside an optical cavity as matter wave beamsplitters. The cavity provides power enhancement, spatial filtering, and a precise beam geometry, enabling new techniques such as low power beamsplitters ($modest power, or new self-aligned interferometer geometries utilizing the transverse modes of the optical cavity. As a first demonstration, we obtain Ramsey-Raman fringes with $>75\\%$ contrast and measure the acceleration due to gravity, $\\mathit{g}$, to $60 \\mathrm{\\mu \\mathit{g} / \\sqrt{Hz}}$ resolution in a Mach-Zehnder geometry. We use $>10^7$ cesium atoms in the compact mode volume ($600 \\mathrm{\\mu m}$ $1/e^2$ waist) of the cavity and show trapping of atoms in higher transverse modes. This work paves the way toward compact, high sensitivity, multi-axis interferometry.

  13. Atomic Rydberg Reservoirs for Polar Molecules

    E-Print Network [OSTI]

    Zhao, Bo; Pupillo, Guido; Zoller, Peter

    2011-01-01T23:59:59.000Z

    We discuss laser dressed dipolar and Van der Waals interactions between atoms and polar molecules, so that a cold atomic gas with laser admixed Rydberg levels acts as a designed reservoir for both elastic and inelastic collisional processes. The elastic scattering channel is characterized by large elastic scattering cross sections and repulsive shields to protect from close encounter collisions. In addition, we discuss a dissipative (inelastic) collision where a spontaneously emitted photon carries away (kinetic) energy of the collision partners, thus providing a significant energy loss in a single collision. This leads to the scenario of rapid thermalization and cooling of a molecule in the mK down to the \\mu K regime by cold atoms.

  14. Atomic Rydberg Reservoirs for Polar Molecules

    E-Print Network [OSTI]

    Bo Zhao; Alexander Glätzle; Guido Pupillo; Peter Zoller

    2011-12-18T23:59:59.000Z

    We discuss laser dressed dipolar and Van der Waals interactions between atoms and polar molecules, so that a cold atomic gas with laser admixed Rydberg levels acts as a designed reservoir for both elastic and inelastic collisional processes. The elastic scattering channel is characterized by large elastic scattering cross sections and repulsive shields to protect from close encounter collisions. In addition, we discuss a dissipative (inelastic) collision where a spontaneously emitted photon carries away (kinetic) energy of the collision partners, thus providing a significant energy loss in a single collision. This leads to the scenario of rapid thermalization and cooling of a molecule in the mK down to the \\mu K regime by cold atoms.

  15. Searching for dark matter with helium atom

    E-Print Network [OSTI]

    Imre Ferenc Barna

    2006-08-10T23:59:59.000Z

    With the help of the boost operator we can model the interaction between a weakly interacting particle(WIMP) of dark matter(DAMA) and an atomic nuclei. Via this "kick" we calculate the total electronic excitation cross section of the helium atom. The bound spectrum of He is calculated through a diagonalization process with a configuration interaction (CI) wavefunction built up from Slater orbitals. All together 19 singly- and doubly-excited atomic sates were taken with total angular momenta of L=0,1 and 2. Our calculation may give a rude estimation about the magnitude of the total excitation cross section which could be measured in later scintillator experiments. The upper limit of the excitation cross section is $9.7\\cdot 10^{-8}$ barn.

  16. Atom Interferometers and the Gravitational Redshift

    E-Print Network [OSTI]

    Supurna Sinha; Joseph Samuel

    2011-05-16T23:59:59.000Z

    From the principle of equivalence, Einstein predicted that clocks slow down in a gravitational field. Since the general theory of relativity is based on the principle of equivalence, it is essential to test this prediction accurately. Muller, Peters and Chu claim that a reinterpretation of decade old experiments with atom interferometers leads to a sensitive test of this gravitational redshift effect at the Compton frequency. Wolf et al dispute this claim and adduce arguments against it. In this article, we distill these arguments to a single fundamental objection: an atom is NOT a clock ticking at the Compton frequency. We conclude that atom interferometry experiments conducted to date do not yield such sensitive tests of the gravitational redshift. Finally, we suggest a new interferometric experiment to measure the gravitational redshift, which realises a quantum version of the classical clock "paradox".

  17. New charge radius relations for atomic nuclei

    E-Print Network [OSTI]

    B. H. Sun; Y. Lu; J. P. Peng; C. Y. Liu; Y. M. Zhao

    2014-11-24T23:59:59.000Z

    We show that the charge radii of neighboring atomic nuclei, independent of atomic number and charge, follow remarkably very simple relations, despite the fact that atomic nuclei are complex finite many-body systems governed by the laws of quantum mechanics. These relations can be understood within the picture of independent-particle motion and by assuming neighboring nuclei having similar pattern in the charge density distribution. A root-mean-square (rms) deviation of 0.0078 fm is obtained between the predictions in these relations and the experimental values, i.e., a comparable precision as modern experimental techniques. Such high accuracy relations are very useful to check the consistence of nuclear charge radius surface and moreover to predict unknown nuclear charge radii, while large deviations from experimental data is seen to reveal the appearance of nuclear shape transition or coexsitence.

  18. Streptavidin and its biotin complex at atomic resolution

    SciTech Connect (OSTI)

    Le Trong, Isolde [University of Washington, Box 35742, Seattle, WA 98195-7420 (United States); University of Washington, Box 357742, Seattle, WA 98195-7742 (United States); Wang, Zhizhi [University of Washington, Box 35742, Seattle, WA 98195-7420 (United States); Hyre, David E. [University of Washington, Box 355061, Seattle, WA 98195-5061 (United States); Lybrand, Terry P. [Vanderbilt University, 5142 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8725 (United States); Stayton, Patrick S. [University of Washington, Box 355061, Seattle, WA 98195-5061 (United States); Stenkamp, Ronald E., E-mail: stenkamp@u.washington.edu [University of Washington, Box 35742, Seattle, WA 98195-7420 (United States); University of Washington, Box 357742, Seattle, WA 98195-7742 (United States); University of Washington, Box 357430, Seattle, WA 98195-7430 (United States)

    2011-09-01T23:59:59.000Z

    Analysis of atomic resolution crystal structures of wild-type streptavidin (1.03 Å) and its biotin complex (0.95 Å) indicate the range of conformational states taken on by this protein in the solid state. Most of the structural variation is found in the polypeptide loops between the strands in this ?-sandwich protein. Atomic resolution crystallographic studies of streptavidin and its biotin complex have been carried out at 1.03 and 0.95 Å, respectively. The wild-type protein crystallized with a tetramer in the asymmetric unit, while the crystals of the biotin complex contained two subunits in the asymmetric unit. Comparison of the six subunits shows the various ways in which the protein accommodates ligand binding and different crystal-packing environments. Conformational variation is found in each of the polypeptide loops connecting the eight strands in the ?-sandwich subunit, but the largest differences are found in the flexible binding loop (residues 45–52). In three of the unliganded subunits the loop is in an ‘open’ conformation, while in the two subunits binding biotin, as well as in one of the unliganded subunits, this loop ‘closes’ over the biotin–binding site. The ‘closed’ loop contributes to the protein’s high affinity for biotin. Analysis of the anisotropic displacement parameters included in the crystallographic models is consistent with the variation found in the loop structures and the view that the dynamic nature of the protein structure contributes to the ability of the protein to bind biotin so tightly.

