Powered by Deep Web Technologies
Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EA-1053: Decontaminating and Decommissioning the General Atomics Hot Cell  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Decontaminating and Decommissioning the General Atomics 3: Decontaminating and Decommissioning the General Atomics Hot Cell Facility, San Diego, California EA-1053: Decontaminating and Decommissioning the General Atomics Hot Cell Facility, San Diego, California SUMMARY This EA evaluates the environmental impacts of the proposal for low-level radioactive and mixed wastes generated by decontaminating and decommissioning activities at the U.S. Department of Energy's General Atomics' Hot Cell Facility would be transported to either a DOE owned facility, such as the Hanford site in Washington, or to a commercial facility, such as Envirocare in Utah, for treatment and/or storage and disposal. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 14, 1995 EA-1053: Finding of No Significant Impact

2

Simple microwave field imaging technique using hot atomic vapor cells  

E-Print Network (OSTI)

We demonstrate a simple technique for microwave field imaging using alkali atoms in a vapor cell. The microwave field to be measured drives Rabi oscillations on atomic hyperfine transitions, which are detected in a spatially resolved way using a laser beam and a CCD camera. Our vapor cell geometry enables single-shot recording of two-dimensional microwave field images with 350 {\\mu}m spatial resolution. Using microfabricated vapor cell arrays, a resolution of a few micrometers seems feasible. All vector components of the microwave magnetic field can be imaged. Our apparatus is simple and compact and does not require cryogenics or ultra-high vacuum.

Bhi, Pascal

2012-01-01T23:59:59.000Z

3

Simple microwave field imaging technique using hot atomic vapor cells  

E-Print Network (OSTI)

We demonstrate a simple technique for microwave field imaging using alkali atoms in a vapor cell. The microwave field to be measured drives Rabi oscillations on atomic hyperfine transitions, which are detected in a spatially resolved way using a laser beam and a camera. Our vapor cell geometry enables single-shot recording of two-dimensional microwave field images with 350 {\\mu}m spatial resolution. Using microfabricated vapor cell arrays, a resolution of a few micrometers seems feasible. All vector components of the microwave magnetic field can be imaged. Our apparatus is simple and compact and does not require cryogenics or ultra-high vacuum.

Pascal Bhi; Philipp Treutlein

2012-07-20T23:59:59.000Z

4

Of The Hot Cell Facility Site General Atomics San Diego, California W.c. Adams  

E-Print Network (OSTI)

This report was prepared as an account of work sponsored by the United States Government. Neither the United States Government nor the U.S. Department of Energy, nor anyof their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe on privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, mark, manufacturer, or otherwise, does not necessarilyconstitute or imply its endorsement or recommendation, or favor by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. OF THE HOT CELL FACILITY SITE GENERAL ATOMICS SAN DIEGO, CALIFORNIA Prepared by W. C. Adams Environmental Survey and Site Assessment Program Radiological Safety, Assessments, and Training Oak Ridge Institute for Science and Education Oak Ridge, Tennessee 37831-0117 Prepared for Office of Site Closure U.S. Department of Energy FINAL REPORT JUNE 2000 This report is based on work performed under a contract with the U.S. Department of Energy

Prepared For The; W. C. Adams; W. C. Adams

2000-01-01T23:59:59.000Z

5

Hot atom chemistry and radiopharmaceuticals  

Science Conference Proceedings (OSTI)

The chemical products made in a cyclotron target are a combined result of the chemical effects of the nuclear transformation that made the radioactive atom and the bulk radiolysis in the target. This review uses some well-known examples to understand how hot atom chemistry explains the primary products from a nuclear reaction and then how radiation chemistry is exploited to set up the optimal product for radiosynthesis. It also addresses the chemical effects of nuclear decay. There are important principles that are common to hot atom chemistry and radiopharmaceutical chemistry. Both emphasize short-lived radionuclides and manipulation of high specific activity nuclides. Furthermore, they both rely on radiochromatographic separation for identification of no-carrieradded products.

Krohn, Kenneth A.; Moerlein, Stephen M.; Link, Jeanne M.; Welch, Michael J. [University of Washington, Department of Radiology, Molecular Imaging Center, 1959 NE Pacific St., Box 356004, Seattle, WA 98195-6004 (United States); Washington University, Department of Radiology, Division of Radiological Sciences, 510 South Kingshighway, St. Louis, MO 63110 (United States); University of Washington, Department of Radiology, Molecular Imaging Center, 1959 NE Pacific St., Box 356004, Seattle, WA 98195-6004 (United States); Washington University, Department of Radiology, Division of Radiological Sciences, 510 South Kingshighway, St. Louis, MO 63110 (United States)

2012-12-19T23:59:59.000Z

6

GHz Rabi flopping to Rydberg states in hot atomic vapor cells  

E-Print Network (OSTI)

We report on the observation of Rabi oscillations to a Rydberg state on a timescale below one nanosecond in thermal rubidium vapor. We use a bandwidth-limited pulsed excitation and observe up to 6 full Rabi cycles within a pulse duration of ~ 4 ns. We find good agreement between the experiment and numerical simulations based on a surprisingly simple model. This result shows that fully coherent dynamics with Rydberg states can be achieved even in thermal atomic vapor thus suggesting small vapor cells as a platform for room temperature quantum devices. Furthermore the result implies that previous coherent dynamics in single atom Rydberg gates can be accelerated by three orders of magnitude.

Huber, B; Schlagmller, M; Klle, A; Kbler, H; Lw, R; Pfau, T

2011-01-01T23:59:59.000Z

7

GHz Rabi flopping to Rydberg states in hot atomic vapor cells  

E-Print Network (OSTI)

We report on the observation of Rabi oscillations to a Rydberg state on a timescale below one nanosecond in thermal rubidium vapor. We use a bandwidth-limited pulsed excitation and observe up to 6 full Rabi cycles within a pulse duration of ~ 4 ns. We find good agreement between the experiment and numerical simulations based on a surprisingly simple model. This result shows that fully coherent dynamics with Rydberg states can be achieved even in thermal atomic vapor thus suggesting small vapor cells as a platform for room temperature quantum devices. Furthermore the result implies that previous coherent dynamics in single atom Rydberg gates can be accelerated by three orders of magnitude.

B. Huber; T. Baluktsian; M. Schlagmller; A. Klle; H. Kbler; R. Lw; T. Pfau

2011-10-10T23:59:59.000Z

8

LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM  

SciTech Connect

This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

SEIDEL CM; JAIN J; OWENS JW

2009-02-23T23:59:59.000Z

9

LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM  

SciTech Connect

This report describes the installation, testing and acceptance of the Waste Treatment and Immobilization Plant procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste samples in a hot cell environment. The 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

LOCKREM LL; OWENS JW; SEIDEL CM

2009-03-26T23:59:59.000Z

10

GA Hot Cell D&D Closeout Report  

Office of Legacy Management (LM)

GENERAL ATOMICS GENERAL ATOMICS HOT CELL FACILITY DECONTAMINATION & DECOMMISSIONING PROJECT FINAL PROJECT CLOSEOUT REPORT prepared for GA HOT CELL D&D PROJECT CONTRACT NUMBERS DE-AC03-84SF11962 and DE-AC03-95SF20798 PBS VL-GA-0012 Approvals Prepared by: James Davis, III Date Project Manager, Oakland Environmental Programs Office Reviewed by: John Lee Date Deputy, Oakland Environmental Programs Office Approved by: Laurence McEwen Date Acting Director, Oakland Environmental Programs Office General Atomics Hot Cell Facility D&D Project Closeout Report Contents Page i CONTENTS CONTENTS.....................................................................................................................................

11

Cold Light from Hot Atoms and Molecules  

Science Conference Proceedings (OSTI)

The introduction of rare earth atoms and molecules into lighting discharges led to great advances in efficacy of these lamps. Atoms such as Dy, Ho and Ce provide excellent radiation sources for lighting applications, with rich visible spectra, such that a suitable combination of these elements can provide high quality white light. Rare earth molecules have also proved important in enhancing the radiation spectrum from phosphors in fluorescent lamps. This paper reviews some of the current aspects of lighting research, particularly rare earth chemistry and radiation, and the associated fundamental atomic and molecular data.

Lister, Graeme [OSRAM SYLVANIA, CRSL, 71 Cherry Hill Drive, Beverly, MA (United States); Curry, John J. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

2011-05-11T23:59:59.000Z

12

Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms  

DOE R&D Accomplishments (OSTI)

A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

Continetti, R. E.; Balko, B. A.; Lee, Y. T.

1989-02-00T23:59:59.000Z

13

Molecular beam studies of hot atom chemical reactions: Reactive scattering of energetic deuterium atoms  

DOE Green Energy (OSTI)

A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H/sub 2/ /minus/> DH + H and the substitution reaction D + C/sub 2/H/sub 2/ /minus/> C/sub 2/HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible. 18 refs., 9 figs.

Continetti, R.E.; Balko, B.A.; Lee, Y.T.

1989-02-01T23:59:59.000Z

14

Hot cell shield plug extraction apparatus  

DOE Patents (OSTI)

A hot cell installation for the handling of highly radioactive material may comprise a dozen or more interconnected high density concrete vaults, the concrete vault walls having a thickness of approximately three feet. Typically, hot cells are constructed in rows so as to share as many shielding walls as possible. A typical overall length of a row of cells might be 70 yards. A secondary mechanism exists for placing certain objects into a cell. A typical hot cell has been constructed with 8 inch diameter holes through the exterior shielded walls in the vicinity of, and usually above, the viewing windows. It became evident that if the hot cell plugs could be removed and replaced conveniently significant savings in time and personnel exposure could be realized by using these 8 inch holes as entry ports. Fifteen inch cylindrical steel plugs with a diameter of eight inches weigh about two hundred pounds. The shield plug swing mechanism comprises a steel shielding plug mounted on a retraction device that enables the plug to be pulled out of the wall and supports the weight of the pulled out plug. The retraction device is mounted on a hinge, which allows the plug to be swung out of the way so that an operator can insert material into or remove it from the interior of the hot cell and then replace the plug quickly. The hinge mounting transmits the load of the retracted plug to the concrete wall.

Knapp, P.A.; Manhart, L.K.

1994-12-31T23:59:59.000Z

15

DOE - Office of Legacy Management -- Gen_Atomics  

NLE Websites -- All DOE Office Websites (Extended Search)

General Atomics Hot Cell Facility, California, Site A Oakland Operations Office site genatomicsmap The General Atomics Hot Cell Facility site was a research laboratory formerly...

16

EA-1053: Decontaminating and Decommissioning the General Atomics...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

53: Decontaminating and Decommissioning the General Atomics Hot Cell Facility, San Diego, California EA-1053: Decontaminating and Decommissioning the General Atomics Hot Cell...

17

WESF hot cells waste minimization criteria hot cells window seals evaluation  

SciTech Connect

WESF will decouple from B Plant in the near future. WESF is attempting to minimize the contaminated solid waste in their hot cells and utilize B Plant to receive the waste before decoupling. WESF wishes to determine the minimum amount of contaminated waste that must be removed in order to allow minimum maintenance of the hot cells when they are placed in ''laid-up'' configuration. The remaining waste should not cause unacceptable window seal deterioration for the remaining life of the hot cells. This report investigates and analyzes the seal conditions and hot cell history and concludes that WESF should remove existing point sources, replace cerium window seals in F-Cell and refurbish all leaded windows (except for A-Cell). Work should be accomplished as soon as possible and at least within the next three years.

Walterskirchen, K.M.

1997-03-31T23:59:59.000Z

18

A PORTABLE BANDSAW FOR HOT CELL USE  

SciTech Connect

A commercial light-weight portable bandsaw was fitted with a grip to permit it to be maneuvered remotely in a hot cell by means of a General Mills manipulator The bandsaw was supported in various positions to make cuts on typical pieces. Photographs show the saw in operation. (auth)

Abbatiello, A.A.

1958-02-19T23:59:59.000Z

19

Evidence of the production of hot hydrogen atoms in RF plasmas by catalytic reactions between hydrogen and oxygen species  

E-Print Network (OSTI)

Selective H-atom line broadening was found to be present throughout the volume (13.5 cm ID x 38 cm length) of RF generated H2O plasmas in a GEC cell. Notably, at low pressures (ca. hot' with energies greater than 40 eV with a pressure dependence, but only a weak power dependence. The degree of broadening was virtually independent of the position studied within the GEC cell, similar to the recent finding for He/H2 and Ar/H2 plasmas in the same GEC cell. In contrast to the atomic hydrogen lines, no broadening was observed in oxygen species lines at low pressures. Also, in control Xe/H2 plasmas run in the same cell at similar pressures and adsorbed power, no significant broadening of atomic hydrogen, Xe, or any other lines was observed. Stark broadening or acceleration of charged species due to high electric fields can not explain the results since (i) the electron density was insufficient by orders of magnitude, (ii) the RF field was essentially confined to the cathode fall region in contrast to the broadening that was independent of position, and (iii) only the atomic hydrogen lines were broadened. Rather, all of the data is consistent with a model that claims specific, predicted, species can act catalytically through a resonant energy transfer mechanism to create hot hydrogen atoms in plasmas.

Jonathan Phillips; Chun Ku Chen; Randell Mills

2004-02-06T23:59:59.000Z

20

Muon transfer from hot muonic hydrogen atoms to neon  

DOE Green Energy (OSTI)

A negative muon beam has been directed on adjacent solid layers of hydrogen and neon. Three targets differing by their deuterium concentration were investigated. Muonic hydrogen atoms can drift to the neon layer where the muon is immediately transferred. The time structure of the muonic neon X-rays follows the exponential law with a disappearance rate corresponding to the one of [mu][sup [minus]p] atoms in each target. The rates [lambda][sub pp[mu

Jacot-Guillarmod, R. (Fribourg Univ. (Switzerland). Inst. de Physique); Bailey, J.M. (Liverpool Univ. (United Kingdom)); Beer, G.A.; Knowles, P.E.; Mason, G.R.; Olin, A. (Victoria Univ., BC (Canada)); Beveridge, J.L.; Marshall, G.M.; Brewer, J.H.; Forster, B.M. (British Columbia Univ., Vancouver, BC (Canada)); Huber, T.M. (Gustavus Adolphus Coll., St. Peter, MN (United States)); Kammel, P.; Zmeskal, J.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hot cell shield plug extraction apparatus  

DOE Patents (OSTI)

An apparatus is provided for moving shielding plugs into and out of holes in concrete shielding walls in hot cells for handling radioactive materials without the use of external moving equipment. The apparatus provides a means whereby a shield plug is extracted from its hole and then swung approximately 90 degrees out of the way so that the hole may be accessed. The apparatus uses hinges to slide the plug in and out and to rotate it out of the way, the hinge apparatus also supporting the weight of the plug in all positions, with the load of the plug being transferred to a vertical wall by means of a bolting arrangement.

Knapp, Philip A. (Moore, ID); Manhart, Larry K. (Pingree, ID)

1995-01-01T23:59:59.000Z

22

Muon transfer from hot muonic hydrogen atoms to neon  

DOE Green Energy (OSTI)

A negative muon beam has been directed on adjacent solid layers of hydrogen and neon. Three targets differing by their deuterium concentration were investigated. Muonic hydrogen atoms can drift to the neon layer where the muon is immediately transferred. The time structure of the muonic neon X-rays follows the exponential law with a disappearance rate corresponding to the one of {mu}{sup {minus}p} atoms in each target. The rates {lambda}{sub pp{mu}} and {lambda}{sub pd} can be extracted.

Jacot-Guillarmod, R. [Fribourg Univ. (Switzerland). Inst. de Physique; Bailey, J.M. [Liverpool Univ. (United Kingdom); Beer, G.A.; Knowles, P.E.; Mason, G.R.; Olin, A. [Victoria Univ., BC (Canada); Beveridge, J.L.; Marshall, G.M.; Brewer, J.H.; Forster, B.M. [British Columbia Univ., Vancouver, BC (Canada); Huber, T.M. [Gustavus Adolphus Coll., St. Peter, MN (United States); Kammel, P.; Zmeskal, J. [Oesterreichische Akademie der Wissenschaften, Vienna (Austria). Inst. fuer Mittelenergiephysik; Kunselman, A.R. [Wyoming Univ., Laramie, WY (United States); Petitjean, C. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

1992-12-31T23:59:59.000Z

23

Hot Cell Window Shielding Analysis Using MCNP  

SciTech Connect

The Idaho National Laboratory Materials and Fuels Complex nuclear facilities are undergoing a documented safety analysis upgrade. In conjunction with the upgrade effort, shielding analysis of the Fuel Conditioning Facility (FCF) hot cell windows has been conducted. This paper describes the shielding analysis methodology. Each 4-ft thick window uses nine glass slabs, an oil film between the slabs, numerous steel plates, and packed lead wool. Operations in the hot cell center on used nuclear fuel (UNF) processing. Prior to the shielding analysis, shield testing with a gamma ray source was conducted, and the windows were found to be very effective gamma shields. Despite these results, because the glass contained significant amounts of lead and little neutron absorbing material, some doubt lingered regarding the effectiveness of the windows in neutron shielding situations, such as during an accidental criticality. MCNP was selected as an analysis tool because it could model complicated geometry, and it could track gamma and neutron radiation. A bounding criticality source was developed based on the composition of the UNF. Additionally, a bounding gamma source was developed based on the fission product content of the UNF. Modeling the windows required field inspections and detailed examination of drawings and material specifications. Consistent with the shield testing results, MCNP results demonstrated that the shielding was very effective with respect to gamma radiation, and in addition, the analysis demonstrated that the shielding was also very effective during an accidental criticality.

Chad L. Pope; Wade W. Scates; J. Todd Taylor

2009-05-01T23:59:59.000Z

24

DECOMMISSIONING OF HOT CELL FACILITIES AT THE BATTELLE COLUMBUS LABORATORIES  

SciTech Connect

Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning activities for nuclear research buildings and grounds at its West Jefferson Facilities by 2006, as mandated by Congress. This effort includes decommissioning several hot cells located in the Hot Cell Laboratory (Building JN-1). JN-1 was originally constructed in 1955, and a hot cell/high bay addition was built in the mid 1970s. For over 30 years, BCL used these hot cell facilities to conduct research for the nuclear power industry and several government agencies, including the U.S. Navy, U.S. Army, U.S. Air Force, and the U.S. Department of Energy. As a result of this research, the JN-1 hot cells became highly contaminated with mixed fission and activation products, as well as fuel residues. In 1998, the Battelle Columbus Laboratories Decommissioning Project (BCLDP) began efforts to decommission JN-1 with the goal of remediating the site to levels of residual contamination allowing future use without radiological restrictions. This goal requires that each hot cell be decommissioned to a state where it can be safely demolished and transported to an off-site disposal facility. To achieve this, the BCLDP uses a four-step process for decommissioning each hot cell: (1) Source Term Removal; (2) Initial (i.e., remote) Decontamination; (3) Utility Removal; and (4) Final (i.e., manual) Decontamination/Stabilization. To date, this process has been successfully utilized on 13 hot cells within JN-1, with one hot cell remaining to be decommissioned. This paper will provide a case study of the hot cell decommissioning being conducted by the BCLDP. Discussed will be the methods used to achieve the goals of each of the hot cell decommissioning stages and the lessons learned that could be applied at other sites where hot cells need to be decommissioned.

Weaver, Patrick; Henderson, Glenn; Erickson, Peter; Garber, David

2003-02-27T23:59:59.000Z

25

Hot Cell Facility (HCF) Safety Analysis Report  

Science Conference Proceedings (OSTI)

This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

2000-11-01T23:59:59.000Z

26

Equipment design guidelines for remote hot cell operations.  

SciTech Connect

Hot cells provide a unique and challenging environment for designing remotely operated equipment. A typical hot cell is an isolated room used to protect operators from highly contaminated and radioactive equipment. Hot cells usually have thick reinforced concrete walk and leaded glass windows. Operations within the hot cell are accomplished using master-slave manipulators and overhead crane or electro-mechanical manipulator systems. The inability to perform hands-on operation and maintenance in hot cells requires special design considerations. Some of these design considerations include operational interfaces, radiation, accessibility, replaceability/interchangeability, decontamination, atmospheric conditions, functionality, operator fatigue, and ease of use. This paper will discuss guidelines for designing hot cell remotely operated equipment that has been used successfully at Argonne National Laboratory. General topics in this paper will include master-slave manipulator types and limitations, overhead handling systems, viewing limitations, types and sizes of typical fasteners, hot cell compatible materials, mockup testing, guide features for mating parts, modularity, labeling, electrical fasteners, and lifting fixtures.

Wahlquist, D. R.

1998-07-10T23:59:59.000Z

27

Evidence of the production of hot hydrogen atoms in RF plasmas by catalytic reactions between hydrogen and oxygen species  

E-Print Network (OSTI)

Selective H atom broadening was found to be present throughout the volume (13.5 cm diameter x 38 cm length) of RF generated H2O plasmas in a GEC cell. Notably, at low pressures (hot' witha energies greater than 40 eV, with a pressure dependence, but only a weak power dependence. The degree of broadening was virtually independent of the position within the GEC cell. In contrast to the atomic hydrogen lines, no broadening was observed in oxygen species lines at low pressure. Also, in 'control' Xe/H2 plasmas run in the saem cell at similar pressures and absorbed power, no significant broadening of atomic hydrogen, Xe or any other lines was observed. Stark broadeing or acceleration of charged species due to high electric fields can not explain the results since (i) the electron density was insufficient by orders or magnitude, (ii) the RF field was essentially confined to the cathode fall region in contrast to the broadening which was fou...

Phillips, J; Mills, R; Phillips, Jonathan; Chen, Chun Ku; Mills, Randell

2004-01-01T23:59:59.000Z

28

Engineering hot-cell windows for radiation protection  

SciTech Connect

Radiation protection considerations in the design and construction of hot-cell windows are discussed. The importance of evaluating the potential gamma spectra and neutron source terms is stressed. 11 references. (ACR)

Ferguson, K.R.; Courtney, J.C.

1983-01-01T23:59:59.000Z

29

MEASUREMENTS THROUGH A HOT CELL WINDOW USING OPTICAL TOOLING  

SciTech Connect

S>Optical tooling has been evaluated for the measurement of physical dimensions of radioactive parts through hot cell windows. Instruments were set up outside of a four foot thick lead glass window and by means of a grid plate which had been accurately scribed, a ''contour map'' or calibration chart of the window variations was recorded. Although the window was not specially selected, the readings were within 1.0% of the true dimension without using correction factors. One of the calibration chart with the window reduced the error to plus or minus 0.1%. The method is considered feasible and sufficiently fast for a wide variety of hot cell measurements. A pin point light source is suggested as a simple check for selective assembly of lead glass laminates during manufacture of hot cell windows to provide control of optical properties. (auth)

Abbatiello, A.A.

1958-07-18T23:59:59.000Z

30

DEMO Hot Cell and Ex-Vessel Remote Handling  

E-Print Network (OSTI)

In Europe the work on the specification and design of a Demonstration Power Plant (DEMO) is being carried out by EFDA in the Power Plant Physics and Technology (PPP&T) programme. DEMO will take fusion from experimental research into showing the potential for commercial power generation. This paper describes the first steps being taken towards the design of the DEMO Hot Cell. It will show a comparison of the current DEMO in-vessel maintenance concepts from a Hot Cell perspective, describe a proposed ex-vessel transport system, and summarize the facilities that have been identified as required within the Hot Cell, examine current RH technology and discuss the identified critical development issues.

Thomas, Justin; Bachmann, Christian; Harman, Jon

2013-01-01T23:59:59.000Z

31

Hot Cell Examination of Oconee-2 Fuel Rods  

Science Conference Proceedings (OSTI)

A comprehensive examination of four unfailed fuel rods was undertaken at the Babcock & Wilcox hot cells in Lynchburg, Virginia, to establish the factors responsible for the failure of "sister" rods at the Oconee-2 reactor during cycle 5 operation. Results indicate that high local oxidation and hydriding of the Zircaloy cladding were important factors.

1991-10-01T23:59:59.000Z

32

Decontamination of the Plum Brook Reactor Facility Hot Cells  

Science Conference Proceedings (OSTI)

The NASA Plum Brook Reactor Facility decommissioning project recently completed a major milestone with the successful decontamination of seven hot cells. The cells included thick concrete walls and leaded glass windows, manipulator arms, inter cell dividing walls, and roof slabs. There was also a significant amount of embedded conduit and piping that had to be cleaned and surveyed. Prior to work starting evaluation studies were performed to determine whether it was more cost effective to do this work using a full up removal approach (rip and ship) or to decontaminate the cells to below required clean up levels, leaving the bulk of the material in place. This paper looks at that decision process, how it was implemented, and the results of that effort including the huge volume of material that can now be used as fill during site restoration rather than being disposed of as LLRW. (authors)

Peecook, K.M. [NASA Glenn Research Center, Plum Brook Station, Sandusky, OH (United States)

2008-07-01T23:59:59.000Z

33

RadBall Technology For Hot Cell Characterization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tech Fact Sheet Savannah River National Laboratory South Carolina RadBall Technology For Hot Cell Characterization Challenge Operations at various DOE sites have resulted in substantial radiological contamination of tools, equipment, and facilities. A critical step in planning and implementing Deactivation and Decommissioning (D&D) of contaminated facilities involves the development of an accurate assessment of the radiological, chemical, and structural conditions inside the facilities. The use of remote technologies to gather this information is imperative to keep worker exposures as-low-as reasonably achievable (ALARA) in these highly contaminated environments, which are usually associated with extremely high radiological dose rates. Quantitative characterization data

34

Hot Cell Examination of Hatch 1 and 2 Fuel Rods  

Science Conference Proceedings (OSTI)

Two sound GE13 fuel rods were examined in the GE Hitachi Vallecitos Nuclear Center hot cells. The rodsone each from the Hatch 1 and Hatch 2 reactorswere retrieved to characterize their performance over three cycles relative to the presence of thick tenacious crud and a common cladding material lot that experienced corrosion-related failures in Browns Ferry 2, which is documented in EPRI report 1013421. The rods were retrieved along with five other rods associated with the Hatch 1 Cycle 21 duty-related fa...

2009-06-30T23:59:59.000Z

35

Hot Cell Examination of Weapons-Grade MOX Fuel  

SciTech Connect

The U.S. Department of Energy has decided to dispose of a portion of the nation s surplus weapons-grade plutonium by reconstituting it into mixed oxide (MOX) fuel and irradiating it in commercial power reactors. Four lead assemblies were manufactured with weapons-grade MOX and irradiated to a maximum fuel rod burnup of 47.3 MWd/kg. As part of the fuel qualification process, five fuel rods with varying burnups and plutonium contents were selected from one of the assemblies and shipped to Oak Ridge National Laboratory for hot cell examination. This is the first hot cell examination of weapons-grade MOX fuel. The rods have been examined nondestructively with the ADEPT apparatus and are currently being destructively examined. Examinations completed to date include length measurements, visual examination, gamma scanning, profilometry, eddy-current testing, gas measurement and analysis, and optical metallography. Representative results of these examinations are reviewed and found to be consistent with predictions and with prior experience with reactor-grade MOX fuel. The results will be used to support licensing of weapons-grade MOX for batch use in commercial power reactors.

Morris, Robert Noel [ORNL; Bevard, Bruce Balkcom [ORNL; McCoy, Kevin [Areva NP

2010-01-01T23:59:59.000Z

36

Standard guide for general design considerations for hot cell equipment  

E-Print Network (OSTI)

1.1 Intent: 1.1.1 The intent of this guide is to provide general design and operating considerations for the safe and dependable operation of remotely operated hot cell equipment. Hot cell equipment is hardware used to handle, process, or analyze nuclear or radioactive material in a shielded room. The equipment is placed behind radiation shield walls and cannot be directly accessed by the operators or by maintenance personnel because of the radiation exposure hazards. Therefore, the equipment is operated remotely, either with or without the aid of viewing. 1.1.2 This guide may apply to equipment in other radioactive remotely operated facilities such as suited entry repair areas, canyons or caves, but does not apply to equipment used in commercial power reactors. 1.1.3 This guide does not apply to equipment used in gloveboxes. 1.2 Applicability: 1.2.1 This guide is intended for persons who are tasked with the planning, design, procurement, fabrication, installation, or testing of equipment used in rem...

American Society for Testing and Materials. Philadelphia

2008-01-01T23:59:59.000Z

37

Standard guide for hot cell specialized support equipment and tools  

E-Print Network (OSTI)

1.1 Intent: 1.1.1 This guide presents practices and guidelines for the design and implementation of equipment and tools to assist assembly, disassembly, alignment, fastening, maintenance, or general handling of equipment in a hot cell. Operating in a remote hot cell environment significantly increases the difficulty and time required to perform a task compared to completing a similar task directly by hand. Successful specialized support equipment and tools minimize the required effort, reduce risks, and increase operating efficiencies. 1.2 Applicability: 1.2.1 This guide may apply to the design of specialized support equipment and tools anywhere it is remotely operated, maintained, and viewed through shielding windows or by other remote viewing systems. 1.2.2 Consideration should be given to the need for specialized support equipment and tools early in the design process. 1.2.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conv...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

38

Review of the Argonne National Laboratory Alpha-Gamma Hot Cell...  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne National Laboratory Alpha-Gamma Hot Cell Facility Readiness Assessment (Implementation Verification Review Sections) May 2011 November 2011 Office of Safety and Emergency...

39

Technical safety requirements for the Auxiliary Hot Cell Facility (AHCF).  

Science Conference Proceedings (OSTI)

These Technical Safety Requirements (TSRs) identify the operational conditions, boundaries, and administrative controls for the safe operation of the Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, in compliance with 10 CFR 830, 'Nuclear Safety Management.' The bases for the TSRs are established in the AHCF Documented Safety Analysis (DSA), which was issued in compliance with 10 CFR 830, Subpart B, 'Safety Basis Requirements.' The AHCF Limiting Conditions of Operation (LCOs) apply only to the ventilation system, the high efficiency particulate air (HEPA) filters, and the inventory. Surveillance Requirements (SRs) apply to the ventilation system, HEPA filters, and associated monitoring equipment; to certain passive design features; and to the inventory. No Safety Limits are necessary, because the AHCF is a Hazard Category 3 nuclear facility.

Seylar, Roland F.

2004-02-01T23:59:59.000Z

40

Remote System Technologies for Deactivating Hanford Hot Cells  

Science Conference Proceedings (OSTI)

Remote system technologies are being deployed by Fluor Hanford to help accelerate the deactivation of highly-radioactive hot cell facilities. These technologies offer improved methods for accessing difficult-to-reach spaces and performing tasks such as visual inspection, radiological characterization, decontamination, waste handling, and size reduction. This paper is focused on the application of remote systems in support of deactivation work being performed in several legacy facilities at Hanford (i.e., the 324 and 327 Buildings). These facilities were previously used for fuel fabrication, materials examination, and the development of waste treatment processes. The technologies described in this paper represent significant improvements to Hanford's baseline methods, and may offer benefits to other U.S. Department of Energy (DOE) sites and commercial operations.

Berlin, G.; Walton, T.

2003-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Public comment sought on hot cell removal project at the Idaho Site�s  

NLE Websites -- All DOE Office Websites (Extended Search)

Public comment sought on hot cell removal project at the Idaho Site�s Advanced Test Reactor Complex Public comment sought on hot cell removal project at the Idaho Site�s Advanced Test Reactor Complex The U.S. Department of Energy (DOE) is seeking public comment on a project to remove three unused hot cells and the 1950s era laboratory building that contains them at the Idaho Site�s Advanced Test Reactor complex. An Engineering Evaluation/Cost Analysis (EE/CA) document with three proposed alternatives for the final end state of the building and hot cells is under evaluation by DOE, the U.S. Environmental Protection Agency, and Idaho�s Department of Environmental Quality. The TRA-632 building and the hot cells were built in 1952 for assembly, disassembly and examination of nuclear test reactor components. The 13,000 sq. foot building contains three shielded hot cells with lathes, power saws, grinders, and other remote handling equipment. In addition to the examination of test reactor components, the hot cells have been used during the production of radioisotopes for medical use like cobalt-60 and iridium-192. The last active work in the hot cells took place in 2004, and the aging facility was placed on standby in 2006.

42

Model for Thermal Behavior of Shaded Photovoltaic Cells under Hot-Spot Condition  

Science Conference Proceedings (OSTI)

We address the problem of modeling the thermal behavior of photovoltaic (PV) cells that, due to their being exposed to shading, may experience a dramatic temperature increase (a phenomenon referred to as hot-spot) with consequent reduction of the provided ... Keywords: solar cell, hot-spot heating, energy efficiency, reliability

Daniele Giaffreda; Martin Omana; Daniele Rossi; Cecilia Metra

2011-10-01T23:59:59.000Z

43

Detection of hot muonic hydrogen atoms emitted in vacuum using x-rays  

DOE Green Energy (OSTI)

Negative muons are stopped in solid layers of hydrogen and neon. Muonic hydrogen atoms can drift to the neon layer where the muon is immediately transferred. It was found that the time structure of the muonic neon X-rays follows the exponential law where the rate is the same as the disappearance rate of {mu}{sup -}p atoms. The pp{mu}-formation rate and the muon transfer rate to deuterium are deduced.

Jacot-Guillarmod, R. [Fribourg Univ. (Switzerland); Bailey, J.M. [Liverpool Univ. (United Kingdom); Beer, G.A.; Knowles, P.E.; Mason, G.R.; Olin, A. [Victoria Univ., BC (Canada); Beveridge, J.L.; Marshall, G.M. [TRIUMF, Vancouver, BC (Canada); Brewer, J.H.; Forster, B.M. [British Columbia Univ., Vancouver, BC (Canada); Huber, T.M. [Gustavus Adolphus Coll., St. Peter, MN (United States); Kammel, P.; Zmeskal, J. [Oesterreichische Akademie der Wissenschaften, Vienna (Austria). Inst. fuer Mittelenergiephysik; Kunselman, A.R. [Wyoming Univ., Laramie, WY (United States); Petitjean, C. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

1992-12-31T23:59:59.000Z

44

Detection of hot muonic hydrogen atoms emitted in vacuum using x-rays  

DOE Green Energy (OSTI)

Negative muons are stopped in solid layers of hydrogen and neon. Muonic hydrogen atoms can drift to the neon layer where the muon is immediately transferred. It was found that the time structure of the muonic neon X-rays follows the exponential law where the rate is the same as the disappearance rate of [mu][sup -]p atoms. The pp[mu]-formation rate and the muon transfer rate to deuterium are deduced.

Jacot-Guillarmod, R. (Fribourg Univ. (Switzerland)); Bailey, J.M. (Liverpool Univ. (United Kingdom)); Beer, G.A.; Knowles, P.E.; Mason, G.R.; Olin, A. (Victoria Univ., BC (Canada)); Beveridge, J.L.; Marshall, G.M. (TRIUMF, Vancouver, BC (Canada)); Brewer, J.H.; Forster, B.M. (British Columbia Univ., Vancouver, BC (Canada)); Huber, T.M. (Gustavus Adolphus Coll., St. Peter, MN (United States)); Kammel, P

1992-01-01T23:59:59.000Z

45

Hot cell examination of Oconee-2 fuel rods  

SciTech Connect

Four non-failed fuel rods from Duke Power Company's Oconee-2 reactor were examined in the B W hot cells. The purpose of the program was to determine the cause(s) of failure in sister'' rods located adjacent to the assembly instrumentation tube, but which were thought to be too badly damaged to provide useful information. The rods had operated at relatively high power levels during their first cycle, which appeared to be a contributing factor to the failures. Non-destructive examinations included visual and eddy-current examinations, gamma-scanning and rod growth measurements. Following rod puncture and plenum gas analysis, several rod sections were destructively examined using visual techniques, metallography and scanning electron microscopy. The major findings from the examination were regions of greater than expected cladding OD oxidation and hydriding in regions with highest cladding temperature. Highly localized oxidation was found nearest the fuel assembly central instrument tube. The extensive hydriding was associated with fuel column gaps which acted as low-temperature sinks for hydrogen diffusion. Based on the findings in the sound rods, two failure mechanisms were identified that could have resulted in cladding failure. These were rapid through-wall oxidation or massive hydriding due to local temperature troughs that acted to concentrate hydrogen generated by rapid corrosion. 2 refs., 3 figs., 5 tabs.

