Powered by Deep Web Technologies
Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Bettis Atomic Power Laboratory  

SciTech Connect

The Bettis Atomic Power Laboratory (Bettis) is owned by the US Department of Energy (DOE) and has been operated under Government contract by the Westinghouse Electric Corporation since 1949. The Bettis Site in West Mifflin, Pennsylvania conducts research and development work on improved nuclear propulsion plants for US Navy warships and is the headquarters for all of the Laboratory's operations. For many years, environmental monitoring has been performed to demonstrate that the Bettis Site is being operated in accordance with environmental standards. While the annual report describes monitoring practices and results, it does not describe the nature and environmental aspects of work and facilities at the Bettis Site nor give a historical perspective of Bettis' operations. The purpose of this report is to provide this information as well as background information, such as the geologic and hydrologic nature of the Bettis Site, pertinent to understanding the environmental aspects of Bettis operations. Waste management practices are also described.

Not Available

1992-01-01T23:59:59.000Z

2

DOE - Office of Legacy Management -- Knolls Atomic Power Laboratory...  

Office of Legacy Management (LM)

Knolls Atomic Power Laboratory - NY 16 FUSRAP Considered Sites Site: Knolls Atomic Power Laboratory (NY.16) Designated Name: Alternate Name: Location: Evaluation Year: Site...

3

Bettis Atomic Power Laboratory. Environmental summary report  

SciTech Connect

The Bettis Atomic Power Laboratory (Bettis) is owned by the US Department of Energy (DOE) and has been operated under Government contract by the Westinghouse Electric Corporation since 1949. The Bettis Site in West Mifflin, Pennsylvania conducts research and development work on improved nuclear propulsion plants for US Navy warships and is the headquarters for all of the Laboratory`s operations. For many years, environmental monitoring has been performed to demonstrate that the Bettis Site is being operated in accordance with environmental standards. While the annual report describes monitoring practices and results, it does not describe the nature and environmental aspects of work and facilities at the Bettis Site nor give a historical perspective of Bettis` operations. The purpose of this report is to provide this information as well as background information, such as the geologic and hydrologic nature of the Bettis Site, pertinent to understanding the environmental aspects of Bettis operations. Waste management practices are also described.

Not Available

1992-01-01T23:59:59.000Z

4

Bettis and Knolls Atomic Power Laboratories | National Nuclear...  

National Nuclear Security Administration (NNSA)

Bettis and Knolls Atomic Power Laboratories | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

5

DOE - Office of Legacy Management -- Bettis Atomic Power Laboratories - PA  

Office of Legacy Management (LM)

Bettis Atomic Power Laboratories - Bettis Atomic Power Laboratories - PA 44 FUSRAP Considered Sites Site: Bettis Atomic Power Laboratories (PA.44 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Allegheny County , West Mifflin , Pennsylvania PA.44-1 Evaluation Year: Circa 1987 PA.44-2 Site Operations: Conducted activities directed toward the design, development, testing, and operational follow of nuclear reactor propulsion plants for Naval surface and submarine vessels. PA.44-1 Site Disposition: Eliminated - Active DOE facility PA.44-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Radioactive Materials Associated with Reactor Operation PA.44-3 Radiological Survey(s): None Indicated

6

Knolls Atomic Power Laboratory environmental monitoring report, calendar year 1999  

SciTech Connect

The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the three KAPL Sites [Knolls Site, Niskayuna, New York; Kesselring Site, West Milton, New York; S1C Site, Windsor, Connecticut] during calendar year 1999 resulted in no significant release of hazardous substances or radioactivity to the environment. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations.

None

2000-12-01T23:59:59.000Z

7

Early shielding research at Bettis Atomic Power Laboratory  

SciTech Connect

Reminiscences of shielding research at Bettis Atomic Power Laboratory (BAPL) always have in the background the reason for its existence - the design of efficient and safe reactors. Shielding is essential for personnel safety. However, the only computational tools available in the early 1950s were slide rules and desk calculators. Under these conditions, any shield desing calculation accurate within a factor of 2 was a good one, and the phrases close enough for shielding purposes' and including a factor for conservation' became a permanent part of the shielding vocabulary. This early work instilled a respect for hand calculations and the requirements that nay result, no matter how calculated, must meet the test of being reasonable and in line with previous experience. Even today, with sophisticated shielding programs available on the latest computers, calculated results must pass the same test.

Shure, K.; Wallace, O.J. (Westinghouse Electric Corp., West Mifflin, PA (United States))

1992-01-01T23:59:59.000Z

8

Knolls Atomic Power Laboratory environmental monitoring report, calendar year 2000  

SciTech Connect

The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the Knolls Site, Niskayuna, New York and the Kesselring Site, West Milton, New York and site closure activities at the S1C Site, Windsor, Connecticut, continued to have no adverse effect on human health and the quality of the environment during calendar year 2000. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations. Monitoring programs at the S1C Site were reduced in scope during calendar year 2000 due to completion of site dismantlement activities during 1999.

None

2001-12-01T23:59:59.000Z

9

E-Print Network 3.0 - atomic power laboratory Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: Global Research Laboratory Use Churchill's Law for Photonics Control of Light Speed Light at Atomic Scales... LaboratoryGlobal Research Laboratory What's Happening with...

10

DOE ORDER 5480.14, PHASE I - INSTALLATION ASSESSMENT FOR THE BETTIS ATOMIC POWER LABORATORY  

Office of Legacy Management (LM)

DOE ORDER 5480.14, PHASE I - INSTALLATION ASSESSMENT FOR THE BETTIS ATOMIC POWER LABORATORY Prepared for the U.S. Department of Energy by Westinghouse Electric Corporation West Mifflin, Pennsylvania 15122-0079 i' Vendor Contract Number: DE-ACll-76PN00014 : IAELE OF CONTENTS I. Executive Summary ............................................. 2. Introduction .................................................. a. Background......;.........................................i b. Authority .......................................................... : ; c. Purpose I ........................................................ 3 d Scope..................................................~..! e: Methodology...............................................! ........

11

Type B Accident Investigation Board Report of the July 7, 1997, Industrial Accident at the Knolls Atomic Power Laboratory Windsor Site, Windsor, Connecticut  

Energy.gov (U.S. Department of Energy (DOE))

On Monday, July 7, 1997, at approximately 10:47 a. m., an asbestos abatement subcontractor laborer working at the Knolls Atomic Power Laboratory-Windsor Site stepped on and fell backward through an unprotected rooftop skylight in the northwest quadrant of Building 5 (see Figure #1).

12

Atomic Power in Japan  

Science Journals Connector (OSTI)

NUCLEAR ENERGY will provide most of the power requirements in Japan by the end of this century. So predicts Charles H. Weaver, vice president in charge of atomic power activities for Westinghouse Electric.Addressing the Conference on Peaceful Uses of ...

1957-05-27T23:59:59.000Z

13

Atomic Energy Commission : Atomic Power at Shippingport - 1958 Educational Film  

SciTech Connect

The United States Atomic Energy Commission & Westinghouse Electric Company take us on a tour of an atomic power station.

None

2013-02-02T23:59:59.000Z

14

Sandia National Laboratories: solar power  

NLE Websites -- All DOE Office Websites (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

15

WORLD ATOMIC POWER TIMETABLE  

Science Journals Connector (OSTI)

Fusion is just about as far ahead of fission in its potentialities as is the latter over the conventional fuels. ... Most encouraging was the decision reached independently by the U. S.. the U. K. and the U.S.S.R. to take off the wraps of secrecy from thermonuclear research in power generation. ...

WALTER J. MURPHY

1958-10-27T23:59:59.000Z

16

CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT  

Office of Legacy Management (LM)

WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects ..-.. --__- _".-.-l--_--l -_._ _- --- ~~~. . ..~ CONTENTS Page - - I NTRODUCTI ON 1 Purpose 1 Docket Contents 1 Exhibit I: Summary of Activities at Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania I-l Exhibit II: Documents Supporting the Certification of Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania iii II-1 . . .- .__.^ I ^_... _.-__^-____-. - CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT

17

Sandia National Laboratories: Concentrating Solar Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Systems Air Force Research Laboratory Testing On November 2, 2012, in Concentrating Solar Power, Facilities, National Solar Thermal Test Facility, News, News & Events,...

18

Use of a CO{sub 2} pellet non-destructive cleaning system to decontaminate radiological waste and equipment in shielded hot cells at the Bettis Atomic Power Laboratory  

SciTech Connect

This paper details how the Bettis Atomic Power Laboratory modified and utilized a commercially available, solid carbon dioxide (CO{sub 2}) pellet, non-destructive cleaning system to support the disposition and disposal of radioactive waste from shielded hot cells. Some waste materials and equipment accumulated in the shielded hot cells cannot be disposed directly because they are contaminated with transuranic materials (elements with atomic numbers greater than that of uranium) above waste disposal site regulatory limits. A commercially available CO{sub 2} pellet non-destructive cleaning system was extensively modified for remote operation inside a shielded hot cell to remove the transuranic contaminants from the waste and equipment without generating any secondary waste in the process. The removed transuranic contaminants are simultaneously captured, consolidated, and retained for later disposal at a transuranic waste facility.

Bench, T.R.

1997-05-01T23:59:59.000Z

19

Sandia National Laboratories: Electric Power Research Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis Sandia and Electric Power Research Institute (EPRI) are delighted...

20

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Sandia National Laboratories: solar power  

NLE Websites -- All DOE Office Websites (Extended Search)

Features of Power Towers for Utilities Because of their practical energy storage, solar power towers have two features that are particularly desirable for utilities: flexible...

22

Power Systems Integration Laboratory (Fact Sheet)  

SciTech Connect

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Power Systems Integration Laboratory at the Energy Systems Integration Facility. At NREL's Power Systems Integration Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on developing and testing large-scale distributed energy systems for grid-connected, stand-alone, and microgrid applications. The laboratory can accommodate large power system components such as inverters for photovoltaic (PV) and wind systems, diesel and natural gas generators, battery packs, microgrid interconnection switchgear, and vehicles. Closely coupled with the research electrical distribution bus at the ESIF, the Power Systems Integration Laboratory will offer power testing capability of megawatt-scale DC and AC power systems, as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Thermal heating and cooling loops and fuel also allow testing of combined heating/cooling and power systems (CHP).

Not Available

2011-10-01T23:59:59.000Z

23

Sandia National Laboratories: Water Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia is also supporting work with Argonne National Laboratory in conventional hydropower optimization. Highlights: Sandia will receive more than 9 million over three years...

24

Sandia National Laboratories: solar power  

NLE Websites -- All DOE Office Websites (Extended Search)

Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

25

NREL: Concentrating Solar Power Research - Laboratory Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Capabilities Laboratory Capabilities To research, develop, and test a variety of concentrating solar power technologies, NREL features the following laboratory capabilities: High-Flux Solar Furnace (HFSF) Large Payload Solar Tracker Advanced Optical Materials Laboratory Advanced Thermal Storage Materials Laboratory Optical Testing Laboratory and Beam Characterization System Receiver Test Laboratory Heat Collection Element (HCE) Temperature Survey Photo of NREL's High-Flux Solar Furnace. NREL's High-Flux Solar Furnace. High-Flux Solar Furnace (HFSF) The power generated at NREL's High-Flux Solar Furnace (HFSF) can be used to expose, test, and evaluate many components-such as receivers, collectors, and reflector materials-used in concentrating solar power systems. The 10-kilowatt HFSF consists of a tracking heliostat and 25 hexagonal

26

Sandia National Laboratories: Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia Wind Energy in the News On May 4, 2011, in Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy's...

27

Hard Drive Power Consumption Uncovered Computer Laboratory  

E-Print Network (OSTI)

Hard Drive Power Consumption Uncovered Computer Laboratory Digital Technology Group Anthony Hylick, Andrew Rice, Brian Jones, Ripduman Sohan Motivation Attempts to reduce power consumption have mainly of power consumption and identify the need for a more expressive API between the OS and hardware devices

Cambridge, University of

28

Sandia National Laboratories: Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Current switches have been inefficient and ... ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration,...

29

Sandia National Laboratories: Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

aims to leapfrog the current industry trajectory by developing a new generation of power electronics based on Ultra-WBG (UWBG) semiconductors (those with bandgaps greater than...

30

Sandia National Laboratories: Water Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering, Water Power Sandia researchers are investigating the seasonal effects of a wave-energy converter (WEC) array on nearshore wave propagation using SNL-SWAN. WECs were...

31

Sandia National Laboratories: Water Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Power Sandia-NREL Wave Energy Converter (WEC)-Sim Development Meeting On August 28, 2013, in Computational Modeling & Simulation, Energy, Partnership, Renewable Energy, Water...

32

Sandia National Laboratories: solar power  

NLE Websites -- All DOE Office Websites (Extended Search)

The dishes track the sun in two axes to provide very high concentrations (1500 Wcm of solar power over ... Central Receiver Test Facility On April 4, 2011, in Operated by...

33

Sandia National Laboratories: solar power  

NLE Websites -- All DOE Office Websites (Extended Search)

Recent Solar Highlights On October 31, 2012, in View all Solar Energy News Molten Salt Test Loop Commissioning On October 10, 2012, in Concentrating Solar Power, EC, Energy, News,...

34

Atomic Power in Space: A History  

DOE R&D Accomplishments (OSTI)

"Atomic Power in Space," a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. Interplanetary space exploration successes and achievements have been made possible by this technology, for which there is no known substitue.

1987-03-00T23:59:59.000Z

35

SunShot Initiative: National Laboratory Concentrating Solar Power Research  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory Concentrating National Laboratory Concentrating Solar Power Research to someone by E-mail Share SunShot Initiative: National Laboratory Concentrating Solar Power Research on Facebook Tweet about SunShot Initiative: National Laboratory Concentrating Solar Power Research on Twitter Bookmark SunShot Initiative: National Laboratory Concentrating Solar Power Research on Google Bookmark SunShot Initiative: National Laboratory Concentrating Solar Power Research on Delicious Rank SunShot Initiative: National Laboratory Concentrating Solar Power Research on Digg Find More places to share SunShot Initiative: National Laboratory Concentrating Solar Power Research on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage

36

Sandia National Laboratories: Z Pulsed Power Facility: Z Research: Fusion  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Fusion Sun Plasma The ultimate energy source Fusion occurs when two atomic nuclei are joined together. To fuse the atoms, the force that repels them as they come together must be overcome. Accelerators accomplish this by forcing molecules to collide with one another at very high temperatures (high temperatures are simply molecules moving at high speeds). When light nuclei are involved, fusion can produce more energy than was required to start the reaction. This process is the force that powers the Sun, whose source of energy is an ongoing fusion chain reaction. As an unconfined event, fusion was first developed for use in nuclear weapons. Fusion's great potential as a new energy source depends on scientists' ability to harness its power in laboratory events. The Z

37

Sandia National Laboratories: Z Pulsed Power Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Z-Machine Z-Machine About Z Z Research Z News Contact Us Facebook Twitter YouTube Flickr RSS Z-Machine Z Pulsed Power Facility Science serving the nation Created to validate nuclear weapons models, the Z machine is also in the race for viable fusion energy. Z-Machine From Earth's Core to Black Holes Contributing to discovery science by studying matter at conditions found nowhere else on Earth Center of Z About Z Sandia's Z machine is the world's most powerful and efficient laboratory radiation source. It uses high magnetic fields associated with high electrical currents to produce high temperatures, high pressures, and powerful X-rays for research in high energy density science. The Z machine creates conditions found nowhere else on Earth. Z is part of Sandia's Pulsed Power program, which began in the 1960s.

38

Pulsed Power Technology at Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Z-Machine Time-exposure photograph of electrical flashover arcs produced over the surface of the water in the accelerator tank as a byproduct of Z operation. These flashovers are much like strokes of lightning Related links Electromagnetic Technology at Sandia National Laboratories Pulsed Power Technology Published Papers Inertial Fusion Energy C. L. Olson, "Inertial Fusion Energy with Pulsed Power," 2000 Codes: ALEGRA K. C. Cochrane, "Aluminum Equation of State Validation and Verification for the ALEGRA HEDP Simulation Code," 2006 T. Trucano, "ALEGRA-HEDP Validation Strategy," 2005 C. Garasi , "Multi-dimensional high energy density physics modeling and simulation of wire array z-pinch physics," 2003 Equation of State (EOS)

39

Sandia National Laboratories Distributive Power Initiative (DPI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peer Review This work was funded by the DOE Energy Storage Program November 2-3, 2006 Washington, DC Presented by: Tom Hund, Nancy Clark, David Johnson, and Wes Baca Sandia National Laboratories Albuquerque, NM (505) 844-8627 tdhund@sandia.gov *Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. 2 Introduction (Previous Work)  Sandia's Power Sources Component Development Dept. provides unbiased energy storage testing support to the DOE Energy Storage Program.  Previous work has included supercap testing on ESMA, Maxwell, and Okamura Labs devices, and battery testing on EEI Bipolar NiMH, Cyclon VRLA,

40

National Laboratory Concentrating Solar Power Research and Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Publications National Laboratory Concentrating Solar Power Research and Development Particle Receiver Integrated with Fludized Bed Scattering Solar Thermal Concentrators...

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

EA-1900: Radiological Work and Storage Building at the Knolls Atomic Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Radiological Work and Storage Building at the Knolls 0: Radiological Work and Storage Building at the Knolls Atomic Power Laboratory Kesselring Site, West Milton, New York EA-1900: Radiological Work and Storage Building at the Knolls Atomic Power Laboratory Kesselring Site, West Milton, New York Summary The Naval Nuclear Propulsion Program (NNPP) intent to prepare an Environmental Assessment for a radiological work and storage building at the Knolls Atomic Power Laboratory (Kesselring Site in West Milton, New York. A new facility is needed to streamline radioactive material handling and storage operations, permit demolition of aging facilities, and accommodate efficient maintenance of existing nuclear reactors. Public Comment Opportunities None available at this time. Documents Available for Download July 16, 2012

42

E-Print Network 3.0 - atomic power plant Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

plant Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic power plant...

43

E-Print Network 3.0 - atomic power plants Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

plants Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic power plants...

44

Sandia National Laboratories: Water Power Personnel  

NLE Websites -- All DOE Office Websites (Extended Search)

PowerWater Power Personnel Water Power Personnel Photo of Diana Bull Diana Bull Engineering Sciences R&D 06122Water Power Technologies Diana Bull is a technical staff member in the...

45

Anticipating the atom: popular perceptions of atomic power before Hiroshima  

E-Print Network (OSTI)

to spontaneously generate light and heat. s Theory chased research after the turn of the century. Rutherford and his partner Frederick Soddy, in Montreal in 1902, noticed that the heaviest radioactive elements were slowly changing into lighter elements, throwing... the Atlantic. More importantly, in 1908, the final chapter of Frederick Soddy's The Jnterpretati on of Radium, a collection of six free popular lectures given at the University of Glasgow, speculated on the possibility of controlling the rate of atomic...

d'Emal, Jacques-Andre Christian

2012-06-07T23:59:59.000Z

46

Sandia National Laboratories: convert wave power into electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

wave power into electricity WEC-Sim Code Development Meeting at the National Renewable Energy Laboratory On April 29, 2014, in Computational Modeling & Simulation, Energy, News,...

47

Sandia National Laboratories: Evaluating Powerful Batteries for...  

NLE Websites -- All DOE Office Websites (Extended Search)

ClimateECEnergyEvaluating Powerful Batteries for Modular Electric Grid Energy Storage Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Sandian Spoke at the...

48

Sandia National Laboratories: power flow control system  

NLE Websites -- All DOE Office Websites (Extended Search)

power flow control system ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities,...

49

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Power Technical Management Position On July 12, 2012, in Concentrating Solar Power, Energy, Facilities, Job Listing, National Solar Thermal Test Facility, News,...

50

Sandia National Laboratories: multiscale concentrated solar power  

NLE Websites -- All DOE Office Websites (Extended Search)

concentrated solar power Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power, Energy, National Solar Thermal...

51

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power Solar Energy On February 3, 2011, in Solar Programs Photovoltaics Concentrating Solar Power Sunshine to Petrol Solar Publications Recent Solar Highlights...

52

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power (CSP) On April 13, 2011, in CSP R&D at Sandia Testing Facilities Software & Tools Resources Contacts News Concentrating Solar Power ANNOUNCEMENT: Sandia's...

53

Sandia National Laboratories: Concentrating Solar Power: Efficiently...  

NLE Websites -- All DOE Office Websites (Extended Search)

Equilibrium Mechanisms for Engineering New Thermochemical Storage Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating...

54

DOE - Office of Legacy Management -- Westinghouse Atomic Power Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic Power Atomic Power Development Plant - PA 04 FUSRAP Considered Sites Site: WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT (PA.04 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: East Pittsburgh , Pennsylvania PA.04-1 Evaluation Year: 1985 PA.04-2 Site Operations: Research and development on uranium oxide fuel elements in the 1940s. PA.04-3 PA.04-5 Site Disposition: Eliminated - Radiation levels below criteria PA.04-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Zirconium PA.04-3 PA.04-4 Radiological Survey(s): Yes PA.04-1 Site Status: Eliminated from consideration under FUSRAP PA.04-5 Also see Documents Related to WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT

55

Routine application of the in situ soil analysis technique by the Yankee Atomic Environmental Laboratory  

SciTech Connect

Using a technique developed by the Environmental Measurements Laboratory (EML) for field spectrometry, the Yankee Atomic Environmental Laboratory (YAEL) has routinely performed in situ soil measurements in the vicinity of five nuclear power stations for more than a decade. As a special research endeavor, several locations at the FURNAS Angra 1 site in Brazil having high natural backgrounds were also measured in 1987. The technical basis of the technique, a comparison of soil radionuclide concentrations predicted by the in situ technique to soil radionuclide concentrations predicted by the in situ technique to soil analyses from the same sites, the advantages and disadvantages of the in situ methodology, and the evolution of the portable equipment utilized at YAEL for the field measurements are presented in this paper.

Murray, J.C.; McCurdy, D.E.; Laurenzo, E.L.

1989-01-01T23:59:59.000Z

56

Vibrational spectra of N2: An advanced undergraduate laboratory in atomic and molecular spectroscopy  

E-Print Network (OSTI)

an advanced laboratory course focused on spectroscopy of atoms and molecules, for a diverse and solid#12;Vibrational spectra of N2: An advanced undergraduate laboratory in atomic and molecular to demonstrate molecular spectroscopy by measuring the vibrational energy spacing of nitrogen molecules

Bayram, S. Burçin

57

Gender: Male Address: The State Key Laboratory of Fluid Power  

E-Print Network (OSTI)

of this simulation system at the first two years. My works focused on the design of power conversion and mechanical, Canjun Yang, Dejun Li, Bo Jin, Ying Chen. Study on 10kVDC powered junction box for cabled oceanYanHu Chen Gender: Male Address: The State Key Laboratory of Fluid Power Transmission and Control

Frandsen, Jannette B.

58

Sandia National Laboratories: power-grid analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

power-grid analysis New Jersey Transit FutureGrid MOU Signing On October 4, 2013, in Analysis, Energy Surety, Infrastructure Security, Microgrid, Modeling, Modeling & Analysis,...

59

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

InstituteSandia Photovoltaic Systems Symposium On April 15, 2014, in Concentrating Solar Power, Distribution Grid Integration, Energy, Facilities, Grid Integration, News,...

60

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia and EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency On March 29, 2013, in Concentrating Solar Power, Energy, Partnership, Photovoltaic, Renewable...

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

62

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Salt Initial Flow Testing is a Tremendous Success On November 2, 2012, in Concentrating Solar Power, News, Renewable Energy, Solar The Molten Salt Test Loop (MSTL ) system at...

63

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia Workers Received Entrepreneurial Spirit Awards On April 3, 2013, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

64

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety and Health Go Green Initiative On December 19, 2012, in Concentrating Solar Power, Energy, Events, Facilities, National Solar Thermal Test Facility, News, News...

65

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

NASA's Solar Tower Test of the 1-Meter Aeroshell On August 23, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, Partnership,...

66

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

and Transportation R&D Activities View all EC Publications Related Topics Concentrating Solar Power CSP EFRC Energy Energy Efficiency Energy Security Infrastructure...

