National Library of Energy BETA

Sample records for atomizing type burners

  1. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOE Patents [OSTI]

    Butcher, Thomas A.; Celebi, Yusuf; Fisher, Leonard

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  2. Startup burner

    DOE Patents [OSTI]

    Zhao, Jian Lian; Northrop, William F.; Bosco, Timothy; Rizzo, Vincent; Kim, Changsik

    2009-08-18

    A startup burner for rapidly heating a catalyst in a reformer, as well as related methods and modules, is disclosed.

  3. Diesel fuel burner for diesel emissions control system

    DOE Patents [OSTI]

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  4. High capacity oil burner

    SciTech Connect (OSTI)

    Pedrosa, O.A. Jr.; Couto, N.C.; Fanqueiro, R.C.C.

    1983-11-01

    The present invention relates to a high capacity oil burner comprising a cylindrical atomizer completely surrounded by a protective cylindrical housing having a diameter from 2 to 3 times greater than the diameter of said atomizer; liquid fuels being injected under pressure into said atomizer and accumulating within said atomizer in a chamber for the accumulation of liquid fuels, and compressed air being injected into a chamber for the accumulation of air; cylindrical holes communicating said chamber for the accumulation of liquid fuels with the outside and cylindrical holes communicating said chamber for the accumulation of air with said cylindrical holes communicating the chamber for the accumulation of liquids with the outside so that the injection of compressed air into said liquid fuel discharge holes atomizes said fuel which is expelled to the outside through the end portions of said discharge holes which are circumferentially positioned to be burnt by a pilot flame; said protecting cylindrical housing having at its ends perforated circular rings into which water is injected under pressure to form a protecting fan-like water curtain at the rear end of the housing and a fan-like water curtain at the flame to reduce the formation of soot; the burning efficiency of said burner being superior to 30 barrels of liquid fuel per day/kg of the apparatus.

  5. Sealed, nozzle-mix burners for silica deposition

    DOE Patents [OSTI]

    Adler, Meryle D. M.; Brown, John T.; Misra, Mahendra K.

    2003-07-08

    Burners (40) for producing fused silica boules are provided. The burners employ a tube-in-tube (301-306) design with flats (56, 50) on some of the tubes (305, 301) being used to limit the cross-sectional area of certain passages (206, 202) within the burner and/or to atomize a silicon-containing, liquid source material, such as OMCTS. To avoid the possibility of flashback, the burner has separate passages for fuel (205) and oxygen (204, 206), i.e., the burner employs nozzle mixing, rather than premixing, of the fuel and oxygen. The burners are installed in burner holes (26) formed in the crown (20) of a furnace and form a seal with those holes so that ambient air cannot be entrained into the furnace through the holes. An external air cooled jacket (60) can be used to hold the temperature of the burner below a prescribed upper limit, e.g., 400.degree. C.

  6. Burner systems

    DOE Patents [OSTI]

    Doherty, Brian J.

    1984-07-10

    A burner system particularly useful for downhole deployment includes a tubular combustion chamber unit housed within a tubular coolant jacket assembly. The combustion chamber unit includes a monolithic tube of refractory material whose inner surface defines the combustion zone. A metal reinforcing sleeve surrounds and extends the length of the refractory tube. The inner surface of the coolant jacket assembly and outer surface of the combustion chamber unit are dimensioned so that those surfaces are close to one another in standby condition so that the combustion chamber unit has limited freedom to expand with that expansion being stabilized by the coolant jacket assembly so that compression forces in the refractory tube do not exceed about one-half the safe compressive stress of the material; and the materials of the combustion chamber unit are selected to establish thermal gradient parameters across the combustion chamber unit to maintain the refractory tube in compression during combustion system start up and cool down sequences.

  7. Front Burner- Issue 15

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 15 addresses the DOE eSCRM Program and Secure Online Shopping.

  8. Front Burner- Issue 14

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Cybersecurity Front Burner Issue No. 14 highlights the 2013 National Cybersecurity Awareness Month (NCSAM) Campaign and Phishing Scams.

  9. Rotary Burner Demonstration

    SciTech Connect (OSTI)

    Paul Flanagan

    2003-04-30

    The subject technology, the Calcpos Rotary Burner (CRB), is a burner that is proposed to reduce energy consumption and emission levels in comparison to currently available technology. burners are used throughout industry to produce the heat that is required during the refining process. Refineries seek to minimize the use of energy in refining while still meeting EPA regulations for emissions.

  10. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    SciTech Connect (OSTI)

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this

  11. Front Burner- Issue 13

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 13 contained a message from the Associate Chief Information Officer (ACIO) for Cybersecurity as well as a listing of recommended cybersecurity practices.

  12. Front Burner- Issue 16

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 16 addresses Malware, the Worst Passwords of 2013, and the Flat Stanley and Stop.Think.Connect. Campaign.

  13. Front Burner- Issue 18

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Cybersecurity Front Burner Issue No. 18 addresses keeping kids safe on the Internet, cyber crime, and DOE Cyber awareness and training initiatives.

  14. FRONT BURNER- ISSUE 19

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Cybersecurity Front Burner Issue No. 19 examines Securing the Internet of Things, Facebook Messenger Application, and implementation of the Contractor Training Site.

  15. Study of oil combustion in the TGMP-314 boiler with hearth burners

    SciTech Connect (OSTI)

    Usman, Yu.M.; Shtal'man, S.G.; Enyakin, Yu.P.; Abryutin, A.A.; Levin, M.M.; Taran, O.E.; Chuprov, V.V.; Antonov, A.Yu.

    1983-01-01

    Studies of the TGMP-314 boiler with hearth configured burners included the gas mixture in the boiler, the degree of fuel combustion at various heights in the boiler, hydrogen sulfide content in the near-wall zones of the boiler, and temperature distribution fields. Experimental data showed that the hearth burners, in conjunction with steam-mechanical atomizing burners, operate with the least possible excess air over a wide range of load changes. The operation and performance of the hearth burners are discussed.

  16. Residential oil burners with low input and two stages firing

    SciTech Connect (OSTI)

    Butcher, T.; Krajewski, R.; Leigh, R.

    1997-12-31

    The residential oil burner market is currently dominated by the pressure-atomized, retention head burner. At low firing rates pressure atomizing nozzles suffer rapid fouling of the small internal passages, leading to bad spray patterns and poor combustion performance. To overcome the low input limitations of conventional burners, a low pressure air-atomized burner has been developed watch can operate at fining rates as low as 0.25 gallons of oil per hour (10 kW). In addition, the burner can be operated in a high/low fining rate mode. Field tests with this burner have been conducted at a fixed input rate of 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination. At the test home, instrumentation was installed to measure fuel and energy flows and record trends in system temperatures. Laboratory efficiency testing with water heaters and boilers has been completed using standard single purpose and combined appliance test procedures. The tests quantify benefits due to low firing rates and other burner features. A two stage oil burner gains a strong advantage in rated efficiency while maintaining capacity for high domestic hot water and space heating loads.

  17. Variable capacity gasification burner

    SciTech Connect (OSTI)

    Saxon, D.I.

    1985-03-05

    A variable capacity burner that may be used in gasification processes, the burner being adjustable when operating in its intended operating environment to operate at two different flow capacities, with the adjustable parts being dynamically sealed within a statically sealed structural arrangement to prevent dangerous blow-outs of the reactants to the atmosphere.

  18. Combustor burner vanelets

    DOE Patents [OSTI]

    Lacy, Benjamin (Greer, SC); Varatharajan, Balachandar (Loveland, OH); Kraemer, Gilbert Otto (Greer, SC); Yilmaz, Ertan (Albany, NY); Zuo, Baifang (Simpsonville, SC)

    2012-02-14

    The present application provides a burner for use with a combustor of a gas turbine engine. The burner may include a center hub, a shroud, a pair of fuel vanes extending from the center hub to the shroud, and a vanelet extending from the center hub and/or the shroud and positioned between the pair of fuel vanes.

  19. Pulverized coal burner

    SciTech Connect (OSTI)

    Sivy, J.L.; Rodgers, L.W.; Koslosy, J.V.; LaRue, A.D.; Kaufman, K.C.; Sarv, H.

    1998-11-03

    A burner is described having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO{sub x} burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO{sub x} back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing. 8 figs.

  20. Pulverized coal burner

    DOE Patents [OSTI]

    Sivy, Jennifer L.; Rodgers, Larry W.; Koslosy, John V.; LaRue, Albert D.; Kaufman, Keith C.; Sarv, Hamid

    1998-01-01

    A burner having lower emissions and lower unburned fuel losses by implementing a transition zone in a low NO.sub.x burner. The improved burner includes a pulverized fuel transport nozzle surrounded by the transition zone which shields the central oxygen-lean fuel devolatilization zone from the swirling secondary combustion air. The transition zone acts as a buffer between the primary and the secondary air streams to improve the control of near-burner mixing and flame stability by providing limited recirculation regions between primary and secondary air streams. These limited recirculation regions transport evolved NO.sub.x back towards the oxygen-lean fuel pyrolysis zone for reduction to molecular nitrogen. Alternate embodiments include natural gas and fuel oil firing.

  1. Low NO.sub.x burner system

    DOE Patents [OSTI]

    Kitto, Jr., John B.; Kleisley, Roger J.; LaRue, Albert D.; Latham, Chris E.; Laursen, Thomas A.

    1993-01-01

    A low NO.sub.x burner system for a furnace having spaced apart front and rear walls, comprises a double row of cell burners on each of the front and rear walls. Each cell burner is either of the inverted type with a secondary air nozzle spaced vertically below a coal nozzle, or the non-inverted type where the coal nozzle is below the secondary air port. The inverted and non-inverted cells alternate or are provided in other specified patterns at least in the lower row of cells. A small percentage of the total air can be also provided through the hopper or hopper throat forming the bottom of the furnace, or through the boiler hopper side walls. A shallow angle impeller design also advances the purpose of the invention which is to reduce CO and H.sub.2 S admissions while maintaining low NO.sub.x generation.

  2. Ultralean low swirl burner

    DOE Patents [OSTI]

    Cheng, Robert K.

    1998-01-01

    A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame.

  3. Ultralean low swirl burner

    DOE Patents [OSTI]

    Cheng, R.K.

    1998-04-07

    A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame. 11 figs.

  4. FRONT BURNER- Issue 20

    Broader source: Energy.gov [DOE]

    The Cybersecurity Front Burner Issue No. 20 examines Phishing to include defining Phishing and related terms and how to protect yourself from this very common and clever security threat. The newsletter also addresses wireless networks, supply chains, training events, and readily available cybersecurity resources. Stay cyber informed and check it out!

  5. Slurry burner for mixture of carbonaceous material and water

    DOE Patents [OSTI]

    Nodd, D.G.; Walker, R.J.

    1985-11-05

    The present invention is intended to overcome the limitations of the prior art by providing a fuel burner particularly adapted for the combustion of carbonaceous material-water slurries which includes a stationary high pressure tip-emulsion atomizer which directs a uniform fuel into a shearing air flow as the carbonaceous material-water slurry is directed into a combustion chamber, inhibits the collection of unburned fuel upon and within the atomizer, reduces the slurry to a collection of fine particles upon discharge into the combustion chamber, and regulates the operating temperature of the burner as well as primary air flow about the burner and into the combustion chamber for improved combustion efficiency, no atomizer plugging and enhanced flame stability.

  6. High efficiency gas burner

    DOE Patents [OSTI]

    Schuetz, Mark A.

    1983-01-01

    A burner assembly provides for 100% premixing of fuel and air by drawing the air into at least one high velocity stream of fuel without power assist. Specifically, the nozzle assembly for injecting the fuel into a throat comprises a plurality of nozzles in a generally circular array. Preferably, swirl is imparted to the air/fuel mixture by angling the nozzles. The diffuser comprises a conical primary diffuser followed by a cusp diffuser.

  7. Rotary Burner Demonstration Fact Sheet

    SciTech Connect (OSTI)

    2003-07-01

    A new Calcpos rotary burner (CRB), eliminates electric motors, providing a simple, cost effective means of retrofitting existing fired heaters for energy and environmental reasons.

  8. Coal-water mixture fuel burner

    DOE Patents [OSTI]

    Brown, T.D.; Reehl, D.P.; Walbert, G.F.

    1985-04-29

    The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.

  9. Radial lean direct injection burner

    DOE Patents [OSTI]

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  10. Burner balancing Salem Harbor Station

    SciTech Connect (OSTI)

    Sload, A.W.; Dube, R.J.

    1995-12-31

    The traditional method of burner balancing is first to determine the fuel distribution, then to measure the economizer outlet excess oxygen distribution and to adjust the burners accordingly. Fuel distribution is typically measured by clean and dirty air probing. Coal pipe flow can then be adjusted, if necessary, through the use of coal pipe orificing or by other means. Primary air flow must be adjusted to meet the design criteria of the burner. Once coal pipe flow is balanced to within the desired criteria, secondary air flow to individual burners can be changed by adjusting windbox dampers, burner registers, shrouds or other devices in the secondary air stream. This paper discusses problems encountered in measuring excess O{sub 2} at the economizer outlet. It is important to recognize that O{sub 2} measurements at the economizer outlet, by themselves, can be very misleading. If measurement problems are suspected or encountered, an alternate approach similar to that described should be considered. The alternate method is not only useful for burner balancing but also can be used to help in calibrating the plant excess O{sub 2} instruments and provide an on line means of cross-checking excess air measurements. Balanced burners operate closer to their design stoichiometry, providing better NO{sub x} reduction. For Salem Harbor Station, this means a significant saving in urea consumption.

  11. Catalyzed Ceramic Burner Material

    SciTech Connect (OSTI)

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant

  12. GNEP Element:Develop Advanced Burner Reactors | Department of...

    Office of Environmental Management (EM)

    Develop Advanced Burner Reactors GNEP Element:Develop Advanced Burner Reactors An article describing burner reactors and the role in GNEP. PDF icon GNEP Element:Develop Advanced...

  13. Burner ignition system

    DOE Patents [OSTI]

    Carignan, Forest J.

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  14. Cybersecurity Front Burner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Training » Cybersecurity Training Warehouse » DOE Cybersecurity Awareness Program » Cybersecurity Front Burner Cybersecurity Front Burner Documents Available for Download January 15, 2015 FRONT BURNER - Issue 20 The Cybersecurity Front Burner Issue No. 20 examines Phishing to include defining Phishing and related terms and how to protect yourself from this very common and clever security threat. The newsletter also addresses wireless networks, supply chains, training events, and

  15. Uniform-burning matrix burner

    DOE Patents [OSTI]

    Bohn, Mark S.; Anselmo, Mark

    2001-01-01

    Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

  16. Slurry burner for mixture of carbonaceous material and water

    DOE Patents [OSTI]

    Nodd, Dennis G.; Walker, Richard J.

    1987-01-01

    A carbonaceous material-water slurry burner includes a high pressure tip-emulsion atomizer for directing a carbonaceous material-water slurry into a combustion chamber for burning therein without requiring a support fuel or oxygen enrichment of the combustion air. Introduction of the carbonaceous material-water slurry under pressure forces it through a fixed atomizer wherein the slurry is reduced to small droplets by mixing with an atomizing air flow and directed into the combustion chamber. The atomizer includes a swirler located immediately adjacent to where the fuel slurry is introduced into the combustion chamber and which has a single center channel through which the carbonaceous material-water slurry flows into a plurality of diverging channels continuous with the center channel from which the slurry exits the swirler immediately adjacent to an aperture in the combustion chamber. The swirler includes a plurality of slots around its periphery extending the length thereof through which the atomizing air flows and by means of which the atomizing air is deflected so as to exert a maximum shear force upon the carbonaceous material-water slurry as it exits the swirler and enters the combustion chamber. A circulating coolant system or boiler feed water is provided around the periphery of the burner along the length thereof to regulate burner operating temperature, eliminate atomizer plugging, and inhibit the generation of sparklers, thus increasing combustion efficiency. A secondary air source directs heated air into the combustion chamber to promote recirculation of the hot combustion gases within the combustion chamber.

  17. Low-Emissions Burner Technology using Biomass-Derived Liquid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels This factsheet describes a project that ...

  18. Computational fluid dynamics in oil burner design

    SciTech Connect (OSTI)

    Butcher, T.A.

    1997-09-01

    In Computational Fluid Dynamics, the differential equations which describe flow, heat transfer, and mass transfer are approximately solved using a very laborious numerical procedure. Flows of practical interest to burner designs are always turbulent, adding to the complexity of requiring a turbulence model. This paper presents a model for burner design.

  19. Porous radiant burners having increased radiant output

    DOE Patents [OSTI]

    Tong, Timothy W.; Sathe, Sanjeev B.; Peck, Robert E.

    1990-01-01

    Means and methods for enhancing the output of radiant energy from a porous radiant burner by minimizing the scattering and increasing the adsorption, and thus emission of such energy by the use of randomly dispersed ceramic fibers of sub-micron diameter in the fabrication of ceramic fiber matrix burners and for use therein.

  20. Quantum-projection-noise-limited interferometry with coherent atoms in a Ramsey-type setup

    SciTech Connect (OSTI)

    Doering, D.; McDonald, G.; Debs, J. E.; Figl, C.; Altin, P. A.; Bachor, H.-A.; Robins, N. P.; Close, J. D. [Australian Research Council Centre of Excellence for Quantum-Atom Optics, Australian National University, Canberra, 0200 (Australia); Department of Quantum Science, Research School of Physics and Engineering, Australian National University, Canberra, 0200 (Australia)

    2010-04-15

    Every measurement of the population in an uncorrelated ensemble of two-level systems is limited by what is known as the quantum projection noise limit. Here, we present quantum-projection-noise-limited performance of a Ramsey-type interferometer using freely propagating coherent atoms. The experimental setup is based on an electro-optic modulator in an inherently stable Sagnac interferometer, optically coupling the two interfering atomic states via a two-photon Raman transition. Going beyond the quantum projection noise limit requires the use of reduced quantum uncertainty (squeezed) states. The experiment described demonstrates atom interferometry at the fundamental noise level and allows the observation of possible squeezing effects in an atom laser, potentially leading to improved sensitivity in atom interferometers.

  1. Dual-water mixture fuel burner

    DOE Patents [OSTI]

    Brown, Thomas D.; Reehl, Douglas P.; Walbert, Gary F.

    1986-08-05

    A coal-water mixture (CWM) burner includes a conically shaped rotating cup into which fuel comprised of coal particles suspended in a slurry is introduced via a first, elongated inner tube coupled to a narrow first end portion of the cup. A second, elongated outer tube is coaxially positioned about the first tube and delivers steam to the narrow first end of the cup. The fuel delivery end of the inner first tube is provided with a helical slot on its lateral surface for directing the CWM onto the inner surface of the rotating cup in the form of a uniform, thin sheet which, under the influence of the cup's centrifugal force, flows toward a second, open, expanded end portion of the rotating cup positioned immediately adjacent to a combustion chamber. The steam delivered to the rotating cup wets its inner surface and inhibits the coal within the CWM from adhering to the rotating cup. A primary air source directs a high velocity air flow coaxially about the expanded discharge end of the rotating cup for applying a shear force to the CWM in atomizing the fuel mixture for improved combustion. A secondary air source directs secondary air into the combustion chamber adjacent to the outlet of the rotating cup at a desired pitch angle relative to the fuel mixture/steam flow to promote recirculation of hot combustion gases within the ignition zone for increased flame stability.

  2. Spatial vector solitons in a four-level tripod-type atomic system

    SciTech Connect (OSTI)

    Qi Yihong; Huang Ting; Gong Shangqing; Zhou Fengxue; Niu Yueping

    2011-08-15

    We study the generation of weak-light spatial vector solitons in a cold tripod-type atomic system. The condition of generating spatial vector solitons is discussed by analyzing the linear and nonlinear properties of the system. Due to the balance between the enhanced self-phase and cross-phase modulation of the Kerr nonlinearity and the diffraction effect, two orthogonal polarization components of the weak-light probe field can form various spatial vector solitons in the atomic system, such as bright-bright vector solitons and dark-dark vector solitons. We also demonstrate the possibility of generating Manakov spatial vector solitons in this atomic system.

  3. Catalytic reactor with improved burner

    DOE Patents [OSTI]

    Faitani, Joseph J.; Austin, George W.; Chase, Terry J.; Suljak, George T.; Misage, Robert J.

    1981-01-01

    To more uniformly distribute heat to the plurality of catalyst tubes in a catalytic reaction furnace, the burner disposed in the furnace above the tops of the tubes includes concentric primary and secondary annular fuel and air outlets. The fuel-air mixture from the primary outlet is directed towards the tubes adjacent the furnace wall, and the burning secondary fuel-air mixture is directed horizontally from the secondary outlet and a portion thereof is deflected downwardly by a slotted baffle toward the tubes in the center of the furnace while the remaining portion passes through the slotted baffle to another baffle disposed radially outwardly therefrom which deflects it downwardly in the vicinity of the tubes between those in the center and those near the wall of the furnace.

  4. Reverberatory screen for a radiant burner

    DOE Patents [OSTI]

    Gray, Paul E.

    1999-01-01

    The present invention relates to porous mat gas fired radiant burner panels utilizing improved reverberatory screens. The purpose of these screens is to boost the overall radiant output of the burner relative to a burner using no screen and the same fuel-air flow rates. In one embodiment, the reverberatory screen is fabricated from ceramic composite material, which can withstand higher operating temperatures than its metallic equivalent. In another embodiment the reverberatory screen is corrugated. The corrugations add stiffness which helps to resist creep and thermally induced distortions due to temperature or thermal expansion coefficient differences. As an added benefit, it has been unexpectedly discovered that the corrugations further increase the radiant efficiency of the burner. In a preferred embodiment, the reverberatory screen is both corrugated and made from ceramic composite material.

  5. Silane-propane ignitor/burner

    DOE Patents [OSTI]

    Hill, Richard W.; Skinner, Dewey F.; Thorsness, Charles B.

    1985-01-01

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  6. Silane-propane ignitor/burner

    DOE Patents [OSTI]

    Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

    1983-05-26

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  7. Burners and combustion apparatus for carbon nanomaterial production

    DOE Patents [OSTI]

    Alford, J. Michael; Diener, Michael D.; Nabity, James; Karpuk, Michael

    2007-10-09

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  8. Burners and combustion apparatus for carbon nanomaterial production

    DOE Patents [OSTI]

    Alford, J. Michael; Diener, Michael D; Nabity, James; Karpuk, Michael

    2013-02-05

    The invention provides improved burners, combustion apparatus, and methods for carbon nanomaterial production. The burners of the invention provide sooting flames of fuel and oxidizing gases. The condensable products of combustion produced by the burners of this invention produce carbon nanomaterials including without limitation, soot, fullerenic soot, and fullerenes. The burners of the invention do not require premixing of the fuel and oxidizing gases and are suitable for use with low vapor pressure fuels such as those containing substantial amounts of polyaromatic hydrocarbons. The burners of the invention can operate with a hot (e.g., uncooled) burner surface and require little, if any, cooling or other forms of heat sinking. The burners of the invention comprise one or more refractory elements forming the outlet of the burner at which a flame can be established. The burners of the invention provide for improved flame stability, can be employed with a wider range of fuel/oxidizer (e.g., air) ratios and a wider range of gas velocities, and are generally more efficient than burners using water-cooled metal burner plates. The burners of the invention can also be operated to reduce the formation of undesirable soot deposits on the burner and on surfaces downstream of the burner.

  9. CHP Integrated with Burners for Packaged Boilers

    SciTech Connect (OSTI)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  10. J.R. Simplot: Burner Upgrade Project Improves Performance and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant J.R. Simplot: Burner Upgrade Project Improves Performance and Saves ...

  11. Check Burner Air to Fuel Ratios | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Burner Air to Fuel Ratios Check Burner Air to Fuel Ratios This tip sheet discusses when to check and reset burner air to fuel ratios as well as why it's a simply way to maximize the efficiency of process heating equipment. PROCESS HEATING TIP SHEET #2 Check Burner Air to Fuel Ratios (November 2007) (260.29 KB) More Documents & Publications Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical

  12. Modernizing furnaces with recuperative burners in the metal industry

    SciTech Connect (OSTI)

    Berdoulay, F.; Drewery, P.

    1982-01-01

    Industrial burners equipped with means of preheating the combustion air with the hot combustion products offer significant savings in heat-processing energy consumption. As evidence in some forging furnaces recently outfitted with recuperative burners, reductions in energy consumption range from 30 to 60%. Such burners are particularly well-suited for high-temperature, direct-heating furnaces.

  13. Combustion characteristics and NOx emissions of two kinds of swirl burners in a 300-MWe wall-fired pulverized-coal utility boiler

    SciTech Connect (OSTI)

    Li, Z.Q.; Jing, J.P.; Chen, Z.C.; Ren, F.; Xu, B.; Wei, H.D.; Ge, Z.H.

    2008-07-01

    Measurements were performed in a 300-MWe wall-fired pulverized-coal utility boiler. Enhanced ignition-dual register (EI-DR) burners and centrally fuel rich (CFR) swirl coal combustion burners were installed in the bottom row of the furnace during experiments. Local mean concentrations of O{sub 2}, CO, CO{sub 2} and NOx gas species, gas temperatures, and char burnout were determined in the region of the two types of burners. For centrally fuel rich swirl coal combustion burners, local mean CO concentrations, gas temperatures and the temperature gradient are higher and mean concentrations of O{sub 2} and NOx along the jet flow direction in the burner region are lower than for the enhanced ignition-dual register burners. Moreover, the mean O{sub 2} concentration is higher and the gas temperature and mean CO concentration are lower in the side wall region. For centrally fuel rich swirl coal combustion burners in the bottom row, the combustion efficiency of the boiler increases from 96.73% to 97.09%, and NOx emission decreases from 411.5 to 355 ppm at 6% O{sub 2} compared to enhanced ignition-dual register burners and the boiler operates stably at 110 MWe without auxiliary fuel oil.

  14. Fuel burner and combustor assembly for a gas turbine engine

    DOE Patents [OSTI]

    Leto, Anthony

    1983-01-01

    A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

  15. Refinery burner simulation design architecture summary.

    SciTech Connect (OSTI)

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  16. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    SciTech Connect (OSTI)

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  17. Method for reducing NOx during combustion of coal in a burner

    DOE Patents [OSTI]

    Zhou, Bing; Parasher, Sukesh; Hare, Jeffrey J.; Harding, N. Stanley; Black, Stephanie E.; Johnson, Kenneth R.

    2008-04-15

    An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

  18. Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactors | Department of Energy Develop Advanced Burner Reactors Global Nuclear Energy Partnership Fact Sheet - Develop Advanced Burner Reactors GNEP will develop and demonstrate Advanced Burner Reactors (ABRs) that consume transuranic elements (plutonium and other long-lived radioactive material) while extracting their energy. The development of ABRs will allow us to build an improved nuclear fuel cycle that recycles used fuel. Accordingly, the U.S. will work with participating

  19. Shielded flashback-resistant diffusion flame burner for combustion diagnostics

    SciTech Connect (OSTI)

    Krupa, R.J.; Zizak, G.; Winefordner, J.D.

    1986-10-15

    A burner design is presented which is of general utility for combustion diagnostics of high temperature, high burning velocity flames. (AIP)

  20. Scalable, Efficient Solid Waste Burner System - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A system that effectively burns solid human waste where traditional waste management ... is a semi-gasifier, burner device to process solid waste, particularly solid human waste. ...

  1. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect (OSTI)

    Ray Chamberland; Aku Raino; David Towle

    2006-09-30

    For more than two decades, ALSTOM Power Inc. (ALSTOM) has developed a range of low cost, in-furnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes ALSTOM's internally developed TFS 2000 firing system, and various enhancements to it developed in concert with the U.S. Department of Energy (DOE). As of 2004, more than 200 units representing approximately 75,000 MWe of domestic coal fired capacity have been retrofit with ALSTOM low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coals to 0.10 lb/MMBtu for subbituminous coals, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing (retrofit) boiler equipment. If enacted, proposed Clear Skies legislation will, by 2008, require an average, effective, domestic NOx emissions rate of 0.16 lb/MMBtu, which number will be reduced to 0.13 lb/MMBtu by 2018. Such levels represent a 60% and 67% reduction, respectively, from the effective 2000 level of 0.40 lb/MMBtu. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. In light of these needs, ALSTOM, in cooperation with the DOE, is developing an enhanced combustion, low NOx pulverized coal burner which, when integrated with ALSTOM's state-of-the-art, globally air staged low NOx firing systems, will provide a means to achieve less than 0.15 lb/MMBtu NOx at less than 3/4 the cost of an SCR with low to no impact on balance of plant issues when firing a high volatile bituminous coal. Such coals can be more economic to fire than subbituminous or Powder River Basin (PRB) coals, but are more problematic from a NOx control standpoint as existing

  2. Combined Heat and Power Integrated with Burners for Packaged Boilers

    SciTech Connect (OSTI)

    2010-10-01

    This factsheet describes a project that will seamlessly integrate a gas-fired simple-cycle 100 kWe microturbine with a new ultra-low NOx gas-fired burner to develop a CHP assembly called the Boiler Burner Energy System Technology.

  3. Fuel burner having a intermittent pilot with pre-ignition testing

    SciTech Connect (OSTI)

    Peterson, S.M.

    1991-07-30

    This patent describes improvement in a fuel burner having a main burner and a pilot burner for lighting the main burner, an electrically-powered igniter for lighting the pilot burner, a source of electric energy, an igniter power supply receiving a demand signal and supplying power to the igniter responsive to the demand signal, a pilot sensor adjacent to the pilot burner and supplying a pilot signal responsive to presence of a pilot flame, and a main burner valve controlling flow of fuel to the main burner and opening responsive to the pilot signal. The improvement comprises: a pilot burner valve controlling flow of fuel to the pilot burner and opening responsive to a pilot valve control signal; igniter sensing means in sensing relation to the igniter for providing an igniter signal responsive to operation of the igniter; and pilot valve control means receiving the igniter signal, for providing the pilot valve control signal responsive to the igniter signal.

  4. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    SciTech Connect (OSTI)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a

  5. Research, development, and testing of a prototype two-stage low-input rate oil burner for variable output heating system applications

    SciTech Connect (OSTI)

    Krajewski, R.F.; Butcher, T.A.

    1997-09-01

    The use of a Two-Stage Fan Atomized Oil Burner (TSFAB) in space and water heating applications will have dramatic advantages in terms of it`s potential for a high Annual Fuel Utilization Efficiency (AFUE) and/or Energy Factor (EF) rating for the equipment. While demonstrations of a single rate burner in an actual application have already yielded sufficient confidence that space and domestic heating loads can be met at a single low firing rate, this represents only a narrow solution to the diverse nature of building space heating and domestic water loads that the industry must address. The mechanical development, proposed control, and testing of the Two-Stage burner is discussed in terms of near term and long term goals.

  6. Upgrade Boilers with Energy-Efficient Burners | Department of...

    Energy Savers [EERE]

    STEAM TIP SHEET 24 Upgrade Boilers with Energy-Efficient Burners (January 2012) (416.98 ... Improve Your Boiler's Combustion Efficiency Minimize Boiler Short Cycling Losses J.R. ...

  7. Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Burner Cogenerates Jobs and Electricity from Lumber Mill Waste Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste December 6, 2011 - 3:57pm Addthis Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo courtesy of Washington DNR.

  8. SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lumber Mill Waste | Department of Energy Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste SEP Success Story: Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste December 6, 2011 - 11:20am Addthis Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S.

  9. Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls

    SciTech Connect (OSTI)

    Marc Cremer; Dave Wang; Connie Senior; Andrew Chiodo; Steven Hardy; Paul Wolff

    2005-07-01

    defined in order to accommodate sensitivity analyses of the results. The sensitivity analyses provide a strategy for quantifying the rate of change of NOx or unburned carbon in the fly ash to a rate of change in secondary air or fuel or stoichiometric ratio for individual burners or groups of burners in order to assess the value associated with individual burner flow control. In addition, the sensitivity coefficients that were produced provide a basis for quantifying the differences in sensitivities for the different boiler types. In a ranking of the sensitivity of NOx emissions to variations in secondary air flow between the burners at a fixed lower furnace stoichiometric ratio in order of least sensitive to most sensitive, the results were: (1) 600 MW T-Fired Unit; (2) 500 MW Opposed Wall-Fired Unit; (3) 150 MW Wall-Fired Unit; (4) 100 MW T-Fired Unit; and (5) 330 MW Cyclone-Fired Unit.

  10. Advanced burner test reactor preconceptual design report.

    SciTech Connect (OSTI)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an

  11. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect (OSTI)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic

  12. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-09-04

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

  13. Flame quality monitor system for fixed firing rate oil burners

    DOE Patents [OSTI]

    Butcher, Thomas A.; Cerniglia, Philip

    1992-01-01

    A method and apparatus for determining and indicating the flame quality, or efficiency of the air-fuel ratio, in a fixed firing rate heating unit, such as an oil burning furnace, is provided. When the flame brightness falls outside a preset range, the flame quality, or excess air, has changed to the point that the unit should be serviced. The flame quality indicator output is in the form of lights mounted on the front of the unit. A green light indicates that the flame is about in the same condition as when the burner was last serviced. A red light indicates a flame which is either too rich or too lean, and that servicing of the burner is required. At the end of each firing cycle, the flame quality indicator goes into a hold mode which is in effect during the period that the burner remains off. A yellow or amber light indicates that the burner is in the hold mode. In this mode, the flame quality lights indicate the flame condition immediately before the burner turned off. Thus the unit can be viewed when it is off, and the flame condition at the end of the previous firing cycle can be observed.

  14. Advanced Burner Reactor Preliminary NEPA Data Study.

    SciTech Connect (OSTI)

    Briggs, L. L.; Cahalan, J. E.; Deitrich, L. W.; Fanning, T. H.; Grandy, C.; Kellogg, R.; Kim, T. K.; Yang, W. S.; Nuclear Engineering Division

    2007-10-15

    The Global Nuclear Energy Partnership (GNEP) is a new nuclear fuel cycle paradigm with the goals of expanding the use of nuclear power both domestically and internationally, addressing nuclear waste management concerns, and promoting nonproliferation. A key aspect of this program is fast reactor transmutation, in which transuranics recovered from light water reactor spent fuel are to be recycled to create fast reactor transmutation fuels. The benefits of these fuels are to be demonstrated in an Advanced Burner Reactor (ABR), which will provide a representative environment for recycle fuel testing, safety testing, and modern fast reactor design and safeguard features. Because the GNEP programs will require facilities which may have an impact upon the environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), preparation of a Programmatic Environmental Impact Statement (PEIS) for GNEP is being undertaken by Tetra Tech, Inc. The PEIS will include a section on the ABR. In support of the PEIS, the Nuclear Engineering Division of Argonne National Laboratory has been asked to provide a description of the ABR alternative, including graphics, plus estimates of construction and operations data for an ABR plant. The compilation of this information is presented in the remainder of this report. Currently, DOE has started the process of engaging industry on the design of an Advanced Burner Reactor. Therefore, there is no specific, current, vendor-produced ABR design that could be used for this PEIS datacall package. In addition, candidate sites for the ABR vary widely as to available water, geography, etc. Therefore, ANL has based its estimates for construction and operations data largely on generalization of available information from existing plants and from the environmental report assembled for the Clinch River Breeder Reactor Plant (CRBRP) design [CRBRP, 1977]. The CRBRP environmental report was chosen as a resource because it thoroughly

  15. Phase control of group velocity in a dielectric slab doped with three-level ladder-type atoms

    SciTech Connect (OSTI)

    Jafari, D. [Department of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of); Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of); Sahrai, M. [Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of); Motavalli, H. [Department of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of); Mahmoudi, M. [Department of Physics, University of Zanjan, P.O. Box 45195-313, Zanjan (Iran, Islamic Republic of)

    2011-12-15

    Propagation of an electromagnetic pulse through a dielectric slab doped with three-level ladder-type atomic systems is discussed. It is shown that the group velocity of the reflected and transmitted pulses can be switched from subluminal to superluminal light propagation by the thickness of the slab or the intensity of the coupling field. Furthermore, it is found that, in the presence of quantum interference, the reflected and transmitted pulses are completely phase dependent. So, the group velocity of the reflected and transmitted pulses can only be switched from subluminal to superluminal by adjusting the relative phase of the applied fields.