Beauregard, R.J.; Mayer, J.T.; Pyecha, T.D.; Papazoglou, T.P.

1991-09-01T23:59:59.000Z

46

Solid oxide fuel cell systems with hot zones having improved reactant distribution  

Science Conference Proceedings (OSTI)

A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.

2012-11-06T23:59:59.000Z

47

Solid oxide fuel cell systems with hot zones having improved reactant distribution  

Science Conference Proceedings (OSTI)

A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

Poshusta, Joseph C; Booten, Charles W; Martin, Jerry L

2013-12-24T23:59:59.000Z

48

Retrieval and Repackaging of RH-TRU Waste - General Presentation Modular Hot Cell Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paul Murray Paul Murray Oak Ridge, TN July 29, 2009 Retrieval and Repackaging of RH-TRU Waste- GENERAL PRESENTATION MODULAR HOT CELL TECHNOLOGY AREVA FEDERAL SERVICES - OAK RIDGE, TN - GENERAL PRESENTATION OF MODULAR HOT CELL TECHNOLOGY - July 29, 2009 ADAPTING AREVA'S TECHNOLOGY AREVA Worldwide Nuclear Lifecycle Transmission & Distribution Renewable Energy AREVA US Nuclear Fuel Services Nuclear Engineering Services AREVA Federal Services, LLC. (AFS) Federal Services Major Projects * MOX-MFFF * Yucca Mountain Project * DUF6 * Plateau Remediation Contract * Washington River Closure Project * SRS Liquid Waste AREVA FEDERAL SERVICES - OAK RIDGE, TN - GENERAL PRESENTATION OF MODULAR HOT CELL TECHNOLOGY - July 29, 2009 ADAPTING AREVA'S TECHNOLOGY AFS Technology Provider

49

Post-irradiation-examination of irradiated fuel outside the hot cell  

Science Conference Proceedings (OSTI)

Because of their high radioactivity, irradiated fuels are commonly examined in a hot cell. However, the Idaho National Laboratory (INL) has recently investigated irradiated U-Mo-Al metallic fuel from the Reduced Enrichment for Research and Test Reactors (RERTR) project using a conventional unshielded scanning electron microscope outside a hot cell. This examination was possible because of a two-step sample-preparation approach in which a small volume of fuel was isolated in a hot cell and shielding was introduced during later stages of sample preparation. The resulting sample contained numerous sample-preparation artifacts but allowed analysis of microstructures from selected areas.

Dawn E. Janney; Adam B. Robinson; Thomas P. O'Holleran; R. Paul Lind; Marc Babcock; Laurence C. Brower; Julie Jacobs; Pamela K. Hoggan

2007-09-01T23:59:59.000Z

50

Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crews Overcome Challenges to Safely Dispose 1-Million-Pound Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell American Recovery and Reinvestment Act cleanup crews at the Idaho site recently disposed of a hot cell as heavy as nine fully loaded Boeing 737s. Unlike the aircrafts, the 1-million-pound concrete structure moved about two miles per hour on a trailer with 224 tires towed by a semi-truck. Workers safely transported the cell from the Advanced Test Reactor Complex (ATR-C) to an onsite landfill two miles away. Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell More Documents & Publications 2011 ARRA Newsletters CX-001627: Categorical Exclusion Determination Occupational Safety Performance Trends

51

Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crews Overcome Challenges to Safely Dispose 1-Million-Pound Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell American Recovery and Reinvestment Act cleanup crews at the Idaho site recently disposed of a hot cell as heavy as nine fully loaded Boeing 737s. Unlike the aircrafts, the 1-million-pound concrete structure moved about two miles per hour on a trailer with 224 tires towed by a semi-truck. Workers safely transported the cell from the Advanced Test Reactor Complex (ATR-C) to an onsite landfill two miles away. Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell More Documents & Publications 2011 ARRA Newsletters CX-002327: Categorical Exclusion Determination CX-001627: Categorical Exclusion Determination

52

Compact Liquid Waste Evaporator for Cleanup on Hanfords Hot Cells [FULL PAPER  

SciTech Connect

Removal of radionuclide and hazardous contaminants from hot cells in Hanford's 324 Building will produce an aqueous waste stream requiring volume reduction and packaging. This paper describes a compact and remotely-operated evaporator system that was designed for use in the 324 Building's B-Cell (a shielded hot cell) to volume-reduce the waste waters that are generated from pressure washing of hot cell ceiling, wall, and floor surfaces. The evaporator incorporates an electric-heated reboiler to provide evaporation and drying to allow disposal of waste material. Design features of the evaporator system were strongly influenced by the need for remote handling and remote maintenance. Purified water vapor from the evaporation process will be released directly to the hot cell ventilation air.

HOBART, R.L.

2003-11-14T23:59:59.000Z

53

Remote System Technologies for Deactivating Hanford Hot Cells (for WM'03 - abstract included)  

Science Conference Proceedings (OSTI)

Remote system technologies are being deployed by Fluor Hanford to help accelerate the deactivation of highly-radioactive hot cell facilities. This paper highlights the application of several remotely deployed technologies enabling the deactivation tasks.

BERLIN, G.T.

2003-01-28T23:59:59.000Z

54

DQO Summary Report for 324 and 327 Building Hot Cells D4 Project Waste Characterization  

SciTech Connect

This data quality objective (DQO) summary report provides the results of the DQO process conducted for waste characterization activities for the 324 and 327 Building hot cells decommission, deactivate, decontaminate, and demolish activities. This DQO summary report addresses the systems and processes related to the hot cells, air locks, vaults, tanks, piping, basins, air plenums, air ducts, filters, an adjacent elements that have high dose rates, high contamination levels, and/or suspect transuranic waste, which will require nonstandard D4 techniques.

T.A. Lee

2006-02-06T23:59:59.000Z

55

Evaluation of Alternatives for Hanford 327 Building Hot Cell Removal and Transport  

SciTech Connect

The Department of Energy (DOE) Hanford site 327 Building, built in 1953, played a key role in reactor material and fuel research programs. The facility includes nine shielded hot cells, a fuel storage basin, dry sample storage, and a large inerted hot (SERF) cell. In 1996, the 327 Building was transferred from Pacific Northwest National Laboratory (PNNL) to Fluor Hanford, Inc., to begin the transition from the mission of irradiated fuel examination to stabilization and deactivation. In 2001, a multi-contractor team conducted a review of the concept of intact (one piece) removal, packaging, and disposal of the 327 hot cells. This paper focuses on challenges related to preparing the 327 Building hot cells for intact one-piece disposal as Low Level Waste (LLW) at the Hanford Site. These challenges, described in this paper, are threefold and include: Sampling and characterization of the cells for low level waste designation; Packaging of the cells for transportation and waste disposal; Transportation from the facility to the disposal site. The primary technical challenges in one-piece removal, packaging, and disposal of the hot cells involve the techniques required to characterize, remove, handle, package and transport a large (approximately up to 12-feet long and 8-feet high) contaminated object that weighs 35 to 160 tons. Specific characterization results associated with two hot cells, G and H cells will be reported. A review of the activities and plans to stabilize and deactivate the 327 Building provides insight into the technical challenges faced by this project and identifies a potential opportunity to modify the baseline strategy by removing the hot cells in one piece instead of decontaminating and dismantling the cells.

Stevens, Ray W.; Jasen, William G.

2003-02-27T23:59:59.000Z

56

Single-cell atomic quantum memory for light  

E-Print Network (OSTI)

Recent experiments demonstrating atomic quantum memory for light [B. Julsgaard et al., Nature 432, 482 (2004)] involve two macroscopic samples of atoms, each with opposite spin polarization. It is shown here that a single atomic cell is enough for the memory function if the atoms are optically pumped with suitable linearly polarized light, and quadratic Zeeman shift and/or ac Stark shift are used to manipulate rotations of the quadratures. This should enhance the performance of our quantum memory devices since less resources are needed and losses of light in crossing different media boundaries are avoided.

Tomas Opatrny

2005-09-14T23:59:59.000Z

57

A Distributed Load Balancing Algorithm for the Hot Cell Problem in Cellular Mobile Networks  

E-Print Network (OSTI)

We propose a novel distributed load balancing algorithm (D-LBSB) for the hot cell problem in cellular mobile networks. As an underlying approach, we start with a fixed channel assignment scheme where each cell is initially allocated a set of C (local) channels, each to be assigned on demand to a user in the cell. A cell is classified as `hot', if the degree of coldness of a cell (defined as the ratio of the number of available channels to the total number of channels for that cell) is less than or equal to some threshold value, h. Otherwise the cell is `cold'. D-LBSB proposes to migrate unused channels from suitable cold cells to the hot ones through a distributed channel borrowing algorithm. A Markov model for an individual cell is developed, where the state is determined by the number of occupied channels in the cell. The probability of a cell being hot and the call blocking probability in a cell are derived. Detailed simulation experiments are carried out in order to evaluate our pr...

Sajal K. Das; Sanjoy K. Sen; Rajeev Jayaram

1997-01-01T23:59:59.000Z

58

DOE - Office of Legacy Management -- Gen_Atomics  

Office of Legacy Management (LM)

General Atomics Hot Cell Facility, California, Site General Atomics Hot Cell Facility, California, Site This Site All Sites All LM Quick Search Key Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents General Atomics Hot Cell Facility, California, Site Fact Sheet Please be green. Do not print these documents unless absolutely necessary. Request a paper copy of any document by submitting a Document Request. All Site Documents All documents are Adobe Acrobat files. pdf_icon Fact Sheet Environmental Assessment Other Documents Fact Sheet General Atomics Hot Cell Facility, California, Site Fact Sheet December 12, 2011 Environmental Assessment Final Environmental Assessment for Decontaminating and Decommissioning the General Atomics Hot Cell Facility DOE/EA-1053 August 1995 Other Documents

59

Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico  

Science Conference Proceedings (OSTI)

The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

1999-12-01T23:59:59.000Z

60

Operational Awareness Tour of Building 3525 Irradiated Fuels Examination Hot Cell Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

OR-2011-10-21 OR-2011-10-21 Site: Oak Ridge Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Operational Awareness Tour of Building 3525 Irradiated Fuels Examination Hot Cell Laboratory Dates of Activity : 10/21/2011 Report Preparer: Tim Mengers Activity Description/Purpose: The purpose of the visit was for the Office of Health, Safety and Security (HSS) site lead to develop an operational awareness of the Building 3525 Irradiated Fuels Examination Hot Cell Laboratory. Result: The HSS site lead toured the Building 3525 Irradiated Fuels Facility with two Facility Representatives from the Office of Science. During the tour he was provided an explanation of the processes currently used in each of the hot cells and how the

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Operational Awareness Tour of Building 3525 Irradiated Fuels Examination Hot Cell Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OR-2011-10-21 OR-2011-10-21 Site: Oak Ridge Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Operational Awareness Tour of Building 3525 Irradiated Fuels Examination Hot Cell Laboratory Dates of Activity : 10/21/2011 Report Preparer: Tim Mengers Activity Description/Purpose: The purpose of the visit was for the Office of Health, Safety and Security (HSS) site lead to develop an operational awareness of the Building 3525 Irradiated Fuels Examination Hot Cell Laboratory. Result: The HSS site lead toured the Building 3525 Irradiated Fuels Facility with two Facility Representatives from the Office of Science. During the tour he was provided an explanation of the processes currently used in each of the hot cells and how the

62

Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Depar Depar tment of Energy | Office of Environmental Management For More Information on EM Recovery Act Work, Visit Us on the Web: http://www.em.doe.gov/emrecovery/ EM Recovery NEWS FLASH RECOVERY.GOV ENVIRONMENTAL MANAGEMENT OFFICE OF ENVIRONMENTAL MANAGEMENT OFFICE OF ENVIRONMENTAL MANAGEMENT OFFICE OF November 9, 2011 Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell IDAHO FALLS, Idaho - American Recovery and Reinvestment Act cleanup crews at the Idaho site recently disposed of a hot cell as heavy as nine fully loaded Boeing 737s. Unlike the aircrafts, the 1-million-pound concrete structure moved

63

general_atomics.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

former former General Atomics Hot Cell Facility was constructed in 1959 and operated until 1991. The site encompassed approximately 7,400 square feet of laboratory and remote operations cells. Licensed operations at the facility included receipt, handling, and shipment of radioactive materials; remote handling, examination, and storage of previously irradiated nuclear fuel materials; pilot-scale tritium extraction operations; and development, fabrication, and inspection of uranium oxide-beryllium oxide fuel materials. General Atomics performed most of the work for the federal government. The General Atomics Hot Cell Facility was located in a 60-acre complex 13 miles northwest of downtown San Diego, 1 mile inland from the Pacific Ocean, and approximately 300 feet above sea level. The General Atomics site is in the center of Torrey Mesa Science Center, a 304-acre industrial

64

All-Hot-Wire Chemical Vapor Deposition a-Si:H Solar Cells  

DOE Green Energy (OSTI)

Efficient hydrogenated amorphous silicon (a-Si:H) nip solar cells have been fabricated with all doped and undoped a-Si:H layers deposited by hot-wire chemical vapor deposition (HWCVD). The total deposition time of all layers, except the top ITO-contact, is less than 4 minutes.

Iwaniczko, E.; Wang, Q.; Xu, Y.; Nelson, B. P.; Mahan, A. H.; Crandall, R. S.; Branz, H. M.

2000-01-01T23:59:59.000Z

65

Image Storage in Hot Vapors  

E-Print Network (OSTI)

We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

Zhao, L; Xiao, Y; Yelin, S F

2007-01-01T23:59:59.000Z

66

Image Storage in Hot Vapors  

E-Print Network (OSTI)

We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

L. Zhao; T. Wang; Y. Xiao; S. F. Yelin

2007-10-22T23:59:59.000Z

67

atomic  

NLE Websites -- All DOE Office Websites (Extended Search)

theory and fundamental quantum mechanics In addition to research on hadronic and nuclear physics, we also conduct research in atomic physics, neutron physics, and quantum...

68

general_atomics.cdr  

Office of Legacy Management (LM)

former General former General Atomics Hot Cell Facility was constructed in 1959 and operated until 1991. The site encompassed approximately 7,400 square feet of laboratory and remote operations cells. Licensed operations at the facility included receipt, handling, and shipment of radioactive materials; remote handling, examination, and storage of previously irradiated nuclear fuel materials; pilot-scale tritium extraction operations; and development, fabrication, and inspection of uranium oxide-beryllium oxide fuel materials. General Atomics performed most of the work for the federal government. The General Atomics Hot Cell Facility was located in a 60-acre complex 13 miles northwest of downtown San Diego, 1 mile inland from the Pacific Ocean, and approximately 300 feet above sea level.

69

Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility, July 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ANL-2012-07-20 ANL-2012-07-20 Site: Argonne National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations (HS-45) Activity Report for Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Dates of Activity : 07/17/2012 - 07/20/2012 Report Preparer: Joseph P. Drago Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was to shadow the Argonne Site Office (ASO) Facility Representative (FR) performing a review of the technical safety requirements (TSRs) for the Alpha-Gamma Hot Cell Facility (AGHCF), a hazard category 2 nuclear facility. The ASO review evaluated the flow down of the TSRs into the facility documentation of surveillance procedures, datasheets, and the performance of the surveillance.

70

Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility, July 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

ANL-2012-07-20 ANL-2012-07-20 Site: Argonne National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations (HS-45) Activity Report for Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Dates of Activity : 07/17/2012 - 07/20/2012 Report Preparer: Joseph P. Drago Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was to shadow the Argonne Site Office (ASO) Facility Representative (FR) performing a review of the technical safety requirements (TSRs) for the Alpha-Gamma Hot Cell Facility (AGHCF), a hazard category 2 nuclear facility. The ASO review evaluated the flow down of the TSRs into the facility documentation of surveillance procedures, datasheets, and the performance of the surveillance.

71

D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demonstration Demonstration D&D Toolbox - FIU Tech Demo FIU Technology Demonstration - Selected technology platform(s) was demonstrated at the hot cell mockup facility at the FIU's Applied Research Center tech demo site in Miami, FL. Page 1 of 2 Oak Ridge National Laboratory Tennessee Florida New York D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms Challenge Many facilities slated for D&D across the DOE complex pose hazards (radiological, chemical, and structural) which prevent the use of traditional manual techniques. Efficient and safe D&D of the facilities will require the use of remotely operated technologies. In addition, the D&D of a hot cell facility requires that each of the hot cells be

72

Epitaxial Thin Film Silicon Solar Cells Fabricated by Hot Wire Chemical Vapor Deposition Below 750 ..deg..C: Preprint  

Science Conference Proceedings (OSTI)

We report on fabricating film c-Si solar cells on Si wafer templates by hot-wire chemical vapor deposition. These devices, grown at glass-compatible temperatures 500 mV and efficiencies > 5%.

Alberi, K.; Martin, I. T.; Shub, M.; Teplin, C. W.; Iwaniczko, E.; Xu, Y.; duda, A.; Stradin, P.; Johnston, S. W.; Romero, M. J.; Branz, H. M.; Young, D. L.

2009-06-01T23:59:59.000Z

73

Hot-Wire Deposition of Hydrogenated Nanocrystalline SiGe Films for Thin-Film Si Based Solar Cells  

E-Print Network (OSTI)

Hot-Wire Deposition of Hydrogenated Nanocrystalline SiGe Films for Thin-Film Si Based Solar Cells bandgap absorber in an a-Si/a-SiGe/nc-SiGe(nc- Si) triple-junction solar cell due to its higher optical investigations of nc-SiGe:H thin films made by hot-wire chemical vapor deposition (HWCVD) with a coil

Deng, Xunming

74

ATOM-ECONOMICAL PATHWAYS TO METHANOL FUEL CELL FROM BIOMASS  

DOE Green Energy (OSTI)

An economical production of alcohol fuels from biomass, a feedstock low in carbon and high in water content, is of interest. At Brookhaven National Laboratory (BNL), a Liquid Phase Low Temperature (LPLT) concept is under development to improve the economics by maximizing the conversion of energy carrier atoms (C,H) into energy liquids (fuel). So far, the LPLT concept has been successfully applied to obtain highly efficient methanol synthesis. This synthesis was achieved with specifically designed soluble catalysts, at temperatures < 150 C. A subsequent study at BNL yielded a water-gas-shift (WGS) catalyst for the production of hydrogen from a feedstock of carbon monoxide and H{sub 2}O at temperatures < 120 C. With these LPLT technologies as a background, this paper extends the discussion of the LPLT concept to include methanol decomposition into 3 moles of H{sub 2} per mole of methanol. The implication of these technologies for the atom-economical pathways to methanol fuel cell from biomass is discussed.

MAHAJAN,D.; WEGRZYN,J.E.

1999-03-01T23:59:59.000Z

75

Proposal for the award of a contract for the design, supply, installation, commissioning and maintenance of an alpha-gamma lead hot cell for the ISOLDE facility  

E-Print Network (OSTI)

Proposal for the award of a contract for the design, supply, installation, commissioning and maintenance of an alpha-gamma lead hot cell for the ISOLDE facility

2012-01-01T23:59:59.000Z

76

Crystal Silicon Heterojunction Solar Cells by Hot-Wire CVD: Preprint  

DOE Green Energy (OSTI)

Hot-wire chemical vapor deposition (HWCVD) is a promising technique for fabricating Silicon heterojunction (SHJ) solar cells. In this paper we describe our efforts to increase the open circuit voltage (Voc) while improving the efficiency of these devices. On p-type c-Si float-zone wafers, we used a double heterojunction structure with an amorphous n/i contact to the top surface and an i/p contact to the back surface to obtain an open circuit voltage (Voc) of 679 mV in a 0.9 cm2 cell with an independently confirmed efficiency of 19.1%. This is the best reported performance for a cell of this configuration. We also made progress on p-type CZ wafers and achieved 18.7% independently confirmed efficiency with little degradation under prolong illumination. Our best Voc for a p-type SHJ cell is 0.688 V, which is close to the 691 mV we achieved for SHJ cells on n type c-Si wafers.

Wang, Q.; Page, M. R.; Iwaniczko, E.; Xu, Y. Q.; Roybal, L.; Bauer, R.; To, B.; Yuan, H. C.; Duda, A.; Yan, Y. F.

2008-05-01T23:59:59.000Z

77

Evaluation of a Mobile Hot Cell Technology for Processing Idaho National Laboratory Remote-Handled Wastes  

SciTech Connect

The Idaho National Laboratory (INL) currently does not have the necessary capabilities to process all remote-handled wastes resulting from the Laboratorys nuclear-related missions. Over the years, various U.S. Department of Energy (DOE)-sponsored programs undertaken at the INL have produced radioactive wastes and other materials that are categorized as remote-handled (contact radiological dose rate > 200 mR/hr). These materials include Spent Nuclear Fuel (SNF), transuranic (TRU) waste, waste requiring geological disposal, low-level waste (LLW), mixed waste (both radioactive and hazardous per the Resource Conservation and Recovery Act [RCRA]), and activated and/or radioactively-contaminated reactor components. The waste consists primarily of uranium, plutonium, other TRU isotopes, and shorter-lived isotopes such as cesium and cobalt with radiological dose rates up to 20,000 R/hr. The hazardous constituents in the waste consist primarily of reactive metals (i.e., sodium and sodium-potassium alloy [NaK]), which are reactive and ignitable per RCRA, making the waste difficult to handle and treat. A smaller portion of the waste is contaminated with other hazardous components (i.e., RCRA toxicity characteristic metals). Several analyses of alternatives to provide the required remote-handling and treatment capability to manage INLs remote-handled waste have been conducted over the years and have included various options ranging from modification of existing hot cells to construction of new hot cells. Previous analyses have identified a mobile processing unit as an alternative for providing the required remote-handled waste processing capability; however, it was summarily dismissed as being a potentially viable alternative based on limitations of a specific design considered. In 2008 INL solicited expressions of interest from Vendors who could provide existing, demonstrated technology that could be applied to the retrieval, sorting, treatment (as required), and repackaging of INL remote-handled wastes. Based on review of the responses and the potential viability of a mobile hot cell technology, INL subsequently conducted a technology evaluation, including proof-of-process validation, to assess the feasibility of utilizing such a technology for processing INLs remote-handled wastes to meet established regulatory milestones. The technology evaluation focused on specific application of a mobile hot cell technology to the conditions to be encountered at the INL and addressed details of previous technology deployment, required modifications to accommodate INLs remote-handled waste, ability to meet DOE safety requirements, requirements for fabrication/construction/decontamination and dismantling, and risks and uncertainties associated with application of the technology to INLs remote-handled waste. The large capital costs associated with establishing a fixed asset to process INLs remote-handled waste, the relatively small total volume of waste to be processed when compared to other waste streams through the complex, and competing mission-related needs has made it extremely difficult to secure the necessary support to advance the project. Because of this constraint, alternative contract structures were also explored as part of the technology evaluation wherein the impact of a large capital investment could be lessened.

B.J. Orchard; L.A. Harvego; R.P. Miklos; F. Yapuncich; L. Care

2009-03-01T23:59:59.000Z

78

Remote real time x-ray examination of fuel elements in a hot cell environment  

Science Conference Proceedings (OSTI)

This report discusses the Remote Real Time X-ray System which will allow for detailed examination of fuel elements. This task will be accomplished in a highly radioactive hot cell environment. Two remote handling systems win be utilized at the examination station. One handling system will transfer the fuel element to and from the shielded x-ray system. A second handling system will allow for vertical and rotational inspection of the fuel elements. The process win include removing a single nuclear fuel element from a element fabrication magazine(EFM), positioning the fuel element within the shielding envelope of the x-ray system and transferring the fuel element from the station manipulator to the x-ray system manipulator, performing the x-ray inspection, and then transferring the fuel element to either the element storage magazine(ESM) or a reject bin.

Yapuncich, F.L.

1993-01-01T23:59:59.000Z

79

Remote real time x-ray examination of fuel elements in a hot cell environment  

SciTech Connect

This report discusses the Remote Real Time X-ray System which will allow for detailed examination of fuel elements. This task will be accomplished in a highly radioactive hot cell environment. Two remote handling systems win be utilized at the examination station. One handling system will transfer the fuel element to and from the shielded x-ray system. A second handling system will allow for vertical and rotational inspection of the fuel elements. The process win include removing a single nuclear fuel element from a element fabrication magazine(EFM), positioning the fuel element within the shielding envelope of the x-ray system and transferring the fuel element from the station manipulator to the x-ray system manipulator, performing the x-ray inspection, and then transferring the fuel element to either the element storage magazine(ESM) or a reject bin.

Yapuncich, F.L.

1993-03-01T23:59:59.000Z

80

Epitaxial Thin Film Silicon Solar Cells Fabricated by Hot Wire Chemical Vapor Deposition Below 750 ..deg..C: Preprint  

SciTech Connect

We report on fabricating film c-Si solar cells on Si wafer templates by hot-wire chemical vapor deposition. These devices, grown at glass-compatible temperatures < 750..deg..C, demonstrate open-circuit voltages > 500 mV and efficiencies > 5%.

Alberi, K.; Martin, I. T.; Shub, M.; Teplin, C. W.; Iwaniczko, E.; Xu, Y.; duda, A.; Stradin, P.; Johnston, S. W.; Romero, M. J.; Branz, H. M.; Young, D. L.

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Materials Reliability Program: Hot Cell Testing of Baffle/Former Bolts Removed from Two Lead PWR Plants  

Science Conference Proceedings (OSTI)

Irradiation-assisted stress corrosion cracking (IASCC) has been observed in core shroud baffle former bolts in pressurized water reactor (PWR) internals. This report describes hot cell testing results for bolts removed from one Westinghouse three-loop nuclear power plant, Farley Unit 1, and one two-loop plant, Point Beach Unit 2.

2001-11-05T23:59:59.000Z

82

Standard guide for mechanical drive systems for remote operation in hot cell facilities  

E-Print Network (OSTI)

1.1 Intent: 1.1.1 The intent of this standard is to provide general guidelines for the design, selection, quality assurance, installation, operation, and maintenance of mechanical drive systems used in remote hot cell environments. The term mechanical drive systems used herein, encompasses all individual components used for imparting motion to equipment systems, subsystems, assemblies, and other components. It also includes complete positioning systems and individual units that provide motive power and any position indicators necessary to monitor the motion. 1.2 Applicability: 1.2.1 This standard is intended to be applicable to equipment used under one or more of the following conditions: 1.2.1.1 The materials handled or processed constitute a significant radiation hazard to man or to the environment. 1.2.1.2 The equipment will generally be used over a long-term life cycle (for example, in excess of two years), but equipment intended for use over a shorter life cycle is not excluded. 1.2.1.3 The ...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

83

Review of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Readiness Assessment (Implementation Verification Review Sections), Novvember 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Argonne National Laboratory Argonne National Laboratory Alpha-Gamma Hot Cell Facility Readiness Assessment (Implementation Verification Review Sections) May 2011 November 2011 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Scope ...................................................................................................................................................... 1 3.0 Background ............................................................................................................................................ 1

84

DANGER--RADIOACTIVE. VIEWING WINDOWS IN LABORATORY HOT CELLS PROVIDE A SAFETY FACTOR AND STILL PERMIT VISIBLE ACCESS TO THE OPERATION  

SciTech Connect

The quality and types of windows used for shielding and viewing in hot cells are discussed. Types of windows used for various radiations are listed. Window terminology is graphically illustrated. (P.C.H.)

Northup, T.E.

1963-09-01T23:59:59.000Z

85

Assessment of Hot Cell Examination of AREVA M5(R) Guide Tubes and Fuel Rods Irradiated in North Anna 1 and 2  

Science Conference Proceedings (OSTI)

This report describes a vendor assessment of the hot cell examinations of guide tubes and fuel rods fabricated with the advanced M5 alloy and irradiated in North Anna Units 1 and 2 to exposures beyond current fuel licensing limits.

2009-09-29T23:59:59.000Z

86

Hot-Cell Examination and Assessment Report for a Next Generation Fuel Skeleton Irradiated in Millstone-3  

Science Conference Proceedings (OSTI)

Lead test assemblies (LTAs) of the 17 x 17 Next Generation Fuel (17NGF) fuel design from Westinghouse Electric Company have been irradiated at Millstone Unit 3 for up to three cycles and have accumulated up to ~64,000 megawatt days per metric ton of uranium (MWD/MTU) of exposure. The objective of this project is to perform a full hot-cell examination of one LTA skeleton at discharge exposure, including two main activities: general characterization (for example, wear, dimensional stability, ...

2013-06-27T23:59:59.000Z

87

Hot Cell Examination of Broken GE14 Spacer Grid and Sound Fuel Rod Irradiated in Forsmark-3 BWR  

Science Conference Proceedings (OSTI)

A Global Nuclear Fuel (GNF)-designed GE14 fuel rod8212operated to approximately 40 GWd/MTU bundle average exposure in the Forsmark-3 boiling water reactor (BWR) in Osthammar, Sweden8212was examined at the Studsvik Nuclear hot cell laboratory in Nykping, Sweden. During re-channeling and rod retrieval, it was found that the first spacer grid was broken in the same bundle. Along with the one sound GE14 fuel rod, the broken spacer grid piece was sent to the Studsvik facility for examination. This report prov...

2008-10-23T23:59:59.000Z

88

Decontamination of hot cells K-1, K-3, M-1, M-3, and A-1, M-Wing, Building 200: Project final report Argonne National Laboratory-East  

SciTech Connect

The purpose of this project was to remove radioactively contaminated materials and equipment from the hot cells, to decontaminate the hot cells, and to dispose of the radioactive waste. The goal was to reduce stack releases of Rn-220 and to place the hot cells in an emptied, decontaminated condition with less than 10 {micro}Sv/h (1 mrem/h) general radiation background. The following actions were needed: organize and mobilize a decontamination team; prepare decontamination plans and procedures; perform safety analyses to ensure protection of the workers, public, and environment; remotely size-reduce, package, and remove radioactive materials and equipment for waste disposal; remotely decontaminate surfaces to reduce hot cell radiation background levels to allow personnel entries using supplied air and full protective suits; disassemble and package the remaining radioactive materials and equipment using hands-on techniques; decontaminate hot cell surfaces to remove loose radioactive contaminants and to attain a less than 10 {micro}Sv/h (1 mrem/h) general background level; document and dispose of the radioactive and mixed waste; and conduct a final radiological survey.

Cheever, C.L.; Rose, R.W.

1996-09-01T23:59:59.000Z

89

Experience of Hot Cell Renovation Work in CPF (Chemical Processing Facility)  

Science Conference Proceedings (OSTI)

Renovation work for operation room A of the Chemical Processing Facility (CPF) was carried out. Cell renovation work involved disassembly, removal and installation of new equipment for the CA-3 cell of operation room A and the crane renovation work involved the repair of the in-cell crane for the CA-5 cell of operation room A. There were not many examples of renovation work performed on cells under high radiation environment and alpha contamination in Japan. Lessons learnt: With respect to the cell renovation work and crane repair work, a method that gave full consideration to safety was employed and the work was performed without accidents or disaster. Moreover, through improvement of the method, reduction of radioactive exposure of the workers was achieved and a melt reduction device was designed to deal with the radioactive waste material that was generated in the renovation work to achieve significant melt reduction of waste material.

Toyonobu Nabemoto; Fujio Katahira; Tadatsugu Sakaya [IHI Corporation: Isogo-ku, Yokohama, Kanagawa pref, 235-8501 (Japan); Shinichi Aose; Takafumi Kitajima; Kouji Ogasawara; Kazunori Nomura; Shigehiko Miyachi; Yoshiaki Ichige; Tadahiro Shinozaki; Shinichi Ohuchi [Japan Atomic Energy Agency: Tokai-mura, Naka-gun, Ibaraki pref, 319-1194 (Japan)

2008-01-15T23:59:59.000Z

90

Wide-Gap Thin Film Si n-i-p Solar Cells Deposited by Hot-Wire CVD: Preprint  

DOE Green Energy (OSTI)

High-voltage wide bandgap thin-film Si n-i-p solar cells have been made using the hot-wire chemical vapor deposition (HWCVD) technique. The best open-circuit voltage (Voc) has exceeded 0.94 V in solar cells using HWCVD in the entire n-i-p structure. A Voc of 0.97V has been achieved using HWCVD in the n and i layers and plasma-enhanced (PE) CVD for the p layer. The high voltages are attributed to the wide-gap i layer and an improved p/i interface. The wide-gap i layer is obtained by using low substrate temperatures and sufficient hydrogen dilution during the growth of the i layer to arrive at the amorphous-to-microcrystalline phase transition region. The optical band gap (E04) of the i layer is found to be 1.90 eV. These high-voltage cells also exhibit good fill factors exceeding 0.7 with short-circuit-current densities of 8 to 10 mA/cm2 on bare stainless steel substrates. We have also carried out photoluminescence (PL) spectroscopy studies and found a correlation between Voc and the PL peak energy position.

Wang, Q.; Iwaniczko, E.; Yang, J.; Lord, K.; Guha, S.; Wang, K.; Han, D.

2002-05-01T23:59:59.000Z

91

Hot embossing for fabrication of a microfluidic 3D cell culture  

E-Print Network (OSTI)

Clinically relevant studies of cell function in vitro require a physiologically-representative microenvironment possessing aspects such as a 3D extracellular matrix (ECM) and controlled biochemical and biophysical parameters. ...

Jeon, Jessie S.

92

Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition.  

Science Conference Proceedings (OSTI)

Atomic layer deposition was used to grow conformal thin films of hematite with controlled thickness on transparent conductive oxide substrates. The hematite films were incorporated as photoelectrodes in regenerative photoelectrochemical cells employing an aqueous [Fe(CN){sub 6}]{sup 3-/4-} electrolyte. Steady state current density versus applied potential measurements under monochromatic and simulated solar illumination were used to probe the photoelectrochemical properties of the hematite electrodes as a function of film thickness. Combining the photoelectrochemical results with careful optical measurements allowed us to determine an optimal thickness for a hematite electrode of {approx}20 nm. Mott-Schottky analysis of differential capacitance measurements indicated a depletion region of {approx}17 nm. Thus, only charge carriers generated in the depletion region were found to contribute to the photocurrent.

Klahr, B. M.; Martinson, A. B. F.; Hamann, T. W. (Materials Science Division); (Michigan State Univ.)

2011-01-01T23:59:59.000Z

93

Tomography of a High-Purity Narrowband Photon From a Transient Atomic Collective Excitation  

E-Print Network (OSTI)

We demonstrate the efficient heralded generation of high purity narrow-bandwidth single photons from a transient collective spin excitation in a hot atomic vapour cell. Employing optical homodyne tomography, we fully reconstruct the density matrix of the generated photon and observe a Wigner function reaching the zero value without correcting for any inefficiencies. The narrow bandwidth of the photon produced is accompanied by a high generation rate yielding a high spectral brightness. The source is therefore compatible with atomic-based quantum memories as well as other applications in light-atom interfacing. This work paves the way to preparing and measuring arbitrary superposition states of collective atomic excitations.