  19. Flex-flame burner and combustion method

    DOE Patents [OSTI]

    Soupos, Vasilios (Chicago, IL); Zelepouga, Serguei (Hoffman Estates, IL); Rue, David M. (Chicago, IL); Abbasi, Hamid A. (Naperville, IL)

    2010-08-24T23:59:59.000Z

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  20. Upgrade Boilers with Energy-Efficient Burners

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP steam tip sheet on upgrading boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  1. Cybersecurity Front Burner | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | Department of Energy Current5

  2. FRONT BURNER - ISSUE 19 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAM FLASH2011-17-OPAM DOEFindingsNewsFROM:

  3. FRONT BURNER - Issue 20 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAM FLASH2011-17-OPAM DOEFindingsNewsFROM:Issue 20

  4. Typed Self-Optimization

    E-Print Network [OSTI]

    Brown, Matt

    2013-01-01T23:59:59.000Z

    type T y[O]. The operator IsIs is self-applicative, in thatargument t is any of Is[O] or IsIs, and otherwise behavesproof constant introduced by IsIs proves that the type of t

  5. Feedback Cooling of a Single Neutral Atom

    E-Print Network [OSTI]

    Markus Koch; Christian Sames; Alexander Kubanek; Matthias Apel; Maximilian Balbach; Alexei Ourjoumtsev; Pepijn W. H. Pinkse; Gerhard Rempe

    2010-10-15T23:59:59.000Z

    We demonstrate feedback cooling of the motion of a single rubidium atom trapped in a high-finesse optical resonator to a temperature of about 160 \\mu K. Time-dependent transmission and intensity-correlation measurements prove the reduction of the atomic position uncertainty. The feedback increases the 1/e storage time into the one second regime, 30 times longer than without feedback. Feedback cooling therefore rivals state-of-the-art laser cooling, but with the advantages that it requires less optical access and exhibits less optical pumping.

  6. Proton Mass Shift in Muonic Hydrogen Atom

    E-Print Network [OSTI]

    Aiichi Iwazaki

    2014-08-11T23:59:59.000Z

    We show that the value of the proton mass depends on each bound state of muonic or electronic hydrogen atom. The charged particle bound to the proton produces magnetic field inside the proton. This makes a change to the amount of chiral condensate inside the proton. The change gives rise to the shift in the value of the proton mass. Numerically, the shift in the $2S$ state of the muonic hydrogen atom can be of the order of $0.1$ meV. The effect may solve the puzzle of the proton radius.

  7. Atom trap trace analysis of krypton isotopes

    SciTech Connect (OSTI)

    Bailey, K.; Chen, C. Y.; Du, X.; Li, Y. M.; Lu, Z.-T.; O'Connor, T. P.; Young, L.

    1999-11-17T23:59:59.000Z

    A new method of ultrasensitive isotope trace analysis has been developed. This method, based on the technique of laser manipulation of neutral atoms, has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton gas sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. This method is free of contamination from other isotopes and elements and can be applied to several different isotope tracers for a wide range of applications. The demonstrated detection efficiency is 1 x 10{sup {minus}7}. System improvements could increase the efficiency by many orders of magnitude.

  8. Magnetic field imaging with atomic Rb vapor

    E-Print Network [OSTI]

    Eugeniy E. Mikhailov; I. Novikova; M. D. Havey; F. A. Narducci

    2009-07-27T23:59:59.000Z

    We demonstrate the possibility of dynamic imaging of magnetic fields using electromagnetically induced transparency in an atomic gas. As an experimental demonstration we employ an atomic Rb gas confined in a glass cell to image the transverse magnetic field created by a long straight wire. In this arrangement, which clearly reveals the essential effect, the field of view is about 2 x 2 mm^2 and the field detection uncertainty is 0.14 mG per 10 um x 10 um image pixel.

  9. Optical method of atomic ordering estimation

    SciTech Connect (OSTI)

    Prutskij, T. [Instituto de Ciencias, BUAP, Privada 17 Norte, No 3417, col. San Miguel Huyeotlipan, Puebla, Pue. (Mexico); Attolini, G. [IMEM/CNR, Parco Area delle Scienze 37/A - 43010, Parma (Italy); Lantratov, V.; Kalyuzhnyy, N. [Ioffe Physico-Technical Institute, 26 Polytekhnicheskaya, St Petersburg 194021, Russian Federation (Russian Federation)

    2013-12-04T23:59:59.000Z

    It is well known that within metal-organic vapor-phase epitaxy (MOVPE) grown semiconductor III-V ternary alloys atomically ordered regions are spontaneously formed during the epitaxial growth. This ordering leads to bandgap reduction and to valence bands splitting, and therefore to anisotropy of the photoluminescence (PL) emission polarization. The same phenomenon occurs within quaternary semiconductor alloys. While the ordering in ternary alloys is widely studied, for quaternaries there have been only a few detailed experimental studies of it, probably because of the absence of appropriate methods of its detection. Here we propose an optical method to reveal atomic ordering within quaternary alloys by measuring the PL emission polarization.

  10. Probing Dark Energy with Atom Interferometry

    E-Print Network [OSTI]

    Clare Burrage; Edmund J. Copeland; E. A. Hinds

    2014-08-06T23:59:59.000Z

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  11. AtomsPeace_Dec2003.qxd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational ManagementDemand ModuleNationalAtomic,Atoms for

  12. Your Guide to Diabetes: Type 1 and Type 2

    E-Print Network [OSTI]

    Rau, Don C.

    Your Guide to Diabetes: Type 1 and Type 2 National Diabetes Information Clearinghouse #12;#12;Your Guide to Diabetes: Type 1 and Type 2 #12;#12;Contents Learn about Diabetes ............................................................ 1 What is diabetes? .............................................................. 2 What

  13. Doubly excited states of the hydrogen negative ion and helium atom in astrophysical plasmas

    SciTech Connect (OSTI)

    Jiang Pinghui [Center for Theoretical Atomic and Molecular Physics, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080 (China); College of Electrical and Information Engineering, Heilongjiang Institute of Technology, Harbin 150050 (China); Kar, Sabyasachi; Zhou, Y. [Center for Theoretical Atomic and Molecular Physics, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080 (China)

    2013-01-15T23:59:59.000Z

    The nonthermal effects on the doubly excited resonance states of the hydrogen negative ion and helium atom are investigated in Lorentzian astrophysical plasma environments using highly correlated Hylleraas-type wave functions in the framework of the stabilization method. Resonance parameters (resonance position and width) are reported for the first time as functions of the spectral index and plasma parameter. The screening effects are more pronounced in the stronger screening region.

  14. Atomically localized plasmon enhancement in monolayer graphene

    E-Print Network [OSTI]

    Pennycook, Steve

    Atomically localized plasmon enhancement in monolayer graphene Wu Zhou1,2 *, Jaekwang Lee1,2 , Jagjit Nanda2 , Sokrates T. Pantelides1,2 , Stephen J. Pennycook1,2 and Juan-Carlos Idrobo1,2 * Plasmons plas- mons in very small regions could have applications in optoelec- tronics8,9 , plasmonics10

  15. Spectroscopic measurement of an atomic wave function

    E-Print Network [OSTI]

    Kapale, KT; Qamar, S.; Zubairy, M. Suhail.

    2003-01-01T23:59:59.000Z

    classical standing light, yields information about the position and momentum distribution of the atom [A. M. Herkommer, W. P. Schleich, and M. S. Zubairy, J. Mod. Opt. 44, 2507 (1997)]. In this paper, we show that both the amplitude and phase information...

  16. Stark spectroscopy on rare gas atoms

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN Jiang, Tao Stark spectroscopy on rare gas atoms / by Tao Jiang.-Eindhoven : Technische Universiteit Eindhoven, 2006. - Proefschrift. ISBN-10:90-386-2122-1 ISBN-13:978-90-386-2122-7 NUR

  17. Instead of splitting the atom --the

    E-Print Network [OSTI]

    gravitational forces ram hydrogen atoms together to produce helium, with solar energy the byproduct. On Earth -- with helium as the waste product in addition to the energy. A huge jolt of heat (to nearly 100 million C, 180 million F) would kickstart the process, fusing the nuclei in a charged gas called a plasma. Plasma has

  18. Nano-soldering to single atomic layer

    DOE Patents [OSTI]

    Girit, Caglar O. (Berkeley, CA); Zettl, Alexander K. (Kensington, CA)

    2011-10-11T23:59:59.000Z

    A simple technique to solder submicron sized, ohmic contacts to nanostructures has been disclosed. The technique has several advantages over standard electron beam lithography methods, which are complex, costly, and can contaminate samples. To demonstrate the soldering technique graphene, a single atomic layer of carbon, has been contacted, and low- and high-field electronic transport properties have been measured.