  16. Putting into practice the theory of atmospheric air induction: bench tests on industrial burners

    SciTech Connect (OSTI)

    Douspis, M.

    1982-01-01

    In order to demonstrate certain air-entrainment principles established earlier, tests were conducted on atmospheric industrial burners, relating burner performance to these principles. The study confirmed that (1) the performance of a burner can be predicted by examining its design in terms of air entrainment and (2) the performance limits of air induction burners depend upon air-entrainment laws rather than combustion-stability principles.

  17. CHP Integrated with Burners for Packaged Boilers - Fact Sheet, April 2014 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CHP Integrated with Burners for Packaged Boilers - Fact Sheet, April 2014 CHP Integrated with Burners for Packaged Boilers - Fact Sheet, April 2014 CMCE, Inc., in collaboration with Altex Technologies Corporation, developed the Boiler Burner Energy System Technology (BBEST), a CHP assembly of a gas-fired simple-cycle 100 kilowatt (kW) microturbine and a new ultra-low NOx gas-fired burner, to increase acceptance of small CHP systems.

  18. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels

    Broader source: Energy.gov [DOE]

    Factsheet summarizing Univ. of Alabama project to save energy and reduce emissions with fuel-flexible burners

  19. Development of quick repairing technique for ceramic burner in hot stove of blast furnace

    SciTech Connect (OSTI)

    Kondo, Atsushi; Doura, Kouji; Nakamura, Hirofumi

    1997-12-31

    Refractories of ceramic burner in hot stoves at Wakayama No. 4 blast furnace were damaged. There are only three hot stoves, so repairing must be done in a short. Therefore, a quick repairing technique for ceramic burners has been developed, and two ceramic burners were repaired in just 48 hours.

  20. The zero age main sequence of WIMP burners

    SciTech Connect (OSTI)

    Fairbairn, Malcolm; Scott, Pat; Edsjoe, Joakim

    2008-02-15

    We modify a stellar structure code to estimate the effect upon the main sequence of the accretion of weakly-interacting dark matter onto stars and its subsequent annihilation. The effect upon the stars depends upon whether the energy generation rate from dark matter annihilation is large enough to shut off the nuclear burning in the star. Main sequence weakly-interacting massive particles (WIMP) burners look much like proto-stars moving on the Hayashi track, although they are in principle completely stable. We make some brief comments about where such stars could be found, how they might be observed and more detailed simulations which are currently in progress. Finally we comment on whether or not it is possible to link the paradoxically hot, young stars found at the galactic center with WIMP burners.

  1. Downhole burner systems and methods for heating subsurface formations

    DOE Patents [OSTI]

    Farmayan, Walter Farman; Giles, Steven Paul; Brignac, Jr., Joseph Phillip; Munshi, Abdul Wahid; Abbasi, Faraz; Clomburg, Lloyd Anthony; Anderson, Karl Gregory; Tsai, Kuochen; Siddoway, Mark Alan

    2011-05-31

    A gas burner assembly for heating a subsurface formation includes an oxidant conduit, a fuel conduit, and a plurality of oxidizers coupled to the oxidant conduit. At least one of the oxidizers includes a mix chamber for mixing fuel from the fuel conduit with oxidant from the oxidant conduit, an igniter, and a shield. The shield includes a plurality of openings in communication with the oxidant conduit. At least one flame stabilizer is coupled to the shield.

  2. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Caner Yurteri

    2001-08-20

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO{sub x} burner geometry's.

  3. 01-12-1998 - Bench Top FIre Involving Use of Alcohol and Burner...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1998 - Bench Top FIre Involving Use of Alcohol and Burner Document Number: NA Effective Date: 011998 File (public): PDF icon 01-12-1998...

  4. Development of the Radiation Stabilized Distributed Flux Burner - Phase III Final Report

    SciTech Connect (OSTI)

    J. D. Sullivan; A. Webb

    1999-12-01

    The development and demonstration of the Radiation Stabilized Burner (RSB) was completed as a project funded by the US Department of Energy Office of Industrial Technologies. The technical goals of the project were to demonstrate burner performance that would meet or exceed emissions targets of 9 ppm NOx, 50 ppm CO, and 9 ppm unburned hydrocarbons (UHC), with all values being corrected to 3 percent stack oxygen, and incorporate the burner design into a new industrial boiler configuration that would achieve ultra-low emissions while maintaining or improving thermal efficiency, operating costs, and maintenance costs relative to current generation 30 ppm low NOx burner installations. Both the ultra-low NOx RSB and the RSB boiler-burner package are now commercially available.

  5. Two Keggin-type heteropolytungstates with transition metal as a central atom: Crystal structure and magnetic study with 2D-IR correlation spectroscopy

    SciTech Connect (OSTI)

    Chai, Feng [Department of Chemistry, Fuzhou University, Fuzhou 350108 (China); Chen, YiPing, E-mail: ypchen007@sina.com [Department of Chemistry, Fuzhou University, Fuzhou 350108 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); You, ZhuChai; Xia, ZeMin; Ge, SuZhi; Sun, YanQiong; Huang, BiHua [Department of Chemistry, Fuzhou University, Fuzhou 350108 (China)

    2013-06-01

    Two Keggin-type heteropolytungstates, [Co(phen)?]?[CoW??O??]9H?O 1 (phen=1,10-phenanthroline) and [Fe(phen)?]?[FeW??O??]H?OH?O 2, have been synthesized via the hydrothermal technique and characterized by single crystal X-ray diffraction analyses, IR, XPS, TG analysis, UVDRS, XRD, thermal-dependent and magnetic-dependent 2D-COS IR (two-dimensional infrared correlation spectroscopy). Crystal structure analysis reveals that the polyanions in compound 1 are linked into 3D supramolecule through hydrogen bonding interactions between lattice water molecules and terminal oxygen atoms of polyanion units, and [Co(phen)?]? cations distributed in the polyanion framework with many hydrogen bonding interactions. The XPS spectra indicate that all the Co atoms in 1 are +2 oxidation state, the Fe atoms in 2 existing with +2 and +3 mixed oxidation states. - Graphical abstract: The magnetic-dependent synchronous 2D correlation IR spectra of 1 (a), 2 (b) over 050 mT in the range of 6001000 cm?, the obvious response indicate two Keggin polyanions skeleton susceptible to applied magnetic field. Highlights: Two Keggin-type heteropolytungstates with transition metal as a central atom has been obtained. Compound 1 forms into 3D supramolecular architecture through hydrogen bonding between water molecules and polyanions. Magnetic-dependent 2D-IR correlation spectroscopy was introduced to discuss the magnetism of polyoxometalate.

  6. Process and apparatus for igniting a burner in an inert atmosphere

    DOE Patents [OSTI]

    Coolidge, Dennis W. (Katy, TX); Rinker, Franklin G. (Perrysburg, OH)

    1994-01-01

    According to this invention there is provided a process and apparatus for the ignition of a pilot burner in an inert atmosphere without substantially contaminating the inert atmosphere. The process includes the steps of providing a controlled amount of combustion air for a predetermined interval of time to the combustor then substantially simultaneously providing a controlled mixture of fuel and air to the pilot burner and to a flame generator. The controlled mixture of fuel and air to the flame generator is then periodically energized to produce a secondary flame. With the secondary flame the controlled mixture of fuel and air to the pilot burner and the combustion air is ignited to produce a pilot burner flame. The pilot burner flame is then used to ignited a mixture of main fuel and combustion air to produce a main burner flame. The main burner flame then is used to ignite a mixture of process derived fuel and combustion air to produce products of combustion for use as an inert gas in a heat treatment process.

  7. Low NO{sub x} combustion system with DSVS{trademark} rotating classifier retrofit for a 630 MW{sub e} cell burner unit

    SciTech Connect (OSTI)

    Bryk, S.A.; Maringo, G.J.; Shah, A.I.; Madden, V.F.

    1996-12-31

    New England Power Company`s (NEP) 630 MW{sub e} Brayton Point Unit 3 is a universal pressure (UP) type supercritical boiler originally equipped with pulverized coal (PC) fired cell burners. In order to comply with the Phase 1 NO{sub x} emissions requirements under Title I of the 1990 Clean Air Act Amendments, the unit has been retrofitted with a low NO{sub x} staged combustion system during the spring 1995 outage. The unit was restarted in early May 1995 and was operating under the State Compliance emission levels by the end of the month. Additional optimization testing was performed in August, 1995. The retrofit scope consisted of replacing the cell burners with low NO{sub x} DRB-XCL{reg_sign} type PC/oil burners and overfire air ports within the existing open windbox, with no change in the firing pattern. A 70% NO{sub x} reduction from baseline levels was achieved while maintaining acceptable unburned carbon (UBC) and carbon monoxide (CO) emission levels. To maintain low UBC levels, the scope included modifying the MPS-89 pulverizers by replacing the existing stationary classifiers with the B and W DSVS{trademark} (Dynamically Staged Variable Speed) two stage rotating classifiers. The DSVS{trademark} classifiers provide higher fineness for UBC control without derating the mill capacity. This paper will describe the project and discuss the retrofit emissions data. The paper will conclude with recommendations for retrofitting other similarly designed units.

  8. J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at a Large Food Processing Plant | Department of Energy J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant This case study describes how the J.R. Simplot Company saved energy and money by increasing the efficiency of the steam system in its potato processing plant in Caldwell, Idaho. J.R. Simplot: Burner Upgrade Project Improves

  9. Optimization of burners for firing solid fuel and natural gas for boilers with impact pulverizers

    SciTech Connect (OSTI)

    G.T. Levit; V.Ya. Itskovich; A.K. Solov'ev (and others) [ORGRES Company (Russian Federation)

    2003-01-15

    The design of a burner with preliminary mixing of fuel and air for alternate or joint firing of coal and natural gas on a boiler is described. The burner provides steady ignition and economical combustion of coal, low emission of NOx in both operating modes, and possesses an ejecting effect sufficient for operation of pulverizing systems with a shaft mill under pressure. The downward inclination of the burners makes it possible to control the position of the flame in the furnace and the temperature of the superheated steam.

  10. Co-firing coal-water slurry in low-NOx burners: Experience at...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Co-firing coal-water slurry in low-NOx burners: Experience at Penelecs Seward Station Citation Details In-Document Search Title: Co-firing coal-water slurry in ...

  11. 01-12-1998 - Bench Top FIre Involving Use of Alcohol and Burner | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory 1998 - Bench Top FIre Involving Use of Alcohol and Burner Document Number: NA Effective Date: 01/1998 File (public): PDF icon 01-12-1998

  12. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    Work on process design and LNS Burner design was deferred during this period, pending a reassessment of the project by TransAlta prior to commencement of Budget Period II, and only limited Balance of Plant engineering work was done.

  13. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels

    SciTech Connect (OSTI)

    2010-07-01

    The University of Alabama will develop fuel-flexible, low-emissions burner technology for the metal processing industry that is capable of using biomass-derived liquid fuels, such as glycerin or fatty acids, as a substitute for natural gas. By replacing a fossil fuel with biomass fuels, this new burner will enable a reduction in energy consumption and greenhouse gas emissions and an increase in fuel flexibility.

  14. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved

    Office of Scientific and Technical Information (OSTI)

    Economics and Resource Utilization (Technical Report) | SciTech Connect Technical Report: Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization Citation Details In-Document Search Title: Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction

  15. Low No sub x /SO sub x burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Moore, K.; Martin, L.; Smith, J.

    1991-05-01

    The Low NO{sub x}/SO{sub x} (LNS) Burner Retrofit for Utility Cyclone Boilers program consists of the retrofit and subsequent demonstration of the technology at Southern Illinois Power Cooperative's (SIPC's) 33-MW unit 1 cyclone boiler located near Marion, Illinois. The LNS Burner employs a simple innovative combustion process burning high-sulfur Illinois coal to provide substantial SO{sub 2} and NO{sub x} control within the burner. A complete series of boiler performance and characterization tests, called the baseline tests, was conducted in October 1990 on unit 1 of SIPC's Marion Station. The primary objective of the baseline test was to collect data from the existing plant that could provide a comparison of performance after the LNS Burner retrofit. These data could confirm the LNS Burner's SO{sub x} and NO{sub x} emissions control and any effect on boiler operation. Further, these tests would provide to the project experience with the operating characteristics of the host unit as well as engineering design information to minimize technical uncertainties in the application of the LNS Burner technology.

  16. Complete Feshbach-type calculations of energy positions and widths of autoionizing states in Li-like atoms

    SciTech Connect (OSTI)

    Cardona, Juan Carlos; Sanz-Vicario, Jose Luis; Martin, Fernando

    2010-08-15

    Applications of the Feshbach formalism to systems of more than two active electrons are very scarce due to practical limitations in the construction of the projection operators P and Q that are inherent to the theory. As a consequence, most previous applications rely on the use of approximate quasiprojection operators, whose theoretical justification is not yet clear. In this work, an implementation of the Feshbach formalism for three-electron atoms is presented that includes all the ingredients of the original formalism. Energy positions and autoionization widths of the lowest {sup 2}S{sup e}, {sup 2}P{sup o}, and {sup 2}D{sup e} autoionizing states of Li and Ne{sup 7+} have been evaluated. The results show that the use of quasiprojection operators is justified for the evaluation of resonant positions. However, for the {sup 2}S{sup e} states of Li, the use of quasiprojection operators can lead to errors in the autoionization widths of the order of 100%.

  17. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  18. Preliminary safety evaluation of the advanced burner test reactor.

    SciTech Connect (OSTI)

    Dunn, F. E.; Fanning, T. H.; Cahalan, J. E.; Nuclear Engineering Division

    2006-09-15

    Results of a preliminary safety evaluation of the Advanced Burner Test Reactor (ABTR) pre-conceptual design are reported. The ABTR safety design approach is described. Traditional defense-in-depth design features are supplemented with passive safety performance characteristics that include natural circulation emergency decay heat removal and reactor power reduction by inherent reactivity feedbacks in accidents. ABTR safety performance in design-basis and beyond-design-basis accident sequences is estimated based on analyses. Modeling assumptions and input data for safety analyses are presented. Analysis results for simulation of simultaneous loss of coolant pumping power and normal heat rejection are presented and discussed, both for the case with reactor scram and the case without reactor scram. The analysis results indicate that the ABTR pre-conceptual design is capable of undergoing bounding design-basis and beyond-design-basis accidents without fuel cladding failures. The first line of defense for protection of the public against release of radioactivity in accidents remains intact with significant margin. A comparison and evaluation of general safety design criteria for the ABTR conceptual design phase are presented in an appendix. A second appendix presents SASSYS-1 computer code capabilities and modeling enhancements implemented for ABTR analyses.

  19. Development and certification of the innovative pioneer oil burner for residential heating appliances

    SciTech Connect (OSTI)

    Kamath, B.

    1997-09-01

    The Pioneer burner represents another important milestone for the oil heat industry. It is the first practical burner design that is designated for use in small capacity heating appliances matching the needs of modern energy efficient home designs. Firing in the range of 0.3 GPH to 0.65 GPH (40,000-90,000 Btu/hr) it allows for new oil heating appliance designs to compete with the other major fuel choices in the small design load residential market. This market includes energy efficient single family houses, town-houses, condominiums, modular units, and mobile homes. The firing range also is wide enough to cover a large percentage of more conventional heating equipment and home designs as well. Having recently passed Underwriters Laboratory certification tests the burner in now being field tested in several homes and samples are being made available to interested boiler and furnace manufacturers for product development and application testing.

  20. Pollutant emissions reduction and performance optimization of an industrial radiant tube burner

    SciTech Connect (OSTI)

    Scribano, Gianfranco; Solero, Giulio; Coghe, Aldo

    2006-07-15

    This paper presents the results of an experimental investigation performed upon a single-ended self-recuperative radiant tube burner fuelled by natural gas in the non-premixed mode, which is used in the steel industry for surface treatment. The main goal of the research activity was a systematic investigation of the burner aimed to find the best operating conditions in terms of optimum equivalence ratio, thermal power and lower pollutant emissions. The analysis, which focused on the main parameters influencing the thermal efficiency and pollutant emissions at the exhaust (NO{sub x} and CO), has been carried out for different operating conditions of the burner: input thermal powers from 12.8 up to 18kW and equivalence ratio from 0.5 (very lean flame) to 0.95 (quasi-stoichiometric condition). To significantly reduce pollutant emissions ensuring at the same time the thermal requirements of the heating process, it has been developed a new burner configuration, in which a fraction of the exhaust gases recirculates in the main combustion region through a variable gap between the burner efflux and the inner flame tube. This internal recirculation mechanism (exhaust gases recirculation, EGR) has been favoured through the addition of a pre-combustion chamber terminated by a converging nozzle acting as a mixing/ejector to promote exhaust gas entrainment into the flame tube. The most important result of this solution was a decrease of NO{sub x} emissions at the exhaust of the order of 50% with respect to the original burner geometry, for a wide range of thermal power and equivalence ratio. (author)

  1. DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY

    SciTech Connect (OSTI)

    Cygan, David

    2006-12-28

    Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases – blast furnace gas (BFG) and coke-oven gas (COG) – are widely used together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx – thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTI’s highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non

  2. Alternative solutions for reducing NO{sub x} emissions from cell burner boilers

    SciTech Connect (OSTI)

    Mali, E.; Laursen, T.; Piepho, J.

    1996-01-01

    Standard, tightly-spaced cell burners were developed by Babcock & Wilcox during the 1960s in response to economic demands for highly efficient burner designs. However, the downside of this 1960s design is the production of elevated levels of nitrogen oxides (NO{sub x}) emissions which negatively impact the environment. Cell-fired units have been designated as Phase II, Group II boilers under Title IV, Acid Rain Control, of the Clean Air Act Amendments of 1990 for NO{sub x} control. This paper will discuss one technology developed under the auspices of the U.S. Department of Energy`s Clean Coal Technology program for pulverized coal, cell-fired units - namely, the Low NO{sub x} Cell burner (LNCB{reg_sign}) technology. The body of this paper will describe the development of Low NO{sub x} Cell burner technology and examine six follow-on commercial contracts. The purpose of the paper is to identify similarities and differences in design, fuels, costs and performance results when compared against the Clean Coal Technology prototype.

  3. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    Cyclone furnaces operate with high excess air and at high temperature. The heat release during combustion is very high and as a result the boiler volume is much smaller than would be found in a conventional pc-fired system. The Marion Unit 1 boiler, at the level of the cyclone entry, has a small cross-section; about 5-feet in depth and about 20-feet in width. A boiler schematic showing the LNS Burner and relative location of the superheater region and overfire air ports is shown in Figure 1. The LNS Burner's combustion process is fundamentally different from that of the cyclone, and the combustion products are also different. The LNS Burner products enter the boiler as hot, fuel-rich gases. Additional overfire air must be added to complete this combustion step with care taken to avoid the formation of thermal NO{sub x}. If done correctly, S0{sub 2} is controlled and significant NO{sub x} reductions are achieved. Because of the small boiler volume, flow modelling was found to be necessary to insure that adequate mixing of LNS Burner combustion products with air can be accomplished to achieve NO{sub x} emissions goals. Design requirements for the air injection system for the Marion boiler were developed using FLUENT, a commercially available computational fluid dynamics (CFD) code. A series of runs were made to obtain a design for final air injection that met the process design goals as closely as possible.

  4. ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel

    DOE Patents [OSTI]

    Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil; Drnevich, Raymond Francis

    2013-04-02

    The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.

  5. Low No{sub x}/SO{sub x} burner retrofit for utility cyclone boilers. Baseline test report: Issue A

    SciTech Connect (OSTI)

    Moore, K.; Martin, L.; Smith, J.

    1991-05-01

    The Low NO{sub x}/SO{sub x} (LNS) Burner Retrofit for Utility Cyclone Boilers program consists of the retrofit and subsequent demonstration of the technology at Southern Illinois Power Cooperative`s (SIPC`s) 33-MW unit 1 cyclone boiler located near Marion, Illinois. The LNS Burner employs a simple innovative combustion process burning high-sulfur Illinois coal to provide substantial SO{sub 2} and NO{sub x} control within the burner. A complete series of boiler performance and characterization tests, called the baseline tests, was conducted in October 1990 on unit 1 of SIPC`s Marion Station. The primary objective of the baseline test was to collect data from the existing plant that could provide a comparison of performance after the LNS Burner retrofit. These data could confirm the LNS Burner`s SO{sub x} and NO{sub x} emissions control and any effect on boiler operation. Further, these tests would provide to the project experience with the operating characteristics of the host unit as well as engineering design information to minimize technical uncertainties in the application of the LNS Burner technology.

  6. Low NO sub x /SO sub x Burner retrofit for utility cyclone boilers

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE's Clean Coal Technology Program Round II.

  7. Use of freeze-casting in advanced burner reactor fuel design

    SciTech Connect (OSTI)

    Lang, A. L.; Yablinsky, C. A.; Allen, T. R. [Dept. of Engineering Physics, Univ. of Wisconsin Madison, 1500 Engineering Drive, Madison, WI 53711 (United States); Burger, J.; Hunger, P. M.; Wegst, U. G. K. [Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall, Hanover, NH 03755 (United States)

    2012-07-01

    This paper will detail the modeling of a fast reactor with fuel pins created using a freeze-casting process. Freeze-casting is a method of creating an inert scaffold within a fuel pin. The scaffold is created using a directional solidification process and results in open porosity for emplacement of fuel, with pores ranging in size from 300 microns to 500 microns in diameter. These pores allow multiple fuel types and enrichments to be loaded into one fuel pin. Also, each pore could be filled with varying amounts of fuel to allow for the specific volume of fission gases created by that fuel type. Currently fast reactors, including advanced burner reactors (ABR's), are not economically feasible due to the high cost of operating the reactors and of reprocessing the fuel. However, if the fuel could be very precisely placed, such as within a freeze-cast scaffold, this could increase fuel performance and result in a valid design with a much lower cost per megawatt. In addition to competitive costs, freeze-cast fuel would also allow for selective breeding or burning of actinides within specific locations in fast reactors. For example, fast flux peak locations could be utilized on a minute scale to target specific actinides for transmutation. Freeze-cast fuel is extremely flexible and has great potential in a variety of applications. This paper performs initial modeling of freeze-cast fuel, with the generic fast reactor parameters for this model based on EBR-II. The core has an assumed power of 62.5 MWt. The neutronics code used was Monte Carlo N-Particle (MCNP5) transport code. Uniform pore sizes were used in increments of 100 microns. Two different freeze-cast scaffold materials were used: ceramic (MgO-ZrO{sub 2}) and steel (SS316L). Separate models were needed for each material because the freeze-cast ceramic and metal scaffolds have different structural characteristics and overall porosities. Basic criticality results were compiled for the various models. Preliminary

  8. Full-scale demonstration of low-NO{sub x} cell{trademark} burner retrofit. Final report

    SciTech Connect (OSTI)

    Eckhart, C.F.; Kitto, J.B.; Kleisley, R.J.

    1994-07-01

    The objective of the Low-NO{sub x} Cell{trademark}Burner (LNCB{trademark}) demonstration is to evaluate the applicability of this technology for reducing NO{sub x} emissions in full-scale, cell burner-equipped boilers. More precisely, the program objectives are to: (1) Achieve at least a 50% reduction in NO{sub x} emissions. (2) Reduce NO{sub x} with no degradation to boiler performance or life of the unit. (3) Demonstrate a technically and economically feasible retrofit technology. Cell burner equipped boilers comprise 13% of the Pre-New Source Performance Standards (NSPS) coal-fired generating capacity. This relates to 34 operating units generating 23,639 MWe, 29 of which are opposed wall fired with two rows of two-nozzle cell burners on each wall. The host site was one of these 29. Dayton Power & Light offered use of J.M. Stuart Station`s Unit No. 4 as the host site. It was equipped with 24, two-nozzle cell burners arranged in an opposed wall configuration. To reduce NO{sub x} emissions, the LNCB{trademark} has been designed to delay the mixing of the fuel and combustion air. The delayed mixing, or staged combustion, reduces the high temperatures normally generated in the flame of a standard cell burner. A key design criterion for the burner was accomplishing delayed fuel-air mixing with no pressure part modifications to facilitate a {open_quotes}plug-in{close_quotes} design. The plug-in design reduces material costs and outage time required to complete the retrofit, compared to installing conventional, internally staged low-NO{sub x} burners.

  9. Evaluation of Fluid Conduction and Mixing within a Subassembly of the Actinide Burner Test Reactor

    SciTech Connect (OSTI)

    Cliff B. Davis

    2007-09-01

    The RELAP5-3D code is being considered as a thermal-hydraulic system code to support the development of the sodium-cooled Actinide Burner Test Reactor as part of the Global Nuclear Energy Partnership. An evaluation was performed to determine whether the control system could be used to simulate the effects of non-convective mechanisms of heat transport in the fluid, including axial and radial heat conduction and subchannel mixing, that are not currently represented with internal code models. The evaluation also determined the relative importance of axial and radial heat conduction and fluid mixing on peak cladding temperature for a wide range of steady conditions and during a representative loss-of-flow transient. The evaluation was performed using a RELAP5-3D model of a subassembly in the Experimental Breeder Reactor-II, which was used as a surrogate for the Actinide Burner Test Reactor.

  10. COMPUTATIONAL FLUID DYNAMICS BASED INVESTIGATION OF SENSITIVITY OF FURNACE OPERATIONAL CONDITIONS TO BURNER FLOW CONTROLS

    SciTech Connect (OSTI)

    Marc Cremer; Zumao Chen; Dave Wang; Paul Wolff

    2004-06-01

    This is the extended second Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts.

  11. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    SciTech Connect (OSTI)

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-06-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants and they are typically used without venting. The objective of this study is to quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass balance model was applied to estimate time-dependent pollutant concentrations throughout homes and the "exposure concentrations" experienced by individual occupants. The model was applied to estimate nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for one week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs, NO{sub 2} and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of CO and NO{sub 2} were obtained from available databases. Ventilation rates, occupancy patterns, and burner use were inferred from household characteristics. Proximity to the burner(s) and the benefits of using venting range hoods were also explored. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying less than 10%. The simulation model estimates that in homes using NGCBs without coincident use of venting range hoods, 62%, 9%, and 53% of occupants are routinely exposed to NO{sub 2}, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3000, and 20 ppb for NO{sub 2}, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health

  12. Coal Particle Flow Patterns for O2 Enriched, Low NOx Burners

    SciTech Connect (OSTI)

    Jennifer Sinclair Curtis

    2005-08-01

    This project involved a systematic investigation examining the effect of near-flame burner aerodynamics on standoff distance and stability of turbulent diffusion flames and the resultant NO{sub x} emissions from actual pulverized coal diffusion flames. Specifically, the scope of the project was to understand how changes in near-flame aerodynamics and transport air oxygen partial pressure can influence flame attachment and coal ignition, two properties essential to proper operation of low NO{sub x} burners. Results from this investigation utilized a new 2M tall, 0.5m in diameter combustor designed to evaluate near-flame combustion aerodynamics in terms of transport air oxygen partial pressure (Po{sub 2}), coal fines content, primary fuel and secondary air velocities, and furnace wall temperature furnish insight into fundamental processes that occur during combustion of pulverized coal in practical systems. Complementary cold flow studies were conducted in a geometrically similar chamber to analyze the detailed motion of the gas and particles using laser Doppler velocimetry. This final technical report summarizes the key findings from our investigation into coal particle flow patterns in burners. Specifically, we focused on the effects of oxygen enrichment, the effect of fines, and the effect of the nozzle velocity ratio on the resulting flow patterns. In the cold flow studies, detailed measurements using laser Doppler velocimetry (LDV) were made to determine the details of the flow. In the hot flow studies, observations of flame stability and measurements of NO{sub x} were made to determine the effects of the flow patterns on burner operation.

  13. Optimization of Coal Particle Flow Patterns in Low N0x Burners

    SciTech Connect (OSTI)

    Caner Yurteri; Gregory E. Ogden; Jennifer Sinclair; Jost O.L. Wendt

    1998-03-06

    The proposed research is directed at evaluating the effect of flame aerodynamics on NOX emissions tlom coal fired burners in a systematic manner. This fimdamental research includes both experimental and modeling efforts being petiormed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NOX burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow fhrnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The fhrnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NOX burner geometry's.

  14. Reconsideration of natural-gas immersion burners to melt recycled aluminum

    SciTech Connect (OSTI)

    Clark, John A., III; Thekdi, Arvind; Ningileri, S.; Han, Q.

    2005-09-01

    The best open flame reverberatory aluminum melting furnaces are approximately 45% efficient. Furnace efficiency can be increased by using immersed tube burners. Currently, recuperated tube burners with capacities to remelt aluminum are available. Tube burners would allow remelt furnaces to operate at lower temperatures, reduce dross formation, reduce particulate emissions, and provide clean flue gas to other energy intensive processes. Babcock and Wilcox, under GRI (now GTI – Gas Technology Institute) contract in the late-1980’s, demonstrated the technically feasibility of immersion melting of aluminum. However, tube reliability was problematic due to metal penetration, dross build-up, thermal shock, and mechanical failure. Also, the concept of “cold start” melting was not addressed. The Albany Research Center (U.S. DOE) is cooperating with Secat, E3M Inc., the University of Kentucky, and Oak Ridge National Laboratory in an ITP-sponsored program to combine emerging technologies in a retrofitable furnace package targeting improved remelt efficiency ranging from 55% to 75%.

  15. Large eddy simulation of forced ignition of an annular bluff-body burner

    SciTech Connect (OSTI)

    Subramanian, V.; Domingo, P.; Vervisch, L.

    2010-03-15

    The optimization of the ignition process is a crucial issue in the design of many combustion systems. Large eddy simulation (LES) of a conical shaped bluff-body turbulent nonpremixed burner has been performed to study the impact of spark location on ignition success. This burner was experimentally investigated by Ahmed et al. [Combust. Flame 151 (2007) 366-385]. The present work focuses on the case without swirl, for which detailed measurements are available. First, cold-flow measurements of velocities and mixture fractions are compared with their LES counterparts, to assess the prediction capabilities of simulations in terms of flow and turbulent mixing. Time histories of velocities and mixture fractions are recorded at selected spots, to probe the resolved probability density function (pdf) of flow variables, in an attempt to reproduce, from the knowledge of LES-resolved instantaneous flow conditions, the experimentally observed reasons for success or failure of spark ignition. A flammability map is also constructed from the resolved mixture fraction pdf and compared with its experimental counterpart. LES of forced ignition is then performed using flamelet fully detailed tabulated chemistry combined with presumed pdfs. Various scenarios of flame kernel development are analyzed and correlated with typical flow conditions observed in this burner. The correlations between, velocities and mixture fraction values at the sparking time and the success or failure of ignition, are then further discussed and analyzed. (author)

  16. Development of a wood pellet fired burner for space heating applications in the range 5 kW--300 kW

    SciTech Connect (OSTI)

    Whitfield, J.

    1999-07-01

    A compact burner has been developed, fired by wood pellets, which can compete with fossil fuel burners for space heating applications in terms of efficiency, emissions, load following capability, economics, and physical size. Greenhouse gas emissions (CO{sub 2}) are reduced by 80% or more when used to displace fossil fuel fired appliances. This includes consideration of energy use in the pelleting process. The pellet fired burner is a stand-alone hot gas generator that can be externally mounted on an existing hot water boiler, directly replacing an oil or gas fired burner. The boiler thermostat directly controls the burner. Alternatively, the burner can be integrated into a forced air furnace or a dedicated boiler for OEM applications. The burner has been scaled from 20 kW for residential use up to more than 300 kw for commercial applications. The burner incorporates a fuel metering and delivery system, an insulated refractory firebox, an agitated grate system, preheated forced air combustion, and an open loop electronic control. Pellets are delivered from a separate storage bin, and the burner exhausts not gases in excess of 1,000 C from the burner tube. Excess air for combustion is controlled below 30% and emissions, CO and NO, are less than 100 ppm. the burner can be operated at these conditions as low as 30% rated power output. Upon heat demand from the thermostat control, pellets are fed to the grate, they ignite within 2--3 minutes using an electric resistance cartridge heater, and 90% rated power output is reached within 6--8 minutes of ignition. The burner can cycle 2--3 times per hour following the load demand.

  17. ATOM | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACATOM content top Network Optimization Models (RNAS and ATOM) Posted by Admin on Mar 1, 2012 in | Comments 0 comments Many critical infrastructures can be represented by a...

  18. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect (OSTI)

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NO, reduction (70VO) could be achieved. Sponsors of the project included the U.S. Depatiment of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was petformed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado bituminous, low-sulfur coal. It had a baseline NO, emission level of 0.73 lb/1 OG Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50Y0. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NO, in the flue gas by staged fuel combustion. This technology involves the introduction of' natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NO, emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65

  19. Development of the Radiation Stabilized Distributed Flux Burner, Phase II Final Report

    SciTech Connect (OSTI)

    Webb, A.; Sullivan, J.D.

    1997-06-01

    This report covers progress made during Phase 2 of a three-phase DOE-sponsored project to develop and demonstrate the Radiation Stabilized Distributed Flux burner (also referred to as the Radiation Stabilized Burner, or RSB) for use in industrial watertube boilers and process heaters. The goal of the DOE-sponsored work is to demonstrate an industrial boiler burner with NOx emissions below 9 ppm and CO emissions below 50 ppm (corrected to 3% stack oxygen). To be commercially successful, these very low levels of NOx and CO must be achievable without significantly affecting other measures of burner performance such as reliability, turndown, and thermal efficiency. Phase 1 of the project demonstrated that sub-9 ppm NOx emissions and sub-50 ppm CO emissions (corrected to 3% oxygen) could be achieved with the RSB in a 3 million Btu/Hr laboratory boiler using several methods of NOx reduction. The RSB was also tested in a 60 million Btu/hr steam generator used by Chevron for Thermally Enhanced Oil Recovery (TEOR). In the larger scale tests, fuel staging was demonstrated, with the RSB consistently achieving sub-20 ppm NOx and as low as 10 ppm NOx. Large-scale steam generator tests also demonstrated that flue gas recirculation (FGR) provided a more predictable and reliable method of achieving sub-9 ppm NOx levels. Based on the results of tests at San Francisco Thermal and Chevron, the near-term approach selected by Alzeta for achieving low NOx is to use FGR. This decision was based on a number of factors, with the most important being that FGR has proved to be an easier approach to transfer to different facilities and boiler designs. In addition, staging has proved difficult to implement in a way that allows good combustion and emissions performance in a fully modulating system. In Phase 3 of the project, the RSB will be demonstrated as a very low emissions burner product suitable for continuous operation in a commercial installation. As such, the Phase 3 field demonstration

  20. NUCLEAR DATA TARGET ACCURACY REQUIREMENTS FOR MA BURNERS

    SciTech Connect (OSTI)

    G. Palmiotti; M. Salvatores

    2011-06-01

    A nuclear data target accuracy assessment has been carried out for two types of transmuters: a critical sodium fast reactor(SFR) and an accelerator driven system (ADMAB). Results are provided for a 7 group energy structure. Considerations about fuel cycle parameters uncertainties illustrate their dependence from the isotope final densities at end of cycle.

  1. Type B Accident Investigation Board Report of the July 7, 1997, Industrial Accident at the Knolls Atomic Power Laboratory Windsor Site, Windsor, Connecticut

    Broader source: Energy.gov [DOE]

    On Monday, July 7, 1997, at approximately 10:47 a. m., an asbestos abatement subcontractor laborer working at the Knolls Atomic Power Laboratory-Windsor Site stepped on and fell backward through an unprotected rooftop skylight in the northwest quadrant of Building 5 (see Figure #1).