MacRae, A; Lvovsky, A I

2011-01-01T23:59:59.000Z

94

Hot Electron Photovoltaics Using Low Cost Materials and Simple ...  

Hot Electron Photovoltaics Using Low Cost Materials and Simple Cell Design Lawrence Berkeley National Laboratory. Contact LBL About This Technology

95

Atomic-Scale Mechanisms of Oxygen Electrode Delamination in Solid Oxide Electrolyzer Cells  

DOE Green Energy (OSTI)

Materials used for different components (electrodes, electrolyte, steel interconnects, etc.) of solid oxide electrolyzer cell (SOEC) devices for hydrogen production have to function in aggressive, corrosive environments and in the presence of electric fields. This results in a number of degradation processes at interfaces between components. In this study, we used a combination of first-principles, density-functional-theory (DFT) calculations and thermodynamic modeling to elucidate the main processes that contribute into the oxygen delamination in typical SOEC device consisting of yttria-stabilized zirconia (YSZ) electrolyte and Sr-doped LaMnO3 (LSM) oxygen electrode. We found that high temperature inter-diffusion of different atoms across the LSM/YSZ interface significantly affects structural stability of the materials and their interface. In particular, we found that La and Sr substitutional defects positioned in ZrO2 oxide and near LSM/YSZ interface significantly change oxygen transport which may develop pressure buildup in the interfacial region and eventually develop delamination process. Simple models for estimating these effects are proposed, and different possibilities for inhibiting and/or mitigating undesirable delamination processes are discussed.

Sergey N. Rashkeev; Michael V. Glazoff

2012-01-01T23:59:59.000Z

96

NEW HOT LABORATORY FACILITIES AT LOS ALAMOS  

SciTech Connect

New Hot Laboratory Facilities which support three major research programs directed by the Los Alamos Scientific Laboratory of the University of California are described. For the Nuclear Rocket Propulsion Program, a hot cell addition to the Radio Chemistry Building at Los Alamos will be completed early in 1963, and construction is expected to start soon on the hot cell addition to the Maintenance, Assembly and Disassembly Building at the Nuclear Rocket Development Station in Nevada. Integral hot laboratories are designed in the facilities for the Ultra High Temperature Reactor Experiment and the Fast Reactor Core Test at Los Alamos. (auth)

Wherritt, C.R.; Franke, P.; Field, R.E.; Lyle, A.R.

1962-01-01T23:59:59.000Z

97

Texas Hot Water Report  

NLE Websites -- All DOE Office Websites (Extended Search)

coil hot water storage tank, a backup instantaneous electric water heater, a hydronic fan coil unit for space heating, and an efficient plumbing manifold for domestic hot water...

98

Full-scale hot cell test of an acoustic sensor dedicated to measurement of the internal gas pressure and composition of a LWR nuclear fuel rod  

SciTech Connect

A full-scale hot cell test of the internal gas pressure and composition measurement by an acoustic sensor was carried on successfully between 2008 and 2010 on irradiated fuel rods in the LECA-STAR facility at Cadarache Centre. The acoustic sensor has been specially designed in order to provide a nondestructive technique to easily carry out the measurement of the internal gas pressure and gas composition of a LWR nuclear fuel rod. This sensor has been achieved in 2007 and is now covered by an international patent. The first positive result, concerning the device behaviour, is that the sensor-operating characteristics have not been altered by a two-year exposure in the hot cell ambient. We performed the gas characterisation contained in irradiated fuel rods. The acoustic method accuracy is now {+-}5 bars on the pressure measurement result and {+-}0.3% on the evaluated gas composition. The results of the acoustic method were compared to puncture results. Another significant conclusion is that the efficiency of the acoustic method is not altered by the irradiation time, and possible modification of the cladding properties. These results make it possible to demonstrate the feasibility of the technique on irradiated fuel rods. The transducer and the associated methodology are now operational. (authors)

Ferrandis, J. Y.; Rosenkrantz, E.; Leveque, G. [CNRS - Univ. Montpellier 2, Southern Electronic Inst., UMR 5214, F-34095 Montpellier (France); Baron, D. [EDF, R and D, F-77250 Moret sur Loing (France); Segura, J. C. [EDF, SEPTEN, F-69628 Villeurbanne (France); Cecilia, G.; Provitina, O. [CEA - Nuclear Energy Direction DEN - Fuel Studies Dept. - Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

2011-07-01T23:59:59.000Z

99

DOE/EA-1295: Environmental Assessment for the Proposed Decontamination and Decommissioning of Building 301 Hot Cell Facility at Argonne National Laboratory (09/00)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

95 95 ENVIRONMENTAL ASSESSMENT PROPOSED DECONTAMINATION AND DECOMMISSIONING OF BUILDING 301 HOT CELL FACILITY AT ARGONNE NATIONAL LABORATORY U. S. Department Of Energy Chicago Operations Office September, 2000 ii TABLE OF CONTENTS LIST OF TABLES iv LIST OF FIGURES iv ACRONYMS v 1.0 BACKGROUND 1 1.1 Facility Description and History 1 1.2 Current Status 7 2.0 PURPOSE AND NEED 7 3.0 DESCRIPTION OF PROPOSED ACTION AND NO ACTION ALTERNATIVE 8 3.1 The Proposed Action 8 3.2 No Action Alternative 10 4.0 THE AFFECTED ENVIRONMENT 11 4.1 Site Description 11 4.2 Cultural Resources 11 4.2.1 Archaeological Sites 11 4.2.2 Historical Structures and Objects 11 4.3 Air Quality 11 5.0 ENVIRONMENTAL CONSEQUENCES OF THE PROPOSED ACTION 12 5.1 Environmental Impacts of Decontamination and Demolition 12 5.1.1 Sensitive Resources

100

TRUEX hot demonstration  

SciTech Connect

In FY 1987, a program was initiated to demonstrate technology for recovering transuranic (TRU) elements from defense wastes. This hot demonstration was to be carried out with solution from the dissolution of irradiated fuels. This recovery would be accomplished with both PUREX and TRUEX solvent extraction processes. Work planned for this program included preparation of a shielded-cell facility for the receipt and storage of spent fuel from commercial power reactors, dissolution of this fuel, operation of a PUREX process to produce specific feeds for the TRUEX process, operation of a TRUEX process to remove residual actinide elements from PUREX process raffinates, and processing and disposal of waste and product streams. This report documents the work completed in planning and starting up this program. It is meant to serve as a guide for anyone planning similar demonstrations of TRUEX or other solvent extraction processing in a shielded-cell facility.

Chamberlain, D.B.; Leonard, R.A.; Hoh, J.C.; Gay, E.C.; Kalina, D.G.; Vandegrift, G.F.

1990-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Novel Protein Crystal Growth Electrochemical Cell For Applications in X-ray Diffraction and Atomic Force Microscopy  

Science Conference Proceedings (OSTI)

A new crystal growth cell based on transparent indium tin oxide (ITO) glass-electrodes for electrochemically assisted protein crystallization allows for reduced nucleation and crystal quality enhancement. The crystallization behavior of lysozyme and ferritin was monitored as a function of the electric current applied to the growth cell. The X-ray diffraction analysis showed that for specific currents, the crystal quality is substantially improved. No conformational changes were observed in the 3D crystallographic structures determined for crystals grown under different electric current regimes. Finally, the strong crystal adhesion on the surface of ITO electrode because of the electroadhesion allows a sufficiently strong fixing of the protein crystals, to undergo atomic force microscopy investigations in a fluid cell.

G Gil-Alvaradejo; R Ruiz-Arellano; C Owen; A Rodriguez-Romero; E Rudino-Pinera; M Antwi; V Stojanoff; A Moreno

2011-12-31T23:59:59.000Z

102

Field Examination and Hot Cell Post-Irradiation Examination of Fuel Channels from Monticello Nuclear Generating Plant  

Science Conference Proceedings (OSTI)

On January 20, 2007, Monticello Nuclear Generating Plant observed an unexpected no-settle condition at the 00 position in peripheral cell 42-11. Publication OE24588, "Control Rod Blade did not Move Normally at Monticello Nuclear Generating Plant," documented this event. This report gives field examination results of four symmetric channels including cell 42-11. Researchers sectioned channel coupons from two channels in cell 42-11 and sent them to Vallecitos Nuclear Center (VNC), Sunol, California for mor...

2009-04-22T23:59:59.000Z

103

NEWTON: Green Hot  

NLE Websites -- All DOE Office Websites (Extended Search)

to two different phenomena. The 'red-hot' or 'white-hot' designations are due to black body radiation, which you can read about on-line. The colors of flames are due to ionization...

104

Madrid Hot Water Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Comprehensive Assessment of Hot Water System Page 1 of 2 HOT WATER SYSTEM In general, the plumbing system in MAGIC BOX is designed to concentrate all devices, be they storage,...

105

3D cyclic olefin copolymer (COC) microfluidic chip fabrication using hot embossing method for cell culture platform  

E-Print Network (OSTI)

A microfluidic system has been developed for studying the factors inducing different responses of cells in vascular system using a three-dimensional microenvironment. The devices have been transferred from PDMS to a platform ...

Jeon, Jessie Sungyun

2010-01-01T23:59:59.000Z

106

Process Optimization for High Efficiency Heterojunction c-Si Solar Cells Fabrication Using Hot-Wire Chemical Vapor Deposition: Preprint  

SciTech Connect

The researchers extensively studied the effects of annealing or thermal history of cell process on the minority carrier lifetimes of FZ n-type c-Si wafers with various i-layer thicknesses from 5 to 60 nm, substrate temperatures from 100 to 350 degrees C, doped layers both p- and n-types, and transparent conducting oxide (TCO).

Ai, Y.; Yuan, H. C.; Page, M.; Nemeth, W.; Roybal, L.; Wang, Q.

2012-06-01T23:59:59.000Z

107

Virtual Prototyping of Lightweight Designs Made with Cold and Hot ...  

Science Conference Proceedings (OSTI)

To achieve the desired properties, a heat treatment process is part of the hot forming .... PII-64: Two Thermal Conductivity Analysis of the Fuel Cell Zirconia...

108

Hot Corrosion of Shipboard Turbine Components in High Water ...  

Science Conference Proceedings (OSTI)

While the resulting degradation for the two types of hot corrosion has been well documented for traditional fuel ... Hardware Materials in Carbonate Fuel Cell.

109

Some Effects of Hot Working Practice on Waspaloy's Structure and ...  

Science Conference Proceedings (OSTI)

hot rolling program was executed in which the effects of preheat temperature, .... by the open cell method using Disa A-3 electrolyte. Final thinning was done on...

110

Hot Wire Chemical Vapor Deposition with Carbide Filaments ...  

Many of the current industry cells in production have come through NREL, ... One deposition technology utilized at NREL deals with hot wire chemical ...

111

Atomic History  

Science Conference Proceedings (OSTI)

... These Data Centers, one on Atomic Energy Levels and one on Atomic Transition ... After a few years Kessler went on to higher management at NIST. ...

2010-10-05T23:59:59.000Z

112

Atomic magnetometer  

SciTech Connect

An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

Schwindt, Peter (Albuquerque, NM); Johnson, Cort N. (Albuquerque, NM)

2012-07-03T23:59:59.000Z

113

Method for removal of metal atoms from aqueous solution using suspended plant cells  

DOE Patents (OSTI)

The use of plant suspension cultures to remove ionic metallic species and TNT-based explosives and their oxidation products from aqueous solution is described. Several plant strains were investigated including D. innoxia, Citrus citrus, and Black Mexican Sweet Corn. All showed significant ability to remove metal ions. Ions removed to sub-ppm levels include barium, iron, and plutonium. D. innoxia cells growing in media containing weapons effluent contaminated with Ba.sup.2+ also remove TNT, other explosives and oxidation products thereof from solution. The use of dead, dehydrated cells were also found to be of use in treating waste directly.

Jackson, Paul J. (Los Alamos, NM); Torres, deceased, Agapito P. (late of Los Alamos, NM); Delhaize, Emmanuel (Kaleen, AU)

1992-01-01T23:59:59.000Z

114

Geothermal: Hot Documents Search  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Hot Documents Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

115

Gas separation and hot-gas cleanup  

DOE Green Energy (OSTI)

Catalytic gasification of coal to produce H{sub 2}-, CO-, and CH{sub 4}-rich mixtures of gases for consumption in molten carbonate fuel cells is currently under development; however, to optimize the fuel cell performance and extend its operating life,it is desired to separate as much of the inert components (i.e., CO{sub 2} and N{sub 2}) and impurities (i.e., H{sub 2}S and NH{sub 3}) as possible from the fuel gas before it enters the fuel cell. In addition, the economics of the integrated gasification combined cycle (IGCC) can be improved by separating as much of the hydrogen as possible from the fuel, since hydrogen is a high-value product. Researchers at the Energy & Environmental Research Center and Bend Research, Inc., investigated pressure-driven membranes as a method for accomplishing this gas separation and hot-gas cleanup. These membranes are operated at temperatures as high as 800{degrees}C and at pressures up to 300 psig. They have very small pore sizes that separate the undesirable gases by operating in the Knudsen diffusion region of mass transport (30 -50{Angstrom}) or in the molecular sieving region of mass transport phenomena (<5{Angstrom}). In addition, H{sub 2} separation through a palladium metal membrane proceeds via a solution-diffusion mechanism for atomic hydrogen. This allows the membranes to exhibit extremely high selectivity for hydrogen separation. The objective of this study was to determine the selectivity of the ceramic membranes for removing undesirable gases while allowing the desired gases to be concentrated in the permeate stream.

Swanson, M.L.

1996-11-01T23:59:59.000Z

116

Hot-gas cleanup for molten carbonate fuel cells-dechlorination and soot formation. Final report, May 19, 1981-July 19, 1983  

DOE Green Energy (OSTI)

Two separate aspects of hot-gas conditioning for molten carbonate fuel cells (MCFC) were investigated under this contract: potential high temperature chloride sorbent materials were sreened and tested and carbon deposition on MCFC components was studied experimentally to determine guidelines for maximizing MCFC efficiency while avoiding carbon fouling. Natural minerals containing sodium carbonate were identified as the most promising candidates for economical removal of chlorides from coal gasifier effluents at temperatures of about 800 K (980/sup 0/F). The mineral Shortite was tested in a fixed bed and found to perform remarkably well with no calcination. Using Shortite we were able to achieve the program goal of less than 1 ppmV chlorides at 800 K. Shortite is an abundant mineral with no competing commercial demand, so it should provide an economical chloride cleanup sorbent. Measurements showed that carbon deposition can occur in the equilibrium carbon freee region because of the relative rates of the relevant reactions. On all surfaces tested, the Boudouard carbon formation reaction is much faster than the water-gas shift reaction which is much faster than the methanation reaction. This means that the normal practice of adding steam to prevent carbon formation will only succeed if flows are slow enough for the water shift reaction to go substantially to completion. More direct suppression of carbon formation can be achieved by CO/sub 2/ addition through anode recycle to force the Boudouard reaction backward. Addition of steam or CO/sub 2/ must be minimized to attain the highest possible MCFC efficiency. 28 references, 31 figures, 22 tables.

Ham, D.; Gelb, A.; Lord, G.; Simons, G.

1984-01-01T23:59:59.000Z

117

CELL POPULATIONS AND CELL PROLIFERATION IN THE IN VITRO RESPONSE OF NORMAL MOUSE SPLEEN TO HETEROLOGOUS ERYTHROCYTES*,$ ANALYSIS BY "1i1 ~ HOT PULSE TECHNIQUE  

E-Print Network (OSTI)

It has been shown in the accompanying paper (1) that spleen cell suspensions from normal mice can be immunized to heterologous erythrocytes in an in vitro system. When sheep erythrocytes are added at the initiation of culture, the number of antibody-forming cells (as determined by the hemolytic plaque assay) rises from an initial value of approximately 1 per 106 to 1,000 per 10 e recovered cells 4 days later in a typical experiment. The kinetics of the response follow an approximately exponential form at least in the later time periods. The assay system measures 19S antibodyforming cells (2) and the response is "primary " in the sense that it follows the first experimental exposure to antigen. Previous in vivo studies have indicated that the increase is largely the result of proliferation of precursor cells and they have further suggested that cell proliferation begins after an 18-24 hr lag period (for a review see reference 3). These studies, however, leave some room for doubt, as will be discussed below, and the problem has been reinvestigated in this in vitro system as part of a more general analysis of the cellular response to antigen. The questions asked here are: (a) at what times during the

W. Dutton, Ph.D.; Robert; I. Mishell

1967-01-01T23:59:59.000Z

118

Ceramic Fuel Cells (SOFC)  

NLE Websites -- All DOE Office Websites (Extended Search)

in hot box included Anode Electrolyte Key cost drivers identified for tubular designs * Cell * Current Collectors * Seals BOP in hot box: * Insulation (thermal) * Recuperator *...

119

Hot and Cold  

NLE Websites -- All DOE Office Websites (Extended Search)

What happens to neon gas when it gets very hot? In this experiment, liquid nitrogen and Tesla coils are used to study the effects of extreme temperatures on everyday objects. Don't...

120

Reactor hot spot analysis  

SciTech Connect

The principle methods for performing reactor hot spot analysis are reviewed and examined for potential use in the Applied Physics Division. The semistatistical horizontal method is recommended for future work and is now available as an option in the SE2-ANL core thermal hydraulic code. The semistatistical horizontal method is applied to a small LMR to illustrate the calculation of cladding midwall and fuel centerline hot spot temperatures. The example includes a listing of uncertainties, estimates for their magnitudes, computation of hot spot subfactor values and calculation of two sigma temperatures. A review of the uncertainties that affect liquid metal fast reactors is also presented. It was found that hot spot subfactor magnitudes are strongly dependent on the reactor design and therefore reactor specific details must be carefully studied. 13 refs., 1 fig., 5 tabs.

Vilim, R.B.

1985-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Somatic cell mutations at the glycophorin A locus in erythrocytes of atomic bomb survivors: Implications for radiation carcinogenesis  

Science Conference Proceedings (OSTI)

To clarify the relationship between somatic cell mutations and radiation exposure, the frequency of hemizygous mutant erythrocytes at the glycophorin A (GPA) locus was measured by flow cytometry for 1,226 heterozygous atomic bomb (A-bomb) survivors in HIroshima and Nagasaki. For statistical analysis, both GPA mutant frequency and radiation dose were log-transformed to normalize skewed distributions of these variables. The GPA mutant frequency increased slightly but significantly with age at testing and with the number of cigarettes smoked. Also, mutant frequency was significantly higher in males than in females even with adjustment for smoking and was higher to Hiroshima than in Nagasaki. These characteristics of background GPA mutant frequency are qualitatively similar to those of background solid cancer incidence or mortality obtained from previous epidemiological studies of survivors. An analysis of the mutant frequency dose response using a descriptive model showed that the doubling dose is about 1.20 Sv [95% confidence interval (CI): 0.95-1.56], whereas the minimum dose for detecting a significant increase in mutant frequency is about 0.24 Sv (95% CI: 0.041-0.51). No significant effects of sex, city or age at the time of exposure on the dose response were detected. Interestingly, the doubling dose of the GPA mutant frequency was similar to that of solid cancer incidence in A-bomb survivors. This observation is in line with the hypothesis that radiation-induced somatic cell mutations are the major cause of excess cancer risk after radiation. 49 refs., 6 figs., 2 tabs.

Kyoizumi, Seishi; Akiyama, Mitoshi; Tanabe, Kazumi; Hirai, Yuko; Kusunoki, Yoichiro; Umeki, Shigeko [Radiation Effects Research Foundation, Hiroshima (Japan)] [and others

1996-07-01T23:59:59.000Z

122

Use of low temperature blowers for recirculation of hot gases  

DOE Patents (OSTI)

An apparatus is described for maintaining motors at low operating temperatures during recirculation of hot gases in fuel cell operations and chemical processes such as fluidized bed coal gasification. The apparatus includes a means for separating the hot process gas from the motor using a secondary lower temperature gas, thereby minimizing the temperature increase of the motor and associated accessories.

Maru, H.C.; Forooque, M.

1982-08-19T23:59:59.000Z

123

Solar hot water heater  

SciTech Connect

A solar hot water heater includes an insulated box having one or more hot water storage tanks contained inside and further having a lid which may be opened to permit solar radiation to heat a supply of water contained within the one or more hot water storage tanks. A heat-actuated control unit is mounted on an external portion of the box, such control unit having a single pole double throw thermostat which selectively activates an electric winch gear motor to either open or close the box lid. The control unit operates to open the lid to a predetermined position when exposed to the sun's rays, and further operates to immediately close the lid in response to any sudden drop in temperature, such as might occur during a rainstorm, clouds moving in front of the sun, or the like.

Melvin, H.A.

1982-12-28T23:59:59.000Z

124

Beppu hot springs  

SciTech Connect

Beppu is one of the largest hot springs resorts in Japan. There are numerous fumaroles and hot springs scattered on a fan-shaped area, extending 5 km (3.1 miles) from east to west and 8 km (5.0 miles) from north to south. Some of the thermal manifestations are called {open_quotes}Jigoku (Hells){close_quotes}, and are of interest to visitors. The total amount of discharged hot springs water is estimated to be 50,000 ton/day (9,200 gpm) indicating a huge geothermal system. The biggest hotel in Beppu (Suginoi Hotel) installed a 3-MW geothermal power plant in 1981 to generate electricity for its own private use.

Taguchi, Schihiro [Fukuoka Univ. (Japan); Itoi, Ryuichi [Kyushu Univ., Kasuga (Japan); Yusa, Yuki [Kyoto Univ., Beppu (Japan)

1996-05-01T23:59:59.000Z

125

TRUEX hot demonstration. Final report  

SciTech Connect

In FY 1987, a program was initiated to demonstrate technology for recovering transuranic (TRU) elements from defense wastes. This hot demonstration was to be carried out with solution from the dissolution of irradiated fuels. This recovery would be accomplished with both PUREX and TRUEX solvent extraction processes. Work planned for this program included preparation of a shielded-cell facility for the receipt and storage of spent fuel from commercial power reactors, dissolution of this fuel, operation of a PUREX process to produce specific feeds for the TRUEX process, operation of a TRUEX process to remove residual actinide elements from PUREX process raffinates, and processing and disposal of waste and product streams. This report documents the work completed in planning and starting up this program. It is meant to serve as a guide for anyone planning similar demonstrations of TRUEX or other solvent extraction processing in a shielded-cell facility.

Chamberlain, D.B.; Leonard, R.A.; Hoh, J.C.; Gay, E.C.; Kalina, D.G.; Vandegrift, G.F.

1990-04-01T23:59:59.000Z

126

Increased frequency of CD4{sup -}8{sup -}T cells bearing T-cell receptor {alpha}{beta} chains in peripheral blood of atomic bomb survivors exposed to high doses  

Science Conference Proceedings (OSTI)

A rare T-cell subpopulation, CD4{sup -z}8{sup -}{alpha}{beta} cells, may be differentiated through a pathway (or pathways) different from the pathway(s) of conventional CD4+ or CD8+ cells. In the present study, the frequencies of CD4{sup -}8{sup -} T cells in peripheral-blood {alpha}{beta} T cells in 409 atomic bomb survivors were determined to investigate late effects of radiation on the composition of human T-cell subpopulations. The frequency of CD4{sup -}8{sup -}{alpha}{beta} T-cell decreased significantly with the subject`s age and was higher in females than males. A significant increase in the frequency was found in the survivors exposed to more than 1.5Gy, suggesting that the previous radiation exposure altered differentiation and development of T cells. 25 refs., 4 figs., 3 tabs.

Yoichiro Kusunoki; Seishi Kyoizumi; Yuko Hirai; Shoichiro Fujita; Mitoshi Akiyama [Radiation Effects Research Foundation, Hiroshima (Japan)

1994-07-01T23:59:59.000Z

127

Hot water supply system  

SciTech Connect

A hot water supply system is described which consists of: a boiler having an exhaust; solar panels; and a frame supporting the solar panels and including a compartment beneath the solar panels, the boiler exhaust termining in the compartment beneath the solar panels, the boiler being within the compartment.

Piper, J.R.

1986-06-10T23:59:59.000Z

128

Cornell University Hot Water Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot Water System Hot Water System The production and delivery of hot water in the CUSD home is technologically advanced, economical, and simple. Hot water is produced primarily by the evacuated solar thermal tube collectors on the roof of the house. The solar thermal tube array was sized to take care of the majority of our heating and hot water needs throughout the course of the year in the Washington, DC climate. The solar thermal tube array also provides heating to the radiant floor. The hot water and radiant floor systems are tied independently to the solar thermal tube array, preventing the radiant floor from robbing the water heater of much needed thermal energy. In case the solar thermal tubes are not able to provide hot water to our system, the hot water tank contains an electric heating

129

The Resistance to Deformation of Superalloys During Hot Rolling  

Science Conference Proceedings (OSTI)

was used to record the signals from the two load cells and the photoswitch, and to record the time re- quired to transfer the hot billet from the furnace to the mill.

130

Green Systems Solar Hot Water  

E-Print Network (OSTI)

Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1,2; basement) Pre-heats water so water heaters don't need to use as much energy Gas-powered, high efficiency

Schladow, S. Geoffrey

131

Hot Fuel Examination Facility's neutron radiography reactor  

SciTech Connect

Argonne National Laboratory-West is located near Idaho Falls, Idaho, and is operated by the University of Chicago for the United States Department of Energy in support of the Liquid Metal Fast Breeder Reactor Program, LMFBR. The Hot Fuel Examination Facility, HFEF, is one of several facilities located at the Argonne Site. HFEF comprises a large hot cell where both nondestructive and destructive examination of highly-irradiated reactor fuels are conducted in support of the LMFBR program. One of the nondestructive examination techniques utilized at HFEF is neutron radiography, which is provided by the NRAD reactor facility (a TRIGA type reactor) below the HFEF hot cell.

Pruett, D.P.; Richards, W.J.; Heidel, C.C.

1983-01-01T23:59:59.000Z

132

Session: Hot Dry Rock  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

1992-01-01T23:59:59.000Z

133

``Hot particle`` intercomparison dosimetry  

SciTech Connect

Dosimetry measurements of four ``hot particles`` were made at different density thickness values using five different methods. The hot particles had maximum dimensions of 650 {mu}m and maximum beta energies of 0.97, 046, 0.36 and 0.32 MeV. Absorbers were used to obtain the dose at different depths for each dosimeter. Measurements were made using exoelectron dosimeters, an extrapolation chamber, NE extremity tape dosimeters, Eberline RO-2 and RO-2A survey meters, and two sets of GafChromic dye film with each set read out at a different institution. From these results the dose was calculated averaged over 1 cm{sup 2} of tissue at 18, 70, 125, and 400 {mu}m depth. Comparisons of tissue-dose averaged over 1 cm{sup 2} for 18, 70 and 125 {mu}m depth based on interpolated measured values, were within 30% for the GafChromic dye film, extrapolation chamber, NE Extremity Tape dosimeters, and Eberline RO-2 and 2A survey meters except for the hot particle with 0.46 MeV maximum beta energy. The results for this source showed differences of up to 60%. The extrapolation chamber and NE Extremity Tape dosimeters under-responded for measurements at 400 {mu}m by about a factor of 2 compared with the Gaf Chromic dye films for two hot particles with maximum beta energy of 0.32 and 0.36 MeV which each emitted two 100% 1 MeV photons per disintegration. Tissue doses determined using exoelectron dosimeters were a factor of 2 to 5 less than those determined using other dosimeters, possibly due to failures of the equipment.

Kaurin, D.G.L.; Baum, J.W. [Brookhaven National Lab., Upton, NY (United States); Charles, M.W.; Darley, D.P.J. [Birmingham Univ. (United Kingdom); Durham, J.S. [Pacific Northwest Lab., Richland, WA (United States); Scannell, M.J. [Yankee Atomic Electric Co., Bolton, MA (United States); Soares, C.G. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1996-06-01T23:59:59.000Z

134

Hot Springs | Open Energy Information  

Open Energy Info (EERE)

Springs Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hot Springs Dictionary.png Hot Springs: A naturally occurring spring of hot water, heated by geothermal processes in the subsurface, and typically having a temperature greater than 37°C. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Mammoth Hot Springs at Yellowstone National Park (reference: http://www.hsd3.org/HighSchool/Teachers/MATTIXS/Mattix%20homepage/studentwork/Laura%20Cornelisse%27s%20Web%20Page/Yellowstone%20National%20Park.htm) Hot springs occur where geothermally heated waters naturally flow out of the surface of the Earth. Hot springs may deposit minerals and spectacular

135

Hot Corrosion of SiC Cermaic Matrix Composites in Marine ...  

Science Conference Proceedings (OSTI)

The hot corrosion performance of monolithic SiC was characterized as a function of temperature (between 900 ... Hardware Materials in Carbonate Fuel Cell.

136

Hot Deformation Behavior of an Fe-Al Steel in the Two Phase Region  

Science Conference Proceedings (OSTI)

Secondly, hot-rolling of the two-phase mixture leads to recrystallization nucleation ... of a Stainless Steel as Bipolar Electrode Plate Material for PEM Fuel Cells.

137

Effect of Pretreatment on the Strength and Formability of Vehicle Hot ...  

Science Conference Proceedings (OSTI)

Comparing with the traditional hot-forming HSS, the microstructure obtained in the pretreated samples ... Multi-Scale Design of Open-Cell Aluminum Alloy Foam.

138

Quantum Hot Potato: NIST Researchers Entice Two Atoms to ...  

Science Conference Proceedings (OSTI)

... Theoretically, the ions could swap energy indefinitely until the process is ... similar interactions could be used to connect different types of quantum ...

2011-02-23T23:59:59.000Z

139

Cold Atoms Could Replace Hot Gallium in Focused Ion ...  

Science Conference Proceedings (OSTI)

... The high energies needed to focus gallium for milling tasks end up burying small amounts in the sample, contaminating the material. ...

2011-04-26T23:59:59.000Z

140

Session: Hot Dry Rock  

SciTech Connect

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hot air drum evaporator  

DOE Patents (OSTI)

An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

Black, Roger L. (Idaho Falls, ID)

1981-01-01T23:59:59.000Z

142

Energy from hot dry rock  

DOE Green Energy (OSTI)

The Hot Dry Rock Geothermal Energy Program is described. The system, operation, results, development program, environmental implications, resource, economics, and future plans are discussed. (MHR)

Hendron, R.H.

1979-01-01T23:59:59.000Z

143

Dmplet Interaction with Hot Surfaces  

Science Conference Proceedings (OSTI)

... served at the NGP Technical Program Manager for ... contains a 10 mW, polarized Helium-Neon laser. ... with Hot Surfaces, NGP Annual Report, 1998. ...

2013-04-15T23:59:59.000Z

144

Stationary light in cold atomic gases  

E-Print Network (OSTI)

We discuss stationary light created by a pair of counter-propagating control fields in Lambda-type atomic gases with electromagnetically induced transparency for the case of negligible Doppler broadening. In this case the secular approximation used in the discussion of stationary light in hot vapors is no longer valid. We discuss the quality of the effective light-trapping system and show that in contrast to previous claims it is finite even for vanishing ground-state dephasing. The dynamics of the photon loss is in general non exponential and can be faster or slower than in hot gases.

Gor Nikoghosyan; Michael Fleischhauer

2009-03-10T23:59:59.000Z

145

Glossary Term - Atomic Number  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Previous Term (Alpha Particle) Glossary Main Index Next Term (Avogadro's Number) Avogadro's Number Atomic Number Silver's atomic number is 47 The atomic number is equal to...

146

Criticality safety training at the Hot Fuel Examination Facility  

SciTech Connect

HFEF comprises four hot cells and out-of-cell support facilities for the US breeder program. The HFEF criticality safety program includes training in the basic theory of criticality and in specific criticality hazard control rules that apply to HFEF. A professional staff-member oversees the implementation of the criticality prevention program. (DLC)

Garcia, A.S.; Courtney, J.C.; Thelen, V.N.

1983-01-01T23:59:59.000Z

147

Energy Basics: Crystalline Silicon Photovoltaic Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(PV) cell's semiconductors. This section describes the atomic structure and bandgap energy of these cells. Atomic Structure All matter is composed of atoms, which are made up of...

148

Line Heat-Source Guarded Hot Plate  

Science Conference Proceedings (OSTI)

Line Heat-Source Guarded Hot Plate. Description: The 1-meter guarded hot-plate apparatus measures thermal conductivity of building insulation. ...

2012-03-06T23:59:59.000Z

149

Atomic Spectroscopy Data Center  

Science Conference Proceedings (OSTI)

Atomic Spectroscopy Data Center. Summary: ... Atomic Spectroscopy Data Webpage. End Date: ongoing. Lead Organizational Unit: physlab. Contact. ...

2013-06-06T23:59:59.000Z

150

Lack of effects of atomic bomb radiation on genetic instability of tandem-repetitive elements in human germ cells  

Science Conference Proceedings (OSTI)

In a pilot study to detect the potential effects of atomic bomb radiation on germ-line instability, we screened 64 children from 50 exposed families and 60 from 50 control families for mutations at six minisatellite loci by using Southern blot analysis with Pc-1, {lambda}TM-18, ChdTC-15, p{lambda}g3, {lambda}MS-1, and CEB-1 probes. In the exposed families, one or both parents received a radiation dose >0.01 Sv. Among the 64 children, only one child had parents who were both exposed. Thus, of a total of 128 gametes that produced the 64 children, 65 gametes were derived from exposed parents and 63 were from unexposed parents, the latter being included in a group of 183 unexposed gametes used for calculating mutation rates. The average parental gonadal dose for the 65 gametes was 1.9 Sv. We detected a total of 28 mutations at the p{lambda}g3, {lambda}MS-1, and CEB-1 loci, but no mutations at the Pc-1, {lambda}TM-18, and ChdTC-15 loci. We detected 6 mutations in 390 alleles of the 65 exposed gametes and 22 mutations in 1098 alleles of the 183 gametes from the unexposed parents. The mean mutation rate per locus per gamete in these six minisatellite loci was 1.5% in the exposed parents and 2.0% in the unexposed parents. We observed no significant difference in mutation rates in the children of the exposed and the unexposed parents (P = .37, Fisher`s exact probability test). 38 refs., 1 fig., 5 tabs.

Kodaira, Mieko; Satoh, Chiyoko [Radiation Effects Research Foundation, Hiroshima (Japan); Hiyama, Keiko [Radiation Effects Research Foundation, Hiroshima (Japan)]|[Hiroshima Univ. School of Medicine (Japan)] [and others

1995-12-01T23:59:59.000Z

151

Hot Hydrogen Test Facility  

DOE Green Energy (OSTI)

The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellants absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

W. David Swank

2007-02-01T23:59:59.000Z

152

NREL: Learning - Solar Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot Water Hot Water Photo of solar collectors on a roof for a solar hot water system. For solar hot water systems, flat-plate solar collectors are typically installed facing south on a rooftop. The shallow water of a lake is usually warmer than the deep water. That's because the sunlight can heat the lake bottom in the shallow areas, which in turn, heats the water. It's nature's way of solar water heating. The sun can be used in basically the same way to heat water used in buildings and swimming pools. Most solar water heating systems for buildings have two main parts: a solar collector and a storage tank. The most common collector is called a flat-plate collector. Mounted on the roof, it consists of a thin, flat, rectangular box with a transparent cover that faces the sun. Small tubes

153

Virginia Tech Hot Water Report  

NLE Websites -- All DOE Office Websites (Extended Search)

The team chose to use a water-to-water heat pump (WWHP) connected to an earth coupled heat exchanger to provide water heating. This system provides not only domestic hot water...