  19. Testing Time Reversal Symmetry in Artificial Atoms

    E-Print Network [OSTI]

    Frederico Brito; Francisco Rouxinol; M. D. LaHaye; Amir O. Caldeira

    2014-06-27T23:59:59.000Z

    Over the past several decades, a rich series of experiments has repeatedly verified the quantum nature of superconducting devices, leading some of these systems to be regarded as artificial atoms. In addition to their application in quantum information processing, these `atoms' provide a test bed for studying quantum mechanics in macroscopic limits. Regarding the last point, we present here a feasible protocol for directly testing time reversal symmetry in a superconducting artificial atom. Time reversal symmetry is a fundamental property of quantum mechanics and is expected to hold if the dynamics of the artificial atom strictly follow the Schroedinger equation. However, this property has yet to be tested in any macroscopic quantum system. The test we propose is based on the verification of the microreversibility principle, providing a viable approach to verify quantum work fluctuation theorems - an outstanding challenge in quantum statistical mechanics. For this, we outline a procedure that utilizes the microreversibility test in conjunction with numerical emulations of Gibbs ensembles to verify these theorems over a large temperature range.

  20. The New Element Curium (Atomic Number 96)

    DOE R&D Accomplishments [OSTI]

    Seaborg, G. T.; James, R. A.; Ghiorso, A.

    1948-00-00T23:59:59.000Z

    Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.

  1. Atomic-vapor-laser isotope separation

    SciTech Connect (OSTI)

    Davis, J.I.

    1982-10-01T23:59:59.000Z

    This paper gives a brief history of the scientific considerations leading to the development of laser isotope separation (LIS) processes. The close relationship of LIS to the broader field of laser-induced chemical processes is evaluated in terms of physical criteria to achieve an efficient production process. Atomic-vapor LIS processes under development at Livermore are reviwed. 8 figures.

  2. Table of hyperfine anomaly in atomic systems

    SciTech Connect (OSTI)

    Persson, J.R., E-mail: jonas.persson@ntnu.no

    2013-01-15T23:59:59.000Z

    This table is a compilation of experimental values of magnetic hyperfine anomaly in atomic and ionic systems. The last extensive compilation was published in 1984 by Büttgenbach [S. Büttgenbach, Hyperfine Int. 20 (1984) 1] and the aim here is to make an up to date compilation. The literature search covers the period up to January 2011.

  3. Quantum search protocol for an atomic array

    E-Print Network [OSTI]

    Scully, Marlan O.; Zubairy, M. Suhail

    2001-01-01T23:59:59.000Z

    without inversion @6#, 1050-2947/2001/64~2!/022304~5!/$20.00 64 022304- l for an atomic array M. Suhail Zubairy1,3 y, College Station, Texas 77843-4242 , 85748 Garching, Germany m University, Islamabad, Pakistan published 5 July 2001! d of ordinary...

  4. Atomic power in space: A history

    SciTech Connect (OSTI)

    Not Available

    1987-03-01T23:59:59.000Z

    ''Atomic Power in Space,'' a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. 19 figs., 3 tabs.

  5. AVIO: DETECTING ATOMICITY VIOLATIONS VIA ACCESS-

    E-Print Network [OSTI]

    Zhou, Yuanyuan

    detect some race bugs in concurrent programs, they have several limitations. First, what programmers ..................................................................................................................................................................................................................................................... THIS ARTICLE PROPOSES AN INNOVATIVE CONCURRENT-PROGRAM INVARIANT THAT CAPTURES PROGRAMMERS' ATOMICITY software bugs, concurrency bugs in multithreaded and multiprocess programs are among the most difficult

  6. The atom completed and a new particle

    E-Print Network [OSTI]

    Murayama, Hitoshi

    rules like the Balmer formula for the hydrogen atom. Cathode rays had been studied, but many regarded for the opportunity to have their hands x-rayed, and soon x rays were put to less frivolous uses in medical diagnosis found empirically a functional form for the energy spectrum that satisfied both theoretical principles

  7. Unusual condensates in quark and atomic systems

    E-Print Network [OSTI]

    B. Kerbikov

    2005-10-31T23:59:59.000Z

    In these lectures we discuss condensates which are formed in quark matter when it is squeezed and in a gas of fermionic atoms when it is cooled. The behavior of these two seemingly very different systems reveals striking similarities. In particular, in both systems the Bose-Einstein condensate to Bardeen--Cooper-Schrieffer (BEC-BCS) crossover takes place.

  8. ATOMIC IONIZATION AND OPACITIES IN PULSAR ATMOSPHERES

    E-Print Network [OSTI]

    ATOMIC IONIZATION AND OPACITIES IN PULSAR ATMOSPHERES Hydrogen Atmospheres J. VENTURA Physics.g. Pavlov et al., 1995; Zavlin et al., 1995, 1996; #12; 2 J. VENTURA ET AL. Rajagopal and Romani, 1996 the past three years. As is well known (Canuto and Ventura, 1977; Ruder et al., 1994), the external strong

  9. A Calculus of Atomic Actions Tayfun Elmas

    E-Print Network [OSTI]

    Tasiran, Serdar

    the sequential properties or the concurrency control mechanisms in the program. We implemented our method of assertions and procedure specifications in shared-memory con- current programs. The key idea in our approach is to use atom- icity as a proof tool and to simplify the verification of assertions by rewriting programs

  10. Fejer-type inequalities

    E-Print Network [OSTI]

    Mitroi, F C

    2011-01-01T23:59:59.000Z

    The aim of this paper is to present some new Fejer-type results for convex functions. Improvements of Young's inequality (the arithmetic-geometric mean inequality) and other applications to special means are pointed as well.

  11. Document Type: Subject Terms

    E-Print Network [OSTI]

    Major, Arkady

    Title: Authors: Source: Document Type: Subject Terms: Abstract: Full Text Word Count: ISSN at creating team results. In fact, it's priceless. Managers in Western corporations have received a lifetime

  12. Quantization of Differences Between Atomic and Nuclear Rest Masses and Selforganization of Atoms and Nuclei

    E-Print Network [OSTI]

    F. A. Gareev; I. E. Zhidkova

    2006-11-15T23:59:59.000Z

    We come to the conclusion that all atomic models based on either the Newton equation and the Kepler laws, or the Maxwell equations, or the Schrodinger and Dirac equations are in reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principle(s) which is (are) not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system - nuclei+atoms+condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies than the corresponding ones on free constituents. We were able to quantize phenomenologically the first time the differences between atomic and nuclear rest masses by the formula (in MeV/$c^{2}$) $\\Delta M=\\frac{n_{1}}{n_{2}}*0.0076294, n_{i}=1,2,3,...$ Note that this quantization rule is justified for atoms and nuclei with different $A, N$ and $Z$ and the nuclei and atoms represent a coherent synchronized systems - a complex of coupled oscillators (resonators). The cooperative resonance synchronization mechanisms are responsible for explanation of how the electron volt world can influence the nuclear mega electron volt world. It means that we created new possibilities for inducing and controlling nuclear reactions by atomic processes.