  2. Evaluation of Gas Reburning and Low N0x Burners on a Wall Fired Boiler

    SciTech Connect (OSTI)

    1998-09-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler emissions that comprise acid rain precursors, especially NOX. The project involved operating gas reburning technology combined with low NO, burner technology (GR-LNB) on a coal-fired utility boiler. Low NOX burners are designed to create less NOX than conventional burners. However, the NO, control achieved is in the range of 30-60-40, and typically 50%. At the higher NO, reduction levels, CO emissions tend to be higher than acceptable standards. Gas Reburning (GR) is designed to reduce the level of NO. in the flue gas by staged fuel combustion. When combined, GR and LNBs work in harmony to both minimize NOX emissions and maintain an acceptable level of CO emissions. The demonstration was performed at Public Service Company of Colorado's (PSCO) Cherokee Unit 3, located in Denver, Colorado. This unit is a 172 MW. wall-fired boiler that uses Colorado bituminous, low-sulfur coal and had a pre GR-LNB baseline NOX emission of 0.73 lb/1 Oe Btu. The target for the project was a reduction of 70 percent in NOX emissions. Project sponsors included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation (EER). EER conducted a comprehensive test demonstration program over a wide range of boiler conditions. Over 4,000 hours of operation were achieved. Intensive measurements were taken to quantify the reductions in NOX emissions, the impact on boiler equipment and operability, and all factors influencing costs. The results showed that GR-LNB technology achieved excellent emission reductions. Although the performance of the low NOX burners (supplied by others) was somewhat less than expected, a NOX reduction of 65% was achieved at an average gas heat input of 180A. The performance goal of 70

  3. Hot repair of ceramic burner on hot blast stoves at USS/Kobe`s {number_sign}3 blast furnace

    SciTech Connect (OSTI)

    Bernarding, T.F.; Chemorov, M.; Shimono, S.; Phillips, G.R.

    1997-12-31

    During the 1992 reline of the No. 3 blast furnace, three new stoves were constructed. The design of the stoves, equipped with internal ceramic burners, was for providing a hot blast temperature of 2,000 F at a wind rate of 140,000 SCFM. After 3 years the performance had deteriorated so the burners were cleaned. When a second cleaning did not improve the performance of No. 3 blast furnace, it was decided to repair the refractory while still hot. The paper describes the hot repair procedures, taking a stove off for repairs, maintenance heat up during repairs, two stove operation, stove commissioning, repair of a ceramic burner, and wet gas prevention.

  4. COAL PARTICLE FLOW PATTERNS FOR O2 ENRICHED, LOW NOx BURNERS

    SciTech Connect (OSTI)

    Jennifer L. Sinclair

    2001-09-30

    Over the past year, the hot flow studies have focused on the validation of a novel 2M near-flame combustion furnace. The 2M furnace was specifically designed to investigate burner aerodynamics and flame stability phenomena. Key accomplishments include completion of coal & oxygen mass balance calculations and derivation of emission conversion equations, upgrade of furnace equipment and flame safety systems, shakedown testing and partial completion of a parametric flame stability study. These activities are described in detail below along with a description of the 2M furnace and support systems.

  5. Atomic Layer Deposition of Metal Sulfide Materials | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Layer Deposition of Metal Sulfide Materials Title Atomic Layer Deposition of Metal Sulfide Materials Publication Type Journal Article Year of Publication 2015 Authors...

  6. Atom Interferometry

    ScienceCinema (OSTI)

    Mark Kasevich

    2010-01-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton?s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  7. Atom Interferometry

    SciTech Connect (OSTI)

    Mark Kasevich

    2008-05-07

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  8. Modeling Population Exposures to Pollutants Emitted from Natural Gas Cooking Burners

    SciTech Connect (OSTI)

    Lobscheid, Agnes; Singer, Brett C.; Klepeis, Neil E.

    2011-06-01

    We developed a physics-based data-supported model to investigate indoor pollutant exposure distributions resulting from use of natural gas cooking appliances across households in California. The model was applied to calculate time-resolved indoor concentrations of CO, NO2 and formaldehyde resulting from cooking burners and entry with outdoor air. Exposure metrics include 1-week average concentrations and frequency of exceeding ambient air quality standards. We present model results for Southern California (SoCal) using two air-exchange scenarios in winter: (1) infiltration-only, and (2) air exchange rate (AER) sampled from lognormal distributions derived from measurements. In roughly 40percent of homes in the SoCal cohort (N=6634) the 1-hour USEPA NO2 standard (190 ?g/m3) was exceeded at least once. The frequency of exceeding this standard was largely independent of AER assumption, and related primarily to building volume, emission rate and amount of burner use. As expected, AER had a more substantial impact on one-week average concentrations.

  9. A Metal Fuel Core Concept for 1000 MWt Advanced Burner Reactor

    SciTech Connect (OSTI)

    Yang, W.S.; Kim, T.K.; Grandy, C.

    2007-07-01

    This paper describes the core design and performance characteristics of a metal fuel core concept for a 1000 MWt Advanced Burner Reactor. A ternary metal fuel form of U-TRU-Zr was assumed with weapons grade plutonium feed for the startup core and TRU recovered from LWR spent fuel for the recycled equilibrium core. A compact burner core was developed by trade-off between the burnup reactivity loss and TRU conversion ratio, with a fixed cycle length of one-year. In the startup core, the average TRU enrichment is 15.5%, the TRU conversion ratio is 0.81, and the burnup reactivity loss over a cycle is 3.6% {delta}k. The heavy metal and TRU inventories are 13.1 and 2.0 metric tons, respectively. The average discharge burnup is 93 MWd/kg, and the TRU consumption rate is 55.5 kg/year. For the recycled equilibrium core, the average TRU enrichment is 22.1 %, the TRU conversion ratio is 0.73, and the burnup reactivity loss is 2.2% {delta}k. The TRU inventory and consumption rate are 2.9 metric tons and 81.6 kg/year, respectively. The evaluated reactivity coefficients provide sufficient negative feedbacks. The control systems provide shutdown margins that are more than adequate. The integral reactivity parameters for quasi-static reactivity balance analysis indicate favorable passive safety features, although detailed safety analyses are required to verify passive safety behavior. (authors)

  10. Multi-ported, internally recuperated burners for direct flame impingement heating applications

    DOE Patents [OSTI]

    Abbasi, Hamid A.; Kurek, Harry; Chudnovsky, Yaroslav; Lisienko, Vladimir G.; Malikov, German K.

    2010-08-03

    A direct flame impingement method and apparatus employing at least one multi-ported, internally recuperated burner. The burner includes an innermost coaxial conduit having a first fluid inlet end and a first fluid outlet end, an outermost coaxial conduit disposed around the innermost coaxial conduit and having a combustion products outlet end proximate the first fluid inlet end of the innermost coaxial conduit and a combustion products inlet end proximate the first fluid outlet end of the innermost coaxial conduit, and a coaxial intermediate conduit disposed between the innermost coaxial conduit and the outermost coaxial conduit, whereby a second fluid annular region is formed between the innermost coaxial conduit and the intermediate coaxial conduit and a combustion products annular region is formed between the intermediate coaxial conduit and the outermost coaxial conduit. The intermediate coaxial conduit has a second fluid inlet end proximate the first fluid inlet end of the innermost coaxial conduit and a second fluid outlet end proximate the combustion products inlet end of the outermost coaxial conduit.

  11. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOE Patents [OSTI]

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  12. Study of the effects of ambient conditions upon the performance of fan powered, infrared, natural gas burners. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect (OSTI)

    Bai, T.; Yeboah, Y.D.; Sampath, R.

    1995-10-01

    The objective of this investigation is to characterize the operation of fan powered infrared burner (PIR) at various gas compositions and ambient conditions and develop design guidelines for appliances in containing PIR burners for satisfactory performance. During this period, experimental setup with optical and electronic instrumentation that is necessary for measuring the radiant heat output and the emission gas output of the burner has been established. The radiation measurement instrument, an FTIR, has been purchased and installed in the porous burner experimental system. The radiation measurement capability of the FTIR was tested and found to be satisfactory. A standard blackbody source, made by Graseby Infrared, was employed to calibrate the FTIR. A collection duct for emission gas measurement was fabricated and connected to the existing Horiba gas analyzer. Test runs are being conducted for flue gas analysis. A number of published research papers on modeling of porous burners were reviewed. The physical mechanism and theoretical analysis of the combustion process of the PIR burner was formulated. The numerical modeling, and implementation of a PIR burner code at CAU`s computing facility is in progress.

  13. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    SciTech Connect (OSTI)

    Choudhuri, Ahsan

    2013-09-30

    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO2 from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H2 concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO2 and H2O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient gF) values for CH4-O2-CO2 flames. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH4/21%O2/79%N2 and CH4/38%O2/72%CO2 mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of

  14. Pollutant exposures from unvented gas cooking burners: A Simulation-based Assessment for Southern California

    SciTech Connect (OSTI)

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-01-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants, and they are typically used without venting range hoods. In this study, LBNL researchers quantified pollutant concentrations and occupant exposures resulting from NGCB use in California homes.The simulation model estimated thatin homes using NGCBs without coincident use of venting range hoods -- 62%, 9%, and 53% of occupants are routinely exposed to NO2, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3,000, and 20 ppb for NO2, CO, and HCHO, respectively. The study recommends that reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health-based standards.

  15. Mechanical swirler for a low-NO{sub x}, weak-swirl burner

    DOE Patents [OSTI]

    Cheng, R.K.; Yegian, D.T.

    1999-03-09

    Disclosed is a mechanical swirler for generating diverging flow in lean premixed fuel burners. The swirler of the present invention includes a central passage with an entrance for accepting a feed gas, a flow balancing insert that introduces additional pressure drop beyond that occurring in the central passage in the absence of the flow balancing insert, and an exit aligned to direct the feed gas into a combustor. The swirler also has an annular passage about the central passage and including one or more vanes oriented to impart angular momentum to feed gas exiting the annular passage. The diverging flow generated by the swirler stabilizes lean combustion thus allowing for lower production of pollutants, particularly oxides of nitrogen. 16 figs.

  16. Mechanical swirler for a low-NO.sub.x, weak-swirl burner

    DOE Patents [OSTI]

    Cheng, Robert K.; Yegian, Derek T.

    1999-01-01

    Disclosed is a mechanical swirler for generating diverging flow in lean premixed fuel burners. The swirler of the present invention includes a central passage with an entrance for accepting a feed gas, a flow balancing insert that introduces additional pressure drop beyond that occurring in the central passage in the absence of the flow balancing insert, and an exit aligned to direct the feed gas into a combustor. The swirler also has an annular passage about the central passage and including one or more vanes oriented to impart angular momentum to feed gas exiting the annular passage. The diverging flow generated by the swirler stabilizes lean combustion thus allowing for lower production of pollutants, particularly oxides of nitrogen.

  17. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    SciTech Connect (OSTI)

    Jon Carmack; Kemal O. Pasamehmetoglu; David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  18. A Blueprint for GNEP Advanced Burner Reactor Startup Fuel Fabrication Facility

    SciTech Connect (OSTI)

    S. Khericha

    2010-12-01

    The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the startup fuel for 10-15 years and would take 3 to 5 years to construct.

  19. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, July--September 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    Work on process design and LNS Burner design was deferred during this period, pending a reassessment of the project by TransAlta prior to commencement of Budget Period II, and only limited Balance of Plant engineering work was done.

  20. Atomic magnetometer

    DOE Patents [OSTI]

    Schwindt, Peter; Johnson, Cort N.

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  1. Experimental study on NOx emission and unburnt carbon of a radial biased swirl burner for coal combustion

    SciTech Connect (OSTI)

    Shan Xue; Shi'en Hui; Qulan Zhou; Tongmo Xu

    2009-07-15

    Pilot tests were carried out on a 1 MW thermal pulverized coal fired testing furnace. Symmetrical combustion was implemented by use of two whirl burners with dual air adjustment. The burnout air device was installed in various places at the top of the main burner, which consists of a primary air pipe with a varying cross-section and an impact ring. In the primary air pipe, the air pulverized coal (PC) stream was separated into a whirling stream that was thick inside and thin outside, thus realizing the thin-thick distribution at the burner nozzle in the radial direction. From the comparative combustion tests of three coals with relatively great characteristic differences, Shaanbei Shenhua high rank bituminous coal (SH coal), Shanxi Hejin low rank bituminous coal (HJ coal), and Shanxi Changzhi meager coal (CZ coal), were obtained such test results as the primary air ratio, inner secondary air ratio, outer secondary air ratio, impact of the change of outer secondary air, change of the relative position for the layout of burnout air, change of the swirling intensity of the primary air and secondary air, etc., on the NOx emission, and unburnt carbon content in fly ash (CFA). At the same time, the relationship between the NOx emission and burnout ratio and affecting factors of the corresponding test items on the combustion stability and economic results were also acquired. The results may provide a vital guiding significance to engineering designs and practical applications. According to the experimental results, the influence of each individual parameter on NOx formation and unburned carbon in fly ash agrees well with the existing literature. In this study, the influences of various combinations of these parameters are also examined, thus providing some reference for the design of the radial biased swirl burner, the configuration of the furnace, and the distribution of the air. 23 refs., 14 figs., 2 tabs.

  2. Laminar burn rates of gun propellants measured in the high-pressure strand burner

    SciTech Connect (OSTI)

    Reaugh, J. E., LLNL

    1997-10-01

    The pressure dependence of the laminar burn rate of gun propellants plays a role in the design and behavior of high-performance guns. We have begun a program to investigate the effects of processing variables on the laminar burn rates, using our high-pressure strand burner to measure these rates at pressures exceeding 700 MPa. We have burned JA2 and M43 propellant samples, provided by Dr. Arpad Juhasz, ARL, from propellant lots previously used in round-robin tests. Our results at room temperature are in accord with other measurements. In addition, we present results measured for propellant that has been preheated to 50 C before burning. We used our thermochemical equilibrium code, CHEETAH, to help interpret the simultaneous pressure and temperature measurements taken during the testing, and show examples of its use. It has been modified to provide performance measures and equations of state for the products that are familiar to the gun-propellant community users of BLAKE.

  3. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    SciTech Connect (OSTI)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  4. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, October--December 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    Cyclone furnaces operate with high excess air and at high temperature. The heat release during combustion is very high and as a result the boiler volume is much smaller than would be found in a conventional pc-fired system. The Marion Unit 1 boiler, at the level of the cyclone entry, has a small cross-section; about 5-feet in depth and about 20-feet in width. A boiler schematic showing the LNS Burner and relative location of the superheater region and overfire air ports is shown in Figure 1. The LNS Burner`s combustion process is fundamentally different from that of the cyclone, and the combustion products are also different. The LNS Burner products enter the boiler as hot, fuel-rich gases. Additional overfire air must be added to complete this combustion step with care taken to avoid the formation of thermal NO{sub x}. If done correctly, S0{sub 2} is controlled and significant NO{sub x} reductions are achieved. Because of the small boiler volume, flow modelling was found to be necessary to insure that adequate mixing of LNS Burner combustion products with air can be accomplished to achieve NO{sub x} emissions goals. Design requirements for the air injection system for the Marion boiler were developed using FLUENT, a commercially available computational fluid dynamics (CFD) code. A series of runs were made to obtain a design for final air injection that met the process design goals as closely as possible.

  5. Atomic Chemistry in Turbulent Media I: Effect of Atomic Cooling...

    Office of Scientific and Technical Information (OSTI)

    Atomic Chemistry in Turbulent Media I: Effect of Atomic Cooling Citation Details In-Document Search Title: Atomic Chemistry in Turbulent Media I: Effect of Atomic Cooling Authors: ...

  6. Atom Trajectory Viewer

    Energy Science and Technology Software Center (OSTI)

    2015-12-28

    Atom Trajectory Viewer is a visualization tool developed to enable interactive exploration of atomic trajectories and corresponding statistics in molecular dynamics.

  7. PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY

    SciTech Connect (OSTI)

    S. T. Khericha

    2007-04-01

    The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to Data Call for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.

  8. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect (OSTI)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  9. Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado

    SciTech Connect (OSTI)

    1998-07-01

    Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, a NOX reduction of 65% was

  10. Evaluation of the Use of Existing RELAP5-3D Models to Represent the Actinide Burner Test Reactor

    SciTech Connect (OSTI)

    C. B. Davis

    2007-02-01

    The RELAP5-3D code is being considered as a thermal-hydraulic system code to support the development of the sodium-cooled Actinide Burner Test Reactor as part of Global Nuclear Energy Partnership. An evaluation was performed to determine whether the control system could be used to simulate the effects of non-convective mechanisms of heat transport in the fluid that are not currently represented with internal code models, including axial and radial heat conduction in the fluid and subchannel mixing. The evaluation also determined the relative importance of axial and radial heat conduction and fluid mixing on peak cladding temperature for a wide range of steady conditions and during a representative loss-of-flow transient. The evaluation was performed using a RELAP5-3D model of a subassembly in the Experimental Breeder Reactor-II, which was used as a surrogate for the Actinide Burner Test Reactor. An evaluation was also performed to determine if the existing centrifugal pump model could be used to simulate the performance of electromagnetic pumps.

  11. Technology gap analysis on sodium-cooled reactor fuel handling system supporting advanced burner reactor development.

    SciTech Connect (OSTI)

    Chikazawa, Y.; Farmer, M.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integral fast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fast reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphenix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fuel transportation cask, ex-vessel sodium-cooled storage

  12. Type B Accident Investigation on the February 17, 2004, Personal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on the February 17, 2004, Personal Injury Accident, Bettis Atomic Power Laboratory Type B Accident Investigation on the February 17, 2004, Personal Injury Accident, Bettis Atomic ...

  13. Preliminary core design studies for the advanced burner reactor over a wide range of conversion ratios.

    SciTech Connect (OSTI)

    Hoffman, E. A.; Yang, W. S.; Hill, R. N.; Nuclear Engineering Division

    2008-05-05

    A consistent set of designs for 1000 MWt commercial-scale sodium-cooled Advance Burner Reactors (ABR) have been developed for both metal and oxide-fueled cores with conversion ratios from breakeven (CR=1.0) to fertile-free (CR=0.0). These designs are expected to satisfy thermal and irradiation damage limits based on the currently available data. The very low conversion ratio designs require fuel that is beyond the current fuel database, which is anticipated to be qualified by and for the Advanced Burned Test Reactor. Safety and kinetic parameters were calculated, but a safety analysis was not performed. Development of these designs was required to achieve the primary goal of this study, which was to generate representative fuel cycle mass flows for system studies of ABRs as part of the Global Nuclear Energy Partnership (GNEP). There are slight variations with conversion ratio but the basic ABR configuration consists of 144 fuel assemblies and between 9 and 22 primary control assemblies for both the metal and oxide-fueled cores. Preliminary design studies indicated that it is feasible to design the ABR to accommodate a wide range of conversion ratio by employing different assembly designs and including sufficient control assemblies to accommodate the large reactivity swing at low conversion ratios. The assemblies are designed to fit within the same geometry, but the size and number of fuel pins within each assembly are significantly different in order to achieve the target conversion ratio while still satisfying thermal limits. Current irradiation experience would allow for a conversion ratio of somewhat below 0.75. The fuel qualification for the first ABR should expand this experience to allow for much lower conversion ratios and higher bunrups. The current designs were based on assumptions about the performance of high and very high enrichment fuel, which results in significant uncertainty about the details of the designs. However, the basic fuel cycle performance

  14. REFRACTORY MATERIALS IN ATOMIC PILES. (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    REFRACTORY MATERIALS IN ATOMIC PILES. Citation Details ... OSTI Identifier: 4574486 Resource Type: Journal Article ... Receipt Date: 31-DEC-68 Research Org: Originating Research ...

  15. Atomizing nozzle and process

    DOE Patents [OSTI]

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1993-07-20

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  16. Atomizing nozzle and process

    DOE Patents [OSTI]

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1992-06-30

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  17. Atomic Energy Commission Takes Over Responsibility for all Atomic...

    National Nuclear Security Administration (NNSA)

    Takes Over Responsibility for all Atomic Energy Programs Atomic Energy Commission Takes Over Responsibility for all Atomic Energy Program Washington, DC In accordance with the ...

  18. Low NO{sub x}/SO{sub x} Burner retrofit for utility cyclone boilers. Quarterly technical progress report, June--September 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    The objective of this project is to demonstrate the LNS Burner as retrofitted to the host cyclone boiler for effective low-cost control of NO{sub x} and SO{sub x} emissions while firing a bituminous coal. The LNS Burner employs a simple, innovative combustion process to burn pulverized coal at high temperatures and provides effective, low-cost control of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions. The coal ash contains sulfur and is removed in the form of molten slag and flyash. Cyclone-fired boiler units are typically older units firing high-sulfur bituminous coals at very high temperatures which results in very high NO{sub x} and SO{sub x} emissions. The addition of conventional emission control equipment, such as wet scrubbers, to these older cyclone units in order to meet current and future environmental regulations is generally not economic. Further, the units are generally not compatible with low sulfur coal switching for S0{sub 2} control or selective catalytic reduction technologies for NO{sub x} control. Because the LNS Burner operates at the same very high temperatures as a typical cyclone boiler and produces a similar slag product, it may offer a viable retrofit option for cyclone boiler emission control. This was confirmed by the Cyclone Boiler Retrofit Feasibility Study carried out by TransAlta and an Operating Committee formed of cyclone boiler owners in 1989. An existing utility cyclone boiler, was then selected for the evaluation of the cost and performance study. It was concluded that the LNS Burner retrofit would be a cost-effective option for control of cyclone boiler emissions. A full-scale demonstration of the LNS Burner retrofit was selected in October 1988 as part of the DOE`s Clean Coal Technology Program Round II.

  19. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion for Sodium-Cooled Fast Reactors/Advanced Burner Reactors

    SciTech Connect (OSTI)

    Sienicki, James J.; Moisseytsev, Anton; Cho, Dae H.; Momozaki, Yoichi; Kilsdonk, Dennis J.; Haglund, Robert C.; Reed, Claude B.; Farmer, Mitchell T.

    2007-07-01

    An optimized supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle power converter has been developed for the 100 MWe (250 MWt) Advanced Burner Test Reactor (ABTR) eliminating the potential for sodium-water reactions and achieving a small power converter and turbine generator building. Cycle and plant efficiencies of 39.1 and 38.3 %, respectively, are calculated for the ABTR core outlet temperature of 510 deg. C. The ABTR S-CO{sub 2} Brayton cycle will incorporate Printed Circuit Heat Exchanger{sup TM} units in the Na-to-CO{sub 2} heat exchangers, high and low temperature recuperators, and cooler. A new sodium test facility is being completed to investigate the potential for transient plugging of narrow sodium channels typical of a Na-to-CO{sub 2} heat exchanger under postulated off-normal or accident conditions. (authors)

  20. Atomic Energy Commission : Atomic Power at Shippingport - 1958 Educational Film

    SciTech Connect (OSTI)

    2013-02-02

    The United States Atomic Energy Commission & Westinghouse Electric Company take us on a tour of an atomic power station.

  1. PARTICLE ACCELERATORS; 74 ATOMIC AND MOLECULAR PHYSICS; ATOMS...

    Office of Scientific and Technical Information (OSTI)

    74 ATOMIC AND MOLECULAR PHYSICS; ATOMS; ELECTRONS; HELIUM; LIGHT SOURCES; RADIATIONS; STORAGE RINGS; SYNCHROTRONS SYNCHROTRON RADIATION SYNCHROTRONLIGHT SOURCES QUANTUM CHAOS...

  2. Atomic Energy Commission : Atomic Power at Shippingport - 1958 Educational Film

    ScienceCinema (OSTI)

    None

    2014-07-31

    The United States Atomic Energy Commission & Westinghouse Electric Company take us on a tour of an atomic power station.

  3. Atomic Energy Commission Takes Over Responsibility for all Atomic Energy

    National Nuclear Security Administration (NNSA)

    Programs | National Nuclear Security Administration | (NNSA) Takes Over Responsibility for all Atomic Energy Programs Atomic Energy Commission Takes Over Responsibility for all Atomic Energy Program Washington, DC In accordance with the Atomic Energy Act of 1946, all atomic energy activities are transferred to the newly created Atomic Energy Commission

  4. The Manhattan Project: Making the atomic bomb

    SciTech Connect (OSTI)

    Gosling, F.G.

    1994-09-01

    This article is a short history of the origins and development of the American atomic bomb program during World War II. Beginning with the scientific developments of the pre-war years, the monograph details the role of US government in conducting a secret, nationwide enterprise that took science from the laboratory and into combat with an entirely new type of weapon. The monograph concludes with a discussion of the immediate postwar period, the debate over the Atomic Energy Act of 1946, and the founding of the Atomic Energy Commission.

  5. Metal atom oxidation laser

    DOE Patents [OSTI]

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

  6. Metal atom oxidation laser

    DOE Patents [OSTI]

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

  7. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    SciTech Connect (OSTI)

    Greenspan, Ehud

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  8. Improved graphite furnace atomizer

    DOE Patents [OSTI]

    Siemer, D.D.

    1983-05-18

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  9. The Harnessed Atom

    Broader source: Energy.gov [DOE]

    The Harnessed Atom is a new middle school science, technology, engineering, and math (STEM) curriculum extension that focuses on nuclear science and energy. It offers teachers accurate, unbiased,...

  10. Improving p-type doping efficiency in Al{sub 0.83}Ga{sub 0.17}N alloy substituted by nanoscale (AlN){sub 5}/(GaN){sub 1} superlattice with Mg{sub Ga}-O{sub N} δ-codoping: Role of O-atom in GaN monolayer

    SciTech Connect (OSTI)

    Zhong, Hong-xia; Shi, Jun-jie Jiang, Xin-he; Huang, Pu; Ding, Yi-min; Zhang, Min

    2015-01-15

    We calculate Mg-acceptor activation energy E{sub A} and investigate the influence of O-atom, occupied the Mg nearest-neighbor, on E{sub A} in nanoscale (AlN){sub 5}/(GaN){sub 1} superlattice (SL), a substitution for Al{sub 0.83}Ga{sub 0.17}N disorder alloy, using first-principles calculations. We find that the N-atom bonded with Ga-atom is more easily substituted by O-atom and nMg{sub Ga}-O{sub N} (n = 1-3) complexes are favorable and stable in the SL. The O-atom plays a dominant role in reducing E{sub A}. The shorter the Mg-O bond is, the smaller the E{sub A} is. The Mg-acceptor activation energy can be reduced significantly by nMg{sub Ga}-O{sub N} δ-codoping. Our calculated E{sub A} for 2Mg{sub Ga}-O{sub N} is 0.21 eV, and can be further reduced to 0.13 eV for 3Mg{sub Ga}-O{sub N}, which results in a high hole concentration in the order of 10{sup 20} cm{sup −3} at room temperature in (AlN){sub 5}/(GaN){sub 1} SL. Our results prove that nMg{sub Ga}-O{sub N} (n = 2,3) δ-codoping in AlN/GaN SL with ultrathin GaN-layer is an effective way to improve p-type doping efficiency in Al-rich AlGaN.

  11. Modified Embedded Atom Method

    Energy Science and Technology Software Center (OSTI)

    2012-08-01

    Interatomic force and energy calculation subroutine to be used with the molecular dynamics simulation code LAMMPS (Ref a.). The code evaluated the total energy and atomic forces (energy gradient) according to a cubic spline-based variant (Ref b.) of the Modified Embedded Atom Method (MEAM) with a additional Stillinger-Weber (SW) contribution.

  12. Flame-synthesis limits and self-catalytic behavior of carbon nanotubes using a double-faced wall stagnation flow burner

    SciTech Connect (OSTI)

    Woo, S.K.; Hong, Y.T.; Kwon, O.C.

    2009-10-15

    Flame-synthesis limits of carbon nanotubes (CNTs) are measured using a double-faced wall stagnation flow (DWSF) burner that shows potential in mass production of CNTs. With nitrogen-diluted premixed ethylene-air flames established on the nickel-coated stainless steel double-faced plate wall, the limits of CNT formation are determined using field-emission scanning and transmission electron microscopies and Raman spectroscopy. Also, self-catalytic behavior of the synthesized CNTs is evaluated using the DWSF burner with a CNT-deposited stainless steel double-faced plate wall. Results show narrow fuel-equivalence ratio limits of multi-walled CNT (MWCNT)-synthesis at high flame stretch rates and substantially extended limits at low flame stretch rates. This implies that the synthesis limits are very sensitive to the fuel-equivalence ratio variation for the high stretch rate conditions, yielding a lot of impurities and soot rather than MWCNTs. The enhanced ratio of tube inner diameter to wall thickness of the MWCNTs synthesized using a CNT self-catalytic flame-synthesis process is observed, indicating that the quality of metal-catalytic, flame-synthesized MWCNTs can be much improved via the process. Thus, using a DWSF burner with the CNT self-catalytic process has potential in mass production of MWCNTs with improved quality. (author)

  13. Radiation-Induced Segregation and Phase Stability in Candidate Alloys for the Advanced Burner Reactor

    SciTech Connect (OSTI)

    Gary S. Was; Brian D. Wirth

    2011-05-29

    Major accomplishments of this project were the following: 1) Radiation induced depletion of Cr occurs in alloy D9, in agreement with that observed in austenitic alloys. 2) In F-M alloys, Cr enriches at PAG grain boundaries at low dose (<7 dpa) and at intermediate temperature (400C) and the magnitude of the enrichment decreases with temperature. 3) Cr enrichment decreases with dose, remaining enriched in alloy T91 up to 10 dpa, but changing to depletion above 3 dpa in HT9 and HCM12A. 4) Cr has a higher diffusivity than Fe by a vacancy mechanism and the corresponding atomic flux of Cr is larger than Fe in the opposite direction to the vacancy flux. 5) Cr concentration at grain boundaries decreases as a result of vacancy transport during electron or proton irradiation, consistent with Inverse Kirkendall models. 6) Inclusion of other point defect sinks into the KLMC simulation of vacancy-mediated diffusion only influences the results in the low temperature, recombination dominated regime, but does not change the conclusion that Cr depletes as a result of vacancy transport to the sink. 7) Cr segregation behavior is independent of Frenkel pair versus cascade production, as simulated for electron versus proton irradiation conditions, for the temperatures investigated. 8) The amount of Cr depletion at a simulated planar boundary with vacancy-mediated diffusion reaches an apparent saturation value by about 1 dpa, with the precise saturation concentration dependent on the ratio of Cr to Fe diffusivity. 9) Cr diffuses faster than Fe by an interstitial transport mechanism, and the corresponding atomic flux of Cr is much larger than Fe in the same direction as the interstitial flux. 10) Observed experimental and computational results show that the radiation induced segregation behavior of Cr is consistent with an Inverse Kirkendall mechanism.

  14. Type B Accident Investigation Board Report on the October 8,...

    Broader source: Energy.gov (indexed) [DOE]

    Type B Accident Investigation on the February 17, 2004, Personal Injury Accident, Bettis Atomic Power Laboratory Type B Accident Investigation of the Arc Flash at Brookhaven ...

  15. CNEEC - Atomic Layer Deposition Tutorial by Stacey Bent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Layer Deposition

  16. Atomizing nozzle and method

    DOE Patents [OSTI]

    Ting, Jason (Ames, IA); Anderson, Iver E. (Ames, IA); Terpstra, Robert L. (Ames, IA)

    2000-03-16

    A high pressure close-coupled gas atomizing nozzle includes multiple discrete gas jet discharge orifices having aerodynamically designed convergent-divergent geometry with an first converging section communicated to a gas supply manifold and to a diverging section by a constricted throat section to increase atomizing gas velocity. The gas jet orifices are oriented at gas jet apex angle selected relative to the melt supply tip apex angle to establish a melt aspiration condition at the melt supply tip.

  17. Optical atomic magnetometer

    DOE Patents [OSTI]

    Budker, Dmitry; Higbie, James; Corsini, Eric P

    2013-11-19

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  18. Metal atomization spray nozzle

    DOE Patents [OSTI]

    Huxford, T.J.

    1993-11-16

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  19. Metal atomization spray nozzle

    DOE Patents [OSTI]

    Huxford, Theodore J.

    1993-01-01

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.

  20. General Atomics Compliance Order, October 6, 1995 Summary

    Office of Environmental Management (EM)

    General Atomics Agreement Name General Atomics Compliance Order, October 6, 1995 HWCA 95/96-017 State California Agreement Type Compliance Agreement Legal Driver(s) FFCAct Scope Summary Address LDR requirements pertaining to storage and treatment of covered waste at General Atomics Parties DOE; State of California Environmental Protection Agency (Department of Toxic Substances Control) Date 10/6/1995 SCOPE * Address LDR requirements pertaining to storage and treatment of covered waste at General

  1. Indium Oxide Thin Films by Atomic Layer Deposition Using Trimethylindium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Ozone | Argonne National Laboratory Indium Oxide Thin Films by Atomic Layer Deposition Using Trimethylindium and Ozone Title Indium Oxide Thin Films by Atomic Layer Deposition Using Trimethylindium and Ozone Publication Type Journal Article Year of Publication 2016 Authors Mane, AU, Allen, AJ, Kanjolia, RK, Elam, JW Journal Journal of Physical Chemistry C Volume 120 Start Page 9874 Issue 18 Pagination 10 Date Published 04182016 Abstract We investigated the atomic layer deposition (ALD)

  2. General Atomics (GA) | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Atomics (GA) Subscribe to RSS - General Atomics (GA) General Atomics Image: General Atomics (GA) The Scorpion's Strategy: "Catch and Subdue" Read more about The Scorpion's...

  3. The Harnessed Atom | Department of Energy

    Office of Environmental Management (EM)

    The Harnessed Atom The Harnessed Atom The Harnessed Atom The Harnessed Atom is a new middle school science, technology, engineering, and math (STEM) curriculum extension...

  4. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    SciTech Connect (OSTI)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    -fidelity models, which now require costly experimental qualification for each different type of design application. Capabilities required to establish and operate this center are found primarily in Argonne's Nuclear Engineering and Mathematics and Computer Science Divisions. Funding for the center would be sought from DOE-NE (GNEP/Advanced Burner Reactor and Generation IV programs), DOE-SC/ASCR, and the commercial nuclear industry. Having the above experimental and modeling capabilities at Argonne would constitute a national/international center of excellence for conducting the research and engineering and design tool development needed to support the DOE GNEP/ LM-ABR initiative in developing safe, high-performance reactors.

  5. SENSOR FOR INDIVIDUAL BURNER CONTROL OF FIRING RATE, FUEL-AIR RATIO, AND COAL FINENESS CORRELATION

    SciTech Connect (OSTI)

    Wayne Hill; Roger Demler; Robert G. Mudry

    2004-10-01

    Instrumentation difficulties encountered in the previous reporting period were addressed early in this reporting period, resulting in a new instrumentation configuration that appears to be free of the noise issues found previously. This permitted the collection of flow calibration data to begin. The first issues in question are the effects of the type and location of the transducer mount. Data were collected for 15 different transducer positions (upstream and downstream of an elbow in the pipe), with both a stud mount and a magnetic transducer mount, for each of seven combinations of air and coal flow. Analysis of these data shows that the effects of the transducer mount type and location on the resulting dynamics are complicated, and not easily captured in a single analysis. To maximize the practical value of the calibration data, further detailed calibration data will be collected with both the magnetic and stud mounts, but at a single mounting location just downstream of a pipe elbow. This testing will be performed in the Coal Flow Test Facility in the next reporting period. The program progress in this reporting period was sufficient to put us essentially back on schedule.