154

The decay of hot nuclei  

Science Conference Proceedings (OSTI)

The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs.

Moretto, L.G.; Wozniak, G.J.

1988-11-01T23:59:59.000Z

155

ATOMIC PILE  

SciTech Connect

A nuclear battery of very small dimensions is described which consists of a combination of Sr/sup 90/ and a luminescent material, e.g. in the form of a finely powdered mixture or of juxtaposed layers. The lunninous energy is converted int electricity by means of one or more justaposed photoelectric cells. (NPO)

1960-05-09T23:59:59.000Z

156

Hot Dry Rock - Summary  

SciTech Connect

Hot Dry Rock adds a new flexibility to the utilization of geothermal energy. Almost always the approach has been to limit that utilization to places where there is a natural source of water associated with a source of heat. Actually, the result was that steam was mined. Clearly there are much larger heat resources available which lack natural water to transport that energy to the surface. Also, as is found in hydrothermal fields being mined for steam, the water supply finally gets used up. There is a strong motive in the existing capital investment to revitalize those resources. Techniques for introducing, recovering and utilizing the water necessary to recover the heat from below the surface of the earth is the subject of this session. Implicit in that utilization is the ability to forecast with reasonable accuracy the busbar cost of that energy to the utility industry. The added element of supplying the water introduces costs which must be recovered while still supplying energy which is competitive. Hot Dry Rock technology can supply energy. That has been proved long since. The basic barrier to its use by the utility industry has been and remains proof to the financial interests that the long term cost is competitive enough to warrant investment in a technology that is new to utility on-grid operations. As the opening speaker for this session states, the test that is underway will ''simulate the operations of a commercial facility in some ways, but it will not show that energy from HDR can be produced at a variety of locations with different geological settings''. Further, the Fenton Hill system is a research facility not designed for commercial production purposes, but it can give indications of how the system must be changed to provide economic HDR operations. And so it is that we must look beyond the long term flow test, at the opportunities and challenges. Proving that the huge HDR resources can be accessed on a worldwide scale must involve the construction of additional sites, preferably to the specifications of the now Federal geothermal community. These facilities will have to be engineered to produce and market energy at competitive prices. At the same time, we must not rest on our technological laurels, though they be many. Design and operational techniques have been conceived which could lead to improved economics and operations for HDR. These must be pursued and where merit is found, vigorously pursued. Accelerated research and development ought to include revolutionary drilling techniques, reservoir interrogation, and system modeling to assure the competitiveness and geographical diversity of applications of HDR. Much of this work will be applicable to the geothermal industry in general. More advanced research ought to include such innovations as the utilization of other operating fluids. Supercritical carbon dioxide and the ammonia/water (Kalina) cycle have been mentioned. But even as the near and more distant outlook is examined, today's work was reported in the HDR session. The start-up operations for the current test series at the Fenton Hill HDR Pilot Plant were described. The surface plant is complete and initial operations have begun. While some minor modifications to the system have been required, nothing of consequence has been found to impede operations. Reliability, together with the flexibility and control required for a research system were shown in the system design, and demonstrated by the preliminary results of the plant operations and equipment performance. Fundamental to the overall success of the HDR energy resource utilization is the ability to optimize the pressure/flow impedance/time relationships as the reservoir is worked. Significant new insights are still being developed out of the data which will substantially affect the operational techniques applied to new systems. However, again, these will have to be proved to be general and not solely specific to the Fenton Hill site. Nevertheless, high efficiency use of the reservoir without unintended reservoir grow

Tennyson, George P. Jr.

1992-03-24T23:59:59.000Z

157

Promethus Hot Leg Piping Concept  

SciTech Connect

The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

AM Girbik; PA Dilorenzo

2006-01-24T23:59:59.000Z

158

Hot conditioning equipment conceptual design report  

SciTech Connect

This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

Bradshaw, F.W., Westinghouse Hanford

1996-08-06T23:59:59.000Z

159

Task 3.10 - Gas Separation and Hot-Gas Cleanup: Topical report, August 1995  

DOE Green Energy (OSTI)

Catalytic gasification of coal to produce H{sub 2}-, CO-, and CH{sub 4}-rich mixtures of gases for consumption in molten carbonate fuel cells is currently under development; however, to optimize the fuel cell performance and extend its operating life, it is desired to separate as much of the inert components (i.e., CO{sub 2} and N{sub 2}) and impurities (i e., H{sub 2}S and NH{sub 3}) as possible from the fuel gas before it enters the fuel cell. In addition, the economics of the integrated gasification combined cycle (IGCC) can be improved by separating as much of the hydrogen as possible from the fuel, since hydrogen is a high-value product. Researchers at the Energy {ampersand} Environmental Research Center (EERC) and Bend Research, Inc., investigated pressure-driven membranes as a method for accomplishing this gas separation and hot- gas cleanup. These membranes are operated at temperatures as high as 800{degrees}C and at pressures up to 300 psig. They have very small pore sizes that separate the undesirable gases by operating in the Knudsen diffusion region of mass transport (30-50 A) or in the molecular sieving region of mass transport phenomena (less than 5A). In addition, H{sub 2} separation through a palladium metal membrane proceeds via a solution- diffusion mechanism for atomic hydrogen. This allows the membranes to exhibit extremely high selectivity for hydrogen separation.

Swanson, M.L.

1997-12-31T23:59:59.000Z

160

Hot Gas Halos in Galaxies  

Science Conference Proceedings (OSTI)

We use Chandra and XMM-Newton to study how the hot gas content in early-type galaxies varies with environment. We find that the L{sub X}-L{sub K} relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. This suggests that internal processes such as supernovae driven winds or AGN feedback may expel hot gas from low mass field galaxies. Such mechanisms are less effective in groups and clusters where the presence of an intragroup or intracluster medium may confine outflowing material.

Mulchaey, John S. [Carnegie Observatories (United States); Jeltema, Tesla E. [UCO/Lick Observatories (United States)

2010-06-08T23:59:59.000Z

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hot Diggity Dog CFC Fundraiser | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Hot Diggity Dog CFC Fundraiser Hot Diggity Dog CFC Fundraiser Hot Diggity Dog CFC Fundraiser December...

162

Enviropower hot gas desulfurization pilot  

SciTech Connect

The objectives of the project are to develop and demonstrate (1) hydrogen sulfide removal using regenerable zinc titanate sorbent in pressurized fluidized bed reactors, (2) recovery of the elemental sulfur from the tail-gas of the sorbent regenerator and (3) hot gas particulate removal system using ceramic candle filters. Results are presented on pilot plant design and testing and modeling efforts.

Ghazanfari, R.; Feher, G.; Konttinen, J.; Ghazanfari, R.; Lehtovaara, A.; Mojtahedi, W.

1994-11-01T23:59:59.000Z

163

Hot-electron refluxing enhanced relativistic transparency of overdense plasmas  

E-Print Network (OSTI)

A new phenomenon of enhancing the relativistic transparency of overdense plasmas by the influence of hot-electron refluxing has been found via particle-in-cell simulations. When a p-polarized laser pulse, with intensity below the self-induced-transparency (SIT) threshold, obliquely irradiates a thin overdense plasma, the initially opaque plasma would become transparent after a time interval which linearly relies on the thickness of the plasma. This phenomenon can be interpreted by the influence of hot-electron refluxing. As the laser intensity is higher than the SIT threshold, the penetration velocity of the laser in the plasma is enhanced when the refluxing is presented. Simulation data with ion motion considered is also consistent with the assumption that hot-electron refluxing enhances transparency. These results have potential applications in laser shaping.

Yu, Yong; Chen, Zi-Yu; Wang, Jia-Xiang; Zhu, Wen-Jun

2013-01-01T23:59:59.000Z

164

RADBALL TECHNOLOGY TESTING FOR HOT CELL CHARACTERIZATION  

Science Conference Proceedings (OSTI)

Operations at various U.S. Department of Energy sites have resulted in substantial radiological contamination of tools, equipment, and facilities. It is essential to use remote technologies for characterization and decommissioning to keep worker exposures as low as reasonably achievable in these highly contaminated environments. A significant initial step in planning and implementing D&D of contaminated facilities involves the development of an accurate assessment of the radiological, chemical, and structural conditions inside of the facilities. Collected information describing facility conditions using remote technologies could reduce the conservatism associated with planning initial worker entry (and associated cost).

Farfan, E.; Jannik, T.

2010-03-25T23:59:59.000Z

165

D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project - Technology Demonstration of Fixatives Applied Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms Many facilities slated for D&D across the DOE complex pose hazards (radiological, chemical, and structural) which prevent the use of traditional manual techniques. D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms More Documents & Publications Demonstration of Fixatives to Control Contamination and Accelerate D&D Demonstration of DeconGel (TM) at the Oak Ridge National Laboratory Building 2026 D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms

166

RAS Gene Hot-Spot Mutations in  

E-Print Network (OSTI)

Point mutations in the cellular homologues HRAS, KRAS2, and NRAS of the viral Harvey and Kirsten rat sarcoma virus oncogenes are commonly involved in the onset of malignancies in humans and other species such as dog, mouse, and rat. Most often, three particular hot-spot codons are affected, with one amino acid exchange being sufficient for the induction of tumor growth. While RAS genes have been shown to play an important role in canine tumors such as non-small lung cell carcinomas, data about RAS mutations in canine fibrosarcomas as well as KRAS2 mutations in canine melanomas is sparse. To increase the number of tumors examined, we recently screened 13 canine fibrosarcomas and 11 canine melanomas for point mutations, particularly within the mutational hot spots. The results were compared to the already existing data from other studies about these tumors in dogs. A family of genes often involved in human tumors are the well-characterized RAS genes, which comprise HRAS, KRAS2, and NRAS, coding for closely related, small, 189 amino acid, 21 kDa, membrane-bound, intracellular proteins. The human cellular HRAS and KRAS2 genes were identified to be homologues of the Harvey and Kirsten rat sarcoma

Canine Neoplasias; J. Bullerdiek

2005-01-01T23:59:59.000Z

167

Early Guarded-Hot-Plate Apparatus  

Science Conference Proceedings (OSTI)

... published a recommended plan advocating the ... with the US Department of Energy, completed measurements ... hot plate apparatus described above. ...

2011-07-27T23:59:59.000Z

168

Commonwealth Solar Hot Water Commercial Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Program Commonwealth Solar Hot Water Commercial Program Eligibility Agricultural Commercial Fed. Government Industrial Local Government Multi-Family Residential...

169

Acord 1-26 hot, dry well, Roosevelt Hot Springs hot dry rock prospect, Utah  

DOE Green Energy (OSTI)

The Acord 1-26 well is a hot, dry well peripheral to the Roosevelt Hot Springs known geothermal resource area (KGRA) in southwestern Utah. The bottom-hole temperature in this 3854-m-deep well is 230/sup 0/C, and the thermal gradient is 54/sup 0/C/km. The basal 685 m, comprised of biotite monzonite and quartz schist and gneiss, is a likely hot, dry rock (HDR) prospect. The hole was drilled in a structural low within the Milford Valley graben and is separated from the Roosevelt KGRA to the east by the Opal Mound Fault and other basin faults. An interpretation of seismic data approximates the subsurface structure around the well using the lithology in the Acord 1-26 well. The hole was drilled with a minimum of difficulty, and casing was set to 2411 m. From drilling and geophysical logs, it is deduced that the subsurface blocks of crystalline rock in the vicinity of the Acord 1-26 well are tight, dry, shallow, impermeable, and very hot. A hydraulic fracture test of the crystalline rocks below 3170 m is recommended. Various downhole tools and techniques could be tested in promising HDR regimes within the Acord 1-26 well.

Shannon, S.S. Jr.; Pettitt, R.; Rowley, J.; Goff, F.; Mathews, M.; Jacobson, J.J.

1983-08-01T23:59:59.000Z

170

REPORT ON ATOMIZATION TESTS FOR PROJECT TITLED - BIODIESEL BLENDS IN MICROTURBINE.  

DOE Green Energy (OSTI)

The injectors for the Capstone turbine have the general design shown in figure 1 below. It consists of an airblast atomizer with a cylindrical fuel nozzle and an annular air passage surrounding it. The airblast atomizer is surrounded by a 'mixing tube' with circular holes just downstream of the atomizer outlet and swirler holes further downstream. During operation, these holes bring 'hot' air/gases to help vaporize and provide premixed fuel and air for combustion downstream of the 'mixing' tube.

KRISHNA,C.R.

2007-01-01T23:59:59.000Z

171

Hot and Dense QCD Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

QCD Matter QCD Matter A Community White Paper on the Future of Relativistic Heavy-Ion Physics in the US Unraveling the Mysteries of the Strongly Interacting Quark-Gluon-Plasma Executive Summary This document presents the response of the US relativistic heavy-ion community to the request for comments by the NSAC Subcommittee, chaired by Robert Tribble, that is tasked to recommend optimizations to the US Nuclear Science Program over the next five years. The study of the properties of hot and dense QCD matter is one of the four main areas of nuclear physics research described in the 2007 NSAC Long Range Plan. The US nuclear physics community plays a leading role in this research area and has been instrumental in its most important discovery made over the past decade, namely that hot and dense QCD matter acts as a strongly interacting system with unique and previously unexpected

172

dist_hot_water.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

District Hot Water Usage Form District Hot Water Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed questionnaire is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

173

HotSpot | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HotSpot HotSpot HotSpot Current Central Registry Toolbox Version(s): 2.07.1 Code Owner: Department of Energy, Office of Emergency Operations and Lawrence Livermore National Laboratory (LLNL) Description: The HotSpot Health Physics Code is used for safety-analysis of DOE facilities handling nuclear material. Additionally, HotSpot provides emergency response personnel and emergency planners with a fast, field-portable set of software tools for evaluating incidents involving radioactive material. HotSpot provides a fast and usually conservative means for estimation of the radiation effects associated with atmospheric release of radioactive materials. The HotSpot atmospheric dispersion models are designed for near-surface releases, short-range (less than 10 km) dispersion, and short-term (less than 24 hours) release durations in

174

Geochemical studies at four northern Nevada hot spring areas. [Kyle Hot Springs, Leach Hot Springs, Buffalo Hot Springs, and Beowave Hot Springs  

DOE Green Energy (OSTI)

Water samples from both hot and cold sources in the hydrologic areas surrounding the hot springs were collected and analyzed. Analyses of major, trace, and radio-element abundances of the water samples and of associated rock samples are presented. From this study it is possible that trace- and major-element abundances and/or ratios may be discerned which are diagnostic as chemical geothermometers, complementing those of silica and alkali elements that are presently used. Brief discussions of mixing calculations, possible new chemical geothermometers, and interelement relationships are also included.

Wollenberg, H.; Bowman, H.; Asaro, F.

1977-08-01T23:59:59.000Z

175

The Universe Adventure - Atoms  

NLE Websites -- All DOE Office Websites (Extended Search)

Matter and Atoms Matter and Atoms Richard Feynman "If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed on to the next generations of creatures, what statement would contain the most information in the fewest words? I believe it is that...all things are made of atoms." -Richard P. Feynman, winner of the 1965 Nobel Prize in Physics All is atoms Matter is made of atoms, and atoms are comprised of protons, neutrons, and electrons. Everything in the Universe is made of matter. Though matter exists in many different forms, each form is made out of the same basic constituents: small particles called atoms. Atoms themselves are made of smaller particles: protons, neutrons, and electrons. Protons and neutrons are composed of even smaller particles called quarks.

176

Reading Comprehension - Atomic History  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic History Atomic History A Greek philosopher named Democritus said that all atoms are small, hard particles. He thought that atoms were made of a single material formed into different shapes and sizes. The word " _________ element compound mixture atom " is derived from the Greek word "atomos" which means "not able to be divided." In 1803, John Dalton, a school teacher, proposed his atomic theory. Dalton's theory states that elements (substances composed of only one type of _________ molecules ions atom ) combine in certain proportions to form _________ compounds atoms mixtures elements . In 1897, a British scientist named J. J. Thomson experimented with a cathode-ray tube which had a positively charged plate. The plate attracted negatively charged particles that we now call _________ protons neutrons

177

Atomic and Molecular Physics  

Science Conference Proceedings (OSTI)

... DG, * SRD 105 Physic Laboratory's Elemental ... Nuclear Physics SRD 144 Atomic Weights & ... Physical Constants SRD 121 Fundamental Physical ...

2012-10-10T23:59:59.000Z

178

Atomizing nozzle and process  

DOE Patents (OSTI)

High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

Anderson, I.E.; Figliola, R.S.; Molnar, H.M.

1993-07-20T23:59:59.000Z

179

Calibrated Atomic Force Microscopy  

Science Conference Proceedings (OSTI)

... Vorburger, SL Tan, NG Orji, J. Fu, Interlaboratory Comparison of Traceable Atomic Force Microscope Pitch Measurements, SPIE Proceedings Vol. ...

2011-10-28T23:59:59.000Z

180

Assessment of hot gas contaminant control  

SciTech Connect

The objective of this work is to gather data and information to assist DOE in responding to the NRC recommendation on hot gas cleanup by performing a comprehensive assessment of hot gas cleanup systems for advanced coal-based Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) including the status of development of the components of the hot gas cleanup systems, and the probable cost and performance impacts. The scope and time frame of information gathering is generally responsive to the boundaries set by the National Research council (NRC), but includes a broad range of interests and programs which cover hot gas cleanup through the year 2010. As the status of hot gas cleanup is continually changing, additional current data and information are being obtained for this effort from this 1996 METC Contractors` Review Meeting as well as from the 1996 Pittsburgh Coal Conference, and the University of Karlsruhe Symposium. The technical approach to completing this work consists of: (1) Determination of the status of hot gas cleanup technologies-- particulate collection systems, hot gas desulfurization systems, and trace contaminant removal systems; (2) Determination of hot gas cleanup systems cost and performance sensitivities. Analysis of conceptual IGCC and PFBC plant designs with hot gas cleanup have been performed. The impact of variations in hot gas cleanup technologies on cost and performance was evaluated using parametric analysis of the baseline plant designs and performance sensitivity.

Rutkowski, M.D.; Klett, M.G.; Zaharchuk, R.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ADVANCED HOT GAS FILTER DEVELOPMENT  

SciTech Connect

Iron aluminide hot gas filters have been developed using powder metallurgy techniques to form seamless cylinders. Three alloys were short-term corrosion tested in simulated IGCC atmospheres with temperatures between 925 F and 1200 F with hydrogen sulfide concentrations ranging from 783 ppm{sub v} to 78,300 ppm{sub v}. Long-term testing was conducted for 1500 hours at 925 F with 78,300 ppm{sub v}. The FAS and FAL alloys were found to be corrosion resistant in the simulated environments. The FAS alloy has been commercialized.

Matthew R. June; John L. Hurley; Mark W. Johnson

1999-04-01T23:59:59.000Z

182

DOE hot dry rock program  

DOE Green Energy (OSTI)

Hydraulic fracturing has been used to create and subsequently to enlarge the first hot dry rock heat-extraction loop at Fenton Hill, New Mexico. Encouraging results prompted the DOE to expand this project into a program of national scope. The elements of that Program and their present status are discussed. Emphasis is given the ongoing Fenton Hill Project where techniques and information developed in the existing research system will soon be used to produce a multiply-fractured engineering system in hotter rock at the same site. Recent results from research loop operation and progress in constructing the engineering system are reported. Although acoustic mapping and system geometry indicate that the primary hydraulic fractures are essentially vertical, relatively low fracturing pressure and absence of a sharp breakdown suggest that at Fenton Hill fracture initiation occurs by reopening of old natural fractures rather than by initiation of new ones. Flow patterns and temperature behavior suggest opening of additional old fractures as the loop is operated. Except where the hot fluid leaves the crack system to enter the production well, flow impedances are very low without either artificial propping or inflation by pressurization.

Nunz, G.J.

1980-01-01T23:59:59.000Z

183

Hot-Workability of IN706 Alloy  

Science Conference Proceedings (OSTI)

increases with increasing true strain rate. Because of dynamic recrystallization during hot deformation, a turning point appears on the curves of true stress with...

184

Oxidation and Hot Corrosion of Superalloys  

Science Conference Proceedings (OSTI)

boiler tubes, and incinerators. Since there is a variety of conditions that can induce hot corrosion of superalloys, a number of mechanisms have been developed.

185

Evidence of catalytic production of hot hydrogen in rf generated hydrogen/argon plasmas  

E-Print Network (OSTI)

In this paper the selective broadening of the atomic hydrogen lines in pure H2 and Ar/H2 mixtures in a large 'GEC' cell (36 cm length_ 14 cm ID) was mapped as a function of position, H2/Ar ratio, time, power, and pressure. Several observations regarding the selective line broadening were particularly notable as they are unanticipated on the basis of earlier models. First, the anomalous broadening of the Balmer lines was found to exist throughout the plasma, and not just in the region between the electrodes. Second, the broadening was consistently a complex function of the operating parameters particularly gas composition (highest in pure H2), position, power, time and pressure. Clearly not anticipated by earlier models were the findings that under some conditions the highest concentration of 'hot' (>10 eV) hydrogen was found at the entry end, and not in the high field region between the electrodes and that in other conditions, the hottest H was at the (exit) pump (also grounded electrode) end. Third, excitati...

Phillips, J; Akhtar, K; Dhandapani, B; Mills, R; Phillips, Jonathan; Chen, Chun-Ku; Akhtar, Kamran; Dhandapani, Bala; Mills, Randell

2005-01-01T23:59:59.000Z

186

Atomic Data for Mercury (Hg)  

Science Conference Proceedings (OSTI)

... Mercury (Hg) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Atomic Data for Mercury (Hg). ...

187

Atomic Data for Plutonium (Pu)  

Science Conference Proceedings (OSTI)

... Plutonium (Pu) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Atomic Data for Plutonium (Pu). ...

188

Atomic Data for Uranium (U )  

Science Conference Proceedings (OSTI)

... Uranium (U) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Atomic Data for Uranium (U). ...

189

Atomic Data for Thorium (Th)  

Science Conference Proceedings (OSTI)

... Thorium (Th) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Atomic Data for Thorium (Th). ...

190

Atomic Data for Hydrogen (H )  

Science Conference Proceedings (OSTI)

... Hydrogen (H) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Atomic Data for Hydrogen (H). ...

191

Atomic Data for Tungsten (W )  

Science Conference Proceedings (OSTI)

... Tungsten (W) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Atomic Data for Tungsten (W). ...

192

ATOMS PEACE WAR Eisenhower  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ATOMS ATOMS PEACE WAR Eisenhower and the Atomic Energy Commission Richard G. Hewlett and lack M. Roll With a Foreword by Richard S. Kirkendall and an Essay on Sources by Roger M. Anders University of California Press Berkeley Los Angeles London Published 1989 by the University of California Press Berkeley and Los Angeles, California University of California Press, Ltd. London, England Prepared by the Atomic Energy Commission; work made for hire. Library of Congress Cataloging-in-Publication Data Hewlett, Richard G. Atoms for peace and war, 1953-1961. (California studies in the history of science) Bibliography: p. Includes index. 1. Nuclear energy-United States-History. 2. U.S. Atomic Energy Commission-History. 3. Eisenhower, Dwight D. (Dwight David), 1890-1969.

193

Metal atom oxidation laser  

DOE Patents (OSTI)

A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

Jensen, R.J.; Rice, W.W.; Beattie, W.H.

1975-10-28T23:59:59.000Z

194

Metal atom oxidation laser  

DOE Patents (OSTI)

A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

Jensen, R.J.; Rice, W.W.; Beattie, W.H.

1975-10-28T23:59:59.000Z

195

Hot-Work Tool Steels  

Science Conference Proceedings (OSTI)

Table 9   Recommended heat-treating practices for hot-work tool steels...1600 ? O, A 58??59 6F6 Not rec 845 (pack) 1550 (peak) (p) (p) 196 650??705 (1200??1300) (q) 925??955 (q) 1700??1750 (q) ? O (r) (s) 6F7 845??870 (1550??1600) 670 1240 22 40 260??300 730 (1350) 915 1675 ? A 54??55 6H1 Not rec 845 1550 22 (t) 40 (t) 202??235 760??790 (1400??1450) 900??940 1650??1725 ? A 48??49 6H2...

196

BOF steelmaking without hot metal  

SciTech Connect

This paper will discuss implementation of Z-BOP technology at Iscor's New Castle plant. The implementation program and operating results of Z-BOP-100 technology will be covered. The unique experience of the BOF shop operation without hot metal supply from the blast furnaces will also be described. This experience was a result of proprietary Z-BOP technology implementation at Iscor during its sole blast furnace reline. The Z-BOP is a family of technologies operating with scrap ratios in the charge from 30 to 100%. These technologies can be used in conventional top-blown BOF with virtually no equipment modifications. The principal additional energy source is lump coal, fed through existing BOF bin systems. Different modification of Z-BOP, originally used on the industrial scale at the West Siberian Steel Works, Russia, were utilized at several BOF facilities worldwide. Performance of the process and its main characteristics are discussed.

Gitman, G.; Galperine, G.; Grenader, I. (Zap Tech. Corp., Norcross, GA (United States)); Van der Merwe, F.O.; Newton, R.L. (Iscor Ltd., New Castle (South Africa))

1993-07-01T23:59:59.000Z

197

Atomic Spectroscopy: An Introduction  

Science Conference Proceedings (OSTI)

... 60. A. de-Shalit and I. Talmi, Nuclear Shell Theory (Academic, New York, 1963). ... CE Moore, Atomic Energy Levels, Natl. Stand. Ref. ...

198

NIST Atomic Spectra Database  

Science Conference Proceedings (OSTI)

... Ground states and ionization energies of atoms ... the US Department of Energy, by the ... SRDP), and by NIST's Systems Integration for Manufacturing ...

2013-09-12T23:59:59.000Z

199

Cold Atoms News  

Science Conference Proceedings (OSTI)

... the first time caused a gas of atoms ... mysterious data in ultracold gases of rubidium ... Material May Demonstrate Long-Sought 'Liquid' Magnetic State ...

2010-10-20T23:59:59.000Z

200

The Harnessed Atom  

Energy.gov (U.S. Department of Energy (DOE))

The Harnessed Atom is a new middle school science, technology, engineering, and math (STEM) curriculum extension that focuses on nuclear science and energy. It offers teachers accurate, unbiased,...

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Atomic Collapse Observed  

NLE Websites -- All DOE Office Websites (Extended Search)

Collapse State Observed Aided by Simulations, Scientists Observe Atomic Collapse State Quantum Mechanics Prediction Confirmed in Graphene Using NERSC's Hopper April 26, 2013 |...

202

Hot Dry Rock; Geothermal Energy  

SciTech Connect

The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

1990-01-01T23:59:59.000Z

203

Two-component model of the interaction of an interstellar cloud with surrounding hot plasma  

E-Print Network (OSTI)

We present a two-component gasdynamic model of an interstellar cloud embedded in a hot plasma. It is assumed that the cloud consists of atomic hydrogen gas, interstellar plasma is quasineutral. Hydrogen atoms and plasma protons interact through a charge exchange process. Magnetic felds and radiative processes are ignored in the model. The influence of heat conduction within plasma on the interaction between a cloud and plasma is studied. We consider the extreme case and assume that hot plasma electrons instantly heat the plasma in the interaction region and that plasma flow can be described as isothermal. Using the two-component model of the interaction of cold neutral cloud and hot plasma, we estimate the lifetime of interstellar clouds. We focus on the clouds typical for the cluster of local interstellar clouds embedded in the hot Local Bubble and give an estimate of the lifetime of the Local interstellar cloud where the Sun currently travels. The charge transfer between highly charged plasma ions and neutr...

Provornikova, E A; Lallement, R

2011-01-01T23:59:59.000Z

204

The hot dry rock geothermal energy program  

DOE Green Energy (OSTI)

The paper presents a simplified description of the Department of Energy's Hot-Dry-Rock program conducted at Fenton Hill, New Mexico. What a hot-dry-rock resource is and what the magnitude of the resource is are also described.

Smith, M.C.

1987-09-01T23:59:59.000Z

205

Meteorological TwinHot-Film Anemometry  

Science Conference Proceedings (OSTI)

A dual-sensor, twinhot-film anemometer is applied to meteorological measurement of wind velocity in fair and rainy weather. Two sensors, each with a pair of hot-films mounted side by side, were operated in constant-temperature mode and ...

Brian E. Thompson; Robert C. Hassman Jr.

2001-04-01T23:59:59.000Z

206

Prototype solar heating and hot water systems  

DOE Green Energy (OSTI)

This document is a collection of two quarterly status reports from Colt, Inc., covering the period from October 1, 1977 through June 30, 1978. Colt is developing two prototype solar heating and hot water systems consisting of the following subsystems: collector, storage, control, transport, hot water, and auxiliary energy. The two systems are being installed at Yosemite, California and Pueblo, Colorado.

Not Available

1978-04-01T23:59:59.000Z

207

HotSpot Software Configuration Management Plan  

SciTech Connect

This Software Configuration Management Plan (SCMP) describes the software configuration management procedures used to ensure that the HotSpot dispersion model meets the requirements of its user base, which includes: (1) Users of the PC version of HotSpot for consequence assessment, hazard assessment and safety analysis calculations; and (2) Users of the NARAC Web and iClient software tools, which allow users to run HotSpot for consequence assessment modeling These users and sponsors of the HotSpot software and the organizations they represent constitute the intended audience for this document. This plan is intended to meet Critical Recommendations 1 and 3 from the Software Evaluation of HotSpot and DOE Safety Software Toolbox Recommendation for inclusion of HotSpot in the Department of Energy (DOE) Safety Software Toolbox. HotSpot software is maintained for the Department of Energy Office of Emergency Operations by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL). An overview of HotSpot and NARAC are provided.

Walker, H; Homann, S G

2009-03-12T23:59:59.000Z

208

Building Energy Software Tools Directory: HOT2000  

NLE Websites -- All DOE Office Websites (Extended Search)

HOT2000 HOT2000 HOT2000 logo. Easy-to-use energy analysis and design software for low-rise residential buildings. Utilizing current heat loss/gain and system performance models, the program aids in the simulation and design of buildings for thermal effectiveness, passive solar heating and the operation and performance of heating and cooling systems. Keywords energy performance, design, residential buildings, energy simulation, passive solar Validation/Testing N/A Expertise Required Basic understanding of the construction and operation of residential buildings. Users Over 1400 worldwide. HOT2000 is used mainly in Canada and the United States with a few users in Japan and Europe. Audience Builders, design evaluators, engineers, architects, building and energy code writers, Policy writers. HOT2000 is also used as the compliance

209

Overview of Idaho National Laboratory's Hot Fuels Examination Facility  

SciTech Connect

The Hot Fuels Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) of the Idaho National Laboratory was constructed in the 1960s and opened for operation in the 1975 in support of the liquid metal fast breeder reactor research. Specifically the facility was designed to handle spent fuel and irradiated experiments from the Experimental Breeder Reactor EBRII, the Fast Flux Test Facility (FFTF), and the Transient Reactor Test Facility (TREAT). HFEF is a large alpha-gamma facility designed to remotely characterize highly radioactive materials. In the late 1980s the facility also began support of the US DOE waste characterization including characterizing contact-handled transuranic (CH-TRU) waste. A description of the hot cell as well as some of its primary capabilities are discussed herein.

Adam B. Robinson; R. Paul Lind; Daniel M. Wachs

2007-09-01T23:59:59.000Z

210

DOE Solar Decathlon: 2005 Contests and Scoring - Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

teams will install systems that can do even more. The Hot Water contest demonstrates that solar hot water heating systems can supply all the hot water we use daily - to bathe and...

211

Hyperbaric hydrothermal atomic force microscope  

SciTech Connect

A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

Knauss, Kevin G. (Livermore, CA); Boro, Carl O. (Milpitas, CA); Higgins, Steven R. (Laramie, WY); Eggleston, Carrick M. (Laramie, WY)

2002-01-01T23:59:59.000Z

212

Method for hot gas conditioning  

DOE Patents (OSTI)

A method for cracking and shifting a synthesis gas by the steps of providing a catalyst consisting essentially of alumina in a reaction zone; contacting the catalyst with a substantially oxygen free mixture of gases comprising water vapor and hydrocarbons having one or more carbon atoms, at a temperature between about 530.degree. C. (1000.degree. F.) to about 980.degree. C. (1800.degree. F.); and whereby the hydrocarbons are cracked to form hydrogen, carbon monoxide and/or carbon dioxide and the hydrogen content of the mixture increases with a corresponding decrease in carbon monoxide, and carbon formation is substantially eliminated.

Paisley, Mark A. (Upper Arlington, OH)

1996-02-27T23:59:59.000Z

213

Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal...

214

Energy Design Guidelines for High Performance Schools: Hot and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Design Guidelines for High Performance Schools: Hot and Humid Climates Energy Design Guidelines for High Performance Schools: Hot and Humid Climates School districts around...

215

Trace Element Geochemical Zoning in the Roosevelt Hot Springs...  

Open Energy Info (EERE)

Element Geochemical Zoning in the Roosevelt Hot Springs Thermal Area, Utah Abstract Chemical interaction of thermal brines with reservoir rock in the Roosevelt Hot Springs...

216

NREL: Continuum Magazine - Not Too Hot, Not Too Cold  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot, Not Too Cold Issue 5 Print Version Share this resource Not Too Hot, Not Too Cold Thermal management technologies increase vehicle energy efficiency and performance while...

217

Laser Cladding with Hybrid Hot Wire - Programmaster.org  

Science Conference Proceedings (OSTI)

Presentation Title, Laser Cladding with Hybrid Hot Wire ... The Laser Hot Wire process is used to deposit solid and cored wire products onto hydraulic shafts and...

218

Computational Weld Mechanics of Hot Crack Nucleation in Nickel ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Computational weld mechanics (CWM) is used to estimate the likelihood of hot crack nucleation in a welded joint. A hot crack nucleates when...

219

Commercial Solar Hot Water Financing Program | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the commercial solar hot water industry in Massachusetts. Commercial and non-profit building owners can use the financing program to install solar hot water systems that heat...

220

Direct Use for Building Heat and Hot Water Presentation Slides...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Direct Use for Building Heat and Hot Water Presentation Slides and Text Version Direct Use for Building Heat and Hot Water Presentation Slides and Text Version Download...

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alter EGO Impact Ego Hot Oil Treatment with Garlic (Original ...  

U.S. Energy Information Administration (EIA)

Alter EGO Impact Ego Hot Oil Treatment with Garlic (Original) 1000ml best seller, Hair Loss Treatment, Alter EGO Impact Ego Hot Oil Treatment with ...

222

FEMP Solar Hot Water Calculator | Open Energy Information  

Open Energy Info (EERE)

Solar Hot Water Calculator Jump to: navigation, search Name FEMP Solar Hot Water Calculator Abstract Online tool to help Federal agencies meet Energy Independence and Security Act...

223

Development of the JAERI (Japan Atomic Energy Research Institute) fuel cleanup system for tests at the Tritium Systems Test Assembly  

Science Conference Proceedings (OSTI)

Tritium Process Laboratory (TPL) at the Japan Atomic Energy Research Institute (JAERI) has developed the Fuel Cleanup System (FCU) which accepts simulated fusion reactor exhaust and produces pure hydrogen isotopes and tritium-free waste. The major components are: a palladium diffuser, a catalytic reactor, cold traps, a ceramic electrolysis cell, and zirconium-cobalt beds. In 1988, an integrated loop of the FCU process was installed in the TPL and a number of hot'' runs were performed to study the system characteristics and improve system performance. Under the US-Japan collaboration program, the JAERI Fuel Cleanup System'' (JFCU) was designed and fabricated by JAERI/TPL for testing at the Tritium Systems Test Assembly (TSTA) in Los Alamos National Laboratory as a major subsystem of the simulated fusion fuel cycle. The JFCU was installed in the TSTA in early 1990.