  13. Transport-theoretic model for the electron-proton-hydrogen atom auroa. II. Model results

    SciTech Connect (OSTI)

    Strickland, D.J. [Computational Physics, Inc., Fairfax, VA (United States); Daniell, R.E. Jr. [Computational Physics, Inc., Newton, MA (United States); Basu, B. [Hanscom Air Force Base, MA (United States)] [and others

    1993-12-01T23:59:59.000Z

    In a companion paper, a self-consistent transport-theoretic model for the combined electron-proton-hydrogen atom aurora was described. In this paper, numberical results based on the model are presented. This is done for the pure electron aurora, the pure proton-hydrogen atom aurora, and finally for the combined aurora. Adopting commonly used types of energy distributions for the incident particle (electron and proton) fluxes, the authors give numerical solutions for the precipitating electron, proton, and hydrogen atom differential number fluxes. Results are also given for ionization yields and emission yields of the following features: N{sub 2}{sup +} first negative group (3914 {Angstrom}), N{sub 2} second positive group (3371 {Angstrom}), selected N{sub 2} Lyman-Birge-Hopfields bands (1325, 1354, 1383, 1493, and all bands between 1700 and 1800 {Angstrom}), O I (1356 {Angstrom}), L{sub {alpha}} (1216 {Angstrom}), H{sub {beta}} (4861 {Angstrom}), and H{sub {alpha}} (6563 {Angstrom}). The yield at 1493 {Angstrom} also contains a contribution from N I (1493 {Angstrom}), which in fact dominates LBH emission. A major new result of this study is that the secondary electron flux produced by the proton-hydrogen atom aurora is much softer than that produced by the electron aurora. This increased softness is due to the fact that (for energies of aurora interest) cross sections for secondary electron flux produced by the proton-hydrogen atom aurora is much softer than that produced by the electron aurora. This increased softness is due to the fact that (for energies of auroral interest) cross sections for secondary electron production by proton and hydrogen atom impact decrease exponentially with increasing secondary electron energy, whereas the cross sections for electron impact decrease as an inverse power law with increasing secondary energy.

  14. atomic beam studies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ment when the atom is in a magnetic field of flux density B is BU &ff gp. If B & 0. 1 Tesla, then p, ff pii for atomic hydrogen, where p is the Bohr magneton (pg efi2m). For...

  15. atomic weight values: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a sample of 10 100 atoms. Sumei Huang; Girish S. Agarwal 2015-01-10 3 Power laws and fractal behavior in nuclear stability, atomic weights and molecular weights Physics Websites...

  16. atomic energy levels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atomic energy levels A. Yilmaz; G. Hacibekiroglu; E. Bolcal; Y. Polatoglu 2008-04-01 2 Energy Levels of "Hydrogen Atom" in Discrete Time Dynamics Quantum Physics (arXiv)...

  17. CHEMICAL REDUCTION OF REFRACTORY OXIDES BY ATOMIC HYDROGEN

    E-Print Network [OSTI]

    Dooley, D.

    2011-01-01T23:59:59.000Z

    by thermal energy atanic hydrogen has been investigated by00 2 is reduced by atomic hydrogen compared with A1 0 2 3 isof redudng AlP3 by atomic hydrogen can he ohtained from the

  18. atomic parameter model: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1913 Bohr model of the hydrogen atom was replaced by Schrdingers wave mechanical model in 1926. In his planetary model of the hydrogen atom (see figure below) Bohr began...

  19. atomic models: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1913 Bohr model of the hydrogen atom was replaced by Schrdingers wave mechanical model in 1926. In his planetary model of the hydrogen atom (see figure below) Bohr began...

  20. 8.422 Atomic and Optical Physics II, Spring 2005

    E-Print Network [OSTI]

    Chuang, Isaac

    This is the second of a two-semester subject sequence beginning with Atomic and Optical Physics I (8.421) that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics ...

  1. atom transfer reactions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2d-PIC simulation of atomic clusters in intense laser fields F. Greschik and H.-J. Kull, Plasma Physics and Fusion Websites Summary: properties of atomic clusters (Ditmire et al....

  2. Symposium on atomic spectroscopy (SAS-83): abstracts and program

    SciTech Connect (OSTI)

    Not Available

    1983-09-01T23:59:59.000Z

    Abstracts of papers given at the symposium are presented. Session topics include: Rydbergs, optical radiators, and planetary atoms; highly ionized atoms; ultraviolet radiation; theory, ion traps, and laser cooling; beam foil; and astronomy. (GHT)

  3. atomic bomb related: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G. Silva; W. T. Cruz; C. A. S. Almeida 2014-07-17 42 Instead of splitting the atom --the Plasma Physics and Fusion Websites Summary: the atomic bomb and led to civilian nuclear...

  4. Atom-light interactions in ultracold anisotropic media

    E-Print Network [OSTI]

    Vengalattore, Mukund T., 1977-

    2005-01-01T23:59:59.000Z

    A series of studies on atom-light interactions in ultracold anisotropic media were conducted. Methods to trap ultracold neutral atoms in novel traps with widely tunable trap frequencies and anisotropies were investigated. ...

  5. United States Atomic Energy Commission formed, part 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    formed, part 2 As we continue looking at the transition of thinking that led to the United States Atomic Energy Commission and away from a United Nations Atomic Energy Commission,...

  6. Squeezing collective atomic spins with an optical resonator

    E-Print Network [OSTI]

    Leroux, Ian Daniel

    2011-01-01T23:59:59.000Z

    This thesis describes two methods of overcoming the standard quantum limit of signal-to-noise ratio in atomic precision measurements. In both methods, the interaction between an ultracold atomic ensemble and an optical ...

  7. Theoretical investigation of energy-trapping mechanism by atomic systems

    E-Print Network [OSTI]

    Srivastava, Rajendra P.

    1978-06-01T23:59:59.000Z

    The theoretical results are presented here in detail for the atomic device proposed earlier by the author. This device absorbs energy from a continuous radiation source and stores some of it with atoms in metastable states ...

  8. Direct Evidence of Lithium-Induced Atomic Ordering in Amorphous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence of Lithium-Induced Atomic Ordering in Amorphous TiO2 Nanotubes . Direct Evidence of Lithium-Induced Atomic Ordering in Amorphous TiO2 Nanotubes . Abstract: In this paper,...

  9. Hybrid approaches to quantum information using ions, atoms and photons

    E-Print Network [OSTI]

    Cetina, Marko, Ph. D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    This thesis presents two hybrid systems for quantum information processing - one joining cold ions and cold atoms and another coupling linear chains of atomic ions with photons via an optical resonator. The first experimental ...

  10. Ris Report No. 327 Danish Atomic Energy Commission

    E-Print Network [OSTI]

    Risø Report No. 327 Danish Atomic Energy Commission Research Establishment Risø Metallurgy Atomic Energy Commission Research Establishment Risø METALLURGY DEPARTMENT PROGRESS REPORT for the Period Commission Research Establishment Risø METALLURGY DEPARTMENT PROGRESS REPORT for the Period 1 January to 31

  11. Design and analysis of a monolithic flexure atomic force microscope

    E-Print Network [OSTI]

    Ljubicic, Dean M

    2008-01-01T23:59:59.000Z

    This thesis details the design, manufacture, and testing of a sub-nanometer accuracy atomic force microscope. It was made to be integrated into the Sub-Atomic Measuring Machine (SAMM) in collaboration with the University ...

  12. atomic collision experiments: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    theoretical analysis of atomic four-wave mixing via a collision of two Bose-Einstein condensates of metastable helium atoms, and compare the results to a recent experiment. We...

  13. atom chip fabrication: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21 Combined chips for atom optics A. Gnther,1, Physics Websites Summary: -Einstein condensates on a combined atom chip. The combined structure consists of a large-scale "carrier...

  14. atomic fermi gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atomic Fermi gases. G. M. Bruun 2002-10-29 4 Fermi excitations in a trapped atomic Fermi gas with a molecular Bose condensate Condensed Matter (arXiv) Summary: We discuss the...

  15. atom molecular mechanics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    planetary model of the hydrogen atom (see figure below) Bohr began with a Newtonian analysis Rioux, Frank 10 Atomic and Molecular Quantum Theory Course Number: C561 1 Now, Why do...

  16. atoms li na: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ground (doublet) atomic 2S(L 0)-state. It is straightforward to generalize our analysis to other bound states of the three-electron Li atom. Alexei M. Frolov; David M....

  17. atomic nano-generators actinium-225-labeled: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory...

  18. Broadband laser cooling of trapped atoms with ultrafast pulses

    E-Print Network [OSTI]

    B. B. Blinov; R. N. Kohn Jr.; M. J. Madsen; P. Maunz; D. L. Moehring; C. Monroe

    2005-07-07T23:59:59.000Z

    We demonstrate broadband laser cooling of atomic ions in an rf trap using ultrafast pulses from a modelocked laser. The temperature of a single ion is measured by observing the size of a time-averaged image of the ion in the known harmonic trap potential. While the lowest observed temperature was only about 1 K, this method efficiently cools very hot atoms and can sufficiently localize trapped atoms to produce near diffraction-limited atomic images.