  6. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1986-08-15

    The atomic vapor laser isotope separation (AVLIS) process for the enrichment of uranium is evaluated. (AIP)

  7. Iowa Powder Atomization Technologies

    SciTech Connect (OSTI)

    2012-01-01

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  8. Atomic Force Microscope

    SciTech Connect (OSTI)

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  9. Iowa Powder Atomization Technologies

    ScienceCinema (OSTI)

    None

    2013-03-01

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  10. Achieving New Source Performance Standards (NSPS) Emission Standards Through Integration of Low-NOx Burners with an Optimization Plan for Boiler Combustion

    SciTech Connect (OSTI)

    Wayne Penrod

    2006-12-31

    The objective of this project was to demonstrate the use of an Integrated Combustion Optimization System to achieve NO{sub X} emission levels in the range of 0.15 to 0.22 lb/MMBtu while simultaneously enabling increased power output. The project plan consisted of the integration of low-NO{sub X} burners and advanced overfire air technology with various process measurement and control devices on the Holcomb Station Unit 1 boiler. The plan included the use of sophisticated neural networks or other artificial intelligence technologies and complex software to optimize several operating parameters, including NO{sub X} emissions, boiler efficiency, and CO emissions. The program was set up in three phases. In Phase I, the boiler was equipped with sensors that can be used to monitor furnace conditions and coal flow to permit improvements in boiler operation. In Phase II, the boiler was equipped with burner modifications designed to reduce NO{sub X} emissions and automated coal flow dampers to permit on-line fuel balancing. In Phase III, the boiler was to be equipped with an overfire air system to permit deep reductions in NO{sub X} emissions. Integration of the overfire air system with the improvements made in Phases I and II would permit optimization of boiler performance, output, and emissions. This report summarizes the overall results from Phases I and II of the project. A significant amount of data was collected from the combustion sensors, coal flow monitoring equipment, and other existing boiler instrumentation to monitor performance of the burner modifications and the coal flow balancing equipment.

  11. Advanced wall-fired boiler combustion techniques for the reduction of nitrogen oxides (NO[sub x]): Low NO[sub x] burner test phase results

    SciTech Connect (OSTI)

    Sorge, J.N. ); Baldwin, A.L. ); Smith, L.L. )

    1992-06-02

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide(NO[sub x]) emissions from coal-fired boilers. The primary objective of the demonstration is to determine the performance of two low NO[sub x] combustion technologies applied in a stepwise fashion to a 500 MW boiler. A target of achieving 50 percent NO[sub x] reductions has been established for the project. The main focus of this paper is the presentation of the low NO[sub x] burner (LNB) short and long-term tests results.

  12. Advanced wall-fired boiler combustion techniques for the reduction of nitrogen oxides (NO{sub x}): Low NO{sub x} burner test phase results

    SciTech Connect (OSTI)

    Sorge, J.N.; Baldwin, A.L.; Smith, L.L.

    1992-06-02

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide(NO{sub x}) emissions from coal-fired boilers. The primary objective of the demonstration is to determine the performance of two low NO{sub x} combustion technologies applied in a stepwise fashion to a 500 MW boiler. A target of achieving 50 percent NO{sub x} reductions has been established for the project. The main focus of this paper is the presentation of the low NO{sub x} burner (LNB) short and long-term tests results.

  13. The Manhattan Project: Making the Atomic Bomb. 1999 edition.

    SciTech Connect (OSTI)

    Gosling, F.G.

    1999-01-01

    ``The Manhattan Project: Making the Atomic Bomb`` is a short history of the origins and development of the American atomic bomb program during World War II. Beginning with the scientific developments of the pre-war years, the monograph details the role of the United States government in conducting a secret, nationwide enterprise that took science from the laboratory and into combat with an entirely new type of weapon. The monograph concludes with a discussion of the immediate postwar period, the debate over the Atomic Energy Act of 1946, and the founding of the Atomic Energy Commission.

  14. INL Laboratory Scale Atomizer

    SciTech Connect (OSTI)

    C.R. Clark; G.C. Knighton; R.S. Fielding; N.P. Hallinan

    2010-01-01

    A laboratory scale atomizer has been built at the Idaho National Laboratory. This has proven useful for laboratory scale tests and has been used to fabricate fuel used in the RERTR miniplate experiments. This instrument evolved over time with various improvements being made ‘on the fly’ in a trial and error process.

  15. Ultracold Atoms: How Quantum Field Theory Invaded Atomic Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultracold Atoms: How Quantum Field Theory Invaded Atomic Physics Eric Braaten Ohio State University May 6, 2015 4:00 p.m. (coffee @ 3:30) The development of the technology for trapping atoms and cooling them to ultralow temperatures gave birth to a new subfield of atomic physics. It also led to the introduction of new theoretical methods into atomic physics, I n particular quantum field theory (QFT). Methods of QFT developed in high energy physics have proved to be very useful in ultracold atom

  16. Lawrenciums ionization potential, atom by atom

    SciTech Connect (OSTI)

    Miller, Johanna L.

    2015-06-15

    Researchers in Japan have begun probing the atomic physics of elements that can be produced only in minute quantities.

  17. Experimental and numerical study of the accuracy of flame-speed measurements for methane/air combustion in a slot burner

    SciTech Connect (OSTI)

    Selle, L.; Ferret, B. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); Poinsot, T. [Universite de Toulouse, INPT, UPS, IMFT, Institut de Mecanique des Fluides de Toulouse (France); CNRS, IMFT, Toulouse (France); CERFACS, Toulouse (France)

    2011-01-15

    Measuring the velocities of premixed laminar flames with precision remains a controversial issue in the combustion community. This paper studies the accuracy of such measurements in two-dimensional slot burners and shows that while methane/air flame speeds can be measured with reasonable accuracy, the method may lack precision for other mixtures such as hydrogen/air. Curvature at the flame tip, strain on the flame sides and local quenching at the flame base can modify local flame speeds and require corrections which are studied using two-dimensional DNS. Numerical simulations also provide stretch, displacement and consumption flame speeds along the flame front. For methane/air flames, DNS show that the local stretch remains small so that the local consumption speed is very close to the unstretched premixed flame speed. The only correction needed to correctly predict flame speeds in this case is due to the finite aspect ratio of the slot used to inject the premixed gases which induces a flow acceleration in the measurement region (this correction can be evaluated from velocity measurement in the slot section or from an analytical solution). The method is applied to methane/air flames with and without water addition and results are compared to experimental data found in the literature. The paper then discusses the limitations of the slot-burner method to measure flame speeds for other mixtures and shows that it is not well adapted to mixtures with a Lewis number far from unity, such as hydrogen/air flames. (author)

  18. PARTICULATE CHARACTERIZATION AND ULTRA LOW-NOx BURNER FOR THE CONTROL OF NO{sub x} AND PM{sub 2.5} FOR COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Ralph Bailey; Hamid Sarv; Jim Warchol; Debi Yurchison

    2001-09-30

    In response to the serious challenge facing coal-fired electric utilities with regards to curbing their NO{sub x} and fine particulate emissions, Babcock and Wilcox and McDermott Technology, Inc. conducted a project entitled, ''Particulate Characterization and Ultra Low-NO{sub x} Burner for the Control of NO{sub x} and PM{sub 2.5} for Coal Fired Boilers.'' The project included pilot-scale demonstration and characterization of technologies for removal of NO{sub x} and primary PM{sub 2.5} emissions. Burner development and PM{sub 2.5} characterization efforts were based on utilizing innovative concepts in combination with sound scientific and fundamental engineering principles and a state-of-the-art test facility. Approximately 1540 metric tonnes (1700 tons) of high-volatile Ohio bituminous coal were fired. Particulate sampling for PM{sub 2.5} emissions characterization was conducted in conjunction with burner testing. Based on modeling recommendations, a prototype ultra low-NO{sub x} burner was fabricated and tested at 100 million Btu/hr in the Babcock and Wilcox Clean Environment Development Facility. Firing the unstaged burner with a high-volatile bituminous Pittsburgh 8 coal at 100 million Btu/hr and 17% excess air achieved a NO{sub x} goal of 0.20 lb NO{sub 2}/million Btu with a fly ash loss on ignition (LOI) of 3.19% and burner pressure drop of 4.7 in H{sub 2}O for staged combustion. With the burner stoichiometry set at 0.88 and the overall combustion stoichiometry at 1.17, average NO{sub x} and LOI values were 0.14 lb NO{sub 2}/million Btu and 4.64% respectively. The burner was also tested with a high-volatile Mahoning 7 coal. Based on the results of this work, commercial demonstration is being pursued. Size classified fly ash samples representative of commercial low-NO{sub x} and ultra low-NO{sub x} combustion of Pittsburgh 8 coal were collected at the inlet and outlet of an ESP. The mass of size classified fly ash at the ESP outlet was sufficient to evaluate

  19. Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner

    SciTech Connect (OSTI)

    Hancock, R.D.; Bertagnolli, K.E.; Lucht, R.P.

    1997-05-01

    Coherent anti-Stokes Raman scattering (CARS) spectroscopy of diatomic nitrogen and hydrogen was used to measure flame temperatures in hydrogen/air flames produced using a nonpremixed, near-adiabatic, flat-flame Hencken burner. The CARS temperature measurements are compared with adiabatic flame temperatures calculated by the NASA-Lewis equilibrium code for equivalence ratios from 0.5--2.5. The nitrogen CARS temperatures are in excellent agreement with the equilibrium code calculations. Comparison of nitrogen CARS data and the equilibrium code calculations confirms that for sufficiently high flow rates the Hencken burner produces nearly adiabatic flames. Hydrogen CARS temperature measurements are compared to both nitrogen CARS temperature measurements and equilibrium code predictions in order to evaluate and improve the accuracy of hydrogen CARS as a temperature diagnostic tool. Hydrogen CARS temperatures for fuel-rich flames are on average 70 K ({approximately}3%) above the equilibrium code predictions and nitrogen CARS temperatures. The difference between temperatures measured using hydrogen and nitrogen CARS is probably due primarily to uncertainties in hydrogen linewidths and line-broadening mechanisms at these conditions.

  20. A microfabricated atomic clock

    SciTech Connect (OSTI)

    Knappe, Svenja; Shah, Vishal; Schwindt, Peter D.D.; Hollberg, Leo; Kitching, John; Liew, Li-Anne; Moreland, John

    2004-08-30

    Fabrication techniques usually applied to microelectromechanical systems (MEMS) are used to reduce the size and operating power of the core physics assembly of an atomic clock. With a volume of 9.5 mm{sup 3}, a fractional frequency instability of 2.5x10{sup -10} at 1 s of integration, and dissipating less than 75 mW of power, the device has the potential to bring atomically precise timing to hand-held, battery-operated devices. In addition, the design and fabrication process allows for wafer-level assembly of the structures, enabling low-cost mass-production of thousands of identical units with the same process sequence, and easy integration with other electronics.

  1. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS (CFB AND CLB) FUELS IN PULVERIZED FUEL AND FIXED BED BURNERS

    SciTech Connect (OSTI)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Ben Thein; Gengsheng Wei; Soyuz Priyadarsan; Senthil Arumugam; Kevin Heflin

    2003-08-28

    Intensive animal feeding operations create large amounts of animal waste that must be safely disposed of in order to avoid environmental degradation. Cattle feedlots and chicken houses are two examples. In feedlots, cattle are confined to small pens and fed a high calorie grain-diet diet in preparation for slaughter. In chicken houses, thousands of chickens are kept in close proximity. In both of these operations, millions of tons of manure are produced every year. The manure could be used as a fuel by mixing it with coal in a 90:10 blend and firing it in an existing coal suspension fired combustion systems. This technique is known as co-firing, and the high temperatures produced by the coal will allow the biomass to be completely combusted. Reburn is a process where a small percentage of fuel called reburn fuel is injected above the NO{sub x} producing, conventional coal fired burners in order to reduce NO{sub x}. The manure could also be used as reburn fuel for reducing NO{sub x} in coal fired plants. An alternate approach of using animal waste is to adopt the gasification process using a fixed bed gasifier and then use the gases for firing in gas turbine combustors. In this report, the cattle manure is referred to as feedlot biomass (FB) and chicken manure as litter biomass (LB). The report generates data on FB and LB fuel characteristics. Co-firing, reburn, and gasification tests of coal, FB, LB, coal: FB blends, and coal: LB blends and modeling on cofiring, reburn systems and economics of use of FB and LB have also been conducted. The biomass fuels are higher in ash, lower in heat content, higher in moisture, and higher in nitrogen and sulfur (which can cause air pollution) compared to coal. Small-scale cofiring experiments revealed that the biomass blends can be successfully fired, and NO{sub x} emissions will be similar to or lower than pollutant emissions when firing coal. Further experiments showed that biomass is twice or more effective than coal when

  2. ATOMIC ENERGY COMMISSION

    Office of Legacy Management (LM)

    ' ATOMIC ENERGY COMMISSION Frank K. Pittman, Director, bivisioa of Waste &&gement and s- portation, Headquarters j CONTAMItUTED RX-AEC-OWNED OR LEASED FACILITIES' This memorandum responds to your TWX certain information on the above subject. the documentation necessary to answer your available due to the records disposal vailing at the time of release or From records that are available and from disc&ions with most familiar with the transfer operations, &have the current

  3. Budget Atomization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Budget Atomization Budget Atomization Howard Dickenson, Deputy Associate Administrator for Acquisition and Project Management presented on Budget Atomization from the NNSA perspective. Howard presented an overview of the NNSA budget structure and an example of LANL controls. Chris Johns, Director of the Budget Office, DOE Office of the CFO presented on Budget Atomization from the DOE perspective. Chris provided an overview of funding, provided examples, and demonstrated the effect on labs/sites.

  4. Atomizer with liquid spray quenching

    DOE Patents [OSTI]

    Anderson, I.E.; Osborne, M.G.; Terpstra, R.L.

    1998-04-14

    Method and apparatus are disclosed for making metallic powder particles wherein a metallic melt is atomized by a rotating disk or other atomizer at an atomizing location in a manner to form molten droplets moving in a direction away from said atomizing location. The atomized droplets pass through a series of thin liquid quenching sheets disposed in succession about the atomizing location with each successive quenching sheet being at an increasing distance from the atomizing location. The atomized droplets are incrementally cooled and optionally passivated as they pass through the series of liquid quenching sheets without distorting the atomized droplets from their generally spherical shape. The atomized, cooled droplets can be received in a chamber having a collection wall disposed outwardly of the series of liquid quenching sheets. A liquid quenchant can be flowed proximate the chamber wall to carry the cooled atomized droplets to a collection chamber where atomized powder particles and the liquid quenchant are separated such that the liquid quenchant can be recycled. 6 figs.

  5. Atomizer with liquid spray quenching

    DOE Patents [OSTI]

    Anderson, Iver E.; Osborne, Matthew G.; Terpstra, Robert L.

    1998-04-14

    Method and apparatus for making metallic powder particles wherein a metallic melt is atomized by a rotating disk or other atomizer at an atomizing location in a manner to form molten droplets moving in a direction away from said atomizing location. The atomized droplets pass through a series of thin liquid quenching sheets disposed in succession about the atomizing location with each successive quenching sheet being at an increasing distance from the atomizing location. The atomized droplets are incrementally cooled and optionally passivated as they pass through the series of liquid quenching sheets without distorting the atomized droplets from their generally spherical shape. The atomized, cooled droplets can be received in a chamber having a collection wall disposed outwardly of the series of liquid quenching sheets. A liquid quenchant can be flowed proximate the chamber wall to carry the cooled atomized droplets to a collection chamber where atomized powder particles and the liquid quenchant are separated such that the liquid quenchant can be recycled.

  6. International Atomic Energy Agency

    National Nuclear Security Administration (NNSA)

    1%2A en US, Kazakhstan Cooperate to Eliminate Highly Enriched Uranium http:nnsa.energy.govmediaroompressreleaseskazakhstan

    type-date...

  7. DOE - NNSA/NFO -- Atomic Testing Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Atomic Testing Museum NNSANFO Language Options U.S. DOENNSA - Nevada Field Office NATIONAL ATOMIC TESTING MUSEUM Photograph of Atomic Testing Museum The Nevada Test Site ...

  8. Atomic data for fusion

    SciTech Connect (OSTI)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A.; Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  9. Pyrolysis with cyclone burner

    DOE Patents [OSTI]

    Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.

    1978-07-25

    In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue and separating out the fines.

  10. Atomically resolved force microscopy at room temperature

    SciTech Connect (OSTI)

    Morita, Seizo

    2014-04-24

    Atomic force microscopy (AFM) can now not only image individual atoms but also construct atom letters using atom manipulation method even at room temperature (RT). Therefore, the AFM is the second generation atomic tool following the scanning tunneling microscopy (STM). However the AFM can image even insulating atoms, and also directly measure/map the atomic force and potential at the atomic scale. Noting these advantages, we have been developing a bottom-up nanostructuring system at RT based on the AFM. It can identify chemical species of individual atoms and then manipulate selected atom species to the predesigned site one-by-one to assemble complex nanostructures consisted of multi atom species at RT. Here we introduce our results toward atom-by-atom assembly of composite nanostructures based on the AFM at RT including the latest result on atom gating of nano-space for atom-by-atom creation of atom clusters at RT for semiconductor surfaces.

  11. Quantum measurements of atoms using cavity QED

    SciTech Connect (OSTI)

    Dada, Adetunmise C.; Andersson, Erika [SUPA, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Jones, Martin L.; Kendon, Vivien M. [School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Everitt, Mark S. [School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda ku, Tokyo 101-8430 (Japan)

    2011-04-15

    Generalized quantum measurements are an important extension of projective or von Neumann measurements in that they can be used to describe any measurement that can be implemented on a quantum system. We describe how to realize two nonstandard quantum measurements using cavity QED. The first measurement optimally and unambiguously distinguishes between two nonorthogonal quantum states. The second example is a measurement that demonstrates superadditive quantum coding gain. The experimental tools used are single-atom unitary operations effected by Ramsey pulses and two-atom Tavis-Cummings interactions. We show how the superadditive quantum coding gain is affected by errors in the field-ionization detection of atoms and that even with rather high levels of experimental imperfections, a reasonable amount of superadditivity can still be seen. To date, these types of measurements have been realized only on photons. It would be of great interest to have realizations using other physical systems. This is for fundamental reasons but also since quantum coding gain in general increases with code word length, and a realization using atoms could be more easily scaled than existing realizations using photons.

  12. Applicability of RELAP5-3D for Thermal-Hydraulic Analyses of a Sodium-Cooled Actinide Burner Test Reactor

    SciTech Connect (OSTI)

    C. B. Davis

    2006-07-01

    The Actinide Burner Test Reactor (ABTR) is envisioned as a sodium-cooled, fast reactor that will burn the actinides generated in light water reactors to reduce nuclear waste and ease proliferation concerns. The RELAP5-3D computer code is being considered as the thermal-hydraulic system code to support the development of the ABTR. An evaluation was performed to determine the applicability of RELAP5-3D for the analysis of a sodium-cooled fast reactor. The applicability evaluation consisted of several steps, including identifying the important transients and phenomena expected in the ABTR, identifying the models and correlations that affect the code’s calculation of the important phenomena, and evaluating the applicability of the important models and correlations for calculating the important phenomena expected in the ABTR. The applicability evaluation identified code improvements and additional models needed to simulate the ABTR. The accuracy of the calculated thermodynamic and transport properties for sodium was also evaluated.

  13. Titanium subhydride potassium perchlorate (TiH1.65/KClO4) burn rates from hybrid closed bomb-strand burner experiments.

    SciTech Connect (OSTI)

    Cooper, Marcia A.; Oliver, Michael S.

    2012-08-01

    A hybrid closed bomb-strand burner is used to measure the burning behavior of the titanium subhydride potassium perchlorate pyrotechnic with an equivalent hydrogen concentration of 1.65. This experimental facility allows for simultaneous measurement of the closed bomb pressure rise and pyrotechnic burn rate as detected by electrical break wires over a range of pressures. Strands were formed by pressing the pyrotechnic powders to bulk densities between 60% and 90% theoretical maximum density. The burn rate dependance on initial density and vessel pressure are measured. At all initial strand densities, the burn is observed to transition from conductive to convective burning within the strand. The measured vessel pressure history is further analyzed following the closed bomb analysis methods developed for solid propellants.

  14. Atom-probe tomography of tribological boundary films resulting from

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boron-based oil additives | Argonne National Laboratory Atom-probe tomography of tribological boundary films resulting from boron-based oil additives Title Atom-probe tomography of tribological boundary films resulting from boron-based oil additives Publication Type Journal Article Year of Publication 2016 Authors Kim, Y-J, Baik, S-I, Bertolucci-Coelho, L, Mazzaferro, L, Ramirez, G, Erdemir, A, Seidman, DN Journal Scripta Materialia Volume 111 Start Page 65 Issue 15 Pagination 4 Date

  15. The Collective Atomic Recoil Laser

    SciTech Connect (OSTI)

    Courteille, Ph.W.; Cube, C. avon; Deh, B.; Kruse, D.; Ludewig, A.; Slama, S.; Zimmermann, C.

    2005-05-05

    An ensemble of periodically ordered atoms coherently scatters the light of an incident laser beam. The scattered and the incident light may interfere and give rise to a light intensity modulation and thus to optical dipole forces which, in turn, emphasize the atomic ordering. This positive feedback is at the origin of the collective atomic recoil laser (CARL). We demonstrate this dynamics using ultracold atoms confined by dipole forces in a unidirectionally pumped far red-detuned high-finesse optical ring cavity. Under the influence of an additional dissipative force exerted by an optical molasses the atoms, starting from an unordered distribution, spontaneously form a density grating moving at constant velocity. Additionally, steady state lasing is observed in the reverse direction if the pump laser power exceeds a certain threshold. We compare the dynamics of the atomic trajectories to the behavior of globally coupled oscillators, which exhibit phase transitions from incoherent to coherent states if the coupling strength exceeds a critical value.

  16. General Atomics | Open Energy Information

    Open Energy Info (EERE)

    Product: General Atomics offers research, development and consulting services to the nuclear industry, including nuclear energy production, manufacturing, defense and related...

  17. Atomic Scale Characterization of Compound Semiconductors Using Atom Probe Tomography

    SciTech Connect (OSTI)

    Gorman, B. P.; Norman, A. G.; Lawrence, D.; Prosa, T.; Guthrey, H.; Al-Jassim, M.

    2011-01-01

    Internal interfaces are critical in determining the performance of III-V multijunction solar cells. Studying these interfaces with atomic resolution using a combination of transmission electron microscopy (TEM), atom probe tomography (APT), and density functional calculations enables a more fundamental understanding of carrier dynamics in photovoltaic (PV) device structures. To achieve full atomic scale spatial and chemical resolution, data acquisition parameters in laser pulsed APT must be carefully studied to eliminate surface diffusion. Atom probe data with minimized group V ion clustering and expected stoichiometry can be achieved by adjusting laser pulse power, pulse repetition rate, and specimen preparation parameters such that heat flow away from the evaporating surface is maximized. Applying these improved analysis conditions to III-V based PV gives an atomic scale understanding of compositional and dopant profiles across interfaces and tunnel junctions and the initial stages of alloy clustering and dopant accumulation. Details on APT experimental methods and future in-situ instrumentation developments are illustrated.

  18. The Atomic City / The Magic of the Atom - 1950's Atomic Energy Commission Documentary

    ScienceCinema (OSTI)

    None

    2014-07-31

    The story of American cities located near atomic power plants, and steps taken monitoring radiation to ensure the safety of the public who live nearby. .

  19. The Atomic City / The Magic of the Atom - 1950's Atomic Energy Commission Documentary

    SciTech Connect (OSTI)

    2012-06-04

    The story of American cities located near atomic power plants, and steps taken monitoring radiation to ensure the safety of the public who live nearby. .

  20. PASSIVE CONTROL OF PARTICLE DISPERSION IN A PARTICLE-LADEN CIRCULAR JET USING ELLIPTIC CO-ANNULAR FLOW: A MEANS FOR IMPROVING UTILIZATION AND EMISSION REDUCTIONS IN PULVERIZED COAL BURNER

    SciTech Connect (OSTI)

    Ahsan R. Choudhuri

    2003-06-01

    A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.

  1. In-situ control system for atomization

    DOE Patents [OSTI]

    Anderson, I.E.; Figliola, R.S.; Terpstra, R.L.

    1995-06-13

    Melt atomizing apparatus comprising a melt supply orifice for supplying the melt for atomization and gas supply orifices proximate the melt supply orifice for supplying atomizing gas to atomize the melt as an atomization spray is disclosed. The apparatus includes a sensor, such as an optical and/or audio sensor, for providing atomization spray data, and a control unit responsive to the sensed atomization spray data for controlling at least one of the atomizing gas pressure and an actuator to adjust the relative position of the gas supply orifice and melt supply in a manner to achieve a desired atomization spray. 3 figs.

  2. In-situ control system for atomization

    DOE Patents [OSTI]

    Anderson, Iver E.; Figliola, Richard S.; Terpstra, Robert L.

    1995-06-13

    Melt atomizing apparatus comprising a melt supply orifice for supplying the melt for atomization and gas supply orifices proximate the melt supply orifice for supplying atomizing gas to atomize the melt as an atomization spray. The apparatus includes a sensor, such as an optical and/or audio sensor, for providing atomization spray data, and a control unit responsive to the sensed atomization spray data for controlling at least one of the atomizing gas pressure and an actuator to adjust the relative position of the gas supply orifice and melt supply in a manner to achieve a desired atomization spray.

  3. Supersonic coal water slurry fuel atomizer

    DOE Patents [OSTI]

    Becker, Frederick E.; Smolensky, Leo A.; Balsavich, John

    1991-01-01

    A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

  4. EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety County, Kansas

    Broader source: Energy.gov [DOE]

    The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflower’s Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas. The Holcomb Station would be modified in three distinct phases to demonstrate the synergistic effect of layering NOx control technologies.

  5. Los Alamos National Laboratory ATOMIC PHOTOGRAPHY ATOMIC PHOTOGRAPHY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATOMIC PHOTOGRAPHY ATOMIC PHOTOGRAPHY BLASTS FROM THE PAST BLASTS FROM THE PAST Twenty-five U.S. atmospheric nuclear weapons operations (each a series of tests) were conducted from 1945 to 1963, primarily at the Pacific Proving Grounds and at the Nevada Test Site, southeastern Nevada. Below, observers witness Operation Greenhouse, Eniwetok Atoll, spring 1951. Greenhouse was a series of four tests. 17 Proof of principle for thermonuclear weapons, the 225-kiloton George test, May 8, 1951, of

  6. Integrating low-NO{sub x} burners, overfire air, and selective non-catalytic reduction on a utility coal-fired boiler

    SciTech Connect (OSTI)

    Hunt, T.; Muzio, L.; Smith, R.

    1995-05-01

    Public Service Company of Colorado (PSCo), in cooperation with the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI), is testing the Integrated Dry NO{sub x}/SO{sub 2} Emissions Control system. This system combines low-NO{sub x} burners, overfire air, selective non-catalytic reduction (SNCR), and dry sorbent injection with humidification to reduce by up to 70% both NO{sub x} and SO{sub 2} emissions from a 100 MW coal-fired utility boiler. The project is being conducted at PSCo`s Arapahoe Unit 4 located in Denver, Colorado as part of the DOE`s Clean Coal Technology Round 3 program. The urea-based SNCR system, supplied by Noell, Inc., was installed in late 1991 and was tested with the unmodified boiler in 1992. At full load, it reduced NO{sub x} emissions by about 35% with an associated ammonia slip limit of 10 ppm. Babcock & Wilcox XLS{reg_sign} burners and a dual-zone overfire air system were retrofit to the top-fired boiler in mid-1992 and demonstrated a NO{sub x} reduction of nearly 70% across the load range. Integrated testing of the combustion modifications and the SNCR system were conducted in 1993 and showed that the SNCR system could reduce NO{sub x} emissions by an additional 45% while maintaining 10 ppm of ammonia slip limit at full load. Lower than expect4ed flue-gas temperatures caused low-load operation to be less effective than at high loads. NO{sub x} reduction decreased to as low as 11% at 60 MWe at an ammonia slip limit of 10 ppm. An ammonia conversion system was installed to improve performance at low loads. Other improvements to increase NO{sub x} removal at low-loads are planned. The combined system of combustion modifications and SNCR reduced NO{sub x} emissions by over 80% from the original full-load baseline. 11 figs.

  7. Table Definitions, Sources, and Explanatory Notes

    Gasoline and Diesel Fuel Update (EIA)

    Heating Oil & Propane Prices Definitions Key Terms Definition No. 2 Fuel Oil (Heating Oil) A distillate fuel oil for use in atomizing type burners for domestic heating or for use medium capacity commercial-industrial burner units, with distillation temperatures between 540-640 degrees Fahrenheit at the 90-percent recovery point; and the kinematic viscosities between 1.9-3.4 centistokes at 100 degrees Fahrenheit as defined in ASTM Specification D396-92. Petroleum Administration for Defense

  8. ATOMIC ENERGY ACT OF 1946

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D. Niisc AEC Hcadqoartcrs Library Voliiinc I Principal Docriiiiciits U.S. ATOMIC ENERGY COMMISSION WASHINGTON, 1965 PUBLIC LAW 5 8 5 - 7 9 CONQRESS CHAPTER 724-2 ...

  9. Imaging atoms in 3-D

    ScienceCinema (OSTI)

    Ercius, Peter

    2014-06-27

    Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

  10. Efimov physics in cold atoms

    SciTech Connect (OSTI)

    Braaten, Eric . E-mail: braaten@mps.ohio-state.edu; Hammer, H.-W. . E-mail: hammer@itkp.uni-bonn.de

    2007-01-15

    Atoms with a large scattering length have universal low-energy properties that do not depend on the details of their structure or their interactions at short distances. In the 2-atom sector, the universal properties are familiar and depend only on the scattering length. In the 3-atom sector for identical bosons, the universal properties include the existence of a sequence of shallow triatomic molecules called Efimov trimers and log-periodic dependence of scattering observables on the energy and the scattering length. In this review, we summarize the universal results that are currently known. We also summarize the experimental information that is currently available with an emphasis on 3-atom loss processes.

  11. Theoretical studies of atomic transitions

    SciTech Connect (OSTI)

    Fischer, C.F.

    1990-10-01

    This paper discusses: lifetime of excited states; core-polarization studies; large relativistic calculations; Monte Carlo Hartree-Fock (MCHF) atomic structure package; and MCHF codes for the hypercube. (LSP)

  12. UNITED STATES ATOMIC ENERGY COMMISSION

    Office of Legacy Management (LM)

    I(S.0 -01: SPECIAL NUCLEAR MATERIAL LlCEWSE Pursuant to the Atomic Energy Act of 1954 and Title 10, Code of Federal Regulations, Chapter 1, Part 70, "Special Nuclear Material ...

  13. u. S. Atomic Energy Commission

    Office of Legacy Management (LM)

    S. Atomic Energy Commission R. 0. Box 30, Ansonia Station New York ES, N. Y. MATERIALS 5+k& hJf Reference: SK:BL Attention: Mr. R. J. Smith Jr. Director Special Materials Division ...

  14. Atomic vapor laser isotope separation process

    DOE Patents [OSTI]

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1990-01-01

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique.

  15. Fundamental Electroweak Studies using Trapped Ions & Atoms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    collaboration performs fundamental electroweak studies on trapped ions & atoms. We use neutral atom and ion trapping techniques at radioactive ion beam facilities here and...

  16. Manhattan Project: Atomic Discoveries, 1890s-1939

    Office of Scientific and Technical Information (OSTI)

    The exact nature of these atoms remained elusive, however, despite centuries of attempts ... Explorations into the nature of the atom from 1919 to 1932 confirmed this new model, ...

  17. Atomic Photography: Blasts from the Past

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Photography National Security Science Latest Issue:July 2015 past issues All Issues submit Atomic Photography: Blasts from the Past A gallery of images reveals the weird...

  18. Award Types

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards Team (505) 667-7824 Email Types of Awards The Awards Office, sponsored by the Technology Transfer Division and the Science and Technology Base Program Office, coordinates...

  19. Atomic memory access hardware implementations

    SciTech Connect (OSTI)

    Ahn, Jung Ho; Erez, Mattan; Dally, William J

    2015-02-17

    Atomic memory access requests are handled using a variety of systems and methods. According to one example method, a data-processing circuit having an address-request generator that issues requests to a common memory implements a method of processing the requests using a memory-access intervention circuit coupled between the generator and the common memory. The method identifies a current atomic-memory access request from a plurality of memory access requests. A data set is stored that corresponds to the current atomic-memory access request in a data storage circuit within the intervention circuit. It is determined whether the current atomic-memory access request corresponds to at least one previously-stored atomic-memory access request. In response to determining correspondence, the current request is implemented by retrieving data from the common memory. The data is modified in response to the current request and at least one other access request in the memory-access intervention circuit.

  20. Atomizing, continuous, water monitoring module

    DOE Patents [OSTI]

    Thompson, C.V.; Wise, M.B.

    1997-07-08

    A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid. 3 figs.

  1. Atomizing, continuous, water monitoring module

    DOE Patents [OSTI]

    Thompson, Cyril V.; Wise, Marcus B.

    1997-01-01

    A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid.

  2. Hot atom chemistry and radiopharmaceuticals

    SciTech Connect (OSTI)

    Krohn, Kenneth A.; Moerlein, Stephen M.; Link, Jeanne M.; Welch, Michael J.

    2012-12-19

    The chemical products made in a cyclotron target are a combined result of the chemical effects of the nuclear transformation that made the radioactive atom and the bulk radiolysis in the target. This review uses some well-known examples to understand how hot atom chemistry explains the primary products from a nuclear reaction and then how radiation chemistry is exploited to set up the optimal product for radiosynthesis. It also addresses the chemical effects of nuclear decay. There are important principles that are common to hot atom chemistry and radiopharmaceutical chemistry. Both emphasize short-lived radionuclides and manipulation of high specific activity nuclides. Furthermore, they both rely on radiochromatographic separation for identification of no-carrieradded products.

  3. Atomic hydrogen in planetary nebulae

    SciTech Connect (OSTI)

    Schneider, S.E.; Silverglate, P.R.; Altschuler, D.R.; Giovanardi, C.

    1987-03-01

    The authors searched for neutral atomic hydrogen associated with 22 planetary nebulae and three evolved stars in the 21 cm line at the Arecibo Observatory. Objects whose radial velocities permitted discrimination from Galactic H I were chosen for observation. Hydrogen was detected in absorption from IC 4997. From the measurements new low limits are derived to the mass of atomic hydrogen associated with the undetected nebulae. Radio continuum observations were also made of several of the nebulae at 12.6 cm. The authors reexamine previous measurements of H I in planetary nebulae, and present the data on a consistent footing. The question of planetary nebula distances is considered at length. Finally, implications of the H I measurements for nebular evolution are discussed and it is suggested that atomic hydrogen seen in absorption was expelled from the progenitor star during the final 1000 yr prior to the onset of ionization. 68 references.

  4. Relativistic atomic beam spectroscopy II

    SciTech Connect (OSTI)

    1989-12-31

    The negative ion of H is one of the simplest 3-body atomic systems. The techniques we have developed for experimental study of atoms moving near speed of light have been productive. This proposal request continuing support for experimental studies of the H{sup -} system, principally at the 800 MeV linear accelerator (LAMPF) at Los Alamos. Four experiments are currently planned: photodetachment of H{sup -} near threshold in electric field, interaction of relativistic H{sup -} ions with matter, high excitations and double charge escape in H{sup -}, and multiphoton detachment of electrons from H{sup -}.