Konishi, S.; Inoue, M.; Hayashi, T.; Okuno, K.; Naruse, Y. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)); Barnes, J.W.; Anderson, J.L. (Los Alamos National Lab., NM (USA))

1990-01-01T23:59:59.000Z

224

Hot Leg Piping Materials Issues  

SciTech Connect

With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP).

V. Munne

2006-07-19T23:59:59.000Z

225

Atomic Scale Characterization of Compound Semiconductors using Atom Probe Tomography: Preprint  

DOE Green Energy (OSTI)

Internal interfaces are critical in determining the performance of III-V multijunction solar cells. Studying these interfaces with atomic resolution using a combination of transmission electron microscopy (TEM), atom probe tomography (APT), and density functional calculations enables a more fundamental understanding of carrier dynamics in photovoltaic (PV) device structures. To achieve full atomic scale spatial and chemical resolution, data acquisition parameters in laser pulsed APT must be carefully studied to eliminate surface diffusion. Atom probe data with minimized group V ion clustering and expected stoichiometry can be achieved by adjusting laser pulse power, pulse repetition rate, and specimen preparation parameters such that heat flow away from the evaporating surface is maximized. Applying these improved analysis conditions to III-V based PV gives an atomic scale understanding of compositional and dopant profiles across interfaces and tunnel junctions and the initial stages of alloy clustering and dopant accumulation. Details on APT experimental methods and future in-situ instrumentation developments are illustrated.

Gorman, B. P.; Guthrey, H.; Norman, A. G.; Al-Jassim, M.; Lawrence, D.; Prosa, T.

2011-07-01T23:59:59.000Z

226

Materials' Deformation Dynamics at Atomic Scale In situ Atomic ...  

Science Conference Proceedings (OSTI)

Presentation Title, Materials' Deformation Dynamics at Atomic Scale In situ Atomic .... What Can We Learn from Measurements of Li-ion Battery Single Particles?

227

Charm and Beauty in a Hot Environment  

E-Print Network (OSTI)

We discuss the spectral analysis of quarkonium states in a hot medium of deconfined quarks and gluons, and we show that such an analysis provides a way to determine the thermal properties of the quark-gluon plasma.

Helmut Satz

2006-02-28T23:59:59.000Z

228

Domestic Hot Water Event Schedule Generator - Energy ...  

Residential hot water use in the United States accounts for 14-25% of all the energy consumed in a home. With the rise of more advanced water heating ...

229

Extracting hot carriers from photoexcited semiconductor nanocrystals  

DOE Green Energy (OSTI)

During this funding period, we made a significant breakthrough and established for the first time that hot electron transfer from photoexcited NCs to an electron acceptor was indeed possible.

Zhu, Xiaoyang [Columbia University Department of Chemistry

2013-09-12T23:59:59.000Z

230

Calibrating Cylindrical Hot-Film Anemometer Sensors  

Science Conference Proceedings (OSTI)

We report the results of 82 separate calibrations of cylindrical, platinum hot-film anemometer sensors in air. The calibrations for each sensor involved a determination of its temperature-resistance characteristics, a study of its heat transfer ...

Edgar L. Andreas; Brett Murphy

1986-06-01T23:59:59.000Z

231

general_atomics.cdr  

Office of Legacy Management (LM)

from the U.S. Department of Energy (DOE). Discussions between DOE and General Atomics led to an agreed cost-sharing and no-fee arrangement for the decontamination and site...

232

Advanced Hot-Gas Desulfurization Sorbents  

Science Conference Proceedings (OSTI)

Integrated gasification combined cycle (IGCC) power systems are being advanced worldwide for generating electricity from coal due to their superior environmental performance, economics, and efficiency in comparison to conventional coal-based power plants. Hot gas cleanup offers the potential for higher plant thermal efficiencies and lower cost. A key subsystem of hot-gas cleanup is hot-gas desulfurization using regenerable sorbents. Sorbents based on zinc oxide are currently the leading candidates and are being developed for moving- and fluidized- bed reactor applications. Zinc oxide sorbents can effectively reduce the H{sub 2}S in coal gas to around 10 ppm levels and can be regenerated for multicycle operation. However, all current first-generation leading sorbents undergo significant loss of reactivity with cycling, as much as 50% or greater loss in only 25-50 cycles. Stability of the hot-gas desulfurization sorbent over 100`s of cycles is essential for improved IGCC economics over conventional power plants. This project aims to develop hot-gas cleanup sorbents for relatively lower temperature applications, 343 to 538{degrees}C with emphasis on the temperature range from 400 to 500{degrees}. Recent economic evaluations have indicated that the thermal efficiency of IGCC systems increases rapidly with the temperature of hot-gas cleanup up to 350{degrees}C and then very slowly as the temperature is increased further. This suggests that the temperature severity of the hot-gas cleanup devices can be reduced without significant loss of thermal efficiency. The objective of this study is to develop attrition-resistant advanced hot-gas desulfurization sorbents which show stable and high sulfidation reactivity at 343{degrees}C (650{degrees}F) to 538{degrees}C(1OOO{degrees}F) and regenerability at lower temperatures than leading first generation sorbents.

Jothimurugesan, K.; Gangwal, S.K.; Gupta, R.; Turk, B.S.

1997-07-01T23:59:59.000Z

233

Sharing the atom bomb  

Science Conference Proceedings (OSTI)

Shaken by the devastation of Hiroshima and Nagasaki and fearful that the American atomic monopoly would spark an arms race, Dean Acheson led a push in 1946 to place the bomb-indeed, all atomic energy-under international control. But as the memories of wartime collaboration faded, relations between the superpowers grew increasingly tense, and the confrontational atmosphere undid his proposal. Had Acheson succeeded, the Cold War might not have been. 2 figs.

Chace, J.

1996-01-01T23:59:59.000Z

234

Metal atomization spray nozzle  

DOE Patents (OSTI)

A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.

Huxford, Theodore J. (Harriman, TN)

1993-01-01T23:59:59.000Z

235

Metal atomization spray nozzle  

DOE Patents (OSTI)

A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

Huxford, T.J.

1993-11-16T23:59:59.000Z

236

Effects of atomic radiation  

SciTech Connect

This book focuses on the lifelong effects of atomic radiation exposure in language understandable by the concerned layperson or the specialist in another field. The base of knowledge used is the work of the Atomic Bomb Casualty Commission and its successor since 1975 the Radiation Effects Research Foundation. Within the range of Chronic effects on human health the book provides a thorough review, although effects of nonionizing radiation, effects on structures, effects on other living species, and acute effects are not discussed.

Schull, W.J.

1995-12-31T23:59:59.000Z

237

Atomizing nozzle and method  

DOE Patents (OSTI)

A high pressure close-coupled gas atomizing nozzle includes multiple discrete gas jet discharge orifices having aerodynamically designed convergent-divergent geometry with an first converging section communicated to a gas supply manifold and to a diverging section by a constricted throat section to increase atomizing gas velocity. The gas jet orifices are oriented at gas jet apex angle selected relative to the melt supply tip apex angle to establish a melt aspiration condition at the melt supply tip.

Ting, Jason (Ames, IA); Anderson, Iver E. (Ames, IA); Terpstra, Robert L. (Ames, IA)

2000-03-16T23:59:59.000Z

238

Atomic Data for Americium (Am)  

Science Conference Proceedings (OSTI)

... Atomic Number = 95. Atomic Weight = (243). Reference E95. Isotope, Mass, Abundance, Spin, Mag Moment, 241 Am, 241.056823, 0, 5/2, +1.61. ...

239

Spectroscopy and atomic force microscopy of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectroscopy Spectroscopy and atomic force microscopy of biomass L. Tetard a,b , A. Passian a,b,n , R.H. Farahi a , U.C. Kalluri c , B.H. Davison c , T. Thundat a,b a Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA b Department of Physics, University of Tennessee, Knoxville, TN 37996, USA c Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA a r t i c l e i n f o Keywords: Atomic force microscopy Spectroscopy Plant cells Biomass Nanomechanics a b s t r a c t Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass

240

High energy atomic chemistry and chemical radiation effects. Progress report, January 1, 1973--December 31, 1973  

SciTech Connect

Research progress is reported on high energy atomic chemistry studies that include stopping power research; classical trajectory calculations; F to HF abstraction reactions; hot substitution reactions; and fast neutron dosimetry. A listing is included of technical publications resulting from the research and manuscripts in preparation. Abstracts of technical papers scheduled for presentation are also included. (DHM)

1973-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Questions and Answers - How do atoms form?  

NLE Websites -- All DOE Office Websites (Extended Search)

(Biggest and smallest atom?) Questions and Answers Main Index Next Question (Does gravity affect atoms?) Does gravity affect atoms? How do atoms form? The current view is that...

242

Questions and Answers - Can you crush atoms?  

NLE Websites -- All DOE Office Websites (Extended Search)

Does gravity affect atoms? Previous Question (Does gravity affect atoms?) Questions and Answers Main Index Next Question (Parts and weights of atoms?) Parts and weights of atoms?...

243

Overcoming JVM HotSwap constraints via binary rewriting  

Science Conference Proceedings (OSTI)

Java HotSpot VM provides a facility for replacing classes at runtime called HotSwap. One design property of HotSwap is that the signature of a replaced class must remain the same between different versions, which significantly constrains the programmer ... Keywords: HotSwap, JVM languages, binary refactoring, virtual superclass

Dong Kwan Kim; Eli Tilevich

2008-10-01T23:59:59.000Z

244

The Metallurgical Aspects of Hot Isotastically Pressed Superalloy ...  

Science Conference Proceedings (OSTI)

THE METALLURGICAL ASPECTS OF HOT ISOSTATICALLY. PRESSED SUPERALLOY CASTINGS. K. C. Antony. Stellite. Division,. Cabot Corporation.

245

ADVANCED HOT GAS FILTER DEVELOPMENT  

SciTech Connect

This report describes the fabrication and testing of continuous fiber ceramic composite (CFCC) based hot gas filters. The fabrication approach utilized a modified filament winding method that combined both continuous and chopped fibers into a novel microstructure. The work was divided into five primary tasks. In the first task, a preliminary set of compositions was fabricated in the form of open end tubes and characterized. The results of this task were used to identify the most promising compositions for sub-scale filter element fabrication and testing. In addition to laboratory measurements of permeability and strength, exposure testing in a coal combustion environment was performed to asses the thermo-chemical stability of the CFCC materials. Four candidate compositions were fabricated into sub-scale filter elements with integral flange and a closed end. Following the 250 hour exposure test in a circulating fluid bed combustor, the retained strength ranged from 70 t 145 percent of the as-fabricated strength. The post-test samples exhibited non-catastrophic failure behavior in contrast to the brittle failure exhibited by monolithic materials. Filter fabrication development continued in a filter improvement and cost reduction task that resulted in an improved fiber architecture, the production of a net shape flange, and an improved low cost bond. These modifications were incorporated into the process and used to fabricate 50 full-sized filter elements for testing in demonstration facilities in Karhula, Finland and at the Power Systems Development Facility (PSDF) in Wilsonville, AL. After 581 hours of testing in the Karhula facility, the elements retained approximately 87 percent of their as-fabricated strength. In addition, mechanical response testing at Virginia Tech provided a further demonstration of the high level of strain tolerance of the vacuum wound filter elements. Additional testing in the M. W. Kellogg unit at the PSDF has accumulated over 1800 hours of coal firing at temperatures of 760 C including a severe thermal upset that resulted in the failure of several monolithic oxide elements. No failures of any kind have been reported for the MTI CFCC elements in either of these test campaigns. Additional testing is planned at the M. W. Kellogg unit and Foster Wheeler unit at the PSDF over the next year in order to qualify for consideration for the Lakeland PCFB. Process scale-up issues have been identified and manufacturing plans are being evaluated to meet the needs of future demand.

RICHARD A. WAGNER

1998-09-04T23:59:59.000Z

246

Peaceful Uses of the Atom and Atoms for Peace  

Office of Scientific and Technical Information (OSTI)

Peaceful Uses of the Atom Peaceful Uses of the Atom Fermi and Atoms for Peace · Understanding the Atom · Seaborg · Teller Atoms for Peace Atoms for Peace + 50 - Conference, October 22, 2003 Celebrating the 50th anniversary of President Eisenhower's "Atoms for Peace" speech to the UN General Assembly Atoms for Peace (video 12:00 Minutes) Atoms for Peace Address given by Dwight D. Eisenhower before the General Assembly of the United Nations, New York City, December 8, 1953 Documents: Atomic Power in Space: A History A history of the Space Isotope Power Program of the United States from the mid-1950s through 1982; interplanetary space exploration successes and achievements have been made possible by this technology. Establishing Site X: Letter, Arthur H. Compton to Enrico Fermi, September 14, 1942

247

Photoluminescence study of GaAs films on Si(100) grown by atomic hydrogen-assisted molecular beam epitaxy  

Science Conference Proceedings (OSTI)

Keywords: atomic hydrogen-mediated epitaxy, lattice-mismatched heteroepitaxy, minority carrier lifetime, molecular beam epitaxy, photoluminescence decay, solar cells

Yoshitaka Okada; Shigeru Ohta; Akio Kawabata; Hirofumi Shimomura; Mitsuo Kawabe

1994-03-01T23:59:59.000Z

248

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014001 (11pp) doi:10.1088/0029-5515/50/1/014001  

E-Print Network (OSTI)

are not met. Full or assisted remote handling is needed in the NBI cell. On the other hand, at the side for the hot cells located in the NBI hall to allow accessibility to the neighboring cells, accurate assessment inside ITER building during both operation and after shutdown is required to: (a) identify the hot loca

249

HotPatch Web Gateway: Statistical Analysis of Unusual Patches on Protein Surfaces  

DOE Data Explorer (OSTI)

HotPatch finds unusual patches on the surface of proteins, and computes just how unusual they are (patch rareness), and how likely each patch is to be of functional importance (functional confidence (FC).) The statistical analysis is done by comparing your protein's surface against the surfaces of a large set of proteins whose functional sites are known. Optionally, HotPatch can also write a script that will display the patches on the structure, when the script is loaded into some common molecular visualization programs. HotPatch generates complete statistics (functional confidence and patch rareness) on the most significant patches on your protein. For each property you choose to analyze, you'll receive an email to which will be attached a PDB-format file in which atomic B-factors (temp. factors) are replaced by patch indices; and the PDB file's Header Remarks will give statistical scores and a PDB-format file in which atomic B-factors are replaced by the raw values of the property used for patch analysis (for example, hydrophobicity instead of hydrophobic patches). [Copied with edits from http://hotpatch.mbi.ucla.edu/

Pettit, Frank K.; Bowie, James U.(DOE-Molecular Biology Institute)

250

NIST Atomic Spectroscopy Data Center  

Science Conference Proceedings (OSTI)

Atomic Spectroscopy Data Center. ... Responds to user requests for data, literature references, and technical information. ...

2011-11-29T23:59:59.000Z

251

Lesson 3- Atoms and Isotopes  

Energy.gov (U.S. Department of Energy (DOE))

Youve probably heard people refer to nuclear energy as atomic energy. Why? Nuclear energy is the energy that is stored in the bonds of atoms, inside the nucleus. Nuclear power plants are designed to capture this energy as heat and convert it to electricity. This lesson looks closely at what atoms are and how atoms store energy.

252

Investigation of Fuel Cell System Performance and Operation: A Fuel Cell as a Practical  

E-Print Network (OSTI)

The low-grade heat from the fuel cell is utilized at the domestic hot water storage tank with a double The low-grade fuel cell heat feeds a heat exchanger to supply domestic hot water requirementsInvestigation of Fuel Cell System Performance and Operation: A Fuel Cell as a Practical Distributed

253

JILA Researchers Discover Atomic Clock Can Simulate ...  

Science Conference Proceedings (OSTI)

... Artist's conception of interactions among atoms in JILA's strontium atomic clock during a quantum simulation experiment. ...

2013-08-20T23:59:59.000Z

254

University of Colorado Hot Water Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot water system Brief Contest Report Hot water system Brief Contest Report Recognizing that the sun is an abundant source of clean energy that reaches the earth at an intensity of up to 1000 Watts/m 2 , the University of Colorado will be showcasing top-of-the-line technology in which solar radiation is converted into heat for the purposes of heating the home and providing domestic hot water. Solar Thermal System - Basics Colorado's 2005 Solar Decathlon team has chosen to harness the sun's thermal energy with 4 arrays of 20 Mazdon evacuated tube collectors manufactured by Thermomax, as shown in Figure 1 below. These collectors have incredibly high efficiencies - about 60% over the course of an entire day. In addition, the evacuated tube collectors resist internal condensation and corrosion more effectively than their counterparts

255

Just Hot Resources Consulting | Open Energy Information  

Open Energy Info (EERE)

Hot Resources Consulting Hot Resources Consulting Jump to: navigation, search Name Just Hot Resources Consulting Place Windsor, California Zip 95492 Sector Geothermal energy Product A California-based consulting firm specializing in geothermal drilling project management. Coordinates 43.21638°, -89.340849° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.21638,"lon":-89.340849,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

Hot Pot Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Pot Geothermal Area Hot Pot Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Pot Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.922,"lon":-117.108,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

Hot Pot Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Hot Pot Geothermal Project Hot Pot Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hot Pot Geothermal Project Project Location Information Coordinates 40.996944444444°, -117.24805555556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.996944444444,"lon":-117.24805555556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Kepler constraints on planets near hot Jupiters  

SciTech Connect

We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

Steffen, Jason H.; /Fermilab; Ragozzine, Darin; /Harvard-Smithsonian Ctr. Astrophys.; Fabrycky, Daniel C.; /UC, Santa Cruz, Astron. Astrophys.; Carter, Joshua A.; /Harvard-Smithsonian Ctr. Astrophys.; Ford, Eric B.; /Florida U.; Holman, Matthew J.; /Harvard-Smithsonian Ctr. Astrophys.; Rowe, Jason F.; /NASA, Ames; Welsh, William F.; /San Diego State U., Astron. Dept.; Borucki, William J.; /NASA, Ames; Boss, Alan P.; /Carnegie Inst., Wash., D.C., DTM; Ciardi, David R.; /Caltech /Harvard-Smithsonian Ctr. Astrophys.

2012-05-01T23:59:59.000Z

259

Hot gas filter and system assembly  

DOE Patents (OSTI)

A filter element for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system.

Lippert, Thomas Edwin (Murrysville, PA); Palmer, Kathryn Miles (Monroeville, PA); Bruck, Gerald Joseph (Murrysville, PA); Alvin, Mary Anne (Pittsburgh, PA); Smeltzer, Eugene E. (Export, PA); Bachovchin, Dennis Michael (Murrysville, PA)

1999-01-01T23:59:59.000Z

260

Method for hot pressing beryllium oxide articles  

DOE Patents (OSTI)

The hot pressing of beryllium oxide powder into high density compacts with little or no density gradients is achieved by employing a homogeneous blend of beryllium oxide powder with a lithium oxide sintering agent. The lithium oxide sintering agent is uniformly dispersed throughout the beryllium oxide powder by mixing lithium hydroxide in an aqueous solution with beryllium oxide powder. The lithium hydroxide is converted in situ to lithium carbonate by contacting or flooding the beryllium oxide - lithium hydroxide blend with a stream of carbon dioxide. The lithium carbonate is converted to lithium oxide while remaining fixed to the beryllium oxide particles during the hot pressing step to assure uniform density throughout the compact.

Ballard, A.H.; Godfrey, T.G. Jr.; Mowery, E.H.

1986-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NLTE wind models of hot subdwarf stars  

E-Print Network (OSTI)

We calculate NLTE models of stellar winds of hot compact stars (central stars of planetary nebulae and subdwarf stars). The studied range of subdwarf parameters is selected to cover a large part of these stars. The models predict the wind hydrodynamical structure and provide mass-loss rates for different abundances. Our models show that CNO elements are important drivers of subdwarf winds, especially for low-luminosity stars. We study the effect of X-rays and instabilities on these winds. Due to the line-driven wind instability, a significant part of the wind could be very hot.

Krticka, Jiri; 10.1007/s10509-010-0385-z

2010-01-01T23:59:59.000Z

262

Hot dry rock venture risks investigation:  

DOE Green Energy (OSTI)

This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

Not Available

1988-01-01T23:59:59.000Z

263

Influence of copper to indium atomic ratio on the properties of Cu-In-Te based thin-film solar cells prepared by low-temperature co-evaporation  

SciTech Connect

The influence of copper to indium atomic ratio (Cu/In) on the properties of Cu-In-Te based thin films and solar cells was investigated. The films (Cu/In = 0.38-1.17) were grown on both bare and Mo-coated soda-lime glass substrates at 250 Degree-Sign C by single-step co-evaporation using a molecular beam epitaxy system. Highly (112)-oriented CuInTe{sub 2} films were obtained at Cu/In ratios of 0.84-0.99. However, stoichiometric and Cu-rich films showed a poor film structure with high surface roughness. The films consist of polyhedron-shaped grains, which are related to the coexistence of a Cu{sub 2-x}Te phase, and significant evidence for the coexistence of the Cu{sub 2-x}Te phase in the stoichiometric and Cu-rich films is presented. KCN treatment was performed for the films in order to remove the Cu{sub 2-x}Te phase. The stoichiometric CuInTe{sub 2} thin films exhibited a high mobility above 50 cm{sup 2}/V s at room temperature after the KCN treatment. A preliminary solar cell fabricated using a 1.4-{mu}m-thick Cu-poor CuInTe{sub 2} thin film (Cu/In = 0.84, E{sub g} = 0.988 eV) yielded a total-area efficiency of 2.10%. The photovoltaic performance of the cell was improved after long-term ambient aging in dark conditions.

Mise, Takahiro; Nakada, Tokio [Department of Electrical Engineering and Electronics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5258 (Japan)

2012-09-15T23:59:59.000Z

264

Economic Implications of Net Metering for Stationary and Motor Vehicle Fuel Cell Systems in California  

E-Print Network (OSTI)

); and · Similarly, use of PEM fuel cell waste heat for hot water heating would require careful integration with hot consider cogeneration of hot water to be a potential competitive advantage of stationary fuel cellsPWP-092 Economic Implications of Net Metering for Stationary and Motor Vehicle Fuel Cell Systems

Kammen, Daniel M.

265

Energy and environmental research emphasizing low-rank coal -- Task 3.10, Gas separation and hot-gas cleanup  

DOE Green Energy (OSTI)

Catalytic gasification of coal to produce H{sub 2}-, CO-, and CH{sub 4}-rich mixtures of gases for consumption in molten carbonate fuel cells is currently under development; however, to optimize the fuel cell performance and extend its operating life, it is desired to separate as much of the inert components (i.e., CO{sub 2} and N{sub 2}) and impurities (i.e., H{sub 2}S and NH{sub 3}) as possible from the fuel gas before it enters the fuel cell. In addition, the economics of the integrated gasification combined cycle (IGCC) can be improved by separating as much of the hydrogen as possible from the fuel, since hydrogen is a high-value product. Researchers at the Energy and Environmental Research Center (EERC) and Bend Research, Inc., investigated pressure-driven membranes as a method for accomplishing this gas separation and hot-gas cleanup. These membranes are operated at temperatures as high as 800 C and at pressures up to 300 psig. They have very small pore sizes that separate the undesirable gases by operating in the Knudsen diffusion region of mass transport or in the molecular sieving region of mass transport phenomena. In addition, H{sub 2} separation through a palladium metal membrane proceeds via a solution-diffusion mechanism for atomic hydrogen. This allows the membranes to exhibit extremely high selectivity for hydrogen separation. Specific questions to be answered in this project include: what are the effects of membrane properties (i.e., surface area, pore size, and coating thickness) on permeability and selectivity of the desired gases; what are the effects of operating conditions (i.e., temperature, pressure, and flow rate) on permeability and selectivity; what are the effects of impurities (i.e., small particulate, H{sub 2}S, HCl, NH{sub 3}, etc.) on membrane performance?

Swanson, M.L.

1995-08-01T23:59:59.000Z

266

Clean Energy: Fuel Cells, Batteries, Renewables - Materials ...  

Science Conference Proceedings (OSTI)

Major areas of rapid advancement include fuel cells, wind, solar, and geothermal ... Hot Section Corrosion Issues in Microturbines Operating on B100 Bio-Diesel.

267

Carbonate Fuel Cell Materials and Endurance Results  

Science Conference Proceedings (OSTI)

Abstract Scope, The high-temperature carbonate fuel cell is an ultra-clean and ... Hot Section Corrosion Issues in Microturbines Operating on B100 Bio-Diesel.

268

Hot Pot Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Pot Geothermal Area Hot Pot Geothermal Area (Redirected from Hot Pot Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Pot Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.922,"lon":-117.108,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Storage capacity in hot dry rock reservoirs  

DOE Patents (OSTI)

A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

Brown, D.W.

1997-11-11T23:59:59.000Z

270

STATE OF CALIFORNIA DOMESTIC HOT WATER (DHW)  

E-Print Network (OSTI)

: Heater Type CEC Certified Mfr Name & Model Number Distribution Type (Std, Point-of- Use, etc; and Pipe insulation for steam hydronic heating systems or hot water systems >15 psi, meets the requirements six or fewer dwelling units which have (1) less than 25' of distribution piping outdoors; (2) zero

271

Annual Meeting 2010 Hot Topics CD Set  

Science Conference Proceedings (OSTI)

For the very first time in AOCS Annual Meeting history, the Hot Topic Symposia presentations (audio synced with PowerPoint presentations) are now available on DVD. You can buy the complete set at this reduced price or choose to purchase individual

272

Transfer of hot dry rock technology  

DOE Green Energy (OSTI)

The Hot Dry Rock Geothermal Energy Development Program has focused worldwide attention on the facts that natural heat in the upper part of the earth's crust is an essentially inexhaustible energy resource which is accessible almost everywhere, and that practical means now exist to extract useful heat from the hot rock and bring it to the earth's surface for beneficial use. The Hot Dry Rock Program has successfully constructed and operated a prototype hot, dry rock energy system that produced heat at the temperatures and rates required for large-scale space heating and many other direct uses of heat. The Program is now in the final stages of constructing a larger, hotter system potentially capable of satisfying the energy requirements of a small, commercial, electrical-generating power plant. To create and understand the behavior of such system, it has been necessary to develop or support the development of a wide variety of equipment, instruments, techniques, and analyses. Much of this innovative technology has already been transferred to the private sector and to other research and development programs, and more is continuously being made available as its usefulness is demonstrated. This report describes some of these developments and indicates where this new technology is being used or can be useful to industry, engineering, and science.

Smith, M.C.

1985-11-01T23:59:59.000Z

273

Hot-dry-rock geothermal resource 1980  

DOE Green Energy (OSTI)

The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

Heiken, G.; Goff, F.; Cremer, G. (ed.)

1982-04-01T23:59:59.000Z

274

Plasma deposited rider rings for hot displacer  

DOE Patents (OSTI)

A hot cylinder for a cryogenic refrigerator having two plasma spray deposited rider rings of a corrosion and abrasion resistant material provided in the rider ring grooves, wherein the rider rings are machined to the desired diameter and width after deposition. The rider rings have gas flow flats machined on their outer surface.

Kroebig, Helmut L. (Rolling Hills, CA)

1976-01-01T23:59:59.000Z

275

Storage capacity in hot dry rock reservoirs  

DOE Patents (OSTI)

A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

Brown, Donald W. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

276

Task 6.5 - Gas Separation and Hot-Gas Cleanup  

DOE Green Energy (OSTI)

Catalytic gasification of coal to produce H{sub 2}- and CH{sub 4}-rich gases for consumption in molten carbonate fuel cells is currently under development; however, to optimize the fuel cell performance and extend its operating life, it is desired to separate as much of the inerts (i.e., CO{sub 2} and N{sub 2}) and impurities (i.e., H{sub 2}S and NH{sub 3}) as possible from the fuel gas before they enter the fuel cell. In addition, the economics of the integrated gasification combined cycle (IGCC) can be improved by separating as much of the hydrogen as possible from the fuel, since hydrogen is a high-value product. One process currently under development by the Energy & Environmental Research Center (EERC) for accomplishing this gas separation and hot-gas cleanup involves gas separation membranes. These membranes are operated at temperatures as high as 800 C and pressures up to 300 psig. Some of these membranes can have very small pores (30-50 {angstrom}), which inefficiently separate the undesired gases by operating in the Knudsen diffusion region of mass transport. Other membranes with smaller pore sizes (<5 {angstrom}) operate in the molecular sieving region of mass transport phenomena, Dissolution of atomic hydrogen into thin metallic membranes made of platinum and palladium alloys is also being developed. Technological and economic issues that must be resolved before gas separation membranes are commercially viable include improved gas separation efficiency, membrane optimization, sealing of membranes in pressure vessels, high burst strength of the ceramic material, pore thermal stability, and material chemical stability. Hydrogen separation is dependent on the temperature, pressure, pressure ratio across the membrane, and ratio of permeate flow to total flow. For gas separation under Knudsen diffusion, increasing feed pressure and pressure ratio across the membrane should increase gas permeability; decreasing the temperature and the permeate-to-total flow ratio should also increase gas permeability. In the molecular sieving regime of mass transport, the inlet pressure and pressure ratio should have no effect on gas permeability, while increasing temperature should increase permeability.

Swanson, Michael L.; Ness Jr., Robert O.; Hurley, John P.; McCollor, Donald P.

1997-06-01T23:59:59.000Z

277

HOT ELECTRON ENERGY DISTRIBUTIONS FROM ULTRA-INTENSE LASER SOLID INTERACTIONS  

Science Conference Proceedings (OSTI)

Measurements of electron energy distributions from ultra-intense (>10{sup 19} W/cm{sup 2}) laser-solid interactions using an electron spectrometer are presented. These measurements were performed on the Vulcan petawatt laser at Rutherford Appleton Laboratory and the Callisto laser at Lawrence Livermore National Laboratory. The effective hot electron temperatures (T{sub hot}) have been measured for laser intensities (I{lambda}{sup 2}) from 10{sup 18} W/cm{sup 2} {micro}m{sup 2} to 10{sup 21} W/cm{sup 2} {micro}m{sup 2} for the first time, and T{sub hot} is found to increase as (I{lambda}{sup 2}){sup 0.34} {+-} 0.4. This scaling agrees well with the empirical scaling published by Beg et al. (1997), and is explained by a simple physical model that gives good agreement with experimental results and particle-in-cell simulations.

Chen, H; Wilks, S C; Kruer, W; Patel, P; Shepherd, R

2008-10-08T23:59:59.000Z

278

Formation of Antihydrogen Rydberg atoms in strong magnetic field traps  

SciTech Connect

It is shown that several features of antihydrogen production in nested Penning traps can be described with accurate and efficient Monte Carlo simulations. It is found that cold deeply-bound Rydberg states of antihydrogen (H-bar) are produced in three-body capture in the ATRAP experiments and an additional formation mechanism -Rydberg charge transfer-, particular to the nested Penning trap geometry, is responsible for the observed fast (hot) H-bar atoms. Detailed description of the numerical propagation technique for following extreme close encounters is given. An analytic derivation of the power law behavior of the field ionization spectrum is provided.

Pohl, T.; Sadeghpour, H. R. [ITAMP, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States)

2008-08-08T23:59:59.000Z

279

Results from Point Contact Tunnelling Spectroscopy and Atomic Layer Deposition  

SciTech Connect

We have shown previously that magnetic niobium oxides can influence the superconducting density of states at the surface of cavity-grade niobium coupons. We will present recent results obtained by Point Contact Tunneling spectroscopy (PCT) on coupons removed from hot and cold spots in a niobium cavity, as well as a comparative study of magnetic oxides on mild baked/unbaked electropolished coupons. We will also describe recent results obtained from coated cavities, ALD films properties and new materials using Atomic Layer Deposition (ALD).

Proslier, Th. [Illinois Institute of Technology; Zasadzinski, J. [Illinois Institute of Technology; Ciovati, Gianluigi [JLAB; Kneisel, Peter K. [JLAB; Elam, J. W. [ANL; Norem, J. [ANL; Pellin, M. J. [ANL

2009-11-01T23:59:59.000Z

280

Hot electron dynamics in graphene  

Science Conference Proceedings (OSTI)

Graphene, a two-dimensional (2D) honeycomb structure allotrope of carbon atoms, has a long history since the invention of the pencil [Petroski (1989)] and the linear dispersion band structure proposed by Wallace [Wal]; however, only after Novoselov et al. successively isolated graphene from graphite [Novoselov et al. (2004)], it has been studied intensively during the recent years. It draws so much attentions not only because of its potential application in future electronic devices but also because of its fundamental properties: its quasiparticles are governed by the two-dimensional Dirac equation, and exhibit a variety of phenomena such as the anomalous integer quantum Hall effect (IQHE) [Novoselov et al. (2005)] measured experimentally, a minimal conductivity at vanishing carrier concentration [Neto et al. (2009)], Kondo effect with magnetic element doping [Hentschel and Guinea (2007)], Klein tunneling in p-n junctions [Cheianov and Falko (2006), Beenakker (2008)], Zitterbewegung [Katsnelson (2006)], and Schwinger pair production [Schwinger (1951); Dora and Moessner (2010)]. Although both electron-phonon coupling and photoconductivity in graphene also draws great attention [Yan et al. (2007); Satou et al. (2008); Hwang and Sarma (2008); Vasko and Ryzhii (2008); Mishchenko (2009)], the nonequilibrium behavior based on the combination of electronphonon coupling and Schwinger pair production is an intrinsic graphene property that has not been investigated. Our motivation for studying clean graphene at low temperature is based on the following effect: for a fixed electric field, below a sufficiently low temperature linear eletric transport breaks down and nonlinear transport dominates. The criteria of the strength of this field [Fritz et al. (2008)] is eE = T2/~vF (1.1) For T >?eE~vF the system is in linear transport regime while for T

Ling, Meng-Cheieh

2011-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Federal Energy Management Program: Solar Hot Water Resources and  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Hot Water Solar Hot Water Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Hot Water Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Hot Water Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Hot Water Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Hot Water Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Hot Water Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Hot Water Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

282

Federal Energy Management Program: Covered Product Category: Hot Food  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot Food Holding Cabinets to someone by E-mail Hot Food Holding Cabinets to someone by E-mail Share Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on Facebook Tweet about Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on Twitter Bookmark Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on Google Bookmark Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on Delicious Rank Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on Digg Find More places to share Federal Energy Management Program: Covered Product Category: Hot Food Holding Cabinets on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories

283

EERE Roofus' Solar and Efficient Home: Solar Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

of Roofus, a golden retriever, sitting in front of three black, rectangular solar collectors. Sunshine is really hot, and it makes my roof get hot, too So I use a...

284

Solar Hot Water Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Hot Water Resources and Technologies Solar Hot Water Resources and Technologies Solar Hot Water Resources and Technologies October 7, 2013 - 11:49am Addthis Photo of a standalone solar hot water system standing in front of a clothesline with a backdrop of evergreen trees. This solar hot water system tracks sunlight using a standalone, single-axis mount to optimize hot water production for residential applications. This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector. Overview Although a large variety of solar hot water systems exist, the basic technology is simple. A collector absorbs and transfers heat from the sun to water, which is stored in a tank until needed. Active solar heating systems use circulating pumps and controls. These are more expensive but

285

Tenth Atomic Physics Program workshop  

Science Conference Proceedings (OSTI)

This report contains short papers and abstracts on the following main topics: Ion-atom collision theory; laser physics; spectroscopy of atoms; spectroscopy of ions; and high velocity collisions.