  19. atomic energy program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    atomic energy program First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Atomizer: A Dynamic Atomicity...

  20. Method of performing MRI with an atomic magnetometer

    DOE Patents [OSTI]

    Savukov, Igor Mykhaylovich; Matlashov, Andrei Nikolaevich; Espy, Michelle A; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry; Zotev, Vadim Sergeyevich

    2013-08-27T23:59:59.000Z

    A method and apparatus are provided for performing an in-situ magnetic resonance imaging of an object. The method includes the steps of providing an atomic magnetometer, coupling a magnetic field generated by magnetically resonating samples of the object through a flux transformer to the atomic magnetometer and measuring a magnetic resonance of the atomic magnetometer.

  1. Method of performing MRI with an atomic magnetometer

    DOE Patents [OSTI]

    Savukov, Igor Mykhaylovich; Matlashov, Andrei Nikolaevich; Espy, Michelle A.; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry; Zotev, Vadim Sergeyevich

    2012-11-06T23:59:59.000Z

    A method and apparatus are provided for performing an in-situ magnetic resonance imaging of an object. The method includes the steps of providing an atomic magnetometer, coupling a magnetic field generated by magnetically resonating samples of the object through a flux transformer to the atomic magnetometer and measuring a magnetic resonance of the atomic magnetometer.

  2. Relativistic and QED corrections for the Beryllium atom Krzysztof Pachucki

    E-Print Network [OSTI]

    Pachucki, Krzysztof

    Relativistic and QED corrections for the Beryllium atom Krzysztof Pachucki #3; Institute are calculated for the ground state of the beryllium atom and its positive ion. A basis set of correlated of high precision theoretical predictions for energy levels of the beryllium atom and light ions. Our

  3. Optical Spectroscopy of Hydrogenic Atoms MIT Department of Physics

    E-Print Network [OSTI]

    Seager, Sara

    Optical Spectroscopy of Hydrogenic Atoms MIT Department of Physics (Dated: September 1, 2013) This experiment is an exercise in optical spectroscopy in a study of the spectra of "hydrogenic" atoms, i.e. atoms with one "optical" electron outside a closed shell of other electrons. Measurements include finding

  4. Classical Helium Atom with Radiation Reaction G. Camelio,1

    E-Print Network [OSTI]

    Carati, Andrea

    Classical Helium Atom with Radiation Reaction G. Camelio,1 A. Carati,2 and L. Galgani2 1) Universit November 2011) We study a classical model of Helium atom in which, in addition to the Coulomb forces be singular with respect to that of Lebesgue. PACS numbers: 05.45.-a, 41.60.-m Keywords: classical Helium atom

  5. Critical Nuclear Charges for N-Electron Atoms

    E-Print Network [OSTI]

    Kais, Sabre

    Critical Nuclear Charges for N-Electron Atoms ALEXEI V. SERGEEV, SABRE KAIS Department of Chemistry, which is treated as a continuous parameter, approaches its critical value. The critical nuclear charge: critical nuclear charges; N-electron atoms; stability of atomic dianions Introduction he question

  6. Radiation trapping in a cold atomic gas Guillaume Labeyrie,1

    E-Print Network [OSTI]

    field of study deals with the transport of near resonant light in such media. Using cold atoms, one can at the end of the 20th century that studies of light transport in optically thick clouds of cold atomsRadiation trapping in a cold atomic gas Guillaume Labeyrie,1 Robin Kaiser,1, and Dominique Delande

  7. Determination of Atomic Data Pertinent to the Fusion Energy Program

    SciTech Connect (OSTI)

    Reader, J.

    2013-06-11T23:59:59.000Z

    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra.

  8. Friction forces on atoms after acceleration

    E-Print Network [OSTI]

    Francesco Intravaia; Vanik E. Mkrtchian; Stefan Buhmann; Stefan Scheel; Diego A. R. Dalvit; Carsten Henkel

    2015-02-04T23:59:59.000Z

    The aim of this paper is to revisit the calculation of atom-surface quantum friction in the quantum field theory formulation put forward by Barton [New J. Phys. 12 (2010) 113045]. We show that the power dissipated into field excitations and the associated friction force depend on how the atom is boosted from being initially at rest to a configuration in which it is moving at constant velocity (v) parallel to the planar interface. In addition, we point out that there is a subtle cancellation between the one-photon and part of the two-photon dissipating power, resulting in a leading order contribution to the frictional power which goes as v^4. These results are also confirmed by an alternative calculation of the average radiation force, which scales as v^3.

  9. Hydrogen atom in Palatini theories of gravity

    E-Print Network [OSTI]

    Gonzalo J. Olmo

    2008-06-03T23:59:59.000Z

    We study the effects that the gravitational interaction of $f(R)$ theories of gravity in Palatini formalism has on the stationary states of the Hydrogen atom. We show that the role of gravity in this system is very important for lagrangians $f(R)$ with terms that grow at low curvatures, which have been proposed to explain the accelerated expansion rate of the universe. We find that new gravitationally induced terms in the atomic Hamiltonian generate a strong backreaction that is incompatible with the very existence of bound states. In fact, in the 1/R model, Hydrogen disintegrates in less than two hours. The universe that we observe is, therefore, incompatible with that kind of gravitational interaction. Lagrangians with high curvature corrections do not lead to such instabilities.

  10. Chiral meta-atoms rotated by light

    SciTech Connect (OSTI)

    Liu Mingkai; Powell, David A.; Shadrivov, Ilya V. [Nonlinear Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia)

    2012-07-16T23:59:59.000Z

    We study the opto-mechanical properties of coupled chiral meta-atoms based on a pair of twisted split-ring resonators. By using a simple analytical model in conjunction with the Maxwell stress tensor, we capture insight into the mechanism and find that this structure can be used as a general prototype of subwavelength light-driven actuators over a wide range of frequencies. This coupled structure can provide a strong and tunable torque, and can support different opto-mechanical modes, including uniform rotation, periodically variable rotation and damped oscillations. Our results suggest that chiral meta-atoms are good candidates for creating sub-wavelength motors or wrenches controlled by light.

  11. Trapping atoms using nanoscale quantum vacuum forces

    E-Print Network [OSTI]

    D. E. Chang; K. Sinha; J. M. Taylor; H. J. Kimble

    2013-10-22T23:59:59.000Z

    Quantum vacuum forces dictate the interaction between individual atoms and dielectric surfaces at nanoscale distances. For example, their large strengths typically overwhelm externally applied forces, which makes it challenging to controllably interface cold atoms with nearby nanophotonic systems. Here, we show that it is possible to tailor the vacuum forces themselves to provide strong trapping potentials. The trapping scheme takes advantage of the attractive ground state potential and adiabatic dressing with an excited state whose potential is engineered to be resonantly enhanced and repulsive. This procedure yields a strong metastable trap, with the fraction of excited state population scaling inversely with the quality factor of the resonance of the dielectric structure. We analyze realistic limitations to the trap lifetime and discuss possible applications that might emerge from the large trap depths and nanoscale confinement.