  5. Thermal-Hydraulic Analyses of Transients in an Actinide-Burner Reactor Cooled by Forced Convection of Lead Bismuth

    SciTech Connect (OSTI)

    Davis, Cliff Bybee

    2003-09-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) and the Massachusetts Institute of Technology (MIT) are investigating the suitability of lead or leadbismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The current analysis evaluated a pool type design that relies on forced circulation of the primary coolant, a conventional steam power conversion system, and a passive decay heat removal system. The ATHENA computer code was used to simulate various transients without reactor scram, including a primary coolant pump trip, a station blackout, and a step reactivity insertion. The reactor design successfully met identified temperature limits for each of the transients analyzed.

  6. The Atomic Safety and Licensing Board Panel

    SciTech Connect (OSTI)

    1998-03-01

    Through the Atomic Energy Act, Congress made is possible for the public to get a full and fair hearing on civilian nuclear matters. Individuals who are directly affected by any licensing action involving a facility producing or utilizing nuclear materials may participate in a formal hearing, on the record, before independent judges on the Atomic Safety and Licensing Board Panel (ASLBP or Panel). Frequently, in deciding whether a license, permit, amendment, or extension should be granted to a particular applicant, the Panel members must be more than mere umpires. If appropriate, they are authorized to go beyond the issues the parties place before them in order to identify, explore, and resolve significant questions involving threats to the public health and safety that come to a board`s attention during the proceedings. This brochure explains the purpose of the panel. Also addressed are: type of hearing handled; method of public participation; formality of hearings; high-level waste; other panel responsibilities and litigation technology.

  7. Displacement per Atom, Primary Knocked-on Atoms Produced in an Atomic Solid Target

    Energy Science and Technology Software Center (OSTI)

    2015-07-01

    Version 00 DART calculates the total number of displacements, primary knocked-on atoms, recoil spectra, displacement cross sections and displacement per atoms rates in a poly atomic solid target, composed of many different isotopes, using ENDF/B-VI derived cross sections. To calculate these values, different incident particles were considered: neutrons, ions and electrons. The user needs only to specify an incident particle energy spectrum and the composition of the target. The number of displaced atoms is calculatedmore » within the Binary Collision Approximation framework. To calculate the number of displacements the DART code does not use the classical NRT dpa analytical formula, which is only appropriate for projectile and target of the same mass. It numerically solves the linearized Boltzmann equation for a polyatomic target. It can be a useful tool to select the nature and energy of ions or electrons in particle accelerators or electron microscopes to mimic the primary damage induced by neutron irradiation in nuclear plants or fission facilities. Nuclear data: • Typically any ENDFB format evaluation may be used. This package includes the ENDFB-VI nuclear data library. Energy ranges: • Neutron or ion : 10E-11 to 20 MeV Data library distributed with DART v1.0: • ENDFB-VI nuclear data library« less

  8. Hydrogen Atom Reactivity toward Aqueous tert-Butyl Alcohol

    SciTech Connect (OSTI)

    Lymar S. V.; Schwarz, H.A.

    2012-02-09

    Through a combination of pulse radiolysis, purification, and analysis techniques, the rate constant for the H + (CH{sub 3}){sub 3}COH {yields} H{sub 2} + {sm_bullet}CH{sub 2}C(CH{sub 3}){sub 2}OH reaction in aqueous solution is definitively determined to be (1.0 {+-} 0.15) x 10{sup 5} M{sup -1} s{sup -1}, which is about half of the tabulated number and 10 times lower than the more recently suggested revision. Our value fits on the Polanyi-type, rate-enthalpy linear correlation ln(k/n) = (0.80 {+-} 0.05){Delta}H + (3.2 {+-} 0.8) that is found for the analogous reactions of other aqueous aliphatic alcohols with n equivalent abstractable H atoms. The existence of such a correlation and its large slope are interpreted as an indication of the mechanistic similarity of the H atom abstraction from {alpha}- and {beta}-carbon atoms in alcohols occurring through the late, product-like transition state. tert-Butyl alcohol is commonly contaminated by much more reactive secondary and primary alcohols (2-propanol, 2-butanol, ethanol, and methanol), whose content can be sufficient for nearly quantitative scavenging of the H atoms, skewing the H atom reactivity pattern, and explaining the disparity of the literature data on the H + (CH{sub 3}){sub 3}COH rate constant. The ubiquitous use of tert-butyl alcohol in pulse radiolysis for investigating H atom reactivity and the results of this work suggest that many other previously reported rate constants for the H atom, particularly the smaller ones, may be in jeopardy.

  9. Molecular Dynamics and Energy Minimization Based on Embedded Atom Method

    Energy Science and Technology Software Center (OSTI)

    1995-03-01

    This program performs atomic scale computer simulations of the structure and dynamics of metallic system using energetices based on the Embedded Atom Method. The program performs two types of calculations. First, it performs local energy minimization of all atomic positions to determine ground state and saddle point energies and structures. Second, it performs molecular dynamics simulations to determine thermodynamics or miscroscopic dynamics of the system. In both cases, various constraints can be applied to themore » system. The volume of the system can be varied automatically to achieve any desired external pressure. The temperature in molecular dynamics simulations can be controlled by a variety of methods. Further, the temperature control can be applied either to the entire system or just a subset of the atoms that would act as a thermal source/sink. The motion of one or more of the atoms can be constrained to either simulate the effects of bulk boundary conditions or to facilitate the determination of saddle point configurations. The simulations are performed with periodic boundary conditions.« less

  10. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1985-11-08

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

  11. The Modified Embedded Atom Method

    SciTech Connect (OSTI)

    Baskes, M.I.

    1994-08-01

    Recent modifications have been made to generalize the Embedded Atom Method (EAM) to describe bonding in diverse materials. By including angular dependence of the electron density in an empirical way, the Modified Embedded Atom Method (MEAM) has been able to reproduce the basic energetic and structural properties of 45 elements. This method is ideally suited for examining the interfacial behavior of dissimilar materials. This paper explains in detail the derivation of the method, shows how the parameters of the MEAM are determined directly from experiment or first principles calculations, and examines the quality of the reproduction of the database. Materials with fcc, bcc, hcp, and diamond cubic crystal structure are discussed. A few simple examples of the application of the MEAM to surfaces and interfaces are presented. Calculations of pullout of a SiC fiber in a diamond matrix as a function of applied stress show non-uniform deformation of the fiber.

  12. The Future of Atomic Energy

    DOE R&D Accomplishments [OSTI]

    Fermi, E.

    1946-05-27

    There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

  13. Atomic vapor laser isotope separation process

    DOE Patents [OSTI]

    Wyeth, R.W.; Paisner, J.A.; Story, T.

    1990-08-21

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

  14. Princeton Plasma Physics Lab - General Atomics (GA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    general-atomics-ga General Atomics en The Scorpion's Strategy: "Catch and Subdue" http:www.pppl.govnode1132

  15. The Atomic Energy Commission By Alice Buck

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atomic Energy Commission By Alice Buck July 1983 U.S. Department of Energy Office of Management Office of the Executive Secretariat Office of History and Heritage Resources 1 Introduction Almost a year after World War II ended, Congress established the United States Atomic Energy Commission to foster and control the peacetime development of atomic science and technology. Reflecting America's postwar optimism, Congress declared that atomic energy should be employed not only in the Nation's

  16. How Atomic Vibrations Transform Vanadium Dioxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Atomic Vibrations Transform Vanadium Dioxide How Atomic Vibrations Transform Vanadium Dioxide Calculations Confirm Material's Potential for Next-Generation Electronics, Energy November 10, 2014 Contact: Dawn Levy, levyd@ornl.gov, 865.576.6448 Budaivibe Vanadium atoms (blue) have unusually large thermal vibrations that stabilize the metallic state of a vanadium dioxide crystal. Red depicts oxygen atoms. Image credit: Oak Ridge National Laboratory For more than 50 years, scientists have

  17. Type: Renewal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 INCITE Awards Type: Renewal Title: -Ab Initio Dynamical Simulations for the Prediction of Bulk Properties‖ Principal Investigator: Theresa Windus, Iowa State University Co-Investigators: Brett Bode, Iowa State University Graham Fletcher, Argonne National Laboratory Mark Gordon, Iowa State University Monica Lamm, Iowa State University Michael Schmidt, Iowa State University Scientific Discipline: Chemistry: Physical INCITE Allocation: 10,000,000 processor hours Site: Argonne National

  18. Facility Type!

    Office of Legacy Management (LM)

    ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR

  19. Gauss Sum Factorization with Cold Atoms

    SciTech Connect (OSTI)

    Gilowski, M.; Wendrich, T.; Mueller, T.; Ertmer, W.; Rasel, E. M. [Institut fuer Quantenoptik, Leibniz Universitaet Hannover, Welfengarten 1, D-30167 Hannover (Germany); Jentsch, Ch. [Astrium GmbH-Satellites, 88039 Friedrichshafen (Germany); Schleich, W. P. [Institut fuer Quantenphysik, Universitaet Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany)

    2008-01-25

    We report the first implementation of a Gauss sum factorization algorithm by an internal state Ramsey interferometer using cold atoms. A sequence of appropriately designed light pulses interacts with an ensemble of cold rubidium atoms. The final population in the involved atomic levels determines a Gauss sum. With this technique we factor the number N=263193.

  20. Atomic Structure Calculations from the Los Alamos Atomic Physics Codes

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cowan, R. D.

    The well known Hartree-Fock method of R.D. Cowan, developed at Los Alamos National Laboratory, is used for the atomic structure calculations. Electron impact excitation cross sections are calculated using either the distorted wave approximation (DWA) or the first order many body theory (FOMBT). Electron impact ionization cross sections can be calculated using the scaled hydrogenic method developed by Sampson and co-workers, the binary encounter method or the distorted wave method. Photoionization cross sections and, where appropriate, autoionizations are also calculated. Original manuals for the atomic structure code, the collisional excitation code, and the ionization code, are available from this website. Using the specialized interface, you will be able to define the ionization stage of an element and pick the initial and final configurations. You will be led through a series of web pages ending with a display of results in the form of cross sections, collision strengths or rates coefficients. Results are available in tabular and graphic form.

  1. QUANTUM MECHANICS, GENERAL PHYSICS; 74 ATOMIC AND MOLECULAR PHYSICS...

    Office of Scientific and Technical Information (OSTI)

    of model atoms in fields Milonni, P.W. 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 74 ATOMIC AND MOLECULAR PHYSICS; ATOMS; OPTICAL MODELS; QUANTUM MECHANICS;...

  2. Type here

    Office of Environmental Management (EM)

    Injury at the Savannah River National Laboratory | Department of Energy January 10, 2006, Flash Fire and Injury at the Savannah River National Laboratory Type B Accident Investigation of the January 10, 2006, Flash Fire and Injury at the Savannah River National Laboratory February 1, 2006 On January 10, 2006, at approximately 7:47 a.m., a first-line manager (FLM) at the Savannah River National Laboratory (SRNL) received first- and second-degree burns to his head, face, neck, and left hand

  3. Mexico: swapping crude for atoms

    SciTech Connect (OSTI)

    Navarro, B.

    1982-06-24

    Mexico, considered the Saudi Arabia of the Western Hemisphere because of its proven and potential petroleum reserves, has surprised the world: it has embarked on the biggest nuclear-electric program in the Third World, only to postpone it days before scheduled approval of an international bidding (on which the atomic energy industry had pinned its hopes). A graph shows Mexican supplies of electricity by source with official projections to 1990. The point of entrance of the first nuclear reactor, originally scheduled for 1982, won't come onstream until 1983; and how nuclear-generated electricity grows close to 5% of the total in 1990. The big question is, will the future President of Mexico give the green light to the atomic megaproject. And if he does, how will Mexico deal with the serious logistics problems and grave ecological implications confronting the industry worldwide. In this issue, the author and Energy Detente touch on these questions and review the nuclear power status of Mexico, as well as addressing some of its global problems. Also presented in this issue is an update of the fuel price/tax series for the Western Hemisphere countries.

  4. Sensing mode atomic force microscope

    DOE Patents [OSTI]

    Hough, Paul V. C.; Wang, Chengpu

    2006-08-22

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  5. Sensing mode atomic force microscope

    DOE Patents [OSTI]

    Hough, Paul V. C.; Wang, Chengpu

    2003-01-01

    An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.

  6. Sensing mode atomic force microscope

    DOE Patents [OSTI]

    Hough, Paul V.; Wang, Chengpu

    2004-11-16

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  7. Truman Signs Atomic Energy Act | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Truman Signs Atomic Energy Act Truman Signs Atomic Energy Act Washington, DC President Truman signs the Atomic Energy Act of 1946, leading to the creation of the Atomic Energy Commission

  8. Hyperbaric Hydrothermal Atomic Force Microscope

    DOE Patents [OSTI]

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2003-07-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  9. Hyperbaric hydrothermal atomic force microscope

    DOE Patents [OSTI]

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2002-01-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  10. Production and Characterization of Atomized U-Mo Powder by the Rotating Electrode Process

    SciTech Connect (OSTI)

    C.R. Clark; B.R. Muntifering; J.F. Jue

    2007-09-01

    In order to produce feedstock fuel powder for irradiation testing, the Idaho National Laboratory has produced a rotating electrode type atomizer to fabricate uranium-molybdenum alloy fuel. Operating with the appropriate parameters, this laboratory-scale atomizer produces fuel in the desired size range for the RERTR dispersion experiments. Analysis of the powder shows a homogenous, rapidly solidified microstructure with fine equiaxed grains. This powder has been used to produce irradiation experiments to further test adjusted matrix U-Mo dispersion fuel.

  11. The Manhattan Project: Making the Atomic Bomb | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Manhattan Project: Making the Atomic Bomb The Manhattan Project: Making the Atomic Bomb This report is an account of work on the atomic bomb. The Manhattan Project: Making the Atomic Bomb (6.17 MB) More Documents & Publications Gosling, The Manhattan Project: Making the Atomic Bomb The_Manhattan_Project_2010.pdf The Manhattan Project: Making of the Atomic Bomb

  12. Method for enhanced atomization of liquids

    DOE Patents [OSTI]

    Thompson, Richard E.; White, Jerome R.

    1993-01-01

    In a process for atomizing a slurry or liquid process stream in which a slurry or liquid is passed through a nozzle to provide a primary atomized process stream, an improvement which comprises subjecting the liquid or slurry process stream to microwave energy as the liquid or slurry process stream exits the nozzle, wherein sufficient microwave heating is provided to flash vaporize the primary atomized process stream.

  13. Atomicity violation detection using access interleaving invariants

    DOE Patents [OSTI]

    Zhou, Yuanyuan; Lu, Shan; Tucek, Joseph Andrew

    2013-09-10

    During execution of a program, the situation where the atomicity of a pair of instructions that are to be executed atomically is violated is identified, and a bug is detected as occurring in the program at the pair of instructions. The pairs of instructions that are to be executed atomically can be identified in different manners, such as by executing a program multiple times and using the results of those executions to automatically identify the pairs of instructions.

  14. Integrated Nanosystems for Atomically Precise Manufacturing Workshop -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 5-6, 2015 | Department of Energy Nanosystems for Atomically Precise Manufacturing Workshop - August 5-6, 2015 Integrated Nanosystems for Atomically Precise Manufacturing Workshop - August 5-6, 2015 The US Department of Energy (DOE) Advanced Manufacturing Office (AMO) hosted a Workshop on Integrated Nanosystems for Atomically Precise Manufacturing (INFAPM) in Berkeley, California, August 5-6, 2015. DOE invited representatives from academia, national labs, the Executive Office of the

  15. Collisionally induced atomic clock shifts and correlations

    SciTech Connect (OSTI)

    Band, Y. B.; Osherov, I.

    2011-07-15

    We develop a formalism to incorporate exchange symmetry considerations into the calculation of collisional frequency shifts for atomic clocks using a density-matrix formalism. The formalism is developed for both fermionic and bosonic atomic clocks. Numerical results for a finite-temperature {sup 87}Sr {sup 1}S{sub 0} (F=9/2) atomic clock in a magic wavelength optical lattice are presented.

  16. Calculating Atomic Number Densities for Uranium

    Energy Science and Technology Software Center (OSTI)

    1993-01-01

    Provides method to calculate atomic number densities of selected uranium compounds and hydrogenous moderators for use in nuclear criticality safety analyses at gaseous diffusion uranium enrichment facilities.

  17. Atomic Scale Characterization of Compound Semiconductors using...

    Office of Scientific and Technical Information (OSTI)

    more fundamental understanding of carrier dynamics in photovoltaic (PV) device structures. ... Applying these improved analysis conditions to III-V based PV gives an atomic scale ...

  18. Manhattan Project: Adventures Inside the Atom

    Office of Scientific and Technical Information (OSTI)

    This publication was produced at the request of the the Assistant Manager for Public Education, Oak Ridge Operations Office, Atomic Energy Commission. It is reproduced here via the ...

  19. Circuits of Atoms on Wires of Light

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Circuits of Atoms on Wires of Light 1663 Los Alamos science and technology magazine Latest Issue:July 2016 past issues All Issues » submit Circuits of Atoms on Wires of Light A new kind of circuitry-with electrons on conducting wires replaced by atoms on paths of laser light-is ushering in an era of "atomtronic" technology. March 8, 2016 Artist visualization of atomic circuits Los Alamos scientists have developed a reliable new way to create atomtronic circuits with waves of

  20. Atomic Scale Characterization of Compound Semiconductors using...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 14 SOLAR ENERGY; 36 MATERIALS SCIENCE; ALLOYS; ATOMS; DATA ACQUISITION; DIFFUSION; FUNCTIONALS; HEAT FLUX; ...

  1. Optimizing Atomic Neighborhoods for Speedier Chemical Reactions...

    Office of Science (SC) Website

    processes involved in energy production and pollution control. Employing in-operation tools to atomic-level interactions in palladium-based catalysts enhances the discovery and...

  2. Atom-split it for nuclear energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adjustments were provided by the 'Calutron Girls' Seaborg-Chairman of the Atomic Energy Commission 1961-1971; discovered many elements Buckyball-Buckminsterfullerene; 60...

  3. CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT

    Office of Legacy Management (LM)

    ... A survey cf the area of the "L' Building was performed and consisted of gamma-ray ... - Statement of Certification Westinghouse Atomic Power Development Plant East Pittsburgh ...

  4. Multimode quantum memory based on atomic frequency combs

    SciTech Connect (OSTI)

    Afzelius, Mikael; Simon, Christoph; Riedmatten, Hugues de; Gisin, Nicolas

    2009-05-15

    An efficient multimode quantum memory is a crucial resource for long-distance quantum communication based on quantum repeaters. We propose a quantum memory based on spectral shaping of an inhomogeneously broadened optical transition into an atomic frequency comb (AFC). The spectral width of the AFC allows efficient storage of multiple temporal modes without the need to increase the absorption depth of the storage material, in contrast to previously known quantum memories. Efficient readout is possible thanks to rephasing of the atomic dipoles due to the AFC structure. Long-time storage and on-demand readout is achieved by use of spin states in a lambda-type configuration. We show that an AFC quantum memory realized in solids doped with rare-earth-metal ions could store hundreds of modes or more with close to unit efficiency, for material parameters achievable today.

  5. Direct visualization of atomically precise nitrogen-doped graphene nanoribbons

    SciTech Connect (OSTI)

    Zhang, Yi; Zhang, Yanfang; Li, Geng; Lu, Jianchen; Du, Shixuan, E-mail: sxdu@iphy.ac.cn, E-mail: feng@mpip-mainz.mpg.de; Gao, Hong-Jun [Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); Lin, Xiao [University of Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100049 (China); Berger, Reinhard; Feng, Xinliang, E-mail: sxdu@iphy.ac.cn, E-mail: feng@mpip-mainz.mpg.de; Mllen, Klaus [Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz (Germany)

    2014-07-14

    We have fabricated atomically precise nitrogen-doped chevron-type graphene nanoribbons by using the on-surface synthesis technique combined with the nitrogen substitution of the precursors. Scanning tunneling microscopy and spectroscopy indicate that the well-defined nanoribbons tend to align with the neighbors side-by-side with a band gap of 1.02?eV, which is in good agreement with the density functional theory calculation result. The influence of the high precursor coverage on the quality of the nanoribbons is also studied. We find that graphene nanoribbons with sufficient aspect ratios can only be fabricated at sub-monolayer precursor coverage. This work provides a way to construct atomically precise nitrogen-doped graphene nanoribbons.

  6. Accurate Optical Lattice Clock with {sup 87}Sr Atoms

    SciTech Connect (OSTI)

    Le Targat, Rodolphe; Baillard, Xavier; Fouche, Mathilde; Brusch, Anders; Tcherbakoff, Olivier; Rovera, Giovanni D.; Lemonde, Pierre

    2006-09-29

    We report a frequency measurement of the {sup 1}S{sub 0}-{sup 3}P{sub 0} transition of {sup 87}Sr atoms in an optical lattice clock. The frequency is determined to be 429 228 004 229 879(5) Hz with a fractional uncertainty that is comparable to state-of-the-art optical clocks with neutral atoms in free fall. The two previous measurements of this transition were found to disagree by about 2x10{sup -13}, i.e., almost 4 times the combined error bar and 4 to 5 orders of magnitude larger than the claimed ultimate accuracy of this new type of clocks. Our measurement is in agreement with one of these two values and essentially resolves this discrepancy.

  7. Operation Greenhouse. Scientific Director's report of atomic-weapon tests at Eniwetok, 1951. Annex 4. 2. Measurement of surface-air movements associated with atomic blasts

    SciTech Connect (OSTI)

    Rados, R.M.; Bogert, J.C.; Haig, T.O.

    1985-09-01

    The purpose of this project was to record continuous measurements of the surface winds in the vicinity of an atomic blast immediately prior to the blast, during passage of the shock wave, and immediately after the blast with special regard to the blast-induced afterwind following local dissipation of the shock wave. From the data obtained, it was concluded that following an atomic explosion there are two specific causes of air-mass movement. One is related to the shock phenomenon and the other to the rising fireball. It can also be concluded that the heated-thermopile-type and strain-gage-type anemometers could be developed to yield more complete data on the air-mass movement at ground level following an atomic explosion.

  8. Conduction of molecular electronic devices: Qualitative insights through atom-atom polarizabilities

    SciTech Connect (OSTI)

    Stuyver, T.; Fias, S. De Proft, F.; Geerlings, P.; Fowler, P. W.

    2015-03-07

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.

  9. Sub-Angstrom Atomic-Resolution Imaging of Heavy Atoms to Light...

    Office of Scientific and Technical Information (OSTI)

    of Heavy Atoms to Light Atoms Citation Details In-Document Search ... Publication Date: 2003-05-23 OSTI Identifier: 822959 Report Number(s): LBNL--52090 Journal ID: ISSN ...

  10. Hydrogen-induced atomic rearrangement in MgPd{sub 3}

    SciTech Connect (OSTI)

    Kohlmann, H. . E-mail: h.kohlmann@mx.uni-saarland.de; Renaudin, G.; Yvon, K.; Wannek, C.; Harbrecht, B.

    2005-04-15

    The hydrogenation behavior of MgPd{sub 3} has been studied by in situ X-ray powder diffraction and by neutron powder diffraction. At room temperature and p {approx}500kPa hydrogen pressure its structure is capable of incorporating up to one hydrogen atom per formula unit ({alpha}-MgPd{sub 3}H{sub {approx}}{sub 1}), thereby retaining a tetragonal ZrAl{sub 3}-type metal atom arrangement. Upon heating to 750K in a hydrogen atmosphere of 610kPa it transforms into a cubic modification with AuCu{sub 3}-type metal atom arrangement ({beta}-MgPd{sub 3}H{sub {approx}}{sub 0.7}). Neutron diffraction on the deuteride reveals an anion deficient anti-perovskite-type structure ({beta}-MgPd{sub 3}D{sub 0.67}, a=398.200(7)pm) in which octahedral sites surrounded exclusively by palladium atoms are occupied by deuterium. Complete removal of hydrogen (480K, 1Pa) stabilizes a new binary modification ({beta}-MgPd{sub 3}, a=391.78(2)pm) crystallizing with a primitive cubic AuCu{sub 3}-type structure. Mechanical treatment (grinding) transforms both {alpha} and {beta} modifications of MgPd{sub 3} into a cubic face-centered solid solution Mg{sub 0.25}Pd{sub 0.75} showing a random distribution of magnesium and palladium atoms.

  11. Atomic magnetometer for human magnetoencephalograpy.

    SciTech Connect (OSTI)

    Schwindt, Peter; Johnson, Cort N.

    2010-12-01

    We have developed a high sensitivity (<5 fTesla/{radical}Hz), fiber-optically coupled magnetometer to detect magnetic fields produced by the human brain. This is the first demonstration of a noncryogenic sensor that could replace cryogenic superconducting quantum interference device (SQUID) magnetometers in magnetoencephalography (MEG) and is an important advance in realizing cost-effective MEG. Within the sensor, a rubidium vapor is optically pumped with 795 laser light while field-induced optical rotations are measured with 780 nm laser light. Both beams share a single optical axis to maximize simplicity and compactness. In collaboration with neuroscientists at The Mind Research Network in Albuquerque, NM, the evoked responses resulting from median nerve and auditory stimulation were recorded with the atomic magnetometer and a commercial SQUID-based MEG system with signals comparing favorably. Multi-sensor operation has been demonstrated with two AMs placed on opposite sides of the head. Straightforward miniaturization would enable high-density sensor arrays for whole-head magnetoencephalography.

  12. Atomic Layer Deposition | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Layer Deposition New nanophase thin film materials with properties tailored to specifically meet the needs of industry New software simulates ALD over multiple length scale, saving industry time and money on developing specialized tools PDF icon Atomic_Layer_Deposition

  13. A continuous cold atomic beam interferometer

    SciTech Connect (OSTI)

    Xue, Hongbo; Feng, Yanying Yan, Xueshu; Jiang, Zhikun; Chen, Shu; Wang, Xiaojia; Zhou, Zhaoying

    2015-03-07

    We demonstrate an atom interferometer that uses a laser-cooled continuous beam of {sup 87}Rb atoms having velocities of 10–20 m/s. With spatially separated Raman beams to coherently manipulate the atomic wave packets, Mach–Zehnder interference fringes are observed at an interference distance of 2L = 19 mm. The apparatus operates within a small enclosed area of 0.07 mm{sup 2} at a bandwidth of 190 Hz with a deduced sensitivity of 7.8×10{sup −5} rad/s/√(Hz) for rotations. Using a low-velocity continuous atomic source in an atom interferometer enables high sampling rates and bandwidths without sacrificing sensitivity and compactness, which are important for applications in real dynamic environments.

  14. High data rate atom interferometric device

    SciTech Connect (OSTI)

    Biedermann, Grant; McGuinness, Hayden James Evans; Rakholia, Akash

    2015-07-21

    A light-pulse atomic interferometry (LPAI) apparatus is provided. The LPAI apparatus comprises a vessel, two sets of magnetic coils configured to magnetically confine an atomic vapor in two respective magneto-optical traps (MOTs) within the vessel when activated, and an optical system configured to irradiate the atomic vapor within the vessel with laser radiation that, when suitably tuned, can launch atoms previously confined in each of the MOTs toward the other MOT. In embodiments, the magnetic coils are configured to produce a magnetic field that is non-zero at the midpoint between the traps. In embodiments, the time-of-flight of the launched atoms from one MOT to the other is 12 ms or less. In embodiments, the MOTs are situated approximately 36 mm apart. In embodiments, the apparatus is configured to activate the magnetic coils according to a particular temporal magnetic field gradient profile.

  15. Beyond periodic orbits: An example in nonhydrogenic atoms

    SciTech Connect (OSTI)

    Dando, P.A.; Monteiro, T.S.; Delande, D.; Taylor, K.T. (Department of Mathematics, Royal Holloway, University of London, Egham, Surrey, TW20 0EX (United Kingdom) Laboratoire Kastler-Brossel, Universite Pierre et Marie Curie, 4 place Jussieu, F-75005 Paris (France) Department of Applied Mathematics and Theoretical Physics, Queen's University Belfast, Belfast, BT7 1NN (United Kingdom))

    1995-02-13

    The spectrum of hydrogen in a magnetic field is a paradigm of quantum chaos and may be analyzed accurately by periodic-orbit-type theories. In nonhydrogenic atoms, the core induces pure quantum effects, especially additional spectral modulations, which cannot be analyzed reliably in terms of classical orbits and their stability parameters. Provided core-scattered waves are included consistently, core-scattered modulations as well as corrected amplitudes for primitive orbits are in excellent agreement with quantum results. We consider whether these systems correspond to quantum chaos.

  16. Full-scale demonstration of low-NO{sub x} cell{trademark} burner retrofit: Addendum to long-term testing report, September 1994 outage: Examination of corrosion test panel and UT survey in DP&L Unit {number_sign}4

    SciTech Connect (OSTI)

    Kung, S.C.; Kleisley, R.J.

    1995-06-01

    As part of this DOE`s demonstration program, a corrosion test panel was installed on the west sidewall of Dayton Power & Light Unit no.4 at the J. M. Stuart Station (JMSS4) during the burner retrofit outage in November 1991. The test panel consisted of four sections of commercial coatings separated by bare SA213-T2 tubing. During the retrofit outage, a UT survey was performed to document the baseline wall thicknesses of the test panel, as well as several furnace wall areas outside the test panel. The purpose of the UT survey was to generate the baseline data so that the corrosion wastage associated with the operation of Low NO{sub x} Cell Burners (LNCB{trademark} burner) could be quantitatively determined. The corrosion test panel in JMSS4 was examined in April 1993 after the first 15-month operation of the LNCB{trademark} burners. Details of the corrosion analysis and UT data were documented in the Long-Term Testing Report. The second JMSS4 outage following the LNCB{trademark} burner retrofit took place in September 1944. Up to this point, the test panel in JMSS4 had been exposed to the corrosive combustion environment for approximately 31 months under normal boiler operation of JMSS4. This test period excluded the down time for the April 1993 outage. During the September 1994 outage, 70 tube samples of approximately one-foot length were cut from the bottom of the test panel. These samples were evaluated by the Alliance Research Center of B&W using the same metallurgical techniques as those employed for the previous outage. In addition, UT measurements were taken on the same locations of the lower furnace walls in JMSS4 as those during the prior outages. Results of the metallurgical analyses and UT surveys from different exposure times were compared, and the long-term performance of waterwall materials was analyzed. The corrosion data obtained from the long-term field study at JMSS4 after 32 months of LNCB{trademark} burner operation are summarized in this report.

  17. Atomic mix in directly driven inertial confinement implosions

    SciTech Connect (OSTI)

    Wilson, D. C.; Ebey, P. S.; Sangster, T. C.; Shmayda, W. T.; Yu. Glebov, V.; Lerche, R. A.

    2011-11-15

    Directly driven implosions on the Omega laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have measured the presence of atomic mix using D+T neutron yield rates from plastic capsules with and without deuterated layers, and a nearly pure tritium fuel containing 0.7% deuterium. In 15, 19, and 24 {mu}m thick plastic shells, D+T neutron yields increased by factors of 86, 112, and 24 when the 1.2 {mu}m thick inner layer was deuterated. Based on adjusting a fully atomic mix modvfel to fit yield degradation in the un-deuterated capsule and applying it to the capsule with the deuterated layer, atomic mixing accounts for 40-75% of the yield degradation due to mix. For the first time, the time dependence of mixed mass was measured by the ratio of the yield rates from both types of capsules. As expected, the amount of mix grows throughout the D+T burn.

  18. Optimization of some parameters of atomic steam-gas powerplant

    SciTech Connect (OSTI)

    Ratnikov, Y.F.

    1985-10-21

    Determination of optimum parameters of binary-type atomic steam-gas powerplant is a difficult analytical problem in view of the complicated interdependence of parameters, which characterize the reactor, gas-turbine, and steam-turbine parts of the installation. Conclusions include: 1) Determination of optimum parameters of atomic steam-gas installation is recommended to produce with gas consumption = const and heat output of the reactor = var. since best technical-economic indices of installation correspond to this case. 2) With increase in power of atomic steam-gas installation, together with improvement in economic indices, the optimum pressure ratio descends and optimum temperature of feed water increases. 3) Increase in the fuel component leads to a decrease of optimum pressure ratio and to increase in temperature of feed water. 4) Change of cost of reactor plant over wide limits virtually does not have effect on numerical values of optimum parameters being investigated. 5) In all cases optimum pressure ratio is more, and temperature of feed water is less than outer limits, obtained by thermodynamic calculations.

  19. Experimental estimation of oxidation-induced Si atoms emission on Si(001) surfaces

    SciTech Connect (OSTI)

    Ogawa, Shuichi Tang, Jiayi; Takakuwa, Yuji

    2015-08-15

    Kinetics of Si atoms emission during the oxidation of Si(001) surfaces have been investigated using reflection high energy electron diffraction combined with Auger electron spectroscopy. The area ratio of the 1 × 2 and the 2 × 1 domains on a clean Si(001) surface changed with the oxidation of the surface by Langmuir-type adsorption. This change in the domain ratio is attributed to the emission of Si atoms. We can describe the changes in the domain ratio using the Si emission kinetics model, which states that (1) the emission rate is proportional to the oxide coverage, and (2) the emitted Si atoms migrate on the surface and are trapped at S{sub B} steps. Based on our model, we find experimentally that up to 0.4 ML of Si atoms are emitted during the oxidation of a Si(001) surface at 576 °C.

  20. 1982 bibliography of atomic and molecular processes

    SciTech Connect (OSTI)

    Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.; Gregory, D.C.; Kirkpatrick, M.I.; McDaniel, E.W.; McKnight, R.H.; Meyer, F.W.; Morgan, T.J.; Phaneuf, R.A.

    1984-05-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1982. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  1. SECTION IV: ATOMIC AND MOLECULAR SCIENCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IV: ATOMIC AND MOLECULAR SCIENCE A Pyroelectric Crystal Particle Accelerator ....................................................................................................................................................IV-1 J. Kalodimos and R.L. Watson Polarization of Ka Satellite Transitions in Potassium .....................................................................................................................................IV-4 K. S. Fruchey, R.L. Watson, V. Horvat, and Yong

  2. Network Optimization Models (RNAS and ATOM) | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    been used to study policy options concerning the movement of toxic chemicals by rail. Air Transport Optimization Model (ATOM) The TOM is a network-optimization model designed to...

  3. SECTION IV: ATOMIC, MOLECULAR AND MATERIALS SCIENCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATOMIC, MOLECULAR AND MATERIALS SCIENCE A semiempirical scaling law for target K x-ray production in heavy ion collisions...... IV-1 R. L. Watson, Y. Peng, V. Horvat, and A. ...

  4. New analogies between extreme QCD and cold atoms

    SciTech Connect (OSTI)

    Nishida, Yusuke

    2012-08-15

    We discuss two new analogies between extreme QCD and cold atoms. One is the analogue of 'hard probes' in cold atoms. The other is the analogue of 'quark-hadron continuity' in cold atoms.

  5. August 1, 1946: Atomic Energy Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 1, 1946: Atomic Energy Act August 1, 1946 President Truman signs the Atomic Energy Act of 1946. On January 1, 1947, all atomic energy activities are transferred to the newly ...

  6. n-Type diamond and method for producing same

    DOE Patents [OSTI]

    Anderson, Richard J.

    2002-01-01

    A new n-type semiconducting diamond is disclosed, which is doped with n-type dopant atoms. Such diamond is advantageously formed by chemical vapor deposition from a source gas mixture comprising a carbon source compound for the diamond, and a volatile hot wire filament for the n-type impurity species, so that the n-type impurity atoms are doped in the diamond during its formation. A corresponding chemical vapor deposition method of forming the n-type semiconducting diamond is disclosed. The n-type semiconducting diamond of the invention may be usefully employed in the formation of diamond-based transistor devices comprising pn diamond junctions, and in other microelectronic device applications.

  7. Atomic resolution images of graphite in air

    SciTech Connect (OSTI)

    Grigg, D.A.; Shedd, G.M.; Griffis, D.; Russell, P.E.