Not Available

1989-10-01T23:59:59.000Z

286

Nuclear effects in atomic transitions  

E-Print Network (OSTI)

Atomic electrons are sensitive to the properties of the nucleus they are bound to, such as nuclear mass, charge distribution, spin, magnetization distribution, or even excited level scheme. These nuclear parameters are reflected in the atomic transition energies. A very precise determination of atomic spectra may thus reveal information about the nucleus, otherwise hardly accessible via nuclear physics experiments. This work reviews theoretical and experimental aspects of the nuclear effects that can be identified in atomic structure data. An introduction to the theory of isotope shifts and hyperfine splitting of atomic spectra is given, together with an overview of the typical experimental techniques used in high-precision atomic spectroscopy. More exotic effects at the borderline between atomic and nuclear physics, such as parity violation in atomic transitions due to the weak interaction, or nuclear polarization and nuclear excitation by electron capture, are also addressed.

Plffy, Adriana

2011-01-01T23:59:59.000Z

287

Atomic Devices and Instrumentation Group  

Science Conference Proceedings (OSTI)

... 2001 and 2005, demonstrated an atomic clock physics package with ... magnetometers for magnetic anomaly detection, nuclear magnetic resonance ...

2013-08-09T23:59:59.000Z

288

Atom-Based Dimensional Metrology  

Science Conference Proceedings (OSTI)

... Awarded a five year, three phase DARPA contract to conduct collaborative research in atomically precise positioning, patterning and metrology ...

2013-04-19T23:59:59.000Z

289

Efficiency of Steam and Hot Water Heat Distribution Systems  

E-Print Network (OSTI)

Efficiency of Steam and Hot Water Heat Distribution Systems Gary Phetteplace September 1995- tion medium (steam or hot water) and temperature for heat distribution systems. The report discusses the efficiency of both steam and hot water heat distribution systems in more detail. The results of several field

290

home power 114 / august & september 2006 in Solar Hot Water  

E-Print Network (OSTI)

water entering the heat exchanger, and the hot water being produced. "I don't know..." I replied. The graphs show that the ultimate temperature of the solar-produced hot water is indeed higher therms) Percentage of hot water produced annually: Approximately 70 percent Equipment Collectors: Two

Knowles, David William

291

Hot Bottom Burning in Asymptotic Giant Branch Stars  

E-Print Network (OSTI)

Hot Bottom Burning in Asymptotic Giant Branch Stars By J OHN C. LATTANZ I O 1 , CHERYL A. FROST 1 state of knowledge about the phenomenon of Hot Bottom Burning as seen in Asymptotic Giant Branch stars. This is illustrated with some results from new 6M fi stellar models. 1. Introduction and Motivation Hot Bottom Burning

Lattanzio, John

292

Hot-spot mix in ignition-scale implosions on the NIF  

Science Conference Proceedings (OSTI)

Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraum x-ray drive [D. S. Clark et al., Phys. Plasmas 17, 052703 (2010)]. Richtmyer-Meshkov and Rayleigh-Taylor hydrodynamic instabilities seeded by high-mode () ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase [B. A. Hammel et al., Phys. Plasmas 18, 056310 (2011)]. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium-hydrogen-deuterium (THD) and deuterium-tritium (DT) cryogenic targets and gas-filled plastic-shell capsules, which replace the THD layer with a mass-equivalent CH layer, was examined. The inferred amount of hot-spot-mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code [J. J. MacFarlane et al., High Energy Density Phys. 3, 181 (2006)], is typically below the 75-ng allowance for hot-spot mix [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. Predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.

Regan, S. P.; Epstein, R.; McCrory, R. L.; Meyerhofer, D. D.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); Hammel, B. A.; Suter, L. J.; Ralph, J.; Scott, H.; Barrios, M. A.; Bradley, D. K.; Callahan, D. A.; Cerjan, C.; Collins, G. W.; Dixit, S. N.; Doeppner, T.; Edwards, M. J.; Farley, D. R.; Glenn, S.; Glenzer, S. H. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2012-05-15T23:59:59.000Z

293

Why is hydrogen's atomic number 1?  

NLE Websites -- All DOE Office Websites (Extended Search)

the number of protons in an atom's nucleus. Hydrogen's atomic number is 1 because all hydrogen atoms contain exactly one proton. Author: Steve Gagnon, Science Education Specialist...

294

NIST: Phys. Lab. Brochure; Atomic Physics Div.  

Science Conference Proceedings (OSTI)

... ultra-cold atoms and investigate atom optics for innovative instrumentation. Measure and analyze spectra of highly ionized atoms for fusion energy ...

295

Cancer in atomic bomb survivors  

SciTech Connect

This book presents information on the following topics: sampling of atomic bomb survivors and method of cancer detection in Hiroshima and Nagasaki; atomic bomb dosimetry for epidemiological studies of survivors in Hiroshima and Nagasaki; tumor and tissue registries in Hiroshima and Nagasaki; the cancer registry in Nagasaki, with atomic bomb survivor data, 1973-1977; cancer mortality; methods for study of delayed health effects of a-bomb radiation; experimental radiation carcinogenesis in rodents; leukemia, multiple myeloma, and malignant lymphoma; cancer of the thyroid and salivary glands; malignant tumors in atomic bomb survivors with special reference to the pathology of stomach and lung cancer; colorectal cancer among atomic bomb survivors; breast cancer in atomic bomb survivors; and ovarian neoplasms in atomic bomb survirors.

Shigematsu, I.; Kagan, A.

1986-01-01T23:59:59.000Z

296

Hot Springs Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Hot Springs Wind Farm Facility Hot Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Idaho Windfarms / John Deere Developer Idaho Windfarms Energy Purchaser Idaho Power Location Elmore County ID Coordinates 42.95°, -115.63° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.95,"lon":-115.63,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Method for hot pressing beryllium oxide articles  

DOE Patents (OSTI)

The hot pressing of beryllium oxide powder into high density compacts with little or no density gradients is achieved by employing a homogeneous blend of beryllium oxide powder with a lithium oxide sintering agent. The lithium oxide sintering agent is uniformly dispersed throughout the beryllium oxide powder by mixing lithium hydroxide in an aqueous solution with beryllium oxide powder. The lithium hydroxide is converted in situ to lithium carbonate by contacting or flooding the beryllium oxide-lithium hydroxide blend with a stream of carbon dioxide. The lithium carbonate is converted to lithium oxide while remaining fixed to the beryllium oxide particles during the hot pressing step to assure uniform density throughout the compact.

Ballard, Ambrose H. (Oak Ridge, TN); Godfrey, Jr., Thomas G. (Oak Ridge, TN); Mowery, Erb H. (Clinton, TN)

1988-01-01T23:59:59.000Z

298

Enabling Technologies for Ceramic Hot Section Components  

SciTech Connect

Silicon-based ceramics are attractive materials for use in gas turbine engine hot sections due to their high temperature mechanical and physical properties as well as lower density than metals. The advantages of utilizing ceramic hot section components include weight reduction, and improved efficiency as well as enhanced power output and lower emissions as a result of reducing or eliminating cooling. Potential gas turbine ceramic components for industrial, commercial and/or military high temperature turbine applications include combustor liners, vanes, rotors, and shrouds. These components require materials that can withstand high temperatures and pressures for long duration under steam-rich environments. For Navy applications, ceramic hot section components have the potential to increase the operation range. The amount of weight reduced by utilizing a lighter gas turbine can be used to increase fuel storage capacity while a more efficient gas turbine consumes less fuel. Both improvements enable a longer operation range for Navy ships and aircraft. Ceramic hot section components will also be beneficial to the Navy's Growth Joint Strike Fighter (JSF) and VAATE (Versatile Affordable Advanced Turbine Engines) initiatives in terms of reduced weight, cooling air savings, and capability/cost index (CCI). For DOE applications, ceramic hot section components provide an avenue to achieve low emissions while improving efficiency. Combustors made of ceramic material can withstand higher wall temperatures and require less cooling air. Ability of the ceramics to withstand high temperatures enables novel combustor designs that have reduced NO{sub x}, smoke and CO levels. In the turbine section, ceramic vanes and blades do not require sophisticated cooling schemes currently used for metal components. The saved cooling air could be used to further improve efficiency and power output. The objectives of this contract were to develop technologies critical for ceramic hot section components for gas turbine engines. Significant technical progress has been made towards maturation of the EBC and CMC technologies for incorporation into gas turbine engine hot-section. Promising EBC candidates for longer life and/or higher temperature applications relative to current state of the art BSAS-based EBCs have been identified. These next generation coating systems have been scaled-up from coupons to components and are currently being field tested in Solar Centaur 50S engine. CMC combustor liners were designed, fabricated and tested in a FT8 sector rig to demonstrate the benefits of a high temperature material system. Pretest predictions made through the use of perfectly stirred reactor models showed a 2-3x benefit in CO emissions for CMC versus metallic liners. The sector-rig test validated the pretest predictions with >2x benefit in CO at the same NOx levels at various load conditions. The CMC liners also survived several trip shut downs thereby validating the CMC design methodology. Significant technical progress has been made towards incorporation of ceramic matrix composites (CMC) and environmental barrier coatings (EBC) technologies into gas turbine engine hot-section. The second phase of the program focused on the demonstration of a reverse flow annular CMC combustor. This has included overcoming the challenges of design and fabrication of CMCs into 'complex' shapes; developing processing to apply EBCs to 'engine hardware'; testing of an advanced combustor enabled by CMCs in a PW206 rig; and the validation of performance benefits against a metal baseline. The rig test validated many of the pretest predictions with a 40-50% reduction in pattern factor compared to the baseline and reductions in NOx levels at maximum power conditions. The next steps are to develop an understanding of the life limiting mechanisms in EBC and CMC materials, developing a design system for EBC coated CMCs and durability testing in an engine environment.

Venkat Vedula; Tania Bhatia

2009-04-30T23:59:59.000Z

299

Enabling Technologies for Ceramic Hot Section Components  

DOE Green Energy (OSTI)

Silicon-based ceramics are attractive materials for use in gas turbine engine hot sections due to their high temperature mechanical and physical properties as well as lower density than metals. The advantages of utilizing ceramic hot section components include weight reduction, and improved efficiency as well as enhanced power output and lower emissions as a result of reducing or eliminating cooling. Potential gas turbine ceramic components for industrial, commercial and/or military high temperature turbine applications include combustor liners, vanes, rotors, and shrouds. These components require materials that can withstand high temperatures and pressures for long duration under steam-rich environments. For Navy applications, ceramic hot section components have the potential to increase the operation range. The amount of weight reduced by utilizing a lighter gas turbine can be used to increase fuel storage capacity while a more efficient gas turbine consumes less fuel. Both improvements enable a longer operation range for Navy ships and aircraft. Ceramic hot section components will also be beneficial to the Navy's Growth Joint Strike Fighter (JSF) and VAATE (Versatile Affordable Advanced Turbine Engines) initiatives in terms of reduced weight, cooling air savings, and capability/cost index (CCI). For DOE applications, ceramic hot section components provide an avenue to achieve low emissions while improving efficiency. Combustors made of ceramic material can withstand higher wall temperatures and require less cooling air. Ability of the ceramics to withstand high temperatures enables novel combustor designs that have reduced NO{sub x}, smoke and CO levels. In the turbine section, ceramic vanes and blades do not require sophisticated cooling schemes currently used for metal components. The saved cooling air could be used to further improve efficiency and power output. The objectives of this contract were to develop technologies critical for ceramic hot section components for gas turbine engines. Significant technical progress has been made towards maturation of the EBC and CMC technologies for incorporation into gas turbine engine hot-section. Promising EBC candidates for longer life and/or higher temperature applications relative to current state of the art BSAS-based EBCs have been identified. These next generation coating systems have been scaled-up from coupons to components and are currently being field tested in Solar Centaur 50S engine. CMC combustor liners were designed, fabricated and tested in a FT8 sector rig to demonstrate the benefits of a high temperature material system. Pretest predictions made through the use of perfectly stirred reactor models showed a 2-3x benefit in CO emissions for CMC versus metallic liners. The sector-rig test validated the pretest predictions with >2x benefit in CO at the same NOx levels at various load conditions. The CMC liners also survived several trip shut downs thereby validating the CMC design methodology. Significant technical progress has been made towards incorporation of ceramic matrix composites (CMC) and environmental barrier coatings (EBC) technologies into gas turbine engine hot-section. The second phase of the program focused on the demonstration of a reverse flow annular CMC combustor. This has included overcoming the challenges of design and fabrication of CMCs into 'complex' shapes; developing processing to apply EBCs to 'engine hardware'; testing of an advanced combustor enabled by CMCs in a PW206 rig; and the validation of performance benefits against a metal baseline. The rig test validated many of the pretest predictions with a 40-50% reduction in pattern factor compared to the baseline and reductions in NOx levels at maximum power conditions. The next steps are to develop an understanding of the life limiting mechanisms in EBC and CMC materials, developing a design system for EBC coated CMCs and durability testing in an engine environment.

Venkat Vedula; Tania Bhatia

2009-04-30T23:59:59.000Z

300

Atomic data for fusion  

DOE Green Energy (OSTI)

This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A. (eds.) [eds.; Barnett, C.F.

1990-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Gas Turbine Hot Section Component Life Tracking  

Science Conference Proceedings (OSTI)

Damage tracking softwarebacked by comprehensive analysis techniquesprovides a means for owners/operators to independently track and predict life consumption for critical gas turbine hot section components. Results can be compared with equipment supplier formulated intervals. This report updates the development status of damage tracking software for managing life-cycle costs by improving owner/operator understanding of component life and life consumption as a function of turbine ...

2012-12-03T23:59:59.000Z

302

THERMAL PROCESSES GOVERNING HOT-JUPITER RADII  

SciTech Connect

There have been many proposed explanations for the larger-than-expected radii of some transiting hot Jupiters, including either stellar or orbital energy deposition deep in the atmosphere or deep in the interior. In this paper, we explore the important influences on hot-Jupiter radius evolution of (1) additional heat sources in the high atmosphere, the deep atmosphere, and deep in the convective interior; (2) consistent cooling of the deep interior through the planetary dayside, nightside, and poles; (3) the degree of heat redistribution to the nightside; and (4) the presence of an upper atmosphere absorber inferred to produce anomalously hot upper atmospheres and inversions in some close-in giant planets. In particular, we compare the radius expansion effects of atmospheric and deep-interior heating at the same power levels and derive the power required to achieve a given radius increase when night-side cooling is incorporated. We find that models that include consistent day/night cooling are more similar to isotropically irradiated models when there is more heat redistributed from the dayside to the nightside. In addition, we consider the efficacy of ohmic heating in the atmosphere and/or convective interior in inflating hot Jupiters. Among our conclusions are that (1) the most highly irradiated planets cannot stably have uB {approx}> 10 km s{sup -1} G over a large fraction of their daysides, where u is the zonal wind speed and B is the dipolar magnetic field strength in the atmosphere, and (2) that ohmic heating cannot in and of itself lead to a runaway in planet radius.

Spiegel, David S. [Astrophysics Department, Institute for Advanced Study, Princeton, NJ 08540 (United States); Burrows, Adam, E-mail: dave@ias.edu, E-mail: burrows@astro.princeton.edu [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)

2013-07-20T23:59:59.000Z

303

Residential hot water distribution systems: Roundtablesession  

Science Conference Proceedings (OSTI)

Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

2002-08-01T23:59:59.000Z

304

Hot Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Lake Geothermal Area Hot Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.33333333,"lon":-118.6,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

305

Artificial geothermal reservoirs in hot volcanic rock  

SciTech Connect

S>Some recent results from the Los Alamos program in which hydraulic fracturing is used for the recovery of geothermal energy are discussed. The location is about 4 kilometers west and south of the ring fault of the enormous Jemez Caldera in the northcentral part of New Mexico. It is shown that geothermal energy may be extracted from hot rock that does not contain circulating hot water or steam and is relatively impermeable. A fluid is pumped at high pressure into an isolated section of a wellbore. If the well is cased the pipe in this pressurized region is perforated as it is in the petroleum industry, so that the pressure may be applied to the rock, cracking it. A second well is drilled a few hundred feet away from the first. Cold water is injected through the first pipe, circulates through the crack, and hot water returns to the surface through the second pipe. Results are described and circumstances are discussed under which artiflcial geothermal reservoirs might be created in the basaltic rock of Hawaii. (MCW)

Aamodt, R.L.

1974-02-08T23:59:59.000Z

306

Hot Dry Rock Geothermal Energy Development Program  

DOE Green Energy (OSTI)

During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

1989-12-01T23:59:59.000Z

307

Graphene Penetrates Cell Membranes through Atomically Thin ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Biological Materials Science Symposium. Presentation Title, Graphene...

308

Questions and Answers - Does gravity affect atoms?  

NLE Websites -- All DOE Office Websites (Extended Search)

and Answers Main Index Next Question (Can you crush atoms?) Can you crush atoms? Does gravity affect atoms? Gravity affects atoms the same way it affects all other matter. Every...

309

Optics and interferometry with atoms and molecules  

E-Print Network (OSTI)

Interference with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory fields technique used in atomic ...

Cronin, Alexander D.

310

Magnetometry with entangled atomic samples  

E-Print Network (OSTI)

We present a theory for the estimation of a scalar or a vector magnetic field by its influence on an ensemble of trapped spin polarized atoms. The atoms interact off-resonantly with a continuous laser field, and the measurement of the polarization rotation of the probe light, induced by the dispersive atom-light coupling, leads to spin-squeezing of the atomic sample which enables an estimate of the magnetic field which is more precise than that expected from standard counting statistics. For polarized light and polarized atoms, a description of the non-classical components of the collective spin angular momentum for the atoms and the collective Stokes vectors of the light-field in terms of effective gaussian position and momentum variables is practically exact. The gaussian formalism describes the dynamics of the system very effectively and accounts explicitly for the back-action on the atoms due to measurement and for the estimate of the magnetic field. Multi-component magnetic fields are estimated by the measurement of suitably chosen atomic observables and precision and efficiency is gained by dividing the atomic gas in two or more samples which are entangled by the dispersive atom-light interaction.

Vivi Petersen; Lars Bojer Madsen; Klaus Molmer

2004-09-28T23:59:59.000Z

311

Laser Cooling and Cold Atomic Matter  

Science Conference Proceedings (OSTI)

Laser Cooling and Cold Atomic Matter: to advance the understanding and applications of cold atomic matter, including ...

2012-05-30T23:59:59.000Z

312

NIST - Atomic Energy Levels and Spectra Bibliographic ...  

Science Conference Proceedings (OSTI)

... in this database are from Bibliography on Atomic Energy Levels and ... references to atomic transition probabilities, line intensities, or broadening. ...

313

Atomic Energy Commission Takes Over Responsibility for all Atomic...  

National Nuclear Security Administration (NNSA)

Takes Over Responsibility for all Atomic Energy Programs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

314

Atomic total energies: Atomic Ref.Data Elec Struc Cal  

Science Conference Proceedings (OSTI)

... These tables contain the atomic total energies and orbital eigenvalues, for the ground electronic configuration of the elements H ... Definition of format ...

315

Atomic total energies: Atomic Ref. Data Elec. Struc. Cal.  

Science Conference Proceedings (OSTI)

... These tables contain the atomic total energies and orbital eigenvalues, for the ground electronic configuration of the elements H ... Definition of format ...

316

Advanced Concepts for Photovoltaic Cells  

DOE Green Energy (OSTI)

Novel approaches to high efficiency photovoltaic cells are discussed that are based on the use of semiconductor quantum dots to slow hot electron cooling and thus produce either enhanced photocurrents through impact ionization or enhanced photovoltages through hot electron transport and collection.

Nozik, A. J.

2003-05-01T23:59:59.000Z

317

Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, April 1--June 30, 1992  

SciTech Connect

This quarterly technical progress report summarizes work completed during the Seventh Quarter of the First Budget Period, April 1 through June 30, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion will include the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source; Hot Gas Cleanup Units to mate to all gas streams. Combustion Gas Turbine; Fuel Cell and associated gas treatment; and Externally Fired Gas Turbine/Water Augmented Gas Turbine. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

Not Available

1992-12-01T23:59:59.000Z

318

ATOMIC ENERGY COMMISSION  

Office of Legacy Management (LM)

' ' ATOMIC ENERGY COMMISSION Frank K. Pittman, Director, bivisioa of Waste &&gement and s- portation, Headquarters j CONTAMItUTED RX-AEC-OWNED OR LEASED FACILITIES' This memorandum responds to your TWX certain information on the above subject. the documentation necessary to answer your available due to the records disposal vailing at the time of release or From records that are available and from disc&ions with most familiar with the transfer operations, &have the current radiological conditibn of transferred property is adequate under present standards. The following tabulations follow the format suggested in your TWX and are grouped to an operations or contract r+ponsibility. A,I Ex-AEC Storage Sites - I r:/ National Stockpile Site '(NSS) and OperatEonal

319

NIST Atomic Spectra Bibliographic Databases  

Science Conference Proceedings (OSTI)

... The Atomic Energy Levels Data Center and Data Center on ... Reference Data Program (SRDP) and by NIST's Systems Integration for Manufacturing ...

2010-10-05T23:59:59.000Z

320

Atomic Devices and Instrumentation Group  

Science Conference Proceedings (OSTI)

... ten millionths of a second over the course of one day, and are paving the way for atomic-level timekeeping in portable, battery-operated systems ...

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NIST: Atomic Spectroscopy Group - Homepage  

Science Conference Proceedings (OSTI)

... The program in atomic spectroscopy at NIST provides accurate reference data on spectral lines and energy levels for a wide variety of important ...

2013-07-31T23:59:59.000Z

322

Technical Highlights Atomic Physics Division  

Science Conference Proceedings (OSTI)

... Physics Division is to develop and apply atomic physics research methods ... community, and to produce and critically compile physical reference data ...

2013-06-04T23:59:59.000Z

323

Solar-hot-water-heater lease program  

SciTech Connect

Ten domestic hot-water solar systems were installed, leased to homeowners, and monitored for two years. All of the systems were installed as back-ups to electric water heaters. The systems consist of two to four collectors, a solar storage tank (as well as the existing non-solar heater), and a heat exchanger package. Eight are three-collector systems, one is a four-collector and one a two-collector system. The systems were sized according to family size and predicted hot water demand. The monitoring consists of a separate KW reading on the non-solar water heater, a reading of gallons of how water consumed, and hot and cold outlet temperatures. The purpose for the study was fourfold: (1) to determine the level of acceptance by the general public of solar water heaters if available on a lease rather than a purchase basis; (2) to measure the actual energy savings to the average homeowner in central Illinois with a solar water heater; (3) to measure the potential reduction of Cilco's energy production requirements, should there be widespread utilization of these systems; and (4) to determine the feasibility of an entrepreneur making these systems available on a rental basis and remaining a going concern. The results of this study indicate that the leasing of solar equipment to homeowners has a more widespread acceptance than the direct purchase of such systems. Homeowners, however, do not want to spend as much money on monthly lease payments as the supplier of the equipment would deem necessary. This seriously questions the feasibility of an entrepreneurial leasing program.

Rutherford, S.

1983-04-01T23:59:59.000Z

324

Modelling and evaluation of the 3G mobile networks with hot-spot WLANs  

Science Conference Proceedings (OSTI)

An analytical modelling and evaluation approach is developed for the integrated 3G/WLAN networks. The cell residence times of different types of users are modelled as a general distribution to adapt various mobility environments. The explicit expressions ... Keywords: 3G cellular networks, CAC, call admission control, channel occupancy time, horizontal handoff, hot spot WLANs, integration, local area networks, mobile networks, modelling, performance evaluation, traffic analysis, vertical handoff, wireless LANs, wireless networks

Shensheng Tang; Wei Li

2007-01-01T23:59:59.000Z

325

Particulate hot gas stream cleanup technical issues  

Science Conference Proceedings (OSTI)

The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

Pontius, D.H.; Snyder, T.R.

1999-09-30T23:59:59.000Z

326

Hot Fuel Examination Facility/South  

SciTech Connect

This document describes the potential environmental impacts associated with proposed modifications to the Hot Fuel Examination Facility/South (HFEF/S). The proposed action, to modify the existing HFEF/S at the Argonne National Laboratory-West (ANL-W) on the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, would allow important aspects of the Integral Fast Reactor (IFR) concept, offering potential advantages in nuclear safety and economics, to be demonstrated. It would support fuel cycle experiments and would supply fresh fuel to the Experimental Breeder Reactor-II (EBR-II) at the INEL. 35 refs., 12 figs., 13 tabs.

Not Available

1990-05-01T23:59:59.000Z

327

Hot air drum evaporator. [Patent application  

DOE Patents (OSTI)

An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

Black, R.L.

1980-11-12T23:59:59.000Z

328

Hot Plasma Waves in Schwarzschild Magnetosphere  

E-Print Network (OSTI)

In this paper we examine the wave properties of hot plasma living in Schwarzschild magnetosphere. The 3+1 GRMHD perturbation equations are formulated for this scenario. These equations are Fourier analyzed and then solved numerically to obtain the dispersion relations for non-rotating, rotating non-magnetized and rotating magnetized plasma. The wave vector is evaluated which is used to calculate refractive index. These quantities are shown in graphs which are helpful to discuss the dispersive properties of the medium near the event horizon.

M. Sharif; Asma Rafique

2009-11-03T23:59:59.000Z

329

METHOD OF HOT ROLLING URANIUM METAL  

DOE Patents (OSTI)

A method is given for quickly and efficiently hot rolling uranium metal in the upper part of the alpha phase temperature region to obtain sound bars and sheets possessing a good surface finish. The uranium metal billet is heated to a temperature in the range of 1000 deg F to 1220 deg F by immersion iii a molten lead bath. The heated billet is then passed through the rolls. The temperature is restored to the desired range between successive passes through the rolls, and the rolls are turned down approximately 0.050 inch between successive passes.

Kaufmann, A.R.

1959-03-10T23:59:59.000Z

330

Multiple volume compressor for hot gas engine  

DOE Patents (OSTI)

A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.

Stotts, Robert E. (Clifton Park, NY)

1986-01-01T23:59:59.000Z

331

Control apparatus for hot gas engine  

DOE Patents (OSTI)

A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

Stotts, Robert E. (Clifton Park, NY)

1986-01-01T23:59:59.000Z

332

Neutrino-Accelerated Hot Hydrogen Burning  

E-Print Network (OSTI)

We examine the effects of significant electron anti-neutrino fluxes on hydrogen burning. Specifically, we find that the bottleneck weak nuclear reactions in the traditional pp-chain and the hot CNO cycle can be accelerated by anti-neutrino capture, increasing the energy generation rate. We also discuss how anti-neutrino capture reactions can alter the conditions for break out into the rp-process. We speculate on the impact of these considerations for the evolution and dynamics of collapsing very- and super- massive compact objects.

Chad T. Kishimoto; George M. Fuller

2006-06-23T23:59:59.000Z

333

Integrated Geophysical Exploration of a Known Geothermal Resource: Neal Hot  

Open Energy Info (EERE)

Geophysical Exploration of a Known Geothermal Resource: Neal Hot Geophysical Exploration of a Known Geothermal Resource: Neal Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Section: Integrated Geophysical Exploration of a Known Geothermal Resource: Neal Hot Springs Abstract We present integrated geophysical data to characterize a geothermal system at Neal Hot Springs in eastern Oregon. This system is currently being developed for geothermal energy production. The hot springs are in a region of complex and intersecting fault trends associated with two major extensional events, the Oregon-Idaho Graben and the Western Snake River Plain. The intersection of these two fault systems, coupled with high geothermal gradients from thin continental crust produces pathways for surface water and deep geothermal water interactions at Neal Hot Springs.

334

Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase  

Open Energy Info (EERE)

Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Abstract N/A Author U.S. Geothermal Inc. Published Publisher Not Provided, 2010 Report Number N/A DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement Citation U.S. Geothermal Inc.. 2010. Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement. Boise Idaho: (!) . Report No.: N/A. Retrieved from "http://en.openei.org/w/index.php?title=Idaho_Public_Utilities_Commission_Approves_Neal_Hot_Springs_Power_Purchase_Agreement&oldid=682748"

335

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Star Hot Water Systems for High Performance Homes Star Hot Water Systems for High Performance Homes 1 | Building America Program www.buildingamerica.gov Buildings Technologies Program Date: September 30, 2011 ENERGY STAR ® Hot Water Systems for High Performance Homes Welcome to the Webinar! We will start at 11:00 AM Eastern. There is no call in number. The audio will be sent through your computer speakers. All questions will be submitted via typing. Video of presenters Energy Star Hot Water Systems for High Performance Homes 2 | Building America Program www.buildingamerica.gov Energy Star Hot Water Systems for High Performance Homes 3 | Building America Program www.buildingamerica.gov Building America Program: Introduction Building Technologies Program Energy Star Hot Water Systems for High Performance Homes

336

Beowawe Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area (Redirected from Beowawe Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Beowawe Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Geofluid Geochemistry 11 NEPA-Related Analyses (0) 12 Exploration Activities (8) 13 References Map: Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Beowawe, Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

337

Building Energy Software Tools Directory: HOT2 XP  

NLE Websites -- All DOE Office Websites (Extended Search)

HOT2 XP HOT2 XP HOT2 XP logo. New member of the HOT2000 family of energy analysis software. Its graphical user interface and simplified input make it a quick and easy tool for analysing energy use in houses. However, the underlying engine is that of HOT2000 and thus provides a state of the art analysis. Keywords energy performance, design, residential buildings, energy simulation, passive solar Validation/Testing N/A Expertise Required Basic understanding of the construction and operation of residential buildings. Users New program, over 300 users. Audience Renovators, builders, utilities, home inspectors, design evaluators, engineers, architects, building and energy code writers, Policy writers, curious homeowners. HOT2XP is also used as the compliance software for the

338

Roosevelt Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area (Redirected from Roosevelt Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Roosevelt Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Heat Source 11 Geofluid Geochemistry 12 NEPA-Related Analyses (0) 13 Exploration Activities (9) 14 References Map: Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Milford, Utah Exploration Region: Northern Basin and Range Geothermal Region

339

Properties of Energetic Materials Reinforced by Open-Cell Metal ...  

Science Conference Proceedings (OSTI)

Thus the idea of using open-cell metal foams as heat conducting elements seems ... Composites Fabricated by Mechanical Alloying and Vacuum Hot Pressing.

340

Further Improvement of Aluminium Reduction Cell Resistance Slope ...  

Science Conference Proceedings (OSTI)

During the underfeeding regime from the lean side of the cell voltage vs alumina ... of Aluminum-alloy Welding Processes for Prediction of Hot Crack Formation.

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Thin film techniques for solid oxide fuel cells  

Thin film techniques for solid oxide fuel cells V.E.J. van Dieten and J. Schoonman Laboratory ... ticles stay in the hot temperature region can be ...

342

Hardware Materials in Carbonate Fuel Cell - Programmaster.org  

Science Conference Proceedings (OSTI)

Metallic materials are extensively utilized in fuel-cell module hardware (current ... A Study on the Hot Corrosion Resistance of Metal-cemet-glass Coating on...

343

Hot dry rock geothermal potential of Roosevelt Hot Springs area: review of data and recommendations  

DOE Green Energy (OSTI)

The Roosevelt Hot Springs area in west-central Utah possesses several features indicating potential for hot dry rock (HDR) geothermal development. The area is characterized by extensional tectonics and a high regional heat flow of greater than 105 mW/m/sup 2/. The presence of silicic volcanic rocks as young as 0.5 to 0.8 Myr and totaling 14 km/sup 3/ in volume indicates underlying magma reservoirs may be the heat source for the thermal anomaly. Several hot dry wells have been drilled on the periphery of the geothermal field. Information obtained on three of these deep wells shows that they have thermal gradients of 55 to 60/sup 0/C/km and bottom in impermeable Tertiary granitic and Precambrian gneissic units. The Tertiary granite is the preferred HDR reservoir rock because Precambrian gneissic rocks possess a well-developed banded foliation, making fracture control over the reservoir more difficult. Based on a fairly conservative estimate of 160 km/sup 2/ for the thermal anomaly present at Roosevelt Hot Springs, the area designated favorable for HDR geothermal exploration may be on the order of seven times or more than the hydrogeothermal area currently under development.

East, J.

1981-05-01T23:59:59.000Z

344

Atomic Energy for Military Purposes  

E-Print Network (OSTI)

Atomic Energy for Military Purposes: The Official Report on the Development of the Atomic Bomb member of the project, to draft a report about its activities. Smyth completed the report in the summer, in a censored version. On August 11, 1945, five days after the Allies dropped the first nuclear bomb on Japan

Landweber, Laura

345

THE DEVELOPMENT OF ATOMIC LAW  

SciTech Connect

Since a uniform federal statute hss not been passed in the German Federal Republic, the development of atomic law has centered around the formation of the Federal Ministry for Atomic Affairs, appeal to the German Commission, and the enactment of temporary laws in several of the states. (J.S.R.)

Fischerhof, H.

1958-08-01T23:59:59.000Z

346

Los Alamos hot dry rock geothermal project  

DOE Green Energy (OSTI)

The greatest potential for geothermal energy is the almost unlimited energy contained in the vast regions of hot, but essentially impermeable, rock within the first six or seven km of the Earth's crust. For the past five years, the Los Alamos Scientific Laboratory has been investigating and developing a practical, economical and environmentally acceptable method of extracting this energy. By early 1978, a 10 MW (thermal) heat extraction experiment will be in operation. In the Los Alamos concept, a man-made geothermal reservoir is formed by drilling into a region of suitably hot rock, and then creating within the rock a very large surface for heat transfer by large-scale hydraulic-fracturing techniques. After a circulation loop is formed by drilling a second hole to intersect the fractured region, the heat contained in this reservoir is brought to the surface by the buoyant closed-loop circulation of water. The water is kept liquid throughout the loop by pressurization, thereby increasing the rate of heat transport up the withdrawal hole compared to that possible with steam.

Brown, D.W.; Pettitt, R.A.

1977-01-01T23:59:59.000Z

347

Hot dry rock geothermal heat extraction  

DOE Green Energy (OSTI)

A man-made geothermal reservoir has been created at a depth of 2.7 km in hot, dry granite by hydraulic fracturing. The system was completed by directionally drilling a second well in close proximity with the top of the vertical fracture. In early 1978 heat was extracted from this reservoir for a period of 75 days. During this period thermal power was produced at an average rate of 4 MW(t). Theoretical analysis of th measured drawdown suggests a total fracture heat transfer area of 16,000 m/sup 2/. Viscous impedance to through-flow declined continuously so that at the end of the experiment this impedance was only one-fifth its initial value. Water losses to the surrounding rock formation also decreased continuously, and eventually this loss rate was less than 1% of the circulated flow rate. Geochemical analyses suggest that, with scale up of the heat transfer area and deeper, hotter reservoirs, hot dry rock reservoirs can ultimately produce levels of power on a commercial scale.

Murphy, H.D.