  12. Liquid crystal variable retarders in atomic scattering

    SciTech Connect (OSTI)

    Furst, J.E.; Yu, D.H.; Hayes, P.A.; DSouza, C.M.; Williams, J.F. [Physics Department, Centre for Atomic, Molecular, and Surface Physics, The University of Western Australia, Nedlands. WA. 6907 (Australia)] [Physics Department, Centre for Atomic, Molecular, and Surface Physics, The University of Western Australia, Nedlands. WA. 6907 (Australia)

    1996-11-01T23:59:59.000Z

    The applications of liquid crystal variable retarders in the production of spin-polarized electrons and in the determination of the polarization of optical radiation from atoms excited by polarized electrons are discussed. The advantages of using liquid crystal variable retarders in the measurement of Stokes parameters are insensitivity to the incident photon direction, large transmission diameter, variable retardation over large wavelength range without mechanical movement, and {ital in} {ital situ} calibration. {copyright} {ital 1996 American Institute of Physics.}

  13. Moller Polarimetry with Atomic Hydrogen Targets

    SciTech Connect (OSTI)

    Chudakov, Eugene [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Luppov, V. [University of Michigan Spin Physics Center, Ann Arbor, MI (United States)

    2012-06-01T23:59:59.000Z

    A proposal to use polarized atomic hydrogen gas as the target for electron beam polarimetry based on the Moller scattering is described. Such a gas, stored in an ultra-cold magnetic trap, would provide a target of practically 100\\% polarized electrons. It is conceivable to reach a $\\sim$0.3\\% systematic accuracy of the beam polarimetry with such a target. Feasibility studies for the CEBAF electron beam have been performed.

  14. Axion Dark Matter Detection using Atomic Transitions

    E-Print Network [OSTI]

    P. Sikivie

    2014-09-09T23:59:59.000Z

    Dark matter axions may cause transitions between atomic states that differ in energy by an amount equal to the axion mass. Such energy differences are conveniently tuned using the Zeeman effect. It is proposed to search for dark matter axions by cooling a kilogram-sized sample to milliKelvin temperatures and count axion induced transitions using laser techniques. This appears an appropriate approach to axion dark matter detection in the $10^{-4}$ eV mass range.

  15. Atomic Inference from Weak Gravitational Lensing Data

    SciTech Connect (OSTI)

    Marshall, Phil; /KIPAC, Menlo Park

    2005-12-14T23:59:59.000Z

    We present a novel approach to reconstructing the projected mass distribution from the sparse and noisy weak gravitational lensing shear data. The reconstructions are regularized via the knowledge gained from numerical simulations of clusters, with trial mass distributions constructed from n NFW profile ellipsoidal components. The parameters of these ''atoms'' are distributed a priori as in the simulated clusters. Sampling the mass distributions from the atom parameter probability density function allows estimates of the properties of the mass distribution to be generated, with error bars. The appropriate number of atoms is inferred from the data itself via the Bayesian evidence, and is typically found to be small, reecting the quality of the data. Ensemble average mass maps are found to be robust to the details of the noise realization, and succeed in recovering the demonstration input mass distribution (from a realistic simulated cluster) over a wide range of scales. As an application of such a reliable mapping algorithm, we comment on the residuals of the reconstruction and the implications for predicting convergence and shear at specific points on the sky.

  16. Classical Helium Atom with Radiation Reaction

    E-Print Network [OSTI]

    G. Camelio; A. Carati; L. Galgani

    2011-11-24T23:59:59.000Z

    We study a classical model of Helium atom in which, in addition to the Coulomb forces, the radiation reaction forces are taken into account. This modification brings in the model a new qualitative feature of a global character. Indeed, as pointed out by Dirac, in any model of classical electrodynamics of point particles involving radiation reaction one has to eliminate, from the a priori conceivable solutions of the problem, those corresponding to the emission of an infinite amount of energy. We show that the Dirac prescription solves a problem of inconsistency plaguing all available models which neglect radiation reaction, namely, the fact that in all such models most initial data lead to a spontaneous breakdown of the atom. A further modification is that the system thus acquires a peculiar form of dissipation. In particular, this makes attractive an invariant manifold of special physical interest, the zero--dipole manifold, that corresponds to motions in which no energy is radiated away (in the dipole approximation). We finally study numerically the invariant measure naturally induced by the time--evolution on such a manifold, and this corresponds to studying the formation process of the atom. Indications are given that such a measure may be singular with respect to that of Lebesgue.

  17. Comparison of crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te nanocrystalline thin films: Effects of homogeneous irradiation with an electron beam

    SciTech Connect (OSTI)

    Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp; Imai, Kazuo; Uyama, Masato; Nishi, Yoshitake [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Hagino, Harutoshi; Miyazaki, Koji [Department of Mechanical and Control Engineering, Kyushu Institute of Technology, 1-1 Sensui, Tobata-ku, Kitakyushu 804-8550 (Japan); Tanaka, Saburo [Department of Mechanical Engineering, College of Engineering, Nihon University, Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642 (Japan)

    2014-06-07T23:59:59.000Z

    The effects of homogenous electron beam (EB) irradiation on the crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te thin films were investigated. Both types of thin films were prepared by flash evaporation, after which homogeneous EB irradiation was performed at an acceleration voltage of 0.17?MeV. For the n-type thin films, nanodots with a diameter of less than 10?nm were observed on the surface of rice-like nanostructures, and crystallization and crystal orientation were improved by EB irradiation. The resulting enhancement of mobility led to increased electrical conductivity and thermoelectric power factor for the n-type thin films. In contrast, the crystallization and crystal orientation of the p-type thin films were not influenced by EB irradiation. The carrier concentration increased and mobility decreased with increased EB irradiation dose, possibly because of the generation of defects. As a result, the thermoelectric power factor of p-type thin films was not improved by EB irradiation. The different crystallization behavior of the n-type and p-type thin films is attributed to atomic rearrangement during EB irradiation. Selenium in the n-type thin films is more likely to undergo atomic rearrangement than the other atoms present, so only the crystallinity of the n-type Bi-Se-Te thin films was enhanced.

  18. Radiative friction on an excited atom moving in vacuum

    E-Print Network [OSTI]

    Wei Guo

    2012-04-30T23:59:59.000Z

    It is known that, when an excited atom spontaneously emits one photon, two effects are produced. First, the atom's internal and external states are entangled with the states of the emitted photon. Second, the atom receives a momentum transfered from the photon. In this work, the dynamics of such an atom in vacuum is studied. Through a specific calculation, it is demonstrated that these effects cause the atom to experience, on average, a friction force opposite to its initial velocity. Properties of the force are also discussed.

  19. Atomic Structure of Benzene Which Accounts for Resonance Energy

    E-Print Network [OSTI]

    Raji Heyrovska

    2008-07-09T23:59:59.000Z

    Benzene is a hexagonal molecule of six carbon atoms, each of which is bound to six hydrogen atoms. The equality of all six CC bond lengths, despite the alternating double and single bonds, and the surplus (resonance) energy, led to the suggestion of two resonanting structures. Here, the new atomic structure shows that the bond length equality is due to three carbon atoms with double bond radii bound to three other carbon atoms with resonance bond radii (as in graphene). Consequently, there are two kinds of CH bonds of slightly different lengths. The bond energies account for the resonance energy.

  20. Novel rubidium atomic beam with an alkali dispenser source

    SciTech Connect (OSTI)

    Roach, Timothy M.; Henclewood, Dwayne [College of the Holy Cross, Worcester, Massachusetts 01610 (United States)

    2004-11-01T23:59:59.000Z

    We describe a novel atomic beam apparatus with a resistively heated alkali dispenser source and a cold-pumped intermediate chamber. Using laser fluorescence spectroscopy we have measured the atomic density to be 3x10{sup 11} atoms/m{sup 3} and the total flux to be 5x10{sup 8} atoms/s in a 0.3 cm diameter beam. We have also characterized the velocity distribution of the source based on the Doppler-shifted fluorescence spectrum. The compact geometry, flexibility, and simplicity of the beam may make it useful as an optical frequency reference or for experiments on atom-cooling.

  1. Atomizing apparatus for making polymer and metal powders and whiskers

    DOE Patents [OSTI]

    Otaigbe, Joshua U. (Ames, IA); McAvoy, Jon M. (Moline, IL); Anderson, Iver E. (Ames, IA); Ting, Jason (Ames, IA); Mi, Jia (Pittsburgh, PA); Terpstra, Robert (Ames, IA)

    2003-03-18T23:59:59.000Z

    Method for making polymer particulates, such as spherical powder and whiskers, by melting a polymer material under conditions to avoid thermal degradation of the polymer material, atomizing the melt using gas jet means in a manner to form atomized droplets, and cooling the droplets to form polymer particulates, which are collected for further processing. Atomization parameters can be controlled to produce polymer particulates with controlled particle shape, particle size, and particle size distribution. For example, atomization parameters can be controlled to produce spherical polymer powders, polymer whiskers, and combinations of spherical powders and whiskers. Atomizing apparatus also is provided for atoomizing polymer and metallic materials.

  2. Roles of additives and surface control in slurry atomization

    SciTech Connect (OSTI)

    Tsai, S.C.

    1990-07-10T23:59:59.000Z

    Airblast atomization of micronized coal water slurry is carried out using twin-fluid jet atomizers of various distributor designs. Drop size and size distribution are measured using the laser diffraction technique. We found that the atomized drop sizes of micronized coal water slurries substantially decrease as the atomizing air pressure exceeds a threshold value. We also found that the atomized drop size, represented by the mass median diameter (MMD) can be described by the wave mechanism-based models in terms of three non-dimensional groups, namely, slurry-to-air mass ratio, the Weber number, and the Ohnesorge number. 11 refs.

  3. Study atom-vacuum interaction by the weak measurement technique

    E-Print Network [OSTI]

    M. Zhang; S. Y. Zhu

    2014-10-27T23:59:59.000Z

    Quantum weak measurement attracts much interests recently [Rev. Mod. Phys. 86, 307 (2014)], as it could amplify some weak signals and provide a technique to observe the nonclassical phenomenons. Here, we apply this technique to study the interaction between the free atoms and the vacuum in a cavity. Due to the gradient field in the vacuum cavity, the external orbital motions and the internal electronic states of the atoms can be weakly coupled via the atom-field electric-dipole interaction. We show an interesting phenomenon that, within the properly post-selected internal states, the weak atom-vacuum interaction could generate a large change to the external motions of atoms.

  4. Quantization of Differences Between Atomic and Nuclear Rest Masses and Selforganization of Atoms and Nuclei

    E-Print Network [OSTI]

    Gareev, F A

    2006-01-01T23:59:59.000Z

    We come to conclusion that the all atomic models based either on the Newton equation and the Kepler laws or on the Maxwell equations or on the Schrodinger and Dirac equations achieved reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principle(s) which is(are) not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in whole system - nuclei+atoms+condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies then corresponding ones on free constituents.We were able to quantize phenomenologically (numerology) the first time the differences between atomic and nuclear rest masses according to the formula (in MeV/$c^{2}$) $\\Delta M=0.0076294*n_{1}*2^{n_{2}}, n_{1}=1,2,3,..., n_{2}=1,\\pm2,\\pm4,\\pm8,... $. Note that this quantization rule is justified for atoms and nuclei with different $A, N$ and $Z$ and the nuclei and atoms represent a coherent synch...

  5. Atoms in Flight: The Remarkable Connections between Atomic and Hadronic Physics

    SciTech Connect (OSTI)

    Brodsky, Stanley J.; /SLAC

    2012-02-16T23:59:59.000Z

    Atomic physics and hadron physics are both based on Yang Mills gauge theory; in fact, quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics provide important insight into the theory of hadrons in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of light-front relativistic equations of motion which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The renormalization scale for the running coupling, which is unambiguously set in QED, leads to a method for setting the renormalization scale in QCD. The production of atoms in flight provides a method for computing the formation of hadrons at the amplitude level. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, and light-front quantization have equal utility for atomic physics, especially in the relativistic domain. I also present a new perspective for understanding the contributions to the cosmological constant from QED and QCD.

  6. Forecast of Standard Atomic Weights for the Mononuclidic Elements – 2011

    SciTech Connect (OSTI)

    Holden, N.E.; Holden, N.; Holden,N.E.

    2011-07-27T23:59:59.000Z

    In this short report, I will provide an early warning about potential changes to the standard atomic weight values for the twenty mononuclidic and the so-called pseudo-mononuclidic ({sup 232}Th and {sup 231}Pa) chemical elements due to the estimated changes in the mass values to be published in the next Atomic Mass Tables within the next two years. There have been many new measurements of atomic masses, since the last published Atomic Mass Table. The Atomic Mass Data Center has released an unpublished version of the present status of the atomic mass values as a private communication. We can not update the Standard Atomic Weight Table at this time based on these unpublished values but we can anticipate how many changes are probably going to be expected in the next few years on the basis of the forthcoming publication of the Atomic Mass Table. I will briefly discuss the procedures that the Atomic Weights Commission used in deriving the recommended Standard Atomic Weight values and their uncertainties from the atomic mass values. I will also discuss some concern raised about a proposed change in the definition of the mole. The definition of the mole is now connected directly to the mass of a {sup 12}C isotope (which is defined as 12 exactly) and to the kilogram. A change in the definition of the mole will probably impact the mass of {sup 12}C.

  7. Nano Positioning of Single Atoms in a Micro Cavity

    E-Print Network [OSTI]

    Stefan Nussmann; Markus Hijlkema; Bernhard Weber; Felix Rohde; Gerhard Rempe; Axel Kuhn

    2005-06-10T23:59:59.000Z

    The coupling of individual atoms to a high-finesse optical cavity is precisely controlled and adjusted using a standing-wave dipole-force trap, a challenge for strong atom-cavity coupling. Ultracold Rubidium atoms are first loaded into potential minima of the dipole trap in the center of the cavity. Then we use the trap as a conveyor belt that we set into motion perpendicular to the cavity axis. This allows us to repetitively move atoms out of and back into the cavity mode with a repositioning precision of 135 nm. This makes possible to either selectively address one atom of a string of atoms by the cavity, or to simultaneously couple two precisely separated atoms to a higher mode of the cavity.

  8. Dust around Type Ia supernovae

    E-Print Network [OSTI]

    Wang, Lifan

    2005-01-01T23:59:59.000Z

    Dust around Type Ia supernovae Lifan Wang 1,2 LawrenceIa. Subject headings: Supernovae: General, Dust, Extinctionline) bands for Type Ia supernovae. (a), upper panel, shows

  9. Wolter type i LAMAR

    SciTech Connect (OSTI)

    Catura, R.C.; Joki, E.G.

    1981-11-01T23:59:59.000Z

    Observational objectives for the LAMAR and their influence on the instrument design are discussed. It is concluded that the most important design parameter is the angular resolution of the LAMAR modules since it so strongly influences sensitivity, optical identifications, source confusion, spectral resolution for objective gratings and the ability to resolve small extended sources. A high resolution Wolter Type I LAMAR module is described, its hardware status discussed, and the performance of a LAMAR observatory presented. A promising technique for enhancing the reflectivity of Wolter Type I X-ray optics in a selected bandpass at high energy has been investigated and the performance of the LAMAR module, utilizing this method, has been calculated.

  10. Rappels: 4) Piles Types abstraits de donnes (Abstract Data Type)

    E-Print Network [OSTI]

    Hamel, Sylvie

    Rappels: 4) Piles #12;Types abstraits de données (Abstract Data Type) IFT2015, A2009, Sylvie Hamel Université de Montréal 1Piles Type de données Un ensemble de valeurs Un ensemble d'opérations Structure de Université de Montréal 2Piles #12;Type abstrait de données PILE (§4.2) Garde en mémoire des objets

  11. Experimental study of linear magnetic dichroism in photoionization satellite transitions of atomic rubidium

    SciTech Connect (OSTI)

    Jaenkaelae, K. [Department of Physics, P.O. Box 3000, 90014 University of Oulu, Oulu (Finland); Alagia, M. [CNR-IOM, Laboratorio TASC, IT-34149 Trieste (Italy); Feyer, V.; Richter, R. [Sincrotrone Trieste, Area Science Park, IT-34149 Trieste (Italy); Prince, K. C. [Sincrotrone Trieste, Area Science Park, IT-34149 Trieste (Italy); CNR-IOM, Laboratorio TASC, IT-34149 Trieste (Italy)

    2011-11-15T23:59:59.000Z

    Laser orientation in the initial state has been used to study the properties of satellite transitions in inner-shell photoionization of rubidium atoms. The linear magnetic dichroism in the angular distribution (LMDAD) has been utilized to probe the continuum waves of orbital angular momentum conserving monopole, and angular momentum changing conjugate satellites, accompanying the 4p ionization of atomic Rb. We show experimentally that LMDAD of both types of satellite transitions is nonzero and that LMDAD of monopole satellites, measured as a function of photon energy, mimics the LMDAD of direct photoionization, whereas the LMDAD of conjugate transitions deviates drastically from that trend. The results indicate that conjugate transitions cannot be described theoretically without explicit inclusion of electron-electron interaction. The present data can thus be used as a very precise test of current models for photoionization.

  12. Influence of Atomic Layer Deposition Temperatures on TiO2/n-Si MOS Capacitor

    SciTech Connect (OSTI)

    Wei, Daming [Kansas State University; Hossain, T [Kansas State University; Garces, N. Y. [Naval Research Laboratory, Washington, D.C.; Nepal, N. [Naval Research Laboratory, Washington, D.C.; Meyer III, Harry M [ORNL; Kirkham, Melanie J [ORNL; Eddy, C.R., Jr. [Naval Research Laboratory, Washington, D.C.; Edgar, J H [Kansas State University

    2013-01-01T23:59:59.000Z

    This paper reports on the influence of temperature on the structure, composition, and electrical properties of TiO2 thin films deposited on n-type silicon (100) by atomic layer deposition (ALD). TiO2 layers around 20nm thick, deposited at temperatures ranging from 100 to 300 C, were studied. Samples deposited at 250 C and 200 C had the most uniform coverage as determined by atomic force microscopy. The average carbon concentration throughout the oxide layer and at the TiO2/Si interface was lowest at 200 C. Metal oxide semiconductor capacitors (MOSCAPs) were fabricated, and profiled by capacitance-voltage techniques. Negligible hysteresis was observed from a capacitance-voltage plot and the capacitance in the accumulation region was constant for the sample prepared at a 200 C ALD growth temperature. The interface trap density was on the order of 1013 eV-1cm-2 regardless of the deposition temperature.

  13. Collective Lamb shift of superradiant cascade emissions in an atomic ensemble

    E-Print Network [OSTI]

    H. H. Jen

    2015-01-21T23:59:59.000Z

    We calculate the collective Lamb shift of the cascade spontaneous emissions from an atomic ensemble driven by two-color classical fields. The correlated pair of photons (signal and idler) is generated by adiabatically driving the system with large-detuned light fields in four-wave-mixing condition. The signal photon from the upper transition of the diamond-type atomic levels is followed by the idler one which can be superradiant due to light-induced dipole-dipole interactions. We demonstrate that the collective Lamb shift of the idler photon is a cumulative effect of interaction energy, and investigate its dependence on a cylindrical geometry. Manipulating the collective frequency of cascade emissions enables frequency qubits that provide alternative robust elements in quantum network.

  14. Counterflow Superfluidity of Two-Species Ultracold Atoms in a Commensurate Optical Lattice

    E-Print Network [OSTI]

    A. B. Kuklov; B. V. Svistunov

    2015-03-09T23:59:59.000Z

    If two species of ultracold atoms are loaded in a sufficiently tight optical lattice at a commensurate total filling factor, the net number-of-atoms transport is suppressed by the Mott-Hubbard localization. Nonetheless, the counterflow low-frequency dynamics of the two components may survive. We consider corresponding effective Hamiltonians for the three classes of the two-species insulators-- fermion-fermion, boson-boson, and boson-fermion type-- and reveal the conditions when the resulting groundstate supports super-counter-fluidity (SCF) of the two components. Alternative groundstates are found to be phase-segregated states. We emphasize a crucial role of breaking the isotopic symmetry between the species for realizing the SCF phase.

  15. Strong coupling of an optomechanical system to an anomalously dispersive atomic medium

    E-Print Network [OSTI]

    Haibin Wu; Min Xiao

    2014-07-14T23:59:59.000Z

    We investigate a hybrid optomechanical system in which a membrane oscillator is coupled to a collective spin of ground states of an intracavity $\\Lambda$-type three-level atomic medium. The cavity field response is greatly modified by atomic coherence and the anomalous dispersion generated by two Raman pumping beams near two-photon resonance. The optomechanical interaction, therefore radiation pressure force, is substantially enhanced due to superluminal propagation of photons in the cavity. Such improvement facilitates ground-state cooling of the mechanical oscillator with room temperature thermal environment. Moreover, it can greatly improve the sensitivity and bandwidth of displacement measurement. In such system, optically-controlled strong-coupling interaction between the mechanical oscillator and cavity field could be implemented on small intracavity photon number, even at the single quanta level, which is important for weak-light nonlinear photonics and the generation of nonclassical quantum states in the mechanical field.

  16. Sixteenth International Conference on the physics of electronic and atomic collisions

    SciTech Connect (OSTI)

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B. (eds.)

    1989-01-01T23:59:59.000Z

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  17. Efficiency optimization for Atomic Frequency Comb storage

    E-Print Network [OSTI]

    M. Bonarota; J. Ruggiero; J. -L. Le Gouët; T. Chanelière

    2009-11-23T23:59:59.000Z

    We study the efficiency of the Atomic Frequency Comb storage protocol. We show that for a given optical depth, the preparation procedure can be optimize to significantly improve the retrieval. Our prediction is well supported by the experimental implementation of the protocol in a \\TMYAG crystal. We observe a net gain in efficiency from 10% to 17% by applying the optimized preparation procedure. In the perspective of high bandwidth storage, we investigate the protocol under different magnetic fields. We analyze the effect of the Zeeman and superhyperfine interaction.

  18. Cooling trapped atoms in optical resonators

    E-Print Network [OSTI]

    Stefano Zippilli; Giovanna Morigi

    2007-03-20T23:59:59.000Z

    We derive an equation for the cooling dynamics of the quantum motion of an atom trapped by an external potential inside an optical resonator. This equation has broad validity and allows us to identify novel regimes where the motion can be efficiently cooled to the potential ground state. Our result shows that the motion is critically affected by quantum correlations induced by the mechanical coupling with the resonator, which may lead to selective suppression of certain transitions for the appropriate parameters regimes, thereby increasing the cooling efficiency.

  19. Quantum Sticking of Atoms on Membranes

    E-Print Network [OSTI]

    Dennis P. Clougherty

    2014-12-05T23:59:59.000Z

    A continuum model for low-energy physisorption on a membrane under tension is proposed and studied with variational mean-field theory. A discontinuous change in the energy-dependent sticking coefficient is predicted under certain conditions. This singularity is a result of the bosonic orthogonality catastrophe of the vibrational states of the membrane. The energy-dependent sticking coefficient is predicted to have exponential scaling in 1/E above the singularity. The application of this model to the quantum sticking of cold hydrogen to suspended graphene is discussed. The model predicts that a beam of atomic hydrogen can be completely reflected by suspended graphene at ultralow energies.

  20. Electric quadrupole transition probabilities for atomic lithium

    SciTech Connect (OSTI)

    Çelik, Gültekin, E-mail: gultekin@selcuk.edu.tr [Department of Physics, Faculty of Science, Selçuk University, Campus 42049 Konya (Turkey); Gökçe, Yasin; Y?ld?z, Murat [Department of Physics, Faculty of Science, Karamanoglu Mehmetbey University, Karaman (Turkey)

    2014-05-15T23:59:59.000Z

    Electric quadrupole transition probabilities for atomic lithium have been calculated using the weakest bound electron potential model theory (WBEPMT). We have employed numerical non-relativistic Hartree–Fock wavefunctions for expectation values of radii and the necessary energy values have been taken from the compilation at NIST. The results obtained with the present method agree very well with the Coulomb approximation results given by Caves (1975). Moreover, electric quadrupole transition probability values not existing in the literature for some highly excited levels have been obtained using the WBEPMT.