    1988-12-01

    One sample used for proof of operation for atomic resolution in STM is highly oriented pyrolytic graphite (HOPG). This sample has been imaged with many different STM`s obtaining similar results. Atomic resolution images of HOPG have now been obtained using an STM designed and built at the Precision Engineering Center. This paper discusses the theoretical predictions and experimental results obtained in imaging of HOPG.

  8. CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT

    Office of Legacy Management (LM)

    WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects ..-.. --__- _".-.-l--_--l -_._ _- --- ~~~. . ..~ CONTENTS Page - - I NTRODUCTI ON 1 Purpose 1 Docket Contents 1 Exhibit I: Summary of Activities at Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania

  9. Scanning magnetoresistance microscopy of atom chips

    SciTech Connect (OSTI)

    Volk, M.; Whitlock, S.; Wolff, C. H.; Hall, B. V.; Sidorov, A. I.

    2008-02-15

    Surface based geometries of microfabricated wires or patterned magnetic films can be used to magnetically trap and manipulate ultracold neutral atoms or Bose-Einstein condensates. We investigate the magnetic properties of such atom chips using a scanning magnetoresistive (MR) microscope with high spatial resolution and high field sensitivity. By comparing MR scans of a permanent magnetic atom chip to field profiles obtained using ultracold atoms, we show that MR sensors are ideally suited to observe small variations of the magnetic field caused by imperfections in the wires or magnetic materials which ultimately lead to fragmentation of ultracold atom clouds. Measurements are also provided for the magnetic field produced by a thin current-carrying wire with small geometric modulations along the edge. Comparisons of our measurements with a full numeric calculation of the current flow in the wire and the subsequent magnetic field show excellent agreement. Our results highlight the use of scanning MR microscopy as a convenient and powerful technique for precisely characterizing the magnetic fields produced near the surface of atom chips.

  10. The Common Elements of Atomic and Hadronic Physics (Conference...

    Office of Scientific and Technical Information (OSTI)

    The Common Elements of Atomic and Hadronic Physics Citation Details In-Document Search Title: The Common Elements of Atomic and Hadronic Physics Authors: Brodsky, Stanley J. ;...

  11. Order, disorder and mixing: The atomic structure of amorphous...

    Office of Scientific and Technical Information (OSTI)

    Order, disorder and mixing: The atomic structure of amorphous mixtures of titania and tantala Citation Details In-Document Search Title: Order, disorder and mixing: The atomic ...

  12. The perfect atom sandwich requires an extra layer > Archived...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Titanium atoms (yellow) preferentially bond with oxygen atoms (gray) and sit at the center of a complete octahedron, making it energetically more favorable for titanium to switch ...

  13. Institute for Atom-Efficient Chemical Transformations Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Atom-Efficient Chemical Transformations - an Energy Frontier Research Center The Institute for Atom-Efficient Chemical Transformations (IACT) employs a...

  14. Institute for Atom-Efficient Chemical Transformations Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientific roadblocks to U.S. energy security. Institute for Atom-Efficient Chemical Transformations The Institute for Atom-Efficient Chemical Transformations (IACT)...

  15. Atomic line emission analyzer for hydrogen isotopes (Patent)...

    Office of Scientific and Technical Information (OSTI)

    Atomic line emission analyzer for hydrogen isotopes Title: Atomic line emission analyzer for hydrogen isotopes Apparatus for isotopic analysis of hydrogen comprises a low pressure ...

  16. Spatial atomic layer deposition on flexible substrates using...

    Office of Scientific and Technical Information (OSTI)

    Spatial atomic layer deposition on flexible substrates using a modular rotating cylinder reactor Citation Details In-Document Search Title: Spatial atomic layer deposition on...

  17. Charge flow model for atomic ordering in nonisovalent alloys...

    Office of Scientific and Technical Information (OSTI)

    Charge flow model for atomic ordering in nonisovalent alloys Title: Charge flow model for atomic ordering in nonisovalent alloys Authors: Wang, Shuzhi ; Wang, Lin-Wang Publication ...

  18. Hewlett and Duncan - Atomic Shield | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Duncan - Atomic Shield Hewlett and Duncan - Atomic Shield Hewlett, Richard G. and Francis Duncan. Atomic Shield, 1947-1952. U.S. Atomic Energy Comission, 1972. The second volume of the three volume A History of the United States Atomic Energy Commission. Text in each PDF is fully searchable. "Hewlett and Duncan - Atomic Shield (complete).pdf" contains the complete text and images from Atomic Shield. 12mb "Hewlett and Duncan - Atomic Shield (figures only).pdf" contains hi-res

  19. Los Alamos Selected as Atomic Weapons Laboratory | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Los Alamos Selected as Atomic Weapons Laboratory Los Alamos, NM Groves selects Los Alamos, New Mexico, as site for separate scientific laboratory to design an atomic bomb

  20. Signals from dark atom formation in halos (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    Signals from dark atom formation in halos Prev Next Title: Signals from dark atom formation in halos Authors: Pearce, Lauren ; Petraki, Kalliopi ; Kusenko, Alexander ...

  1. The Simplicity of Perfect Atoms: Degeneracies in Supersymmetric...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: The Simplicity of Perfect Atoms: Degeneracies in Supersymmetric Hydrogen Citation Details In-Document Search Title: The Simplicity of Perfect Atoms: Degeneracies...

  2. The Simplicity of Perfect Atoms: Degeneracies in Supersymmetric...

    Office of Scientific and Technical Information (OSTI)

    The Simplicity of Perfect Atoms: Degeneracies in Supersymmetric Hydrogen Citation Details In-Document Search Title: The Simplicity of Perfect Atoms: Degeneracies in Supersymmetric...

  3. Ultra-sensitive Magnetic Microscopy with an Atomic Magnetometer...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 74 ATOMIC AND ... PERFORMANCE TESTING; SENSITIVITY; DATA ACQUISITION SYSTEMS; ALKALI METALS; ATOMS Word ...

  4. Clifford G. Shull, Neutron Diffraction, Hydrogen Atoms, and Neutron...

    Office of Scientific and Technical Information (OSTI)

    In Professor Shull's opinion the most important problem he worked on at the time dealt with determining the positions of hydrogen atoms in materials. "Hydrogen atoms are ubiquitous ...

  5. Atom probe tomographic mapping directly reveals the atomic distribution of phosphorus in resin embedded ferritin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Perea, Daniel E.; Liu, Jia; Bartrand, Jonah A. G.; Dicken, Quinten G.; Thevuthasan, Suntharampillai Theva; Browning, Nigel D.; Evans, James E.

    2016-02-29

    In this study, we report the atomic-scale analysis of biological interfaces using atom probe tomography. Embedding the protein ferritin in an organic polymer resin lacking nitrogen provided chemical contrast to visualize atomic distributions and distinguish organic-organic and organic-inorganic interfaces. The sample preparation method can be directly extended to further enhance the study of biological, organic and inorganic nanomaterials relevant to health, energy or the environment.

  6. Atoms for peace and war, 1953-1961: Eisenhower and the Atomic Energy Commission

    SciTech Connect (OSTI)

    Hewlett, Richard G.; Holl, Jack M.

    1989-12-01

    This third volume in the official history of the U.S. Atomic Energy Commission covers the years of the Eisenhower Administration.

  7. True atomic-scale imaging of a spinel Li{sub 4}Ti{sub 5}O{sub 12}(111) surface in aqueous solution by frequency-modulation atomic force microscopy

    SciTech Connect (OSTI)

    Kitta, Mitsunori, E-mail: m-kitta@aist.go.jp; Kohyama, Masanori [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Onishi, Hiroshi [Department of Chemistry, Graduate School of Science, Kobe University 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-09-15

    Spinel-type lithium titanium oxide (LTO; Li{sub 4}Ti{sub 5}O{sub 12}) is a negative electrode material for lithium-ion batteries. Revealing the atomic-scale surface structure of LTO in liquid is highly necessary to investigate its surface properties in practical environments. Here, we reveal an atomic-scale image of the LTO(111) surface in LiCl aqueous solution using frequency-modulation atomic force microscopy. Atomically flat terraces and single steps having heights of multiples of 0.5?nm were observed in the aqueous solution. Hexagonal bright spots separated by 0.6?nm were also observed on the flat terrace part, corresponding to the atomistic contrast observed in the ultrahigh vacuum condition, which suggests that the basic atomic structure of the LTO(111) surface is retained without dramatic reconstruction even in the aqueous solution.

  8. Temperature measurement of cold atoms using single-atom transits and Monte Carlo simulation in a strongly coupled atom-cavity system

    SciTech Connect (OSTI)

    Li, Wenfang; Du, Jinjin; Wen, Ruijuan; Yang, Pengfei; Li, Gang; Zhang, Tiancai; Liang, Junjun

    2014-03-17

    We investigate the transmission of single-atom transits based on a strongly coupled cavity quantum electrodynamics system. By superposing the transit transmissions of a considerable number of atoms, we obtain the absorption spectra of the cavity induced by single atoms and obtain the temperature of the cold atom. The number of atoms passing through the microcavity for each release is also counted, and this number changes exponentially along with the atom temperature. Monte Carlo simulations agree closely with the experimental results, and the initial temperature of the cold atom is determined. Compared with the conventional time-of-flight (TOF) method, this approach avoids some uncertainties in the standard TOF and sheds new light on determining temperature of cold atoms by counting atoms individually in a confined space.

  9. Second-Nearest-Neighbor Correlations from Connection of Atomic Packing Motifs in Metallic Glasses and Liquids

    SciTech Connect (OSTI)

    Ding, Jun; Ma, Evan; Asta, Mark; Ritchie, Robert O.

    2015-11-30

    Using molecular dynamics simulations, we have studied the atomic correlations characterizing the second peak in the radial distribution function (RDF) of metallic glasses and liquids. The analysis was conducted from the perspective of different connection schemes of atomic packing motifs, based on the number of shared atoms between two linked coordination polyhedra. The results demonstrate that the cluster connections by face-sharing, specifically with three common atoms, are most favored when transitioning from the liquid to glassy state, and exhibit the stiffest elastic response during shear deformation. These properties of the connections and the resultant atomic correlations are generally the same for different types of packing motifs in different alloys. Splitting of the second RDF peak was observed for the inherent structure of the equilibrium liquid, originating solely from cluster connections; this trait can then be inherited in the metallic glass formed via subsequent quenching of the parent liquid through the glass transition, in the absence of any additional type of local structural order. In conclusion, increasing ordering and cluster connection during cooling, however, may tune the position and intensity of the split peaks.

  10. Second-Nearest-Neighbor Correlations from Connection of Atomic Packing Motifs in Metallic Glasses and Liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ding, Jun; Ma, Evan; Asta, Mark; Ritchie, Robert O.

    2015-11-30

    Using molecular dynamics simulations, we have studied the atomic correlations characterizing the second peak in the radial distribution function (RDF) of metallic glasses and liquids. The analysis was conducted from the perspective of different connection schemes of atomic packing motifs, based on the number of shared atoms between two linked coordination polyhedra. The results demonstrate that the cluster connections by face-sharing, specifically with three common atoms, are most favored when transitioning from the liquid to glassy state, and exhibit the stiffest elastic response during shear deformation. These properties of the connections and the resultant atomic correlations are generally the samemore » for different types of packing motifs in different alloys. Splitting of the second RDF peak was observed for the inherent structure of the equilibrium liquid, originating solely from cluster connections; this trait can then be inherited in the metallic glass formed via subsequent quenching of the parent liquid through the glass transition, in the absence of any additional type of local structural order. In conclusion, increasing ordering and cluster connection during cooling, however, may tune the position and intensity of the split peaks.« less

  11. Method and apparatus for atomic imaging

    DOE Patents [OSTI]

    Saldin, Dilano K.; de Andres Rodriquez, Pedro L.

    1993-01-01

    A method and apparatus for three dimensional imaging of the atomic environment of disordered adsorbate atoms are disclosed. The method includes detecting and measuring the intensity of a diffuse low energy electron diffraction pattern formed by directing a beam of low energy electrons against the surface of a crystal. Data corresponding to reconstructed amplitudes of a wave form is generated by operating on the intensity data. The data corresponding to the reconstructed amplitudes is capable of being displayed as a three dimensional image of an adsorbate atom. The apparatus includes a source of a beam of low energy electrons and a detector for detecting the intensity distribution of a DLEED pattern formed at the detector when the beam of low energy electrons is directed onto the surface of a crystal. A device responsive to the intensity distribution generates a signal corresponding to the distribution which represents a reconstructed amplitude of a wave form and is capable of being converted into a three dimensional image of the atomic environment of an adsorbate atom on the crystal surface.

  12. Layered Atom Arrangements in Complex Materials

    SciTech Connect (OSTI)

    K.E. Sikafus; R.W.Grimes; S.M.Corish; A.R. Cleave; M.Tang; C.R.Stanek; B.P. Uberuaga; J.A.Valdez

    2005-04-15

    In this report, we develop an atom layer stacking model to describe systematically the crystal structures of complex materials. To illustrate the concepts, we consider a sequence of oxide compounds in which the metal cations progress in oxidation state from monovalent (M{sup 1+}) to tetravalent (M{sup 4+}). We use concepts relating to geometric subdivisions of a triangular atom net to describe the layered atom patterns in these compounds (concepts originally proposed by Shuichi Iida). We demonstrate that as a function of increasing oxidation state (from M{sup 1+} to M{sup 4+}), the layer stacking motifs used to generate each successive structure (specifically, motifs along a 3 symmetry axis), progress through the following sequence: MMO, MO, M{sub r}O, MO{sub r/s}O{sub u/v}, MOO (where M and O represent fully dense triangular atom nets and r/s and u/v are fractions used to describe partially filled triangular atom nets). We also develop complete crystallographic descriptions for the compounds in our oxidation sequence using trigonal space group R{bar 3}.

  13. Permutation-invariant distance between atomic configurations

    SciTech Connect (OSTI)

    Ferré, Grégoire; Maillet, Jean-Bernard; Stoltz, Gabriel

    2015-09-14

    We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables us to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e., fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the root mean square distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e., their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity.

  14. Efimov physics in {sup 6}Li atoms

    SciTech Connect (OSTI)

    Braaten, Eric; Hammer, H.-W.; Kang, Daekyoung; Platter, Lucas

    2010-01-15

    A new narrow three-atom loss resonance associated with an Efimov trimer crossing the three-atom threshold has recently been discovered in a many-body system of ultracold {sup 6}Li atoms in the three lowest hyperfine spin states at a magnetic field near 895 G. O'Hara and coworkers have used measurements of the three-body recombination rate in this region to determine the complex three-body parameter associated with Efimov physics. Using this parameter as the input, we calculate the universal predictions for the spectrum of Efimov states and for the three-body recombination rate in the universal region above 600 G where all three scattering lengths are large. We predict an atom-dimer loss resonance at 672+-2 G associated with an Efimov trimer disappearing through an atom-dimer threshold. We also predict an interference minimum in the three-body recombination rate at 759+-1 G where the three-spin mixture may be sufficiently stable to allow experimental study of the many-body system.

  15. Atomic-Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision

    SciTech Connect (OSTI)

    Jesse, Stephen; He, Qian; Lupini, Andrew R.; Leonard, Donovan N.; Oxley, Mark P.; Ovchinnikov, Oleg; Unocic, Raymond R.; Tselev, Alexander; Fuentes-Cabrera, Miguel; Sumpter, Bobby G.; Pennycook, Stephen J.; Kalinin, Sergei V.; Borisevich, Albina Y.

    2015-10-19

    We demonstrate atomic-level sculpting of 3D crystalline oxide nanostructures from metastable amorphous layer in a scanning transmission electron microscope (STEM). Strontium titanate nanostructures grow epitaxially from the crystalline substrate following the beam path. This method can be used for fabricating crystalline structures as small as 1-2 nm and the process can be observed in situ with atomic resolution. We further demonstrate fabrication of arbitrary shape structures via control of the position and scan speed of the electron beam. Combined with broad availability of the atomic resolved electron microscopy platforms, these observations suggest the feasibility of large scale implementation of bulk atomic-level fabrication as a new enabling tool of nanoscience and technology, providing a bottom-up, atomic-level complement to 3D printing.

  16. Atomic-Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jesse, Stephen; He, Qian; Lupini, Andrew R.; Leonard, Donovan N.; Oxley, Mark P.; Ovchinnikov, Oleg; Unocic, Raymond R.; Tselev, Alexander; Fuentes-Cabrera, Miguel; Sumpter, Bobby G.; et al

    2015-10-19

    We demonstrate atomic-level sculpting of 3D crystalline oxide nanostructures from metastable amorphous layer in a scanning transmission electron microscope (STEM). Strontium titanate nanostructures grow epitaxially from the crystalline substrate following the beam path. This method can be used for fabricating crystalline structures as small as 1-2 nm and the process can be observed in situ with atomic resolution. We further demonstrate fabrication of arbitrary shape structures via control of the position and scan speed of the electron beam. Combined with broad availability of the atomic resolved electron microscopy platforms, these observations suggest the feasibility of large scale implementation of bulkmore » atomic-level fabrication as a new enabling tool of nanoscience and technology, providing a bottom-up, atomic-level complement to 3D printing.« less

  17. A History of the Atomic Energy Commission | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atomic Energy Commission A History of the Atomic Energy Commission A History of the Atomic Energy Commission - written by Alice L. Buck Washington, D.C.: U.S. Department of Energy, July 1983. 41 pp. AEC History.pdf (1.01 MB) More Documents & Publications The History of Nuclear Energy The Manhattan Project Hewlett and Holl - Atoms for Peace and War

  18. Light-pulse atom interferometric device

    DOE Patents [OSTI]

    Biedermann, Grant; McGuinness, Hayden James Evans; Rakholia, Akash; Jau, Yuan-Yu; Schwindt, Peter; Wheeler, David R.

    2016-03-22

    An atomic interferometric device useful, e.g., for measuring acceleration or rotation is provided. The device comprises at least one vapor cell containing a Raman-active chemical species, an optical system, and at least one detector. The optical system is conformed to implement a Raman pulse interferometer in which Raman transitions are stimulated in a warm vapor of the Raman-active chemical species. The detector is conformed to detect changes in the populations of different internal states of atoms that have been irradiated by the optical system.

  19. SECTION IV. ATOMIC AND MOLECULAR SCIENCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IV. ATOMIC AND MOLECULAR SCIENCE Cross Sections for Cu K-Vacancy Production in Fast Heavy Ion Collisions R.L. Watson, J.M. Blackadar and V. Horvat Enhancement of the Cu Kα x-ray Diagram Lines in Fast Heavy Ion Collisions R.L. Watson, V. Horvat and J.M. Blackadar K-shell Ionization by Secondary Electrons V. Horvat, R.L. Watson and J.M. Blackadar Target-atom Inner-shell Vacancy Distributions Created in Collisions with Heavy Ion Projectiles V. Horvat, R.L. Watson and J.M. Blackadar Systematics of

  20. Atom Probe Tomography of Nanoscale Electronic Materials

    SciTech Connect (OSTI)

    Larson, David J.; Prosa, Ty J.; Perea, Daniel E.; Inoue, Hidekazu; Mangelinck, D.

    2016-01-01

    Atom probe tomography (APT) is a mass spectrometry based on time-of-flight measurements which also concurrently produces 3D spatial information. The reader is referred to any of the other papers in this volume or to the following references for further information 4–8. The current capabilities of APT, such as detecting a low number of dopant atoms in nanoscale devices or segregation at a nanoparticle interface, make this technique an important component in the nanoscale metrology toolbox. In this manuscript, we review some of the applications of APT to nanoscale electronic materials, including transistors and finFETs, silicide contact microstructures, nanowires, and nanoparticles.

  1. Committee on Atomic, Molecular and Optical Sciences

    SciTech Connect (OSTI)

    Lancaster, James

    2015-06-30

    The Committee on Atomic, Molecular, and Optical Sciences (CAMOS) is a standing activity of the National Research Council (NRC) that operates under the auspices of the Board on Physics and Astronomy. CAMOS is one of five standing committees of the BPA that are charged with assisting it in achieving its goals—monitoring the health of physics and astronomy, identifying important new developments at the scientific forefronts, fostering interactions with other fields, strengthening connections to technology, facilitating effective service to the nation, and enhancing education in physics. CAMOS provides these capabilities for the atomic, molecular and optical (AMO) sciences.

  2. NREL: Measurements and Characterization - Atomic Force Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Force Microscopy Atomic Force Microscopy (AFM) operates in several modes. In contact mode, a tip that is attached to a cantilever is scanned over the sample surface, while the force between tip and sample is measured. While the tip is scanned laterally, the force is kept constant by moving the cantilever/tip assembly up and down, so that the deflection of the cantilever is kept constant. The vertical movement of the cantilever/tip assembly is recorded and used to generate an image of the

  3. Fidelity imaging for atomic force microscopy

    SciTech Connect (OSTI)

    Ghosal, Sayan Salapaka, Murti

    2015-01-05

    Atomic force microscopy is widely employed for imaging material at the nanoscale. However, real-time measures on image reliability are lacking in contemporary atomic force microscopy literature. In this article, we present a real-time technique that provides an image of fidelity for a high bandwidth dynamic mode imaging scheme. The fidelity images define channels that allow the user to have additional authority over the choice of decision threshold that facilitates where the emphasis is desired, on discovering most true features on the sample with the possible detection of high number of false features, or emphasizing minimizing instances of false detections. Simulation and experimental results demonstrate the effectiveness of fidelity imaging.

  4. Analysis of a magnetically trapped atom clock

    SciTech Connect (OSTI)

    Kadio, D.; Band, Y. B.

    2006-11-15

    We consider optimization of a rubidium atom clock that uses magnetically trapped Bose condensed atoms in a highly elongated trap, and determine the optimal conditions for minimum Allan variance of the clock using microwave Ramsey fringe spectroscopy. Elimination of magnetic field shifts and collisional shifts are considered. The effects of spin-dipolar relaxation are addressed in the optimization of the clock. We find that for the interstate interaction strength equal to or larger than the intrastate interaction strengths, a modulational instability results in phase separation and symmetry breaking of the two-component condensate composed of the ground and excited hyperfine clock levels, and this mechanism limits the clock accuracy.

  5. Atomic configuration of irradiation-induced planar defects in 3C-SiC

    SciTech Connect (OSTI)

    Lin, Y. R. [Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); National Synchrotron Radiation Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Ho, C. Y. [Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Hsieh, C. Y.; Chang, M. T.; Lo, S. C. [Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China); Chen, F. R. [Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Kai, J. J., E-mail: ceer0001@gmail.com [Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China)

    2014-03-24

    The atomic configuration of irradiation-induced planar defects in single crystal 3C-SiC at high irradiation temperatures was shown in this research. A spherical aberration corrected scanning transmission electron microscope provided images of individual silicon and carbon atoms by the annular bright-field (ABF) method. Two types of irradiation-induced planar defects were observed in the ABF images including the extrinsic stacking fault loop with two offset Si-C bilayers and the intrinsic stacking fault loop with one offset Si-C bilayer. The results are in good agreement with images simulated under identical conditions.

  6. Isolating and moving single atoms using silicon nanocrystals

    DOE Patents [OSTI]

    Carroll, Malcolm S.

    2010-09-07

    A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.

  7. Atomic-level imaging, processing and characterization of semiconductor surfaces

    DOE Patents [OSTI]

    Kazmerski, Lawrence L.

    1995-01-01

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe.

  8. Atomic-level imaging, processing and characterization of semiconductor surfaces

    DOE Patents [OSTI]

    Kazmerski, L.L.

    1995-08-22

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe. 8 figs.

  9. ARM - Measurement - Cloud type

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Cloud type Cloud type such as cirrus, stratus, cumulus etc Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  10. Observing a coherent superposition of an atom and a molecule

    SciTech Connect (OSTI)

    Dowling, Mark R. [School of Physical Sciences, University of Queensland, St. Lucia, Queensland 4072 (Australia); Bartlett, Stephen D. [School of Physics, University of Sydney, Sydney, New South Wales 2006 (Australia); Rudolph, Terry [Optics Section, Blackett Laboratory, Imperial College London, London SW7 2BW (United Kingdom); Institute for Mathematical Sciences, Imperial College London, London SW7 2BW (United Kingdom); Spekkens, Robert W. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA (United Kingdom)

    2006-11-15

    We demonstrate that it is possible, in principle, to perform a Ramsey-type interference experiment to exhibit a coherent superposition of a single atom and a diatomic molecule. This gedanken experiment, based on the techniques of Aharonov and Susskind [Phys. Rev. 155, 1428 (1967)], explicitly violates the commonly accepted superselection rule that forbids coherent superpositions of eigenstates of differing atom number. A Bose-Einstein condensate plays the role of a reference frame that allows for coherent operations analogous to Ramsey pulses. We also investigate an analogous gedanken experiment to exhibit a coherent superposition of a single boson and a fermion, violating the commonly accepted superselection rule forbidding coherent superpositions of states of differing particle statistics. In this case, the reference frame is realized by a multimode state of many fermions. This latter case reproduces all of the relevant features of Ramsey interferometry, including Ramsey fringes over many repetitions of the experiment. However, the apparent inability of this proposed experiment to produce well-defined relative phases between two distinct systems each described by a coherent superposition of a boson and a fermion demonstrates that there are additional, outstanding requirements to fully 'lift' the univalence superselection rule.

  11. Mobility of atoms under ion bombardment

    SciTech Connect (OSTI)

    Alekseevskii, V.; Gertsriken, D.; Kovtun, V.; Tyshkevich, V.; Fal'chenko, V.

    1981-10-01

    Argon ions bombardment (Eapprox.1KeV) of Armco iron in a cold glow discharge plasma (T< or approx. =150/sup 0/C) has been performed to investigate the mobility and behavior of the atoms in the crystal lattice and the formation of a solid solution of Argon in iron.(AIP)

  12. Nano-soldering to single atomic layer

    DOE Patents [OSTI]

    Girit, Caglar O.; Zettl, Alexander K.

    2011-10-11

    A simple technique to solder submicron sized, ohmic contacts to nanostructures has been disclosed. The technique has several advantages over standard electron beam lithography methods, which are complex, costly, and can contaminate samples. To demonstrate the soldering technique graphene, a single atomic layer of carbon, has been contacted, and low- and high-field electronic transport properties have been measured.

  13. Atomic power in space: A history

    SciTech Connect (OSTI)

    Not Available

    1987-03-01

    ''Atomic Power in Space,'' a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. 19 figs., 3 tabs.

  14. Atomic physics with highly charged ions

    SciTech Connect (OSTI)

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  15. Theory of multiphoton ionization of atoms

    SciTech Connect (OSTI)

    Szoeke, A.

    1986-03-01

    A non-perturbative approach to the theory of multiphoton ionization is reviewed. Adiabatic Floquet theory is its first approximation. It explains qualitatively the energy and angular distribution of photoelectrons. In many-electron atoms it predicts collective and inner shell excitation. 14 refs.

  16. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    DOE R&D Accomplishments [OSTI]

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  17. The atomization of water-oil emulsions

    SciTech Connect (OSTI)

    Broniarz-Press, L.; Ochowiak, M.; Rozanski, J.; Woziwodzki, S.

    2009-09-15

    The paper presents the results of experimental studies on atomization of the emulsions flowing through twin-fluid atomizers obtained by the use of the digital microphotography method. The main elements of the test installation were: nozzle, reservoir, pump and measurement units of liquid flow. The photographs were taken by a digital camera with automatic flash at exposure time of 1/8000 s and subsequently analyzed using Image Pro-Plus. The oils used were mineral oils 20-90, 20-70, 20-50 and 20-30. The studies were performed at flow rates of liquid phase changed from 0.0014 to 0.011 (dm{sup 3}/s) and gas phase changed from 0.28 to 1.4 (dm{sup 3}/s), respectively. The analysis of photos shows that the droplets being formed during the liquid atomization have very different sizes. The smallest droplets have diameters of the order of 10 {mu}m. The experimental results showed that the changes in physical properties of a liquid phase lead to the significant changes in the spray characteristics. The analysis of the photos of water and emulsions atomization process showed that the droplet sizes are dependent on gas and liquid flow rates, construction of nozzle and properties of liquid. The differences between characteristics of atomization for water and emulsions have been observed. Analysis of photos on forming the droplets in air-water and air-emulsions systems showed that droplets are bigger in air-emulsion system (at the same value of gas to liquid mass ratio). The values of Sauter mean diameter (SMD) increased with increase of volume fraction of oil in emulsion. The droplet size increased with emulsion viscosity. (author)

  18. Complexity reduction of collisional-radiative kinetics for atomic plasma

    SciTech Connect (OSTI)

    Le, Hai P.; Karagozian, Ann R.; Cambier, Jean-Luc

    2013-12-15

    Thermal non-equilibrium processes in partially ionized plasmas can be most accurately modeled by collisional-radiative kinetics. This level of detail is required for an accurate prediction of the plasma. However, the resultant system of equations can be prohibitively large, making multi-dimensional and unsteady simulations of non-equilibrium radiating plasma particularly challenging. In this paper, we present a scheme for model reduction of the collisional-radiative kinetics, by combining energy levels into groups and deriving the corresponding macroscopic rates for all transitions. Although level-grouping is a standard approach to this type of problem, we provide here a mechanism for achieving higher-order accuracy by accounting for the level distribution within a group. The accuracy and benefits of the scheme are demonstrated for the generic case of atomic hydrogen by comparison with the complete solution of the master rate equations and other methods.

  19. Cold Atom Clock Test of Lorentz Invariance in the Matter Sector

    SciTech Connect (OSTI)

    Wolf, Peter; Chapelet, Frederic; Bize, Sebastien; Clairon, Andre

    2006-02-17

    We report on a new experiment that tests for a violation of Lorentz invariance (LI), by searching for a dependence of atomic transition frequencies on the orientation of the spin of the involved states (Hughes-Drever type experiment). The atomic frequencies are measured using a laser cooled {sup 133}Cs atomic fountain clock, operating on a particular combination of Zeeman substates. We analyze the results within the framework of the Lorentz violating standard model extension (SME), where our experiment is sensitive to a largely unexplored region of the SME parameter space, corresponding to first measurements of four proton parameters and improvements by 11 and 13 orders of magnitude on the determination of four others. In spite of the attained uncertainties, and of having extended the search into a new region of the SME, we still find no indication of LI violation.

  20. Structural Comparison of n-type and p-type LaAlO3/SrTiO3 Interfaces

    SciTech Connect (OSTI)

    Bell, Christopher

    2011-08-19

    Using a surface x-ray diffraction technique, we investigated the atomic structure of two types of interfaces between LaAlO{sub 3} and SrTiO{sub 3}, that is, p-type (SrO/AlO{sub 2}) and n-type (TiO{sub 2}/LaO) interfaces. Our results demonstrate that the SrTiO{sub 3} in the sample with the n-type interface has a large polarized region, while that with the p-type interface has a limited polarized region. In addition, the atomic intermixing was observed to extend deeper into STO substrate at the n-type interface than at the p-type. These differences result in different degrees of band bending, which likely contributes to the striking difference in electrical conductivity between the two types of interfaces.

  1. High data-rate atom interferometers through high recapture efficiency

    SciTech Connect (OSTI)

    Biedermann, Grant; Rakholia, Akash Vrijal; McGuinness, Hayden

    2015-01-27

    An inertial sensing system includes a magneto-optical trap (MOT) that traps atoms within a specified trapping region. The system also includes a cooling laser that cools the trapped atoms so that the atoms remain within the specified region for a specified amount of time. The system further includes a light-pulse atom interferometer (LPAI) that performs an interferometric interrogation of the atoms to determine phase changes in the atoms. The system includes a controller that controls the timing of MOT and cooling laser operations, and controls the timing of interferometric operations to substantially recapture the atoms in the specified trapping region. The system includes a processor that determines the amount inertial movement of the inertial sensing system based on the determined phase changes in the atoms. Also, a method of inertial sensing using this inertial sensing system includes recapture of atoms within the MOT following interferometric interrogation by the LPAI.

  2. Room-temperature ferromagnetism in Cr-doped Si achieved by controlling atomic structure, Cr concentration, and carrier densities: A first-principles study

    SciTech Connect (OSTI)

    Wei, Xin-Yuan; Yang, Zhong-Qin; Zhu, Yan; Li, Yun

    2015-04-28

    By using first-principles calculations, we investigated how to achieve a strong ferromagnetism in Cr-doped Si by controlling the atomic structure and Cr concentration as well as carrier densities. We found that the configuration in which the Cr atom occupies the tetrahedral interstitial site can exist stably and the Cr atom has a large magnetic moment. Using this doping configuration, room-temperature ferromagnetism can be achieved in both n-type and p-type Si by tuning Cr concentration and carrier densities. The results indicate that the carrier density plays a crucial role in realizing strong ferromagnetism in diluted magnetic semiconductors.

  3. Nonlinear spectroscopic effects in quantum gases induced by atom-atom interactions

    SciTech Connect (OSTI)

    Safonov, A. I. Safonova, I. I.; Yasnikov, I. S.

    2013-05-15

    We consider nonlinear spectroscopic effects-interaction-enhanced double resonance and spectrum instability-that appear in ultracold quantum gases owing to collisional frequency shift of atomic transitions and, consequently, due to the dependence of the frequencies on the population of various internal states of the particles. Special emphasis is put to two simplest cases, (a) the gas of two-level atoms and (b) double resonance in a gas of three-level bosons, in which the probe transition frequency remains constant.

  4. Lesson 3 - Atoms and Isotopes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 - Atoms and Isotopes Lesson 3 - Atoms and Isotopes You've probably heard people refer to nuclear energy as "atomic energy." Why? Nuclear energy is the energy that is stored in the bonds of atoms, inside the nucleus. Nuclear power plants are designed to capture this energy as heat and convert it to electricity. This lesson looks closely at what atoms are and how atoms store energy. This lesson covers the following topics: Matter Molecules Elements Chemical reaction Periodic table The

  5. Chiral meta-atoms rotated by light

    SciTech Connect (OSTI)

    Liu Mingkai; Powell, David A.; Shadrivov, Ilya V.

    2012-07-16

    We study the opto-mechanical properties of coupled chiral meta-atoms based on a pair of twisted split-ring resonators. By using a simple analytical model in conjunction with the Maxwell stress tensor, we capture insight into the mechanism and find that this structure can be used as a general prototype of subwavelength light-driven actuators over a wide range of frequencies. This coupled structure can provide a strong and tunable torque, and can support different opto-mechanical modes, including uniform rotation, periodically variable rotation and damped oscillations. Our results suggest that chiral meta-atoms are good candidates for creating sub-wavelength motors or wrenches controlled by light.

  6. Type B Accident Investigation on the February 17, 2004, Personal Injury Accident, Bettis Atomic Power Laboratory

    Broader source: Energy.gov [DOE]

    Prime contractors need to provide a safe work environment for the entire facility site, including parking lots and outdoor pedestrian walkways. Particular attention needs to be given to areas that must be traversed by individuals with physical handicaps. The contractor must proactively maintain its facilities to ensure a safe work environment for its employees Even minor deficiencies can contribute to significant injury to employees.

  7. International Atomic Energy Agency | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration International Atomic Energy Agency Secretary Moniz awards Hutcheon memorial nonproliferation fellowship to Thomas Gray Energy Secretary Ernest Moniz (second from bottom left, clockwise) and Anne Harrington, NNSA deputy administrator for Defense Nuclear Nonproliferation (sitting next to Moniz), discuss Ian Hutcheon's legacy with his wife Nancy (across from Harrington) and daughter Dana Hutcheon Gordon. Energy... DOE/NNSA's Nonproliferation Experts Lead First Workshop on the

  8. Atomization methods for forming magnet powders

    DOE Patents [OSTI]

    Sellers, Charles H.; Branagan, Daniel J.; Hyde, Timothy A.