1979-01-01T23:59:59.000Z

348

Geothermal hot water pump. Final report  

DOE Green Energy (OSTI)

The design, testing and performance capabilities of a Geothermal Hot Water Pumping System being developed are described. The pumping system is intended to operate submerged in geothermal brine wells for extended periods of time. Such a system confines the hot brine in a closed-loop under pressure to prevent the liquid from flashing into steam, in addition to providing a means for reinjecting cooled water and the contaminants into a return well. The system consists of a single-stage centrifugal pump driven by an oil-cooled, high-speed electric motor with integral heat exchanger. For testing purposes a diesel engine driven 400 Hz generator is used for supplying power to the motor. In some areas where commercial power may not be available, the diesel-generator unit or either a rotating or solid state frequency converter may be used to produce the high frequency power required by the motor. Fabrication of a prototype system and testing of the electric motor at frequencies up to 250 Hz was completed. While testing at 275 Hz it was necessary to terminate the testing when the motor stator was damaged as a result of a mechanical failure involving the motor-dynamometer drive adaptor. Test results, although limited, confirm the design and indicate that the performance is as good, or better than predicted. These results also indicate that the motor is capable of achieving rated performance.

Not Available

1977-09-30T23:59:59.000Z

349

Deep drilling technology for hot crystalline rock  

SciTech Connect

The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

Rowley, J.C.

1984-01-01T23:59:59.000Z

350

Hot water can freeze faster than cold?!?  

E-Print Network (OSTI)

We review the Mpemba effect, where intially hot water freezes faster than initially cold water. While the effect appears impossible at first sight, it has been seen in numerous experiments, was reported on by Aristotle, Francis Bacon, and Descartes, and has been well-known as folklore around the world. It has a rich and fascinating history, which culminates in the dramatic story of the secondary school student, Erasto Mpemba, who reintroduced the effect to the twentieth century scientific community. The phenomenon, while simple to describe, is deceptively complex, and illustrates numerous important issues about the scientific method: the role of skepticism in scientific inquiry, the influence of theory on experiment and observation, the need for precision in the statement of a scientific hypothesis, and the nature of falsifiability. We survey proposed theoretical mechanisms for the Mpemba effect, and the results of modern experiments on the phenomenon. Studies of the observation that hot water pipes are more likely to burst than cold water pipes are also described.

Monwhea Jeng

2005-12-29T23:59:59.000Z

351

Redshift of photons penetrating a hot plasma  

E-Print Network (OSTI)

A new interaction, plasma redshift, is derived, which is important only when photons penetrate a hot, sparse electron plasma. The derivation of plasma redshift is based entirely on conventional axioms of physics, without any new assumptions. The calculations are only more exact than those usually found in the literature. When photons penetrate a cold and dense electron plasma, they lose energy through ionization and excitation, through Compton scattering on the individual electrons, and through Raman scattering on the plasma frequency. But when the plasma is very hot and has low density, such as in the solar corona, the photons lose energy also in plasma redshift, which is an interaction with the electron plasma. The energy loss of a photon per electron in the plasma redshift is about equal to the product of the photons energy and one half of the Compton cross-section per electron. This energy loss (plasma redshift of the photons) consists of very small quanta, which are absorbed by the plasma and cause a significant heating. In quiescent solar corona, this heating starts in the transition zone to the solar corona and is a major fraction of the coronal heating. Plasma redshift contributes also to the heating of the interstellar plasma, the galactic corona, and the intergalactic plasma. Plasma redshift explains

Ari Brynjolfsson

2005-01-01T23:59:59.000Z

352

Geothermal hot water pump. Final report  

SciTech Connect

The design, testing and performance capabilities of a Geothermal Hot Water Pumping System are described. The pumping system is intended to operate submerged in geothermal brine wells for extended periods of time. Such a system confines the hot brine in a closed-loop under pressure to prevent the liquid from flashing into steam, in addition to providing a means for reinjecting cooled water and the contaminates into a return well. The system consists of a single-stage centrifugal pump driven by an oil-cooled, high-speed electric motor with integral heat exchanger. For testing purposes a diesel engine driven 400 Hz generator is used for supplying power to the motor. In some areas where commercial power may not be available, the diesel-generator unit or either a rotating or solid state frequency converter may be used to produce the high frequency power required by the motor. Fabrication of a prototype system and testing of the electric motor at frequencies up to 250 Hz was completed. While testing at 275 Hz it was necessary to terminate the testing when the motor stator was damaged as a result of a mechanical failure involving the motor-dynamometer drive adaptor.

1977-09-30T23:59:59.000Z

353

Development of hot dry rock resources  

DOE Green Energy (OSTI)

The LASL Hot Dry Rock Geothermal Energy Project is the only U.S. field test of this geothermal resource. In the LASL concept, a man-made geothermal reservoir would be formed by drilling a deep hole into relatively impermeable hot rock, creating a large surface area for heat transfer by fracturing the rock hydraulically, then drilling a second hole to intersect the fracture to complete the circulation loop. In 1974, the first hole was drilled to a depth of 2929 m (9610 ft) and a hydraulic fracture was produced near the bottom. In 1975, a second hole was directionally drilled to intersect the fracture. Although the desired intersection was not achieved, a connection was made through which water was circulated. After a year's study of the fracture system, drilling began again in April 1977 and an improved connection was achieved. In September of 1977 a 5 MW (thermal) heat extraction and circulation experiment was conducted for 100 h as a preliminary test of the concept. An 1800-h circulation experiment was concluded on April 13, 1978 to determine temperature-drawdown, permeation water loss and flow characteristics of the pressurized reservoir, to examine chemistry changes in the circulating fluid, and to monitor for induced seismic effects.

Pettitt, R.A.; Tester, J.W.

1978-01-01T23:59:59.000Z

354

AtomicNuclear Properties  

NLE Websites -- All DOE Office Websites (Extended Search)

HTML_PAGES HTML_PAGES This AtomicNuclearProperties page is under intermittent development. Suggestions and comments are welcome. Please report errors. Chemical elements: For entries in red, a pull-down menu permits selection of the physical state. Cryogenic liquid densties are at the boiling point at 1 atm. 0n 1Ps 1H 2He 3Li 4Be 5B 6C 7N 8O 9F 10Ne 11Na 12Mg 13Al 14Si 15P 16S 17Cl 18Ar 19K 20Ca 21Sc 22Ti 23V 24Cr 25Mn 26Fe 27Co 28Ni 29Cu 30Zn 31Ga 32Ge 33As 34Se 35Br 36Kr 37Rb 38Sr 39Y 40Zr 41Nb 42Mo 43Tc 44Ru 45Rh 46Pd 47Ag 48Cd 49In 50Sn 51Sb 52Te 53I 54Xe 55Cs 56Ba 57La 72Hf 73Ta 74W 75Re 76Os 77Ir 78Pt 79Au 80Hg 81Tl 82Pb 83Bi 84Po 85At 86Rn 87Fr 88Ra 89Ac 104Rf 105Db 106Sg 107Bh 108Hs 109Mt 110Ds 111Rg 112 113 114 115 116 mt 118

355

Atomic, Molecular & Optical Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic, Molecular and Optical Sciences Atomic, Molecular and Optical Sciences The goal of the program is to understand the structure and dynamics of atoms and molecules using photons and ions as probes. The current program is focussed on studying inner-shell photo-ionization and photo-excitation of atoms and molecules, molecular orientation effects in slow collisions, slowing and cooling molecules, and X-ray photo-excitation of laser-dressed atoms. The experimental and theoretical efforts are designed to break new ground and to provide basic knowledge that is central to the programmatic goals of the Department of Energy (DOE). Unique LBNL facilities such as the Advanced Light Source (ALS), the ECR ion sources at the 88-inch cyclotron, and the National Energy Research Scientific Computing Center (NERSC) are

356

Spectral Emission of Moving Atom  

E-Print Network (OSTI)

A renewed analysis of the H.E. Ives and G.R. Stilwell's experiment on moving hydrogen canal rays (J. Opt. Soc. Am., 1938, v.28, 215) concludes that the spectral emission of a moving atom exhibits always a redshift which informs not the direction of the atom's motion. The conclusion is also evident from a simple energy relation: atomic spectral radiation is emitted as an orbiting electron consumes a portion of its internal energy on transiting to a lower-energy state which however has in a moving atom an additional energy gain; this results in a redshift in the emission frequency. Based on auxiliary experimental information and a scheme for de Broglie particle formation, we give a vigorous elucidation of the mechanism for deceleration radiation of atomic electron; the corresponding prediction of the redshift is in complete agreement with the Ives and Stilwell's experimental formula.

J. X. Zheng-Johansson

2006-06-17T23:59:59.000Z

357

Understanding The Chena Hot Springs, Alaska, Geothermal System Using  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Understanding The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Understanding The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Details Activities (7) Areas (1) Regions (0) Abstract: Chena Hot Springs is a small, moderate temperature, deep circulating geothermal system, apparently typical of those associated to hot springs of interior Alaska. Multi-stage drilling was used in some

358

Multispectral Imaging At Pilgrim Hot Springs Area (Prakash, Et...  

Open Energy Info (EERE)

Up Search Page Edit History Facebook icon Twitter icon Multispectral Imaging At Pilgrim Hot Springs Area (Prakash, Et Al., 2010) Jump to: navigation, search GEOTHERMAL...

359

Aerial Photography At Pilgrim Hot Springs Area (Prakash, Et Al...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Pilgrim Hot Springs Area (Prakash, Et Al., 2010) Exploration Activity Details Location...

360

Data Acquisition-Manipulation At Lake City Hot Springs Area ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Lake City Hot Springs Area (Warpinski, Et Al., 2004)...

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck,...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck, 1983) Jump to: navigation,...

362

Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity...

363

Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983) Jump to: navigation, search...

364

Phase diagram of hot quark matter under magnetic field  

Science Conference Proceedings (OSTI)

I review the computation of the phase diagram of hot quark matter in strong magnetic field, at zero baryon density, within an effective model of Quantum Chromodynamics.

Ruggieri, Marco [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

2010-12-22T23:59:59.000Z

365

Influence of Hot-strip Coiling Temperature on Microstructure and ...  

Science Conference Proceedings (OSTI)

Presentation Title, Influence of Hot-strip Coiling Temperature on Microstructure and Properties of Ultra-low C Ti-bearing Enamel Steel Produced by Ultra-fast...

366

Analysis on Wear Mechanism of Refractories Used in Hot Air ...  

Science Conference Proceedings (OSTI)

By analysis, the service life of hot wind stoves can be enhanced by the .... Production of Fe-Based Alloys by Metallothermic Reduction of Mill Scales from...

367

An Overview of Hot Corrosion in Waste to Energy Boiler ...  

Science Conference Proceedings (OSTI)

Presentation Title, An Overview of Hot Corrosion in Waste to Energy Boiler ... boiler designers, and boiler tube manufacturers since quite a few number of boiler...

368

Hydrogeologic investigation of Coso Hot Springs, Inyo County, California.  

Open Energy Info (EERE)

Hydrogeologic investigation of Coso Hot Springs, Inyo County, California. Hydrogeologic investigation of Coso Hot Springs, Inyo County, California. Final report October 1977--January 1978 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Hydrogeologic investigation of Coso Hot Springs, Inyo County, California. Final report October 1977--January 1978 Details Activities (2) Areas (1) Regions (0) Abstract: This investigation included: review of existing geologic, geophysical, and hydrologic information; field examination of geologic rock units and springs and other features of hydrologic significance and sampling of waters for chemical analysis; determination of the local Coso Hot Springs and regional groundwater hydrology, including consideration of recharge, discharge, movement, and water quality; and determination of the

369

Thermal Behavior of a Hot Moving Steel Plate during Jet ...  

Science Conference Proceedings (OSTI)

Presentation Title, Thermal Behavior of a Hot Moving Steel Plate during Jet Impingement Cooling. Author(s), Amir Hossein Nobari, Vladan Prodanovic,...

370

Hydrogeologic investigation of Coso Hot Springs, Inyo County...  

Open Energy Info (EERE)

and springs and other features of hydrologic significance and sampling of waters for chemical analysis; determination of the local Coso Hot Springs and regional groundwater...

371

Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen, Et Al., 1993)...

372

Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot Granular Salt Consolidation, Constitutive Model and Micromechanics Coupled Thermal-Hydrological-Mechanical Processes...

373

Thermal Gradient Holes At Pilgrim Hot Springs Area (DOE GTP)...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Pilgrim Hot Springs Area (DOE GTP) Exploration Activity Details...

374

Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration...

375

Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Exploration...

376

Thermal Gradient Holes At Spencer Hot Springs Area (Shevenell...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Spencer Hot Springs Area (Shevenell, Et Al., 2008) Exploration...

377

Pilgrim Hot Springs Project - PHASE 1 | Open Energy Information  

Open Energy Info (EERE)

2012 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Pilgrim Hot Springs Project - PHASE 1 Citation Alaska Energy Wiki. Pilgrim...

378

Idaho Public Utilities Commission Approves Neal Hot Springs Power...  

Open Energy Info (EERE)

Number NA DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase...

379

Ground Gravity Survey At Lake City Hot Springs Area (Warpinski...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity...

380

Ground Gravity Survey At Baltazor Hot Springs Area (Isherwood...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Baltazor Hot Springs Area (Isherwood & Mabey, 1978) Exploration Activity...

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Goddard Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Area: Goddard Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field...

382

Hot New Advances in Water Heating Technology | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY.GOV - Hot New Advances in Water Heating Technology April 18, 2013 Here at the Energy Department, we are working with our National Laboratories, private companies and...

383

Seismic baseline and induction studies- Roosevelt Hot Springs...  

Open Energy Info (EERE)

Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Seismic baseline and...

384

Fairmont Hot Springs Resort Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Fairmont Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Anaconda, Montana Coordinates 46.1285369, -112.9422641 Loading map......

385

Exploration Of The Upper Hot Creek Ranch Geothermal Resource...  

Open Energy Info (EERE)

Nye County, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada...

386

Alter Ego Impact Ego Hot Oil Treatment With Garlic  

U.S. Energy Information Administration (EIA)

Alter Ego Impact Ego Hot Oil Treatment With Garlic with best price and finish evaluation from a variety item for all item.

387

Store Deals Available: Discount Alter Ego Impact Ego Hot Oil ...  

U.S. Energy Information Administration (EIA)

Discount Alter Ego Impact Ego Hot Oil Treatment with Garlic 1000 ml, Alter EGO Energizing / Prevention Shampoo for Hair Loss & Growth 1000 ml, ...

388

Los Alamos Lab: NSO: Hot Spot: Director's Papers, Reviews  

NLE Websites -- All DOE Office Websites (Extended Search)

National Security Office. The Hot Spot page lists recently published Director's papers, book reviews, etc. Director's Paper: Safeguards at 40, LANL Director Michael Anastasio (pdf)...

389

Decay instability of Alfven waves in a hot plasma  

SciTech Connect

Using the approximation of two-fluid hydrodynamics, the matrix element of the three-wave interaction is shown to be nonzero in a hot plasma. (AIP)

Erokhin, N.S.; Moiseev, S.S.; Mukhin, V.V.

1978-09-01T23:59:59.000Z

390

Northeast electricity markets react to hot weather in late May ...  

U.S. Energy Information Administration (EIA)

Tools; Glossary All ... Northeast electricity markets react to hot weather in late May. Source: U.S. Energy Information Administration, based on New York ...

391

Glenwood Hot Springs Hotel Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Hotel Pool & Spa Low Temperature Geothermal Facility Facility Glenwood Hot Springs Hotel Sector Geothermal energy Type Pool and Spa Location Glenwood Springs, Colorado...

392

Innovative hot dip galvanizing process using Zinquench for ...  

Science Conference Proceedings (OSTI)

Comparison between laboratory ZQ-DG and conventional hot dip galvanizing results allows forecasting industrial application potential of ZQ-DG to process new...

393

Reflection Survey At Hot Sulphur Springs Area (Goranson, 2005...  

Open Energy Info (EERE)

Springs Area (Goranson, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Hot Sulphur Springs Area (Goranson, 2005)...

394

Core Holes At Hot Sulphur Springs Area (Goranson, 2005) | Open...  

Open Energy Info (EERE)

Springs Area (Goranson, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Hot Sulphur Springs Area (Goranson, 2005)...

395

Direct-Current Resistivity Survey At Beowawe Hot Springs Area...  

Open Energy Info (EERE)

Activity Details Location Beowawe Hot Springs Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown References Sabodh...

396

Hot Corrosion Resistant and High Strength Nickel-Based Single ...  

Science Conference Proceedings (OSTI)

Flow chart for the design of hot-corrosion resistant and high strength nickel- based single crystal superalloys. Fig.& Typical SEM image of designed single-.

397

Geothermal Literature Review At Breitenbush Hot Springs Area...  

Open Energy Info (EERE)

Exploration Activity Details Location Breitenbush Hot Springs Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown...

398

Geothermal Exploration in Hot Springs, Montana  

SciTech Connect

The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165???????????????????????????????°F exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250???????????????¢???????????????????????????????? of si lt and c lay deposits from Glacial Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the ???????????????¢????????????????????????????????center???????????????¢??????????????????????????????? of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165???????????????????????????????°F or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts

Toby McIntosh, Jackola Engineering

2012-09-26T23:59:59.000Z

399

RadBall Technology For Hot Cell Characterization  

Energy.gov (U.S. Department of Energy (DOE))

A new, non-electrical, remote radiation mapping device known as RadBall has been developed by the National Nuclear Laboratory (NNL) in the United Kingdom.

400

Braidwood Leaking Fuel Root Cause Hot Cell Investigation  

Science Conference Proceedings (OSTI)

Since the beginning of 2003, an increase in the number of leakers in 17x17 optimized fuel assembly (OFA) plants have been observed, resulting in an increased fuel reliability rate. A comprehensive evaluation of plant data and an assessment of the most likely causes of the leakers suggested that leakage mechanisms for the current leakers could be different from those seen historically. Westinghouse identified this trend as a significant fuel performance issue and initiated an extensive investigation to ad...

2007-05-03T23:59:59.000Z

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

GA Hot Cell D&D Closeout Report  

Office of Legacy Management (LM)

contractors supported the dismantlement including asbestos removal and concrete cutting, electrical, and HVAC. Project support functions were provided by GA organizations...

402

Anticipating the atom: popular perceptions of atomic power before Hiroshima  

E-Print Network (OSTI)

Before Hiroshima made the Bomb an object of popular concern, possible implications and applications of atomic physics had been discussed in the public forum. The new science of X-rays and radium promised the possibilities of unlimited energy and the transmutation of elements in the two decades leading up to World War 1. During the twenties, as scientific method struggled to keep pace with atomic theory, discussion centered on the feasibility of atomic disintegration as an energy source and the many uses of radium. The 1927 case of the New Jersey Radium Dial Painters, who sued their employers for compensation after contracting radium poisoning, revealed a dark side to the new science, that, along with the development of artificial radioactive isotopes by the Jollot-Curies in Paris, and, in Italy, Enrico Fenni's neutron bombardment experiments, sobered attitudes toward the ever-increasing probability of atomic power. When Otto Hahn finally split the atom in 1938, it opened the way to the practical industrial use of atomic fission, and stimulated a flurry of newspaper and magazine articles before World War 11 brought about censorship. Popular entertainment through 1945 reflects the extent to which atomic power had entered the public awareness. Atomic themes and motifs appeared in English language fiction as early as 1895, as did discussions of the social implications of the new science. Such popular culture imagery, including motion pictures and comic book superheroes, that presented the atom to mass audiences provide insight into the popular perceptions at the time, and to the shaping of attitudes toward the Bomb after Hiroshima.

d'Emal, Jacques-Andre Christian

1994-01-01T23:59:59.000Z

403

Manhattan Project: Adventures Inside the Atom  

Office of Scientific and Technical Information (OSTI)

ADVENTURES INSIDE THE ATOM ADVENTURES INSIDE THE ATOM General Electric, National Archives (1948) Resources > Library Below is Adventures Inside the Atom, a comic book history of nuclear energy that was produced in 1948 by the General Electric Company. Scroll down to view the full-size images of each page. This publication was produced at the request of the the Assistant Manager for Public Education, Oak Ridge Operations Office, Atomic Energy Commission. It is reproduced here via the National Archives. Adventures Inside the Atom, p. 1 Adventures Inside the Atom, p. 2 Adventures Inside the Atom, p. 3 Adventures Inside the Atom, p. 4 Adventures Inside the Atom, p. 5 Adventures Inside the Atom, p. 6 Adventures Inside the Atom, p. 7 Adventures Inside the Atom, p. 8 Adventures Inside the Atom, p. 9

404

In-situ control system for atomization  

DOE Patents (OSTI)

Melt atomizing apparatus comprising a melt supply orifice for supplying the melt for atomization and gas supply orifices proximate the melt supply orifice for supplying atomizing gas to atomize the melt as an atomization spray is disclosed. The apparatus includes a sensor, such as an optical and/or audio sensor, for providing atomization spray data, and a control unit responsive to the sensed atomization spray data for controlling at least one of the atomizing gas pressure and an actuator to adjust the relative position of the gas supply orifice and melt supply in a manner to achieve a desired atomization spray. 3 figs.

Anderson, I.E.; Figliola, R.S.; Terpstra, R.L.

1995-06-13T23:59:59.000Z

405

In-situ control system for atomization  

DOE Patents (OSTI)

Melt atomizing apparatus comprising a melt supply orifice for supplying the melt for atomization and gas supply orifices proximate the melt supply orifice for supplying atomizing gas to atomize the melt as an atomization spray. The apparatus includes a sensor, such as an optical and/or audio sensor, for providing atomization spray data, and a control unit responsive to the sensed atomization spray data for controlling at least one of the atomizing gas pressure and an actuator to adjust the relative position of the gas supply orifice and melt supply in a manner to achieve a desired atomization spray.

Anderson, Iver E. (Ames, IA); Figliola, Richard S. (Central, SC); Terpstra, Robert L. (Ames, IA)

1995-06-13T23:59:59.000Z

406

Supersonic coal water slurry fuel atomizer  

DOE Patents (OSTI)

A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Balsavich, John (Foxborough, MA)

1991-01-01T23:59:59.000Z

407

How well do time-integrated K{sub {alpha}} images represent hot electron spatial distributions?  

SciTech Connect

A computational study is described, which addresses how well spatially resolved time-integrated K{sub {alpha}} images recorded in intense laser-plasma experiments correlate with the distribution of ''hot'' (>1 MeV) electrons as they propagate through the target. The hot electron angular distribution leaving the laser-plasma region is critically important for many applications such as Fast Ignition or laser based x-ray sources; and K{sub {alpha}} images are commonly used as a diagnostic. It is found that K{sub {alpha}} images can easily mislead due to refluxing and other effects. Using the particle-in-cell code LSP, it is shown that a K{sub {alpha}} image is not solely determined by the initial population of forward directed hot electrons, but rather also depends upon ''delayed'' hot electrons, and in fact continues to evolve long after the end of the laser interaction. Of particular note, there is a population of hot electrons created during the laser-plasma interaction that acquire a velocity direction opposite that of the laser and subsequently reflux off the front surface of the target, deflect when they encounter magnetic fields in the laser-plasma region, and then traverse the target in a wide spatial distribution. These delayed fast electrons create significant features in the K{sub {alpha}} time-integrated images. Electrons refluxing from the sides and the back of the target are also found to play a significant role in forming the final K{alpha} image. The relative contribution of these processes is found to vary depending on depth within target. These effects make efforts to find simple correlations between K{alpha} images and, for example, Fast Ignition relevant parameters prone to error. Suggestions for future target design are provided.

Ovchinnikov, V. M.; Kemp, G. E.; Schumacher, D. W.; Freeman, R. R.; Van Woerkom, L. D. [Physics Department, Ohio State University, Columbus, Ohio 43210 (United States)

2011-07-15T23:59:59.000Z

408

Hot Gas Cleanup Test Facility for gasification and pressurized combustion. Quarterly report, October--December 1994  

Science Conference Proceedings (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs. Substantial progress in underground construction activities was achieved during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. MWK equipment at the grade level and the first tier are being set in the structure.

NONE

1995-02-01T23:59:59.000Z

409

Questions and Answers - Does an atom smasher really smash atoms?  

NLE Websites -- All DOE Office Websites (Extended Search)

is an accelerator? is an accelerator? Previous Question (What is an accelerator?) Questions and Answers Main Index Next Question (Where and how do you get your electrons for your accelerator?) Where and how do you get yourelectrons for your accelerator? Does an atom smasher really smash atoms? Well, yes, they do, but we now prefer to call them by their less aggression-centered name, "particle harmony disrupters." Of course some atom smashers do much more smashing than others. We use electrons in our accelerator to study the nucleus of an atom. Remember that electrons are negative, as are the electrons surrounding the target. Since like charged particles repel each other, our particles have to have enough energy to blast through that electron cloud to get to the nucleus. The electrons then

410

Blasting agent for blasting in hot boreholes  

SciTech Connect

A blasting agent is described which is resistant to decomposition when exposed to elevated temperatures (e.g., 325 to 350 F) for 24 hr. It is composed of an inorganic oxidizing salt such as ammonium nitrate; a high-boiling liquid oxygen-containing organic fuel, e.g., dibutyl phthalate; a densifying agent such as ferrophosphorus and a coating agent such as calcium stearate. A primer assembly contains the thermally stable blasting agent in a cartridge can. The assembly has a well at one end containing a high-explosive booster attached to high-energy detonating cord, which is in initiating relationship with a blasting cap. The metal-cartridged blasting agent and primer assembly are useful for blasting in hot boreholes, which can be either wet or dry. 9 claims.

Schaefer, W.E.

1974-06-25T23:59:59.000Z

411

Final Environmental Assessment BPA's Hot Springs - Garrison  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BPA's Hot Springs - Garrison Fiber Optic Project DOE-EA-1 002 POWER ADMINISTRATION Bonneville Power Administration DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

412

Magnetic island evolution in hot ion plasmas  

SciTech Connect

Effects of finite ion temperature on magnetic island evolution are studied by means of numerical simulations of a reduced set of two-fluid equations which include ion as well as electron diamagnetism in slab geometry. The polarization current is found to be almost an order of magnitude larger in hot than in cold ion plasmas, due to the strong shear of ion velocity around the separatrix of the magnetic islands. As a function of the island width, the propagation speed decreases from the electron drift velocity (for islands thinner than the Larmor radius) to values close to the guiding-center velocity (for islands of order 10 times the Larmor radius). In the latter regime, the polarization current is destabilizing (i.e., it drives magnetic island growth). This is in contrast to cold ion plasmas, where the polarization current is generally found to have a healing effect on freely propagating magnetic island.

Ishizawa, A.; Nakajima, N. [National Institute for Fusion Science, Toki 509-5292 (Japan); Waelbroeck, F. L.; Fitzpatrick, R.; Horton, W. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)

2012-07-15T23:59:59.000Z

413

Alternatives for reducing hot-water bills  

DOE Green Energy (OSTI)

A two stage approach to reducing residential water heating bills is described. In Stage I, simple conservation measures were included to reduce the daily hot water energy consumption and the energy losses from the water tank. Once these savings are achieved, Stage II considers more costly options for further reducing the water heating bill. Four alternatives are considered in Stage II: gas water heaters; solar water heaters (two types); heat pump water heaters; and heat recovery from a heat pump or air conditioner. To account for variations within the MASEC region, information on water heating in Rapid City, Minneapolis, Chicago, Detroit, and Kansas City is presented in detail. Information on geography, major population centers, fuel prices, climate, and state solar incentives is covered. (MCW)

Bennington, G.E.; Spewak, P.C.

1981-06-01T23:59:59.000Z

414

Hot Springs-Garrison Fiber Optic Project  

SciTech Connect

Bonneville Power Administration (BPA) is proposing to upgrade its operational telecommunications system between the Hot Springs Substation and the Garrison Substation using a fiber optic system. The project would primarily involve installing 190 kilometers (120 miles) of fiber optic cable on existing transmission structures and installing new fiber optic equipment in BPA`s substation yards and control houses. BPA prepared an environmental assessment (EA) evaluating the proposed action. This EA was published in October 1994. The EA identifies a number of minor impacts that might occur as a result of the proposed action, as well as some recommended mitigation measures. This Mitigation Action Plan (MAP) identifies specific measures to avoid, minimize, or compensate for impacts identified in the EA.

Not Available

1994-10-01T23:59:59.000Z

415

Hot dry rock Phase II reservoir engineering  

DOE Green Energy (OSTI)

Early attempts to hydraulically fracture and connect two wells drilled at the Hot Dry Rock site at Fenton Hill in New Mexico failed. Microearthquakes triggered by hydraulic fracturing indicated that the fracture zones grew in unexpected directions. Consequently one of the wells was sidetracked at a depth of 2.9 km; was redrilled into the zones of most intense microseismic activity; and a flow connection was achieved. Hydraulic communication was improved by supplemental fracturing using recently developed high temperature and high pressure open hole packers. Preliminary testing indicates a reservoir with stimulated joint volume which already surpasses that attained in the earlier phase I reservoir after several years of development. 12 refs., 6 figs.

Murphy, H.D.

1985-01-01T23:59:59.000Z

416

Hot Dry Rock Overview at Los Alamos  

DOE Green Energy (OSTI)

The Hot Dry Rock (HDR) geothermal energy program is a renewable energy program that can contribute significantly to the nation's balanced and diversified energy mix. Having extracted energy from the first Fenton Hill HDR reservoir for about 400 days, and from the second reservoir for 30 days in a preliminary test, Los Alamos is focusing on the Long Term Flow Test and reservoir studies. Current budget limitations have slowed preparations thus delaying the start date of that test. The test is planned to gather data for more definitive reservoir modeling with energy availability or reservoir lifetime of primary interest. Other salient information will address geochemistry and tracer studies, microseismic response, water requirements and flow impedance which relates directly to pumping power requirements. During this year of ''preparation'' we have made progress in modeling studies, in chemically reactive tracer techniques, in improvements in acoustic or microseismic event analysis.

Berger, Michael; Hendron, Robert H.

1989-03-21T23:59:59.000Z

417

Redshift of photons penetrating a hot plasma  

E-Print Network (OSTI)

A new interaction, plasma redshift, is derived, which is important only when photons penetrate a hot, sparse electron plasma. The derivation of plasma redshift is based entirely on conventional axioms of physics. When photons penetrate a cold and dense plasma, they lose energy through ionization and excitation, Compton scattering on the individual electrons, and Raman scattering on the plasma frequency. But in sparse hot plasma, such as in the solar corona, the photons lose energy also in plasma redshift. The energy loss per electron in the plasma redshift is about equal to the product of the photon's energy and one half of the Compton cross-section per electron. In quiescent solar corona, this heating starts in the transition zone to the corona and is a major fraction of the coronal heating. Plasma redshift contributes also to the heating of the interstellar plasma, the galactic corona, and the intergalactic plasma. Plasma redshift explains the solar redshifts, the redshifts of the galactic corona, the cosmological redshifts, the cosmic microwave background, and the X-ray background. The plasma redshift explains the observed magnitude-redshift relation for supernovae SNe Ia without the big bang, dark matter, or dark energy. There is no cosmic time dilation. The universe is not expanding. The plasma redshift, when compared with experiments, shows that the photons' classical gravitational redshifts are reversed as the photons move from the Sun to the Earth. This is a quantum mechanical effect. As seen from the Earth, a repulsion force acts on the photons. This means that there is no need for Einstein's Lambda term. The universe is quasi-static, infinite, and everlasting.

Ari Brynjolfsson

2004-01-21T23:59:59.000Z

418

Geothermal resource assessment of Waunita Hot Springs, Colorado  

DOE Green Energy (OSTI)

This assessment includes the project report; the geothermal prospect reconnaissance evaluation and recommendations; interpretation of water sample analyses; a hydrogeochemical comparison of the Waunita Hot Springs, Hortense, Castle Rock, and Anderson Hot Springs; geothermal resistivity resource evaluation survey, the geophysical environment; temperature, heat flow maps, and temperature gradient holes; and soil mercury investigations.

Zacharakis, T.G. (ed.)

1981-01-01T23:59:59.000Z

419

RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR  

E-Print Network (OSTI)

RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR By SCOTT RUSSELL WAITUKAITIS A Thesis Submitted: #12;Abstract I describe a study of Faraday rotation in a hot lithium vapor. I begin by dis- cussing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 The Lithium Oven and Solenoid . . . . . . . . . . . . . . . . . 7 3 Theoretical Framework

Cronin, Alex D.

420

Advanced Hot Section Materials and Coatings Test Rig  

SciTech Connect

The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principal activities during this reporting period were the continuation of test section detail design and developing specifications for auxiliary systems and facilities.

Dan Davies

2004-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ADVANCED HOT SECTION MATERIALS AND COATINGS TEST RIG  

SciTech Connect

The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principal activity during this reporting period were the evaluation of syngas combustor concepts, the evaluation of test section concepts and the selection of the preferred rig configuration.

Scott Reome; Dan Davies

2004-04-30T23:59:59.000Z

422

Idealized Hot Spot Experiments with a General Circulation Model  

Science Conference Proceedings (OSTI)

Idealized experiments are conducted using a GCM coupled to a 20-m slab ocean model to examine the short-term response to an initial localized positive equatorial SST anomaly, or hot spot. A hot spot is imposed upon an aquaplanet with globally ...

Eric D. Maloney; Adam H. Sobel

2007-03-01T23:59:59.000Z

423

HEATING OF OIL WELL BY HOT WATER CIRCULATION  

E-Print Network (OSTI)

HEATING OF OIL WELL BY HOT WATER CIRCULATION Mladen Jurak Department of Mathematics University.prnic@ina.hr Abstract When highly viscous oil is produced at low temperatures, large pressure drops will significantly decrease production rate. One of possible solu- tions to this problem is heating of oil well by hot water

Rogina, Mladen

424

Analysis Model for Domestic Hot Water Distribution Systems: Preprint  

DOE Green Energy (OSTI)

A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

Maguire, J.; Krarti, M.; Fang, X.

2011-11-01T23:59:59.000Z

425

Mirror stability of a hot electron ring plasma  

SciTech Connect

The free energy associated with the anisotropy in the velocity space of a microwave-heated hot electron distribution can drive the mirror mode unstable. The real frequency of this instability is of the same order as the diamagnetic drift frequency of the hot electrons.

Tsang, K.T.

1983-01-01T23:59:59.000Z

426

Stabilization of the hot-electron precessional mode in a symmetric tandem mirror by the axial variation of radial electric field  

SciTech Connect

The stability of the hot-electron precessional mode is investigated in the presence of a relative Earrow x Barrow precession between the end cell and the center cell, which is inherent to the tandem-mirror concept. It is found that a positive radial electric field in the end cell is favorable to stability. Under normal conditions, the stability of a hot-electron symmetric tandem mirror is not worse than a quadrupole tandem mirror with the same relative Earrow x Barrow precession.

Tsang, K.T.; Lee, X.S.

1984-11-26T23:59:59.000Z

427

A10: Defects and Local Compositional Changes in Sn-coated ...  

Science Conference Proceedings (OSTI)

... Oxide Dispersion Strengthened Steels Produced by Atomization and Hot Isostatic Pressing ... Advanced Materials and Processes for Solid Oxide Fuel Cells.

428

Kelley Hot Spring Geothermal Project: Kelly Hot Spring Agricultural Center conceptual design  

DOE Green Energy (OSTI)

The proposed core activity in the Kelly Hot Spring Agricultural Center is a nominal 1200 sow swine raising complex. The swine raising is to be a totally confined operation for producing premium pork in controlled environment facilities that utilize geothermal energy. The complex will include a feedmill for producing the various feed formulae required for the animals from breeding through gestation, farrowing, nursery, growing and finishing. The market animals are shipped live by truck to slaughter in Modesto, California. A complete waste management facility will include manure collection from all raising areas, transport via a water flush sysem to methane (biogas) generators, manure separation, settling ponds and disposition of the surplus agricultural quality water. The design is based upon the best commercial practices in confined swine raising in the US today. The most unique feature of the facility is the utilization of geothermal hot water for space heating and process energy throughout the complex.