67

Sandia National Laboratories: Power Towers for Utilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

68

DOE - Office of Legacy Management -- Shippingport Atomic Power Plant - PA  

Office of Legacy Management (LM)

Shippingport Atomic Power Plant - Shippingport Atomic Power Plant - PA 13 FUSRAP Considered Sites Site: SHIPPINGPORT ATOMIC POWER PLANT (PA.13 ) Eliminated from further consideration under FUSRAP. Designated Name: Not Designated Alternate Name: Duquesne Light Company PA.13-1 Location: 25 miles west of Pittsburgh in Beaver County , Shippingport , Pennsylvania PA.13-2 Evaluation Year: circa 1987 PA.13-3 Site Operations: First commercially operated nuclear power reactor. Joint project (Federal Government an Duquesne Light Company) to demonstrate pressurized water reactor technology and to generate electricity. Plant operated by Duquesne Light Company under supervision of the Office of the DOE Deputy Assistant Secretary for Naval Reactors -- 1957 to October 1982. PA.13-2 Site Disposition: Eliminated - No Authority. DOE chartered Major Project #118, Shippingport Station Decommissioning Project completed cleanup in 1989. PA.13-1

69

Advanced Power Systems and Controls Laboratory  

E-Print Network (OSTI)

photovoltaic generation facility. Solar panel output is in white, and the response of the XP DPR is in red Solar Power Generation Introduction The rapid growth of wind and solar power is a key driver of the development of grid-scale Battery Energy Storage Systems (BESS). A well implemented BESS co-located with solar

Ben-Yakar, Adela

70

Sandia National Laboratories Distributive Power Initiative (DPI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large Format Carbon Enhanced Large Format Carbon Enhanced VRLA Battery Test Results EESAT 2009 Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through Sandia National Laboratories (SNL) October 4 - 7, 2009 Seattle, Washington Presented by: Tom Hund Sandia National Laboratories Albuquerque, NM (505) 844-8627 tdhund@sandia.gov *Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. 2 Objective  Test Advanced Lead-Acid Battery Consortium (ALABC) technology for utility partial state of charge (PSOC) cycling applications. Utility applications may include: Wind farm energy smoothing Photovoltaic energy smoothing

71

Sandia National Laboratories Distributive Power Initiative (DPI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Devices Devices Testing and Evaluation of Energy Storage Devices DOE Energy Storage Systems Research Program Annual Peer Review Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through Sandia National Laboratories (SNL) September 29 - 30, 2008 Washington, DC Presented by: Tom Hund, Nancy Clark and Wes Baca Sandia National Laboratories Albuquerque, NM (505) 844-8627 tdhund@sandia.gov Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. 2 Objective (FY-08 Work) Objective (FY-08 Work)  Identify and test advanced battery technology including Valve Regulated Lead-Acid, (VRLA) and Li-ion (Li-

72

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

CSP Resources On September 26, 2012, in CSP Images & Videos On September 26, 2012, in Image Gallery Videos Concentrating Solar Power Image Gallery A picture says a thousand words,...

73

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Molten Salt Test Loop Melted Salt On October 10, 2012, in Concentrating Solar Power, Energy, News, Renewable Energy, Solar The Molten Salt Test Loop (MSTL) team at Sandia National...

74

Sandia National Laboratories: DC power optimizers  

NLE Websites -- All DOE Office Websites (Extended Search)

DC power optimizers Sandia R&D Funded under New DOE SunShot Program On November 27, 2013, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar,...

75

Sandia National Laboratories: Concentrating Solar Power (CSP...  

NLE Websites -- All DOE Office Websites (Extended Search)

of three 459-ft-tall power towers and over 170,000 reflective heliostats with a rated capacity of 390 MW. The California Energy Commission (CEC) has received numerous pilot and air...

76

Sandia National Laboratories: Wind & Water Power Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind and Water Power Program. Events Register by August 11th to receive discounted rate for...

77

Sandia National Laboratories: Wind & Water Power Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

on marine current turbine behaviour and on its wake properties, IET Renewable Power Generation November 2010, Volume 4, Issue 6, P.498-509 Chris Chartrand, (505) 845-8750....

78

Sandia National Laboratories: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Dishes Chuck Andraka | Phone: 505-844-8573 Dr. Julius Yellowhair | Phone: 505-844-3029 Power Tower Component DesignModeling Josh Christian | Phone: 505-284-5190 Dr. Ryan ......

79

Sandia National Laboratories Distributive Power Initiative (DPI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testing and Evaluation of Testing and Evaluation of Energy Storage Devices DOE Energy Storage Systems Research Program Annual Peer Review This work was funded by the DOE Energy Storage Program September 23 - 26, 2007 San Francisco, CA Presented by: Tom Hund, Nancy Clark, David Johnson, and Wes Baca Sandia National Laboratories Albuquerque, NM (505) 844-8627 tdhund@sandia.gov *Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. 2 Introduction (FY-07 Work) Introduction (FY-07 Work) Sandia/MeadWestvaco/NorthStar Supercap and Carbon Enhanced Lead-Acid Battery Work Prepared second generation of MWV carbon for testing in NorthStar and Battery Energy batteries

80

CO{sub 2} Mitigation Using Atomic Power  

SciTech Connect

Atomic power must grow 4.6%/yr in order to displace fossil fuel by 2080 and arrest CO{sub 2} at twice pre-industrial level. World energy use grows 2%/yr and World economy grows 3%/yr. Light Water Reactor (LWR) generation is expanded to the limit of the uranium supply, using a once-through fuel cycle. LWR Spent fuel plutonium is used in breeder reactor first cores. Absent atomic power, rising coal consumption will cause CO{sub 2} to double by 2050, triple by 2075, and be times 4 by 2090. Each 1.0 GWe atomic power plant delays CO{sub 2} doubling 1 week. (author)

Schenewerk, William Ernest [Parsons, Pasadena, CA, 5060 San Rafael Ave., Los Angeles CA 90042-3239 (United States)

2002-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Pulsed Power Technology at Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

News and Reviews News and Reviews Pulsed Power in the News Nuclear fusion simulation shows high-gain energy output (March 2012) Rapid-fire pulse brings Sandia Z method closer to goal of high-yield fusion reactor (April 2007) Ice created in nanoseconds by Sandia's Z machine (March 2007) Z-Machine Shockwaves Melt Diamond (November 2006) Phase diagram of water revised by Sandia researchers (October 2006) Z fires objects faster than Earth moves through space (June 6, 2005) Sandia imagists view imploding wire arrays on Z (November 10, 2004) Z's $61.7 million refurbishment to advance capabilities (October 21, 2004) Z produces fusion neutrons (April 7, 2003) Former shock physics manager (Asay) elected to NAE (February 20, 2003) Z-Beamlet image shows Z evenly compresses pellet (August 30, 2001)

82

Sandia National Laboratories Distributive Power Initiative (DPI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benjamin L. Schenkman Benjamin L. Schenkman (505) 284-5883 BLSCHEN@SANDIA.GOV September 2008 ABMAS Battery Management System for USCG National Distress System Applications Annual DOE Peer Review National Distress System (NDS) Problem National Distress System (NDS) Problem  Supplying Fuel to the propane generators is expensive especially when the fuel has to be chartered by helicopter. NDS Background NDS Background  365/7/24 distress communication coverage  Remote Locations (Majority in Alaska)  VHF-FM system powered by Battery, PV and USCG owned propane generators  Fuel for the Generator is delivered by helicopter or car if possible Fuel/Battery Tradeoff Fuel/Battery Tradeoff Good charge acceptance Efficient generator operation Good charge acceptance Efficient generator

83

Sandia National Laboratories: Z Pulsed Power Facility: About Z  

NLE Websites -- All DOE Office Websites (Extended Search)

About Z About Z Picture of Z Machine Sandia's Z machine is Earth's most powerful pulsed-power facility and X-ray generator. Z compresses energy in time and space to achieve extreme powers and intensities, found nowhere else on Earth. In approximately 200 shots Z fires every year, the machine uses currents of about 26 million amps to reach peak X-ray emissions of 350 terawatts and an X-ray output of 2.7 megajoules. The Z machine is located in Albuquerque, N.M., and is part of Sandia's Pulsed Power Program, which began in the 1960s. Pulsed power is a technology that concentrates electrical energy and turns it into short pulses of enormous power, which are then used to generate X-rays and gamma rays. Produced in the laboratory, this controlled radiation creates conditions similar to those caused by the detonation of nuclear weapons,

84

Establishment of a quality system at the Nuclear Analytical Laboratories of the Atomic Energy Authority, Sri Lanka  

Science Journals Connector (OSTI)

A quality system according to the requirements of ISO/ ... at the Nuclear Analytical Laboratories of the Atomic Energy Authority, which has received appreciation from International Atomic Energy Agency (IAEA) ins...

M. C. Shirani Seneviratne

2006-03-01T23:59:59.000Z

85

A graphical electromagnetic simulation laboratory for power systems engineering programs  

SciTech Connect

The recent availability of Electromagnetic Transient Programs with graphical front ends now makes it possible to put together models for circuits and systems in a manner similar to the connection of components in a laboratory. In the past, the non-graphical EMT Programs required considerable expertise in their use and thus distracted the students into the details or simulation. The introduction of a graphical simulation based laboratory into Undergraduate and Graduate Engineering Programs is presented, based on the PSCAD/EMTDC program. The philosophy behind the design of suitable example cases is presented within the framework of an Undergraduate Power Electronics Course, an HVdc Transmission Course and a course on Power System Protection.

Gole, A.M. [Univ. of Manitoba, Winnipeg, Manitoba (Canada)] [Univ. of Manitoba, Winnipeg, Manitoba (Canada); Nayak, O.B. [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada)] [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada); Sidhu, T.S.; Sachdev, M.S. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada)] [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada)

1996-05-01T23:59:59.000Z

86

EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

87

E-Print Network 3.0 - atomic power project Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

of Human Breast Cancer and Atomic Structure of Nanomaterials by Using Equally Sloped Tomography Summary: the power of EST: 3D imaging of a human breast cancer sample and atomic...

88

Abstract --Our approach to laboratory education in power electronics and electric machines is presented. The approach  

E-Print Network (OSTI)

that students learn power flow and energy conver- sion concepts intuitively. This suggests that laboratory in the salient design issues. In our power electronics laboratory course, there is a final project where1 Abstract --Our approach to laboratory education in power electronics and electric machines

Kimball, Jonathan W.

89

RADIOISOTOPE POWER SYSTEM CAPABILITIES AT THE IDAHO NATIONAL LABORATORY (INL)  

SciTech Connect

--Idaho National Laboratorys, Space Nuclear Systems and Technology Division established the resources, equipment and facilities required to provide nuclear-fueled, Radioisotope Power Systems (RPS) to Department of Energy (DOE) Customers. RPSs are designed to convert the heat generated by decay of iridium clad, 238PuO2 fuel pellets into electricity that is used to power missions in remote, harsh environments. Utilization of nuclear fuel requires adherence to governing regulations and the INL provides unique capabilities to safely fuel, test, store, transport and integrate RPSs to supply powersupporting mission needs. Nuclear capabilities encompass RPS fueling, testing, handling, storing, transporting RPS nationally, and space vehicle integration. Activities are performed at the INL and in remote locations such as John F. Kennedy Space Center and Cape Canaveral Air Station to support space missions. This paper will focus on the facility and equipment capabilities primarily offered at the INL, Material and Fuel Complex located in a security-protected, federally owned, industrial area on the remote desert site west of Idaho Falls, ID. Nuclear and non-nuclear facilities house equipment needed to perform required activities such as general purpose heat source (GPHS) module pre-assembly and module assembly using nuclear fuel; RPS receipt and baseline electrical testing, fueling, vibration testing to simulate the launch environment, mass properties testing to measure the mass and compute the moment of inertia, electro-magnetic characterizing to determine potential consequences to the operation of vehicle or scientific instrumentation, and thermal vacuum testing to verify RPS power performance in the vacuum and cold temperatures of space.

Kelly Lively; Stephen Johnson; Eric Clarke

2014-07-01T23:59:59.000Z

90

E-Print Network 3.0 - atomic power teller Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos, Teller's demands for the immediate production of a vastly more powerful thermonuclear... of the atomic scientists rushed to return to the universities, ... Source:...

91

Sandia National Laboratories: Z Pulsed Power Facility: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z-Machine Z-Machine About Z Z Research Z News Contact Us Facebook Twitter YouTube Flickr RSS Top Z News Publications Z-Machine Publications Archive Inertial Confinement Fusion Dynamic Hohlraums Thomas W. L. Sanford, "Overview of the Dynamic-Hohlraum X-ray Source at Sandia National Laboratories," April 2007 (1.5 MB PDF) T.W.L. Sanford, "Comparative properties of the Interior and Blowoff Plasmas in a dynamic Hohlraum," April 2007 (1.39 KB PDF) Tom Nash, "Current Scaling of Axially Radiated Power in dynamic Hohlraums and Dynamic Hohlraum Load Design for ZR," March 2007 (2.15 PDF) R. A. Vesey, "Target Design for High Fusion Yield with the Double Z-pinch driven Hohlraums," March 2007 (1.65 PDF) T.W.L. Sanford, "Wire Initiation Critical for Radiation symmetry

92

RF Power Upgrade for CEBAF at Jefferson Laboratory  

SciTech Connect

Jefferson Laboratory (JLab) is currently upgrading the 6GeV Continuous Electron Beam Accelerator Facility (CEBAF) to 12GeV. As part of the upgrade, RF systems will be added, bringing the total from 340 to 420. Existing RF systems can provide up to 6.5 kW of CW RF at 1497 MHZ. The 80 new systems will provide increased RF power of up to 13 kW CW each. Built around a newly designed and higher efficiency 13 kW klystron developed for JLab by L-3 Communications, each new RF chain is a completely revamped system using hardware different than our present installations. This paper will discuss the main components of the new systems including the 13 kW klystron, waveguide isolator, and HV power supply using switch-mode technology. Methodology for selection of the various components and results of initial testing will also be addressed. Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

Andrew Kimber,Richard Nelson

2011-03-01T23:59:59.000Z

93

Handbook for the Electrical Laboratory and Testing Room; Equipment, Resistance, Current, Potential, Power  

Science Journals Connector (OSTI)

Handbook for the Electrical Laboratory...HENRY CARRINGTON BOLTON. Handbook for the Electrical Laboratory...Poten-tial, Power. London, The Electrician Printing and Publishing...ponder its words; but as a handbook for general use in the electrical...

DUGALD C. JACKSON

1902-05-23T23:59:59.000Z

94

Sandia National Laboratories: wind turbines produce rated power  

NLE Websites -- All DOE Office Websites (Extended Search)

turbines produce rated power Increasing the Scaled Wind Farm Technology Facility's Power Production On April 7, 2014, in Energy, Facilities, News, News & Events, Partnership,...

95

National Laboratory Concentrating Solar Power Research and Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and performance improvements across all major concentrating solar power (CSP) subsystems-solar fields, power plants, receivers, and thermal storage-are necessary to achieve the...

96

Sandia National Laboratories: green hy-drogen power  

NLE Websites -- All DOE Office Websites (Extended Search)

hy-drogen power Portable Hydrogen Fuel-Cell Unit to Provide Green, Sustainable Power to Honolulu Port On March 13, 2014, in Center for Infrastructure Research and Innovation...

97

Sandia National Laboratories: Power Production Started on All...  

NLE Websites -- All DOE Office Websites (Extended Search)

ClimateECEnergyPower Production Started on All Three SWiFT Turbines Power Production Started on All Three SWiFT Turbines Sandia Maps Multiple Paths to Cleaner, Low-Temp Diesels CRF...

98

Sandia National Laboratories: Fuel-Cell-Powered Mobile Lights...  

NLE Websites -- All DOE Office Websites (Extended Search)

ClimateECAbout ECFacilitiesCenter for Infrastructure Research and Innovation (CIRI)Fuel-Cell-Powered Mobile Lights Tested, Proven, Ready for Commercial Use Fuel-Cell-Powered Mobile...

99

Sandia National Laboratories: sustainable hy-drogen power  

NLE Websites -- All DOE Office Websites (Extended Search)

hy-drogen power Portable Hydrogen Fuel-Cell Unit to Provide Green, Sustainable Power to Honolulu Port On March 13, 2014, in Center for Infrastructure Research and Innovation...

100

Analysis and Reduction of Power Grid Models under Uncertainty Sandia National Laboratories  

E-Print Network (OSTI)

1.30pm Analysis and Reduction of Power Grid Models under Uncertainty Habib Najm Sandia National Laboratories Abstract The increased utilization of alternative energy sources requires that evolving power grid Uncertainty Eigenproblem Closure Analysis and Reduction of Power Grid Models under Uncertainty H.N. Najm

Levi, Anthony F. J.

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sandia National Laboratories: Sandia Funded to Model Power Pods...  

NLE Websites -- All DOE Office Websites (Extended Search)

Collaboration for Sandia, UNM Sandia Funded to Model Power Pods for Utility-Scale Wave-Energy Converter On September 16, 2014, in Computational Modeling & Simulation, Energy,...

102

National Laboratory Concentrating Solar Power Research and Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Concentrating Solar Power Research and Development Motivation The U.S. Department of Energy (DOE) launched the SunShot Initiative as a collaborative national endeavor to make...

103

Sandia National Laboratories: PNM Distributed Energy Solar Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

PNM Distributed Energy Solar Power Program Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution...

104

Sandia National Laboratories: reduce the cost of solar power  

NLE Websites -- All DOE Office Websites (Extended Search)

the cost of solar power Launch of Solar Testing Site in Vermont On November 27, 2013, in Energy, Facilities, News, News & Events, Partnership, Photovoltaic, Photovoltaic Regional...

105

Sandia National Laboratories: character-izing solar-power-plant...  

NLE Websites -- All DOE Office Websites (Extended Search)

character-izing solar-power-plant output variability Sandia PV Team Publishes Book Chapter On January 21, 2014, in Computational Modeling & Simulation, Energy, Modeling & Analysis,...

106

PPPL's "Star Power" video offers compelling view of Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

Jeanne Jackson DeVoe September 4, 2013 Tweet Widget Google Plus One Share on Facebook PPPL has released its new "Star Power" informational video. (Photo by Greg CzechowiczPPPL...

107

Sandia National Laboratories: grid-tied wind-power inverters  

NLE Websites -- All DOE Office Websites (Extended Search)

wind-power inverters Sandia, DOE Energy Storage Program, GeneSiC Semiconductor, U.S. Army ARDEC: Ultra-High-Voltage Silicon Carbide Thyristors On March 29, 2013, in Capabilities,...

108

Sandia National Laboratories: Module-level power electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Module-level power electronics Sandia R&D Funded under New DOE SunShot Program On November 27, 2013, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy,...

109

EA-1247: Electrical Power System Upgrades at Los Alamos National Laboratory, Los Alamos, New Mexico  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposal to upgrade the electrical power supply system for the U.S. Department of Energy Los Alamos National Laboratory to increase the...

110

STOPPING POWER AND ENERGY FOR ION PAIR PRODUCTION FOR 340 MEV PROTONS  

E-Print Network (OSTI)

Idaho Operations Office Iowa State College Kansas City Operations Branch Kellex Corporation Knolls Atomic Power Laboratory Los Alamos Scientific

Bakker, C.J.; Segre, E.

2008-01-01T23:59:59.000Z

111

Sandia National Laboratories: Z Pulsed Power Facility: Z Research: Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Picture of Z Machine Z machine contributes to clean-energy technologies The importance of Z in solving the world's energy challenges is directly connected to its fusion potential. Inertial confinement fusion for peaceful production of electricity has always been of interest to Sandia's pulsed power sciences. But today, in light of growing concern about the health of our planet and considering our escalating energy needs, the development of fusion technology is especially promising for several reasons First, the fuel needed for fusion is virtually limitless - deuterium, an isotope of hydrogen, is abundant in seawater; tritium is bred in the fusion power plant process. Half a bathtub full of seawater in a fusion reaction could produce as much energy as 40 train cars of coal.

112

Sandia National Laboratories: Z Pulsed Power Facility: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications *only first authors listed 2013 Author Title Journal Volume RE Falcon An experimental platform for creating white dwarf photospheres in the laboratory High Energy Density Physics 9 TA Haill Mesoscale simulation of mixed equations of state with application to shocked platinum-doped PMP foams Procedia Engineering 58 SB Hansen Testing the reliability of Non-LTE Spectroscopic Models for Complex Ions High Energy Density Physics 9 B Jones Basis set expansion for inverse problems in plasma diagnostic analysis Review of Scientific Instruments 84 PF Knapp Diagnosing suprathermal ion populations in Z-pinch plasmas using fusion neutron spectra Physics of Plasmas 20 MD Knudson Shock response of low-density silica aerogel in the multi-Mbar regime Journal of Applied Physics

113

Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms  

E-Print Network (OSTI)

We developed a high-power laser system at a wavelength of 399 nm for laser cooling of ytterbium atoms with ultraviolet laser diodes. The system is composed of an external cavity laser diode providing frequency stabilized output at a power of 40 mW and another laser diode for amplifying the laser power up to 220 mW by injection locking. The systematic method for optimization of our injection locking can also be applied to high power light sources at any other wavelengths. Our system, which does not depend on complex nonlinear frequency-doubling, has great importance for implementing transportable optical lattice clocks, and is also useful for investigations on condensed matter physics or quantum information processing using cold atoms.

Toshiyuki Hosoya; Martin Miranda; Ryotaro Inoue; Mikio Kozuma

2014-12-02T23:59:59.000Z

114

Atomic-Scale Mapping of Thermoelectric Power on Graphene: Role of Defects and Boundaries  

E-Print Network (OSTI)

by conductance measurements alone. Indeed, the thermoelectric properties of this two-dimensional material have scattering effects in thermoelectric materials. An alternative way to study the thermoelectric properties1 Atomic-Scale Mapping of Thermoelectric Power on Graphene: Role of Defects and Boundaries Jewook

Feenstra, Randall

115

EIS-0080: Decommissioning of the Shippingport Atomic Power Station, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy's Remedial Actions Program Office developed this statement to assess the impacts of decommissioning the Shippingport Atomic Power Station as well as analyze possible decommissioning alternatives, evaluate potential environmental impacts associated with each alternative, and present cost estimates for each alternative.

116

EIS-0080: Decommissioning of the Shipping port Atomic Power Station, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy's Remedial Actions Program Office developed this statement to assess the impacts of decommissioning the Shippingport Atomic Power Station as well as analyze possible decommissioning alternatives, evaluate potential environmental impacts associated with each alternative, and present cost estimates for each alternative.

117

Power Systems Integration Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced functionality testing Advanced functionality testing (i.e., IEEE 1547.8, IEEE 2030 capability tests) * Electrical performance testing (efficiency, maximum power) * Safety testing * Model validation testing * Long duration reliability testing Partner with Us Work with NREL experts and take advantage of the state-of-the-art capabilities at the ESIF to make progress on your projects, which may range from fundamental research to applications engineering.

118

International Atomic Energy Agency specialists meeting on experience in ageing, maintenance, and modernization of instrumentation and control systems for improving nuclear power plant availability  

SciTech Connect

This report presents the proceedings of the Specialist`s Meeting on Experience in Aging, Maintenance and Modernization of Instrumentation and Control Systems for Improving Nuclear Power Plant Availability that was held at the Ramada Inn in Rockville, Maryland on May 5--7, 1993. The Meeting was presented in cooperation with the Electric Power Research Institute, Oak Ridge National Laboratory and the International Atomic Energy Agency. There were approximately 65 participants from 13 countries at the Meeting. Individual reports have been cataloged separately.

Not Available

1993-10-01T23:59:59.000Z

119

Sandia National Laboratories` high power electromagnetic impulse sources  

SciTech Connect

Three impulse sources have been developed to cover a wide range of peak power, bandwidth and center frequency requirements. Each of the sources can operate in single shot, rep-rate, or burst modes. These devices are of rugged construction and are suitable for field use. This paper will describe the specifications and principals of operation for each source. The sources to be described are: SNIPER (Sub-Nanosecond ImPulsE Radiator), a coaxial Blumlein pulser with an in-line (series) peaking switch; EMBL (EnantioMorphic BLurfflein), a bipolar parallel plate Blumlein with a crowbar type (parallel) peaking switch; and the LCO (L-C Oscillator) a spark-switched L-C oscillator with damped sinusoidal output. SNIPER and EMBL are ultra-wideband (UWB) sources which produce a very fast high voltage transition. When differentiated by the antenna, an impulse whose width corresponds to the transition time is radiated. The LCO operates with a center frequency up to 800 MHz and up to 100 MHz bandwidth. Because the LCO output is relatively narrow band, high gain antennas may be employed to produce very high radiated field strengths.

Rinehart, L.F.; Buttram, M.T.; Denison, G.J.; Lundstrom, J.M.; Crowe, W.R.; Aurand, J.F.; Patterson, P.E.

1994-10-01T23:59:59.000Z

120

National Renewable Energy Laboratory Report Identifies Research Needed to Address Power Market Design Challenges  

Energy.gov (U.S. Department of Energy (DOE))

A new report by DOE's National Renewable Energy Laboratory identifies research opportunities to improve the ways in which wholesale electricity markets are designed, with a focus on how the characteristics of variable generation from wind and solar power can affect those markets.

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

DOE - Office of Legacy Management -- Westinghouse Atomic Power Div - PA 16  

Office of Legacy Management (LM)

Power Div - PA Power Div - PA 16 FUSRAP Considered Sites Site: WESTINGHOUSE ATOMIC POWER DIV. (PA.16 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Route 30 (Forrest Hills) , Pittsburgh , Pennsylvania PA.16-1 Evaluation Year: 1985 PA.16-1 Site Operations: Processed uranium metal for research and development and pilot-scale production of uranium oxide fuel elements. Prepared uranium metal for Enrico Fermi's Stagg Field experiment. PA.16-1 Site Disposition: Eliminated - Radiation levels below criteria PA.16-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium PA.16-1 Radiological Survey(s): Yes PA.16-3 Site Status: Eliminated from further consideration under FUSRAP

122

Allowable Residual Contamination Levels in soil for decommissioning the Shippingport Atomic Power Station site  

SciTech Connect

As part of decommissioning the Shippingport Atomic Power Station, a fundamental concern is the determination of Allowable Residual Contamination Levels (ARCL) for radionuclides in the soil at the site. The ARCL method described in this report is based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for unrestricted use of the land after decommissioning. In addition to naturally occurring radionuclides and fallout from weapons testing, soil contamination could potentially come from five other sources. These include operation of the Shippingport Station as a pressurized water reactor, operations of the Shippingport Station as a light-water breeder, operation of the nearby Beaver Valley reactors, releases during decommissioning, and operation of other nearby industries, including the Bruce-Mansfield coal-fired power plants. ARCL values are presented for 29 individual radionculides and a worksheet is provided so that ARCL values can be determined for any mixture of the individual radionuclides for any annual dose limit selected. In addition, a worksheet is provided for calculating present time soil concentration value that will decay to the ARCL values after any selected period of time, such as would occur during a period of restricted access. The ARCL results are presented for both unconfined (surface) and confined (subsurface) soil contamination. The ARCL method and results described in this report provide a flexible means of determining unrestricted-use site release conditions after decommissioning the Shippingport Atomic Power Station.

Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

1983-09-01T23:59:59.000Z

123

EWEC'07 Conference, 7-10 May 2007, Milan, Italy. POW'WOW Virtual Laboratory for Wind Power  

E-Print Network (OSTI)

EWEC'07 Conference, 7-10 May 2007, Milan, Italy. 1 POW'WOW Virtual Laboratory for Wind Power for the short-term prediction of wind power production. The relevant and common forecast length of these tools purposes. A state of the art on wind power forecasting has been published by Giebel et al [1]. On the other

Paris-Sud XI, Université de

124

Review of the International Atomic Energy Agency International database on reactor pressure vessel materials and US Nuclear Regulatory Commission/Oak Ridge National Laboratory embrittlement data base  

SciTech Connect

The International Atomic Energy Agency (IAEA) has supported neutron radiation effects information exchange through meetings and conferences since the mid-1960s. Through an International Working Group on Reliability of Reactor Pressure Components, information exchange and research activities were fostered through the Coordinated Research Program (CRP) sponsored by the IAEA. The final CRP meeting was held in November 1993, where it was recommended that the IAEA coordinate the development of an International Database on Reactor Pressure Vessel Material (IDRPVM) as the first step in generating an International Database on Aging Management. The purpose of this study was to provide special technical assistance to the NRC in monitoring and evaluating the IAEA activities in developing the IAEA IDRPVM, and to compare the IDRPVM with the Nuclear Regulatory Commission (NRC) - Oak Ridge National Laboratory (ORNL) Power Reactor Embrittlement Data Base (PR-EDB) and provide recommendations for improving the PR-EDB. A first test version of the IDRPVM was distributed at the First Meeting of Liaison Officers to the IAEA IDRPVM, in November 1996. No power reactor surveillance data were included in this version; the testing data were mainly from CRP Phase III data. Therefore, because of insufficient data and a lack of power reactor surveillance data received from the IAEA IDRPVM, the comparison is made based only on the structure of the IDRPVM. In general, the IDRPVM and the EDB have very similar data structure and data format. One anticipates that because the IDRPVM data will be collected from so many different sources, quality assurance of the data will be a difficult task. The consistency of experimental test results will be an important issue. A very wide spectrum of material characteristics of RPV steels and irradiation environments exists among the various countries. Hence the development of embrittlement prediction models will be a formidable task. 4 refs., 2 figs., 4 tabs.

Wang, J.A.; Kam, F.B.K.

1998-02-01T23:59:59.000Z

125

Type B Accident Investigation on the February 17, 2004, Personal Injury Accident, Bettis Atomic Power Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

Prime contractors need to provide a safe work environment for the entire facility site, including parking lots and outdoor pedestrian walkways. Particular attention needs to be given to areas that must be traversed by individuals with physical handicaps. The contractor must proactively maintain its facilities to ensure a safe work environment for its employees Even minor deficiencies can contribute to significant injury to employees.

126

Heat Capacity and Latent Heat The objective of this laboratory is for you to explore the heat capacity of materials due to atomic  

E-Print Network (OSTI)

Heat Capacity and Latent Heat Objective The objective of this laboratory is for you to explore the heat capacity of materials due to atomic vibrations and the latent heat of phase, dataacquisition software, plotting and analysis software Introduction Knowledge of the heat capacity

Braun, Paul

127

Solution nebulization into a low-power argon microwave-induced plasma for atomic emission spectrometry: study of synthetic ocean water  

Science Journals Connector (OSTI)

Solution nebulization into a low-power argon microwave-induced plasma for atomic emission spectrometry: study of synthetic ocean water ...

Kin C. Ng; Wei Lung Shen

1986-08-01T23:59:59.000Z

128

E-Print Network 3.0 - atomic electric power Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Cookies as a Model... for Fusion In this activity, cookies will act like atoms in a fusion reaction. Fusion occurs when heat... is added to atoms, giving them enough energy...

129

Evaluation of 25 y of environmental monitoring data around Madras Atomic Power Station (MAPS), Kalpakkam, India  

Science Journals Connector (OSTI)

......by the national regulatory authority(1...vicinity of the nuclear installations environmental...protection for nuclear facilities...Atomic Energy Regulatory Board. 12. AERB...Atomic Energy Regulatory Board, Government...ICRP-72 International Commision on Radiological......

S. Rajaram; J. Thulasi Brindha; K. R. Sreedevi; Anitha Manu; A. Thilakavathi; S. Ramkumar; V. Santhanakrishnan; M. R. Balagurunathan; T. Jesan; V. Kannan; A. G. Hegde

2010-12-01T23:59:59.000Z

130

E-Print Network 3.0 - atomic power dirty Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Array ExpandedVery Large Array Summary: supernovae, which may appear as Gamma Ray Bursts (GRBs) Cooling then proceeds via the atomic fine... time (i.e. amplifiers...

131

E-Print Network 3.0 - atomic power industry Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Auditorium, A-102, PAA Reception... . The development of ultra-stable optical frequency standards into optical atomic clocks and optical frequency... -precision fields, including...

132

Capabilities for high explosive pulsed power research at Los Alamos National Laboratory  

SciTech Connect

Research on topics requiring high magnetic fields and high currents have been pursued using high explosive pulsed power (HEPP) techniques since the 1950s at Los Alamos National Laboratory. We have developed many sophisticated HEPr systems through the years, and most of them depend on technology available from the nuclear weapons program. Through the 1980s and 1990s, our budgets would sustain parallel efforts in zpinch research using both HEPr and capacitor banks. In recent years, many changes have occurred that are driven by concerns such as safety, security, and environment, as well as reduced budgets and downsizing of the National Nuclear Security Administration (NNSA) complex due to the end of the cold war era. In this paper, we review the teclmiques developed to date, and adaptations that are driven by changes in budgets and our changing complex. One new Ranchero-based solid liner z-pinch experimental design is also presented. Explosives that are cast to shape instead of being machined, and initiation systems that depend on arrays of slapper detonators are important new tools. Some materials that are seen as hazardous to the environment are avoided in designs. The process continues to allow a wide range of research however, and there are few, if any, experiments that we have done in the past that could not be perform today. The HErr firing facility at Los Alamos continues to have a 2000 lb. high explosive limit, and our 2.4 MJ capacitor bank remains a mainstay of the effort. Modem diagnostic and data analysis capabilities allow fewer personnel to achieve better results, and in the broad sense we continue to have a robust capability.

Goforth, James H [Los Alamos National Laboratory; Oona, Henn [Los Alamos National Laboratory; Tasker, Douglas G [Los Alamos National Laboratory; Kaul, A M [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

133

NREL Uses Computing Power to Investigate Tidal Power (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Uses Computing Power to Uses Computing Power to Investigate Tidal Power Researchers at the National Renewable Energy Laboratory (NREL) have applied their knowledge of wind flow and turbulence to simulations of underwater tidal turbines. Inspired by similar simulations of wind turbine arrays, NREL researchers used their wind expertise, a supercomputer, and large-eddy simulation to study how the placement of turbines affects the power production of an underwater tidal turbine array. As tides ebb and flow, they create water currents that carry a significant amount of kinetic energy. To capture this energy, several companies are developing and deploying devices known as horizontal-axis tidal turbines, which resemble small wind turbines. These devices can be arranged in an array of multiple turbines to maximize the energy extracted in tidal

134

Verification Survey of the Building 315 Zero Power Reactor-6 Facility, Argonne National Laboratory-East, Argonne, Illinois  

SciTech Connect

Oak Ridge Institute for Science and Education (ORISE) conducted independent verification radiological survey activities at Argonne National Laboratorys Building 315, Zero Power Reactor-6 facility in Argonne, Illinois. Independent verification survey activities included document and data reviews, alpha plus beta and gamma surface scans, alpha and beta surface activity measurements, and instrumentation comparisons. An interim letter report and a draft report, documenting the verification survey findings, were submitted to the DOE on November 8, 2006 and February 22, 2007, respectively (ORISE 2006b and 2007).

W. C. Adams

2007-05-25T23:59:59.000Z

135

538 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 20, NO. 2, MAY 2005 Modern Laboratory-Based Education for Power  

E-Print Network (OSTI)

drives. To address this need in a revised electric machinery cur- riculum, we asked the question, "What for Power Electronics and Electric Machines Robert S. Balog, Student Member, IEEE, Zakdy Sorchini, Student be an integral component of a power electronics and electric machines curriculum. However, before a single watt

Kimball, Jonathan W.

136

Antiradical Power of Carotenoids and Vitamin E: Testing the Hydrogen Atom Transfer Mechanism  

Science Journals Connector (OSTI)

Solvent effects were included, using the polarizable continuum model (PCM),(46, 47) with water and benzene acting as the solvents for polar and nonpolar environments, respectively. ... Antiradical Power of CAR ... The electrodonating (?) and electroaccepting (?+) powers of the most relevant ... ...

Ana Martnez; Andrs Barbosa

2008-12-04T23:59:59.000Z

137

Atomic and Molecular Photoabsorption:? Absolute Total Cross Sections By Joseph Berkowitz (Argonne National Laboratory). Academic Press:? San Diego, London. 2002. viii + 350 pp. $99.95. ISBN 0-12-091841-2.  

Science Journals Connector (OSTI)

Atomic and Molecular Photoabsorption:? Absolute Total Cross Sections By Joseph Berkowitz (Argonne National Laboratory). ... Some mention here of coherent and incoherent scattering, electron positron pair-production, and nuclear photo effect might place the absorption process in its broader context. ...

Peter W. Langhoff

2003-04-03T23:59:59.000Z

138

DOE/EA-1247; Environmental Assessment for Electrical Power System Upgrades at Los Alamos National Laboratory (03/09/00)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

47 47 Environmental Assessment for Electrical Power System Upgrades at Los Alamos National Laboratory Los Alamos, New Mexico Final Document Date Prepared: March 9, 2000 Prepared by: U.S. Department of Energy, Los Alamos Area Office Final EA Electrical Power System Upgrades EA March 9, 2000 DOE/LAAO iii CONTENTS ACRONYMS AND TERMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1.0 PURPOSE AND NEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Role of Cooperating Agencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Background . . . . . . .

139

Power laws and fractal behavior in nuclear stability, atomic weights and molecular weights  

E-Print Network (OSTI)

in the N; Z-chart of nuclides is investigated. In Section 4 we introduce the power law for description of the

Pavin, Nenad

140

IEEE Power Engineering Society Conference Proceedings, SF, CA, June 12-16, 2005, to appear. An Agent-Based Computational Laboratory  

E-Print Network (OSTI)

@iastate.edu Abstract-- In April 2003 the U.S. Federal Energy Regulatory Commission proposed the Wholesale Power Market. An Agent-Based Computational Laboratory for Testing the Economic Reliability of Wholesale Power Market Platform (WPMP) for adoption by all U.S. wholesale power markets. The WPMP market design envisions day

Tesfatsion, Leigh

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Train of high-power femtosecond pulses: Probe wave in a gas of prepared atoms  

E-Print Network (OSTI)

We present a new method for generating a regular train of ultrashort optical pulses in a prepared two-level medium. The train develops from incident monochromatic probe radiation travelling in a medium of atoms, which are in a quantum mechanical superposition of dressed internal states. In the frame of used linear theory for the probe radiation, the energy of individual pulses is an exponentially growing function of atom density and of interaction cross section. Pulse repetition rate is determined by the generalized Rabi frequency and can be around 1 THz and greater. We also show that the terms, extra to the dipole approximation, endow the gas by a new property: non-saturating dependence of refractive index on the dressing monochromatic field intensity. Contribution of these nonsaturating terms can be compatible with the main dipole approximation in the wavelength region of about ten micrometers (the range of CO_2 laser) or larger.

Gevorg Muradyan; A. Zh. Muradyan

2009-08-21T23:59:59.000Z

142

The AMES Wholesale Power Market Test Bed: A Computational Laboratory for  

E-Print Network (OSTI)

, and Training Hongyan Li, Student Member, IEEE, and Leigh Tesfatsion, Member, IEEE Abstract--Wholesale power for the systematic study of restructured wholesale power markets operating over AC transmission grids subject: central administration by an independent market operator; a two-settlement system consisting of a bid

Tesfatsion, Leigh

143

Sandia National Laboratories: Advanced Materials Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Laboratory Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy...

144

Economic applicability of atomic energy as a source of power in underdeveloped countries  

E-Print Network (OSTI)

i'inancial charges) 53 10. Break-even Point for I'Juclear Plants shown at Different Rates of Return on Investment for Various Costs of Conventional Fuel 54 11. Total Cost of Generating Nuclear Power at Various Plant Factor- and at Various... Return on Investment 55 12. Cost of Power, Comparing:Juclear and Oil Plants, at Bodega Bay. . 59 LIST OF ILLUSTRATIONS Figure Page 1, Relationship Between Per Capita Energy Consumption and Per Capita Income of Underdeveloped Countries for the Year...

Ahmed, Sheik Basheer

2012-06-07T23:59:59.000Z

145

Investigation of the November 8, 2011, Plutonium Contamination in the Zero Power Physics Reactor Facility, at the Idaho National Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

On November 8, 2011, workers at the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Zero Power Physics Reactor (ZPPR) Facility were packaging plutonium (Pu) reactor fuel plates. Two of the fuel storage containers had atypical labels indicating potential abnormalities with the fuel plates located inside. Upon opening one of the storage containers, the workers discovered a Pu fuel plate wrapped in plastic and tape. When the workers attempted to remove the wrapping material, an uncontrolled release of radioactive contaminants occurred, resulting in the contamination of 16 workers and the facility

146

Isotopic power supplies for space and terrestrial systems: quality assurance by Sandia National Laboratories  

SciTech Connect

The Sandia National Laboratories participation in Quality Assurance (QA) programs for Radioisotopic Thermoelectric Generators which have been used in space and terrestrial systems over the past 15 years is summarized. Basic elements of the program are briefly described and recognition of assistance from other Sandia organizations is included. Descriptions of the various systems for which Sandia has had the QA responsibility are also presented. In addition, the outlook for Sandia participation in RTG programs for the next several years is noted.

Hannigan, R.L.; Harnar, R.R.

1981-09-01T23:59:59.000Z

147

Nickel-base superalloys for ultra-supercritical coal-fired power plants: Fireside corrosion. Laboratory studies and power plant exposures  

Science Journals Connector (OSTI)

The aim of the study was to determine the fireside corrosion performance of certain nickel-base superalloys dedicated for construction of superheater and reheater sections of a boiler operating at advanced ultra-supercritical conditions. For this purpose, three nickel-base alloys varying in chromium content from 20% to 25% (Alloys 263, 617 and 740) were selected for laboratory tests up to 1000h. Additionally, the chosen materials were exposed using a temperature-controlled corrosion probe in a 500kWth pulverized fuel test rig, one lignite-fired and two hard-coal-fired power plants. The specimens temperatures were in the range 640760C. The fireside corrosion was studied having in focus the synergy effect of combustion gas atmosphere, real fly ash deposits and alloy composition. Corrosion behavior of each alloy was determined using dimensional metrology and the obtained results were compared with data available from the literature. The values measured on the samples exposed in power plants fit well with the numbers generated from the laboratory tests performed at 24, 350 and 1000h. Moreover the values are in good agreement with results found in the literature and similar alloy ranking based on corrosion resistance is confirmed by the literature. Clear sulphur-induced corrosion was noticed after 1000h exposures in the laboratory furnaces at only one of the examined alloys, which is characterized by the highest molybdenum and lowest titanium content. Both of these elements are believed to play a significant role in the corrosion behavior of the examined alloys. In some metal rings exposed in power plants sulphur induced corrosion is witnessed. In contrast to iron-base austenitic steels no straight connection is observed between increasing chromium content and improved corrosion resistance in the nickel-base austenites. Intergranular oxidation with participation of alumina repeats and occasionally leads almost to a grain release. In laboratory conditions fly ash appears to partially inhibit the corrosive influence of the gas atmosphere, since it behaves to a certain extent as a protective barrier for the metal surface while acting as a sulphur sink.

Gosia Stein-Brzozowska; Diana M. Flrez; Jrg Maier; Gnter Scheffknecht

2013-01-01T23:59:59.000Z

148

Inter?laboratory variation in sound power levels in qualified reverberant rooms.  

Science Journals Connector (OSTI)

Reverberant acoustic test facilities can be qualified to determine the sound power levels of broadband and tonal noise sources using the procedures defined in Air?Conditioning Heating and Refrigeration Institute (AHRI) Std. 220 Sound Power Testing Using Reverberant Rooms for HVAC Equipment. Member companies from AHRIs Technical Committee on Sound participated in a round robin test program in which tonal noise sources were shipped to and tested in a number of qualified reverberant rooms. This report summarizes the results of this effort. The mean and standard deviations of the sound power levels for multiple locations/orientations of the noise sources in each facility and for all facilities are presented. The standard deviations as a function of frequency for these sources were found to be generally less than the values established for broadband sources and therefore less than those allowed for tonal sources. Based on the comparisons of round robin test results accurate determinations of sound power levels can be made using the substitution method in rooms qualified in accordance with AHRI Std. 220 Technical Committee on Sound Air?Conditioning Heating and Refrigeration Institute

Robert Stabley

2009-01-01T23:59:59.000Z

149

Laboratory studies of stratospheric bromine chemistry: Kinetics of the reactions of bromine monoxide with nitrogen dioxide and atomic oxygen  

SciTech Connect

A laser flash photolysis - long path absorption - technique has been employed to study the kinetics of the reaction BrO+NO2+M(k[sub 16]) yields products as a function of temperature (248-346 K), pressure (16-800 Torr), and buffer gas identity (N2, CF4). 351 nm photolysis of NO2/Br2/N2 mixtures generated BrO. The BrO decay in the presence of excess NO2 was followed by UV absorption at 338.3 nm. The reaction is in the falloff regime between third and second order over the entire range of conditions investigated. This is the first study where temperature dependent measurements of k[sub 16](P,T) have been reported at pressures greater than 12 Torr; hence, these results help constrain choices of k[sub 16](P,T) for use in modeling stratospheric BrO(x) chemistry. The kinetics of the important stratospheric reaction BrO+O(P-3)(k[sub 14]) yields Br+O2 in N2 buffer gas have been studied as a function of temperature (233-328 K) and pressure (25-150 Torr) using a novel dual laser flash photolysis/long path absorption/resonance fluorescence technique. 248 nm pulsed laser photolysis of Br2/O3/N2 mixtures produces O atoms in excess over Br2. After a delay sufficient for BrO to be generated, a 532 nm laser pulse photolysis a small fraction of the O3 to generate O(P-3). The decay of O(P-3) in the presence of an excess, known concentration of BrO, as determined by UV absorption at 338.3 nm and by numerical simulation, is then followed by time-resoved atomic resonance fluorescence spectroscopy. The experimental results have shown the reaction kinetics to be independent of pressure, to increase with decreasing temperature, and to be faster than suggested by the only previous (indirect) measurement. The resulting Anhenius expression for k[sub 14](T) is k[sub 14](T) = 1.64 x 10(exp -11) exp(263/T) cm(exp 3) molecule(exp-1)s(exp -1). The absolute accuracy of k[sub 14](T) at any temperature within the range studied is estimated to be +/- 25%.

Thorn, R.P.

1993-01-01T23:59:59.000Z

150

Microsoft PowerPoint - Nanomaterial Laboratory Safety - draft - 7 NB - notes .ppt [Compatibility Mode]  

NLE Websites -- All DOE Office Websites (Extended Search)

blood cells blood cells (~7-8 μm) Things Natural Things Natural Things Manmade Things Manmade Fly ash ~ 10-20 μm Head of a pin 1-2 mm Quantum corral of 48 iron atoms on copper surface positioned one at a time with an STM tip Corral diameter 14 nm Human hair ~ 60-120 μm wide Ant ~ 5 mm Dust mite 200 μm ATP synthase ~10 nm diameter Nanotube electrode Carbon nanotube ~1.3 nm diameter O O O O O O O O O O O O O O S O S O S O S O S O S O S O S P O O The Challenge Fabricate and combine nanoscale building blocks to make useful devices, e.g., a photosynthetic reaction center with integral semiconductor storage. Microworld 0.1 nm 1 nanometer (nm) 0.01 μm 10 nm 0.1 μm 100 nm 1 micrometer (μm) 0.01 mm 10 μm 0.1 mm 100 μm 1 millimeter (mm) 1 cm 10 mm 10 -2 m 10 -3 m 10 -4 m 10 -5 m 10 -6 m 10 -7 m 10 -8 m 10 -9 m 10 -10 m Visible Nanoworld 1,000 nanometers =

151

Argonne National Laboratory  

Science Journals Connector (OSTI)

Argonne National Laboratory is the nation's senior atomic energy laboratory, and is operated by the University of Chicago under contract mth the U. S. Atomic Energy Commission. In addition to its broad program of basic research activities, it serves as a, ...

1957-04-08T23:59:59.000Z

152

E-Print Network 3.0 - atomization atomic absorption Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

atomic absorption Search Powered by Explorit Topic List Advanced Search Sample search results for: atomization atomic absorption Page: << < 1 2 3 4 5 > >> 1 :coherently trapped in...

153

Spectroscopy and atomic force microscopy of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectroscopy Spectroscopy and atomic force microscopy of biomass L. Tetard a,b , A. Passian a,b,n , R.H. Farahi a , U.C. Kalluri c , B.H. Davison c , T. Thundat a,b a Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA b Department of Physics, University of Tennessee, Knoxville, TN 37996, USA c Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA a r t i c l e i n f o Keywords: Atomic force microscopy Spectroscopy Plant cells Biomass Nanomechanics a b s t r a c t Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass

154

Size quantization effects in atomic level broadening near thin metallic films Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601  

E-Print Network (OSTI)

.R. ¡ Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601 and Garden Street, Cambridge, Massachusetts 02138 P. Ku¨rpick* J.R. ¡ Macdonald Laboratory, Department

Thumm, Uwe

155

Sandia National Laboratories: Advanced Materials Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

156

Analytical quality control services of the International Atomic Energy Agency  

Science Journals Connector (OSTI)

The International Atomic Energy Agency provides quality control services to analytical laboratories. These services...

O. Suschny

1986-01-01T23:59:59.000Z

157

Components Makeover Gives Concentrating Solar Power a Boost (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Components Makeover Gives Components Makeover Gives Concentrating Solar Power a Boost Parabolic trough technology is the most mature of the various concentrating solar power (CSP) options. But scientists at the National Renewable Energy Laboratory (NREL) continue to make advances on trough systems through innovative research on various components in industrial partnerships with Acciona Solar Power, SkyFuel, Schott Solar, and others. The results are leading to improved system efficiencies and lower costs for CSP plants. Space Frames for Lower Costs To maximize the overall efficiency of the conventional glass-mirror trough system, NREL worked with Acciona Solar Power-then known as Solargenix Energy-to improve vari- ous system components. A key focus was the structural framework that holds the mirrors

158

NREL Helps Cool the Power Electronics in Electric Vehicles (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Helps Cool the Power Helps Cool the Power Electronics in Electric Vehicles Researchers at the National Renewable Energy Laboratory (NREL) are developing and demonstrating innovative heat-transfer technologies for cooling power electronics devices in hybrid and electric vehicles. In collaboration with 3M and Wolverine Tube, Inc., NREL is using surface enhancements to dissipate heat more effectively, permitting a reduction in the size of power electronic systems and potentially reducing the overall costs of electric vehicles. Widespread use of advanced electric-drive vehicles-including electric vehicles (EVs) and hybrid electric vehicles (HEVs)-could revolutionize transportation and dramatically reduce U.S. oil consumption. Improving the cost and performance of these vehicles' electric-drive systems

159

NRELs Wind Powering America Team Helps Indiana Develop Wind Resources (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's Wind Powering NREL's Wind Powering America Team Helps Indiana Develop Wind Resources How does a state advance, in just five years, from having no wind power to having more than 1000 megawatts (MW) of installed capacity? The Wind Powering America (WPA) initiative, based at the National Renewable Energy Laboratory (NREL), employs a state-focused approach that has helped accelerate wind energy deployment in many states. One such state is Indiana, which is now home to the largest wind plant east of the Mississippi. Since 1999, WPA has helped advance technology acceptance and wind energy deployment across the United States through the formation of state wind working groups (WWGs). The WWGs facilitate workshops, manage anemometer loan programs, conduct outreach, and

160

Power Plant Power Plant  

E-Print Network (OSTI)

Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

Tingley, Joseph V.

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Mailing Addresses for National Laboratories and Technology Centers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mailing Addresses for National Laboratories and Mailing Addresses for National Laboratories and Technology Centers Mailing Addresses for National Laboratories and Technology Centers Name Telephone Number U.S. Department of Energy Albany Research Center 1450 Queen Ave. SW Albany, OR 97321-2198 541-967-5892 U.S. Department of Energy Ames Laboratory #311 TASF, Iowa State University Ames, Iowa 50011 515-294-2680 U.S. Department of Energy Argonne National Laboratory (East) 9700 S. Cass Avenue Argonne, IL 60439 630-252-2000 U.S. Department of Energy Argonne National Laboratory (West) P.O. Box 2528 Idaho Fall, ID 83403-2528 208-533-7341 U.S. Department of Energy Bettis Atomic Power Laboratory, Bechtel Bettis, Inc. 814 Pittsburgh McKeesport Boulevard West Mifflin, PA 15122-0079 412-476-5000 U.S. Department of Energy

162

Atomic Transport/ Dense Metallic  

E-Print Network (OSTI)

.S. DOE - NETL Hy9 Corporation Argonne National Laboratory Worcester Polytechnic Institue Shell International Exploration & Production University of Colorado Power & Energy NETL Lawrence Livermore

163

Fuel Cell Backup Power Geographical Visualization Map (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

6740 * December 2012 6740 * December 2012 Fuel Cell Backup Power Geographical Visualization Map Team: Genevieve Saur, Jennifer Kurtz, Sam Sprik, Todd Ramsden Accomplishment: The National Renewable Energy Laboratory (NREL) developed a time-lapse geographical visualization map of early market use of fuel cells for telecommunications backup power. This map synthesizes data being analyzed by NREL's Technology Validation team for the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with DOE's publically available annual summaries of electric disturbance events. 1 Context: Correlating fuel cell operation with grid outages enhances knowledge of backup system requirements and backup power operation strategies that may advance how systems are designed and how best to utilize their capabilities. NREL's

164

Sandia National Laboratories: TCES  

NLE Websites -- All DOE Office Websites (Extended Search)

TCES Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National...

165

Sandia National Laboratories: perovskites  

NLE Websites -- All DOE Office Websites (Extended Search)

perovskites Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities,...

166

Sandia National Laboratories: NSTTF  

NLE Websites -- All DOE Office Websites (Extended Search)

NSTTF Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National...

167

Sandia National Laboratories: Photovoltaics  

NLE Websites -- All DOE Office Websites (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

168

Sandia National Laboratories: PV  

NLE Websites -- All DOE Office Websites (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

169

Sandia National Laboratories: Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis Sandia and the Electric Power Research...

170

Sandia National Laboratories: Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

171

Sandia National Laboratories: EPRI  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis Sandia and Electric Power Research Institute (EPRI) are delighted...

172

Sandia National Laboratories: solar  

NLE Websites -- All DOE Office Websites (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

173

Lesson 3- Atoms and Isotopes  

Energy.gov (U.S. Department of Energy (DOE))

Youve probably heard people refer to nuclear energy as atomic energy. Why? Nuclear energy is the energy that is stored in the bonds of atoms, inside the nucleus. Nuclear power plants are designed to capture this energy as heat and convert it to electricity. This lesson looks closely at what atoms are and how atoms store energy.

174

Design of a dual species atom interferometer for space  

E-Print Network (OSTI)

Atom interferometers have a multitude of proposed applications in space including precise measurements of the Earth's gravitational field, in navigation & ranging, and in fundamental physics such as tests of the weak equivalence principle (WEP) and gravitational wave detection. While atom interferometers are realized routinely in ground-based laboratories, current efforts aim at the development of a space compatible design optimized with respect to dimensions, weight, power consumption, mechanical robustness and radiation hardness. In this paper, we present a design of a high-sensitivity differential dual species $^{85}$Rb/$^{87}$Rb atom interferometer for space, including physics package, laser system, electronics and software. The physics package comprises the atom source consisting of dispensers and a 2D magneto-optical trap (MOT), the science chamber with a 3D-MOT, a magnetic trap based on an atom chip and an optical dipole trap (ODT) used for Bose-Einstein condensate (BEC) creation and interferometry...

Schuldt, Thilo; Krutzik, Markus; Bote, Lluis Gesa; Gaaloul, Naceur; Hartwig, Jonas; Ahlers, Holger; Herr, Waldemar; Posso-Trujillo, Katerine; Rudolph, Jan; Seidel, Stephan; Wendrich, Thijs; Ertmer, Wolfgang; Herrmann, Sven; Kubelka-Lange, Andr; Milke, Alexander; Rievers, Benny; Rocco, Emanuele; Hinton, Andrew; Bongs, Kai; Oswald, Markus; Franz, Matthias; Hauth, Matthias; Peters, Achim; Bawamia, Ahmad; Wicht, Andreas; Battelier, Baptiste; Bertoldi, Andrea; Bouyer, Philippe; Landragin, Arnaud; Massonnet, Didier; Lvque, Thomas; Wenzlawski, Andre; Hellmig, Ortwin; Windpassinger, Patrick; Sengstock, Klaus; von Klitzing, Wolf; Chaloner, Chris; Summers, David; Ireland, Philip; Mateos, Ignacio; Sopuerta, Carlos F; Sorrentino, Fiodor; Tino, Guglielmo M; Williams, Michael; Trenkel, Christian; Gerardi, Domenico; Chwalla, Michael; Burkhardt, Johannes; Johann, Ulrich; Heske, Astrid; Wille, Eric; Gehler, Martin; Cacciapuoti, Luigi; Grlebeck, Norman; Braxmaier, Claus; Rasel, Ernst

2014-01-01T23:59:59.000Z

175

Peaceful Uses of the Atom and Atoms for Peace  

Office of Scientific and Technical Information (OSTI)

Peaceful Uses of the Atom Peaceful Uses of the Atom Fermi and Atoms for Peace · Understanding the Atom · Seaborg · Teller Atoms for Peace Atoms for Peace + 50 - Conference, October 22, 2003 Celebrating the 50th anniversary of President Eisenhower's "Atoms for Peace" speech to the UN General Assembly Atoms for Peace (video 12:00 Minutes) Atoms for Peace Address given by Dwight D. Eisenhower before the General Assembly of the United Nations, New York City, December 8, 1953 Documents: Atomic Power in Space: A History A history of the Space Isotope Power Program of the United States from the mid-1950s through 1982; interplanetary space exploration successes and achievements have been made possible by this technology. Establishing Site X: Letter, Arthur H. Compton to Enrico Fermi, September 14, 1942

176

NREL Triples Previous Estimates of U.S. Wind Power Potential (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Triples Previous Estimates of Triples Previous Estimates of U.S. Wind Power Potential The National Renewable Energy Laboratory (NREL) recently released new estimates of the U.S. potential for wind-generated electricity, using advanced wind mapping and validation techniques that triple previous estimates of the size of the nation's wind resources. The new study, conducted by NREL and AWS TruePower, finds that the contiguous 48 states have the potential to generate up to 37 million gigawatt-hours annually. In comparison, the total U.S. electricity generation from all sources was roughly 4 million gigawatt-hours in 2009. Detailed state-by-state estimates of wind energy potential for the United States show the estimated average wind speeds at an 80-meter height. The wind resource maps and estimates

177

Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal resources-the steam and water that lie below the earth's surface-have the Geothermal resources-the steam and water that lie below the earth's surface-have the potential to supply vast amounts of clean energy. But continuing to produce geothermal power efficiently and inexpensively can require innovative adjustments to the technology used to process it. Located in the Mayacamas Mountains of northern California, The Geysers is the world's larg- est geothermal complex. Encompassing 45 square miles along the Sonoma and Lake County border, the complex harnesses natural steam reservoirs to create clean renewable energy that accounts for one-fifth of the green power produced in California. In the late 1990s, the pressure of geothermal steam at The Geysers was falling, reducing the output of its power plants. NREL teamed with Pacific

178

Advanced Photovoltaic Inverter Functionality using 500 kW Power Hardware-in-Loop Complete System Laboratory Testing: Preprint  

SciTech Connect

With the increasing penetration of distribution connected photovoltaic (PV) systems, more and more PV developers and utilities are interested in easing future PV interconnection concerns by mitigating some of the impacts of PV integration using advanced PV inverter controls and functions. This paper describes the testing of a 500 kW PV inverter using Power Hardware-in-Loop (PHIL) testing techniques. The test setup is described and the results from testing the inverter in advanced functionality modes, not commonly used in currently interconnected PV systems, are presented. PV inverter operation under PHIL evaluation that emulated both the DC PV array connection and the AC distribution level grid connection are shown for constant power factor (PF) and constant reactive power (VAr) control modes. The evaluation of these modes was completed under varying degrees of modeled PV variability.

Mather, B. A.; Kromer, M. A.; Casey, L.

2013-01-01T23:59:59.000Z

179

Cabell on Nuclear Energy Power Plants  

Science Journals Connector (OSTI)

Cabell on Nuclear Energy Power Plants ... IN EXPLAINING the function of his research group t o the new works superintendent of a nuclear power plant at a mining and reduction installation in the Alaskan mountains, Dr. Blank, of the United Nations Inspection and Research Laboratories, said, "We can't inspect what we don't know. ... In order to know what you're doing, we have to know more about atomic energy than you domore than anybody does. ...

1947-02-17T23:59:59.000Z

180

Radioisotope Power System Delivery, Ground Support and Nuclear Safety Implementation: Use of the Multi-Mission Radioisotope Thermoelectric Generator for the NASA's Mars Science Laboratory  

SciTech Connect

Radioisotope power systems have been used for over 50 years to enable missions in remote or hostile environments. They are a convenient means of supplying a few milliwatts up to a few hundred watts of useable, long-term electrical power. With regard to use of a radioisotope power system, the transportation, ground support and implementation of nuclear safety protocols in the field is a complex process that requires clear identification of needed technical and regulatory requirements. The appropriate care must be taken to provide high quality treatment of the item to be moved so it arrives in a condition to fulfill its missions in space. Similarly it must be transported and managed in a manner compliant with requirements for shipment and handling of special nuclear material. This presentation describes transportation, ground support operations and implementation of nuclear safety and security protocols for a radioisotope power system using recent experience involving the Multi-Mission Radioisotope Thermoelectric Generator for National Aeronautics and Space Administrations Mars Science Laboratory, which launched in November of 2011.

S.G. Johnson; K.L. Lively; C.C. Dwight

2014-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Power Spectrum of the density of cold atomic gas in the Galaxy towards Cas A and Cygnus A  

E-Print Network (OSTI)

We have obtained the power spectral description of the density and opacity fluctuations of the cold HI gas in the Galaxy towards Cas A, and Cygnus A. We have employed a method of deconvolution, based on CLEAN, to estimate the true power spectrum of optical depth of cold HI gas from the observed distribution, taking into account the finite extent of the background source and the incomplete sampling of optical depth over the extent of the source. We investigate the nature of the underlying spectrum of density fluctuations in the cold HI gas which would be consistent with that of the observed HI optical depth fluctuations. These power spectra for the Perseus arm towards Cas A, and for the Outer arm towards Cygnus A have a slope of 2.75 +/- 0.25 (3sigma error). The slope in the case of the Local arm towards Cygnus A is 2.5, and is significantly shallower in comparison. The linear scales probed here range from 0.01 to 3 pc. We discuss the implications of our results, the non-Kolmogorov nature of the spectrum, and the observed HI opacity variations on small transverse scales.

A. A. Deshpande; K. S. Dwarakanath; W. M. Goss

2000-07-25T23:59:59.000Z

182

The Atomic City / The Magic of the Atom - 1950's Atomic Energy Commission Documentary  

SciTech Connect

The story of American cities located near atomic power plants, and steps taken monitoring radiation to ensure the safety of the public who live nearby. .

None

2012-06-04T23:59:59.000Z

183

Accelerated guided atomic pulse  

Science Journals Connector (OSTI)

The deleterious effects of dispersion on a propagating coherent atomic pulse, along the axis of a traveling-wave laser beam, can be ameliorated by the nonlinear self-interacting force due to dipole-dipole coupling between atoms. We show that a wide atomic pulse with a particular profile can retain its shape during propagation and, moreover, the momentum of the pulse increases due to photon absorption. For the wide soliton case, we demonstrate analytically that the self-interacting atomic force scales inversely with the third power of the pulse width.

S. Dyrting; Weiping Zhang; B. C. Sanders

1997-09-01T23:59:59.000Z

184

From Laboratory to Industry: Unlocking the Potential of Graphene...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Return to Search From Laboratory to Industry: Unlocking the Potential of Graphene Brookhaven Lab and Graphene Laboratories collaborate to bring atom-thin material to...

185

Argonne Tribology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Tribology Laboratory Tribology Laboratory CemeCon coating chamber CemeCon coating chamber Engineers in Argonne's Tribology Laboratory conduct research on advanced tribological systems (surface engineered materials, lubricants, fuels, and fuel/lubricant additives) for use in aggressive environments (for example, where two surfaces are rubbing together). The Laboratory is equipped with a full range of coating development, friction and wear testing, and characterization facilities. Evaluation of Coatings and Systems The Tribology Laboratory evaluates high performance coatings primarily intended to protect engine-component surfaces that undergo sliding and rolling contact in advanced transportation systems. Also tested are systems powered by diesel and gasoline engines, as well as

186

Oak Ridge National Laboratory - Physical Sciences Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics The Physics Division of Oak Ridge National Laboratory is concerned primarily with studies of the fundamental properties of matter at the atomic, nuclear, and subnuclear...

187

Laboratory modeling of the interaction of vapor-air plumes from cooling towers with jets from the ventilation pipes of atomic electric power plants  

Science Journals Connector (OSTI)

We present experimental results obtained with the help of optical methods. We determined the position of the effective source of ejections and the boundaries of the zone of the interaction of streams.

N. I. Lemesh; L. A. Senchuk

188

Energy for the future with Ris from nuclear power to sustainable energy Ris NatioNal laboRatoRy foR sustaiNable eNeRgy  

E-Print Network (OSTI)

Energy for the future ­ with Risø from nuclear power to sustainable energy Risø NatioNal laboRatoRy foR sustaiNable eNeRgy edited by MoRteN JastRup #12;Energy for the future #12;Energy for the future ­ with Risø from nuclear power to sustainable energy Translated from 'Energi til fremtiden ­ med Risø fra

189

E-Print Network 3.0 - atomic electric dipole Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: atomic electric dipole Page: << < 1 2 3 4 5 > >> 1 Polarization The following atom-atom interactions...

190

Sandia National Laboratories: CSP: ELEMENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

CSP: ELEMENTS Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities,...

191

Sandia National Laboratories: Systems Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar...

192

Sandia National Laboratories: Energy Security  

NLE Websites -- All DOE Office Websites (Extended Search)

is collaborating with Sandia National Laboratories on a new concentrated solar power (CSP) installation with thermal energy storage. The CSP storage project combines Areva's...

193

Sandia National Laboratories: NSTTF Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

NSTTF Capabilities Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage,...

194

Sandia National Laboratories: PV Value  

NLE Websites -- All DOE Office Websites (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

195

Sandia National Laboratories: PV evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

196

Sandia National Laboratories: Areva Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

197

Sandia National Laboratories: Solar Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Force Research Laboratory Testing On August 17, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, Renewable Energy, Solar...

198

Sandia National Laboratories: Solar Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

a Tremendous Success On November 2, 2012, in Concentrating Solar Power, News, Renewable Energy, Solar The Molten Salt Test Loop (MSTL ) system at Sandia National Laboratories'...

199

Sandia National Laboratories: Solar Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

200

Sandia National Laboratories: EC Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Hotel This symposium co-hosted by Sandia National Laboratories and the Electric Power Research Institute includes three separate workshops organized over one week. Map to...

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

general_atomics.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

former former General Atomics Hot Cell Facility was constructed in 1959 and operated until 1991. The site encompassed approximately 7,400 square feet of laboratory and remote operations cells. Licensed operations at the facility included receipt, handling, and shipment of radioactive materials; remote handling, examination, and storage of previously irradiated nuclear fuel materials; pilot-scale tritium extraction operations; and development, fabrication, and inspection of uranium oxide-beryllium oxide fuel materials. General Atomics performed most of the work for the federal government. The General Atomics Hot Cell Facility was located in a 60-acre complex 13 miles northwest of downtown San Diego, 1 mile inland from the Pacific Ocean, and approximately 300 feet above sea level. The General Atomics site is in the center of Torrey Mesa Science Center, a 304-acre industrial

202

Sandia National Laboratories: Water Power  

NLE Websites -- All DOE Office Websites (Extended Search)

knowledge and providing design tools for deploying the first generation of wave and tidal energy converter arrays, Sandia is developing a fast-running current energy...

203

Sandia National Laboratories: Water Power  

NLE Websites -- All DOE Office Websites (Extended Search)

an open source wave energy converter (WEC) simulation tool. The code is developed in MATLABSIMULINK using the multi-body dynamics solver SimMechanics. WEC-Sim has the ability to...

204

Sandia National Laboratories: solar power  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership, Photovoltaic, Photovoltaic Regional Testing Center (PV RTC), Renewable Energy, Solar, Solar Newsletter, SunShot U.S. Senator Bernie Sanders (I-VT) joined...

205

Sandia National Laboratories: solar power  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Resource Assessment Facilities Contacts About Photovoltaics at Sandia Sandia's solar photovoltaic (PV) work is focused on developing cost-effective, reliable...

206

Sandia National Laboratories: solar power  

NLE Websites -- All DOE Office Websites (Extended Search)

26, 2012, in This area of the site allows industry partners to install full-scale solar dishes for long-term reliability testing and evaluation. There are currently ten SES...

207

Sandia National Laboratories: Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Staff On March 24, 2011, in Wind Energy On November 10, 2010, in Wind Plant Opt. Rotor Innovation Materials, Reliability & Standards Siting & Barrier Mitigation...

208

Sandia National Laboratories: Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Wake Imaging System Doppler Radar SWiFT Operations It is well known that large amounts of wind energy are not effectively harvested in large wind farms because the turbines...

209

Sandia National Laboratories: Power Towers  

NLE Websites -- All DOE Office Websites (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

210

Sandia National Laboratories: Water Power  

NLE Websites -- All DOE Office Websites (Extended Search)

by the New Mexico Small Business Assistance (NMSBA) on "Subsea Modeling of an Innovative Wave Energy Array Using OrcaFlex Software," in which we supported developing and modeling...

211

Sandia National Laboratories: Water Power  

NLE Websites -- All DOE Office Websites (Extended Search)

is a partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

212

Sandia National Laboratories: Water Power  

NLE Websites -- All DOE Office Websites (Extended Search)

SNL-SWAN Beta Code Development: Frequency-Dependent Wave-Energy Converter Module On June 26, 2014, in Computational Modeling & Simulation, Energy, News, News & Events, Renewable...

213

Hadronic Atoms  

E-Print Network (OSTI)

We review the theory of hadronic atoms in QCD+QED. The non-relativistic effective Lagrangian approach, used to describe this type of bound states, is illustrated with the case of pi+pi- atoms. In addition, we discuss the evaluation of isospin-breaking corrections to hadronic atom observables by invoking chiral perturbation theory.

J. Gasser; V. E. Lyubovitskij; A. Rusetsky

2009-03-02T23:59:59.000Z

214

Danish Atomic Energy Commission Research Establishment Riso  

E-Print Network (OSTI)

10 Ol CM l-l I S l ^. n ·H Danish Atomic Energy Commission Research Establishment Riso Chemistry Atomic Energy Commission Z. Fordos, Concrete Research Laboratory Karlstrup M. Skytte, Betonvarefabriken. E. Bjergbakke, Accelerator Dept. Danish Atomic Energy Commission Z. FSrdos, Concrete Research

215

Iowa Powder Atomization Technologies  

SciTech Connect

The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

None

2012-01-01T23:59:59.000Z

216

Atomic Force Microscope  

SciTech Connect

The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

Day, R.D.; Russell, P.E.

1988-12-01T23:59:59.000Z

217

AEC on civilian nuclear power  

Science Journals Connector (OSTI)

AEC on civilian nuclear power ... The Atomic Energy Commission has just sent to the President the 1967 supplement to its 1962 Report on Civilian Nuclear Power. ...

1967-03-13T23:59:59.000Z

218

Atomic Scientists Brief Congress  

Science Journals Connector (OSTI)

Topics covered included underground explosions to produce energy, chemicals, or petroleum; advanced reactors capable of producing chemicals; atomic power for space propulsion; direct conversion of heat energy to electricity; and controlled thermonuclear reactions. ... (For details on controlled fusion research see page 46.) ...

1960-04-04T23:59:59.000Z

219

Lesson 6 - Atoms to Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 - Atoms to Electricity Lesson 6 - Atoms to Electricity Most power plants make electricity by boiling water to make steam that turns a turbine. A nuclear power plant works this...

220

Star Power  

SciTech Connect

The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

None

2014-10-17T23:59:59.000Z

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Star Power  

ScienceCinema (OSTI)

The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

None

2014-11-18T23:59:59.000Z

222

general_atomics.cdr  

Office of Legacy Management (LM)

former General former General Atomics Hot Cell Facility was constructed in 1959 and operated until 1991. The site encompassed approximately 7,400 square feet of laboratory and remote operations cells. Licensed operations at the facility included receipt, handling, and shipment of radioactive materials; remote handling, examination, and storage of previously irradiated nuclear fuel materials; pilot-scale tritium extraction operations; and development, fabrication, and inspection of uranium oxide-beryllium oxide fuel materials. General Atomics performed most of the work for the federal government. The General Atomics Hot Cell Facility was located in a 60-acre complex 13 miles northwest of downtown San Diego, 1 mile inland from the Pacific Ocean, and approximately 300 feet above sea level.

223

Sandia National Laboratories (SNL)  

National Nuclear Security Administration (NNSA)

Sandia National Laboratories (SNL) Sandia National Laboratories (SNL) Current Projects with the Russian Federation Project Title: Development of Models of Energy Transfer in Nanostructured Materials. Russian Institute: Institute for Problems in Mechanical Engineering, Russian Academy of Sciences (IPME RAS), St. Petersburg. Brief Description: To develop modeling approaches and simulations to examine energy transport and transfer in materials with structural features at the nanoscale. Tasks include developing such a model for thin crystal structures subjected to short duration laser excitation, and using atomic-scale simulations to evaluate microscopic expressions for stress and heat flux in crystals containing defects such as vacancies, dislocations and bi-material interfaces.

224

E-Print Network 3.0 - atomic absorption method Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

method Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic absorption method...

225

E-Print Network 3.0 - atomic absorption spectrometr Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

spectrometr Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic absorption spectrometr...

226

E-Print Network 3.0 - atomic absorption spectrometric Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

spectrometric Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic absorption spectrometric...

227

E-Print Network 3.0 - atomic absorption methods Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

methods Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic absorption methods...

228

E-Print Network 3.0 - atomic oxygen beams Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

beams Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic oxygen beams...

229

E-Print Network 3.0 - atomic oxygen beam Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

beam Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic oxygen beam...

230

E-Print Network 3.0 - atomic oxygen interactions Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

interactions Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic oxygen interactions...

231

E-Print Network 3.0 - atomic oxygen densities Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

densities Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic oxygen densities...

232

E-Print Network 3.0 - atomic oxygen interaction Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

interaction Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic oxygen interaction...

233

E-Print Network 3.0 - atomic oxygen density Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

density Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic oxygen density...

234

Semiclassical atom  

Science Journals Connector (OSTI)

Semiclassical quantization is incorporated into the average potential approach to atomic physics. The stationary energy functional is shown to be the sum of the Thomas-Fermi functional and a mainly oscillatory part. The latter turns out to be a small correction for sufficiently large atomic numbers, allowing perturbative treatment. Further, a detailed study of semiclassical spectra, with emphasis on energy degeneracy, is performed.

Berthold-Georg Englert and Julian Schwinger

1985-07-01T23:59:59.000Z

235

E-Print Network 3.0 - atomic force ultrasonic Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

laboratories, you must attend the safety orientation. Summary: W ultrasonic horn Atomic absorption spectrophotometer UVVIS spectrophotometer Centrifuge p... ,...

236

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network (OSTI)

...............................................................................................19 Competitive Green Power and Renewable Energy Certificate Marketing..............................45.......................................................................................53 Selected Wholesale MarketersNational Renewable Energy Laboratory Innovation for Our Energy Future A national laboratory

237

Institute for Atom-Efficient Chemical Transformations Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Job Openings at the Institute for Atom-Efficient Chemical Transformations Openings at Argonne National Laboratory Three IACT postdoctoral positions, described below, are open at...

238

Instead of splitting the atom --the  

E-Print Network (OSTI)

the atomic bomb and led to civilian nuclear plants - - ITER seeks to harness nuclear fusion: the power the atomic bomb and led to civilian nuclear plants -- ITER seeks to harness nuclear fusion: the power a few minutes and input/yield ratios remain low. That compares with ITER's goal of producing sustained

239

Star Power | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Star Power Star Power The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released "Star Power," a new informational video that uses dramatic and beautiful...

240

Laboratory Fellows  

NLE Websites -- All DOE Office Websites (Extended Search)

were confirmed by the Laboratory Director. Brenda Dingus has pioneered work in gamma-ray bursts and is a major contributor to the relatively young scientific field of...

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Laboratory Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrological controls on carbon cycling in flood plain ecosystems into Earth System Models. - 5814 A neutron detector like this one at Los Alamos National Laboratory is...

242

High-Voltage Test Laboratories  

Science Journals Connector (OSTI)

The power for a complete HV laboratory is usually supplied from a medium-...9.20...). One or several three-phase distribution transformers in a nearby substation should be used for that purpose. Their...Sect. 9.2...

Wolfgang Hauschild; Eberhard Lemke

2014-01-01T23:59:59.000Z

243

Atom Interferometry  

ScienceCinema (OSTI)

Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton?s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

Mark Kasevich

2010-01-08T23:59:59.000Z

244

Interaction of trapped ions with trapped atoms  

E-Print Network (OSTI)

In this thesis, I present results from two Paul-trap based ion traps carried out in the Vuleti? laboratory: the Atom-Ion trap for collision studies between cold atoms and cold ions, and the Cavity-Array trap for studying ...

Grier, Andrew T. (Andrew Todd)

2011-01-01T23:59:59.000Z

245

An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

An Analysis of Concentrating Solar Power An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) Paul Denholm, Yih-Huei Wan, Marissa Hummon, Mark Mehos March 2013 NREL/PR-6A20-58470 2 Motivation * Implement concentrating solar power (CSP) with thermal energy storage (TES) in a commercial production cost model o Develop approaches that can be used by utilities and system planners to incorporate CSP in standard planning tools * Evaluate the optimal dispatch of CSP with TES o How would a plant actually be used to minimize system production cost? * Quantify the value of adding storage to CSP in a high renewable energy (RE) scenario in California

246

NRELs Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

DEVAP Slashes Peak Power Loads DEVAP Slashes Peak Power Loads Desiccant-enhanced evaporative (DEVAP) air-condi- tioning will provide superior comfort for commercial buildings in any climate at a small fraction of the elec- tricity costs of conventional air-conditioning equip- ment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up

247

HOM damping properties of fundamental power couplers in the superconducting electron gun of the energy recovery LINAC at Brookhaven National Laboratory  

SciTech Connect

Among the accelerator projects under construction at the Relativistic Heavy Ion Collider (RHIC) is an R and D energy recovery LINAC (ERL) test facility. The ERL includes both a five-cell superconducting cavity as well as a superconducting, photoinjector electron gun. Because of the high-charge and high-current demands, effective higher-order mode (HOM) damping is essential, and several strategies are being pursued. Among these is the use of the fundamental power couplers as a means for damping some HOMs. Simulation studies have shown that the power couplers can play a substantial role in damping certain HOMs, and this presentation discusses these studies along with measurements.

Hammons, L.; Hahn, H.

2011-03-28T23:59:59.000Z

248

Sandia National Laboratories: Compact Linear Fesnel Reflector  

NLE Websites -- All DOE Office Websites (Extended Search)

is collaborating with Sandia National Laboratories on a new concentrated solar power (CSP) installation with thermal energy storage. The CSP storage project combines Areva's...

249

Sandia National Laboratories: energy storage materials  

NLE Websites -- All DOE Office Websites (Extended Search)

materials Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities,...

250

Sandia National Laboratories: Photovoltaic Systems Evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory (PSEL) Sandia-Electric Power Research Institute Partnership Publishes Photovoltaic Reliability Report On January 21, 2014, in Energy, Facilities, Grid Integration,...

251

Sandia National Laboratories: renewables value proposition  

NLE Websites -- All DOE Office Websites (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

252

Vehicle-Grid Interoperability | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

a test vehicle using the laboratory's solar-powered charging station. As plug-in electric vehicles (EVs) become more common, the challenges to managing their interactions with...

253

National Renewable Energy Laboratory Report Identifies Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Renewable Energy Laboratory Report Identifies Research Needed to Address Power Market Design Challenges Developing a New Primer on the Nation's Electricity Markets...

254

E-Print Network 3.0 - atomic electric company Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: atomic electric company Page: << < 1 2 3 4 5 > >> 1 Correlated field evaporation as seen by atom...

255

E-Print Network 3.0 - atomic collision physics Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

physics Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic collision physics Page: << < 1 2 3 4 5 > >> 1 Chapter 47. Ultracold Atomic...

256

E-Print Network 3.0 - atomic absorption spectroscopy Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Such powers are sufficient for laser atomic absorption spectrometry (LAAS... in graphite tube atomizers and analytical flames by wavelength modulation-laser ... Source: Ecole...

257

E-Print Network 3.0 - analytical atomic spectrometry Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: in graphite tube atomizers and analytical flames by wavelength modulation-laser atomic absorption spectrometry... down to about 310 nm. Such powers are sufficient for...

258

Pacific Northwest National Laboratory Catalysis Highlights for FY2007  

SciTech Connect

To reduce the nations dependence on imported oil, the U.S. Department of Energy (DOE) and other federal and private agencies are investing in understanding catalysis. This report focuses on catalysis research conducted by Pacific Northwest National Laboratory (PNNL) and its collaborators. Using sophisticated instruments in DOEs Environmental Molecular Sciences Laboratory, a national scientific user facility, research was conducted to answer key questions related to the nations use of automotive fuels. Research teams investigated how hydrogen can be safely stored and efficiently released, critical questions to use this alternative fuel. Further, they are answering key questions to design molecular catalysts to control the transfer of hydrogen atoms, hydrides, and protons important to hydrogen production. In dealing with todays fuels, researchers examined adsorption of noxious nitrous oxides in automotive exhaust. Beyond automotive fuel, researchers worked on catalysts to harness solar power. These catalysts include the rutile and anatase forms of titanium dioxide. Basic research was conducted on designing catalysts for these and other applications. Our scientists examined how to build catalysts with the desired properties atom by atom and molecule by molecule. In addition, this report contains brief descriptions of the outstanding accomplishments of catalysis experts at PNNL.

Garrett, Bruce C.

2007-11-15T23:59:59.000Z

259

Laboratory Directors  

NLE Websites -- All DOE Office Websites (Extended Search)

S. Hecker (1985-1997) Donald M. Kerr (1979-1985) Harold M. Agnew (1970-1979) Norris Bradbury (1945-1970) J. Robert Oppenheimer (1943-1945) Laboratory Directors Harold M. Agnew...

260

MICROSYSTEMS LABORATORIES  

E-Print Network (OSTI)

15 nm MICROSYSTEMS TECHNOLOGY LABORATORIES ANNUAL RESEARCH REPORT 2014 MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MA AUGUST 2014 #12;MTL Annual Research Report 2014 Director Jesús A. del Alamo Project........................................................................ 47 Energy: Photovoltaics, Energy Harvesting, Batteries, Fuel Cells

Culpepper, Martin L.

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Atomic-Resolution Spectroscopic Imaging and In Situ Environmental Study of  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic-Resolution Spectroscopic Imaging and In Situ Environmental Study of Atomic-Resolution Spectroscopic Imaging and In Situ Environmental Study of Bimetallic Nanocatalysts by Fast Electrons Thursday, October 24, 2013 - 3:30pm SLAC, Conference Room 137-322 Presented by Huolin Xin Center for Functional Nanomaterials Brookhaven National Laboratory, Upton, New York Scanning transmission electron microscopy (STEM) in combination with electron energy loss spectroscopy (EELS) has proven to be a powerful technique to study structural, compositional, and electronic information of materials at the atomic scale. With the recent addition of 3rd-order and now 5th-order aberration correction, the numerical aperture can be opened up by a factor of 2-3, allowing sub-Angstrom resolution to be achieved in a STEM. Additionally, the enlarged numerical aperture couple with the use of

262

Duffield named director of Argonne National Laboratory  

Science Journals Connector (OSTI)

Duffield named director of Argonne National Laboratory ... Dr. Robert B. Duffield has been appointed to succeed Dr. Albert V. Crewe as director of Argonne National Laboratory, the huge Atomic Energy Commission research facility near Chicago. ... Dr. Crewe, Argonne's director since 1961, resigned June 1 to return to teaching and research as professor of physics at the University of Chicago. ...

1967-08-28T23:59:59.000Z

263

Atom Probe Tomography | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Atom Probe Tomography Atom Probe Tomography The LEAP 4000 XHR local electrode atom probe tomography instrument enabled the first-ever comprehensive and accurate 3-D chemical...

264

Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

record neutron beam at Los record neutron beam at Los Alamos National Laboratory July 10, 2012 New method has potential to advance materials measurement LOS ALAMOS, New Mexico, July 10, 2012-Using a one-of-a-kind laser system at Los Alamos National Laboratory, scientists have created the largest neutron beam ever made by a short-pulse laser, breaking a world record. Neutron beams are usually made with particle accelerators or nuclear reactors and are commonly used in a wide variety of scientific research, particularly in advanced materials science. Using the TRIDENT laser, a unique and powerful 200 trillion-watt short-pulse laser, scientists from Los Alamos, the Technical University of Darmstadt, Germany, and Sandia National Laboratories focus high-intensity light on an ultra-thin plastic sheet

265

Measurement of the Analyzing Power $A_N$ in $pp$ Elastic Scattering in the CNI Region with a Polarized Atomic Hydrogen Gas Jet Target  

E-Print Network (OSTI)

A precise measurement of the analyzing power $A_N$ in proton-proton elastic scattering in the region of 4-momentum transfer squared $0.001 gas jet target and the 100 GeV/$c$ RHIC proton beam. The interference of the electromagnetic spin-flip amplitude with a hadronic spin-nonflip amplitude is predicted to generate a significant $A_N$ of 4--5%, peaking at $-t \\simeq 0.003 ({\\rm GeV}/c)^2$. This kinematic region is known as the Coulomb Nuclear Interference region. A possible hadronic spin-flip amplitude modifies this otherwise calculable prediction. Our data are well described by the CNI prediction with the electromagnetic spin-flip alone and do not support the presence of a large hadronic spin-flip amplitude.

H. Okada; I. G. Alekseev; A. Bravar; G. Bunce; S. Dhawan; R. Gill; W. Haeberli; O. Jinnouchi; A. Khodinov; Y. Makdisi; A. Nass; N. Saito; E. J. Stephenson; D. N. Svirida; T. Wise; A. Zelenski

2005-12-31T23:59:59.000Z

266

Federal Laboratory Consortium | The Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Laboratory Consortium The Federal Laboratory Consortium for Technology Transfer (FLC) is the nationwide network of federal laboratories that provides the forum to develop...

267

Gas Atomization of Stainless Steel - Slow Motion  

SciTech Connect

Stainless steel liquid atomized by supersonic argon gas into a spray of droplets at ~1800C. Atomization of metal requires high pressure gas and specialized chambers for cooling and collecting the powders without contamination. The critical step for morphological control is the impingement of the gas on the melt stream. The video is a black and white high speed video of a liquid metal stream being atomized by high pressure gas. This material was atomized at the Ames Laboratory's Materials Preparation Center http://www.mpc.ameslab.gov

None

2011-01-01T23:59:59.000Z

268

The Future of Atomic Energy  

DOE R&D Accomplishments (OSTI)

There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

Fermi, E.

1946-05-27T23:59:59.000Z

269

Tribology Laboratory | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

diesels and other high-temperature advanced engines and engine power trains Assessment of high-performance NFC (near-frictionless carbon) coatings for use in...

270

Power Purchase Agreement Checklist for State and Local Governments; Energy Analysis; Fact Sheet Series on Financing Renewable Energy Projects, National Renewable Energy Laboratory (NREL)  

NLE Websites -- All DOE Office Websites (Extended Search)

fact sheet provides information and guidance on the fact sheet provides information and guidance on the solar photovoltaic (PV) power purchase agreement (PPA), which is a financing mechanism that state and local govern- ment entities can use to acquire clean, renewable energy. We address the financial, logistical, and legal questions relevant to implementing a PPA, but we do not examine the technical details-those can be discussed later with the developer/con- tractor. This fact sheet is written to support decision makers in U.S. state and local governments who are aware of solar PPAs and may have a cursory knowledge of their structure but they still require further information before committing to a particular project. Overview of PPA Financing The PPA financing model is a "third-party" ownership

271

Alkali deposits found in biomass boilers: The behavior of inorganic material in biomass-fired power boilers -- Field and laboratory experiences. Volume 2  

SciTech Connect

This report documents the major findings of the Alkali Deposits Investigation, a collaborative effort to understand the causes of unmanageable ash deposits in biomass-fired electric power boilers. Volume 1 of this report provide an overview of the project, with selected highlights. This volume provides more detail and discussion of the data and implications. This document includes six sections. The first, the introduction, provides the motivation, context, and focus for the investigation. The remaining sections discuss fuel properties, bench-scale combustion tests, a framework for considering ash deposition processes, pilot-scale tests of biomass fuels, and field tests in commercially operating biomass power generation stations. Detailed chemical analyses of eleven biomass fuels representing a broad cross-section of commercially available fuels reveal their properties that relate to ash deposition tendencies. The fuels fall into three broad categories: (1) straws and grasses (herbaceous materials); (2) pits, shells, hulls and other agricultural byproducts of a generally ligneous nature; and (3) woods and waste fuels of commercial interest. This report presents a systematic and reasonably detailed analysis of fuel property, operating condition, and boiler design issues that dictate ash deposit formation and property development. The span of investigations from bench-top experiments to commercial operation and observations including both practical illustrations and theoretical background provide a self-consistent and reasonably robust basis to understand the qualitative nature of ash deposit formation in biomass boilers. While there remain many quantitative details to be pursued, this project encapsulates essentially all of the conceptual aspects of the issue. It provides a basis for understanding and potentially resolving the technical and environmental issues associated with ash deposition during biomass combustion. 81 refs., 124 figs., 76 tabs.

Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Miles, T.R.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States); Jenkins, B.M. [California Univ., Davis, CA (United States); Dayton, D.C.; Milne, T.A. [National Renewable Energy Lab., Golden, CO (United States); Bryers, R.W. [Foster Wheeler Development Corp., Livingston, NJ (United States); Oden, L.L. [Bureau of Mines, Albany, OR (United States). Albany Research Center

1996-03-01T23:59:59.000Z

272

Laboratory Access | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Access Access Planning Ahead Planning Ahead Please complete the Beam Time Request (BTR) and Support Request forms thourgh the User Portal. Thorough chemical and sample information must be included in your BTR. Support Request forms include a list of collaborators that require laboratory access and your group's laboratory equipment requests. Researcher safety is taken seriously at SLAC. Please remember that radioactive materials, nanomaterials, and biohazardous materials have additional safety requirements. Refer to the SSRL or LCLS Safety Offices for further guidance. Upon Arrival Upon Arrival Once you arrive you must complete training and access forms before accessing the Sample Preparation Laboratories (SPL). All Sample Prep Lab doors are locked with access key codes. Once your SPL

273

Sandia National Laboratories: Federal Laboratory Consortium Regional...  

NLE Websites -- All DOE Office Websites (Extended Search)

& CapabilitiesCapabilitiesFederal Laboratory Consortium Regional Technology-Transfer Awards Salute Innovation, Commercialization at Sandia Federal Laboratory...

274

FTIR Laboratory in Support of the PV Program  

SciTech Connect

The Fourier Transform Infrared Spectroscopy (FTIR) Laboratory supports the Solar Energy Technologies Program through the measurement and characterization of solar energy-related materials and devices. The FTIR technique is a fast, accurate, and reliable method for studying molecular structure and composition. This ability to identify atomic species and their bonding environment is a powerful combination that finds use in many research and development efforts. A brief overview of the technical approach used is contained in Section 2 of this report. Because of its versatility and accessibility, the FTIR Laboratory is a valuable contributor to the Solar Energy Technologies Program. The laboratory provides support for, and collaborates with, several in-house programs as well as our industry and university partners. By the end of FY 2004, the FTIR Laboratory performed over 1100 measurements on PV-related materials. These contributions resulted in conference and workshop presentations and several peer-reviewed publications. A brief summary of a few of these efforts is contained in Section 3 of this report.

Keyes, B. M.; Gedvilas, L. M.; Bhattacharya, R.; Xu, Y.; Li, X.; Wang, Q.

2005-01-01T23:59:59.000Z

275

TOP500 Supercomputers for June 2005  

E-Print Network (OSTI)

Center/Univ. of Texas DOE/Bettis Atomic Power LaboratoryFinancial Institution DOE/Bettis Atomic Power Laboratory

Strohmaier, Erich; Meuer, Hans W.; Dongarra, Jack; Simon, Horst D.

2005-01-01T23:59:59.000Z

276

Atomic magnetometer  

DOE Patents (OSTI)

An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

Schwindt, Peter (Albuquerque, NM); Johnson, Cort N. (Albuquerque, NM)

2012-07-03T23:59:59.000Z

277

National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Homesteading on the Pajarito Plateau Homesteading on the Pajarito Plateau topic of inaugural lecture at Los Alamos National Laboratory January 4, 2013 Lecture series begins yearlong commemoration of 70th anniversary LOS ALAMOS, NEW MEXICO, Jan. 3, 2013-In commemoration of its 70th anniversary, Los Alamos National Laboratory kicks off a yearlong lecture series on Wednesday, Jan. 9, at 5:30 p.m. with a presentation about homesteading on the Pajarito Plateau at the Bradbury Science Museum, 1350 Central Avenue, Los Alamos. - 2 - The inaugural lecture is based on a book by local writers Dorothy Hoard, Judy Machen and Ellen McGehee about the area's settlement between 1887 and 1942. On hikes across the Pajarito Plateau, Hoard envisioned the Los Alamos area before modern roads and bridges made transportation much easier. The trails she walked

278

E-Print Network 3.0 - atomic emission spectroelectrochemistry...  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic emission spectroelectrochemistry Page: << < 1 2 3 4 5 > >> 1 Far-infrared...

279

SULI at Ames Laboratory  

SciTech Connect

A video snapshot of the Science Undergraduate Laboratory Internship (SULI) program at Ames Laboratory.

None

2011-01-01T23:59:59.000Z

280

Infrared Thermography Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists measuring sample at IR Thermography lab Scientists measuring sample at IR Thermography lab Infrared Thermography Laboratory In the Infrared Thermography Laboratory (IRLab), researchers test the thermal performance of windows and other insulated systems. Test specimens are placed between chambers that simulate different climate conditions, including household room temperature versus extreme winter cold with high exterior wind speed. Using an infrared imaging system, the IRLab produces calibrated quantitative thermal images, or surface temperature maps, of the specimens in heat transfer experiments. This high resolution non-contact surface temperature data help researchers understand details of thermal performance and validate computer simulations of heat and fluid flow, as well as provide a powerful visualization of detailed thermal features in

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Remote Sensing Laboratory - RSL  

ScienceCinema (OSTI)

One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

None

2015-01-09T23:59:59.000Z

282

Remote Sensing Laboratory - RSL  

SciTech Connect

One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

None

2014-11-06T23:59:59.000Z

283

Atomization of metal (Materials Preparation Center)  

SciTech Connect

Atomization of metal requires high pressure gas and specialized chambers for cooling and collecting the powders without contamination. The critical step for morphological control is the impingement of the gas on the melt stream. The video is a color video of a liquid metal stream being atomized by high pressure gas. This material was cast at the Ames Laboratorys Materials Preparation Center http://www.mpc.ameslab.gov WARNING - AUDIO IS LOUD.

None

2010-01-01T23:59:59.000Z

284

Observation of relativistic antihydrogen atoms  

SciTech Connect

An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 < p < 9 GeV/c) antiprotons and a jet of molecular hydrogen gas. Since the neutral antihydrogen does not bend in the antiproton source magnets, the detectors could be located far from the interaction point on a beamline tangent to the storage ring. The detection of the antihydrogen is accomplished by ionizing the atoms far from the interaction point. The positron is deflected by a magnetic spectrometer and detected, as are the back to back photons resulting from its annihilation. The antiproton travels a distance long enough for its momentum and time of flight to be measured accurately. A statistically significant sample of 101 antihydrogen atoms has been observed. A measurement of the cross section for {bar H}{sup 0} production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e{sup +} e{sup -} pair creation near a nucleus with the e{sup +} being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.

Blanford, Glenn DelFosse

1998-01-01T23:59:59.000Z

285

Manhattan Project: Exploring the Atom, 1919-1932  

Office of Scientific and Technical Information (OSTI)

Ernest Rutherford (and James Chadwick, on the far right) EXPLORING THE ATOM Ernest Rutherford (and James Chadwick, on the far right) EXPLORING THE ATOM (1919-1932) Events > Atomic Discoveries, 1890s-1939 A Miniature Solar System, 1890s-1919 Exploring the Atom, 1919-1932 Atomic Bombardment, 1932-1938 The Discovery of Fission, 1938-1939 Fission Comes to America, 1939 The road to the atomic bomb began in earnest in 1919 with the first artificial transmutation of an element. The New Zealander Ernest Rutherford, working in the Cavendish Laboratory at Cambridge University in England, changed several atoms of nitrogen into oxygen. The final addition to the atomic "miniature solar system" first proposed by Niels Bohr came in 1932 when James Chadwick, Rutherford's colleague at Cambridge, identified the third and final basic particle of the atom: the neutron.

286

Smart Grid Integration Laboratory  

SciTech Connect

The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation ?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

Wade Troxell

2011-09-30T23:59:59.000Z

287

Measuring atomic properties with an atom interferometer  

E-Print Network (OSTI)

Two experiments are presented which measure atomic properties using an atom interferometer. The interferometer splits the sodium de Broglie wave into two paths, one of which travels through an interaction region. The paths ...

Roberts, Tony David, 1972-

2002-01-01T23:59:59.000Z

288

NATIONAL ENERGY TECHNOLOGY LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Cover image: NETL researcher Corinne Disenhof examines a basalt thin section under a geoscience laboratory petrographic microscope. NETL is investigating the effects of microbes on basalt during carbon sequestration, and petrography is one of several analysis methods being used. Others include scanning electron microscopy and x-ray diffraction. Mission Advancing energy options to fuel our economy, strengthen our security, and improve our environment. 2 Contents 2011 Letter from the Director ___________________________ 4 Advanced Power Systems __________________________ 6 Clean Energy ____________________________________ 24 Oil & Natural Gas ________________________________ 40 A Legacy of Benefit: The Return on Federal Research at NETL ______________

289

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Sciences Experimental Facilities (ESEF) Engineering Sciences Experimental Facilities (ESEF) Technology Deployment Centers Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Trisonic Wind Tunnel Hypersonic Wind Tunnel High Altitude Chamber Explosive Components Facility Ion Beam Laboratory Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test Technology Facility Research Engineering Sciences Experimental Facilities (ESEF) The ESEF complex contains several independent laboratories for experiments and advanced diagnostics in the fields of thermodynamics, heat transfer,

290

CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT  

Office of Legacy Management (LM)

PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial...

291

Audio-Frequency Power Measurements  

Science Journals Connector (OSTI)

... " prepared by the National Physical Laboratory, Teddington, is a brief pamphlet dealing with "Audio-Frequency Power Measurements" (pp. 16. London: H.M.S.O., 1954; ...

1955-09-10T23:59:59.000Z

292

E-Print Network 3.0 - accelerated test laboratory Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: accelerated test laboratory Page: << < 1 2 3 4 5 > >> 1 SLAC National Accelerator Laboratory Accelerator...

293

E-Print Network 3.0 - atomic fountain clock Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

accurately measurable quantity in a laboratory setting... sundials of 3500 BC, to the cold atom ... Source: Experimental High Energy Physics Collection: Plasma Physics and...

294

E-Print Network 3.0 - atomic clocks Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

accurately measurable quantity in a laboratory setting... sundials of 3500 BC, to the cold atom ... Source: Experimental High Energy Physics Collection: Plasma Physics and...

295

Energy Storage Laboratory (Fact Sheet)  

SciTech Connect

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

Not Available

2011-10-01T23:59:59.000Z

296

Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York  

SciTech Connect

The Separations Process Research Unit (SPRU) complex located on the Knolls Atomic Power Laboratory (KAPL) site in Niskayuna, New York, was constructed in the late 1940s to research the chemical separation of plutonium and uranium (Figure A-1). SPRU operated as a laboratory scale research facility between February 1950 and October 1953. The research activities ceased following the successful development of the reduction oxidation and plutonium/uranium extraction processes. The oxidation and extraction processes were subsequently developed for large scale use by the Hanford and Savannah River sites (aRc 2008a). Decommissioning of the SPRU facilities began in October 1953 and continued through the 1990s.

Evan Harpeneau

2011-06-24T23:59:59.000Z

297

Sandia National Laboratories: Water Power Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Wind Energy Wind Plant Optimization Test Site Operations & Maintenance Safety: Test Facilities Capital Equipment Test site O&M safety: Site Equipment, Environmental...

298

Sandia National Laboratories: Water Power Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Wind Energy Wind Plant Optimization Test Site Operations & Maintenance Safety: Test Facilities Capital Equipment Test site O&M safety: Site Equipment, Environmental...

299

Power Parks System Simulation Sandia National Laboratories  

E-Print Network (OSTI)

. Electricity from the renewable source can be used to generate hydrogen by electrolysis and stored for use to efficiency and cost. 1 Proceedings of the 2002 U.S. DOE Hydrogen Program Review NREL/CP-610-32405 #12 at a steady rate to produce hydrogen, feeding a fuel cell stack to supply electricity to a transient load

300

Sandia National Laboratories: Conventional Water Power: Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sediment Transport High-Resolution Computational Algorithms for Simulating Offshore Wind Farms Innovative Offshore Vertical-Axis Wind Turbine Rotors Offshore Publications...

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sandia National Laboratories: Conventional Water Power: Market...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sediment Transport High-Resolution Computational Algorithms for Simulating Offshore Wind Farms Innovative Offshore Vertical-Axis Wind Turbine Rotors Offshore Publications...

302

Sandia National Laboratories: Smart power infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbide Thyristors On March 29, 2013, in Capabilities, Distribution Grid Integration, Energy, Energy Efficiency, Energy Storage Systems, Global Climate & Energy, Grid Integration,...

303

Sandia National Laboratories: renewable energy power generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Security, Microgrid, Modeling & Analysis, News, News & Events, Partnership, Renewable Energy, SMART Grid, Systems Analysis, Systems Engineering Mayor Says New System...

304

Sandia National Laboratories: Concentrating Solar Power (CSP...  

NLE Websites -- All DOE Office Websites (Extended Search)

to, (1) novel research, development, and demonstration in reflector systems for efficient solar energy collection; (2) large-scale metrology; (3) receivers for solar-to-thermal...

305

Sandia National Laboratories: Solar Power International  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 On September 24, 2013, in Conferences, Energy, Events, News & Events, Renewable Energy, Seminars & Conferences, Solar, Workshops Sandia will host PV Bankability workshop...

306

Sandia National Laboratories: Solar Power International (SPI...  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop On September 10, 2012, in Energy, News, Partnership, Photovoltaic, Renewable Energy, Solar Achieving High Penetrations of PV: Streamlining Interconnection and Managing...

307

Sandia National Laboratories Distributive Power Initiative (DPI...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System (NDS) Problem National Distress System (NDS) Problem Supplying Fuel to the propane generators is expensive especially when the fuel has to be chartered by helicopter....

308

Sandia National Laboratories: Brayton power conversion systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

309

Thermal Storage Materials Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Materials Storage Materials Laboratory may include: * CSP technology developers * Utilities * Certification laboratories * Government agencies * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Thermal Storage Materials Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Thermal Storage Materials Laboratory The Thermal Storage Materials Laboratory at NREL's Energy Systems Integration Facility (ESIF) investigates materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar power (CSP) plants. Research objectives include the discovery and evaluation of

310

Lawrence Livermore National Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

Lawrence Livermore National Laboratorys (LLNL) primary mission is research and development in support of national security.

311

Sandia National Laboratories: photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

PV Facilities On November 10, 2010, in Photovoltaic System Evaluation Laboratory Distributed Energy Technologies Laboratory Microsystems and Engineering Sciences Applications...

312

Facilities | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced...

313

Elements & Compounds Atoms (Elements)  

E-Print Network (OSTI)

#12;Elements & Compounds #12;Atoms (Elements) Molecules (Compounds) Cells Elements & Compounds #12;Nucleus Electrons Cloud of negative charge (2 electrons) Fig. 2.5: Simplified model of a Helium (He) Atom He 4.002602 2 Helium Mass Number (~atomic mass) = number of Neutrons + Protons = 4 for Helium Atomic

Frey, Terry

314

SunShot Initiative: National Laboratory Photovoltaics Research  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory Photovoltaics National Laboratory Photovoltaics Research to someone by E-mail Share SunShot Initiative: National Laboratory Photovoltaics Research on Facebook Tweet about SunShot Initiative: National Laboratory Photovoltaics Research on Twitter Bookmark SunShot Initiative: National Laboratory Photovoltaics Research on Google Bookmark SunShot Initiative: National Laboratory Photovoltaics Research on Delicious Rank SunShot Initiative: National Laboratory Photovoltaics Research on Digg Find More places to share SunShot Initiative: National Laboratory Photovoltaics Research on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Diversity in Science and Technology Advances National Clean Energy in Solar Grid Engineering for Accelerated Renewable Energy Deployment

315

Neutral atom traps.  

SciTech Connect

This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

Pack, Michael Vern

2008-12-01T23:59:59.000Z

316

ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue  

NLE Websites -- All DOE Office Websites (Extended Search)

LABORATORY LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 ______________ ANL/APS/TB-43 ______________ A New Approach to High-Current Operation of the Advanced Photon Source by G. K. Shenoy Experimental Facilities Division Advanced Photon Source April 2002 work sponsored by U.S. DEPARTMENT OF ENERGY Office of Science i Contents Abstract .............................................................................................................................1 1. Introduction...................................................................................................................2 2. Alternative Operational Parameters..............................................................................3 3. Undulator Tunability, Brilliance, Power, and Power Densities....................................5

317

Advanced Power Electronics and Electric Motors R&D  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies to the Marketplace Advancing Power Electronics and Electric Motors More Fuel Efficient Vehicles on the Road * Ames Laboratory * Argonne National Laboratory * Oak...

318

2014 Water Power Program Peer Review Compiled Presentations:...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Veselka, Argonne National Laboratory Hydropower Advancement Project-Brennan T. Smith, Oak Ridge National Laboratory The 45 Mile Hydroelectric Power Project (formerly the...

319

On-power refueling for the CANDU reactor  

SciTech Connect

Atomic Energy of Canada Limited (AECL) CANDU, along with its affiliates, has designed and developed a specialized robotic system capable of refueling a Canada deuterium uranium (CANDU) reactor at full power under full load. Additionally, this is a production system; such on-power refueling is a routine daily occurrence on a CANDU reactor. On-power refueling was first successfully implemented on NRU, an AECL research reactor located at the Chalk River Nuclear Laboratories. Since then, it has been refined into the sophisticated automated robotic systems in daily use at 20 CANDU reactor units around the world. Although its development was necessary for the CANDU natural uranium fuel cycle, the technology has spin-off benefits that may be useful elsewhere.

Granz, R.P. (Atomic Energy of Canada Ltd., Mississauga, Ontario (Canada))

1992-01-01T23:59:59.000Z

320

Sandia National Laboratories: SAND2014-4761P  

NLE Websites -- All DOE Office Websites (Extended Search)

761P Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National...

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Sandia National Laboratories: thermochemical energy-storage systems  

NLE Websites -- All DOE Office Websites (Extended Search)

energy-storage systems Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage,...

322

Sandia National Laboratories: Molten-Salt Storage System  

NLE Websites -- All DOE Office Websites (Extended Search)

is collaborating with Sandia National Laboratories on a new concentrated solar power (CSP) installation with thermal energy storage. The CSP storage project combines Areva's...

323

Sandia National Laboratories: concentrates sunlight onto a fall...  

NLE Websites -- All DOE Office Websites (Extended Search)

Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

324

Sandia National Laboratories: National Solar Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

325

Sandia National Laboratories: National Solar Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Facility Air Force Research Laboratory Testing On August 17, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, Renewable...

326

Sandia National Laboratories: National Solar Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

327

Photovoltaics at DOE's National Renewable Energy Laboratory License  

Energy.gov (U.S. Department of Energy (DOE))

Document describes a sample land use agreement surrounding the National Renewable Energy Laboratory Science and Technology Facility roof-top photovoltaic (PV) power purchase agreement (PPA).

328

Manhattan Project: Atomic Bombardment, 1932-1938  

Office of Scientific and Technical Information (OSTI)

Solvay Physics Conference, Brussels, October 1933 ATOMIC BOMBARDMENT Solvay Physics Conference, Brussels, October 1933 ATOMIC BOMBARDMENT (1932-1938) Events > Atomic Discoveries, 1890s-1939 A Miniature Solar System, 1890s-1919 Exploring the Atom, 1919-1932 Atomic Bombardment, 1932-1938 The Discovery of Fission, 1938-1939 Fission Comes to America, 1939 M. Stanley Livingston and Ernest O. Lawrence in front of a 27-inch cyclotron, Rad Lab, University of California, Berkeley, 1934. In the 1930s, scientists learned a tremendous amount about the structure of the atom by bombarding it with sub-atomic particles. Ernest O. Lawrence's cyclotron, the Cockroft-Walton machine, and the Van de Graaff generator, developed by Robert J. Van de Graaff at Princeton University, were particle accelerators designed to bombard the nuclei of various elements to disintegrate atoms. Attempts of the early 1930s to split atoms, however, required huge amounts of energy because the first accelerators used proton beams and alpha particles as sources of energy. Since protons and alpha particles are positively charged, they Albert Einstein met substantial resistance from the positively charged target nucleus when they attempted to penetrate atoms. Even high-speed protons and alpha particles scored direct hits on a nucleus only approximately once in a million tries. Most simply passed by the target nucleus. Not surprisingly, Ernest Rutherford, Albert Einstein (right), and Niels Bohr regarded particle bombardment as useful in furthering knowledge of nuclear physics but believed it unlikely to meet public expectations of harnessing the power of the atom for practical purposes anytime in the near future. In a 1933 interview, Rutherford called such expectations "moonshine." Einstein compared particle bombardment with shooting in the dark at scarce birds, while Bohr, the Danish Nobel laureate, agreed that the chances of taming atomic energy were remote.

329

Laboratories and Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratories and Facilities Laboratories and Facilities Laboratories and Facilities Laboratories and Facilities National Energy Technology Laboratory - The National Energy Technology Laboratory (NETL) is the lead field center for the Office of Fossil Energy's research and development program. Scientists at its Pittsburgh, PA, and Morgantown, WV, campuses conduct onsite research while contract administrators oversee nearly 700 federally-sponsored projects conducted by private sector research partners. The Houston, TX, office is part of the Laboratory's Strategic Center for Natural Gas and Oil. NETL's Arctic Energy Office in Anchorage, AK, facilitates energy research related to fossil energy resources and remote electrical power generation to address the State of Alaska's unique energy needs. Researchers at NETL-Albany, in

330

CERTS Microgrid Laboratory Test Bed  

NLE Websites -- All DOE Office Websites (Extended Search)

CERTS Microgrid Laboratory Test Bed CERTS Microgrid Laboratory Test Bed Title CERTS Microgrid Laboratory Test Bed Publication Type Journal Article LBNL Report Number LBNL-3553E Year of Publication 2011 Authors Lasseter, Robert H., Joseph H. Eto, Ben Schenkman, John Stevens, Harry T. Volkommer, David Klapp, Ed Linton, Hector Hurtado, and Joyashree Roy Journal IEEE Transactions on Power Delivery Volume 26 Start Page 325 Issue 1 Date Published 01/2011 Keywords distributed energy resources (der) Abstract CERTS Microgrid concept captures the emerging potential of distributed generation using a system approach. CERTS views generation and associated loads as a subsystem or a "microgrid". The sources can operate in parallel to the grid or can operate in island, providing UPS services. The system can disconnect from the utility during large events (i.e. faults, voltage collapses), but may also intentionally disconnect when the quality of power from the grid falls below certain standards. CERTS Microgrid concepts were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations, and finally through factory acceptance testing of individual microgrid components. The islanding and resynchronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. Keywords: CHP, UPS, distributed generation, intentional islanding, inverters, microgrid, CERTS, power vs. frequency droop, voltage droop.

331

Nuclear PowerSuccess Assured  

Science Journals Connector (OSTI)

Nuclear PowerSuccess Assured ... Confidence in nuclear power's future mounts technology shaves costs, improves efficiency ... This informed opinion as to the economic practicality of commercial nuclear power was expressed to C&EN by National Carbon's Clarence E. Larson, a pioneer in the atomic energy field. ...

1955-12-26T23:59:59.000Z

332

7 -ATOMIC PROCESSES Atomic processes can be  

E-Print Network (OSTI)

1 7 - ATOMIC PROCESSES Atomic processes can be: 1. Scattering 2. Absorption/Thermal Emission scattering, although the results won't change much when this condition is relaxed. Absorption/Thermal Emission Free-free (continuum) ("Bremsstrahlung") Emission/Absorption #12;2 Bound-Bound & Bound

Sitko, Michael L.

333

7 -ATOMIC PROCESSES Atomic processes can be  

E-Print Network (OSTI)

1 7 - ATOMIC PROCESSES Atomic processes can be: 1. Scattering 2. Absorption/Thermal Emission scattering, although the results won't change much when this condition is relaxed. #12;2 Absorption/Thermal Emission Free-free (continuum) ("Bremsstrahlung") Emission/Absorption Bound-Bound & Bound-Free Processes

Sitko, Michael L.

334

Ames Laboratory Logos | The Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Ames Laboratory Logos The Ames Laboratory Logo comes in several formats. EPS files are vector graphics created in Adobe Illustrator and saved with a tiff preview so they will...

335

Materials Preparation Center | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Preparation Center Materials Preparation Center Materials Preparation Center The Materials Preparation Center (MPC) is a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences & Engineering specialized research center located at the Ames Laboratory. MPC operations are primarily funded by the Materials Discovery, Design, & Synthesis team's Synthesis & Processing Science core research activity. MPC is recognized throughout the worldwide research community for its unique capabilities in purification, preparation, and characterization of: Rare earth metals [learn about rare earths] Single crystal growth Metal Powders/Atomization Alkaline-earth metals [learn more, wikipedia] External Link Icon Refractory metal [learn more, wikipedia] External Link Icon

336

ARGONNE NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Performance modeling for exascale autotuning: An integrated approach ∗ Prasanna Balaprakash, Stefan M. Wild, and Paul D. Hovland Mathematics and Computer Science Division Preprint ANL/MCS-P5000-0813 July 2013 ∗ Support for this work was provided through the SciDAC program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, under Contract No. DE-AC02-06CH11357. 1 Performance modeling for exascale autotuning: An integrated approach Prasanna Balaprakash ∗ , Stefan M. Wild, and Paul D. Hovland Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439 The usual suspects-shrinking integrated circuit feature sizes, heterogeneous nodes with many- core processors, deep memory hierarchies, an ever-present power wall, energy efficiency demands, and resiliency concerns-make exascale

337

Reading Comprehension - Atomic History  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic History Atomic History A Greek philosopher named Democritus said that all atoms are small, hard particles. He thought that atoms were made of a single material formed into different shapes and sizes. The word " _________ element compound mixture atom " is derived from the Greek word "atomos" which means "not able to be divided." In 1803, John Dalton, a school teacher, proposed his atomic theory. Dalton's theory states that elements (substances composed of only one type of _________ molecules ions atom ) combine in certain proportions to form _________ compounds atoms mixtures elements . In 1897, a British scientist named J. J. Thomson experimented with a cathode-ray tube which had a positively charged plate. The plate attracted negatively charged particles that we now call _________ protons neutrons

338

The Universe Adventure - Atoms  

NLE Websites -- All DOE Office Websites (Extended Search)

Matter and Atoms Matter and Atoms Richard Feynman "If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed on to the next generations of creatures, what statement would contain the most information in the fewest words? I believe it is that...all things are made of atoms." -Richard P. Feynman, winner of the 1965 Nobel Prize in Physics All is atoms Matter is made of atoms, and atoms are comprised of protons, neutrons, and electrons. Everything in the Universe is made of matter. Though matter exists in many different forms, each form is made out of the same basic constituents: small particles called atoms. Atoms themselves are made of smaller particles: protons, neutrons, and electrons. Protons and neutrons are composed of even smaller particles called quarks.

339

Previous Sandia National Laboratories | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Previous Sandia National Laboratories | National Nuclear Security Previous Sandia National Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Previous Sandia National Laboratories Home > About Us > Our Operations > Acquisition and Project Management > M & O Support Department > Sandia National Laboratories > Previous Sandia

340

Laboratory Equipment & Supplies | Sample Preparation Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Equipment & Supplies Equipment & Supplies John Bargar, SSRL Scientist Equipment is available to serve disciplines from biology to material science. All laboratories contain the following standard laboratory equipment: pH meters with standard buffers, analytical balances, microcentrifuges, vortex mixers, ultrasonic cleaning baths, magnetic stirrers, hot plates, and glassware. Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove boxes, radiation contamination areas, inert atmosphere chambers, and cold rooms. For specific information please see: Equipment Inventory Checkout Equipment & Supplies To view equipment inventory by laboratory, refer to the following pages: Biology Chemistry & Material Science Laboratory 1 Inventory

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Atomizing nozzle and process  

DOE Patents (OSTI)

High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

Anderson, I.E.; Figliola, R.S.; Molnar, H.M.

1993-07-20T23:59:59.000Z

342

Federal Energy Management Program: Laboratories for the 21st Century Best  

NLE Websites -- All DOE Office Websites (Extended Search)

Best Practices Guides Best Practices Guides Laboratories for the 21st Century best practices guides outline the design, construction, and operation of specific technologies that contribute to energy efficiency and sustainability. The guides cover actual laboratory implementations, highlighting quantifiable performance goals and methods. Chilled Beams in Laboratories Optimizing Laboratory Ventilation Rates Commissioning Ventilated Containment Systems in Laboratories Modeling Exhaust Dispersion for Specifying Acceptable Exhaust/Intake Designs Manifolding Laboratory Exhaust Systems Low-Pressure-Drop HVAC Design for Laboratories Energy Recovery in Laboratory Facilities On-Site Power Systems for Laboratories Water Efficiency Guide for Laboratories Efficient Electric Lighting in Laboratories

343

Guenter Conzelmann | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Guenter Conzelmann Guenter Conzelmann Guenter Conzelmann Director - Center for Energy, Environmental, and Economic Systems Analysis Guenter Conzelmann is the Director of the Center for Energy, Environmental, and Economic Systems Analysis in the Decision & Information Sciences Division at Argonne National Laboratory. His research focuses on the development and application of modeling and simulation tools to study strategic energy and power sector issues, including energy efficiency of buildings, renewable energy integration, advanced conventional energy, smart grid implementation, and environmental impacts of energy production. Mr. Conzelmann is also leading Argonne's Wind Power Technologies and Analysis Program and is actively engaged in Argonne's Smart Grid activities. He is the author/co-author of numerous publications,

344

Savannah River National Laboratory - Home  

NLE Websites -- All DOE Office Websites

SRNL Logo SRNL and DOE logo art SRNL Logo SRNL and DOE logo art Top Menu Bar SRNL Update: Embassy Fellows Report A report co-authored by Savannah River National Laboratory Senior Advisory Engineer, Dr. Robert Sindelar, has been released. The report to the Government of Japan - Ministry of the Environment provides observations and recommendations on decontamination work and progress... >>MORE Portable Power Research at SRNL Hadron Technologies, Inc., a microwave technology and systems development and manufacturing company with offices in Tennessee and Colorado, has signed a license for a Hybrid Microwave and Off-Gas Treatment System developed by the Savannah River National Laboratory, the Department of Energy's applied science laboratory located at the Savannah River Site. >>MORE

345

News | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

News Argonne Laboratory Director Peter Littlewood (left) talks with a small business owner during the second annual "Doing Business with Argonne and Fermi National Laboratories"...

346

jevans | The Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

jevans Ames Laboratory Profile James Evans Associate 315 Wilhelm Phone Number: 515-294-1638 Email Address: evans@ameslab.gov Ames Laboratory Associate and Professor, Iowa State...

347

Sustainability | The Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainability Ames Laboratory is committed to environmental sustainability in all of its operations as outlined in the Laboratory's Site Sustainability Plan. Executive orders set...

348

Laboratories for the 21st Century: Best Practices (Brochure): Onsite Distributed Generation Systems For Laboratories  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

L L a b o r a t o r i e s f o r t h e 2 1 s t C e n t u r y : B e s t P r a c t i c e s This combined heat and power system at the Bristol-Myers Squibb laboratory in Wallingford, Connecticut, could meet 100% of the lab's power requirement, if necessary. Bernard Blesinger / PIX 12552 ONSITE DISTRIBUTED GENERATION SYSTEMS FOR LABORATORIES Introduction Laboratories have unique requirements for lighting, ventilation, and scientific equipment with each requiring a considerable amount of energy. The reliability of that energy is very important. Laboratories must be able to conduct research without power interruptions, which can damage both equipment and experiments. Generating power and heat on site is one good way to enhance energy reliability, improve fuel utilization efficiency, reduce utility costs,

349

Thermal Systems Process and Components Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Process and Systems Process and Components Laboratory may include: * CSP technology developers * Utilities * Certification laboratories * Government agencies * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Thermal Systems Process and Components Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Thermal Systems Process and Components Laboratory The focus of the Thermal Systems Process and Components Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to research, develop, test, and evaluate new techniques for thermal energy storage systems that are relevant to utility-scale concentrating solar power plants. The laboratory holds

350

If Only We Could Account For Every Atom (LBNL Summer Lecture Series)  

ScienceCinema (OSTI)

Christian Kisielowski, an expert in electron microscopy at Lawrence Berkeley National Laboratory, investigates ways to allow studies of single atoms using sophisticated microscopes and imaginative techniques. His goal is to account for every atom in the interior of both simple and complex materials. Find out how he and his colleagues are breaking the barriers to account for every atom.

Kisielowski, Christian

2014-05-06T23:59:59.000Z

351

Flow Induced Vibration Program at Argonne National Laboratory  

SciTech Connect

Argonne National Laboratory has had a Flow Induced Vibration Program since 1967; the Program currently resides in the Laboratory's Components Technology Division. Throughout its existence, the overall objective of the program has been to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities have been funded by the US Atomic Energy Commission (AEC), Energy Research and Development Administration (ERDA), and Department of Energy (DOE). Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology (ECUT) Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, Office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components has been funded by the Clinch River Breeder Reactor Plant (CRBRP) Project Office. Work has also been performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.

Not Available

1984-01-01T23:59:59.000Z

352

Power Factor Reactive Power  

E-Print Network (OSTI)

power: 130 watts Induction motor PSERC Incandescent lights 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0 power: 150 watts #12;Page 4 PSERC Incandescent Lights PSERC Induction motor with no load #12;Page 5 Incandescent Lights #12;Page 7 PSERC Incandescent lights power: Power = 118 V x 1.3 A = 153 W = 0.15 kW = power

353

Active Power Controls from Wind Power: Bridging the Gaps  

Energy.gov (U.S. Department of Energy (DOE))

This report evaluates how wind power can support power system reliability, and do so economically. The study includes a number of different power system simulations, control simulations, and actual field tests using turbines at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC).

354

Commercial Fisheries Biological Laboratory  

E-Print Network (OSTI)

scientists; a substation with a laboratory on Chincoteague Bay; and a sampling substation at Point Pleasant

355

Argonne National Laboratory | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne National Laboratory Fighting friction Graphene offers dramatic improvement over conventional mechanical lubricants Read More Forecasting supply Researchers use real-world...

356

Heat Transfer Laboratory | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Transfer Laboratory Materials in solids or fluid forms play an important role in a wide range of mechanical systems and vehicle cooling applications. Understanding how...

357

Sandia National Laboratories: National Renewable Energy Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis The solar industry is now more than 60% of the way toward achieving...

358

Sandia National Laboratories: Idaho National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho National Laboratory Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks On February 26, 2013, in Biofuels,...

359

Third-Party Financing and Power Purchase Agreements for Public...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

presentation of power purchase agreements, specifically as they relate to public sector solar photovoltaic projects. Author: National Renewable Energy Laboratory...

360

Energy from nuclear power  

SciTech Connect

Nuclear power should play a pivotal and expanded role in supplying world energy, the authors says. Risks must be minimized by designing a new generation of safe reactors. Atomic energy's vast potential can be harnessed only if issues of safety, waste and nuclear-weapon proliferation are addressed by a globally administered institution. The current situation in nuclear power is described before addressing its future.

Haefele, W.

1990-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

G. Brian Stephenson | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

G. Brian Stephenson, Associate Laboratory Director, Photon Sciences G. Brian Stephenson, Associate Laboratory Director, Photon Sciences G. Brian Stephenson Associate Laboratory Director - Photon Sciences G. Brian Stephenson is the associate laboratory director for Photon Sciences. The Photon Sciences directorate consists of the X-ray Science, Accelerator Systems and Advanced Photon Source Engineering Support divisions, which comprise the Advanced Photon Source (APS); and the Argonne Accelerator Institute. The APS is the brightest source of high-energy X-rays in the Western Hemisphere and is used to study the structures of materials and processes at the atomic scale. It is also the largest scientific user facility in the North America, with more than 3,500 users visiting each year. Stephenson's research interests focus on developing and using synchrotron

362

Brookhaven National Laboratory | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven National Laboratory Brookhaven National Laboratory Brookhaven National Laboratory Site Overview The Brookhaven National Laboratory (BNL) was established in 1947 by the Atomic Energy Commission (AEC) (predecessor to U.S. Department of Energy [DOE]). Formerly Camp Upton, a U.S. Army installation site, Brookhaven is located on 5,263-acre site on Long Island in Upton, New York, approximately 60 miles east of New York City. Historically, BNL was involved in the construction of accelerators and research reactors such as the Cosmotron, the High Flux Beam Reactor (HFBR) and the Brookhaven Graphite Research Reactor (BGRR). These accelerators and reactors lead the way in high-energy physics experiments and subsequent discoveries. To complete the EM BNL mission the following must be completed, all

363

Main Injector power distribution system  

SciTech Connect

The paper describes a new power distribution system for Fermilab's Main Injector. The system provides 13.8 kV power to Main Injector accelerator (accelerator and conventional loads) and is capable of providing power to the rest of the laboratory (backfeed system). Design criteria, and features including simulation results are given.

Cezary Jach and Daniel Wolff

2002-06-03T23:59:59.000Z

364

Laboratories for the 21st Century Best Practices Guides | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best Practices Guides Best Practices Guides Laboratories for the 21st Century Best Practices Guides October 8, 2013 - 10:50am Addthis Laboratories for the 21st Century best practices guides outline the design, construction, and operation of specific technologies that contribute to energy efficiency and sustainability. The guides cover actual laboratory implementations, highlighting quantifiable performance goals and methods. Chilled Beams in Laboratories Optimizing Laboratory Ventilation Rates Commissioning Ventilated Containment Systems in Laboratories Modeling Exhaust Dispersion for Specifying Acceptable Exhaust/Intake Designs Manifolding Laboratory Exhaust Systems Low-Pressure-Drop HVAC Design for Laboratories Energy Recovery in Laboratory Facilities On-Site Power Systems for Laboratories

365

ATOMS PEACE WAR Eisenhower  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ATOMS ATOMS PEACE WAR Eisenhower and the Atomic Energy Commission Richard G. Hewlett and lack M. Roll With a Foreword by Richard S. Kirkendall and an Essay on Sources by Roger M. Anders University of California Press Berkeley Los Angeles London Published 1989 by the University of California Press Berkeley and Los Angeles, California University of California Press, Ltd. London, England Prepared by the Atomic Energy Commission; work made for hire. Library of Congress Cataloging-in-Publication Data Hewlett, Richard G. Atoms for peace and war, 1953-1961. (California studies in the history of science) Bibliography: p. Includes index. 1. Nuclear energy-United States-History. 2. U.S. Atomic Energy Commission-History. 3. Eisenhower, Dwight D. (Dwight David), 1890-1969.

366

Atomic Collapse Observed  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists Observe Atomic Collapse State Quantum Mechanics Prediction Confirmed in Graphene Using NERSC's Hopper April 26, 2013 | Tags: Hopper, Materials Science Contact: Linda...

367

Multiplicative Sets of Atoms.  

E-Print Network (OSTI)

??It is possible for an element to have both an atom factorization and a factorization that will always contain a reducible element. This leads us (more)

Rand, Ashley Nicole

2013-01-01T23:59:59.000Z

368

Improved graphite furnace atomizer  

DOE Patents (OSTI)

A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

Siemer, D.D.

1983-05-18T23:59:59.000Z

369

Atom Nano-Optics  

Science Journals Connector (OSTI)

Nanolocalized light fields composed of photon dots and photon holes are being used to control the motion of atoms on a nanometer spatial scale.

Balykin, Victor; Klimov, Vasilii; Letokhov, Vladilen

2005-01-01T23:59:59.000Z

370

E-Print Network 3.0 - arab atomic energy agency Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Program Prospects in North Africa and the Summary: in the Arab Republic of Egypt. International Atomic Energy Agency, September 2005. Accessed 5 April 2007. http... 's...

371

E-Print Network 3.0 - atomic layer graphene Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

graphene Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic layer graphene Page: << < 1 2 3 4 5 > >> 1 Graphite Handout Graphite is a...

372

E-Print Network 3.0 - atomic scale structure Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic scale structure Page: << < 1 2 3 4 5 > >> 1 Extended Xray Absorption Fine Structure...

373

E-Print Network 3.0 - atomic absorption spectrophotometric Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic absorption spectrophotometric Page: << < 1 2 3 4 5 > >> 1 Building up a database of...

374

E-Print Network 3.0 - atomic absorption technique Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic absorption technique Page: << < 1 2 3 4 5 > >> 1 Xray Absorption Near Edge...

375

E-Print Network 3.0 - atomic-absorption flame photometry Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic-absorption flame photometry Page: << < 1 2 3 4 5 > >> 1 MICROCHEMICALJOURNAL33,304-...

376

E-Print Network 3.0 - atomic-absorption spectrometry determinacion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic-absorption spectrometry determinacion Page: << < 1 2 3 4 5 > >> 1...

377

E-Print Network 3.0 - atomic absorption spectrophotometry Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic absorption spectrophotometry Page: << < 1 2 3 4 5 > >> 1 QUARTERLY PROGRESS REPORT...

378

E-Print Network 3.0 - atomic fluorescence spectrometry Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

avril1994 Summary: down to about 310 nm. Such powers are sufficient for laser atomic absorption spectrometry (LAAS... spectrometry where the low-frequency noise of the...

379

E-Print Network 3.0 - atomic absorption spectroscopic Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic absorption spectroscopic Page: << < 1 2 3 4 5 > >> 1 BURCIN BAYRAM ASSOCIATE...

380

E-Print Network 3.0 - atomic absorption analysis Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

analysis Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic absorption analysis Page: << < 1 2 3 4 5 > >> 1 JOURNAL DE PHYSIQUEIV Colloque...

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

E-Print Network 3.0 - atomic absorption spectrometry-determination...  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic absorption spectrometry-determination Page: << < 1 2 3 4 5 > >> 1 Extended Xray...

382

E-Print Network 3.0 - atomic absorption determination Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic absorption determination Page: << < 1 2 3 4 5 > >> 1 Extended Xray Absorption Fine...

383

E-Print Network 3.0 - atomic absorption spectrophotometer Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic absorption spectrophotometer Page: << < 1 2 3 4 5 > >> 1 ChemicalSample...

384

E-Print Network 3.0 - atomic absorption flame Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

flame Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic absorption flame Page: << < 1 2 3 4 5 > >> 1 Appendix 1: Experimental Studies...

385

E-Print Network 3.0 - atomic number materials Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic number materials Page: << < 1 2 3 4 5 > >> 1 Extended Xray Absorption Fine...

386

E-Print Network 3.0 - atomic absorption spectrom- Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic absorption spectrom- Page: << < 1 2 3 4 5 > >> 1 Mechanism for Increased Yield with...

387

E-Print Network 3.0 - atomic binding energy Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

energy Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic binding energy Page: << < 1 2 3 4 5 > >> 1 Extended Xray Absorption Fine Structure...

388

E-Print Network 3.0 - atomic photoabsorption process Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

process Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic photoabsorption process Page: << < 1 2 3 4 5 > >> 1 Absorption Spectra and...

389

E-Print Network 3.0 - atomic absorption spectrometry Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic absorption spectrometry Page: << < 1 2 3 4 5 > >> 1 JOURNAL DE PHYSIQUEIV Colloque...

390

E-Print Network 3.0 - atomic hydrogen irradiation Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: atomic hydrogen irradiation Page: << < 1 2 3 4 5 > >> 1 ORIGIN OF THE HYDROGEN INVOLVED IN IRON...

391

E-Print Network 3.0 - atomic beams generated Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

beams generated Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic beams generated Page: << < 1 2 3 4 5 > >> 1 Superradiant Rayleigh scattering...

392

Energy Storage for the Power Grid  

ScienceCinema (OSTI)

The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

Wang, Wei; Imhoff, Carl; Vaishnav, Dave

2014-06-12T23:59:59.000Z

393

2014 Water Power Peer Review Report  

Energy.gov (U.S. Department of Energy (DOE))

The Water Power Peer Review Meeting was held February 24-28, 2014 in Arlington, VA. Principle investigators from the Energy Department National Laboratories, academic, and industry representatives...

394

Fuel Cell Backup Power Technology Validation (Presentation)  

SciTech Connect

Presentation about fuel cell backup power technology validation activities at the U.S. Department of Energy's National Renewable Energy Laboratory.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.

2012-10-01T23:59:59.000Z

395

Tracking New Coal-Fired Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

January 8, 2010 National Energy Technology Laboratory Office of Systems Analyses and Planning Erik Shuster 2 Tracking New Coal-Fired Power Plants This report is intended to...

396

Power system design | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

developing an advanced power switch Scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) are assisting General Electric Co. in...

397

AC power | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

developing an advanced power switch Scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) are assisting General Electric Co. in...

398

The Western Wind and Solar Integration Study: The Effects of Wind and Solar Power…Induced Cycling on Wear-and-Tear Costs and Emissions (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind and Solar Power- Wind and Solar Power- Induced Cycling on Wear-and-Tear Costs and Emissions Results From the Western Wind and Solar Integration Study Phase 2 The electric grid is a highly complex, interconnected machine. Changing one part of the grid can have consequences elsewhere. Adding variable renewable generation such as wind and solar power affects the operation of conventional power plants, and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) was initiated to determine the wear-and-tear costs and emissions impacts of cycling and to simulate grid operations to investigate the detailed impact of wind and solar power on

399

Atomic Structure Calculations from the Los Alamos Atomic Physics Codes  

DOE Data Explorer (OSTI)

The well known Hartree-Fock method of R.D. Cowan, developed at Los Alamos National Laboratory, is used for the atomic structure calculations. Electron impact excitation cross sections are calculated using either the distorted wave approximation (DWA) or the first order many body theory (FOMBT). Electron impact ionization cross sections can be calculated using the scaled hydrogenic method developed by Sampson and co-workers, the binary encounter method or the distorted wave method. Photoionization cross sections and, where appropriate, autoionizations are also calculated. Original manuals for the atomic structure code, the collisional excitation code, and the ionization code, are available from this website. Using the specialized interface, you will be able to define the ionization stage of an element and pick the initial and final configurations. You will be led through a series of web pages ending with a display of results in the form of cross sections, collision strengths or rates coefficients. Results are available in tabular and graphic form.

Cowan, R. D.

400

Guisinger-081612 - Argonne National Laboratories, Materials Sicence  

NLE Websites -- All DOE Office Websites (Extended Search)

Guisinger-081612 Guisinger-081612 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Nathan Guisinger Center for Nanoscale Materials, Argonne National Laboratory TITLE: "Current Trends in Scanning Tunneling Microscopy at Argonne National Laboratory"" DATE: Thursday,August 16, 2012 TIME: 11:00 am PLACE: Building 212 / A-157 ABSTRACT:Low-dimensional materials functioning at the nanoscale are a critical component for a variety of current and future technologies. From the optimization of light harvesting solar technologies to large-scale catalytic processes, key physical phenomena are occurring at the nanometer and atomic length-scales and predominately at interfaces. For instance, graphene is a nearly ideal two-dimensional conductor that is comprised of a single sheet of hexagonally packed carbon atoms. In order fully realize the

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Long Island Solar Farm | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Long Island Solar Farm Long Island Solar Farm Project Overview The Long Island Solar Farm (LISF) is a 32-megawatt solar photovoltaic power plant built through a collaboration including BP Solar, the Long Island Power Authority (LIPA), and the Department of Energy. The LISF, located on the Brookhaven National Laboratory site, began delivering power to the LIPA grid in November 2011, and is currently the largest solar photovoltaic power plant in the Eastern United States. It is generating enough renewable energy to power approximately 4,500 homes, and is helping New York State meet its clean energy and carbon reduction goals. Project Developer/Owner/Operator: Long Island Solar Farm, LLC (BP Solar & MetLife) Purchaser of Power: Long Island Power Authority (LIPA) purchases 100

402

Electrical Characterization Laboratory (Fact Sheet)  

SciTech Connect

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Electrical Characterization Laboratory at the Energy Systems Integration Facility. Electrical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on the detailed electrical characterization of components and systems. This laboratory allows researchers to test the ability of equipment to withstand high voltage surges and high current faults, including equipment using standard and advanced fuels such as hydrogen. Equipment that interconnected to the electric power grid is required to meet specific surge withstand capabilities. This type of application tests the ability of electrical equipment to survive a lightning strike on the main grid. These are often specified in IEEE standards such as IEEE Std. 1547. In addition, this lab provides a space for testing new, unproven, or potentially hazardous equipment for robust safety assessment prior to use in other labs at ESIF. The Electric Characterization Laboratory is in a location where new, possibly sensitive or secret equipment can be evaluated behind closed doors.

Not Available

2011-10-01T23:59:59.000Z

403

Biotechnology Laboratory Spring 2012  

E-Print Network (OSTI)

CH369T Biotechnology Laboratory Spring 2012 Instructor: Dr. Gene McDonald Office: WEL 3.270C Phone, and at the same time to introduce you to issues associated with various biotechnology laboratory operations. After

404

National Renewable Energy Laboratory | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Renewable Energy Laboratory National Renewable Energy Laboratory National Renewable Energy Laboratory October 30, 2007 - 4:21pm Addthis Remarks Prepared for Secretary Bodman Thank you. It is a pleasure to be with you once again in beautiful Colorado. It is only fitting that we are here at the Department of Energy's National Renewable Energy Laboratory-our nation's premier laboratory for renewable energy and energy efficiency research-to recognize leadership in applying new energy technology in very tangible ways - to power, heat, and reduce energy consumption at these facilities. Today, we celebrate the accomplishments of our talented team with the announcement of three new facilities. In January 2007, the President signed an Executive Order which called upon all federal agencies to reduce energy intensity, or consumption per square

405

Atoms for Peace Awards  

Science Journals Connector (OSTI)

... Technology, is to be chairman of the Organization and Planning Committee of Atoms for Peace Awards. In addition to Dr. Killian, the Committee will include Dr. Detlev W. ... and Dr. Alan Waterman, director of the National Science Foundation. The Atoms for Peace Awards, it will be recalled, were established last summer as a memorial to Henry Ford ...

1955-10-29T23:59:59.000Z

406

Hirshfeld atom refinement  

Science Journals Connector (OSTI)

The new automated iterative Hirshfeld atom refinement method is explained and validated through comparison of structural models of Gly-L-Ala obtained from synchrotron X-ray and neutron diffraction data at 12, 50, 150 and 295 K. Structural parameters involving hydrogen atoms are determined with comparable precision from both experiments and agree mostly to within two combined standard uncertainties.

Capelli, S.C.

2014-08-29T23:59:59.000Z

407

Robotics Laboratory - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities > Engineering Capabilities > Engineering Experimentation > Robotics Laboratory Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Robotics Laboratory The Robotics Laboratory (RL) houses various remote manipulator systems, including the Dual Arm Work Platform, to support enhancements to teleoperation of remote systems for nuclear applications. Bookmark and Share Argonne scientists are using computer simulation and robot task programming tools to enhance the safety and efficiency of telerobotics in applications such as the decontamination and decommissioning (D&D) of nuclear power

408

Ames Lab 101: Reinventing the Power Cable  

ScienceCinema (OSTI)

Ames Laboratory researchers are working to develop new electrical power cables that are stronger and lighter than the cables currently used in the nation's power grid. Nano Tube animation by Iain Goodyear

Russell, Alan

2014-06-04T23:59:59.000Z

409

Ames Lab 101: Reinventing the Power Cable  

SciTech Connect

Ames Laboratory researchers are working to develop new electrical power cables that are stronger and lighter than the cables currently used in the nation's power grid. Nano Tube animation by Iain Goodyear

Russell, Alan

2013-09-27T23:59:59.000Z

410

Ames Lab 101: Next Generation Power Lines  

SciTech Connect

Ames Laboratory scientist Alan Russell discusses the need to develop new power lines that are stronger and more conductive as a way to address the problem of the nation's aging and inadequate power grid.

Russell, Alan

2010-01-01T23:59:59.000Z

411

Oxygen Atoms Display Novel Behavior on Common Catalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

11, 2008 11, 2008 Oxygen Atoms Display Novel Behavior on Common Catalyst Like waltzing dancers, the two atoms of an oxygen molecule usually behave identically when they separate on the surface of a catalyst. However, new research from the Environmental Molecular Sciences Laboratory reveals that on a particular catalyst, the oxygen atoms act like a couple dancing the tango: one oxygen atom plants itself while the other shimmies away, probably with energy partially stolen from the stationary one. Scientists from EMSL and Pacific Northwest National Laboratory discovered this unanticipated behavior while studying how oxygen interacts with reduced titanium oxide, a popular catalyst and a model oxide. Their research began with a slice of titanium oxide crystal, oriented so that titanium and oxygen

412

Steven Chu: Laser Cooling and Trapping of Atoms  

Office of Scientific and Technical Information (OSTI)

Steven Chu Steven Chu Laser Cooling and Trapping of Atoms Resources with Additional Information · Interviews, Speeches, and Presentations · Patents Steven Chu Photo Credit: Lawrence Berkeley National Laboratory Roy Kaltschmidt, Photographer Steven Chu was appointed by President Barack Obama to be the 12th Secretary of Energy and served in this capacity until April 22, 2013. He was previously Director of Lawrence Berkeley National Laboratory (LBNL), Professor in the Physics Department at the University of California, Berkeley, and 'the Theodore and Frances Geballe Professor of Physics and Applied Physics at Stanford University. Professor Chu's research is in atomic physics, polymer and biophysics. His thesis and postdoctoral work at Berkeley ... was the observation of parity non-conservation in atomic transitions in 1978. This experiment was one of the earliest atomic physics confirmations of the Weinberg-Salam-Glashow theory that unifies the weak and electromagnetic forces.

413

Steven Chu: Laser Cooling and Trapping of Atoms  

NLE Websites -- All DOE Office Websites (Extended Search)

Steven Chu Steven Chu Laser Cooling and Trapping of Atoms Resources with Additional Information · Interviews, Speeches, and Presentations · Patents Steven Chu Photo Credit: Lawrence Berkeley National Laboratory Roy Kaltschmidt, Photographer Steven Chu was appointed by President Barack Obama to be the 12th Secretary of Energy and served in this capacity until April 22, 2013. He was previously Director of Lawrence Berkeley National Laboratory (LBNL), Professor in the Physics Department at the University of California, Berkeley, and 'the Theodore and Frances Geballe Professor of Physics and Applied Physics at Stanford University. Professor Chu's research is in atomic physics, polymer and biophysics. His thesis and postdoctoral work at Berkeley ... was the observation of parity non-conservation in atomic transitions in 1978. This experiment was one of the earliest atomic physics confirmations of the Weinberg-Salam-Glashow theory that unifies the weak and electromagnetic forces.

414

Sandia National Laboratories: Photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

Microelectronic Photovoltaics On June 13, 2012, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar Sandia National Laboratories semiconductor engineer...

415

Sandia National Laboratories: Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis The PV Performance Modeling...

416

Sandia National Laboratories: EC  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis The PV Performance Modeling...

417

Sandia National Laboratories: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis The PV Performance Modeling...

418

Sandia National Laboratories  

Energy.gov (U.S. Department of Energy (DOE))

Sandia National Laboratories' (SNL) primary mission is to provide scientific and technology support to national security programs.

419

Sandia National Laboratories: Geothermal  

NLE Websites -- All DOE Office Websites (Extended Search)

Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Facilities, Geothermal, Materials Science, News, News & Events, Partnership,...

420

Atomic dark matter  

SciTech Connect

We propose that dark matter is dominantly comprised of atomic bound states. We build a simple model and map the parameter space that results in the early universe formation of hydrogen-like dark atoms. We find that atomic dark matter has interesting implications for cosmology as well as direct detection: Weak-scale dark atoms can accommodate hyperfine splittings of order 100 keV, consistent with the inelastic dark matter interpretation of the DAMA data while naturally evading direct detection bounds. Moreover, protohalo formation can be suppressed below M{sub proto} ? 10{sup 3}10{sup 6}M{sub s}un for weak scale dark matter due to Ion-Radiation and Ion-Atom interactions in the dark sector.

Kaplan, David E.; Krnjaic, Gordan Z.; Rehermann, Keith R.; Wells, Christopher M., E-mail: dkaplan@pha.jhu.edu, E-mail: gordan@pha.jhu.edu, E-mail: keith@pha.jhu.edu, E-mail: cwells13@pha.jhu.edu [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686 (United States)

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nobel Prize | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Nobel Prize Nobel Prize Nobel Prize Home 2009 2003 2002 1988 1980 1976 1957 Other Prizes Brookhaven National Laboratory is home to world-class research facilities and scientific departments which attract resident and visiting scientists in many fields. This outstanding mix of machine- and mind-power has on seven occasions produced research deemed worthy of the greatest honor in science: the Nobel Prize. placeholder 2009 Steitz, Ramakrishnan 2009 Nobel Prize in Chemistry Venkatraman Ramakrishnan, of the Medical Research Council Laboratory of Molecular Biology in Cambridge, UK, a former employee in Brookhaven's biology department, and a long-time user of Brookhaven's National Synchrotron Light Source (NSLS), and Thomas A. Steitz of Yale University, also a long-time NSLS user, shared the prize with Ada E. Yonath of the

422

Cytogenetic Biodosimetry Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Cytogenetic Biodosimetry Laboratory Cytogenetic Biodosimetry Laboratory Blood samples are shipped at room temperature to the laboratory. White blood cells, lymphocytes, are cultured under sterile conditions in an incubator for 48 hours using a standard growth medium. Culture tubes are centrifuged, and cells are re-suspended in a weak salt solution, which allows the chromosomes to separate and spread evenly on slides.

423

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACTS Control for Long- and Short- FACTS Control for Long- and Short- Term Energy Storage Mehdi Ferdowsi Missouri University of Science and Technology Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through Sandia National Laboratories (SNL). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration, under contract DE-AC04-94AL85000. Issues * Short- and Long-Term Energy Storage * Storage Integration * Cyber Security 33 v v Transmission Line Generation FACTS Wind Power Energy Storage Solar Power Energy Storage FACTS Device Distributed Decisions Power Electronics Communications Sensing and monitoring Inputs Power Electronics

424

Veteran Leadership Strong at Idaho's Laboratory | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Veteran Leadership Strong at Idaho's Laboratory Veteran Leadership Strong at Idaho's Laboratory Veteran Leadership Strong at Idaho's Laboratory June 1, 2012 - 3:50pm Addthis Navy personnel stationed in Idaho Falls, Idaho, in the mid 1950s learn how to operate the Nautilus S1W, the prototype of the Navy's first nuclear-powered submarine. | Photo courtesy of Idaho National Laboratory Navy personnel stationed in Idaho Falls, Idaho, in the mid 1950s learn how to operate the Nautilus S1W, the prototype of the Navy's first nuclear-powered submarine. | Photo courtesy of Idaho National Laboratory Ethan Huffman External Outreach Lead, Idaho National Laboratory How many veterans work at INL? Almost 400 employees at the laboratory have served in one of the five military branches during their careers. Four of the six executive leaders at INL have a combined total of 80

425

Veteran Leadership Strong at Idaho's Laboratory | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Veteran Leadership Strong at Idaho's Laboratory Veteran Leadership Strong at Idaho's Laboratory Veteran Leadership Strong at Idaho's Laboratory June 1, 2012 - 3:50pm Addthis Navy personnel stationed in Idaho Falls, Idaho, in the mid 1950s learn how to operate the Nautilus S1W, the prototype of the Navy's first nuclear-powered submarine. | Photo courtesy of Idaho National Laboratory Navy personnel stationed in Idaho Falls, Idaho, in the mid 1950s learn how to operate the Nautilus S1W, the prototype of the Navy's first nuclear-powered submarine. | Photo courtesy of Idaho National Laboratory Ethan Huffman External Outreach Lead, Idaho National Laboratory How many veterans work at INL? Almost 400 employees at the laboratory have served in one of the five military branches during their careers. Four of the six executive leaders at INL have a combined total of 80

426

Leadership | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Message from the Director Board of Governors Organization Chart Argonne Distinguished Fellows Emeritus Scientists & Engineers History Discoveries Prime Contract Contact Us Leadership Argonne integrates world-class science, engineering, and user facilities to deliver innovative research and technologies. We create new knowledge that addresses the scientific and societal needs of our nation. Eric D. Isaacs Eric D. Isaacs, Director, Argonne National Laboratory Director, Argonne National Laboratory Argonne National Laboratory Eric D. Isaacs, a prominent University of Chicago physicist, is President of UChicago Argonne, LLC, and Director of Argonne National Laboratory. Mark Peters Mark Peters, Deputy Lab Director for Programs Deputy Laboratory Director for Programs

427

Argonne National Laboratory - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Argonne National Laboratory Activity Reports 2012 Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility, July 2012 Review Reports 2011 Review of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Readiness Assessment (Implementation Verification Review Sections), November 2011 Nuclear Safety Enforcement Regulatory Assistance Review of UChicago Argonne, LLC at the Argonne National Laboratory, October 3, 2011 Activity Reports 2011 Orientation Visit to the Argonne National Laboratory, August 2011 Review Reports 2005 Independent Oversight Inspection of Environment, Safety and Health Programs at Argonne National Laboratory, Summary Report, Vol. 1, May, 2005 Independent Oversight Inspection of Environment, Safety, and Health Programs at the Argonne National Laboratory, Technical Appendices, Volume II, May 2005

428

Laboratory Computing Resource Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Computing DOE Logo Computing DOE Logo Search BIO ... Search Argonne Home > BIO home > Laboratory Computing Resource Center BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Argonne National Laboratory Logo Laboratory Computing Resource Center In 2002 Argonne National Laboratory established the Laboratory Computing Project to enable and promote the use of high-performance computing (HPC) across the Laboratory in support of its varied research missions. The Laboratory Computing Resource Center (LCRC) was established, and in April 2003 LCRC began full operations with Argonne’s first teraflops computing cluster, Jazz. In 2010 Jazz was replaced by Fusion, with a peak performance of 30 teraflops (and still growing). We just acquired Blues which will a performance of 100 teraflops.

429

Microsoft Word - Final_DOE_Cleanup_of_Legacy_TRU_at_SNL_Release...  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Development, LLC - New York * Argonne National Laboratory - Illinois * Bettis Atomic Power Laboratory - Pennsylvania * Sandia National Laboratories - New Mexico...

430

Biomass: Potato Power  

NLE Websites -- All DOE Office Websites (Extended Search)

POTATO POWER POTATO POWER Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Grades 2 to 3 Small groups (3 to 4) Time: 30 to 40 minutes Summary: Students assemble a potato battery that will power a digital clock. This shows the connection between renewable energy from biomass and its application. Provided by the Department of Energy's National Renewable Energy Laboratory and BP America Inc. BIOPOWER - POTATO POWER Purpose: Can a potato power a clock? Materials:  A potato  A paper plate  Two pennies  Two galvanized nails  Three 8 inch insulated copper wire, with 2 inches of the insulation removed from the ends  A digital clock (with places for wire attachment)

431

(Nuclear power engineering in space)  

SciTech Connect

The principal purpose of this trip was to participate in the Anniversary Specialist Conference on Nuclear Power Engineering in Space hosted by the USSR Ministry of Atomic Power Engineering and Industry. The conference was held in Obninsk, USSR. A secondary purpose of the trip was to meet with the French Commissariat A L'Energie Atomique in Paris regarding the status of their space power program.

Cooper, R.H. Jr.

1990-06-18T23:59:59.000Z

432

Sandia National Laboratories: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Second Annual Electric Power Research InstituteSandia Photovoltaic Systems Symposium On April 15, 2014, in Concentrating Solar Power, Distribution Grid Integration, Energy,...

433

Sandia National Laboratories: NSTTF  

NLE Websites -- All DOE Office Websites (Extended Search)

Towers for Utilities On September 6, 2012, in Desirable Features of Power Towers for Utilities Because of their practical energy storage, solar power towers have two features...

434

Sandia National Laboratories: solar  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2012, in Desirable Features of Power Towers for Utilities Because of their practical energy storage, solar power towers have two features that are particularly desirable for...

435

Green Power Marketing in Retail Competition: An Early Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

5939 5939 LBNL-42286 February 1999 Green Power Marketing in Retail Competition: An Early Assessment Ryan Wiser, Ernest Orlando Lawrence Berkeley National Laboratory Jeff Fang, Kevin Porter, and Ashley Houston, National Renewable Energy Laboratory National Renewable Energy Laboratory A national laboratory of the U.S. Department of Energy The Topical Issues Brief series is sponsored by DOE's Office of Energy Efficiency and Renewable Energy Office of Power Technologies Green Power Marketing in Retail Competition i Contents Abstract ........................................................................................................................................ ii Acknowledgments ..........................................................................................................................

436

Going green earns Laboratory gold  

NLE Websites -- All DOE Office Websites (Extended Search)

Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

437

1979 bibliography of atomic and molecular processes. [Bibliography  

SciTech Connect

This annotated bibliography lists 2146 works on atomic and molecular processes reported in publications dated 1979. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors.

None

1980-08-01T23:59:59.000Z

438

Truman Signs Atomic Energy Act | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Truman Signs Atomic Energy Act | National Nuclear Security Administration Truman Signs Atomic Energy Act | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Truman Signs Atomic Energy Act Truman Signs Atomic Energy Act August 01, 1946 Washington, DC Truman Signs Atomic Energy Act President Truman signs the Atomic Energy Act of 1946, leading to the

439

Truman Signs Atomic Energy Act | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Truman Signs Atomic Energy Act | National Nuclear Security Administration Truman Signs Atomic Energy Act | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Truman Signs Atomic Energy Act Truman Signs Atomic Energy Act August 01, 1946 Washington, DC Truman Signs Atomic Energy Act President Truman signs the Atomic Energy Act of 1946, leading to the

440

Progress on a Miniature Cold-Atom Frequency Standard  

E-Print Network (OSTI)

Atomic clocks play a crucial role in timekeeping, communications, and navigation systems. Recent efforts enabled by heterogeneous MEMS integration have led to the commercial introduction of Chip-Scale Atomic Clocks (CSAC) with a volume of 16 cm3, power consumption of 120 mW, and instability (Allan Deviation) of {\\sigma}({\\tau} = 1 sec) cooled atoms. In this paper, we present results describing the development of a miniature cold-atom apparatus for operation as a frequency standard. Our architecture is based on laser-cooling a sample of neutral atoms in a Magneto-Optical Trap (MOT) using a conical retro-reflector in a miniature vacuum chamber. Trapping the atoms in vacuum and performing microwave interrogation in the dark reduces the temperature sensitivity compared to va...

Scherer, David R; Mescher, Mark; Stoner, Richard; Timmons, Brian; Rogomentich, Fran; Tepolt, Gary; Mahnkopf, Sven; Noble, Jay; Chang, Sheng; Taylor, Dwayne

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Harnessed Atom - Student Edition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Harnessed Atom - Student Edition The Harnessed Atom - Student Edition The Harnessed Atom - Student Edition The Harnessed Atom is a middle school science, technology, engineering, and math (STEM) curriculum extension that focuses on nuclear science and energy. It is designed to provide students with accurate, unbiased, and up-to-date information on the roles that energy and nuclear science play in our lives. The curriculum includes essential principles and fundamental concepts of energy science. This update is based on the original 1985 Harnessed Atom curriculum from the U.S. Department of Energy. It has been developed with extensive input from science teachers across the country in pilot test reviews and workshops, as well as technical reviews from scientists and experts at universities, professional societies, and national laboratories.

442

Uncertainties on Atomic Data  

Science Journals Connector (OSTI)

Technical Paper / Selected papers from IAEA-NFRI Technical Meeting on Data Evaluation for Atomic, Molecular and Plasma-Material Interaction Processes in Fusion, September 4-7, 2012, Daejeon, Republic of Korea

C. P. Ballance; S. D. Loch; A. R. Foster; R. K. Smith; M. C. Witthoeft; T. R. Kallman

443

Relativistic Atomic Structure Calculations  

Science Journals Connector (OSTI)

This review surveys methods for computing the electronic structures of atoms based on the use of relativistic quantum mechanics. The main mathematical formulas are presented with some account of the underlying...

Ian P. Grant

1988-01-01T23:59:59.000Z

444

general_atomics.cdr  

Office of Legacy Management (LM)

300 feet above sea level. The General Atomics site is in the center of Torrey Mesa Science Center, a 304-acre industrial park. No ground water wells are at or near the Hot Cell...

445

The Harnessed Atom | Department of Energy  

Energy Savers (EERE)

Atom The Harnessed Atom The Harnessed Atom The Harnessed Atom is a new middle school science, technology, engineering, and math (STEM) curriculum extension that focuses on...

446

Optical imaging of Rydberg atoms .  

E-Print Network (OSTI)

??We present an experiment exploring electromagnetically induced transparency (EIT) in Rydberg atoms in order to observe optical nonlinearities at the single photon level. ??Rb atoms (more)

Mazurenko, Anton

2012-01-01T23:59:59.000Z

447

Rydberg Atoms for Quantum Information.  

E-Print Network (OSTI)

??I examine interactions between ensembles of cold Rydberg atoms, and between Rydberg atoms and an intense, optical standing wave. Because of their strong electrostatic interactions, (more)

Younge, Kelly Cooper

2010-01-01T23:59:59.000Z

448

Optical atomic magnetometer  

DOE Patents (OSTI)

An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

Budker, Dmitry; Higbie, James; Corsini, Eric P

2013-11-19T23:59:59.000Z

449

Metal atomization spray nozzle  

DOE Patents (OSTI)

A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

Huxford, T.J.

1993-11-16T23:59:59.000Z

450

Argonne National Laboratory 9700 S. Cass Avenue  

E-Print Network (OSTI)

­ Sustainable Nuclear Energy for the 21st Century IAEA/Argonne Workshop on Developing the Safety Infrastructure for a Research Reactor in an Emerging Nuclear Power State (Argonne, IL : March 7-11, 2011) Meetings & CareersArgonne National Laboratory 9700 S. Cass Avenue Argonne, IL 60439 630.252.2525 International

Kemner, Ken

451

Lawrence Livermore National Laboratory December 13, 2004  

E-Print Network (OSTI)

John Lindl Lawrence Livermore National Laboratory December 13, 2004 The NIF Ignition Program Presentation to Fusion Power Associates Meeting #12;NIF-0202-0XXXXppt 15/GHM/tr Outline · Ignition Introduction 104 105 500 50 5 0.5 Capsule energy (KJ) NIF Relaxed pressure and stability requirements

452

Brookhaven National Laboratory Smarter Grid Centers  

E-Print Network (OSTI)

of electric power · Ensure the security of the Smart Grid and implement the biggest energy technologyBrookhaven National Laboratory Smarter Grid Centers Stephanie Hamilton Global & Regional Solutions Smarter Grid R&D April 12th, 2012 #12;2 Outline DOE's Smarter Grid BNL's strategic plans for energy

Homes, Christopher C.

453

Harold G. Kirk Brookhaven National Laboratory  

E-Print Network (OSTI)

Harold G. Kirk Brookhaven National Laboratory High-Power Targets for Muon Production Low Emittance Target System Van Graves, ORNL #12;Harold G. Kirk 4 AGS E951 Experiment at BNL Features: 24 GeV, 4Tp the effects of high-magnetic fields on: The free Hg jet The disruption of the Hg jet The velocity

McDonald, Kirk

454

Atomic mass compilation 2012  

SciTech Connect

Atomic mass reflects the total binding energy of all nucleons in an atomic nucleus. Compilations and evaluations of atomic masses and derived quantities, such as neutron or proton separation energies, are indispensable tools for research and applications. In the last decade, the field has evolved rapidly after the advent of new production and measuring techniques for stable and unstable nuclei resulting in substantial ameliorations concerning the body of data and their precision. Here, we present a compilation of atomic masses comprising the data from the evaluation of 2003 as well as the results of new measurements performed. The relevant literature in refereed journals and reports as far as available, was scanned for the period beginning 2003 up to and including April 2012. Overall, 5750 new data points have been collected. Recommended values for the relative atomic masses have been derived and a comparison with the 2003 Atomic Mass Evaluation has been performed. This work has been carried out in collaboration with and as a contribution to the European Nuclear Structure and Decay Data Network of Evaluations.

Pfeiffer, B., E-mail: bpfeiffe@uni-mainz.de [II. Physikalisches Institut, Justus-Liebig-Universitt Gieen, Gieen (Germany); GSI Helmholtzzentrum fr Schwerionenforschung, Darmstadt (Germany); Venkataramaniah, K. [Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam (India)] [Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam (India); Czok, U. [II. Physikalisches Institut, Justus-Liebig-Universitt Gieen, Gieen (Germany)] [II. Physikalisches Institut, Justus-Liebig-Universitt Gieen, Gieen (Germany); Scheidenberger, C. [GSI Helmholtzzentrum fr Schwerionenforschung, Darmstadt (Germany) [GSI Helmholtzzentrum fr Schwerionenforschung, Darmstadt (Germany); II. Physikalisches Institut, Justus-Liebig-Universitt Gieen, Gieen (Germany)

2014-03-15T23:59:59.000Z

455

Laser Applications Laboratory - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities > Engineering Capabilities > Engineering Experimentation > Laser Applications Laboratory Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory The Laser Applications Laboratory (LAL) houses two high-power laser systems, complete with diagnostics for materials-processing functions - a 6 kW CO2 laser and a 1.6 kW pulsed Nd:YAG laser.

456

Statistical atom: Some quantum improvements  

Science Journals Connector (OSTI)

The Thomas-Fermi model is improved by simultaneously introducing three different quantum corrections. The first concerns the nonlocality of quantum mechanics; we go beyond the von Weizscker approach by including arbitrary powers of the gradient of the single-particle potential. The second is a special treatment of the strongly bound electrons, which removes the incorrect statistical description of the vicinity of the nucleus. In the third we generalize Dirac's way of handling the exchange interaction by, again, including gradient effects to arbitrary order. All this is done in the framework of a "potential-functional method" and results in a new differential equation for the potential. The comparison of numerical results with both experimental and Hartree-Fock data for the mean-squared distance indicates a superiority of the new statistical theory over the Hartree-Fock theory, at least for the description of the outer reaches of the atom.

Berthold-Georg Englert and Julian Schwinger

1984-05-01T23:59:59.000Z

457

The Chemi-Ionization Processes in Slow Collisions of Rydberg Atoms with Ground State Atoms: Mechanism and Applications  

E-Print Network (OSTI)

In this article the history and the current state of research of the chemiionization processes in atom-Rydberg atom collisions is presented. The principal assumptions of the model of such processes based on the dipole resonance mechanism, as well as the problems of stochastic ionization in atom-Rydberg atom collisions, are exposed. The properties of the collision kinetics in atom beams of various types used in contemporary experimentations are briefly described. Results of the calculation of the chemi-ionization rate coefficients are given and discussed for the range of the principal quantum number values 5 chemi-ionization processes in astrophysical and laboratory low-temperature plasmas, and the contemporary methods of their investigation are described. Also the directions of further research of chemi-ionization processes are discussed in this article.

Mihajlov, A A; Ignjatovic, Lj M; Klyucharev, A N; 10.1007/s10876-011-0438-7

2012-01-01T23:59:59.000Z

458

Argonne National Laboratory Scientists Invent Breakthrough Technique in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Argonne National Laboratory Scientists Invent Breakthrough Argonne National Laboratory Scientists Invent Breakthrough Technique in Nanotechnology Argonne National Laboratory Scientists Invent Breakthrough Technique in Nanotechnology March 17, 2011 - 9:36am Addthis Gold and carbon nanoparticles strung together using a breakthrough new technique for materials design known as "optically directed assembly" | Courtesy of Argonne National Laboratory Gold and carbon nanoparticles strung together using a breakthrough new technique for materials design known as "optically directed assembly" | Courtesy of Argonne National Laboratory Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs What are the key facts? With a low-power laser, similar in intensity to those in

459

General Relativistic Effects in Atom Interferometry  

SciTech Connect

Atom interferometry is now reaching sufficient precision to motivate laboratory tests of general relativity. We begin by explaining the non-relativistic calculation of the phase shift in an atom interferometer and deriving its range of validity. From this we develop a method for calculating the phase shift in general relativity. This formalism is then used to find the relativistic effects in an atom interferometer in a weak gravitational field for application to laboratory tests of general relativity. The potentially testable relativistic effects include the non-linear three-graviton coupling, the gravity of kinetic energy, and the falling of light. We propose experiments, one currently under construction, that could provide a test of the principle of equivalence to 1 part in 10{sup 15} (300 times better than the present limit), and general relativity at the 10% level, with many potential future improvements. We also consider applications to other metrics including the Lense-Thirring effect, the expansion of the universe, and preferred frame and location effects.

Dimopoulos, Savas; /Stanford U., Phys. Dept.; Graham, Peter W.; /SLAC /Stanford U., Phys. Dept.; Hogan, Jason M.; Kasevich, Mark A.; /Stanford U., Phys. Dept.

2008-03-17T23:59:59.000Z

460

Energistics Laboratory facility  

Science Journals Connector (OSTI)

Energistics Laboratory in Houston Texas is a leading laboratory for the testing of HVAC equipment. For over 15 years this facility has ensured the highest standards in leading?edge HVAC technology and architectural testing capabilities. Testing capabilities include both industry standard rating procedures and mock?up testing to simulate field conditions. The laboratory is open to developers owners architects engineers general contractors manufacturers and others who require independent component testing and evaluation.

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Other Projects [Laser Applications Laboratory] - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Projects Other Projects Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Overview Laser Oil & Gas Well Drilling Laser Heat Treatment Laser Welding of Metals On-line Monitoring Laser Beam Delivery Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Laser Applications Laboratory Other projects Bookmark and Share HIGH POWER LASER BEAM DELIVERY High-power laser-beam delivery with conventional and fiber optics DECONTAMINATION & DECOMMISSIONING Laser processing technology for decontamination of surfaces

462

FY 2005 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Congressional Budget Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. include both the discretionary and mandatory funding in the budget. balances, deferrals, rescissions, or other adjustments appropria ted as offsets to the DOE appropriations by the Congress.

463

levin | The Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

of Education and the Ministry of Science and Technology, Lviv State University, Lviv, Ukraine, 1988 - 1998 Visiting Scientist (periodically) at the International Laboratory of...

464

Procurement | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Procurement More than 150 attend second joint Argonne-Fermilab small business fairSeptember 2, 2014 On Thursday, Aug. 28, Illinois' two national laboratories - Argonne and Fermi...

465

Mentoring | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

- Rick Stevens, Associate Laboratory Director, Computing, Environment & Life Sciences Argonne is committed to cultivating a climate that promotes meaningful relationships that...

466

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

environmental service to northern New Mexico," said Jeff Mousseau, associate director for environmental programs at the Laboratory. "Having local companies of this high caliber...

467

Laboratory disputes citizens' lawsuit  

NLE Websites -- All DOE Office Websites (Extended Search)

showing Laboratory storm water controls," said Susan G. Stiger, associate director for Environmental Programs. "Rather than a lawsuit, we had hoped to continue our work with...

468

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

commitment to the environment and the public," said Jeff Mousseau, associate director for Environmental Programs at the Laboratory. This is the fifth master task order agreement...

469

National Laboratory Liaisons  

Energy.gov (U.S. Department of Energy (DOE))

The following U.S. Department of Energy national laboratory liaisons serve as primary contacts for the Federal Energy Management Program.

470

Oak Ridge National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

About ORNL History Historical Photo Gallery To view historical photographs of the laboratory, browse the collections below. Clinton Engineering Works Department of Energy...

471

Laborativ matematik; Laboratory mathematics.  

E-Print Network (OSTI)

?? Research indicates that a more hands-on education in mathematics could improve how students relate to mathematics. Laboratory mathematics is a way of making mathematics (more)

Kresj, Ida

2010-01-01T23:59:59.000Z

472

Sandia National Laboratories: LVOC  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Facility Opens at Sandia's California Site On June 13, 2012, in Cyber, Cybersecurity Technologies Research Laboratory, Energy Assurance, Energy Surety, Facilities,...

473

budko | The Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

budko Ames Laboratory Profile Serguei Budko Scientist I Division of Materials Science & Engineering A111 Zaffarano Phone Number: 515-294-3986 Email Address: budko@ameslab.gov...

474

Sandia National Laboratories: RTC  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis The solar industry is now more than 60% of the way toward achieving...

475

Sandia National Laboratories: NREL  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis The solar industry is now more than 60% of the way toward achieving...

476

Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

that's the hallmark of the Laboratory. This year's stories include alternative energy research, world record magnetic fields, disease tracking, the study of Mars, climate...

477

Sandia National Laboratories: Climate  

NLE Websites -- All DOE Office Websites (Extended Search)

Geoscience, Climate and Consequence Effect at Sandia National Laboratories presented on "Hydraulic Fracturing: Role of Government-Sponsored R&D." Marianne's presentation was part...

478

Sandia National Laboratories: Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Geoscience, Climate and Consequence Effect at Sandia National Laboratories presented on "Hydraulic Fracturing: Role of Government-Sponsored R&D." Marianne's presentation was part...

479

Disclaimers | The Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

of the United States Government or Iowa State University, and shall not be used for advertising or product endorsements purposes. COPYRIGHT STATUS: Ames Laboratory authored...

480

Sandia National Laboratories: solar  

NLE Websites -- All DOE Office Websites (Extended Search)

Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

Note: This page contains sample records for the topic "atomic power laboratory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Underwriters Laboratories: Streamlining Interconnection  

SciTech Connect

Summarizes Underwriters Laboratories' work under contract to DOE's Distribution and Interconnection R&D to develop a streamlined system to interconnect distributed generators with the utility grid.

Not Available

2003-01-01T23:59:59.000Z

482

Underwriters Laboratories: Streamlining Interconnection  

SciTech Connect

Summarizes Underwriters Laboratories' work under contract to DOE's Distribution and Interconnection R&D to develop a streamlined system to interconnect distributed generators with the utility grid.

Not Available

2003-10-01T23:59:59.000Z

483

Standards and Calibration Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Our customers and services include: INL programs, the Department of Energy, Bechtel Bettis Inc., the National Oceanic and Atmospheric Administration, Argonne National Laboratory...

484

marit | The Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

marit Ames Laboratory Profile Marit Nilsen-Hamilton Associate 3206 Molecular Biology Bldg Phone Number: 515-294-9996 Email Address: marit@iastate.edu Education: Postdoctoral Cell...

485

Laboratory announces 2008 Fellows  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab announces 2008 Fellows Laboratory announces 2008 Fellows Robert C. Albers, Paul A. Johnson and Kurt E. Sickafus recognized for contributions. December 4, 2008 Los Alamos...

486

Sandia National Laboratories: RO  

NLE Websites -- All DOE Office Websites (Extended Search)

RO ECIS-UNM: Biomimetic Membranes for Water Purification On February 20, 2013, in Advanced Materials Laboratory, Energy Efficiency, Facilities, Global Climate & Energy, Materials...

487

Sandia National Laboratories: desalination  

NLE Websites -- All DOE Office Websites (Extended Search)

to saltwater to meet their water ... ECIS-UNM: Biomimetic Membranes for Water Purification On February 20, 2013, in Advanced Materials Laboratory, Energy Efficiency,...

488

Sandia National Laboratories: CIRI  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Laboratory (NREL) will work in support of H2USA, the ... Sandia, SRI International Sign Pact to Advance Hydrogen and Natural Gas Research for...

489

National Laboratory Photovoltaics Research  

Energy.gov (U.S. Department of Energy (DOE))

DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

490

Education | The Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

The MFRC has established a network of Midwest crime laboratories and university-based forensic science programs. This network has two general goals: help universities become better...

491

Projects | The Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

for Tool Mark Characterization Development of an AccuTOF-DART Database for Use by Forensic Laboratories Forensic Technology Center of Excellence MFRC Training Development &...

492

Sandia National Laboratories: Photovoltaics  

NLE Websites -- All DOE Office Websites (Extended Search)

device technology, and advanced PV systems analysis. Learn More Grid Integration The Grid Integration Program at Sandia National Laboratories addresses technical barriers to...

493

SunShot Initiative: Concentrating Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power to Concentrating Solar Power to someone by E-mail Share SunShot Initiative: Concentrating Solar Power on Facebook Tweet about SunShot Initiative: Concentrating Solar Power on Twitter Bookmark SunShot Initiative: Concentrating Solar Power on Google Bookmark SunShot Initiative: Concentrating Solar Power on Delicious Rank SunShot Initiative: Concentrating Solar Power on Digg Find More places to share SunShot Initiative: Concentrating Solar Power on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards Staff Photovoltaics Systems Integration Balance of Systems Concentrating Solar Power SunShot CSP Team Learn more about the SunShot concentrating solar power program staff by visiting the team's profile pages. Argonne National Laboratory Argonne National Laboratory

494

Multichannel calculations for frequency shift and line broadening cross sections in collisions of cold hydrogen atoms  

E-Print Network (OSTI)

Zygelman,B. Jamieson,M.J. Stancil,P.C. Dalgarno,A. Workshop on Collisions of Cold Trapped Atoms at Joint Institute for Laboratory Astrophysics, Boulder, CO, U.S.A.

Zygelman, B.; Jamieson, M.J.

495

Reaction of a Fluorine Atom with Methanol: Potential Energy Surface Considerations  

Science Journals Connector (OSTI)

Reaction of a Fluorine Atom with Methanol: Potential Energy Surface Considerations ... The latter two energetic features nicely explain why 40% of the laboratory products follow the less exothermic pathway A. ...

Hao Feng; Katherine R. Randall; Henry F. Schaefer; III

2014-09-15T23:59:59.000Z

496

Cognitive Informatics, Pacific Northwest National Laboratory | National  

National Nuclear Security Administration (NNSA)

Cognitive Informatics, Pacific Northwest National Laboratory | National Cognitive Informatics, Pacific Northwest National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Frank Greitzer Cognitive Informatics, Pacific Northwest National Laboratory Frank Greitzer Frank Greitzer Role: Cognitive Informatics, Pacific Northwest National Laboratory

497

Chemist, Sandia National Laboratories | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Chemist, Sandia National Laboratories | National Nuclear Security Chemist, Sandia National Laboratories | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Jerilyn Timlin Chemist, Sandia National Laboratories Jerilyn Timlin Jerilyn Timlin Role: Chemist, Sandia National Laboratories Award: National Institutes of Health (NIH) New Innovator Award

498

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 29 - 30, 2008 September 29 - 30, 2008 Marcelo Schupbach, Ph.D. Chief Technical Officer APEI, Inc. 535 Research Center Blvd. Fayetteville, AR 72701 Phone: (479)-443-5759 Email: mschupb@apei.net Website: www.apei.net High Power Density Silicon Carbide Power Electronic Converters Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through the Small Business Innovation Research (SBIR) program and managed by Sandia National Laboratories (SNL). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration, under contract DE-AC04-94AL85000 Energy Storage Systems Program 2 Overview * Broader Impact of SiC-based Power Converter

499

Power Plant Cycling Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plant Cycling Costs Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Subcontract Report NREL/SR-5500-55433 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Power Plant Cycling Costs April 2012 N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman Intertek APTECH Sunnyvale, California NREL Technical Monitor: Debra Lew Prepared under Subcontract No. NFT-1-11325-01

500

Surface characterization of silica glass substrates treated by atomic hydrogen  

SciTech Connect

Silica glass substrates with very flat surfaces were exposed to atomic hydrogen at different temperatures and durations. An atomic force microscope was used to measure root-mean-square (RMS) roughness and two-dimensional power spectral density (PSD). In the treatment with atomic hydrogen up to 900 C, there was no significant change in the surface. By the treatment at 1000 C, the changes in the RMS roughness and the PSD curves were observed. It was suggested that these changes were caused by etching due to reactions of atomic hydrogen with surface silica. By analysis based on the k-correlation model, it was found that the spatial frequency of the asperities became higher with an increase of the treatment time. Furthermore, the data showed that atomic hydrogen can flatten silica glass surfaces by controlling heat-treatment conditions. - Highlights: Silica glass surface was treated by atomic hydrogen at various temperatures. Surface roughness was measured by an atomic force microscope. Roughness data were analyzed by two-dimensional power spectral density. Atomic hydrogen can flatten silica glass surfaces.

Inoue, Hiroyuki [Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505 (Japan); Masuno, Atsunobu, E-mail: masuno@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505 (Japan); Ishibashi, Keiji [Canon ANELVA Corporation, Asao-ku, Kawasaki, Kanagawa 215-8550 (Japan); Tawarayama, Hiromasa [Kawazoe Frontier Technologies Corporation, Kuden 931-113, Sakae-ku, Yokohama, Kanagawa 247-0014 (Japan); Zhang, Yingjiu; Utsuno, Futoshi [Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505 (Japan); Koya, Kazuo; Fujinoki, Akira [Shin Etsu Quartz Prod. Co., Ltd., Res and Applicat Lab, Fukushima 963-0725 (Japan); Kawazoe, Hiroshi [Kawazoe Frontier Technologies Corporation, Kuden 931-113, Sakae-ku, Yokohama, Kanagawa 247-0014 (Japan)

2013-12-15T23:59:59.000Z