    2000-01-01

    The invention encompasses methods of utilizing atomization, methods for forming magnet powders, methods for forming magnets, and methods for forming bonded magnets. The invention further encompasses methods for simulating atomization conditions. In one aspect, the invention includes an atomization method for forming a magnet powder comprising: a) forming a melt comprising R.sub.2.1 Q.sub.13.9 B.sub.1, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; b) atomizing the melt to form generally spherical alloy powder granules having an internal structure comprising at least one of a substantially amorphous phase or a substantially nanocrystalline phase; and c) heat treating the alloy powder to increase an energy product of the alloy powder; after the heat treatment, the alloy powder comprising an energy product of at least 10 MGOe. In another aspect, the invention includes a magnet comprising R, Q, B, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; the magnet comprising an internal structure comprising R.sub.2.1 Q.sub.13.9 B.sub.1.

  9. First principle thousand atom quantum dot calculations

    SciTech Connect (OSTI)

    Wang, Lin-Wang; Li, Jingbo

    2004-03-30

    A charge patching method and an idealized surface passivation are used to calculate the single electronic states of IV-IV, III-V, II-VI semiconductor quantum dots up to a thousand atoms. This approach scales linearly and has a 1000 fold speed-up compared to direct first principle methods with a cost of eigen energy error of about 20 meV. The calculated quantum dot band gaps are parametrized for future references.

  10. L. James Rainwater and the Atomic Nuclei

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L. James Rainwater and the Atomic Nucleus Resources with Additional Information James Rainwater Courtesy AIP Emilio Segre Visual Archives, W. F. Meggers Gallery of Nobel Laureates "During W.W. II, I [James Rainwater] worked ... [on the] Manhattan Project, mainly doing pulsed neutron spectroscopy using the small Columbia cyclotron. ... [Maria Geoppert-Mayer] shell model suggestion in 1949 was a great triumph and fitted my belief that a nuclear shell model should represent a proper approach

  11. AtomsPeace_Dec2003.qxd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atoms for Peace after 50 Years: The New Challenges and Opportunities December 2003 UCRL-TR-200927 This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  12. Do triatomic molecules echo atomic periodicity?

    SciTech Connect (OSTI)

    Hefferlin, R. Barrow, J.

    2015-03-30

    Demonstrations of periodicity among triatomic-molecular spectroscopic constants underscore the role of the periodic law as a foundation of chemistry. The objective of this work is to prepare for another test using vibration frequencies ?{sub 1} of free, ground-state, main-group triatomic molecules. Using data from four data bases and from computation, we have collected ?{sub 1} data for molecules formed from second period atoms.

  13. Classical and quantum chaos in atomic systems

    SciTech Connect (OSTI)

    Delande, D.; Buchleitner, A. [Universite Pierre et Marie Curie, Paris (France)

    1994-12-31

    Atomic systems played a major role in the birth and growth of quantum mechanics. One central idea was to relate the well-known classical motion of the electron of a hydrogen atom--an ellipsis around the nucleus--to the experimentally observed quantization of the energy levels. This is the aim of the Bohr and Bohr-Sommerfeld models. These simple semiclassical models were unable to make any reliable prediction on the energy spectrum of the next simplest atom, helium. Because of the great success of quantum mechanics, the problem of correspondence between the classical and the quantal dynamics has not received much attention in the last 60 years. The fundamental question is (Gutzwiller, 1990). How can classical mechanics be understood as a limiting case within quantum mechanics? For systems with time-independent one-dimensional dynamics like the harmonic oscillator and the hydrogen atom, the correspondence is well understood. The restriction to such simple cases creates the erroneous impression that the classical behavior of simple systems is entirely comprehensible and easily described. During the last 20 years it has been recognized that this in not true and that a complex behavior can be obtained from simple equations of motion. This usually happens when the motion is chaotic, that is, unpredictable on a long time scale although perfectly deterministic (Henon, 1983). A major problem is that of understanding how the regular or chaotic behavior of the classical system is manifest in its quantum properties, especially in the semiclassical limit. 53 refs., 15 figs., 1 tab.

  14. First AID (Atom counting for Isotopic Determination).

    SciTech Connect (OSTI)

    Roach, J. L.; Israel, K. M.; Steiner, R. E.; Duffy, C. J.; Roench, F. R.

    2002-01-01

    Los Alamos National Laboratory (LANL) has established an in vitro bioassay monitoring program in compliance with the requirements in the Code of Federal Regulations, 10 CFR 835, Occupational Radiation Protection. One aspect of this program involves monitoring plutonium levels in at-risk workers. High-risk workers are monitored using the ultra-sensitive Therrnal Ionization Mass Spectrometry (TIMS) technique to ensure compliance with DOE standards. TIMS is used to measure atom ratios of 239Pua nd 240Puw ith respect to a tracer isotope ('Pu). These ratios are then used to calculate the amount of 239Pu and 240Pup resent. This low-level atom counting technique allows the calculation of the concentration levels of 239Pu and 240Pu in urine for at risk workers. From these concentration levels, dose assessments can be made and worker exposure levels can be monitored. Detection limits for TIMS analysis are on the order of millions of atoms, which translates to activity levels of 150 aCi 239Pua nd 500 aCi for 240Pu. pCi for Our poster presentation will discuss the ultra-sensitive, low-level analytical technique used to measure plutonium isotopes and the data verification methods used for validating isotopic measurements.

  15. The national ignition facility and atomic data

    SciTech Connect (OSTI)

    Crandall, David H.

    1998-07-08

    The National Ignition Facility (NIF) is under construction, capping over 25 years of development of the inertial confinement fusion concept by providing the facility to obtain fusion ignition in the laboratory for the first time. The NIF is a 192 beam glass laser to provide energy controlled in space and time so that a millimeter-scale capsule containing deuterium and tritium can be compressed to fusion conditions. Light transport, conversion of light in frequency, interaction of light with matter in solid and plasma forms, and diagnostics of extreme material conditions on small scale all use atomic data in preparing for use of the NIF. The NIF will provide opportunity to make measurements of atomic data in extreme physical environments related to fusion energy, nuclear weapon detonation, and astrophysics. The first laser beams of NIF should be operational in 2001 and the full facility completed at the end of 2003. NIF is to provide 1.8 megajoule of blue light on fusion targets and is intended to achieve fusion ignition by about the end of 2007. Today's inertial fusion development activities use atomic data to design and predict fusion capsule performance and in non-fusion applications to analyze radiation transport and radiation effects on matter. Conditions investigated involve radiation temperature of hundreds of eV, pressures up to gigabars and time scales of femptoseconds.

  16. The national ignition facility and atomic data

    SciTech Connect (OSTI)

    Crandall, D.H.

    1998-07-01

    The National Ignition Facility (NIF) is under construction, capping over 25 years of development of the inertial confinement fusion concept by providing the facility to obtain fusion ignition in the laboratory for the first time. The NIF is a 192 beam glass laser to provide energy controlled in space and time so that a millimeter-scale capsule containing deuterium and tritium can be compressed to fusion conditions. Light transport, conversion of light in frequency, interaction of light with matter in solid and plasma forms, and diagnostics of extreme material conditions on small scale all use atomic data in preparing for use of the NIF. The NIF will provide opportunity to make measurements of atomic data in extreme physical environments related to fusion energy, nuclear weapon detonation, and astrophysics. The first laser beams of NIF should be operational in 2001 and the full facility completed at the end of 2003. NIF is to provide 1.8 megajoule of blue light on fusion targets and is intended to achieve fusion ignition by about the end of 2007. Today{close_quote}s inertial fusion development activities use atomic data to design and predict fusion capsule performance and in non-fusion applications to analyze radiation transport and radiation effects on matter. Conditions investigated involve radiation temperature of hundreds of eV, pressures up to gigabars and time scales of femptoseconds. {copyright} {ital 1998 American Institute of Physics.}

  17. Atomic layer deposition of nanoporous biomaterials.

    SciTech Connect (OSTI)

    Narayan, R. J.; Adiga, S. P.; Pellin, M. J.; Curtiss, L. A.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N. A.; Brigmon, R. L.; Elam, J. W.; Univ. of North Carolina; North Carolina State Univ.; Eastman Kodak Co.; North Dakota State Univ.; SRL

    2010-03-01

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials. Nanoporous alumina, also known as anodic aluminum oxide (AAO), is a nanomaterial that exhibits several unusual properties, including high pore densities, straight pores, small pore sizes, and uniform pore sizes. In 1953, Keller et al. showed that anodizing aluminum in acid electrolytes results in a thick layer of nearly cylindrical pores, which are arranged in a close-packed hexagonal cell structure. More recently, Matsuda & Fukuda demonstrated preparation of highly ordered platinum and gold nanohole arrays using a replication process. In this study, a negative structure of nanoporous alumina was initially fabricated and a positive structure of a nanoporous metal was subsequently fabricated. Over the past fifteen years, nanoporous alumina membranes have been used as templates for growth of a variety of nanostructured materials, including nanotubes, nanowires, nanorods, and nanoporous membranes.

  18. NIC atomic operation unit with caching and bandwidth mitigation

    DOE Patents [OSTI]

    Hemmert, Karl Scott; Underwood, Keith D.; Levenhagen, Michael J.

    2016-03-01

    A network interface controller atomic operation unit and a network interface control method comprising, in an atomic operation unit of a network interface controller, using a write-through cache and employing a rate-limiting functional unit.

  19. One Nanocrystal, Many Faces: Connecting the Atomic Surface Structures...

    Office of Science (SC) Website

    The atomic models are overlaid on the simulated images to illustrate atom positions. The Science When it comes to reducing the toxins released by burning gasoline, coal, or other ...

  20. General Atomics Hot Cell Facility, California, Site Fact Sheet

    Office of Legacy Management (LM)

    General Atomics Hot Cell Facility, California, Site. The U.S. Department of Energy Office ... After an Location of the General Atomics Hot Cell Facility, California, Site A hot cell is ...

  1. An Atomic-Level Understanding of Copper-Based Catalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Atomic-Level Understanding of Copper-Based Catalysts An Atomic-Level Understanding of Copper-Based Catalysts Print Thursday, 05 May 2016 12:20 Copper-based catalysts are widely ...

  2. Signals from dark atom formation in halos (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Signals from dark atom formation in halos Citation Details In-Document Search Title: Signals from dark atom formation in halos ...

  3. The LANL atomic kinetics modeling effort and its application...

    Office of Scientific and Technical Information (OSTI)

    An on-line version of the codes is available at http:aphysics2.lanl.govtempweb. ATOMIC kinetics modelling code uses the atomic data for LTE or NLTE population kinetics models ...

  4. Types of Reuse

    Broader source: Energy.gov [DOE]

    The following provides greater detail regarding the types of reuse pursued for LM sites. It should be noted that many actual reuses combine several types of the uses listed below.

  5. Types of Radiation Exposure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    External Irradiation Contamination Incorporation Biological Effects of Acute, Total Body Irradiation Managing Radiation Emergencies Procedure Demonstration Types of radiation ...

  6. Dynamical Crystallization in the Dipole Blockade of Ultracold Atoms

    SciTech Connect (OSTI)

    Pohl, T.; Demler, E.; Lukin, M. D.

    2010-01-29

    We describe a method for controlling many-body states in extended ensembles of Rydberg atoms, forming crystalline structures during laser excitation of a frozen atomic gas. Specifically, we predict the existence of an excitation-number staircase in laser excitation of atomic ensembles into Rydberg states. It is shown that such ordered states can be selectively excited by chirped laser pulses, and, via quantum state transfer from atoms to light, be used to create crystalline photonic states.

  7. Lesson 6 - Atoms to Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 - Atoms to Electricity Lesson 6 - Atoms to Electricity Most power plants make electricity by boiling water to make steam that turns a turbine. A nuclear power plant works this way, too. At a nuclear power plant, splitting atoms produce the heat to boil the water. This lesson covers Inside the Reactor Heat Pressure Water Fission Control Fuel assemblies Control rods Coolant Pressure vessel Electricity Generation Generator Condenser Cooling tower Lesson 6 - Atoms to Electricity.pptx (9.7 MB) More

  8. SYMMETRY OF THE IBEX RIBBON OF ENHANCED ENERGETIC NEUTRAL ATOM...

    Office of Scientific and Technical Information (OSTI)

    English Subject: 79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ASYMMETRY; ATOMS; DETECTION; ENERGY DEPENDENCE; HELIOSPHERE; INTERSTELLAR SPACE; KEV RANGE; MAGNETIC FIELDS; PLASMA;...

  9. Atomic Layer Deposition (ALD) Preparation of Noble Metal Catalysts - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Nuclear Security Administration | (NNSA) Explores Peaceful Uses of Nuclear Explosions Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions Nevada Test Site, NV As part of the Plowshare program seeking to develop peaceful uses for nuclear explosives, the Atomic Energy Commission conducts the Sedan test at the Nevada Test Site Programs | National Nuclear Security Administration | (NNSA)

    Takes Over Responsibility for all Atomic Energy Programs Atomic Energy

  10. DOE - Office of Legacy Management -- Gen_Atomics

    Office of Legacy Management (LM)

    General Atomics Hot Cell Facility, California, Site A Oakland Operations Office site gen_atomics_map The General Atomics Hot Cell Facility site was a research laboratory formerly operated under the DOE Oakland Operations Office, California. After remediation, the site transferred to the Office of Legacy Management in 2005. The site requires records management and stakeholder support. For more information about the General Atomics Hot Cell

  11. Gosling, The Manhattan Project: Making the Atomic Bomb | Department...

    Energy Savers [EERE]

    Operational Management History Historical Resources History Publications Gosling, The Manhattan Project: Making the Atomic Bomb Gosling, The Manhattan Project: Making...

  12. Postdoc Appointment Types

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appointment Types Postdoc Appointment Types Most postdocs will be offered a postdoctoral research associate appointment. Each year, approximately 30 Postdoctoral Fellow appointments, including the Distinguished Fellows, are awarded. Postdoc appointment types offer world of possibilities Meet the current LANL Distinguished Postdocs Research Associates Research Associates pursue research as part of ongoing LANL science and engineering programs. Sponsored postdoctoral candidate packages are

  13. Carbon atom, dimer and trimer chemistry on diamond surfaces from molecular dynamics simulations

    SciTech Connect (OSTI)

    Valone, S.M.

    1995-07-01

    Spectroscopic studies of various atmospheres appearing in diamond film synthesis suggest evidence for carbon atoms, dimers, or trimers. Molecular dynamics simulations with the Brenner hydrocarbon potential are being used to investigate the elementary reactions of these species on a hydrogen-terminated diamond (111) surface. In principle these types of simulations can be extended to simulations of growth morphologies, in the 1-2 monolayer regime presently.

  14. President Roosevelt Approves Production of Atomic Bomb | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Approves Production of Atomic Bomb President Roosevelt Approves Production of Atomic Bomb Washington, DC President Roosevelt approves production of the atomic bomb following receipt of a National Academy of Sciences report determining that a bomb is feasible

  15. Light pulse analysis with a multi-state atom interferometer

    SciTech Connect (OSTI)

    Herrera, I.; Lombardi, P.; Schfer, F.; Petrovic, J.; Cataliotti, F. S.

    2014-12-04

    We present a controllable multi-state cold-atom interferometer that is easy-to-use and fully merged on an atom chip. We demonstrate its applications as a sensor of the fields whose interactions with atoms are state-dependent.

  16. Method of performing MRI with an atomic magnetometer

    DOE Patents [OSTI]

    Savukov, Igor Mykhaylovich; Matlashov, Andrei Nikolaevich; Espy, Michelle A.; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry; Zotev, Vadim Sergeyevich

    2012-11-06

    A method and apparatus are provided for performing an in-situ magnetic resonance imaging of an object. The method includes the steps of providing an atomic magnetometer, coupling a magnetic field generated by magnetically resonating samples of the object through a flux transformer to the atomic magnetometer and measuring a magnetic resonance of the atomic magnetometer.

  17. Method of performing MRI with an atomic magnetometer

    DOE Patents [OSTI]

    Savukov, Igor Mykhaylovich; Matlashov, Andrei Nikolaevich; Espy, Michelle A; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry; Zotev, Vadim Sergeyevich

    2013-08-27

    A method and apparatus are provided for performing an in-situ magnetic resonance imaging of an object. The method includes the steps of providing an atomic magnetometer, coupling a magnetic field generated by magnetically resonating samples of the object through a flux transformer to the atomic magnetometer and measuring a magnetic resonance of the atomic magnetometer.

  18. Determination of Atomic Data Pertinent to the Fusion Energy Program

    SciTech Connect (OSTI)

    Reader, J.

    2013-06-11

    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra.

  19. Large-angle illumination STEM: Toward three-dimensional atom-by-atom imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ishikawa, Ryo; Lupini, Andrew R.; Hinuma, Yoyo; Pennycook, Stephen

    2014-11-26

    To completely understand and control materials and their properties, it is of critical importance to determine their atomic structures in all three dimensions. Recent revolutionary advances in electron optics – the inventions of geometric and chromatic aberration correctors as well as electron source monochromators – have provided fertile ground for performing optical depth sectioning at atomic-scale dimensions. In this study we theoretically demonstrate the imaging of top/sub-surface atomic structures and identify the depth of single dopants, single vacancies and the other point defects within materials by large-angle illumination scanning transmission electron microscopy (LAI-STEM). The proposed method also allows us tomore » measure specimen properties such as thickness or three-dimensional surface morphology using observations from a single crystallographic orientation.« less

  20. Atomizing apparatus for making polymer and metal powders and whiskers

    DOE Patents [OSTI]

    Otaigbe, Joshua U.; McAvoy, Jon M.; Anderson, Iver E.; Ting, Jason; Mi, Jia; Terpstra, Robert

    2003-03-18

    Method for making polymer particulates, such as spherical powder and whiskers, by melting a polymer material under conditions to avoid thermal degradation of the polymer material, atomizing the melt using gas jet means in a manner to form atomized droplets, and cooling the droplets to form polymer particulates, which are collected for further processing. Atomization parameters can be controlled to produce polymer particulates with controlled particle shape, particle size, and particle size distribution. For example, atomization parameters can be controlled to produce spherical polymer powders, polymer whiskers, and combinations of spherical powders and whiskers. Atomizing apparatus also is provided for atoomizing polymer and metallic materials.

  1. Polarization-dependent atomic dipole traps behind a circular aperture for neutral-atom quantum computing

    SciTech Connect (OSTI)

    Gillen-Christandl, Katharina; Copsey, Bert D.

    2011-02-15

    The neutral-atom quantum computing community has successfully implemented almost all necessary steps for constructing a neutral-atom quantum computer. We present computational results of a study aimed at solving the remaining problem of creating a quantum memory with individually addressable sites for quantum computing. The basis of this quantum memory is the diffraction pattern formed by laser light incident on a circular aperture. Very close to the aperture, the diffraction pattern has localized bright and dark spots that can serve as red-detuned or blue-detuned atomic dipole traps. These traps are suitable for quantum computing even for moderate laser powers. In particular, for moderate laser intensities ({approx}100 W/cm{sup 2}) and comparatively small detunings ({approx}1000-10 000 linewidths), trap depths of {approx}1 mK and trap frequencies of several to tens of kilohertz are achieved. Our results indicate that these dipole traps can be moved by tilting the incident laser beams without significantly changing the trap properties. We also explored the polarization dependence of these dipole traps. We developed a code that calculates the trapping potential energy for any magnetic substate of any hyperfine ground state of any alkali-metal atom for any laser detuning much smaller than the fine-structure splitting for any given electric field distribution. We describe details of our calculations and include a summary of different notations and conventions for the reduced matrix element and how to convert it to SI units. We applied this code to these traps and found a method for bringing two traps together and apart controllably without expelling the atoms from the trap and without significant tunneling probability between the traps. This approach can be scaled up to a two-dimensional array of many pinholes, forming a quantum memory with single-site addressability, in which pairs of atoms can be brought together and apart for two-qubit gates for quantum computing.

  2. A Green's function quantum average atom model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Starrett, Charles Edward

    2015-05-21

    A quantum average atom model is reformulated using Green's functions. This allows integrals along the real energy axis to be deformed into the complex plane. The advantage being that sharp features such as resonances and bound states are broadened by a Lorentzian with a half-width chosen for numerical convenience. An implementation of this method therefore avoids numerically challenging resonance tracking and the search for weakly bound states, without changing the physical content or results of the model. A straightforward implementation results in up to a factor of 5 speed-up relative to an optimized orbital based code.

  3. Microwave meta-atom enhanced spintronic rectification

    SciTech Connect (OSTI)

    Gou, Peng; Xi, Fuchun; Qian, Qinbai; Xu, Jie; Gui, Y. S.; Hu, C.-M.; An, Zhenghua

    2015-04-06

    An artificial meta-atom (MA), or alternatively, a plasmonic antenna, has been demonstrated to significantly enhance the microwave spin rectifying photovoltage by more than two orders in magnitude (∼280) in the ferromagnetic resonance regime. The large enhancement is attributed to the unique structure of the MA which magnifies both microwave electric (∼5) and magnetic (∼56) fields in the same near-field spatial region. Our work develops the interdisciplinary direction with artificial and natural magnetism and may find promising applications in high-frequency or opto-spintronic devices and wireless microwave energy harvesting.

  4. Method for producing uranium atomic beam source

    DOE Patents [OSTI]

    Krikorian, Oscar H.

    1976-06-15

    A method for producing a beam of neutral uranium atoms is obtained by vaporizing uranium from a compound UM.sub.x heated to produce U vapor from an M boat or from some other suitable refractory container such as a tungsten boat, where M is a metal whose vapor pressure is negligible compared to that of uranium at the vaporization temperature. The compound, for example, may be the uranium-rhenium compound, URe.sub.2. An evaporation rate in excess of about 10 times that of conventional uranium beam sources is produced.

  5. Electric quadrupole transition probabilities for atomic lithium

    SciTech Connect (OSTI)

    elik, Gltekin; Gke, Yasin; Y?ld?z, Murat

    2014-05-15

    Electric quadrupole transition probabilities for atomic lithium have been calculated using the weakest bound electron potential model theory (WBEPMT). We have employed numerical non-relativistic HartreeFock wavefunctions for expectation values of radii and the necessary energy values have been taken from the compilation at NIST. The results obtained with the present method agree very well with the Coulomb approximation results given by Caves (1975). Moreover, electric quadrupole transition probability values not existing in the literature for some highly excited levels have been obtained using the WBEPMT.

  6. Ruthenium / aerogel nanocomposits via Atomic Layer Deposition

    SciTech Connect (OSTI)

    Biener, J; Baumann, T F; Wang, Y; Nelson, E J; Kucheyev, S O; Hamza, A V; Kemell, M; Ritala, M; Leskela, M

    2006-08-28

    We present a general approach to prepare metal/aerogel nanocomposites via template directed atomic layer deposition (ALD). In particular, we used a Ru ALD process consisting of alternating exposures to bis(cyclopentadienyl)ruthenium (RuCp{sub 2}) and air at 350 C to deposit metallic Ru nanoparticles on the internal surfaces of carbon and silica aerogels. The process does not affect the morphology of the aerogel template and offers excellent control over metal loading by simply adjusting the number of ALD cycles. We also discuss the limitations of our ALD approach, and suggest ways to overcome these.

  7. Compact fast analyzer of rotary cuvette type

    DOE Patents [OSTI]

    Thacker, Louis H.

    1976-01-01

    A compact fast analyzer of the rotary cuvette type is provided for simultaneously determining concentrations in a multiplicity of discrete samples using either absorbance or fluorescence measurement techniques. A rigid, generally rectangular frame defines optical passageways for the absorbance and fluorescence measurement systems. The frame also serves as a mounting structure for various optical components as well as for the cuvette rotor mount and drive system. A single light source and photodetector are used in making both absorbance and fluorescence measurements. Rotor removal and insertion are facilitated by a swing-out drive motor and rotor mount. BACKGROUND OF THE INVENTION The invention relates generally to concentration measuring instruments and more specifically to a compact fast analyzer of the rotary cuvette type which is suitable for making either absorbance or fluorescence measurements. It was made in the course of, or under, a contract with the U.S. Atomic Energy Commission.

  8. New directions in optical atomic spectrometry

    SciTech Connect (OSTI)

    de Galan, L.

    1986-05-01

    Soon after its invention a successful method of analysis goes through a phase of rapid growth and exaggerated expectations before it recedes to a more balanced position in the analytical domain. Flame and furnace atomic absorption spectrometry (AAS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES), as we know them now, were introduced 20 to 30 years ago, developed into commercial instruments within a decade after their first description in the scientific literature, and have now reached a state of developmental equilibrium. It is undeniable that these techniques have continued to develop, but recent advances have been largely technical and cosmetic. The emphasis on automation and software has made life much easier and has significantly reduced the demand for manpower, but it has not enlarged the analytical scope of the techniques. Many initial promises have been fulfilled, but some shortcomings persist even today. At this point it would be easy to formulate the ideal method that determines all elements from the sub-parts-per-billion level to the 100% level, simultaneously, with high precision and accuracy, and at minimal cost. Clearly, no single method can possibly match such unrealistic expectations. In this article the author has, therefore, chosen the more modest approach of identifying some weak points in available technology and analyzing possible remedies. In several cases current developments are reviewed, and novel instruments proposed in the literature are evaluated. In other cases, the problems have hardly been addressed and thus may pose a challenge for future research. 10 references, 6 tables.

  9. Low energy neutral atoms from the heliosheath

    SciTech Connect (OSTI)

    Fuselier, S. A.; Allegrini, F.; Dayeh, M. A.; Desai, M.; Lewis, W.; Livadiotis, G.; McComas, D. J. E-mail: fallegrini@swri.edu E-mail: mdesai@swri.edu E-mail: george.livadiotis@swri.org; and others

    2014-04-01

    In the heliosheath beyond the termination shock, low energy (<0.5 keV) neutral atoms are created by charge exchange with interstellar neutrals. Detecting these neutrals from Earth's orbit is difficult because their flux is reduced substantially by ionization losses as they propagate from about 100 to 1 AU and because there are a variety of other signals and backgrounds that compete with this weak signal. Observations from IBEX-Lo and -Hi from two opposing vantage points in Earth's orbit established a lower energy limit of about 0.1 keV on measurements of energetic neutral atoms (ENAs) from the heliosphere and the form of the energy spectrum from about 0.1 to 6 keV in two directions in the sky. Below 0.1 keV, the detailed ENA spectrum is not known, and IBEX provides only upper limits on the fluxes. However, using some assumptions and taking constraints on the spectrum into account, we find indications that the spectrum turns over at an energy between 0.1 and 0.2 keV.

  10. Atoms for Peace after Fifty Years

    SciTech Connect (OSTI)

    Joeck, N; Lehman, R; Vergino, E; Schock, R

    2004-03-15

    President Eisenhower's hopes for nuclear technology still resonate, but the challenges to fulfilling them are much different today. On December 8, 1953, President Eisenhower, returning from his meeting with the leaders of Britain and France at the Bermuda Summit, flew directly to New York to address the United Nations General Assembly. His presentation, known afterwards as the ''Atoms for Peace'' speech, was bold, broad, and visionary. Eisenhower highlighted dangers associated with the further spread of nuclear weapons and the end of the thermonuclear monopoly, but the president also pointed to opportunities. Earlier that year, Stalin had died and the Korean War armistice was signed. Talks on reunification of Austria were about to begin. The speech sought East-West engagement and outlined a framework for reducing nuclear threats to security while enhancing the civilian benefits of nuclear technology. One specific proposal offered to place surplus military fissile material under the control of an ''international atomic energy agency'' to be used for peaceful purposes, especially economic development. Eisenhower clearly recognized the complex interrelationships between different nuclear technologies and the risks and the benefits that accrue from each. The widespread use of civilian nuclear technology and absence of any use of a nuclear weapon during the next half-century reflects success in his approach. Today, the world faces choices about nuclear technology that have their parallels in the Eisenhower calculus and its legacy. Although his specific fissile material proposal was never implemented, his broader themes gave impetus to agreements such as the nuclear Non-Proliferation Treaty (NPT) and institutions such as the International Atomic Energy Agency (IAEA). The resulting governance process has promoted some and restricted other nuclear technology. Perhaps even more influential was Eisenhower's overarching recommendation that we try to reduce the risks and seek

  11. Development of Low Cost Gas Atomization of Precursor Powders for Simplified ODS Alloy Production

    SciTech Connect (OSTI)

    Anderson, Iver

    2014-08-05

    function of powder size) was investigated at Ames Lab as a function of reactive gas composition and bulk alloy composition. The results indicated that the pulsatile gas atomization mechanism and a significantly enhanced yield of fine powders reported in the literature for this type of process were not observed. Also it was determined that reactive gas may marginally improve the fine powder yield but further experiments are required. The oxygen content in the gas also did not have any detrimental effect on the microstructure (i.e. did not significantly reduce undercooling). On the contrary, the oxygen addition to the atomization gas may have mitigated some potent catalytic nucleation sites, but not enough to significantly alter the microstructure vs. particle size relationship. Overall the downstream injection of oxygen was not found to significantly affect either the particle size distribution or undercooling (as inferred from microstructure and XRD observations) but injection further upstream, including in the gas atomization nozzle, remains to be investigated in later work.

  12. Electrocatalytic Oxygen Evolution with an Atomically Precise...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: ACS Catalysis; Journal Volume: 6; Journal Issue: 2 Research Org: SLAC National ...

  13. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-03-30

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  14. Friction forces on atoms after acceleration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Intravaia, Francesco; Mkrtchian, Vanik E.; Buhmann, Stefan Yoshi; Scheel, Stefan; Dalvit, Diego A. R.; Henkel, Carsten

    2015-05-12

    The aim of this study is to revisit the calculation of atom–surface quantum friction in the quantum field theory formulation put forward by Barton (2010 New J. Phys. 12 113045). We show that the power dissipated into field excitations and the associated friction force depend on how the atom is boosted from being initially at rest to a configuration in which it is moving at constant velocity (v) parallel to the planar interface. In addition, we point out that there is a subtle cancellation between the one-photon and part of the two-photon dissipating power, resulting in a leading order contributionmore » to the frictional power which goes as v4. These results are also confirmed by an alternative calculation of the average radiation force, which scales as v3.« less

  15. Resonance ionization spectroscopy of zirconium atoms

    SciTech Connect (OSTI)

    Page, R.H.; Dropinski, S.C.; Worden, E.F. Jr.; Stockdale, J.A.D.

    1992-05-01

    We have examined the stepwise-resonant three-photon-ionization spectrum of neutral zirconium atoms using three separately-tunable pulsed visible dye lasers. Lifetimes of even-parity levels (measured with delayed-photoionization technique) range from 10 to 100 nsec. Direct ionization cross sections appear to be less than 10{sup {minus}17} cm{sup 2}; newly-detected autoionizing levels give peak ionization cross sections (inferred from saturation fluences) up to 10{sup {minus}15} cm{sup 2}. Members of Rydberg series converging to the 315 and 1323 cm{sup {minus}1} levels of Zr{sup +} were identified. ``Clumps`` of autoionizing levels are thought to be due to Rydberg-valence mixing.

  16. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, James W.

    1993-01-01

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  17. Analysis of a free oscillation atom interferometer

    SciTech Connect (OSTI)

    Kafle, Rudra P.; Zozulya, Alex A.; Anderson, Dana Z.

    2011-09-15

    We analyze a Bose-Einstein condensate (BEC)-based free oscillation atom Michelson interferometer in a weakly confining harmonic magnetic trap. A BEC at the center of the trap is split into two harmonics by a laser standing wave. The harmonics move in opposite directions with equal speeds and turn back under the influence of the trapping potential at their classical turning points. The harmonics are allowed to pass through each other and a recombination pulse is applied when they overlap at the end of a cycle after they return for the second time. We derive an expression for the contrast of the interferometric fringes and obtain the fundamental limit of performance of the interferometer in the parameter space.

  18. Friction forces on atoms after acceleration

    SciTech Connect (OSTI)

    Intravaia, Francesco; Mkrtchian, Vanik E.; Buhmann, Stefan Yoshi; Scheel, Stefan; Dalvit, Diego A. R.; Henkel, Carsten

    2015-05-12

    The aim of this study is to revisit the calculation of atom–surface quantum friction in the quantum field theory formulation put forward by Barton (2010 New J. Phys. 12 113045). We show that the power dissipated into field excitations and the associated friction force depend on how the atom is boosted from being initially at rest to a configuration in which it is moving at constant velocity (v) parallel to the planar interface. In addition, we point out that there is a subtle cancellation between the one-photon and part of the two-photon dissipating power, resulting in a leading order contribution to the frictional power which goes as v4. These results are also confirmed by an alternative calculation of the average radiation force, which scales as v3.

  19. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-05-08

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using, a metal hydride.

  20. Statistical correlations in the Moshinsky atom

    SciTech Connect (OSTI)

    Laguna, H. G.; Sagar, R. P.

    2011-07-15

    We study the influence of the interparticle and confining potentials on statistical correlation via the correlation coefficient and mutual information in ground and some excited states of the Moshinsky atom in position and momentum space. The magnitude of the correlation between positions and between momenta is equal in the ground state. In excited states, the correlation between the momenta of the particles is greater than between their positions when they interact through an attractive potential whereas for repulsive interparticle potentials the opposite is true. Shannon entropies, and their sums (entropic formulations of the uncertainty principle), are also analyzed, showing that the one-particle entropy sum is dependent on the interparticle potential and thus able to detect the correlation between particles.

  1. Strongly driven one-atom laser and decoherence monitoring

    SciTech Connect (OSTI)

    Lougovski, P.; Casagrande, F.; Lulli, A.; Solano, E.

    2007-09-15

    We propose the implementation of a strongly driven one-atom laser, based on the off-resonant interaction of a three-level atom in {lambda} configuration with a single cavity mode and three laser fields. We show that the system can be described equivalently by a two-level atom resonantly coupled to the cavity and driven by a strong effective coherent field. The effective dynamics can be solved exactly, including a thermal field bath, allowing an analytical description of field statistics and entanglement properties. We also show the possible generation of quantum superposition (Schroedinger cat) states for the whole atom-field system and for the field alone after atomic measurement. We propose a way to monitor the system decoherence by measuring atomic populations. Finally, we confirm the validity of our model through numerical solutions.

  2. Light atom quantum oscillations in UC and US

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yiu, Yuen; Aczel, Adam A.; Granroth, Garrett E.; Abernathy, Douglas L.; Stone, Matthew B.; Buyers, W. J. L.; Lin, J. Y. Y.; Samolyuk, German D.; Stocks, George Malcolm; Nagler, Stephen E.

    2016-01-01

    High energy vibrational scattering in the binary systems UC and US is measured using time-of-flight inelastic neutron scattering. A clear set of well-defined peaks equally separated in energy is observed in UC, corresponding to harmonic oscillations of the light C atoms in a cage of heavy U atoms. The scattering is much weaker in US and only a few oscillator peaks are visible. We show how the difference between the materials can be understood by considering the neutron scattering lengths and masses of the lighter atoms. Monte Carlo ray tracing is used to simulate the scattering, with near quantitative agreementmore » with the data in UC, and some differences with US. The possibility of observing anharmonicity and anisotropy in the potentials of the light atoms is investigated in UC. Lastly, the observed data is well accounted for by considering each light atom as a single atom isotropic quantum harmonic oscillator.« less

  3. Light atom quantum oscillations in UC and US

    SciTech Connect (OSTI)

    Yiu, Yuen; Aczel, Adam A.; Granroth, Garrett E.; Abernathy, Douglas L.; Stone, Matthew B.; Buyers, W. J. L.; Lin, J. Y. Y.; Samolyuk, German D.; Stocks, George Malcolm; Nagler, Stephen E.

    2016-01-01

    High energy vibrational scattering in the binary systems UC and US is measured using time-of-flight inelastic neutron scattering. A clear set of well-defined peaks equally separated in energy is observed in UC, corresponding to harmonic oscillations of the light C atoms in a cage of heavy U atoms. The scattering is much weaker in US and only a few oscillator peaks are visible. We show how the difference between the materials can be understood by considering the neutron scattering lengths and masses of the lighter atoms. Monte Carlo ray tracing is used to simulate the scattering, with near quantitative agreement with the data in UC, and some differences with US. The possibility of observing anharmonicity and anisotropy in the potentials of the light atoms is investigated in UC. Lastly, the observed data is well accounted for by considering each light atom as a single atom isotropic quantum harmonic oscillator.

  4. Hard probes of strongly-interacting atomic gases

    SciTech Connect (OSTI)

    Nishida, Yusuke

    2012-06-18

    We investigate properties of an energetic atom propagating through strongly interacting atomic gases. The operator product expansion is used to systematically compute a quasiparticle energy and its scattering rate both in a spin-1/2 Fermi gas and in a spinless Bose gas. Reasonable agreement with recent quantum Monte Carlo simulations even at a relatively small momentum k/kF > 1.5 indicates that our large-momentum expansions are valid in a wide range of momentum. We also study a differential scattering rate when a probe atom is shot into atomic gases. Because the number density and current density of the target atomic gas contribute to the forward scattering only, its contact density (measure of short-range pair correlation) gives the leading contribution to the backward scattering. Therefore, such an experiment can be used to measure the contact density and thus provides a new local probe of strongly interacting atomic gases.

  5. Sixteenth International Conference on the physics of electronic and atomic collisions

    SciTech Connect (OSTI)

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B.

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  6. Reconfigurable site-selective manipulation of atomic quantum systems in two-dimensional arrays of dipole traps

    SciTech Connect (OSTI)

    Kruse, J.; Gierl, C.; Schlosser, M.; Birkl, G.

    2010-06-15

    We trap atoms in versatile two-dimensional (2D) arrays of optical potentials, prepare flexible 2D spin configurations, perform site-selective coherent manipulation, and demonstrate the implementation of simultaneous measurements of different system properties, such as dephasing and decoherence. This approach for the flexible manipulation of atomic quantum systems is based on the combination of 2D arrays of microlenses and 2D arrays of liquid crystal light modulators. This offers extended types of control for the investigation of quantum degenerate gases, quantum information processing, and quantum simulations.

  7. US Energy Secretary Samuel Bodman and Russian Atomic Energy Director

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alexander Rumyantsev Discuss Bratislava Agreement | Department of Energy US Energy Secretary Samuel Bodman and Russian Atomic Energy Director Alexander Rumyantsev Discuss Bratislava Agreement US Energy Secretary Samuel Bodman and Russian Atomic Energy Director Alexander Rumyantsev Discuss Bratislava Agreement May 24, 2005 - 12:51pm Addthis US Energy Secretary Samuel Bodman (right) and Russian Atomic Energy Director Alexander Rumyantsev discuss progress in achieving the Bratislava Nuclear

  8. Iowa Powder Atomization Technologies, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iowa Powder Atomization Technologies, Inc. America's Next Top Energy Innovator Challenge 6067 likes Iowa Powder Atomization Technologies, Inc. Ames Laboratory Iowa Powder Atomization Technologies, Inc. (IPAT) aims to become a leading domestic titanium powder producer allowing for a paradigm shift in the cost of titanium powders for metal injection molding (MIM) feedstock. Decreasing this cost will create vast opportunities for aerospace, military, biomedical, and consumer applications. Titanium

  9. Secretary Chu Addresses the International Atomic Energy Agency General

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conference | Department of Energy Addresses the International Atomic Energy Agency General Conference Secretary Chu Addresses the International Atomic Energy Agency General Conference September 20, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu addressed the International Atomic Energy Agency's 54th General Conference today in Vienna. His prepared remarks are below: Thank you, Ambassador Enkhsaikhan. Congratulations on your election as President of this Conference.

  10. Coherent manipulation of atoms by copropagating laser beams

    SciTech Connect (OSTI)

    Ovchinnikov, Yuri B.

    2006-03-15

    Optical dipole traps and fractional Talbot optical lattices based on the interference between multiple copropagating laser beams are proposed. The variation of relative amplitudes and phases of the interfering light beams of these traps makes it possible to manipulate the spatial position of trapped atoms. Examples of spatial translation and splitting of atoms between a set of the interference traps are considered. The prospect of constructing all-light atom chips based on the proposed technique is presented.

  11. Publication of New Atomic Bomb Radiation Dosimetry System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Publication of New Atomic Bomb Radiation Dosimetry System Publication of New Atomic Bomb Radiation Dosimetry System February 27, 2006 Due to recent advances in computer technology, DS02 allows more complicated and detailed calculations than DS86 did, as well as detailed simulations of the atomic bomb explosions and of the radiation's release and dispersal. Many improvements have been made, including dose estimates, with consideration paid to the more detailed shielding conditions of

  12. Atomic Energy Act and Related Legislation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atomic Energy Act and Related Legislation Atomic Energy Act and Related Legislation Purpose and Organization The purpose of the Atomic Energy Act (42 U.S.C. Sect. 2011 - Sect. 2259) (AEA) is to assure the proper management of source, special nuclear, and byproduct material. The AEA and the statutes that amended it delegate the control of nuclear energy primarily to DOE, the Nuclear Regulatory Commission (NRC) , and the Environmental Protection Agency (EPA). DOE authority extends to: source

  13. Thirteenth International Conference on Atomic Physics(IGAP-13)

    SciTech Connect (OSTI)

    Walther, H.; Haensch, T.W.; Neizert, B. (eds.) (Max PlanckInstitute for Quantum Optics, Garching (Germany) Ludwig MaximilianUniversity, Munich (Germany))

    1993-01-01

    This conference proceeding contains invited papers on recentprogress in many subfields of atomic physics. Major advances inspectroscopy, laser cooling and trapping, atom interferometry,cavity quantum electrodynamics are discussed in many of thepresented papers. Quantum chaos is explored as well as novelexperiments with atoms in intense laser fields are discussed. Atotal of forty two papers are given in this proceedings, out ofthese, eleven have been abstracted for database. (AIP)

  14. Beijing Shenwu Thermal Energy Technology Co Ltd BSTET | Open...

    Open Energy Info (EERE)

    highly efficient, energy saving and low pollution combustion technology, such as WDH serial gas atomization burners. References: Beijing Shenwu Thermal Energy Technology Co Ltd...

  15. Albert Einstein Alerts President Roosevelt of German Atomic Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Energy Program Washington, DC Albert Einstein writes President Franklin D. Roosevelt, alerting the President to the importance of research on nuclear chain reactions ...

  16. UNITED STATES ATOMIC ENERGY COMMISSION OAK RIDGE TENNESSEE THE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MDDC 869 UNITED STATES ATOMIC ENERGY COMMISSION OAK RIDGE TENNESSEE THE DIFFRACTION OF NEUTRONS BY CRYSTALLINE POWDERS by E. 0. Wollan C. G. Shull Clinton Laboratories Published ...

  17. Kinetics of the Hydrogen Atom Abstraction Reactions from 1-Butanol...

    Office of Scientific and Technical Information (OSTI)

    Theory Matches Experiment and More Citation Details In-Document Search Title: Kinetics of the Hydrogen Atom Abstraction Reactions from 1-Butanol by Hydroxyl Radical: Theory ...

  18. Oscillatory Magneto Conductance in Carbon Atom Wires | Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our calculation shows a spin valve behavior with the parallel magnetization state between the two Co atoms giving higher conductance than the respective antiparallel magnetization ...

  19. Multi-component Cu-Strengthened Steel Welding Simulations: Atom...

    Office of Scientific and Technical Information (OSTI)

    Steel Welding Simulations: Atom Probe Tomography and Synchrotron X-ray Diffraction Analyses Citation Details In-Document Search Title: Multi-component Cu-Strengthened Steel Welding ...

  20. Fe Atomic Data for Non-equilibrium Ionization Plasmas Eriksen...

    Office of Scientific and Technical Information (OSTI)

    Fe Atomic Data for Non-equilibrium Ionization Plasmas Eriksen, Kristoffer A. Los Alamos National Laboratory; Fontes, Christopher J. Los Alamos National Laboratory; Colgan,...

  1. Ultrasonic-Based Mode-Synthesizing Atomic Force Microscopy -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Only ultrasonic-based atomic force microscopy in the industry Sufficiently flexible for compatibility with spectroscopic approaches such as Raman spectroscopy Easily adaptable to ...

  2. Sandia Energy - Sandia Chemist Named as an Institute of Atomic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Named as an Institute of Atomic and Molecular Sciences Advisory Board Member Chemist David Chandler works in Sandia's Transportation Energy Center and the Combustion Research...

  3. Atomic substitution reveals the structural basis for substrate...

    Office of Scientific and Technical Information (OSTI)

    by an adenine DNA glycosylase, Bacillus stearothermophilus MutY, have previously ... Language: ENGLISH Subject: 08 HYDROGEN; ADENINES; ATOMS; BACILLUS; BONDING; CLEAVAGE; DNA; ...

  4. Aided by Simulations, Scientists Observe Atomic Collapse State

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collapse State Observed Aided by Simulations, Scientists Observe Atomic Collapse State Quantum Mechanics Prediction Confirmed in Graphene Using NERSC's Hopper April 26, 2013...

  5. Atomic Layer Deposition for Stabilization of Amorphous Silicon...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Nanostructured Metal Oxide Anodes Atomic Layer Deposition for Stabilization of Silicon Anodes Development of Industrially Viable Battery Electrode ...

  6. Isotropically sensitive optical filter employing atomic resonance transitions

    DOE Patents [OSTI]

    Marling, John B.

    1981-01-01

    An ultra-high Q isotropically sensitive optical filter or optical detector employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (.about.2.pi. steradians) and very narrow acceptance bandwidth approaching 0.01 A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor then providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filter. The outer and inner bandpass filters have no common transmission band, thereby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be used as an underwater detector for light from an optical transmitter which could be located in an orbiting satellite.

  7. Trimodal Tapping Mode Atomic Force Microscopy. Simultaneous 4D...

    Office of Scientific and Technical Information (OSTI)

    Materials This project focused on the development of single-pass multifrequency atomic ... Country of Publication: United States Language: English Subject: 77 NANOSCIENCE AND ...

  8. COLLOQUIUM: Assessing First Wall Materials at the Atomic Scale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wall Materials at the Atomic Scale and Energy Writ Large at Princeton Professor Emily Carter Princeton University Colloquium Committee: The Princeton Plasma Physics Laboratory...

  9. Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions...

    National Nuclear Security Administration (NNSA)

    Explosions Nevada Test Site, NV As part of the Plowshare program seeking to develop peaceful uses for nuclear explosives, the Atomic Energy Commission conducts the Sedan test ...

  10. Big, Deep, and Smart Data in Energy Materials Research: Atomic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big, Deep, and Smart Data in Energy Materials Research: Atomic View on Materials Functionalities Event Sponsor: Computing, Environment, and Life Sciences Seminar Start Date: Sep 22...

  11. Hydrogen transport diagnostics by atomic and molecular emission...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen transport diagnostics by atomic and molecular emission line profiles simultaneously measured for large helical device Citation Details In-Document Search Title: Hydrogen ...

  12. SYMMETRY OF THE IBEX RIBBON OF ENHANCED ENERGETIC NEUTRAL ATOM...

    Office of Scientific and Technical Information (OSTI)

    HELIOSPHERE; INTERSTELLAR SPACE; KEV RANGE; MAGNETIC FIELDS; PLASMA; REFLECTION; SUN; SYMMETRY The circular ribbon of enhanced energetic neutral atom (ENA) emission...

  13. Institute for Atom-Efficient Chemical Transformations - Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of which are crucial for evaluating performance in the proverbial vacuum. Using atomic layer deposition (ALD), researchers can create highly specific nanobowls, controlling...

  14. Analytical evaluation of atomic form factors: Application to Rayleigh scattering

    SciTech Connect (OSTI)

    Safari, L.; Santos, J. P.; Amaro, P.; Jnkl, K.; Fratini, F.

    2015-05-15

    Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wave functions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.

  15. Storage and retrieval of thermal light in warm atomic vapor ...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ATOMS; CORRELATION FUNCTIONS; INTERFEROMETRY; OPACITY; PHOTON ...

  16. Method of trivalent chromium concentration determination by atomic spectrometry

    DOE Patents [OSTI]

    Reheulishvili, Aleksandre N.; Tsibakhashvili, Neli Ya.

    2006-12-12

    A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.

  17. International Atomic Energy Agency Feed | Open Energy Information

    Open Energy Info (EERE)

    Institute (WRI) World Watch Institute International Atomic Energy Agency Feed Nuclear Safety is a Continuum, not a Final Destination

    "There's this continuum with regard...

  18. Atomic Layer Deposition and in Situ Characterization of Ultraclean...

    Office of Scientific and Technical Information (OSTI)

    Hydroxide Citation Details In-Document Search Title: Atomic Layer Deposition and in Situ Characterization of Ultraclean Lithium Oxide and Lithium Hydroxide Authors: Kozen,...

  19. LSU EFRC - Center for Atomic Level Catalyst Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    space control Our Mission Statement space control "Building Effective Catalysts from First Principles: Computational Catalysis and Atomic-Level Synthesis" The mission of LSU's ...

  20. Connecting Three Atomic Layers Puts Semiconducting Science on...

    Office of Science (SC) Website

    the linear junction region along the triangular interface produces enhanced light emission (red region). The Science A new semiconducting material that is only three atomic...

  1. Control Heterogeneous Catalysis at Atomic and Electronic-level...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control Heterogeneous Catalysis at Atomic and Electronic-level Using Intermetallic Compounds Precious metals and metal alloys are important heterogeneous catalysts for renewable...

  2. Atomic weight and isotopic abundance data analysis 1993

    SciTech Connect (OSTI)

    Holden, N.E.

    1993-08-01

    Literature on isotopic abundance measurements and their variation in nature have been reviewed for impact on standard atomic weight values and associated uncertainties for recent measurements.

  3. President Roosevelt Approves Production of Atomic Bomb | National...

    National Nuclear Security Administration (NNSA)

    Approves Production of Atomic Bomb | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  4. Exploiting Universality in Atoms with Large Scattering Lengths

    SciTech Connect (OSTI)

    Braaten, Eric

    2012-05-31

    The focus of this research project was atoms with scattering lengths that are large compared to the range of their interactions and which therefore exhibit universal behavior at sufficiently low energies. Recent dramatic advances in cooling atoms and in manipulating their scattering lengths have made this phenomenon of practical importance for controlling ultracold atoms and molecules. This research project was aimed at developing a systematically improvable method for calculating few-body observables for atoms with large scattering lengths starting from the universal results as a first approximation. Significant progress towards this goal was made during the five years of the project.

  5. ATOMIC BEAM STUDIES IN THE RHIC H-JET POLARIMETER.

    SciTech Connect (OSTI)

    MAKDISI,Y.; ZELENSKI,A.; GRAHAM,D.; KOKHANOVSKI,S.; MAHLER,G.; NASS,A.; RITTER,J.; ZUBETS,V.; ET AL.

    2005-01-28

    The results of atomic beam production studies are presented. Improved cooling of the atoms before jet formation in the dissociator cold nozzle apparently reduces the atomic beam velocity spread and improves beam focusing conditions. A carefully designed sextupole separating (and focusing) magnet system takes advantage of the high brightness source. As a result a record beam intensity of a 12.4 {center_dot} 10{sup 16} atoms/s was obtained within 10 mm acceptance at the collision point. The results of the polarization dilution factor measurements (by the hydrogen molecules at the collision point) are also presented.

  6. Hydrogen atom temperature measured with wavelength-modulated...

    Office of Scientific and Technical Information (OSTI)

    Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ABSORPTION SPECTROSCOPY; ATOMS; DIODE-PUMPED SOLID STATE LASERS; DISTRIBUTION ...

  7. Gosling, The Manhattan Project: Making the Atomic Bomb | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Gosling, The Manhattan Project: Making the Atomic Bomb Gosling, The Manhattan Project: Making the Atomic Bomb F.G. Gosling. The Manhattan Project: Making the Atomic Bomb. DOE/MA-0002 Revised. Washington, D.C.: Department of Energy, 2010. 115 pp., with 38 pp. photo gallery). From the Forward to the 2010 Edition: "In a national survey at the turn of the millennium, journalists and historians ranked the dropping of the atomic bomb and the surrender of Japan to end the Second World

  8. The Evolution in Pu Nanocluster Electronic Structure: from Atomicity...

    Office of Scientific and Technical Information (OSTI)

    Conference: The Evolution in Pu Nanocluster Electronic Structure: from Atomicity to Three Dimensionality Citation Details In-Document Search Title: The Evolution in Pu Nanocluster ...

  9. President Eisenhower Delivers Atoms for Peace Speech | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eisenhower Delivers Atoms for Peace Speech | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  10. The Harnessed Atom - Student Edition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Edition The Harnessed Atom is a middle school science, technology, engineering, and math (STEM) curriculum extension that focuses on nuclear science and energy. It is designed...

  11. The Electronic Structure of Oxygen Atom Vacancy and Hydroxyl...

    Office of Scientific and Technical Information (OSTI)

    Title: The Electronic Structure of Oxygen Atom Vacancy and Hydroxyl Impurity Defects on Titanium Dioxide (110) Surface Introducing a charge into a solid such as a metal oxide ...

  12. DOE - Office of Legacy Management -- Gen_Atomics

    Office of Legacy Management (LM)

    for the GA Project Files to the Office of Legacy Management (DOE memorandum) September 3, ... April 2002 General Atomics Final Drum of Legacy Mixed Wastes (Department of Toxic ...

  13. Steven Chu: Laser Cooling and Trapping of Atoms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 100, Issue 18; May 2008 Top Additional Web Pages: Landmarks: Laser Cooling of Atoms, Physical Review Focus, April 2, 2008 Steven Chu: Uncovering the Secret Life of Molecules, ...

  14. Isotropically sensitive optical filter employing atomic resonance transitions

    DOE Patents [OSTI]

    Marling, J.B.

    An ultra-high Q isotropically sensitive optical filter or optical detector is disclosed employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (approx. 2 ..pi.. steradians) and very narrow acceptance bandwidth approaching 0.01A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor than providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filters have no common transmission band, therby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be located in an orbiting satellite.

  15. Simulations of Kinetic Events at the Atomic Scale

    Broader source: Energy.gov [DOE]

    Presentation on the Simulations of Kinetic Events at the Atomic Scale given at the DOE Theory Focus Session on Hydrogen Storage Materials on May 18, 2006.

  16. Electroless Atomic Layer Deposition: A Scalable Approach to Surface...

    Office of Scientific and Technical Information (OSTI)

    Title: Electroless Atomic Layer Deposition: A Scalable Approach to Surface Modified Metal Powders. Abstract not provided. Authors: Cappillino, Patrick ; Robinson, David ; El Gabaly ...

  17. Atomic-Scale Mapping of Thermoelectric Power on Graphene: Role...

    Office of Scientific and Technical Information (OSTI)

    Mapping of Thermoelectric Power on Graphene: Role of Defects and Boundaries Citation Details In-Document Search Title: Atomic-Scale Mapping of Thermoelectric Power on ...

  18. Discovery of novel hydrogen storage materials: an atomic scale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery of novel hydrogen storage materials: an atomic scale computational approach Home Author: C. Wolverton, D. J. Siegel, A. R. Akbarzadeh, V. Ozolins Year: 2008 Abstract:...

  19. Atomic-scale chemical quantification of oxide interfaces using...

    Office of Scientific and Technical Information (OSTI)

    Atomic-scale chemical quantification of oxide interfaces using energy-dispersive X-ray ... ANTIFERROMAGNETISM; ASYMMETRY; BISMUTH COMPOUNDS; DIFFUSION; EPITAXY; ...

  20. Thermal effects on the stability of excited atoms in cavities

    SciTech Connect (OSTI)

    Khanna, F. C.; Malbouisson, A. P. C.; Malbouisson, J. M. C.; Santana, A. E.

    2010-03-15

    An atom, coupled linearly to an environment, is considered in a harmonic approximation in thermal equilibrium inside a cavity. The environment is modeled by an infinite set of harmonic oscillators. We employ the notion of dressed states to investigate the time evolution of the atom initially in the first excited level. In a very large cavity (free space) for a long elapsed time, the atom decays and the value of its occupation number is the physically expected one at a given temperature. For a small cavity the excited atom never completely decays and the stability rate depends on temperature.

  1. Ribosome research in atomic detail offers potential insights...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A groundbreaking study of the human ribosome is revealing that the tiny molecular machine ... atomic-resolution model of the human ribosome consistent with microscopy. A). ...

  2. Atomic layer engineering for chemically sharp oxide heterointerfaces...

    Office of Scientific and Technical Information (OSTI)

    Title: Atomic layer engineering for chemically sharp oxide heterointerfaces Authors: Choi, Woo Seok 1 ; Rouleau, Christopher M 1 ; Seo, Sung Seok A 1 ; Eres, Gyula 1 ; Lee, ...

  3. Embedded atom calculations of unstable stacking fault energies and surface energies in intermetallics

    SciTech Connect (OSTI)

    Farkas, D.; Zhou, S.J.; Vailhe, C.; Mutasa, B.; Panova, J.

    1997-01-01

    We performed embedded atom method calculations on surface energies and unstable stacking fault energies for a series of intermetallics for which interatomic potentials of the embedded atom type have recently been developed. These results were analyzed and applied to the prediction of relative ductility of these materials using the various current theories. Series of alloys with the B2 ordered structure were studied, and the results were compared to those in pure body-centered cubic (bcc) Fe. Ordered compounds with L1{sub 2} and L1{sub 0} structures based on the face-centered cubic (fcc) lattice were also studied. It was found that there is a correlation between the values of the antiphase boundary (APB) energies in B2 alloys and their unstackable stacking fault energies. Materials with higher APB energies tend to have higher unstable stacking fault energies, leading to an increased tendency to brittle fracture. {copyright} {ital 1997 Materials Research Society.}

  4. Entanglement sharing in the two-atom Tavis-Cummings model

    SciTech Connect (OSTI)

    Tessier, T.E.; Deutsch, I.H.; Delgado, A.; Fuentes-Guridi, I.

    2003-12-01

    Individual members of an ensemble of identical systems coupled to a common probe can become entangled with one another, even when they do not interact directly. We investigate how this type of multipartite entanglement is generated in the context of a system consisting of two two-level atoms resonantly coupled to a single mode of the electromagnetic field. The dynamical evolution is studied in terms of the entanglements in the different bipartite partitions of the system, as quantified by the I tangle. We also propose a generalization of the so-called residual tangle that quantifies the inherent three-body correlations in our tripartite system. This enables us to completely characterize the phenomenon of entanglement sharing in the case of the two-atom Tavis-Cummings model, a system of both theoretical and experimental interest.

  5. Atomic velocity distributions out of hydrogen-maser dissociators. Technical report

    SciTech Connect (OSTI)

    Jaduszliwer, B.; Chan, Y.C.

    1990-02-15

    Velocity distributions are determined for atoms effusing out of radio frequency discharge hydrogen dissociators, of the type used in hydrogen masers. This work was motivated by long-term reliability issues related to the possible use of masers as freqency standards for satellites. A primary issue is the maser's hydrogen budget, because many of the common failure modes of a maser involve either the hydrogen source or sink. Because the focusing properties of the state-selecting magnets are velocity dependent, the overall hydrogen budget will depend not only on the dissociation efficiency but also on the velocity distribution of the hydrogen atoms leaving the dissociation. Many times, that distribution has been tacitly assumed to be Maxwellian at wall temperature, but pressure in the dissociator increases. Operating the dissociator to yield a matched to that distribution may significantly improve the efficiency hydrogen use by the maser.

  6. Note: Directly measuring the direct digital synthesizer frequency chirp-rate for an atom interferometer

    SciTech Connect (OSTI)

    Tao, Juan-Juan; Zhou, Min-Kang E-mail: zmk@hust.edu.cn; Zhang, Qiao-Zhen; Cui, Jia-Feng; Duan, Xiao-Chun; Shao, Cheng-Gang; Hu, Zhong-Kun E-mail: zmk@hust.edu.cn

    2015-09-15

    During gravity measurements with Raman type atom interferometry, the frequency of the laser used to drive Raman transition is scanned by chirping the frequency of a direct digital synthesizer (DDS), and the local gravity is determined by precisely measuring the chip rate α of DDS. We present an effective method that can directly evaluate the frequency chirp rate stability of our DDS. By mixing a pair of synchronous linear sweeping signals, the chirp rate fluctuation is precisely measured with a frequency counter. The measurement result shows that the relative α instability can reach 5.7 × 10{sup −11} in 1 s, which is neglectable in a 10{sup −9} g level atom interferometry gravimeter.

  7. Method and apparatus for noble gas atom detection with isotopic selectivity

    DOE Patents [OSTI]

    Hurst, G. Samuel; Payne, Marvin G.; Chen, Chung-Hsuan; Parks, James E.

    1984-01-01

    Apparatus and methods of operation are described for determining, with isotopic selectivity, the number of noble gas atoms in a sample. The analysis is conducted within an evacuated chamber which can be isolated by a valve from a vacuum pumping system capable of producing a pressure of 10.sup.-8 Torr. Provision is made to pass pulses of laser beams through the chamber, these pulses having wavelengths appropriate for the resonance ionization of atoms of the noble gas under analysis. A mass filter within the chamber selects ions of a specific isotope of the noble gas, and means are provided to accelerate these selected ions sufficiently for implantation into a target. Specific types of targets are discussed. An electron measuring device produces a signal relatable to the number of ions implanted into the target and thus to the number of atoms of the selected isotope of the noble gas removed from the gas sample. The measurement can be continued until a substantial fraction, or all, of the atoms in the sample have been counted. Furthermore, additional embodiments of the apparatus are described for bunching the atoms of a noble gas for more rapid analysis, and for changing the target for repetitive cycling of the gas in the chamber. The number of repetitions of the cyclic steps depend upon the concentration of the isotope of interest, the separative efficiency of the mass filter, etc. The cycles are continued until a desired selectivity is achieved. Also described are components and a method of operation for a pre-enrichment operation for use when an introduction of a total sample would elevate the pressure within the chamber to levels in excess of those for operation of the mass filter, specifically a quadrupole mass filter. Specific examples of three noble gas isotope analyses are described.

  8. Etalon-induced baseline drift and correction in atom flux sensors based on atomic absorption spectroscopy

    SciTech Connect (OSTI)

    Du, Yingge; Chambers, Scott A.

    2014-10-20

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific real-time flux sensing and control. The ultimate sensitivity and performance of these sensors are strongly affected by baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability, which has not been previously considered, and cannot be corrected using existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5% which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  9. Etalon-induced Baseline Drift And Correction In Atom Flux Sensors Based On Atomic Absorption Spectroscopy

    SciTech Connect (OSTI)

    Du, Yingge; Chambers, Scott A.

    2014-10-20

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific, real-time flux sensing and control. The ultimate sensitivity and performance of the sensors are strongly affected by the long-term and short term baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability which has not been previously considered or corrected by existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5%, which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  10. Diffusion of n-type dopants in germanium

    SciTech Connect (OSTI)

    Chroneos, A.; Bracht, H.

    2014-03-15

    Germanium is being actively considered by the semiconductor community as a mainstream material for nanoelectronic applications. Germanium has advantageous materials properties; however, its dopant-defect interactions are less understood as compared to the mainstream material, silicon. The understanding of self- and dopant diffusion is essential to form well defined doped regions. Although p-type dopants such as boron exhibit limited diffusion, n-type dopants such as phosphorous, arsenic, and antimony diffuse quickly via vacancy-mediated diffusion mechanisms. In the present review, we mainly focus on the impact of intrinsic defects on the diffusion mechanisms of donor atoms and point defect engineering strategies to restrain donor atom diffusion and to enhance their electrical activation.

  11. Flex-flame burner and combustion method

    DOE Patents [OSTI]

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  12. Upgrade Boilers with Energy-Efficient Burners

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP steam tip sheet on upgrading boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  13. The Atomic Vapor Laser Isotope Separation Program

    SciTech Connect (OSTI)

    Not Available

    1992-11-09

    This report provides the finding and recommendations on the audit of the Atomic Vapor Laser Isotope Separation (AVLIS) program. The status of the program was assessed to determine whether the Department was achieving objectives stated in its January 1990 Plan for the Demonstration, Transition and Deployment of AVLIS Technology. Through Fiscal Year 1991, the Department had spent about $1.1 billion to develop AVLIS technology. The January 1990 plan provided for AVLIS to be far enough along by September to enable the Department to make a determination of the technical and economic feasibility of deployment. However, the milestones needed to support that determination were not met. An estimated $550 million would be needed to complete AVLIS engineering development and related testing prior to deployment. The earliest possible deployment date has slipped to beyond the year 2000. It is recommended that the Department reassess the requirement for AVLIS in light of program delays and changes that have taken place in the enrichment market since January 1990. Following the reassessment, a decision should be made to either fully support and promote the actions needed to complete AVLIS development or discontinue support for the program entirely. Management`s position is that the Department will successfully complete the AVLIS technology demonstration and that the program should continue until it can be transferred to a Government corporation. Although the auditors recognize that AVLIS may be transferred, there are enough technical and financial uncertainties that a thorough assessment is warranted.

  14. Carbon based thirty six atom spheres

    DOE Patents [OSTI]

    Piskoti, Charles R.; Zettl, Alex K.; Cohen, Marvin L.; Cote, Michel; Grossman, Jeffrey C.; Louie, Steven G.

    2005-09-06

    A solid phase or form of carbon is based on fullerenes with thirty six carbon atoms (C.sub.36). The C.sub.36 structure with D.sub.6h symmetry is one of the two most energetically favorable, and is conducive to forming a periodic system. The lowest energy crystal is a highly bonded network of hexagonal planes of C.sub.36 subunits with AB stacking. The C.sub.36 solid is not a purely van der Waals solid, but has covalent-like bonding, leading to a solid with enhanced structural rigidity. The solid C.sub.36 material is made by synthesizing and selecting out C.sub.36 fullerenes in relatively large quantities. A C.sub.36 rich fullerene soot is produced in a helium environment arc discharge chamber by operating at an optimum helium pressure (400 torr). The C.sub.36 is separated from the soot by a two step process. The soot is first treated with a first solvent, e.g. toluene, to remove the higher order fullerenes but leave the C.sub.36. The soot is then treated with a second solvent, e.g. pyridine, which is more polarizable than the first solvent used for the larger fullerenes. The second solvent extracts the C.sub.36 from the soot. Thin films and powders can then be produced from the extracted C.sub.36. Other materials are based on C.sub.36 fullerenes, providing for different properties.

  15. 2010 Atomic & Molecular Interactions Gordon Research Conference

    SciTech Connect (OSTI)

    Todd Martinez

    2010-07-23

    The Atomic and Molecular Interactions Gordon Conferences is justifiably recognized for its broad scope, touching on areas ranging from fundamental gas phase and gas-condensed matter collision dynamics, to laser-molecule interactions, photophysics, and unimolecular decay processes. The meeting has traditionally involved scientists engaged in fundamental research in gas and condensed phases and those who apply these concepts to systems of practical chemical and physical interest. A key tradition in this meeting is the strong mixing of theory and experiment throughout. The program for 2010 conference continues these traditions. At the 2010 AMI GRC, there will be talks in 5 broadly defined and partially overlapping areas of intermolecular interactions and chemical dynamics: (1) Photoionization and Photoelectron Dynamics; (2) Quantum Control and Molecules in Strong Fields; (3) Photochemical Dynamics; (4) Complex Molecules and Condensed Phases; and (5) Clusters and Reaction Dynamics. These areas encompass many of the most productive and exciting areas of chemical physics, including both reactive and nonreactive processes, intermolecular and intramolecular energy transfer, and photodissociation and unimolecular processes. Gas phase dynamics, van der Waals and cluster studies, laser-matter interactions and multiple potential energy surface phenomena will all be discussed.

  16. Atomic processes in high temperature plasmas

    SciTech Connect (OSTI)

    Hahn, Y.

    1991-07-01

    This is the final report on the project Atomic Processes in High Temperature Plasmas', which has been completed in June 30, 1991. The original contract started in 1978. The dielectronic recombination (DR) rate coefficients were calculated for ions with the number of electrons N = 1, 2, 3, 4, 5, 10, 11, and 12. The result was then used to construct a new and improved rate formula. Other important resonant processes, which are closely related to DR, were also studied to interpret experiments and to test the DR theory. The plasma field and the density effects on the rate coefficients was found to be important, and a consistent correction procedure is being developed. The available data on the DR rates and their accuracy do not yet fully meet the requirement for plasma modeling; there are serious gaps in the available data, and the currently adopted theoretical procedure needs improvements. Critical assessment of the current status of the DR problem is presented, and possible future work needed is summarized.

  17. Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Explores Peaceful Uses of Nuclear Explosions Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions Nevada Test Site, NV As part of the Plowshare program seeking to develop peaceful uses for nuclear explosives, the Atomic Energy Commission conducts the Sedan test at the Nevada Test Site

  18. Structures of 38-atom gold-platinum nanoalloy clusters

    SciTech Connect (OSTI)

    Ong, Yee Pin; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    Bimetallic nanoclusters, such as gold-platinum nanoclusters, are nanomaterials promising wide range of applications. We perform a numerical study of 38-atom gold-platinum nanoalloy clusters, Au{sub n}Pt{sub 38−n} (0 ≤ n ≤ 38), to elucidate the geometrical structures of these clusters. The lowest-energy structures of these bimetallic nanoclusters at the semi-empirical level are obtained via a global-minimum search algorithm known as parallel tempering multi-canonical basin hopping plus genetic algorithm (PTMBHGA), in which empirical Gupta many-body potential is used to describe the inter-atomic interactions among the constituent atoms. The structures of gold-platinum nanoalloy clusters are predicted to be core-shell segregated nanoclusters. Gold atoms are observed to preferentially occupy the surface of the clusters, while platinum atoms tend to occupy the core due to the slightly smaller atomic radius of platinum as compared to gold’s. The evolution of the geometrical structure of 38-atom Au-Pt clusters displays striking similarity with that of 38-atom Au-Cu nanoalloy clusters as reported in the literature.

  19. Efficient detection of photons emitted from fast moving atoms

    SciTech Connect (OSTI)

    Lehmann, Bernhard; Quintel, Harald; Ludin, Andrea; Tschannen, Thomas

    1997-01-15

    Metastable atoms of krypton and photons from a tunable cw infrared diode laser at 812 nm meet in counterpropagating beams. A photomultiplier mounted perpendicular to the beams detects photons reemitted from the passing atoms. Multiple diffuse reflections from a thermoplastics tube are used to achieve the high collection efficiency necessary for photon burst detection.

  20. Induce magnetism into silicene by embedding transition-metal atoms

    SciTech Connect (OSTI)

    Sun, Xiaotian; Wang, Lu E-mail: yyli@suda.edu.cn; Lin, Haiping; Hou, Tingjun; Li, Youyong E-mail: yyli@suda.edu.cn

    2015-06-01

    Embedding transition-metal (TM) atoms into nonmagnetic nanomaterials is an efficient way to induce magnetism. Using first-principles calculations, we systematically investigated the structural stability and magnetic properties of TM atoms from Sc to Zn embedded into silicene with single vacancy (SV) and double vacancies (DV). The binding energies for different TM atoms correlate with the TM d-shell electrons. Sc, Ti, and Co show the largest binding energies of as high as 6 eV, while Zn has the lowest binding energy of about 2 eV. The magnetic moment of silicene can be modulated by embedding TM atoms from V to Co, which mainly comes from the 3d orbitals of TM along with partly contributions from the neighboring Si atoms. Fe atom on SV and Mn atom on DV have the largest magnetic moment of more than 3 μB. In addition, we find that doping of N or C atoms on the vacancy site could greatly enhance the magnetism of the systems. Our results provide a promising approach to design silicene-based nanoelectronics and spintronics device.