Longyear, A.B. (ed.)

1980-06-01T23:59:59.000Z

429

Why sequence thermophiles in Great Basin hot springs?  

NLE Websites -- All DOE Office Websites (Extended Search)

thermophiles in Great Basin hot springs? thermophiles in Great Basin hot springs? A thermophile is an organism that thrives in extremely hot temperature conditions. These conditions are found in the Great Basin hot springs, where the organisms have been exposed to unique conditions which guide their lifecycle. High temperature environments often support large and diverse populations of microorganisms, which appear to be hot spots of biological innovation of carbon fixation. Sequencing these microbes that make their home in deadly heat could provide various insights into understanding energy production and carbon cycling. Converting cellulosic biomass to ethanol is one of the most promising strategies to reduce petroleum consumption in the near future. This can only be achieved by enhancing recovery of fermentable sugars from complex

430

Neal Hot Springs Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Neal Hot Springs Geothermal Power Plant Neal Hot Springs Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Neal Hot Springs Geothermal Power Plant General Information Name Neal Hot Springs Geothermal Power Plant Facility Neal Hot Springs Sector Geothermal energy Location Information Location Malheur County, Oregon Coordinates 44.02239°, -117.4631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.02239,"lon":-117.4631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Desert Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Desert Hot Springs Space Heating Low Temperature Geothermal Facility Facility Desert Hot Springs Sector Geothermal energy Type Space Heating Location Desert Hot Springs, California Coordinates 33.961124°, -116.5016784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

432

Solar Hot Water Creates Savings for Homeless Shelters | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Hot Water Creates Savings for Homeless Shelters Solar Hot Water Creates Savings for Homeless Shelters Solar Hot Water Creates Savings for Homeless Shelters July 15, 2010 - 12:10pm Addthis Kevin Craft What are the key facts? Recovery Act funds are being used to install solar hot water systems at 5 Phoenix shelters. The systems will save Phoenox 33,452 kWh of energy -- about $4,000 -- annually. The systems will reduce about 40,000 pounds of carbon emissions annually. "This project will save us a huge amount of money," says Paul Williams, House of Refuge Sunnyslope's Executive Director. Williams is referring to a recent partnership between the state of Arizona and House of Refuge Sunnyslope to install solar hot water systems at five Phoenix-area housing sites for homeless men, which will make an immediate difference at the

433

A Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs  

Open Energy Info (EERE)

Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs Area In Northern Greece Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs Area In Northern Greece Details Activities (0) Areas (0) Regions (0) Abstract: In total 24 direct current resistivity soundings were carried out during the preliminary stages of a geothermal exploration survey of the Langada hot springs area (northern Greece). The analysis of the data revealed a horst-type morphology striking NW-SE. Correlation between the location of hot springs, successful drill holes and the basement (horst) indicates that the sector of geothermal interest is concentrated along the major axis of the horst mapped. The horst type geothermal structure fits in

434

Gila Hot Springs District Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Gila Hot Springs District Heating Low Temperature Geothermal Facility Gila Hot Springs District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Gila Hot Springs District Heating Low Temperature Geothermal Facility Facility Gila Hot Springs Sector Geothermal energy Type District Heating Location Gila Hot Springs, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

435

Geophysical Characterization of a Geothermal System Neal Hot Springs,  

Open Energy Info (EERE)

Characterization of a Geothermal System Neal Hot Springs, Characterization of a Geothermal System Neal Hot Springs, Oregon, USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Characterization of a Geothermal System Neal Hot Springs, Oregon, USA Abstract Neal Hot Springs is an active geothermal area that is also the proposed location of a binary power plant, which is being developed by US Geothermal Inc. To date, two production wells have been drilled and an injection well is in the process of being completed. The primary goal of this field camp was to provide a learning experience for students studying geophysics, but a secondary goal was to characterize the Neal Hot Springs area to provide valuable information on the flow of geothermal fluids through the subsurface. This characterization was completed using a variety of

436

Beowawe Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Beowawe Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Geofluid Geochemistry 11 NEPA-Related Analyses (0) 12 Exploration Activities (8) 13 References Map: Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Beowawe, Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

437

Geothermometry At Hot Springs Ranch Area (Szybinski, 2006) | Open Energy  

Open Energy Info (EERE)

Hot Springs Ranch Area (Szybinski, 2006) Hot Springs Ranch Area (Szybinski, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity Details Location Hot Springs Ranch Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes The brine from the drill holes, hot springs, seepages, and irrigation wells was sampled, as well as water from two nearby creeks, (total of 13 samples) and sent for analysis to Thermochem Inc. For sample locations refer to Figure 35; the geochemical data are presented in Appendix C. Geochemical results indicate the presence of two distinct waters in this group of samples (Tom Powell of Thermochem Inc., personal communication, 2005).

438

Manley Hot Springs Greenhouse Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Manley Hot Springs Greenhouse Low Temperature Geothermal Facility Manley Hot Springs Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Manley Hot Springs Greenhouse Low Temperature Geothermal Facility Facility Manley Hot Springs Sector Geothermal energy Type Greenhouse Location Manley Hot Springs, Alaska Coordinates 65.0011111°, -150.6338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

439

Roosevelt Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Roosevelt Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Heat Source 11 Geofluid Geochemistry 12 NEPA-Related Analyses (0) 13 Exploration Activities (9) 14 References Map: Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Milford, Utah Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

440

Chena Hot Springs Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Chena Hot Springs Geothermal Facility Chena Hot Springs Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Chena Hot Springs Geothermal Facility General Information Name Chena Hot Springs Geothermal Facility Facility Chena Hot Springs Sector Geothermal energy Location Information Location Fairbanks, Alaska Coordinates 65.0518255°, -146.0474319° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.0518255,"lon":-146.0474319,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Brady Hot Springs I Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Hot Springs I Geothermal Facility Hot Springs I Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Brady Hot Springs I Geothermal Facility General Information Name Brady Hot Springs I Geothermal Facility Facility Brady Hot Springs I Sector Geothermal energy Location Information Location Churchill, Nevada Coordinates 39.796370120458°, -119.00998950005° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.796370120458,"lon":-119.00998950005,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

442

Savings Project: Insulate Hot Water Pipes for Energy Savings | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulate Hot Water Pipes for Energy Savings Insulate Hot Water Pipes for Energy Savings Savings Project: Insulate Hot Water Pipes for Energy Savings Addthis Project Level Medium Energy Savings $8-$12 annually Time to Complete 3 hours for a small house Overall Cost $10-$15 Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating your hot water pipes reduces heat loss and can raise water temperature 2°F-4°F hotter than uninsulated pipes can deliver, allowing for a lower water temperature setting. You also won't have to wait as long for hot water when you turn on a faucet or showerhead, which helps conserve water. Paying for someone to insulate your pipes-as a project on its own-may

443

Hot ion buildup and lifetime in LITE. Final report  

DOE Green Energy (OSTI)

An experimental investigation of hot ion buildup and lifetime in a small scale mirror device (LITE) is described. Hot ions were produced by 27 kV neutral beam injection into laser produced LiH plasmas and H plasmas produced by a washer gun. Hot H ion (12 kV) densities of approx. = 10/sup 12/ cm/sup -3/ were produced with the LiH target plasmas and densities an order of magnitude lower were produced with the washer gun target plasmas. Hot ion dominant plasmas were not achieved in LITE. The experimental measurements and subsequent analysis using numerical models of the plasma buildup indicate that in small, unshielded mirror plasmas, careful control must be maintained over the transient background gas density in the vicinity of the plasma surface. The hot ion lifetime in LITE was set by the transient cold neutral background resulting from the washer gun of reflux from the target plasma striking the adjacent surfaces.

Not Available

1978-09-01T23:59:59.000Z

444

UNITED STATES ATOMIC ENERGY COMMISSION  

Office of Legacy Management (LM)

producing uranium for the Mo"hz,t,a, Projec, can best be qwtcd Irom the Smyth official report - Atomic Energy - . ' .: CCL, + NaCl - ."-l Figure 6. apparatus used in electrcdytic...

445

Single artificial-atom lasing  

E-Print Network (OSTI)

Solid-state superconducting circuits are versatile systems in which quantum states can be engineered and controlled. Recent progress in this area has opened up exciting possibilities for exploring fundamental physics as well as applications in quantum information technology; in a series of experiments it was shown that such circuits can be exploited to generate quantum optical phenomena, by designing superconducting elements as artificial atoms that are coupled coherently to the photon field of a resonator. Here we demonstrate a lasing effect with a single artificial atom - a Josephson-junction charge qubit - embedded in a superconducting resonator. We make use of one of the properties of solid-state artificial atoms, namely that they are strongly and controllably coupled to the resonator modes. The device is essentially different from existing lasers and masers; one and the same artificial atom excited by current injection produces many photons.

O. Astafiev; K. Inomata; A. O. Niskanen; T. Yamamoto; Yu. A. Pashkin; Y. Nakamura; J. S. Tsai

2007-10-04T23:59:59.000Z

446

u. S. Atomic Energy Commission  

Office of Legacy Management (LM)

October 31, 1949 Manager of Operations u. S. Atomic Energy Commission R. 0. Box 30, Ansonia Station New York ES, N. Y. MATERIALS 5+k& hJf Reference: SK:BL Attention: Mr. R. J....

447

Crystalline Silicon Photovolatic Cells  

Energy.gov (U.S. Department of Energy (DOE))

Crystalline silicon cells are made of silicon atoms connected to one another to form a crystal lattice. This lattice comprises the solid material that forms the photovoltaic (PV) cell's...

448

Exotic atoms and leptonic conservations  

DOE Green Energy (OSTI)

The major 1989 efforts have been on two aspects of experiments at TRIUMF. One effort was production of muonic hydrogen and muonic deuterium into a vacuum. We study rates relevant to muonic catalyzed fusion, and if there are found an adequate number of muons in the 2s state then we plan to measure precision energies. The second effort was to develop plans for kaonic atoms at the kaon factory. We also completed analyses from the experiments with pionic atoms at LAMPF.

Kunselman, R.

1990-01-01T23:59:59.000Z

449

Transition from LEDCOP to ATOMIC  

SciTech Connect

This paper discusses the development of the ATOMIC code, a new low to mid Z opacity code, which will replace the current Los Alamos low Z opacity code LEDCOP. The ATOMIC code is based on the FINE code, long used by the Los Alamos group for spectral comparisons in local thermodynamic equilibrium (LTE) and for non-LTE calculations, both utilizing the extensive databases from the atomic physics suite of codes based on the work of R.D. Cowan. Many of the plasma physics packages in LEDCOP, such as line broadening and free-free absorption, are being transferred to the new ATOMIC code. A new equation of state (EOS) model is being developed to allow higher density calculations than were possible with either the FINE or LEDCOP codes. Extensive modernization for both ATOMIC and the atomic physics code suites, including conversion to Fortran 90 and parallelization, are underway to speed up the calculations and to allow the use of expanded databases for both the LTE opacity tables and the non-LTE calculations. Future plans for the code will be outlined, including considerations for new generation opacity tables.

Magee, N. H. (Norman H.); Abdallah, J. (Joseph); Colgan, J. (James); Hakel, P. (Peter); Kilcrease, D. P. (David P.); Mazevet, S. (Stephane); Sherrill, M. E. (Manolo E.); Fontes, C. J. (Christopher J.); Zhang, H. (Honglin)

2004-01-01T23:59:59.000Z

450

Atomic Physics Division 1999 - Future Directions  

Science Conference Proceedings (OSTI)

... lying Rydberg states constitute a "frozen" Rydberg gas. ... of atom interactions in cold atomic gases and Bose ... or optical fields and tight confinement of ...

451

Cavity Quantum Electrodynamics with Ultracold Atoms.  

E-Print Network (OSTI)

??Die vorliegende Arbeit befasst sich mit der Wechselwirkung ultrakalter Atome mit der Mode eines optischen Resonators hoher Gu?te. Die Atome sind dabei in einem periodischen (more)

Habibian, Hessam

2013-01-01T23:59:59.000Z

452

UNITED STATES ATOMIC ENERGY COMMISSION Iew York Operation8 Office  

Office of Legacy Management (LM)

fi ' fi ' J/ui : ,I/ /J ii%/~it~ - ,,(,C, \,\J,iT/~l \ 11, ?' UNITED STATES ATOMIC ENERGY COMMISSION Iew York Operation8 Office Files (.Thrur V.L.Parsegian, Director, Division of Technical Advisers) Decenber 19, 1950 9; G.Strc&e, Division of Technical Advisers COLD-DRAWING OF TJRAXItZI RODS A BXIDGEPORT BRATS CO'Ei+A!R Symbol: TAtFGSrmam On 12/11/50, an exper%mnt was conducted at the Bridgmort Brass Company in whioh an attanpt m m made to cold-draw hot-foiled rods of uranium tich had been pickled to remove the oxi:!e coating. In addition, a few mpickled bars were drawn. It can be uoncluded from this erperimmt that we x-me unable tith the lubricants used to draw the pickled rods of uranium. This' appears to verify the necessity for an oxide film on the uranium to

453

UNITED STATES ATOMIC ENERGY COMMISSION OAK RIDGE OPERATIONS  

Office of Legacy Management (LM)

AL, 3 AL, 3 UNITED STATES ATOMIC ENERGY COMMISSION OAK RIDGE OPERATIONS CINCINNATI AREA P. 0. BOX 39198, CINCINNATI 39, OHIO IN REPLY REFER TO: 0:OJT --r.LAal Cl E:c Mr. J. H. Noyes, Plant Manager National Lead Company of Ohio P. 0. Box 39158 Cincinnati 39, Ohio Subject: HOT TENSILE TESTS OF URANIUM - SOUTHERN RESEARCH INSTITUTE Dear Mr. Noyee: I / Reference is made to your letter of May 17, 1962, on the above subject. Approval is granted for the off-site movement of up to 300 pounds of normal uranium by the National Lead Company of Ohio to the Southern Research Institute, Birmingham, Alabama for testing purposes. Accountability for the material should be retained in SS Station NLO's records during the testing period. The Monthly Material Balance Re-

454

Mapping of Human Heart Beat Dynamics by Atomic Magnetometers  

Science Conference Proceedings (OSTI)

Stimulated by recent progress in laser?based optical magnetometry and in developments of powerful signal denoising techniques we initiated the development of a low?cost laser?driven optically pumped magnetometer (OPM) for biomagnetic applications. The OPM uses optically pumped cesium atoms in glass cells of a few cm3. Its sensitivity (<70 fT in 1 Hz bandwidth)

A. Weis; G. Bison; R. Wynands

2005-01-01T23:59:59.000Z

455

Controlled Source Audio MT At Pilgrim Hot Springs Area (DOE GTP...  

Open Energy Info (EERE)

Controlled Source Audio MT At Pilgrim Hot Springs Area (DOE GTP) Exploration Activity Details Location Pilgrim Hot Springs Area Exploration Technique Controlled Source Audio MT...

456

2-M Probe At Pilgrim Hot Springs Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

2-M Probe At Pilgrim Hot Springs Area (DOE GTP) Exploration Activity Details Location Pilgrim Hot Springs Area Exploration Technique 2-M Probe Activity Date Usefulness not...

457

City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot Water Heaters and Photovoltaic Systems Permit Requirements City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit Requirements Eligibility Commercial...

458

Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone  

E-Print Network (OSTI)

in a California Hot Climate Zone. California Energyin a California Hot Climate Zone Peng Xu & Rongxin Yin,conditions (California Climate Zones 24). However, this

Xu, Peng

2010-01-01T23:59:59.000Z

459

Indoor air movement acceptability and thermal comfort in hot-humid climates  

E-Print Network (OSTI)

in Brazil's hot humid climate zone. Building and Environmentin moderate thermal climate zones. Building and EnvironmentBrazil's hot humid climate zone. Building and Environment,

Candido, Christhina Maria

2010-01-01T23:59:59.000Z

460

Flow Test At Crump's Hot Springs Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Crump's Hot Springs Area (DOE GTP) Exploration Activity Details Location Crump's Hot...

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Static Temperature Survey At Hot Pot Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Static Temperature Survey At Hot Pot Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Hot Pot Area...

462

Thermal Gradient Holes At Hot Pot Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Hot Pot Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hot Pot Area (DOE GTP) Exploration Activity...

463

Slim Holes At Crump's Hot Springs Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Crump's Hot Springs Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Crump's Hot Springs Area (DOE GTP) Exploration...

464

Reflection Survey At Hot Pot Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Reflection Survey At Hot Pot Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Hot Pot Area (DOE GTP)...

465

FLIR At Pilgrim Hot Springs Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

FLIR At Pilgrim Hot Springs Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: FLIR At Pilgrim Hot Springs Area (DOE GTP) Exploration...

466

Flow Test At Hot Pot Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Pot Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Hot Pot Area (DOE GTP) Exploration Activity Details Location Hot...

467

Domestic Hot Water Consumption in Four Low-Income Apartment Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Domestic Hot Water Consumption in Four Low-Income Apartment Buildings Title Domestic Hot Water Consumption in Four Low-Income Apartment Buildings Publication Type Conference...

468

Reduce Hot Water Use for Energy Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduce Hot Water Use for Energy Savings Reduce Hot Water Use for Energy Savings Reduce Hot Water Use for Energy Savings June 15, 2012 - 5:51pm Addthis Low-flow fixtures and showerheads can achieve water savings of 25%–60%. | Photo courtesy of ©iStockphoto/DaveBolton. Low-flow fixtures and showerheads can achieve water savings of 25%-60%. | Photo courtesy of ©iStockphoto/DaveBolton. What does this mean for me? Fix leaks, install low-flow fixtures, and purchase an energy-efficient dishwasher and clothes washer to use less hot water and save money. You can lower your water heating costs by using and wasting less hot water in your home. To conserve hot water, you can fix leaks, install low-flow fixtures, and purchase an energy-efficient dishwasher and clothes washer. Fix Leaks You can significantly reduce hot water use by simply repairing leaks in

469

HOT GAS HALOS IN EARLY-TYPE FIELD GALAXIES  

Science Conference Proceedings (OSTI)

We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L {sub X}-L {sub K} relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L {sub K} {approx_lt} L {sub *} suggests that internal processes such as supernovae-driven winds or active galactic nucleus feedback expel hot gas from low-mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L {sub K} {approx_lt} L {sub *} galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments, with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds.

Mulchaey, John S. [Observatories of the Carnegie Institution of Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Jeltema, Tesla E., E-mail: mulchaey@obs.carnegiescience.ed, E-mail: tesla@ucolick.or [UCO/Lick Observatories, 1156 High Street, Santa Cruz, CA 95064 (United States)

2010-05-20T23:59:59.000Z

470

Available Technologies: Hot Electron Photovoltaics Using Low ...  

... or material availability issues. Similarly, complex cell designs or designs that feature nano-architectures such as quantum wires may not be ...

471

Observation of relativistic antihydrogen atoms  

DOE Green Energy (OSTI)

An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 < p < 9 GeV/c) antiprotons and a jet of molecular hydrogen gas. Since the neutral antihydrogen does not bend in the antiproton source magnets, the detectors could be located far from the interaction point on a beamline tangent to the storage ring. The detection of the antihydrogen is accomplished by ionizing the atoms far from the interaction point. The positron is deflected by a magnetic spectrometer and detected, as are the back to back photons resulting from its annihilation. The antiproton travels a distance long enough for its momentum and time of flight to be measured accurately. A statistically significant sample of 101 antihydrogen atoms has been observed. A measurement of the cross section for {bar H}{sup 0} production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e{sup +} e{sup -} pair creation near a nucleus with the e{sup +} being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.

Blanford, Glenn DelFosse

1998-01-01T23:59:59.000Z

472

Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) | Open  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) Exploration Activity Details Location Roosevelt Hot Springs Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical

473

Excitation of superconducting qubits from hot non-equilibrium quasiparticles  

E-Print Network (OSTI)

Superconducting qubits probe environmental defects such as non-equilibrium quasiparticles, an important source of decoherence. We show that "hot" non-equilibrium quasiparticles, with energies above the superconducting gap, affect qubits differently from quasiparticles at the gap, implying qubits can probe the dynamic quasiparticle energy distribution. For hot quasiparticles, we predict a non-neligable increase in the qubit excited state probability P_e. By injecting hot quasiparticles into a qubit, we experimentally measure an increase of P_e in semi-quantitative agreement with the model and rule out the typically assumed thermal distribution.

J. Wenner; Yi Yin; Erik Lucero; R. Barends; Yu Chen; B. Chiaro; J. Kelly; M. Lenander; Matteo Mariantoni; A. Megrant; C. Neill; P. J. J. O'Malley; D. Sank; A. Vainsencher; H. Wang; T. C. White; A. N. Cleland; John M. Martinis

2012-09-08T23:59:59.000Z

474

PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES  

Science Conference Proceedings (OSTI)

This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97 . Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy / Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

None

1999-05-05T23:59:59.000Z

475

PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES  

Science Conference Proceedings (OSTI)

This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97 . Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy / Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

NONE

1998-11-30T23:59:59.000Z

476

PARTICULATE HOT GAS STREAM CLEANUP TECHNICAL ISSUES  

Science Conference Proceedings (OSTI)

This is the fourth annual report describing the activities performed under Task 1 of Contract No. DE-AC21-94MC31160. The analyses of hot gas stream cleanup (HGCU) ashes and descriptions of filter performance studied under this contract are designed to address problems with filter operation that are apparently linked to characteristics of the collected ash. This work is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters and to relate these ash properties to the operation and performance of these filters and their components. This report summarizes characterizations of ash and char samples from pressurized fluidized-bed combustion and gasification facilities. Efforts are under way to develop a method for preserving fragile filter cakes formed on ceramic filter elements. The HGCU data base was formatted for Microsoft Access 97{reg_sign}. Plans for the remainder of the project include characterization of additional samples collected during site visits to the Department of Energy/Southern Company Services Power Systems Development Facility and completion and delivery of the HGCU data base.

NONE

1999-05-05T23:59:59.000Z

477

Hot isostatic press waste option study report  

SciTech Connect

A Settlement Agreement between the Department of Energy and the State of Idaho mandates that all high-level radioactive waste now stored at the Idaho Chemical Processing Plant be treated so that it is ready to move out of Idaho for disposal by the target date of 2035. This study investigates the immobilization of all Idaho Chemical Processing Plant calcine, including calcined sodium bearing waste, via the process known as hot isostatic press, which produces compact solid waste forms by means of high temperature and pressure (1,050 C and 20,000 psi), as the treatment method for complying with the settlement agreement. The final waste product would be contained in stainless-steel canisters, the same type used at the Savannah River Site for vitrified waste, and stored at the Idaho National Engineering and Environmental Laboratory until a national geological repository becomes available for its disposal. The waste processing period is from 2013 through 2032, and disposal at the High Level Waste repository will probably begin sometime after 2065.

Russell, N.E.; Taylor, D.D.

1998-02-01T23:59:59.000Z

478

Hot Dry Rock Geothermal Energy Development Program  

DOE Green Energy (OSTI)

The overall objective of the Hot Dry Rock (HDR) Geothermal Energy Development Program is to determine the technical and economic feasibility of HDR as a significant energy source and to provide a basis for its timely commercial development. Principal operational tasks are those activities required to enable a decision to be made by FY86 on the ultimate commercialization of HDR. These include development and analyis of a 20- to 50-MW Phase II HDR reservoir at Site 1 (Fenton Hill) with the potential construction of a pilot electric generating station, Phase III; selection of a second site with subsequent reservoir development and possible construction of a direct heat utilization pilot plant of at least 30 MW thermal thereon; the determination of the overall domestic HDR energy potential; and the evaluation of 10 or more target prospect areas for future HDR plant development by commercial developers. Phase I of the Los Alamos Scientific Laboratory's Fenton Hill project was completed. Phase I evaluated a small subterranean system comprised of two boreholes connected at a depth of 3 km by hydraulic fracturing. A closed-loop surface system has been constructed and tests involving round-the-clock operation have yielded promising data on heat extraction, geofluid chemistry, flow impedance, and loss of water through the underground reservoir between the two holes, leading to cautions optimism for the future prospects of private-sector HDR power plants. (MHR)

Franke, P.R.

1979-01-01T23:59:59.000Z

479

Hot Dry Rock at Fenton Hill, USA  

DOE Green Energy (OSTI)

The Hot Dry Rock Geothermal Energy Project began in the early 1970's with the objective of developing a technology to make economically available the large ubiquitous thermal energy of the upper earth crust. The program, operated by the Los Alamos National Laboratory, has been funded by the Department of Energy (and its predecessors) and for a few years with participation by West Germany and Japan. An energy reservoir was accessed by drilling and hydraulically fracturing in the Precambrian basement rock at Fenton Hill, outside the Valles Caldera of north-central New Mexico. Water was circulated through the reservoir (Phase 1, 1978--1980) producing up to 5 MWt at 132/degree/C. A second (Phase 2) reservoir has been established with a deeper pair of holes and an initial flow test completed producing about 10 MWt at 190/degree/C. These accomplishments have been supported and paralleled by developments in drilling, well completion and instrumentation hardware. Acoustic or microseismic fracture mapping and geochemistry studies in addition to hydraulic and thermal data contribute to reservoir analyses. Studies of some of the estimated 430,000 quads of HDR resources in the United States have been made with special attention focused on sites most advantageous for early development. 17 refs., 3 figs., 1 tab.

Hendron, R.H.

1988-01-01T23:59:59.000Z

480

The US Hot Dry Rock project  

DOE Green Energy (OSTI)

The Hot Dry Rock geothermal energy project began in the early 1970's with the objective of developing a technology to make economically available the large ubiquitous thermal energy of the upper earth crust. The program has been funded by the Department of Energy (and its predecessors) and for a few years with participation by West Germany and Japan. An energy reservoir was accessed by drilling and hydraulically fracturing in the precambrian basement rock outside the Valles Caldera of north-central New Mexico. Water was circulated through the reservoir (Phase I, 1978-1980) producing up to 5 MWt at 132/sup 0/C. A second (Phase II) reservoir has been established with a deeper pair of holes and an initial flow test completed producing about 10 MWt at 190/sup 0/C. These accomplishments have been supported and paralleled by developments in drilling, well completion and instrumentation hardware. Acoustic or microseismic fracture mapping and geochemistry studies in addition to hydraulic and thermal data contribute to reservoir analyses. Studies of some of the estimated 430,000 quads of HDR resources in the United States have been made with special attention focused on sites most advantageous for early development.

Hendron, R.H.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomics hot cell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Self potential survey, Roosevelt Hot Springs, Utah  

DOE Green Energy (OSTI)

A large scale (35 km/sup 2/) self potential (SP) survey was made at Roosevelt Hot Springs. The survey consisted of approximately 47 line-km of profiles at station spacings of 100 m. The profiles were run using a fixed electrode and a traveling electrode out to distances of 1 to 2 km, before advancing the fixed electrode up to the last occupied station. Repeated measurements show a standard deviation about +- 6mv, although the spread on groups of measurements might be as large as 30 mv. Some of the SP profiles show correlations with the thermal system, having generally low values over the thermal high and the coincident resistivity low. Some of the smaller scale features appear to be associated with mapped faults. In plan view, the contoured self potential shows a character very similar to the 300 m, dipole-dipole resistivity. The SP values are generally low, where the resistivity is low. Along the eastern margin of the system, in the vicinity of steep resistivity gradients, the contour map show a series of localized highs.

Sill, W.R.; Johng, D.S.

1979-01-01T23:59:59.000Z

482

DEVELOPMENT OF METALLIC HOT GAS FILTERS  

SciTech Connect

Successful development of metallic filters with high temperature oxidation/corrosion resistance for fly ash capture is a key to enabling advanced coal combustion and power generation technologies. Compared to ceramic filters, metallic filters can offer increased resistance to impact and thermal fatigue, greatly improving filter reliability. A beneficial metallic filter structure, composed of a thin-wall (0.5mm) tube with uniform porosity (about 30%), is being developed using a unique spherical powder processing and partial sintering approach, combined with porous sheet rolling and resistance welding. Alloy choices based on modified superalloys, e.g., Ni-16Cr-4.5Al-3Fe (wt.%), are being tested in porous and bulk samples for oxide (typically alumina) scale stability in simulated oxidizing/sulfidizing atmospheres found in PFBC and IGCC systems at temperatures up to 850 C. Recent ''hanging o-ring'' exposure tests in actual combustion systems at a collaborating DOE site (EERC) have been initiated to study the combined corrosive effects from particulate deposits and hot exhaust gases. New studies are exploring the correlation between sintered microstructure, tensile strength, and permeability of porous sheet samples.

Anderson, I.E.; Gleeson, B.; Terpstra, R.L.

2003-04-23T23:59:59.000Z

483

NIST: Atomic Spectros. - Spectral Continuum Radiation  

Science Conference Proceedings (OSTI)

Atomic Spectroscopy: home page. 21. Spectral Continuum Radiation. Hydrogenic Species. Precise quantum-mechanical ...

484

SCHROEDINGER'S CAT IN AN ATOMIC CAGE  

Science Conference Proceedings (OSTI)

... gov SCHROEDINGER'S CAT IN AN ATOMIC CAGE. They ... conditions. Schroedinger cat states are extremely fragile. Any ...

485

Hot ductility and hot cracking behavior of modified 316 stainless steels designed for high-temperature service  

Science Conference Proceedings (OSTI)

The weldability of the modified 316 stainless steel was evaluated by the Gleeble hot ductility test and two hot cracking test methods (Varestraint and Sigmajig). The fusion zone and weld metal heat-affected zone (HAZ) hot cracking susceptibilities of the modified 316 stainless steel are similar to conventional fully austenitic 316 stainless steels and greater than the conventional 316 materials that have a primary ferritic solidification mode. The Gleeble hot ductility test results correlate with the base metal HAZ hot cracking results from the Varestraint test and indicate that the modified 316 materials show a considerably higher base metal HAZ hot cracking susceptibility as contrasted to nuclear grade 316 stainless steels. Varestraint test results and Sigmajig test results and Sigmajig test results for the tested materials showed good correlations. The sensitivity of the base metal to HAZ liquation cracking has been successfully predicted by using a newly developed hot ductility criterion, the ratio of ductility recovery (RDR). An excellent correlation between the Gleeble Test criterion RDR and the Varestraint Test criteria (TCL, MCL and CHL) has been found.

Lundin, C.D.; Qiao, C.Y.P.; Gill, T.P.S.; Goodwin, G.M. (Oak Ridge National Lab., TN (United States))

1993-05-01T23:59:59.000Z

486

Cancer in atomic bomb survivors  

SciTech Connect

Radiation carcinogenesis was first noted in studies of individuals with occupational or therapeutic exposure to radiation. Data from long-term follow-up studies of atomic bomb survivors in Hiroshima and Nagasaki have greatly enhanced our knowledge of radiation carcinogenesis. This book presents current results obtained from epidemiological studies and pathological studies on cancer among atomic bomb survivors. It includes a description of the dosimetry system which is currently being revised. Although many of the details about radiation carcinogenesis remain unknown or uncertain, it is clear that the incidence of radiation-induced cancer among atomic bomb survivors continues unabated 40 years after exposure. Recent increases in occupational and environmental exposure to radiation together with the need for a thorough review of radiation protection standards have led to increased recognition of the importance of research on radiation carcinogenesis and risk assessment.

Shigematsu, I.; Kagan, A.

1986-01-01T23:59:59.000Z

487

Degeneracy Breaking of Hydrogen Atom  

E-Print Network (OSTI)

The three dimensional rotation group, SO(3), is a symmetry group of the normal hydrogen atom. Each reducible representation of this group can be associated with a degenerate energy level. If this atom is placed in an external magnetic field, the interaction between the orbital magnetic moment with this field will lead to a symmetry breaking where the symmetry group of the atom is a new group distinct from the SO(3) group. This phenomenon describes the normal Zeeman effect, where a degenerate energy level splits into several new energy levels. It is explicitly shown that each of the new energy levels can be associated with an irreducible representation of the new symmetry group.

Agung Trisetyarso; Pantur Silaban

2008-12-22T23:59:59.000Z

488

Supercomputers and atomic physics data  

SciTech Connect

The advent of the supercomputer has dramatically increased the possibilities for generating and using massive amounts of detailed fine structure atomic physics data. Size, speed, and software have made calculations which were impossible just a few years ago into a reality. Further technological advances make future possibilities seem endless. The cornerstone atomic structure codes of R.D. Cowan have been adapted into a single code CATS for use on Los Alamos supercomputers. We provide a brief overview of the problem; and report a sample CATS calculation using configuration interaction to calculate collision and oscillator strengths for over 300,000 transitions in neutral nitrogen. We also discuss future supercomputer needs. 2 refs.

Abdallah, J. Jr.; Clark, R.E.H.

1988-01-01T23:59:59.000Z

489

Supersonic coal water slurry fuel atomizer  

DOE Patents (OSTI)

A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities. 3 figs.

Becker, F.E.; Smolensky, L.S.; Balsavich, J.

1989-11-01T23:59:59.000Z

490

Roosevelt Hot Springs/hot-dry-rock prospect and evaluation of the Acord 1-26 well  

DOE Green Energy (OSTI)

Previous hot, dry rock (HDR) geothermal resource evaluation efforts have identified the Roosevelt Hot Springs KGRA as a prime HDR target. The size of the HDR resource is estimated to be at least eight times larger than the adjacent hydrothermal resource. Further research activities to evaluate this HDR resource have involved review of data from the Acord hot dry well, the seismic structure of the area, fluid geochemistry, and hydrology of a shallow aquifer. These recent results are summarized and the most likely HDR prospect area is identified.

Shannon, S.S. Jr.; Goff, F.; Rowley, J.C.; Pettitt, R.A.; Vuataz, F.D.

1983-01-01T23:59:59.000Z

491

JILA Team Finds New Parallel Between Cold Gases and 'Hot' ...  

Science Conference Proceedings (OSTI)

... theorists, have discovered another notable similarity between ultracold atomic gases and high-temperature superconductors, suggesting there may ...

2010-10-05T23:59:59.000Z

492

DOE Solar Decathlon: News Blog » Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot Water Hot Water Below you will find Solar Decathlon news from the Hot Water archive, sorted by date. New Contest Data Displays Provide Insight into Competition Scoring Saturday, October 5, 2013 By Solar Decathlon New contest data displays are now available on the U.S. Department of Energy Solar Decathlon website. If you are interested in the real-time performance of each house and want to keep a close eye on the competition, check out the Contests section pages. In the Contests section, the pages for the measured contests (Comfort Zone, Hot Water, Appliances, Home Entertainment, and Energy Balance) explain the contest requirements and provide real-time graphical displays of the accumulated measurements/scores for each team. Roll your cursor over the graphics to see more detailed information about each contest. For example,

493

Medical Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Medical Hot Springs Space Heating Low Temperature Geothermal Facility Facility Medical Hot Springs Sector Geothermal energy Type Space Heating Location Union County, Oregon Coordinates 45.2334122°, -118.0410627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

494

Vichy Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Facility Vichy Hot Springs Sector Geothermal energy Type Space Heating Location Ukiah, California Coordinates 39.1501709°, -123.2077831° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

495

Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility Facility Kelly Hot Springs Sector Geothermal energy Type Aquaculture Location Alturas, California Coordinates 41.4871146°, -120.5424555° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

496

Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Facility Summer Lake Hot Springs Sector Geothermal energy Type Space Heating Location Summer Lake, Oregon Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRA