National Library of Energy BETA

Sample records for atomic layer deposition

  1. Atomic Layer Deposition | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Layer Deposition New nanophase thin film materials with properties tailored to specifically meet the needs of industry New software simulates ALD over multiple length scale, saving industry time and money on developing specialized tools PDF icon Atomic_Layer_Deposition

  2. Spatial atomic layer deposition on flexible substrates using...

    Office of Scientific and Technical Information (OSTI)

    Spatial atomic layer deposition on flexible substrates using a modular rotating cylinder reactor Citation Details In-Document Search Title: Spatial atomic layer deposition on...

  3. Atomic Layer Deposition for Stabilization of Amorphous Silicon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atomic Layer Deposition for Stabilization of Amorphous Silicon Anodes Atomic Layer Deposition for Stabilization of Amorphous Silicon Anodes 2012 DOE Hydrogen and Fuel Cells Program ...

  4. Atomic Layer Deposition of Metal Sulfide Materials | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Layer Deposition of Metal Sulfide Materials Title Atomic Layer Deposition of Metal Sulfide Materials Publication Type Journal Article Year of Publication 2015 Authors...

  5. Atomic layer deposition of nanoporous biomaterials.

    SciTech Connect (OSTI)

    Narayan, R. J.; Adiga, S. P.; Pellin, M. J.; Curtiss, L. A.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N. A.; Brigmon, R. L.; Elam, J. W.; Univ. of North Carolina; North Carolina State Univ.; Eastman Kodak Co.; North Dakota State Univ.; SRL

    2010-03-01

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials. Nanoporous alumina, also known as anodic aluminum oxide (AAO), is a nanomaterial that exhibits several unusual properties, including high pore densities, straight pores, small pore sizes, and uniform pore sizes. In 1953, Keller et al. showed that anodizing aluminum in acid electrolytes results in a thick layer of nearly cylindrical pores, which are arranged in a close-packed hexagonal cell structure. More recently, Matsuda & Fukuda demonstrated preparation of highly ordered platinum and gold nanohole arrays using a replication process. In this study, a negative structure of nanoporous alumina was initially fabricated and a positive structure of a nanoporous metal was subsequently fabricated. Over the past fifteen years, nanoporous alumina membranes have been used as templates for growth of a variety of nanostructured materials, including nanotubes, nanowires, nanorods, and nanoporous membranes.

  6. Ruthenium / aerogel nanocomposits via Atomic Layer Deposition

    SciTech Connect (OSTI)

    Biener, J; Baumann, T F; Wang, Y; Nelson, E J; Kucheyev, S O; Hamza, A V; Kemell, M; Ritala, M; Leskela, M

    2006-08-28

    We present a general approach to prepare metal/aerogel nanocomposites via template directed atomic layer deposition (ALD). In particular, we used a Ru ALD process consisting of alternating exposures to bis(cyclopentadienyl)ruthenium (RuCp{sub 2}) and air at 350 C to deposit metallic Ru nanoparticles on the internal surfaces of carbon and silica aerogels. The process does not affect the morphology of the aerogel template and offers excellent control over metal loading by simply adjusting the number of ALD cycles. We also discuss the limitations of our ALD approach, and suggest ways to overcome these.

  7. Electroless Atomic Layer Deposition: A Scalable Approach to Surface...

    Office of Scientific and Technical Information (OSTI)

    Title: Electroless Atomic Layer Deposition: A Scalable Approach to Surface Modified Metal Powders. Abstract not provided. Authors: Cappillino, Patrick ; Robinson, David ; El Gabaly ...

  8. Atomic Layer Deposition and in Situ Characterization of Ultraclean...

    Office of Scientific and Technical Information (OSTI)

    Hydroxide Citation Details In-Document Search Title: Atomic Layer Deposition and in Situ Characterization of Ultraclean Lithium Oxide and Lithium Hydroxide Authors: Kozen,...

  9. USE OF ATOMIC LAYER DEPOSITION OF FUNCTIONALIZATION OF NANOPOROUS BIOMATERIALS

    SciTech Connect (OSTI)

    Brigmon, R.; Narayan, R.; Adiga, S.; Pellin, M.; Curtiss, L.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N.; Elam, J.

    2010-02-08

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials.

  10. Electroless Atomic Layer Deposition: A Scalable Approach to Surface

    Office of Scientific and Technical Information (OSTI)

    Modified Metal Powders. (Journal Article) | SciTech Connect Electroless Atomic Layer Deposition: A Scalable Approach to Surface Modified Metal Powders. Citation Details In-Document Search Title: Electroless Atomic Layer Deposition: A Scalable Approach to Surface Modified Metal Powders. Abstract not provided. Authors: Cappillino, Patrick ; Robinson, David ; El Gabaly Marquez, Farid ; Sugar, Joshua Daniel ; Cai, Trevor ; Stickney, John ; Liu, Zhi Publication Date: 2014-01-01 OSTI Identifier:

  11. Atomic and molecular layer deposition for surface modification

    SciTech Connect (OSTI)

    Vh-Nissi, Mika; Sievnen, Jenni; Salo, Erkki; Heikkil, Pirjo; Kentt, Eija; Johansson, Leena-Sisko; Koskinen, Jorma T.; Harlin, Ali

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gassolid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin even non-uniform atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: ALD/MLD can be used to adjust surface characteristics of films and fiber materials. Hydrophobicity after few deposition cycles of Al{sub 2}O{sub 3} due to e.g. complex formation. Same effect on cellulosic fabrics observed with low temperature deposited TiO{sub 2}. Different film growth and oxidation potential with different precursors. Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt.

  12. Nanostructure templating using low temperature atomic layer deposition

    DOE Patents [OSTI]

    Grubbs, Robert K.; Bogart, Gregory R.; Rogers, John A.

    2011-12-20

    Methods are described for making nanostructures that are mechanically, chemically and thermally stable at desired elevated temperatures, from nanostructure templates having a stability temperature that is less than the desired elevated temperature. The methods comprise depositing by atomic layer deposition (ALD) structural layers that are stable at the desired elevated temperatures, onto a template employing a graded temperature deposition scheme. At least one structural layer is deposited at an initial temperature that is less than or equal to the stability temperature of the template, and subsequent depositions made at incrementally increased deposition temperatures until the desired elevated temperature stability is achieved. Nanostructure templates include three dimensional (3D) polymeric templates having features on the order of 100 nm fabricated by proximity field nanopatterning (PnP) methods.

  13. Carbon nanotube forests growth using catalysts from atomic layer deposition

    SciTech Connect (OSTI)

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John; Bhardwaj, Sunil; Cepek, Cinzia

    2014-04-14

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  14. Development of Highly Selective Oxidation Catalysts by Atomic Layer Deposition

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose goal is to use Atomic Layer Deposition to construct nanostructured catalysts to improve the effectiveness of oxidative dehydrogenation of alkanes. More effective catalysts could enable higher specific conversion rates and result in drastic energy savings - up to 25 trillion Btu per year by 2020.

  15. Atomic Layer Deposition of L-Alanine Polypeptide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fu, Yaqin; Li, Binsong; Jiang, Ying-Bing; Dunphy, Darren R.; Tsai, Andy; Tam, Siu-Yue; Fan, Hongyou Y.; Zhang, Hongxia; Rogers, David; Rempe, Susan; et al

    2014-10-30

    L-Alanine polypeptide thin films were synthesized via atomic layer deposition (ALD). Rather, instead of using an amino acid monomer as the precursor, an L-alanine amino acid derivatized with a protecting group was used to prevent self-polymerization, increase the vapor pressure, and allow linear cycle-by-cycle growth emblematic of ALD. Moreover, the successful deposition of a conformal polypeptide film has been confirmed by FTIR, TEM, and Mass Spectrometry, and the ALD process has been extended to polyvaline.

  16. Atomic layer deposition of superparamagnetic and ferrimagnetic magnetite thin films

    SciTech Connect (OSTI)

    Zhang, Yijun; Liu, Ming E-mail: wren@mail.xjtu.edu.cn Ren, Wei E-mail: wren@mail.xjtu.edu.cn; Zhang, Yuepeng; Chen, Xing; Ye, Zuo-Guang E-mail: wren@mail.xjtu.edu.cn

    2015-05-07

    One of the key challenges in realizing superparamagnetism in magnetic thin films lies in finding a low-energy growth way to create sufficiently small grains and magnetic domains which allow the magnetization to randomly and rapidly reverse. In this work, well-defined superparamagnetic and ferrimagnetic Fe{sub 3}O{sub 4} thin films are successfully prepared using atomic layer deposition technique by finely controlling the growth condition and post-annealing process. As-grown Fe{sub 3}O{sub 4} thin films exhibit a conformal surface and poly-crystalline nature with an average grain size of 7 nm, resulting in a superparamagnetic behavior with a blocking temperature of 210 K. After post-annealing in H{sub 2}/Ar at 400 °C, the as-grown α−Fe{sub 2}O{sub 3} sample is reduced to Fe{sub 3}O{sub 4} phase, exhibiting a ferrimagnetic ordering and distinct magnetic shape anisotropy. Atomic layer deposition of magnetite thin films with well-controlled morphology and magnetic properties provides great opportunities for integrating with other order parameters to realize magnetic nano-devices with potential applications in spintronics, electronics, and bio-applications.

  17. Continuous production of nanostructured particles using spatial atomic layer deposition

    SciTech Connect (OSTI)

    Ommen, J. Ruud van Kooijman, Dirkjan; Niet, Mark de; Talebi, Mojgan; Goulas, Aristeidis

    2015-03-15

    In this paper, the authors demonstrate a novel spatial atomic layer deposition (ALD) process based on pneumatic transport of nanoparticle agglomerates. Nanoclusters of platinum (Pt) of ?1?nm diameter are deposited onto titania (TiO{sub 2}) P25 nanoparticles resulting to a continuous production of an active photocatalyst (0.120.31?wt. % of Pt) at a rate of about 1?g min{sup ?1}. Tuning the precursor injection velocity (1040?m s{sup ?1}) enhances the contact between the precursor and the pneumatically transported support flows. Decreasing the chemisorption temperature (from 250 to 100?C) results in more uniform distribution of the Pt nanoclusters as it decreases the reaction rate as compared to the rate of diffusion into the nanoparticle agglomerates. Utilizing this photocatalyst in the oxidation reaction of Acid Blue 9 showed a factor of five increase of the photocatalytic activity compared to the native P25 nanoparticles. The use of spatial particle ALD can be further expanded to deposition of nanoclusters on porous, micron-sized particles and to the production of coreshell nanoparticles enabling the robust and scalable manufacturing of nanostructured powders for catalysis and other applications.

  18. Studies on atomic layer deposition of IRMOF-8 thin films

    SciTech Connect (OSTI)

    Salmi, Leo D. Heikkil, Mikko J.; Vehkamki, Marko; Puukilainen, Esa; Ritala, Mikko; Sajavaara, Timo

    2015-01-15

    Deposition of IRMOF-8 thin films by atomic layer deposition was studied at 260320?C. Zinc acetate and 2,6-naphthalenedicarboxylic acid were used as the precursors. The as-deposited amorphous films were crystallized in 70% relative humidity at room temperature resulting in an unknown phase with a large unit cell. An autoclave with dimethylformamide as the solvent was used to recrystallize the films into IRMOF-8 as confirmed by grazing incidence x-ray diffraction. The films were further characterized by high temperature x-ray diffraction (HTXRD), field emission scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), time-of-flight elastic recoil detection analysis (TOF-ERDA), nanoindentation, and energy-dispersive x-ray spectroscopy. HTXRD measurements revealed similar behavior to bulk IRMOF-8. According to TOF-ERDA and FTIR, composition of the films was similar to IRMOF-8. Through-porosity was confirmed by loading the films with palladium using Pd(thd){sub 2} (thd?=?2,2,6,6-tetramethyl-3,5-heptanedionato) as the precursor.

  19. Electrocatalysts by atomic layer deposition for fuel cell applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, Niancai; Shao, Yuyan; Liu, Jun; Sun, Xueliang

    2016-01-22

    Here, fuel cells are a promising technology solution for reliable and clean energy because they offer high energy conversion efficiency and low emission of pollutants. However, high cost and insufficient durability are considerable challenges for widespread adoption of polymer electrolyte membrane fuel cells (PEMFCs) in practical applications. Current PEMFCs catalysts have been identified as major contributors to both the high cost and limited durability. Atomic layer deposition (ALD) is emerging as a powerful technique for solving these problems due to its exclusive advantages over other methods. In this review, we summarize recent developments of ALD in PEMFCs with a focusmore » on design of materials for improved catalyst activity and durability. New research directions and future trends have also been discussed.« less

  20. Vehicle Technologies Office Merit Review 2014: Atomic Layer Deposition for Stabilization of Silicon Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about atomic layer deposition for...

  1. Palladium catalysts synthesized by atomic layer deposition for methanol decomposition.

    SciTech Connect (OSTI)

    Elam, J. W.; Feng, H.; Stair, P. C.; Libera, J. A.; Setthapun, W.; Northwestern Univ.

    2010-05-25

    Atomic layer deposition (ALD) palladium films were deposited at 200 C on various ALD metal oxide surfaces using sequential exposures to Pd(II) hexafluoroacetylacetonate (Pd(hfac)2) and formalin. In situ quartz crystal microbalance measurements as well as ex situ measurements performed on planar substrates revealed that the Pd growth begins with a relatively slow nucleation process and accelerates once an adequate amount of Pd has deposited on the surface. Furthermore, the Pd nucleation is faster on ALD ZnO surfaces compared to ALD Al2O3 surfaces. ALD was utilized to synthesize highly dispersed, uniform Pd nanoparticles (1 to 2 nm in diameter) on ALD ZnO and Al2O3 coated mesoporous silica gel, and the catalytic performances of these samples were compared in the methanol decomposition reaction. The ALD Pd-Al2O3 showed high activity and hydrogen selectivity at relatively low temperatures while the ALD Pd-ZnO showed very low activity as well as quick deactivation. In situ extended X-ray absorption fine structure (EXAFS) measurement revealed that the Pd supported on ZnO 'dissolves' into the substrate during the methanol decomposition reaction which accounts for the gradual disappearance of its catalytic activity. By applying one cycle of ALD Al2O3 on top of the Pd-ZnO catalyst, the activity was enhanced and the catalyst deactivation was mitigated. This Al2O3 overcoating method stabilizes the Pd-ZnO and effectively prevents the dissolution of Pd into the ZnO substrate.

  2. Characterization of CZTSSe photovoltaic device with an atomic layer-deposited passivation layer

    SciTech Connect (OSTI)

    Wu, Wei Cao, Yanyan; Caspar, Jonathan V.; Guo, Qijie; Johnson, Lynda K.; Mclean, Robert S.; Malajovich, Irina; Choudhury, Kaushik Roy

    2014-07-28

    We describe a CZTSSe (Cu{sub 2}ZnSn(S{sub 1−x},Se{sub x}){sub 4}) photovoltaic (PV) device with an ALD (atomic layer deposition) coated buffer dielectric layer for CZTSSe surface passivation. An ALD buffer layer, such as TiO{sub 2}, can be applied in order to reduce the interface recombination and improve the device's open-circuit voltage. Detailed characterization data including current-voltage, admittance spectroscopy, and capacitance profiling are presented in order to compare the performance of PV devices with and without the ALD layer.

  3. High Gradient Accelerator Cavities Using Atomic Layer Deposition

    SciTech Connect (OSTI)

    Ives, Robert Lawrence; Parsons, Gregory; Williams, Philip; Oldham, Christopher; Mundy, Zach; Dolgashev, Valery

    2014-12-09

    In the Phase I program, Calabazas Creek Research, Inc. (CCR), in collaboration with North Carolina State University (NCSU), fabricated copper accelerator cavities and used Atomic Layer Deposition (ALD) to apply thin metal coatings of tungsten and platinum. It was hypothesized that a tungsten coating would provide a robust surface more resistant to arcing and arc damage. The platinum coating was predicted to reduce processing time by inhibiting oxides that form on copper surfaces soon after machining. Two sets of cavity parts were fabricated. One was coated with 35 nm of tungsten, and the other with approximately 10 nm of platinum. Only the platinum cavity parts could be high power tested during the Phase I program due to schedule and funding constraints. The platinum coated cavity exhibit poor performance when compared with pure copper cavities. Not only did arcing occur at lower power levels, but the processing time was actually longer. There were several issues that contributed to the poor performance. First, machining of the base copper cavity parts failed to achieve the quality and cleanliness standards specified to SLAC National Accelerator Center. Secondly, the ALD facilities were not configured to provide the high levels of cleanliness required. Finally, the nanometer coating applied was likely far too thin to provide the performance required. The coating was ablated or peeled from the surface in regions of high fields. It was concluded that the current ALD process could not provide improved performance over cavities produced at national laboratories using dedicated facilities.

  4. Local deposition of high-purity Pt nanostructures by combining electron beam induced deposition and atomic layer deposition

    SciTech Connect (OSTI)

    Mackus, A. J. M.; Sanden, M. C. M. van de; Kessels, W. M. M.; Mulders, J. J. L.

    2010-06-15

    An approach for direct-write fabrication of high-purity platinum nanostructures has been developed by combining nanoscale lateral patterning by electron beam induced deposition (EBID) with area-selective deposition of high quality material by atomic layer deposition (ALD). Because virtually pure, polycrystalline Pt nanostructures are obtained, the method extends the application possibilities of EBID, whereas compared to other area-selective ALD approaches, a much higher resolution is attainable; potentially down to sub-10 nm lateral dimensions.

  5. Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; Macco, Bart; Kessels, W. M.; Geissbuhler, Jonas; De Wolf, Stefaan; Ballif, Christophe

    2014-11-01

    We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing,more » between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection.« less

  6. Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells

    SciTech Connect (OSTI)

    Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; Macco, Bart; Kessels, W. M.; Geissbuhler, Jonas; De Wolf, Stefaan; Ballif, Christophe

    2014-11-01

    We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing, between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection.

  7. Optical Properties of Zn(O,S) Thin Films Deposited by RF Sputtering, Atomic Layer Deposition, and Chemical Bath Deposition: Preprint

    SciTech Connect (OSTI)

    Li, J.; Glynn, S.; Christensen, S.; Mann, J.; To, B.; Ramanathan, K.; Noufi, R.; Furtak, T. E.; Levi, D.

    2012-06-01

    Zn(O,S) thin films 27 - 100 nm thick were deposited on glass or Cu(InxGa1-x)Se2/Molybdenum/glass with RF sputtering, atomic layer deposition, and chemical bath deposition.

  8. Hydroquinone-ZnO nano-laminate deposited by molecular-atomic layer deposition

    SciTech Connect (OSTI)

    Huang, Jie; Lucero, Antonio T.; Cheng, Lanxia; Kim, Jiyoung; Hwang, Hyeon Jun; Ha, Min-Woo

    2015-03-23

    In this study, we have deposited organic-inorganic hybrid semiconducting hydroquinone (HQ)/zinc oxide (ZnO) superlattices using molecular-atomic layer deposition, which enables accurate control of film thickness, excellent uniformity, and sharp interfaces at a low deposition temperature (150 °C). Self-limiting growth of organic layers is observed for the HQ precursor on ZnO surface. Nano-laminates were prepared by varying the number of HQ to ZnO cycles in order to investigate the physical and electrical effects of different HQ to ZnO ratios. It is indicated that the addition of HQ layer results in enhanced mobility and reduced carrier concentration. The highest Hall mobility of approximately 2.3 cm{sup 2}/V·s and the lowest n-type carrier concentration of approximately 1.0 × 10{sup 18}/cm{sup 3} were achieved with the organic-inorganic superlattice deposited with a ratio of 10 ZnO cycles to 1 HQ cycle. This study offers an approach to tune the electrical transport characteristics of ALD ZnO matrix thin films using an organic dopant. Moreover, with organic embedment, this nano-laminate material may be useful for flexible electronics.

  9. Fluorine contamination in yttrium-doped barium zirconate film deposited by atomic layer deposition

    SciTech Connect (OSTI)

    An Jihwan; Beom Kim, Young; Sun Park, Joong; Hyung Shim, Joon; Guer, Turgut M.; Prinz, Fritz B.

    2012-01-15

    The authors have investigated the change of chemical composition, crystallinity, and ionic conductivity in fluorine contaminated yttrium-doped barium zirconate (BYZ) fabricated by atomic layer deposition (ALD). It has been identified that fluorine contamination can significantly affect the conductivity of the ALD BYZ. The authors have also successfully established the relationship between process temperature and contamination and the source of fluorine contamination, which was the perfluoroelastomer O-ring used for vacuum sealing. The total removal of fluorine contamination was achieved by using all-metal sealed chamber instead of O-ring seals.

  10. Effects of Ar plasma treatment for deposition of ruthenium film by remote plasma atomic layer deposition

    SciTech Connect (OSTI)

    Park, Taeyong; Lee, Jaesang; Park, Jingyu; Jeon, Heeyoung; Jeon, Hyeongtag; Lee, Ki-Hoon; Cho, Byung-Chul; Kim, Moo-Sung; Ahn, Heui-Bok

    2012-01-15

    Ruthenium thin films were deposited on argon plasma-treated SiO{sub 2} and untreated SiO{sub 2} substrates by remote plasma atomic layer deposition using bis(ethylcyclopentadienyl)ruthenium [Ru(EtCp){sub 2}] as a Ru precursor and ammonia plasma as a reactant. The results of in situ Auger electron spectroscopy (AES) analysis indicate that the initial transient region of Ru deposition was decreased by Ar plasma treatment at 400 deg. C, but did not change significantly at 300 deg. C The deposition rate exhibited linearity after continuous film formation and the deposition rates were about 1.7 A/cycle and 0.4 A/cycle at 400 deg. C and 300 deg. C, respectively. Changes of surface energy and polar and dispersive components were measured by the sessile drop test. The quantity of surface amine groups was measured from the surface nitrogen concentration with AES. Furthermore, the Ar plasma-treated SiO{sub 2} contained more amine groups and less hydroxyl groups on the surface than on untreated SiO{sub 2}. Auger spectra exhibited chemical shifts by Ru-O bonding, and larger shifts were observed on untreated substrates due to the strong adhesion of Ru films.

  11. An electroless approach to atomic layer deposition on noble metal powders.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: An electroless approach to atomic layer deposition on noble metal powders. Citation Details In-Document Search Title: An electroless approach to atomic layer deposition on noble metal powders. Abstract not provided. Authors: Cappillino, Patrick ; Robinson, David ; Sugar, Joshua Daniel ; El Gabaly Marquez, Farid ; Cai, Trevor ; Liu, Zhi ; Stickney, John Publication Date: 2014-03-01 OSTI Identifier: 1140790 Report Number(s): SAND2014-2265C 505441 DOE

  12. Ozone-Based Atomic Layer Deposition of Crystalline V2O5Films for High

    Office of Scientific and Technical Information (OSTI)

    Performance Electrochemical Energy Storage (Journal Article) | SciTech Connect Ozone-Based Atomic Layer Deposition of Crystalline V2O5Films for High Performance Electrochemical Energy Storage Citation Details In-Document Search Title: Ozone-Based Atomic Layer Deposition of Crystalline V2O5Films for High Performance Electrochemical Energy Storage Authors: Chen, Xinyi ; Pomerantseva, Ekaterina ; Banerjee, P ; Gregorczyk, Keith ; Ghodssi, Reza ; Rubloff, Gary W Publication Date: 2012-04-10 OSTI

  13. Atomic-Layer Deposition on Noble Metal Powders. (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Atomic-Layer Deposition on Noble Metal Powders. Citation Details In-Document Search Title: Atomic-Layer Deposition on Noble Metal Powders. Abstract not provided. Authors: Robinson, David ; Cappillino, Patrick. ; Salloum, Maher N. ; Sugar, Joshua Daniel ; El Gabaly Marquez, Farid ; Sheridan, Leah B. ; Jagannathan, Kaushik ; Benson, David M. ; Stickney, John L. Publication Date: 2014-10-01 OSTI Identifier: 1241747 Report Number(s): SAND2014-18364PE 537921 DOE Contract Number:

  14. Atomic Layer Deposition for the Conformal Coating of Nanoporous Materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Elam, Jeffrey W.; Xiong, Guang; Han, Catherine Y.; Wang, H. Hau; Birrell, James P.; Welp, Ulrich; Hryn, John N.; Pellin, Michael J.; Baumann, Theodore F.; Poco, John F.; et al

    2006-01-01

    Amore » tomic layer deposition ( ALD ) is ideal for applying precise and conformal coatings over nanoporous materials. We have recently used ALD to coat two nanoporous solids: anodic aluminum oxide ( AAO ) and silica aerogels. AAO possesses hexagonally ordered pores with diameters d ∼ 40 nm and pore length L ∼ 70 microns. The AAO membranes were coated by ALD to fabricate catalytic membranes that demonstrate remarkable selectivity in the oxidative dehydrogenation of cyclohexane.dditional AAO membranes coated with ALD Pd films show promise as hydrogen sensors. Silica aerogels have the lowest density and highest surface area of any solid material. Consequently, these materials serve as an excellent substrate to fabricate novel catalytic materials and gas sensors by ALD .« less

  15. Atomic Layer Deposition (ALD) Preparation of Noble Metal Catalysts - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Nuclear Security Administration Explores Peaceful Uses of Nuclear Explosions Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions Nevada Test Site, NV As part of the Plowshare program seeking to develop peaceful uses for nuclear explosives, the Atomic Energy Commission conducts the Sedan test at the Nevada Test Site Programs | National Nuclear Security Administration

    Takes Over Responsibility for all Atomic Energy Programs Atomic Energy Commission Takes Over

  16. In-situ spectroscopic ellipsometry study of copper selective-area atomic layer deposition on palladium

    SciTech Connect (OSTI)

    Jiang, Xiaoqiang; Wang, Han; Qi, Jie; Willis, Brian G.

    2014-07-01

    Selective area copper atomic layer deposition on palladium seed layers has been investigated with in-situ real-time spectroscopic ellipsometry to probe the adsorption/desorption and reaction characteristics of individual deposition cycles. The reactants are copper bis(2,2,6,6-tetramethyl-3,5-heptanedionate) vapor and hydrogen gas. Self-limiting atomic layer deposition was observed in the temperature range of 135230?C in a low pressure reactor. Under optimal conditions, growth occurs selectively on palladium and not on silicon dioxide or silicon nitride layers. Based on in-situ ellipsometry data and supporting experiments, a new mechanism for growth is proposed. In the proposed mechanism, precursor adsorption is reversible, and dissociatively adsorbed hydrogen are the stable surface intermediates between growth cycles. The mechanism is enabled by continuous diffusion of palladium from the seed layer into the deposited copper film and strong H* binding to palladium sites. Less intermixing can be obtained at low growth temperatures and short cycle times by minimizing Cu/Pd inter-diffusion.

  17. MoS{sub 2} functionalization for ultra-thin atomic layer deposited dielectrics

    SciTech Connect (OSTI)

    Azcatl, Angelica; McDonnell, Stephen; Santosh, K.C.; Peng, Xin; Dong, Hong; Qin, Xiaoye; Addou, Rafik; Lu, Ning; Kim, Moon J.; Cho, Kyeongjae; Wallace, Robert M.; Mordi, Greg I.; Kim, Jiyoung

    2014-03-17

    The effect of room temperature ultraviolet-ozone (UV-O{sub 3}) exposure of MoS{sub 2} on the uniformity of subsequent atomic layer deposition of Al{sub 2}O{sub 3} is investigated. It is found that a UV-O{sub 3} pre-treatment removes adsorbed carbon contamination from the MoS{sub 2} surface and also functionalizes the MoS{sub 2} surface through the formation of a weak sulfur-oxygen bond without any evidence of molybdenum-sulfur bond disruption. This is supported by first principles density functional theory calculations which show that oxygen bonded to a surface sulfur atom while the sulfur is simultaneously back-bonded to three molybdenum atoms is a thermodynamically favorable configuration. The adsorbed oxygen increases the reactivity of MoS{sub 2} surface and provides nucleation sites for atomic layer deposition of Al{sub 2}O{sub 3}. The enhanced nucleation is found to be dependent on the thin film deposition temperature.

  18. Evolution of crystal structure during the initial stages of ZnO atomic layer deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boichot, R.; Tian, L.; Richard, M. -I.; Crisci, A.; Chaker, A.; Cantelli, V.; Coindeau, S.; Lay, S.; Ouled, T.; Guichet, C.; et al

    2016-01-05

    In this study, a complementary suite of in situ synchrotron X-ray techniques is used to investigate both structural and chemical evolution during ZnO growth by atomic layer deposition. Focusing on the first 10 cycles of growth, we observe that the structure formed during the coalescence stage largely determines the overall microstructure of the film. Furthermore, by comparing ZnO growth on silicon with a native oxide with that on Al2O3(001), we find that even with lattice-mismatched substrates and low deposition temperatures, the crystalline texture of the films depend strongly on the nature of the interfacial bonds.

  19. Influence of aluminium doping on thermoelectric performance of atomic layer deposited ZnO thin films

    SciTech Connect (OSTI)

    Ruoho, Mikko Pale, Ville; Erdmanis, Mikhail; Tittonen, Ilkka

    2013-11-11

    We study the effect of Al doping on thermoelectric power factor of ZnO films grown using atomic layer deposition method. The overall doping level is tuned by either varying the precursor pulsing sequence or by varying the number of precursor pulses while keeping the sequence unchanged. We observe that commonly utilized doping approach when periodic dopant layers are densely packed results in reduced power factor. At the same time, we find that thermoelectric performance can be improved by clustering the dopants. In addition, the clustering was found to tune the preferred crystal orientation of the polycrystalline film.

  20. Fracture properties of atomic layer deposited aluminum oxide free-standing membranes

    SciTech Connect (OSTI)

    Berdova, Maria Rontu, Ville; Franssila, Sami; Ylivaara, Oili M. E.; Puurunen, Riikka L.; Trm, Pekka T.

    2015-01-01

    The fracture strength of Al{sub 2}O{sub 3} membranes deposited by atomic layer deposition at 110, 150, 200, and 300?C was investigated. The fracture strength was found to be in the range of 2.253.00?GPa using Weibull statistics and nearly constant as a function of deposition temperature. This strength is superior to common microelectromechanical systems materials such as diamondlike carbon, SiO{sub 2}, or SiC. As-deposited membranes sustained high cycling pressure loads >10 bar/s without fracture. Films featured, however, significant reduction in the resistance to failure after annealing (800?C) or high humidity (95%, 60?C) treatments.

  1. Mechanistic study of atomic layer deposition of Al{sub x}Si{sub y}O thin

    Office of Scientific and Technical Information (OSTI)

    film via in-situ FTIR spectroscopy (Journal Article) | SciTech Connect Mechanistic study of atomic layer deposition of Al{sub x}Si{sub y}O thin film via in-situ FTIR spectroscopy Citation Details In-Document Search Title: Mechanistic study of atomic layer deposition of Al{sub x}Si{sub y}O thin film via in-situ FTIR spectroscopy A study of surface reaction mechanism on atomic layer deposition (ALD) of aluminum silicate (Al{sub x}Si{sub y}O) was conducted with trimethylaluminum (TMA) and

  2. Al{sub 2}O{sub 3} multi-density layer structure as a moisture permeation barrier deposited by radio frequency remote plasma atomic layer deposition

    SciTech Connect (OSTI)

    Jung, Hyunsoo [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741 (Korea, Republic of); Jeon, Heeyoung [Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Choi, Hagyoung; Ham, Giyul; Shin, Seokyoon [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jeon, Hyeongtag, E-mail: hjeon@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2014-02-21

    Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition have been used for thin film encapsulation of organic light emitting diode. In this study, a multi-density layer structure consisting of two Al{sub 2}O{sub 3} layers with different densities are deposited with different deposition conditions of O{sub 2} plasma reactant time. This structure improves moisture permeation barrier characteristics, as confirmed by a water vapor transmission rate (WVTR) test. The lowest WVTR of the multi-density layer structure was 4.7 10{sup ?5} gm{sup ?2} day{sup ?1}, which is one order of magnitude less than WVTR for the reference single-density Al{sub 2}O{sub 3} layer. This improvement is attributed to the location mismatch of paths for atmospheric gases, such as O{sub 2} and H{sub 2}O, in the film due to different densities in the layers. This mechanism is analyzed by high resolution transmission electron microscopy, elastic recoil detection, and angle resolved X-ray photoelectron spectroscopy. These results confirmed that the multi-density layer structure exhibits very good characteristics as an encapsulation layer via location mismatch of paths for H{sub 2}O and O{sub 2} between the two layers.

  3. Atomic layer deposition of titanium sulfide and its application in extremely thin absorber solar cells

    SciTech Connect (OSTI)

    Mahuli, Neha; Sarkar, Shaibal K.

    2015-01-15

    Atomic layer deposition (ALD) of TiS{sub 2} is investigated with titanium tetrachloride and hydrogen sulfide precursors. In-situ quartz crystal microbalance and ex-situ x-ray reflectivity measurements are carried out to study self-limiting deposition chemistry and material growth characteristics. The saturated growth rate is found to be ca. 0.5 Å/cycle within the ALD temperature window of 125–200 °C. As grown material is found poorly crystalline. ALD grown TiS{sub 2} is applied as a photon harvesting material for solid state sensitized solar cells with TiO{sub 2} as electron transport medium. Initial results with Spiro-OMeTAD as hole conducting layer show ca. 0.6% energy conversion efficiency under 1 sun illumination.

  4. Atomic layer deposition of zinc sulfide with Zn(TMHD){sub 2}

    SciTech Connect (OSTI)

    Short, Andrew; Jewell, Leila; Doshay, Sage; Church, Carena; Keiber, Trevor; Bridges, Frank; Carter, Sue; Alers, Glenn

    2013-01-15

    The atomic layer deposition (ALD) of ZnS films with Zn(TMHD){sub 2} and in situ generated H{sub 2}S as precursors was investigated, over a temperature range of 150-375 Degree-Sign C. ALD behavior was confirmed by investigation of growth behavior and saturation curves. The properties of the films were studied with atomic force microscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy, ultraviolet-visible-infrared spectroscopy, and extended x-ray absorption fine structure. The results demonstrate a film that can penetrate a porous matrix, with a local Zn structure of bulk ZnS, and a band gap between 3.5 and 3.6 eV. The ZnS film was used as a buffer layer in nanostructured PbS quantum dot solar cell devices.

  5. Atomic layer deposition of aluminum sulfide thin films using trimethylaluminum and hydrogen sulfide

    SciTech Connect (OSTI)

    Sinha, Soumyadeep; Sarkar, Shaibal K.; Mahuli, Neha

    2015-01-15

    Sequential exposures of trimethylaluminum and hydrogen sulfide are used to deposit aluminum sulfide thin films by atomic layer deposition (ALD) in the temperature ranging from 100 to 200?C. Growth rate of 1.3 per ALD cycle is achieved by in-situ quartz crystal microbalance measurements. It is found that the growth rate per ALD cycle is highly dependent on the purging time between the two precursors. Increased purge time results in higher growth rate. Surface limited chemistry during each ALD half cycle is studied by in-situ Fourier transformed infrared vibration spectroscopy. Time of flight secondary ion-mass spectroscopy measurement is used to confirm elemental composition of the deposited films.

  6. Initiation of atomic layer deposition of metal oxides on polymer substrates by water plasma pretreatment

    SciTech Connect (OSTI)

    Steven Brandt, E.; Grace, Jeremy M.

    2012-01-15

    The role of surface hydroxyl content in atomic layer deposition (ALD) of aluminum oxide (AO) on polymers is demonstrated by performing an atomic layer deposition of AO onto a variety of polymer types, before and after pretreatment in a plasma struck in water vapor. The treatment and deposition reactions are performed in situ in a high vacuum chamber that is interfaced to an x-ray photoelectron spectrometer to prevent adventitious exposure to atmospheric contaminants. X-ray photoelectron spectroscopy is used to follow the surface chemistries of the polymers, including theformation of surface hydroxyls and subsequent growth of AO by ALD. Using dimethyl aluminum isopropoxide and water as reactants, ALD is obtained for water-plasma-treated poly(styrene) (PS), poly(propylene) (PP), poly(vinyl alcohol) (PVA), and poly(ethylene naphthalate) (PEN). For PS, PP, and PEN, initial growth rates of AO on the native (untreated) polymers are at least an order of magnitude lower than on the same polymer surface following the plasma treatment. By contrast, native PVA is shown to initiate ALD of AO as a result of the presence of intrinsic surface hydroxyls that are derived from the repeat unit of this polymer.

  7. Nucleation and growth of ZnO on PMMA by low-temperature atomic layer deposition

    SciTech Connect (OSTI)

    Napari, Mari Malm, Jari; Lehto, Roope; Julin, Jaakko; Arstila, Kai; Sajavaara, Timo; Lahtinen, Manu

    2015-01-15

    ZnO films were grown by atomic layer deposition at 35?C on poly(methyl methacrylate) substrates using diethylzinc and water precursors. The film growth, morphology, and crystallinity were studied using Rutherford backscattering spectrometry, time-of-flight elastic recoil detection analysis, atomic force microscopy, scanning electron microscopy, and x-ray diffraction. The uniform film growth was reached after several hundreds of deposition cycles, preceded by the precursor penetration into the porous bulk and island-type growth. After the full surface coverage, the ZnO films were stoichiometric, and consisted of large grains (diameter 30?nm) with a film surface roughness up to 6?nm (RMS). The introduction of Al{sub 2}O{sub 3} seed layer enhanced the initial ZnO growth substantially and changed the surface morphology as well as the crystallinity of the deposited ZnO films. Furthermore, the water contact angles of the ZnO films were measured, and upon ultraviolet illumination, the ZnO films on all the substrates became hydrophilic, independent of the film crystallinity.

  8. Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films grown by atomic layer deposition

    SciTech Connect (OSTI)

    Tamm, Aile Kozlova, Jekaterina; Aarik, Lauri; Aarik, Jaan; Kukli, Kaupo; Link, Joosep; Stern, Raivo

    2015-01-15

    Dysprosium oxide and dysprosium-oxide-doped titanium oxide thin films were grown by atomic layer deposition on silicon substrates. For depositing dysprosium and titanium oxides Dy(thd){sub 3}-O{sub 3} and TiCl{sub 4}-O{sub 3} were used as precursors combinations. Appropriate parameters for Dy(thd){sub 3}-O{sub 3} growth process were obtained by using a quartz crystal microbalance system. The Dy{sub 2}O{sub 3} films were deposited on planar substrates and on three-dimensional substrates with aspect ratio 1:20. The Dy/Ti ratio of Dy{sub 2}O{sub 3}-doped TiO{sub 2} films deposited on a planar silicon substrate ranged from 0.04 to 0.06. Magnetometry studies revealed that saturation of magnetization could not be observed in planar Dy{sub 2}O{sub 3} films, but it was observable in Dy{sub 2}O{sub 3} films on 3D substrates and in doped TiO{sub 2} films with a Dy/Ti atomic ratio of 0.06. The latter films exhibited saturation magnetization 10{sup −6} A cm{sup 2} and coercivity 11 kA/m at room temperature.

  9. Characterization of ZnO film grown on polycarbonate by atomic layer deposition at low temperature

    SciTech Connect (OSTI)

    Lee, Gyeong Beom; Han, Gwon Deok; Shim, Joon Hyung; Choi, Byoung-Ho

    2015-01-15

    ZnO is an attractive material for use in various technological products such as phosphors, gas sensors, and transparent conductors. Recently, aluminum-doped zinc oxide has received attention as a potential replacement for indium tin oxide, which is one of the transparent conductive oxides used in flat panel displays, organic light-emitting diodes, and organic solar cells. In this study, the characteristics of ZnO films deposited on polycarbonate (PC) substrates by atomic layer deposition (ALD) are investigated for various process temperatures. The growth mechanism of these films was investigated at low process temperatures using x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS). XRD and XPS were used to determine the preferred orientation and chemical composition of the films, respectively. Furthermore, the difference of the deposition mechanisms on an amorphous organic material, i.e., PC substrate and an inorganic material such as silicon was discussed from the viewpoint of the diffusion and deposition of precursors. The structure of the films was also investigated by chemical analysis in order to determine the effect of growth temperature on the films deposited by ALD.

  10. High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films

    SciTech Connect (OSTI)

    Mu, Haichuan; Zhang, Zhiqiang; Wang, Keke; Xie, Haifen, E-mail: hfxie@ecust.edu.cn [Department of Physics, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Zhao, Xiaojing; Liu, Feng [Department of Physics, Shanghai Normal University, 100 Guilin Road, Shanghai 200234 (China)

    2014-07-21

    Zinc oxide (ZnO) thin films with various thicknesses were fabricated by Atomic Layer Deposition on Chemical Vapor Deposition grown graphene films and their response to formaldehyde has been investigated. It was found that 0.5?nm ZnO films modified graphene sensors showed high response to formaldehyde with the resistance change up to 52% at the concentration of 9 parts-per-million (ppm) at room temperature. Meanwhile, the detection limit could reach 180 parts-per-billion (ppb) and fast response of 36?s was also obtained. The high sensitivity could be attributed to the combining effect from the highly reactive, top mounted ZnO thin films, and high conductive graphene base network. The dependence of ZnO films surface morphology and its sensitivity on the ZnO films thickness was also investigated.

  11. Ultra-low loading Pt nanocatalysts prepared by atomic layer deposition on carbon aerogels

    SciTech Connect (OSTI)

    King, J S; Wittstock, A; Biener, J; Kucheyev, S O; Wang, Y M; Baumann, T F; Giri, S; Hamza, A V; Baeumer, M; Bent, S F

    2008-04-21

    Using atomic layer deposition (ALD), we show that Pt nanoparticles can be deposited on the inner surfaces of carbon aerogels (CA). The resultant Pt-loaded materials exhibit high catalytic activity for the oxidation of CO even at loading levels as low as {approx}0.05 mg Pt/cm{sup 2}. We observe a conversion efficiency of nearly 100% in the temperatures range 150-250 C, and the total conversion rate seems to be only limited by the thermal stability of our CA support in ambient oxygen. Our ALD approach described here is universal in nature, and can be applied to the design of new catalytic materials for a variety of applications, including fuel cells, hydrogen storage, pollution control, green chemistry, and liquid fuel production.

  12. ATOMIC LAYER DEPOSITION OF TITANIUM OXIDE THIN FILMS ONNANOPOROUS ALUMINA TEMPLATES FOR MEDICAL APPLICATIONS

    SciTech Connect (OSTI)

    Brigmon, R.

    2009-05-05

    Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of the nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Both the 20 nm and 100 nm titanium oxide-coated nanoporous alumina membranes did not exhibit statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. In addition, 20 nm pore size titanium oxide-coated nanoporous alumina membranes exposed to ultraviolet light demonstrated activity against Escherichia coli and Staphylococcus aureus bacteria. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.

  13. Property transformation of graphene with Al{sub 2}O{sub 3} films deposited directly by atomic layer deposition

    SciTech Connect (OSTI)

    Zheng, Li; Cao, Duo; Wang, Zhongjian; Xia, Chao [State Key Laboratory of Functional Materials for Informatics, SIMIT, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Cheng, Xinhong, E-mail: xh-cheng@mail.sim.ac.cn; Yu, Yuehui [State Key Laboratory of Functional Materials for Informatics, SIMIT, Chinese Academy of Sciences, Shanghai 200050 (China); Shen, Dashen [University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States)

    2014-01-13

    Al{sub 2}O{sub 3} films are deposited directly onto graphene by H{sub 2}O-based atomic layer deposition (ALD), and the films are pinhole-free and continuously cover the graphene surface. The growth process of Al{sub 2}O{sub 3} films does not introduce any detective defects in graphene, suppresses the hysteresis effect and tunes the graphene doping to n-type. The self-cleaning of ALD growth process, together with the physically absorbed H{sub 2}O and oxygen-deficient ALD environment consumes OH{sup ?} bonds, suppresses the p-doping of graphene, shifts Dirac point to negative gate bias and enhances the electron mobility.

  14. Improved oxidation resistance of organic/inorganic composite atomic layer deposition coated cellulose nanocrystal aerogels

    SciTech Connect (OSTI)

    Smith, Sean W.; Matthews, David J.; Conley, John F., E-mail: jconley@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, 1148 Kelley Engineering Center, Oregon State University, Corvallis, Oregon 97331 (United States); Buesch, Christian; Simonsen, John [Department of Wood Science and Engineering, Oregon State University, 119 Richardson Hall, Corvallis, Oregon 97331 (United States)

    2014-07-01

    Cellulose nanocrystal (CNC) aerogels are coated with thin conformal layers of Al{sub 2}O{sub 3} using atomic layer deposition to form hybrid organic/inorganic nanocomposites. Electron probe microanalysis and scanning electron microscopy analysis indicated the Al{sub 2}O{sub 3} penetrated more than 1500??m into the aerogel for extended precursor pulse and exposure/purge times. The measured profile of coated fiber radius versus depth from the aerogel surface agrees well with simulations of precursor penetration depth in modeled aerogel structures. Thermogravimetric analysis shows that Al{sub 2}O{sub 3} coated CNC aerogel nanocomposites do not show significant thermal degradation below 295?C as compared with 175?C for uncoated CNC aerogels, an improvement of over 100?C.

  15. Plasma-enhanced atomic layer deposition and etching of high-k gadolinium oxide

    SciTech Connect (OSTI)

    Vitale, Steven A.; Wyatt, Peter W.; Hodson, Chris J.

    2012-01-15

    Atomic layer deposition (ALD) of high-quality gadolinium oxide thin films is achieved using Gd(iPrCp){sub 3} and O{sub 2} plasma. Gd{sub 2}O{sub 3} growth is observed from 150 to 350 deg. C, though the optical properties of the film improve at higher temperature. True layer-by-layer ALD growth of Gd{sub 2}O{sub 3} occurred in a relatively narrow window of temperature and precursor dose. A saturated growth rate of 1.4 A/cycle was observed at 250 deg. C. As the temperature increases, high-quality films are deposited, but the growth mechanism appears to become CVD-like, indicating the onset of precursor decomposition. At 250 deg. C, the refractive index of the film is stable at {approx}1.80 regardless of other deposition conditions, and the measured dispersion characteristics are comparable to those of bulk Gd{sub 2}O{sub 3}. XPS data show that the O/Gd ratio is oxygen deficient at 1.3, and that it is also very hygroscopic. The plasma etching rate of the ALD Gd{sub 2}O{sub 3} film in a high-density helicon reactor is very low. Little difference is observed in etching rate between Cl{sub 2} and pure Ar plasmas, suggesting that physical sputtering dominates the etching. A threshold bias power exists below which etching does not occur; thus it may be possible to etch a metal gate material and stop easily on the Gd{sub 2}O{sub 3} gate dielectric. The Gd{sub 2}O{sub 3} film has a dielectric constant of about 16, exhibits low C-V hysteresis, and allows a 50 x reduction in gate leakage compared to SiO{sub 2}. However, the plasma enhanced atomic layer deposition (PE-ALD) process causes formation of an {approx}1.8 nm SiO{sub 2} interfacial layer, and generates a fixed charge of -1.21 x 10{sup 12} cm{sup -2}, both of which may limit use of PE-ALD Gd{sub 2}O{sub 3} as a gate dielectric.

  16. Thermal chemistry of the Cu-KI5 atomic layer deposition precursor on a copper surface

    SciTech Connect (OSTI)

    Ma, Qiang; Zaera, Francisco

    2015-01-01

    The thermal chemistry of a Cu(I) ketoiminate complex, Cu-KI5, resulting from the modification of the known Air Products CupraSelect{sup } copper CVD precursor Cu(hfac)(tmvs) designed to tether the two ligands via an isopropoxide linker, was studied under ultrahigh vacuum on a Cu(110) single-crystal surface by using a combination of temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy. Adsorption at low temperatures was determined to take place via the displacement of the vinyl ligand by the surface. Molecular desorption was seen at 210?K, and the evolution of Cu(II)-KI5{sub 2} was established to take place at 280?K, presumably from a disproportionation reaction that also leads to the deposition of Cu(0). Other sets of desorption products were seen at 150, 250, and 430?K, all containing copper atoms and small organic moieties with molecular masses below 100 amu. The latter TPD peak in particular indicates significant fragmentation of the ligands, likely at the CN bond that holds the vinylsilane-isopropoxide moiety tethered to the ketoimine fragment, and possibly also at the union between the vinylsilane and the alkoxide linker. The 430?K temperature measured for this chemistry may set an upper limit for clean Cu film deposition, but since reactivity on the surface was also found to be inhibited at higher surface coverages, it may be delayed to higher temperatures under atomic layer deposition conditions.

  17. Current transport mechanisms in plasma-enhanced atomic layer deposited AlN thin films

    SciTech Connect (OSTI)

    Altuntas, Halit E-mail: biyikli@unam.bilkent.edu.tr; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi E-mail: biyikli@unam.bilkent.edu.tr

    2015-04-21

    Here, we report on the current transport mechanisms in AlN thin films deposited at a low temperature (i.e., 200?C) on p-type Si substrates by plasma-enhanced atomic layer deposition. Structural characterization of the deposited AlN was carried out using grazing-incidence X-ray diffraction, revealing polycrystalline films with a wurtzite (hexagonal) structure. Al/AlN/ p-Si metal-insulator-semiconductor (MIS) capacitor structures were fabricated and investigated under negative bias by performing current-voltage measurements. As a function of the applied electric field, different types of current transport mechanisms were observed; i.e., ohmic conduction (15.221.5 MV/m), Schottky emission (23.639.5 MV/m), Frenkel-Poole emission (63.8211.8 MV/m), trap-assisted tunneling (226280 MV/m), and Fowler-Nordheim tunneling (290447 MV/m). Electrical properties of the insulating AlN layer and the fabricated Al/AlN/p-Si MIS capacitor structure such as dielectric constant, flat-band voltage, effective charge density, and threshold voltage were also determined from the capacitance-voltage measurements.

  18. High aspect ratio iridescent three-dimensional metal–insulator–metal capacitors using atomic layer deposition

    SciTech Connect (OSTI)

    Burke, Micheal Blake, Alan; Djara, Vladimir; O'Connell, Dan; Povey, Ian M.; Cherkaoui, Karim; Monaghan, Scott; Scully, Jim; Murphy, Richard; Hurley, Paul K.; Pemble, Martyn E.; Quinn, Aidan J.

    2015-01-01

    The authors report on the structural and electrical properties of TiN/Al{sub 2}O{sub 3}/TiN metal–insulator–metal (MIM) capacitor structures in submicron three-dimensional (3D) trench geometries with an aspect ratio of ∼30. A simplified process route was employed where the three layers for the MIM stack were deposited using atomic layer deposition (ALD) in a single run at a process temperature of 250 °C. The TiN top and bottom electrodes were deposited via plasma-enhanced ALD using a tetrakis(dimethylamino)titanium precursor. 3D trench devices yielded capacitance densities of 36 fF/μm{sup 2} and quality factors >65 at low frequency (200 Hz), with low leakage current densities (<3 nA/cm{sup 2} at 1 V). These devices also show strong optical iridescence which, when combined with the covert embedded capacitance, show potential for system in package (SiP) anticounterfeiting applications.

  19. LDRD Project 52523 final report :Atomic layer deposition of highly conformal tribological coatings.

    SciTech Connect (OSTI)

    Jungk, John Michael (University of Minnesota); Dugger, Michael Thomas; George, Steve M. (University of Colorado); Prasad, Somuri V.; Grubbs, Robert K.; Moody, Neville Reid; Mayer, Thomas Michael; Scharf, Thomas W.; Goeke, Ronald S.; Gerberich, William W. (University of Minnesota)

    2005-10-01

    Friction and wear are major concerns in the performance and reliability of micromechanical (MEMS) devices. While a variety of lubricant and wear resistant coatings are known which we might consider for application to MEMS devices, the severe geometric constraints of many micromechanical systems (high aspect ratios, shadowed surfaces) make most deposition methods for friction and wear-resistance coatings impossible. In this program we have produced and evaluate highly conformal, tribological coatings, deposited by atomic layer deposition (ALD), for use on surface micromachined (SMM) and LIGA structures. ALD is a chemical vapor deposition process using sequential exposure of reagents and self-limiting surface chemistry, saturating at a maximum of one monolayer per exposure cycle. The self-limiting chemistry results in conformal coating of high aspect ratio structures, with monolayer precision. ALD of a wide variety of materials is possible, but there have been no studies of structural, mechanical, and tribological properties of these films. We have developed processes for depositing thin (<100 nm) conformal coatings of selected hard and lubricious films (Al2O3, ZnO, WS2, W, and W/Al{sub 2}O{sub 3} nanolaminates), and measured their chemical, physical, mechanical and tribological properties. A significant challenge in this program was to develop instrumentation and quantitative test procedures, which did not exist, for friction, wear, film/substrate adhesion, elastic properties, stress, etc., of extremely thin films and nanolaminates. New scanning probe and nanoindentation techniques have been employed along with detailed mechanics-based models to evaluate these properties at small loads characteristic of microsystem operation. We emphasize deposition processes and fundamental properties of ALD materials, however we have also evaluated applications and film performance for model SMM and LIGA devices.

  20. Roll-to-roll atomic layer deposition process for flexible electronics encapsulation applications

    SciTech Connect (OSTI)

    Maydannik, Philipp S. Kriinen, Tommi O.; Lahtinen, Kimmo; Cameron, David C.; Sderlund, Mikko; Soininen, Pekka; Johansson, Petri; Kuusipalo, Jurkka; Moro, Lorenza; Zeng, Xianghui

    2014-09-01

    At present flexible electronic devices are under extensive development and, among them, flexible organic light-emitting diode displays are the closest to a large market deployment. One of the remaining unsolved challenges is high throughput production of impermeable flexible transparent barrier layers that protect sensitive light-emitting materials against ambient moisture. The present studies deal with the adaptation of the atomic layer deposition (ALD) process to high-throughput roll-to-roll production using the spatial ALD concept. We report the development of such a process for the deposition of 20?nm thickness Al{sub 2}O{sub 3} diffusion barrier layers on 500?mm wide polymer webs. The process uses trimethylaluminum and water as precursors at a substrate temperature of 105?C. The observation of self-limiting film growth behavior and uniformity of thickness confirms the ALD growth mechanism. Water vapor transmission rates for 20?nm Al{sub 2}O{sub 3} films deposited on polyethylene naphthalate (PEN) substrates were measured as a function of substrate residence time, that is, time of exposure of the substrate to one precursor zone. Moisture permeation levels measured at 38?C/90% relative humidity by coulometric isostaticisobaric method were below the detection limit of the instrument (<5??10{sup ?4}?g/m{sup 2} day) for films coated at web moving speed of 0.25?m/min. Measurements using the Ca test indicated water vapor transmission rates ?5??10{sup ?6} g/m{sup 2} day. Optical measurements on the coated web showed minimum transmission of 80% in the visible range that is the same as the original PEN substrate.

  1. Atomic layer deposition of tin oxide and zinc tin oxide using tetraethyltin and ozone

    SciTech Connect (OSTI)

    Warner, Ellis J.; Gladfelter, Wayne L.; Johnson, Forrest; Campbell, Stephen A.

    2015-03-15

    Silicon or glass substrates exposed to sequential pulses of tetraethyltin (TET) and ozone (O{sub 3}) were coated with thin films of SnO{sub 2}. Self-limiting deposition was found using 8 s pulse times, and a uniform thickness per cycle (TPC) of 0.2 nm/cycle was observed in a small, yet reproducible, temperature window from 290 to 320 °C. The as-deposited, stoichiometric SnO{sub 2} films were amorphous and transparent above 400 nm. Interspersing pulses of diethylzinc and O{sub 3} among the TET:O{sub 3} pulses resulted in deposition of zinc tin oxide films, where the fraction of tin, defined as [at. % Sn/(at. % Sn + at. % Zn)], was controlled by the ratio of TET pulses, specifically n{sub TET}:(n{sub TET} + n{sub DEZ}) where n{sub TET} and n{sub DEZ} are the number of precursor/O{sub 3} subcycles within each atomic layer deposition (ALD) supercycle. Based on film thickness and composition measurements, the TET pulse time required to reach saturation in the TPC of SnO{sub 2} on ZnO surfaces was increased to >30 s. Under these conditions, film stoichiometry as a function of the TET pulse ratio was consistent with the model devised by Elliott and Nilsen. The as-deposited zinc tin oxide (ZTO) films were amorphous and remained so even after annealing at 450 °C in air for 1 h. The optical bandgap of the transparent ZTO films increased as the tin concentration increased. Hall measurements established that the n-type ZTO carrier concentration was 3 × 10{sup 17} and 4 × 10{sup 18} cm{sup −3} for fractional tin concentrations of 0.28 and 0.63, respectively. The carrier mobility decreased as the concentration of tin increased. A broken gap pn junction was fabricated using ALD-deposited ZTO and a sputtered layer of cuprous oxide. The junction demonstrated ohmic behavior and low resistance consistent with similar junctions prepared using sputter-deposited ZTO.

  2. Low temperature atomic layer deposited ZnO photo thin film transistors

    SciTech Connect (OSTI)

    Oruc, Feyza B.; Aygun, Levent E.; Donmez, Inci; Biyikli, Necmi; Okyay, Ali K.; Yu, Hyun Yong

    2015-01-01

    ZnO thin film transistors (TFTs) are fabricated on Si substrates using atomic layer deposition technique. The growth temperature of ZnO channel layers are selected as 80, 100, 120, 130, and 250?C. Material characteristics of ZnO films are examined using x-ray photoelectron spectroscopy and x-ray diffraction methods. Stoichiometry analyses showed that the amount of both oxygen vacancies and interstitial zinc decrease with decreasing growth temperature. Electrical characteristics improve with decreasing growth temperature. Best results are obtained with ZnO channels deposited at 80?C; I{sub on}/I{sub off} ratio is extracted as 7.8 10{sup 9} and subthreshold slope is extracted as 0.116 V/dec. Flexible ZnO TFT devices are also fabricated using films grown at 80?C. I{sub D}V{sub GS} characterization results showed that devices fabricated on different substrates (Si and polyethylene terephthalate) show similar electrical characteristics. Sub-bandgap photo sensing properties of ZnO based TFTs are investigated; it is shown that visible light absorption of ZnO based TFTs can be actively controlled by external gate bias.

  3. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    SciTech Connect (OSTI)

    Dechana, A.; Thamboon, P.; Boonyawan, D.

    2014-10-15

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al{sub 2}O{sub 3} layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al{sub 2}O{sub 3} filmsanalyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniqueswill be discussed.

  4. Fabrication of AlN/BN bishell hollow nanofibers by electrospinning and atomic layer deposition

    SciTech Connect (OSTI)

    Haider, Ali; Kayaci, Fatma; Uyar, Tamer; Biyikli, Necmi; Ozgit-Akgun, Cagla; Okyay, Ali Kemal

    2014-09-01

    Aluminum nitride (AlN)/boron nitride (BN) bishell hollow nanofibers (HNFs) have been fabricated by successive atomic layer deposition (ALD) of AlN and sequential chemical vapor deposition (CVD) of BN on electrospun polymeric nanofibrous template. A four-step fabrication process was utilized: (i) fabrication of polymeric (nylon 6,6) nanofibers via electrospinning, (ii) hollow cathode plasma-assisted ALD of AlN at 100?C onto electrospun polymeric nanofibers, (iii) calcination at 500?C for 2 h in order to remove the polymeric template, and (iv) sequential CVD growth of BN at 450?C. AlN/BN HNFs have been characterized for their chemical composition, surface morphology, crystal structure, and internal nanostructure using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction. Measurements confirmed the presence of crystalline hexagonal BN and AlN within the three dimensional (3D) network of bishell HNFs with relatively low impurity content. In contrast to the smooth surface of the inner AlN layer, outer BN coating showed a highly rough 3D morphology in the form of BN nano-needle crystallites. It is shown that the combination of electrospinning and plasma-assisted low-temperature ALD/CVD can produce highly controlled multi-layered bishell nitride ceramic hollow nanostructures. While electrospinning enables easy fabrication of nanofibrous template, self-limiting reactions of plasma-assisted ALD and sequential CVD provide control over the wall thicknesses of AlN and BN layers with sub-nanometer accuracy.

  5. Modeling precursor diffusion and reaction of atomic layer deposition in porous structures

    SciTech Connect (OSTI)

    Keuter, Thomas, E-mail: t.keuter@fz-juelich.de; Menzler, Norbert Heribert; Mauer, Georg; Vondahlen, Frank; Vaen, Robert; Buchkremer, Hans Peter [Forschungszentrum Jlich, Institute of Energy and Climate Research (IEK-1), 52425 Jlich (Germany)

    2015-01-01

    Atomic layer deposition (ALD) is a technique for depositing thin films of materials with a precise thickness control and uniformity using the self-limitation of the underlying reactions. Usually, it is difficult to predict the result of the ALD process for given external parameters, e.g., the precursor exposure time or the size of the precursor molecules. Therefore, a deeper insight into ALD by modeling the process is needed to improve process control and to achieve more economical coatings. In this paper, a detailed, microscopic approach based on the model developed by Yanguas-Gil and Elam is presented and additionally compared with the experiment. Precursor diffusion and second-order reaction kinetics are combined to identify the influence of the porous substrate's microstructural parameters and the influence of precursor properties on the coating. The thickness of the deposited film is calculated for different depths inside the porous structure in relation to the precursor exposure time, the precursor vapor pressure, and other parameters. Good agreement with experimental results was obtained for ALD zirconiumdioxide (ZrO{sub 2}) films using the precursors tetrakis(ethylmethylamido)zirconium and O{sub 2}. The derivation can be adjusted to describe other features of ALD processes, e.g., precursor and reactive site losses, different growth modes, pore size reduction, and surface diffusion.

  6. Building a Better Capacitor with Thin-Film Atomic Layer Deposition Processing

    SciTech Connect (OSTI)

    Pike, Christopher

    2015-08-28

    The goal of this research is to determine procedures for creating ultra-high capacity supercapacitors by using nanofabrication techniques and high k-value dielectrics. One way to potentially solve the problem of climate change is to switch the source of energy to a source that doesn’t release many tons of greenhouse gases, gases which cause global warming, into the Earth’s atmosphere. These trap in more heat from the Sun’s solar energy and cause global temperatures to rise. Atomic layer deposition will be used to create a uniform thin-film of dielectric to greatly enhance the abilities of our capacitors and will build them on the nanoscale.

  7. Controlling Atomic Layer Deposition of TiO2 in Aerogels through Surface Functionalization

    SciTech Connect (OSTI)

    Ghosal, S; Baumann, T F; King, J S; Kucheyev, S; Wang, Y; Worsley, M A; Biener, J; Bent, S F; Hamza, A V

    2009-03-09

    This report demonstrates a chemical functionalization method for controlling atomic layer deposition (ALD) of TiO{sub 2} in low-density nanoporous materials. Functionalization of silica aerogel with trimethylsilane is shown to strongly suppress TiO{sub 2} growth via ALD. Subsequent modification of the functionalization through selective removal of the hydrocarbon groups reactivates the aerogel towards TiO{sub 2} deposition. These results demonstrate the potential use of ALD as a selective tool for creating novel nanoporous materials. Nanoporous materials present significant technological advantage for a wide range of applications, including catalysis, energy storage and conversion, nanoelectronics to name just a few (1-4). Hence, there is considerable interest in developing synthetic pathways for the fabrication of nanoporous materials with tailored properties. Aerogels (AGs) are unique low-density, open-cell porous materials consisting of submicrometer pores and ligaments that can be used as a robust material platform for designing novel nanoporous materials. In recent years, a synthetic approach based on ALD on AG templates has emerged as a promising method for the directed growth of nanoporous materials (5-11, 18). This approach has been used successfully to prepare millimeter-sized high aspect ratio aerogels coated uniformly with zinc oxide (ZnO), tungsten (W) and alumina (Al{sub 2}O{sub 3}) (10, 11). The ALD process utilizes two sequential, self-limiting surface reactions resulting in a layer-by-layer growth mode. The self limiting nature of the surface reactions makes ALD a particularly suitable technique for uniform deposition onto high aspect ratio porous substrates. Additionally, chemical specificity of the surface reactions in ALD enables one to control the deposition process through selective functionalization of the substrate surface. In fact the functionalization of planar substrates such as silicon wafers with organosilane groups (R{sub n}SiX{sub 4-n} (n = 1-3)) has been shown to deactivate the substrate towards ZrO{sub 2}, HfO{sub 2}, ZnO, and TiO{sub 2} ALD processes (12-16). A possible mechanism for the deactivation effect is the blocking of surface functional groups, such as hydroxyl (OH) moieties, which serve as chemisorption sites for the ALD precursors and hence are essential for nucleating the deposition process. Henceforth, we shall refer to these surface functional groups as nucleation sites for the ALD process.

  8. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions

    SciTech Connect (OSTI)

    Elliot, Alan J. E-mail: jwu@ku.edu; Malek, Gary A.; Lu, Rongtao; Han, Siyuan; Wu, Judy Z. E-mail: jwu@ku.edu; Yu, Haifeng; Zhao, Shiping

    2014-07-15

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al{sub 2}O{sub 2}/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ?1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al{sub 2}O{sub 3} tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

  9. Excellent c-Si surface passivation by low-temperature atomic layer deposited titanium oxide

    SciTech Connect (OSTI)

    Liao, Baochen; Hoex, Bram; Aberle, Armin G.; Bhatia, Charanjit S.; Chi, Dongzhi

    2014-06-23

    In this work, we demonstrate that thermal atomic layer deposited (ALD) titanium oxide (TiO{sub x}) films are able to provide a—up to now unprecedented—level of surface passivation on undiffused low-resistivity crystalline silicon (c-Si). The surface passivation provided by the ALD TiO{sub x} films is activated by a post-deposition anneal and subsequent light soaking treatment. Ultralow effective surface recombination velocities down to 2.8 cm/s and 8.3 cm/s, respectively, are achieved on n-type and p-type float-zone c-Si wafers. Detailed analysis confirms that the TiO{sub x} films are nearly stoichiometric, have no significant level of contaminants, and are of amorphous nature. The passivation is found to be stable after storage in the dark for eight months. These results demonstrate that TiO{sub x} films are also capable of providing excellent passivation of undiffused c-Si surfaces on a comparable level to thermal silicon oxide, silicon nitride, and aluminum oxide. In addition, it is well known that TiO{sub x} has an optimal refractive index of 2.4 in the visible range for glass encapsulated solar cells, as well as a low extinction coefficient. Thus, the results presented in this work could facilitate the re-emergence of TiO{sub x} in the field of high-efficiency silicon wafer solar cells.

  10. Surface smoothing effect of an amorphous thin film deposited by atomic layer deposition on a surface with nano-sized roughness

    SciTech Connect (OSTI)

    Lau, W. S. Wan, X.; Xu, Y.; Wong, H.; Zhang, J.; Luo, J. K.; Institute of Renewable Energy and Environment Technology, Bolton University, Deane Road, Bolton BL3 5 AB

    2014-02-15

    Previously, Lau (one of the authors) pointed out that the deposition of an amorphous thin film by atomic layer deposition (ALD) on a substrate with nano-sized roughness probably has a surface smoothing effect. In this letter, polycrystalline zinc oxide deposited by ALD onto a smooth substrate was used as a substrate with nano-sized roughness. Atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM) were used to demonstrate that an amorphous aluminum oxide thin film deposited by ALD can reduce the surface roughness of a polycrystalline zinc oxide coated substrate.

  11. Effect of substrate pretreatments on the atomic layer deposited Al{sub 2}O{sub 3} passivation quality

    SciTech Connect (OSTI)

    Bao, Yameng; Li, Shuo Gastrow, Guillaume von; Repo, Pivikki; Savin, Hele; Putkonen, Matti

    2015-01-15

    The authors show here that the passivation quality of Al{sub 2}O{sub 3} is highly sensitive to the surface condition prior to the atomic layer deposition, affecting especially the thermal stability of the film. Pretreatments like diluted HCl bath or preheating at 200?C both improved significantly the passivation quality and thermal stability of the films. In addition, the authors observed that a thin chemical SiO{sub 2} layer resulting from diluted HCl solves the blistering problem often encountered in H{sub 2}O based atomic layer deposited process. Finally, the authors show that the chemical oxide protects the surface from contaminants, enabling long storage times in a dirty ambient between the cleaning and the film deposition.

  12. Surface modification of nitrogen-doped carbon nanotubes by ozone via atomic layer deposition

    SciTech Connect (OSTI)

    Lushington, Andrew; Liu, Jian; Tang, Yongji; Li, Ruying; Sun, Xueliang, E-mail: xsun@eng.uwo.ca [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2014-01-15

    The use of ozone as an oxidizing agent for atomic layer deposition (ALD) processes is rapidly growing due to its strong oxidizing capabilities. However, the effect of ozone on nanostructured substrates such as nitrogen-doped multiwalled carbon nanotubes (NCNTs) and pristine multiwalled carbon nanotubes (PCNTs) are not very well understood and may provide an avenue toward functionalizing the carbon nanotube surface prior to deposition. The effects of ALD ozone treatment on NCNTs and PCNTs using 10?wt. % ozone at temperatures of 150, 250, and 300?C are studied. The effect of ozone pulse time and ALD cycle number on NCNTs and PCNTs was also investigated. Morphological changes to the substrate were observed by scanning electron microscopy and high resolution transmission electron microscopy. Brunauer-Emmett-Teller measurements were also conducted to determine surface area, pore size, and pore size distribution following ozone treatment. The graphitic nature of both NCNTs and PCNTs was determined using Raman analysis while x-ray photoelectron spectroscopy (XPS) was employed to probe the chemical nature of NCNTs. It was found that O{sub 3} attack occurs preferentially to the outermost geometric surface of NCNTs. Our research also revealed that the deleterious effects of ozone are found only on NCNTs while little or no damage occurs on PCNTs. Furthermore, XPS analysis indicated that ALD ozone treatment on NCNTs, at elevated temperatures, results in loss of nitrogen content. Our studies demonstrate that ALD ozone treatment is an effective avenue toward creating low nitrogen content, defect rich substrates for use in electrochemical applications and ALD of various metal/metal oxides.

  13. Atomic layer deposited lithium aluminum oxide: (In)dependency of film properties from pulsing sequence

    SciTech Connect (OSTI)

    Miikkulainen, Ville Nilsen, Ola; Fjellvåg, Helmer; Li, Han; King, Sean W.; Laitinen, Mikko; Sajavaara, Timo

    2015-01-01

    Atomic layer deposition (ALD) holds markedly high potential of becoming the enabling method for achieving the three-dimensional all-solid-state thin-film lithium ion battery (LiB). One of the most crucial components in such a battery is the electrolyte that needs to hold both low electronic conductivity and at least fair lithium ion conductivity being at the same time pinhole free. To obtain these desired properties in an electrolyte film, one necessarily has to have a good control over the elemental composition of the deposited material. The present study reports on the properties of ALD lithium aluminum oxide (Li{sub x}Al{sub y}O{sub z}) thin films. In addition to LiB electrolyte applications, Li{sub x}Al{sub y}O{sub z} is also a candidate low dielectric constant (low-k) etch stop and diffusion barrier material in nanoelectronics applications. The Li{sub x}Al{sub y}O{sub z} films were deposited employing trimethylaluminum-O{sub 3} and lithium tert-butoxide-H{sub 2}O for Al{sub 2}O{sub 3} and Li{sub 2}O/LiOH, respectively. The composition was aimed to be controlled by varying the pulsing ratio of those two binary oxide ALD cycles. The films were characterized by several methods for composition, crystallinity and phase, electrical properties, hardness, porosity, and chemical environment. Regardless of the applied pulsing ratio of Al{sub 2}O{sub 3} and Li{sub 2}O/LiOH, all the studied ALD Li{sub x}Al{sub y}O{sub z} films of 200 and 400 nm in thickness were polycrystalline in the orthorhombic β-LiAlO{sub 2} phase and also very similar to each other with respect to composition and other studied properties. The results are discussed in the context of both fundamental ALD chemistry and applicability of the films as thin-film LiB electrolytes and low-k etch stop and diffusion barriers.

  14. Rutile-structured TiO{sub 2} deposited by plasma enhanced atomic layer deposition using tetrakis(dimethylamino)titanium precursor on in-situ oxidized Ru electrode

    SciTech Connect (OSTI)

    Pointet, John; Gonon, Patrice; Latu-Romain, Lawrence; Bsiesy, Ahmad Vallée, Christophe

    2014-01-15

    In this work, tetrakis(dimethylamino)titanium precursor as well as in-situ oxidized ruthenium bottom electrode were used to grow rutile-structured titanium dioxide thin layers by plasma enhanced atomic layer deposition. Metal–insulator–metal capacitors have been elaborated in order to study the electrical properties of the device. It is shown that this process leads to devices exhibiting excellent results in terms of dielectric constant and leakage current.

  15. Waterless TiO{sub 2} atomic layer deposition using titanium tetrachloride and titanium tetraisopropoxide

    SciTech Connect (OSTI)

    Anderson, Virginia R.; Cavanagh, Andrew S.; Abdulagatov, Aziz I.; Gibbs, Zachary M.; George, Steven M.

    2014-01-15

    The surface chemistry for TiO{sub 2} atomic layer deposition (ALD) typically utilizes water or other oxidants that can oxidize underlying substrates such as magnetic disks or semiconductors. To avoid this oxidation, waterless or oxidant-free surface chemistry can be used that involves titanium halides and titanium alkoxides. In this study, waterless TiO{sub 2} ALD was accomplished using titanium tetrachloride (TiCl{sub 4}) and titanium tetraisopropoxide (TTIP). In situ transmission Fourier transform infrared (FTIR) studies were employed to study the surface species and the reactions during waterless TiO{sub 2} ALD. At low temperatures between 125 and 225  °C, the FTIR absorbance spectra revealed that the isopropoxide species remained on the surface after TTIP exposures. The TiCl{sub 4} exposures then removed the isopropoxide species and deposited additional titanium species. At high temperatures between 250 and 300  °C, the isopropoxide species were converted to hydroxyl species by β-hydride elimination. The observation of propene gaseous reaction product by quadrupole mass spectrometry (QMS) confirmed the β-hydride elimination reaction pathway. The TiCl{sub 4} exposures then easily reacted with the hydroxyl species. QMS studies also observed the 2-chloropropane and HCl gaseous reaction products and monitored the self-limiting nature of the TTIP reaction. Additional studies examined the waterless TiO{sub 2} ALD growth at low and high temperature. Quartz crystal microbalance measurements observed growth rates of ∼3 ng/cm{sup 2} at a low temperature of 150  °C. Much higher growth rates of ∼15 ng/cm{sup 2} were measured at a higher temperature of 250  °C under similar reaction conditions. X-ray reflectivity analysis measured a growth rate of 0.55 ± 0.05 Å/cycle at 250  °C. X-ray photoelectron depth-profile studies showed that the TiO{sub 2} films contained low Cl concentrations <1 at. %. This waterless TiO{sub 2} ALD process using TiCl{sub 4} and TTIP should be valuable to prevent substrate oxidation during TiO{sub 2} ALD on oxygen-sensitive substrates.

  16. Infrared and thermoelectric power generation in thin atomic layer deposited Nb-doped TiO{sub 2} films

    SciTech Connect (OSTI)

    Mann, Harkirat S.; Lang, Brian N.; Schwab, Yosyp; Scarel, Giovanna; Niemelä, Janne-Petteri; Karppinen, Maarit

    2015-01-15

    Infrared radiation is used to radiatively transfer heat to a nanometric power generator (NPG) device with a thermoelectric Nb-doped TiO{sub 2} film deposited by atomic layer deposition (ALD) as the active element, onto a borosilicate glass substrate. The linear rise of the produced voltage with respect to the temperature difference between the “hot” and “cold” junctions, typical of the Seebeck effect, is missing. The discovery of the violation of the Seebeck effect in NPG devices combined with the ability of ALD to tune thermoelectric thin film properties could be exploited to increase the efficiency of these devices for energy harvesting purposes.

  17. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    SciTech Connect (OSTI)

    Ip, Alexander H.; Labelle, Andr J.; Sargent, Edward H.

    2013-12-23

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells.

  18. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    SciTech Connect (OSTI)

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J. (UCB)

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution better than 25 nm. Limiting factors for Stardust STXM analyses were self-imposed limits of photon dose due to radiation damage concerns, and significant attenuation of <1500 eV X-rays by {approx}80{micro}m thick, {approx}25 mg/cm{sup 3} density silica aerogel capture medium. In practice, the ISPE team characterized the major, light elements using STXM (O, Mg, Al, Si) and the heavier minor and trace elements using SXRF. The two data sets overlapped only with minor Fe and Ni ({approx}1% mass abundance), providing few quantitative cross-checks. New improved standards for cross calibration are essential for consortium-based analyses of Stardust interstellar and cometary particles, IDPs. Indeed, they have far reaching application across the whole synchrotron-based analytical community. We have synthesized three ALD multilayers simultaneously on silicon nitride membranes and silicon and characterized them using RBS (on Si), XRF (on Si{sub 3}N{sub 4}) and STXM/XAS (holey Si{sub 3}N{sub 4}). The systems we have started to work with are Al-Zn-Fe and Y-Mg-Er. We have found these ALD multi-layers to be uniform at {micro}m- to nm scales, and have found excellent consistency between four analytical techniques so far. The ALD films can also be used as a standard for e-beam instruments, eg., TEM EELS or EDX. After some early issues with the consistency of coatings to the back-side of the membrane windows, we are confident to be able to show multi-analytical agreement to within 10%. As the precision improves, we can use the new standards to verify or improve the tabulated cross-sections.

  19. Atomic layer deposition grown MO{sub x} thin films for solar water splitting: Prospects and challenges

    SciTech Connect (OSTI)

    Singh, Trilok; Lehnen, Thomas; Leuning, Tessa; Mathur, Sanjay

    2015-01-15

    The magnitude of energy challenge not only calls for efficient devices but also for abundant, inexpensive, and stable photoactive materials that can enable efficient light harvesting, charge separation and collection, as well as chemical transformations. Photoelectrochemical systems based on semiconductor materials have the possibility to transform solar energy directly into chemical energy the so-called “solar hydrogen.” The current challenge lies in the harvesting of a larger fraction of electromagnetic spectrum by enhancing the absorbance of electrode materials. In this context, atomically precise thin films of metal oxide semiconductors and their multilayered junctions are promising candidates to integrate high surface areas with well-defined electrode–substrate interface. Given its self-limited growth mechanism, the atomic layer deposition (ALD) technique offers a wide range of capabilities to deposit and modify materials at the nanoscale. In addition, it opens new frontiers for developing precursor chemistry that is inevitable to design new processes. Herein, the authors review the properties and potential of metal oxide thin films deposited by ALD for their application in photoelectrochemical water splitting application. The first part of the review covers the basics of ALD processes followed by a brief discussion on the electrochemistry of water splitting reaction. The second part focuses on different MO{sub x} films deposited by atomic layer deposition for water splitting applications; in this section, The authors discuss the most explored MO{sub x} semiconductors, namely, Fe{sub 2}O{sub 3}, TiO{sub 2}, WO{sub 3}, and ZnO, as active materials and refer to their application as protective coatings, conductive scaffolds, or in heterojunctions. The third part deals with the current challenges and future prospects of ALD processed MO{sub x} thin films for water splitting reactions.

  20. On the physical and chemical details of alumina atomic layer deposition: A combined experimental and numerical approach

    SciTech Connect (OSTI)

    Pan, Dongqing; Ma, Lulu; Xie, Yuanyuan; Yuan, Chris; Jen, Tien Chien

    2015-03-15

    Alumina thin film is typically studied as a model atomic layer deposition (ALD) process due to its high dielectric constant, high thermal stability, and good adhesion on various wafer surfaces. Despite extensive applications of alumina ALD in microelectronics industries, details on the physical and chemical processes are not yet well understood. ALD experiments are not able to shed adequate light on the detailed information regarding the transient ALD process. Most of current numerical approaches lack detailed surface reaction mechanisms, and their results are not well correlated with experimental observations. In this paper, the authors present a combined experimental and numerical study on the details of flow and surface reactions in alumina ALD using trimethylaluminum and water as precursors. Results obtained from experiments and simulations are compared and correlated. By experiments, growth rate on five samples under different deposition conditions is characterized. The deposition rate from numerical simulation agrees well with the experimental results. Details of precursor distributions in a full cycle of ALD are studied numerically to bridge between experimental observations and simulations. The 3D transient numerical model adopts surface reaction kinetics and mechanisms based on atomic-level studies to investigate the surface deposition process. Surface deposition is shown as a strictly self-limited process in our numerical studies. ALD is a complex strong-coupled fluid, thermal and chemical process, which is not only heavily dependent on the chemical kinetics and surface conditions but also on the flow and material distributions.

  1. Atomic layer deposition precursor step repetition and surface plasma pretreatment influence on semiconductor–insulator–semiconductor heterojunction solar cell

    SciTech Connect (OSTI)

    Talkenberg, Florian Illhardt, Stefan; Schmidl, Gabriele; Schleusener, Alexander; Sivakov, Vladimir; Radnóczi, György Zoltán; Pécz, Béla; Dikhanbayev, Kadyrjan; Mussabek, Gauhar; Gudovskikh, Alexander

    2015-07-15

    Semiconductor–insulator–semiconductor heterojunction solar cells were prepared using atomic layer deposition (ALD) technique. The silicon surface was treated with oxygen and hydrogen plasma in different orders before dielectric layer deposition. A plasma-enhanced ALD process was applied to deposit dielectric Al{sub 2}O{sub 3} on the plasma pretreated n-type Si(100) substrate. Aluminum doped zinc oxide (Al:ZnO or AZO) was deposited by thermal ALD and serves as transparent conductive oxide. Based on transmission electron microscopy studies the presence of thin silicon oxide (SiO{sub x}) layer was detected at the Si/Al{sub 2}O{sub 3} interface. The SiO{sub x} formation depends on the initial growth behavior of Al{sub 2}O{sub 3} and has significant influence on solar cell parameters. The authors demonstrate that a hydrogen plasma pretreatment and a precursor dose step repetition of a single precursor improve the initial growth behavior of Al{sub 2}O{sub 3} and avoid the SiO{sub x} generation. Furthermore, it improves the solar cell performance, which indicates a change of the Si/Al{sub 2}O{sub 3} interface states.

  2. Nucleation and growth of MgO atomic layer deposition: A real-time spectroscopic ellipsometry study

    SciTech Connect (OSTI)

    Wang, Han; Fu, Kan

    2013-11-15

    The atomic layer deposition (ALD) of MgO thin films from bis(cyclopentadienyl) magnesium and H{sub 2}O was studied using in-situ real-time spectroscopic ellipsometry (SE), ex-situ x-ray photoelectron spectroscopy, and grazing-incidence x-ray diffraction. It is found that the initial growth is not linear during the first ten cycles, and magnesium silicate forms spontaneously on the SiO{sub 2}/Si substrates at 250 C. Submonolayer sensitivity of SE is demonstrated by the analysis of each half-cycle and self-limiting adsorption, revealing characteristic features of hetero- and homo-MgO ALD processes.

  3. In situ study of atomic layer deposition Al{sub 2}O{sub 3} on GaP (100)

    SciTech Connect (OSTI)

    Dong, H.; Brennan, B.; Qin, X.; Hinkle, C. L.; Kim, J.; Wallace, R. M.; Zhernokletov, D. M.

    2013-09-16

    The interfacial chemistry of atomic layer deposition (ALD) of Al{sub 2}O{sub 3} on chemically treated GaP (100) has been studied using in situ X-ray photoelectron spectroscopy. A “self-cleaning” effect for Ga-oxide upon exposure to trimethylaluminum is seen to be efficient on the native oxide and chemically treated surfaces. The phosphorus oxide chemical states are seen to change during the ALD process, but the total concentration of P-oxides is seen to remain constant throughout the ALD process.

  4. Transition in electron scattering mechanism in atomic layer deposited Nb:TiO{sub 2} thin films

    SciTech Connect (OSTI)

    Niemel, Janne-Petteri; Karppinen, Maarit; Hirose, Yasushi; Hasegawa, Tetsuya

    2015-01-26

    We characterized transport and optical properties of atomic layer deposited Nb:TiO{sub 2} thin films on glass substrates. These promising transparent conducting oxide (TCO) materials show minimum resistivity of 1.0??10{sup ?3?}??cm at 300?K and high transmittance in the visible range. Low-temperature (2300?K) Hall measurements and the Drude fitting of the Vis-NIR optical spectra indicate a transition in the scattering mechanism from grain boundary scattering to intra-grain scattering with increasing Nb content, thus underlining enhancement of the grain size in the low doping regime as the key for further improved TCO properties.

  5. A non-destructive method for measuring the mechanical properties of ultrathin films prepared by atomic layer deposition

    SciTech Connect (OSTI)

    Zhang, Qinglin; Xiao, Xingcheng Verbrugge, Mark W.; Cheng, Yang-Tse

    2014-08-11

    The mechanical properties of ultrathin films synthesized by atomic layer deposition (ALD) are critical for the liability of their coated devices. However, it has been a challenge to reliably measure critical properties of ALD films due to the influence from the substrate. In this work, we use the laser acoustic wave (LAW) technique, a non-destructive method, to measure the elastic properties of ultrathin Al{sub 2}O{sub 3} films by ALD. The measured properties are consistent with previous work using other approaches. The LAW method can be easily applied to measure the mechanical properties of various ALD thin films for multiple applications.

  6. Thermal and plasma enhanced atomic layer deposition of TiO{sub 2}: Comparison of spectroscopic and electric properties

    SciTech Connect (OSTI)

    Das, Chittaranjan Henkel, Karsten; Tallarida, Massimo; Schmeißer, Dieter; Gargouri, Hassan; Kärkkänen, Irina; Schneidewind, Jessica; Gruska, Bernd; Arens, Michael

    2015-01-15

    Titanium oxide (TiO{sub 2}) deposited by atomic layer deposition (ALD) is used as a protective layer in photocatalytic water splitting system as well as a dielectric in resistive memory switching. The way ALD is performed (thermally or plasma-assisted) may change the growth rate as well as the electronic properties of the deposited films. In the present work, the authors verify the influence of the ALD mode on functional parameters, by comparing the growth rate and electronic properties of TiO{sub 2} films deposited by thermal (T-) and plasma-enhanced (PE-) ALD. The authors complete the study with the electrical characterization of selected samples by means of capacitance–voltage and current–voltage measurements. In all samples, the authors found a significant presence of Ti{sup 3+} states, with the lowest content in the PE-ALD grown TiO{sub 2} films. The observation of Ti{sup 3+} states was accompanied by the presence of in-gap states above the valence band maximum. For films thinner than 10 nm, the authors found also a strong leakage current. Also in this case, the PE-ALD films showed the weakest leakage currents, showing a correlation between the presence of Ti{sup 3+} states and leakage current density.

  7. Integration of atomic layer deposited high-k dielectrics on GaSb via hydrogen plasma exposure

    SciTech Connect (OSTI)

    Ruppalt, Laura B. Cleveland, Erin R.; Champlain, James G.; Bennett, Brian R.; Prokes, Sharka M.

    2014-12-15

    In this letter we report the efficacy of a hydrogen plasma pretreatment for integrating atomic layer deposited (ALD) high-k dielectric stacks with device-quality p-type GaSb(001) epitaxial layers. Molecular beam eptiaxy-grown GaSb surfaces were subjected to a 30 minute H{sub 2}/Ar plasma treatment and subsequently removed to air. High-k HfO{sub 2} and Al{sub 2}O{sub 3}/HfO{sub 2} bilayer insulating films were then deposited via ALD and samples were processed into standard metal-oxide-semiconductor (MOS) capacitors. The quality of the semiconductor/dielectric interface was probed by current-voltage and variable-frequency admittance measurements. Measurement results indicate that the H{sub 2}-plamsa pretreatment leads to a low density of interface states nearly independent of the deposited dielectric material, suggesting that pre-deposition H{sub 2}-plasma exposure, coupled with ALD of high-k dielectrics, may provide an effective means for achieving high-quality GaSb MOS structures for advanced Sb-based digital and analog electronics.

  8. Designing optical metamaterial with hyperbolic dispersion based on Al:ZnO/ZnO nano-layered structure using Atomic Layer Deposition technique

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kelly, Priscilla; Liu, Mingzhao; Kuznetsova, Lyuba

    2016-04-07

    In this study, nano-layered Al:ZnO/ZnO hyperbolic dispersion metamaterial with a large number of layers was fabricated using the atomic layer deposition (ALD) technique. Experimental dielectric functions for Al:ZnO/ZnO structures are obtained by an ellipsometry technique in the visible and near-infrared spectral ranges. The theoretical modeling of the Al:ZnO/ZnO dielectric permittivity is done using effective medium approximation. A method for analysis of spectroscopic ellipsometry data is demonstrated to extract the optical permittivity for this highly anisotropic nano-layered metamaterial. The results of the ellipsometry analysis show that Al:ZnO/ZnO structures with a 1:9 ALD cycle ratio exhibit hyperbolic dispersion transition change near 1.8more » μm wavelength.« less

  9. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    SciTech Connect (OSTI)

    Hoye, Robert L. Z. E-mail: jld35@cam.ac.uk; MacManus-Driscoll, Judith L. E-mail: jld35@cam.ac.uk; Muoz-Rojas, David; Nelson, Shelby F.; Illiberi, Andrea; Poodt, Paul

    2015-04-01

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants that have been studied. We highlight how these films are advantageous for the performance of solar cells, organometal halide perovskite light emitting diodes, and thin-film transistors. Future AP-SALD technology will enable the commercial processing of thin films over large areas on a sheet-to-sheet and roll-to-roll basis, with new reactor designs emerging for flexible plastic and paper electronics.

  10. Enhanced Dry Reforming of Methane on Ni and Ni-Pt Catalysts Synthesized by Atomic Layer Deposition

    SciTech Connect (OSTI)

    Gould, Troy D.; Montemore, Matthew M.; Lubers, Alia M.; Ellis, Lucas D.; Weimer, Alan; Falconer, John L.; Medlin, James W.

    2015-02-25

    Atomic layer deposition (ALD) was used to deposit Ni and Pt on alumina supports to form monometallic and bimetallic catalysts with initial particle sizes of 12.4 nm. The ALD catalysts were more active (per mass of metal) than catalysts prepared by incipient wetness (IW) for dry reforming of methane (DRM), and they did not form carbon whiskers during reaction due to their sufficiently small size. Catalysts modified by Pt ALD had higher rates of reaction per mass of metal and inhibited coking, whereas NiPt catalysts synthesized by IW still formed carbon whiskers. Temperature-programmed reduction of Ni catalysts modified by Pt ALD indicated the presence of bimetallic interaction. Density functional theory calculations suggested that under reaction conditions, the NiPt surfaces form Ni-terminated surfaces that are associated with higher DRM rates (due to their C and O adsorption energies, as well as the CO formation and CH4 dissociation energies).

  11. Investigation on dielectric properties of atomic layer deposited Al{sub 2}O{sub 3} dielectric films

    SciTech Connect (OSTI)

    Y?ld?z, Dilber Esra; Y?ld?r?m, Mert; Gken, Muharrem

    2014-05-15

    Al/Al{sub 2}O{sub 3}/p-Si Schottky barrier diodes (SBDs) were fabricated using atomic layer deposition technique in order to investigate dielectric properties of SBDs. For this purpose, admittance measurements were conducted at room temperature between ?1?V and 3?V in the frequency range of 10 kHz and 1?MHz. In addition to the investigation of Al{sub 2}O{sub 3} morphology using atomic force microscope, dielectric parameters; such as dielectric constant (??), dielectric loss (??), dielectric loss tangent (tan??), and real and imaginary parts of dielectric modulus (M? and M?, respectively), were calculated and effect of frequency on these parameters of Al/Al{sub 2}O{sub 3}/p-Si SBDs was discussed. Variations in these parameters at low frequencies were associated with the effect of interface states in low frequency region. Besides dielectric parameters, ac electrical conductivity of these SBDs was also investigated.

  12. Low temperature thin film transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels

    SciTech Connect (OSTI)

    Bolat, S. E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, B.; Ozgit-Akgun, C.; Biyikli, N.; Okyay, A. K. E-mail: aokyay@ee.bilkent.edu.tr

    2014-06-16

    We report GaN thin film transistors (TFT) with a thermal budget below 250?C. GaN thin films are grown at 200?C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3?nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (I{sub ON}/I{sub OFF}) of 10{sup 3} and sub-threshold swing of 3.3?V/decade. The entire TFT device fabrication process temperature is below 250?C, which is the lowest process temperature reported for GaN based transistors, so far.

  13. Initial growth, refractive index, and crystallinity of thermal and plasma-enhanced atomic layer deposition AlN films

    SciTech Connect (OSTI)

    Van Bui, Hao Wiggers, Frank B.; Gupta, Anubha; Nguyen, Minh D.; Aarnink, Antonius A. I.; Jong, Michel P. de; Kovalgin, Alexey Y.

    2015-01-01

    The authors have studied and compared the initial growth and properties of AlN films deposited on Si(111) by thermal and plasma-enhanced atomic layer deposition (ALD) using trimethylaluminum and either ammonia or a N{sub 2}-H{sub 2} mixture as precursors. In-situ spectroscopic ellipsometry was employed to monitor the growth and measure the refractive index of the films during the deposition. The authors found that an incubation stage only occurred for thermal ALD. The linear growth for plasma-enhanced ALD (PEALD) started instantly from the beginning due to the higher nuclei density provided by the presence of plasma. The authors observed the evolution of the refractive index of AlN during the growth, which showed a rapid increase up to a thickness of about 30?nm followed by a saturation. Below this thickness, higher refractive index values were obtained for AlN films grown by PEALD, whereas above that the refractive index was slightly higher for thermal ALD films. X-ray diffraction characterization showed a wurtzite crystalline structure with a (101{sup }0) preferential orientation obtained for all the layers with a slightly better crystallinity for films grown by PEALD.

  14. Relating electronic and geometric structure of atomic layer deposited BaTiO3 to its electrical properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Torgersen, Jan; Acharya, Shinjita; Dadlani, Anup Lal; Petousis, Ioannis; Kim, Yongmin; Trejo, Orlando; Nordlund, Dennis; Prinz, Fritz B.

    2016-03-24

    Atomic layer deposition allows the fabrication of BaTiO3 (BTO) ultrathin films with tunable dielectric properties, which is a promising material for electronic and optical technology. Industrial applicability necessitates a better understanding of their atomic structure and corresponding properties. Through the use of element-specific X-ray absorption near edge structure (XANES) analysis, O K-edge of BTO as a function of cation composition and underlying substrate (RuO2 and SiO2) is revealed. By employing density functional theory and multiple scattering simulations, we analyze the distortions in BTO’s bonding environment captured by the XANES spectra. The spectral weight shifts to lower energy with increasing Timore » content and provides an atomic scale (microscopic) explanation for the increase in leakage current density. Differences in film morphologies in the first few layers near substrate–film interfaces reveal BTO’s homogeneous growth on RuO2 and its distorted growth on SiO2. As a result, this work links structural changes to BTO thin-film properties and provides insight necessary for optimizing future BTO and other ternary metal oxide-based thin-film devices.« less

  15. Influence of PEDOT:PSS on the effectiveness of barrier layers prepared by atomic layer deposition in organic light emitting diodes

    SciTech Connect (OSTI)

    Wegler, Barbara; Schmidt, Oliver; Hensel, Bernhard

    2015-01-15

    Organic light emitting diodes (OLEDs) are well suited for energy saving lighting applications, especially when thinking about highly flexible and large area devices. In order to avoid the degradation of the organic components by water and oxygen, OLEDs need to be encapsulated, e.g., by a thin sheet of glass. As the device is then no longer flexible, alternative coatings are required. Atomic layer deposition (ALD) is a very promising approach in this respect. The authors studied OLEDs that were encapsulated by 100 nm Al{sub 2}O{sub 3} deposited by ALD. The authors show that this coating effectively protects the active surface area of the OLEDs from humidity. However, secondary degradation processes still occur at sharp edges of the OLED stack where the extremely thin encapsulation layer does not provide perfect coverage. Particularly, the swelling of poly(3,4-ethylenedioxythiophene) mixed with poly(styrenesulfonate), which is a popular choice for the planarization of the bottom electrode and at the same time acts as a hole injection layer, affects the effectiveness of the encapsulation layer.

  16. In situ study of HfO{sub 2} atomic layer deposition on InP(100)

    SciTech Connect (OSTI)

    Dong, H.; Brennan, B.; Kim, J.; Hinkle, C. L.; Wallace, R. M.; Zhernokletov, D.

    2013-04-29

    The interfacial chemistry of the native oxide and chemically treated InP samples during atomic layer deposition (ALD) HfO{sub 2} growth at 250 Degree-Sign C has been studied by in situ X-ray photoelectron spectroscopy. The In-oxide concentration is seen to gradually decrease on the native oxide and acid etched samples. No significant changes of the P-oxide concentrations are detected, while the P-oxides chemical states are seen to change gradually during the initial cycles of ALD on the native oxide and the chemically treated samples. (NH{sub 4}){sub 2}S treatment strongly decreases In-oxide and P-oxide concentrations prior to ALD and maintains low concentrations during the ALD process.

  17. Self-aligned process for forming microlenses at the tips of vertical silicon nanowires by atomic layer deposition

    SciTech Connect (OSTI)

    Dan, Yaping, E-mail: yaping.dan@sjtu.edu.cn; Chen, Kaixiang [University of MichiganShanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Crozier, Kenneth B. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2015-01-01

    The microlens is a key enabling technology in optoelectronics, permitting light to be efficiently coupled to and from devices such as image sensors and light-emitting diodes. Their ubiquitous nature motivates the development of new fabrication techniques, since existing methods face challenges as microlenses are scaled to smaller dimensions. Here, the authors demonstrate the formation of microlenses at the tips of vertically oriented silicon nanowires via a rapid atomic layer deposition process. The nature of the process is such that the microlenses are centered on the nanowires, and there is a self-limiting effect on the final sizes of the microlenses arising from the nanowire spacing. Finite difference time domain electromagnetic simulations are performed of microlens focusing properties, including showing their ability to enhance visible-wavelength absorption in silicon nanowires.

  18. Synthesis of Pt?Pd Core?Shell Nanostructures by Atomic Layer Deposition: Application in Propane Oxidative Dehydrogenation to Propylene

    SciTech Connect (OSTI)

    Lei, Y.; Liu, Bin; Lu, Junling; Lobo-Lapidus, Rodrigo J.; Wu, Tianpin; Feng, Hao; Xia, Xiaoxing; Mane, Anil U.; Libera, Joseph A.; Greeley, Jeffrey P.; Miller, Jeffrey T.; Elam, J. W.

    2012-08-20

    Atomic layer deposition (ALD) was employed to synthesize supported Pt?Pd bimetallic particles in the 1 to 2 nm range. The metal loading and composition of the supported Pt?Pd nanoparticles were controlled by varying the deposition temperature and by applying ALD metal oxide coatings to modify the support surface chemistry. Highresolution scanning transmission electron microscopy images showed monodispersed Pt?Pd nanoparticles on ALD Al2O3 - and TiO2 -modi?ed SiO2 gel. X-ray absorption spectroscopy revealed that the bimetallic nanoparticles have a stable Pt-core, Pd-shell nanostructure. Density functional theory calculations revealed that the most stable surface con?guration for the Pt? Pd alloys in an H2 environment has a Pt-core, Pd-shell nanostructure. In comparison to their monometallic counterparts, the small Pt?Pd bimetallic core?shell nanoparticles exhibited higher activity in propane oxidative dehydrogenation as compared to their physical mixture.

  19. Atomic imaging and modeling of H{sub 2}O{sub 2}(g) surface passivation, functionalization, and atomic layer deposition nucleation on the Ge(100) surface

    SciTech Connect (OSTI)

    Kaufman-Osborn, Tobin; Chagarov, Evgueni A.; Kummel, Andrew C.

    2014-05-28

    Passivation, functionalization, and atomic layer deposition nucleation via H{sub 2}O{sub 2}(g) and trimethylaluminum (TMA) dosing was studied on the clean Ge(100) surface at the atomic level using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Chemical analysis of the surface was performed using x-ray photoelectron spectroscopy, while the bonding of the precursors to the substrate was modeled with density functional theory (DFT). At room temperature, a saturation dose of H{sub 2}O{sub 2}(g) produces a monolayer of a mixture of OH or O species bonded to the surface. STS confirms that H{sub 2}O{sub 2}(g) dosing eliminates half-filled dangling bonds on the clean Ge(100) surface. Saturation of the H{sub 2}O{sub 2}(g) dosed Ge(100) surface with TMA followed by a 200?C anneal produces an ordered monolayer of thermally stable GeOAl bonds. DFT models and STM simulations provide a consistent model of the bonding configuration of the H{sub 2}O{sub 2}(g) and TMA dosed surfaces. STS verifies the TMA/H{sub 2}O{sub 2}/Ge surface has an unpinned Fermi level with no states in the bandgap demonstrating the ability of a GeOAl monolayer to serve as an ideal template for further high-k deposition.

  20. Numerical modeling of carrier gas flow in atomic layer deposition vacuum reactor: A comparative study of lattice Boltzmann models

    SciTech Connect (OSTI)

    Pan, Dongqing; Chien Jen, Tien [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 (United States); Li, Tao [School of Mechanical Engineering, Dalian University of Technology, Dalian 116024 (China); Yuan, Chris, E-mail: cyuan@uwm.edu [Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211 (United States)

    2014-01-15

    This paper characterizes the carrier gas flow in the atomic layer deposition (ALD) vacuum reactor by introducing Lattice Boltzmann Method (LBM) to the ALD simulation through a comparative study of two LBM models. Numerical models of gas flow are constructed and implemented in two-dimensional geometry based on lattice BhatnagarGrossKrook (LBGK)-D2Q9 model and two-relaxation-time (TRT) model. Both incompressible and compressible scenarios are simulated and the two models are compared in the aspects of flow features, stability, and efficiency. Our simulation outcome reveals that, for our specific ALD vacuum reactor, TRT model generates better steady laminar flow features all over the domain with better stability and reliability than LBGK-D2Q9 model especially when considering the compressible effects of the gas flow. The LBM-TRT is verified indirectly by comparing the numerical result with conventional continuum-based computational fluid dynamics solvers, and it shows very good agreement with these conventional methods. The velocity field of carrier gas flow through ALD vacuum reactor was characterized by LBM-TRT model finally. The flow in ALD is in a laminar steady state with velocity concentrated at the corners and around the wafer. The effects of flow fields on precursor distributions, surface absorptions, and surface reactions are discussed in detail. Steady and evenly distributed velocity field contribute to higher precursor concentration near the wafer and relatively lower particle velocities help to achieve better surface adsorption and deposition. The ALD reactor geometry needs to be considered carefully if a steady and laminar flow field around the wafer and better surface deposition are desired.

  1. Optical characteristics of nanocrystalline Al{sub x}Ga{sub 1?x}N thin films deposited by hollow cathode plasma-assisted atomic layer deposition

    SciTech Connect (OSTI)

    Goldenberg, Eda; Ozgit-Akgun, Cagla; Biyikli, Necmi; Kemal Okyay, Ali

    2014-05-15

    Gallium nitride (GaN), aluminum nitride (AlN), and Al{sub x}Ga{sub 1?x}N films have been deposited by hollow cathode plasma-assisted atomic layer deposition at 200?C on c-plane sapphire and Si substrates. The dependence of film structure, absorption edge, and refractive index on postdeposition annealing were examined by x-ray diffraction, spectrophotometry, and spectroscopic ellipsometry measurements, respectively. Well-adhered, uniform, and polycrystalline wurtzite (hexagonal) GaN, AlN, and Al{sub x}Ga{sub 1?x}N films were prepared at low deposition temperature. As revealed by the x-ray diffraction analyses, crystallite sizes of the films were between 11.7 and 25.2?nm. The crystallite size of as-deposited GaN film increased from 11.7 to 12.1 and 14.4?nm when the annealing duration increased from 30?min to 2?h (800?C). For all films, the average optical transmission was ?85% in the visible (VIS) and near infrared spectrum. The refractive indices of AlN and Al{sub x}Ga{sub 1?x}N were lower compared to GaN thin films. The refractive index of as-deposited films decreased from 2.33 to 2.02 (??=?550?nm) with the increased Al content x (0???x???1), while the extinction coefficients (k) were approximately zero in the VIS spectrum (>400?nm). Postdeposition annealing at 900?C for 2?h considerably lowered the refractive index value of GaN films (2.331.92), indicating a significant phase change. The optical bandgap of as-deposited GaN film was found to be 3.95?eV, and it decreased to 3.90?eV for films annealed at 800?C for 30?min and 2?h. On the other hand, this value increased to 4.1?eV for GaN films annealed at 900?C for 2?h. This might be caused by Ga{sub 2}O{sub 3} formation and following phase change. The optical bandgap value of as-deposited Al{sub x}Ga{sub 1?x}N films decreased from 5.75 to 5.25?eV when the x values decreased from 1 to 0.68. Furthermore, postdeposition annealing did not affect the bandgap of Al-rich films.

  2. Electronic and optical device applications of hollow cathode plasma assisted atomic layer deposition based GaN thin films

    SciTech Connect (OSTI)

    Bolat, Sami Tekcan, Burak; Ozgit-Akgun, Cagla; Biyikli, Necmi; Okyay, Ali Kemal

    2015-01-15

    Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metalsemiconductormetal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N{sub 2}/H{sub 2} PA-ALD based GaN channels are observed to have improved stability and transfer characteristics with respect to NH{sub 3} PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N{sub 2}:H{sub 2} ambient.

  3. Enhanced photocatalytic performance in atomic layer deposition grown TiO{sub 2} thin films via hydrogen plasma treatment

    SciTech Connect (OSTI)

    Sasinska, Alexander; Singh, Trilok; Wang, Shuangzhou; Mathur, Sanjay; Kraehnert, Ralph

    2015-01-15

    The authors report the effect of hydrogen plasma treatment on TiO{sub 2} thin films grown by atomic layer deposition as an effective approach for modifying the photoanode materials in order to enhance their photoelectrochemical performance. Hydrogen plasma treated TiO{sub 2} thin films showed an improved absorption in the visible spectrum probably due to surface reduction. XPS analysis confirmed the formation of Ti{sup 3+} states upon plasma treatment. Hydrogen plasma treatment of TiO{sub 2} films enhanced the measured photocurrent densities by a factor of 8 (1 mA/cm{sup 2} at 0.8 V versus normal hydrogen electrode) when compared to untreated TiO{sub 2} (0.12 mA/cm{sup 2}). The enhancement in photocurrent is attributed to the formation of localized electronic states in mid band-gap region, which facilitate efficient separation and transportation of photo excited charge carriers in the UV region of electromagnetic spectrum.

  4. Enhanced photoresponse of conformal TiO{sub 2}/Ag nanorod array-based Schottky photodiodes fabricated via successive glancing angle and atomic layer deposition

    SciTech Connect (OSTI)

    Haider, Ali; Biyikli, Necmi; Cansizoglu, Hilal; Cansizoglu, Mehmet Fatih; Karabacak, Tansel; Okyay, Ali Kemal

    2015-01-01

    In this study, the authors demonstrate a proof of concept nanostructured photodiode fabrication method via successive glancing angle deposition (GLAD) and atomic layer deposition (ALD). The fabricated metal-semiconductor nanorod (NR) arrays offer enhanced photoresponse compared to conventional planar thin-film counterparts. Silver (Ag) metallic NR arrays were deposited on Ag-film/Si templates by utilizing GLAD. Subsequently, titanium dioxide (TiO{sub 2}) was deposited conformally on Ag NRs via ALD. Scanning electron microscopy studies confirmed the successful formation of vertically aligned Ag NRs deposited via GLAD and conformal deposition of TiO{sub 2} on Ag NRs via ALD. Following the growth of TiO{sub 2} on Ag NRs, aluminum metallic top contacts were formed to complete the fabrication of NR-based Schottky photodiodes. Nanostructured devices exhibited a photo response enhancement factor of 1.49??10{sup 2} under a reverse bias of 3 V.

  5. Density dependence of the room temperature thermal conductivity of atomic layer deposition-grown amorphous alumina (Al{sub 2}O{sub 3})

    SciTech Connect (OSTI)

    Gorham, Caroline S.; Gaskins, John T.; Hopkins, Patrick E.; Parsons, Gregory N.; Losego, Mark D.

    2014-06-23

    We report on the thermal conductivity of atomic layer deposition-grown amorphous alumina thin films as a function of atomic density. Using time domain thermoreflectance, we measure the thermal conductivity of the thin alumina films at room temperature. The thermal conductivities vary ?35% for a nearly 15% change in atomic density and are substrate independent. No density dependence of the longitudinal sound speeds is observed with picosecond acoustics. The density dependence of the thermal conductivity agrees well with a minimum limit to thermal conductivity model that is modified with a differential effective-medium approximation.

  6. Reaction kinetics during the thermal activation of the silicon surface passivation with atomic layer deposited Al{sub 2}O{sub 3}

    SciTech Connect (OSTI)

    Richter, Armin Benick, Jan; Hermle, Martin; Glunz, Stefan W.

    2014-02-10

    The excellent surface passivation of crystalline silicon provided by Al{sub 2}O{sub 3} requires always an activation by a thermal post-deposition treatment. In this work, we present an indirect study of the reaction kinetics during such thermal activation treatments for Al{sub 2}O{sub 3} synthesized by atomic layer deposition. The study was performed for Al{sub 2}O{sub 3} deposited at varying temperatures, which results in different micro-structures of the films and, in particular, different hydrogen concentrations. The effective carrier lifetime was measured sequentially as a function of the annealing time and temperature. From these data, the reaction rate R{sub act} and the activation energy E{sub A} were extracted. The results revealed a rather constant E{sub A} in the range of 1.4 to 1.5?eV, independent of the deposition temperature. The reaction rate, however, was found to increase with decreasing deposition temperature, which correlates with an increasing amount of hydrogen being incorporated in the Al{sub 2}O{sub 3} films. This is a strong indication for an interface hydrogenation that takes place during the thermal activation, which is limited by the amount of hydrogen provided by the Al{sub 2}O{sub 3} layer.

  7. Self-forming Al oxide barrier for nanoscale Cu interconnects created by hybrid atomic layer deposition of Cu–Al alloy

    SciTech Connect (OSTI)

    Park, Jae-Hyung; Han, Dong-Suk; Kang, You-Jin; Shin, So-Ra; Park, Jong-Wan

    2014-01-15

    The authors synthesized a Cu–Al alloy by employing alternating atomic layer deposition (ALD) surface reactions using Cu and Al precursors, respectively. By alternating between these two ALD surface chemistries, the authors fabricated ALD Cu–Al alloy. Cu was deposited using bis(1-dimethylamino-2-methyl-2-butoxy) copper as a precursor and H{sub 2} plasma, while Al was deposited using trimethylaluminum as the precursor and H{sub 2} plasma. The Al atomic percent in the Cu–Al alloy films varied from 0 to 15.6 at. %. Transmission electron microscopy revealed that a uniform Al-based interlayer self-formed at the interface after annealing. To evaluate the barrier properties of the Al-based interlayer and adhesion between the Cu–Al alloy film and SiO{sub 2} dielectric, thermal stability and peel-off adhesion tests were performed, respectively. The Al-based interlayer showed similar thermal stability and adhesion to the reference Mn-based interlayer. Our results indicate that Cu–Al alloys formed by alternating ALD are suitable seed layer materials for Cu interconnects.

  8. Undoped TiO{sub 2} and nitrogen-doped TiO{sub 2} thin films deposited by atomic layer deposition on planar and architectured surfaces for photovoltaic applications

    SciTech Connect (OSTI)

    Tian, Liang Soum-Glaude, Adurey; Volpi, Fabien; Salvo, Luc; Berthomé, Grégory; Coindeau, Stéphane; Mantoux, Arnaud; Boichot, Raphaël; Lay, Sabine; Brizé, Virginie; Blanquet, Elisabeth; Giusti, Gaël; Bellet, Daniel

    2015-01-15

    Undoped and nitrogen doped TiO{sub 2} thin films were deposited by atomic layer deposition on planar substrates. Deposition on 3D-architecture substrates made of metallic foams was also investigated to propose architectured photovoltaic stack fabrication. All the films were deposited at 265 °C and nitrogen incorporation was achieved by using titanium isopropoxide, NH{sub 3} and/or N{sub 2}O as precursors. The maximum nitrogen incorporation level obtained in this study was 2.9 at. %, resulting in films exhibiting a resistivity of 115 Ω cm (+/−10 Ω cm) combined with an average total transmittance of 60% in the 400–1000 nm wavelength range. Eventually, TiO{sub 2} thin films were deposited on the 3D metallic foam template.

  9. Low interface defect density of atomic layer deposition BeO with self-cleaning reaction for InGaAs metal oxide semiconductor field effect transistors

    SciTech Connect (OSTI)

    Shin, H. S.; SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741; The University of Texas, Austin, Texas 78758 ; Yum, J. H.; The University of Texas, Austin, Texas 78758 ; Johnson, D. W.; Texas A and M University College Station, Texas 77843 ; Harris, H. R.; Hudnall, Todd W.; Oh, J.; Kirsch, P.; Wang, W.-E.; Bielawski, C. W.; Banerjee, S. K.; Lee, J. C.; Lee, H. D.

    2013-11-25

    In this paper, we discuss atomic configuration of atomic layer deposition (ALD) beryllium oxide (BeO) using the quantum chemistry to understand the theoretical origin. BeO has shorter bond length, higher reaction enthalpy, and larger bandgap energy compared with those of ALD aluminum oxide. It is shown that the excellent material properties of ALD BeO can reduce interface defect density due to the self-cleaning reaction and this contributes to the improvement of device performance of InGaAs MOSFETs. The low interface defect density and low leakage current of InGaAs MOSFET were demonstrated using X-ray photoelectron spectroscopy and the corresponding electrical results.

  10. High-reliability passivation of hydrogen-terminated diamond surface by atomic layer deposition of Al{sub 2}O{sub 3}

    SciTech Connect (OSTI)

    Daicho, Akira Saito, Tatsuya; Kurihara, Shinichiro; Kawarada, Hiroshi; Hiraiwa, Atsushi

    2014-06-14

    Although the two-dimensional hole gas (2DHG) of a hydrogen-terminated diamond surface provides a unique p-type conducting layer for high-performance transistors, the conductivity is highly sensitive to its environment. Therefore, the surface must be passivated to preserve the 2DHG, especially at high temperature. We passivated the surface at high temperature (450?C) without the loss of C-H surface bonds by atomic layer deposition (ALD) and investigated the thermal reliability of the Al{sub 2}O{sub 3} film. As a result, C-H bonds were preserved, and the hole accumulation effect appeared after the Al{sub 2}O{sub 3} deposition by ALD with H{sub 2}O as an oxidant. The sheet resistivity and hole density were almost constant between room temperature and 500?C by the passivation with thick Al{sub 2}O{sub 3} film thicker than 38?nm deposited by ALD at 450?C. After the annealing at 550?C in air The sheet resistivity and hole density were preserved. These results indicate the possibility of high-temperature application of the C-H surface diamond device in air. In the case of lower deposition temperatures, the sheet resistivity increased after air annealing, suggesting an insufficient protection capability of these films. Given the result of sheet resistivity after annealing, the increase in the sheet resistivity of these samples was not greatly significant. However, bubble like patterns were observed in the Al{sub 2}O{sub 3} films formed from 200 to 400?C by air annealing at 550?C for 1 h. On the other hand, the patterns were no longer observed at 450?C deposition. Thus, this 450?C deposition is the sole solution to enabling power device application, which requires high reliability at high temperatures.

  11. Bottom-gate coplanar graphene transistors with enhanced graphene adhesion on atomic layer deposition Al{sub 2}O{sub 3}

    SciTech Connect (OSTI)

    Park, Dong-Wook; Mikael, Solomon; Chang, Tzu-Hsuan; Ma, Zhenqiang; Gong, Shaoqin

    2015-03-09

    A graphene transistor with a bottom-gate coplanar structure and an atomic layer deposition (ALD) aluminum oxide (Al{sub 2}O{sub 3}) gate dielectric is demonstrated. Wetting properties of ALD Al{sub 2}O{sub 3} under different deposition conditions are investigated by measuring the surface contact angle. It is observed that the relatively hydrophobic surface is suitable for adhesion between graphene and ALD Al{sub 2}O{sub 3}. To achieve hydrophobic surface of ALD Al{sub 2}O{sub 3}, a methyl group (CH{sub 3})-terminated deposition method has been developed and compared with a hydroxyl group (OH)-terminated deposition. Based on this approach, bottom-gate coplanar graphene field-effect transistors are fabricated and characterized. A post-thermal annealing process improves the performance of the transistors by enhancing the contacts between the source/drain metal and graphene. The fabricated transistor shows an I{sub on}/I{sub off} ratio, maximum transconductance, and field-effect mobility of 4.04, 20.1??S at V{sub D}?=?0.1?V, and 249.5?cm{sup 2}/Vs, respectively.

  12. Atomic layer deposition of crystalline SrHfO{sub 3} directly on Ge (001) for high-k dielectric applications

    SciTech Connect (OSTI)

    McDaniel, Martin D.; Ngo, Thong Q.; Ekerdt, John G.; Hu, Chengqing; Jiang, Aiting; Yu, Edward T.; Lu, Sirong; Smith, David J.; Posadas, Agham; Demkov, Alexander A.

    2015-02-07

    The current work explores the crystalline perovskite oxide, strontium hafnate, as a potential high-k gate dielectric for Ge-based transistors. SrHfO{sub 3} (SHO) is grown directly on Ge by atomic layer deposition and becomes crystalline with epitaxial registry after post-deposition vacuum annealing at ∼700 °C for 5 min. The 2 × 1 reconstructed, clean Ge (001) surface is a necessary template to achieve crystalline films upon annealing. The SHO films exhibit excellent crystallinity, as shown by x-ray diffraction and transmission electron microscopy. The SHO films have favorable electronic properties for consideration as a high-k gate dielectric on Ge, with satisfactory band offsets (>2 eV), low leakage current (<10{sup −5} A/cm{sup 2} at an applied field of 1 MV/cm) at an equivalent oxide thickness of 1 nm, and a reasonable dielectric constant (k ∼ 18). The interface trap density (D{sub it}) is estimated to be as low as ∼2 × 10{sup 12 }cm{sup −2 }eV{sup −1} under the current growth and anneal conditions. Some interfacial reaction is observed between SHO and Ge at temperatures above ∼650 °C, which may contribute to increased D{sub it} value. This study confirms the potential for crystalline oxides grown directly on Ge by atomic layer deposition for advanced electronic applications.

  13. Low-temperature atomic layer deposition of Al{sub 2}O{sub 3} on blown polyethylene films with plasma-treated surfaces

    SciTech Connect (OSTI)

    Beom Lee, Gyeong; Sik Son, Kyung; Won Park, Suk; Hyung Shim, Joon; Choi, Byoung-Ho

    2013-01-15

    In this study, a layer of Al{sub 2}O{sub 3} was deposited on blown polyethylene films by atomic layer deposition (ALD) at low temperatures, and the surface characteristics of these Al{sub 2}O{sub 3}-coated blown polyethylene films were analyzed. In order to examine the effects of the plasma treatment of the surfaces of the blown polyethylene films on the properties of the films, both untreated and plasma-treated film samples were prepared under various processing conditions. The surface characteristics of the samples were determined by x-ray photoelectron spectroscopy, as well as by measuring their surface contact angles. It was confirmed that the surfaces of the plasma-treated samples contained a hydroxyl group, which helped the precursor and the polyethylene substrate to bind. ALD of Al{sub 2}O{sub 3} was performed through sequential exposures to trimethylaluminum and H{sub 2}O at 60 Degree-Sign C. The surface morphologies of the Al{sub 2}O{sub 3}-coated blown polyethylene films were observed using atomic force microscopy and scanning electron microscopy/energy-dispersive x-ray spectroscopy. Further, it was confirmed that after ALD, the surface of the plasma-treated film was covered with alumina grains more uniformly than was the case for the surface of the untreated polymer film. It was also confirmed via the focused ion beam technique that the layer Al{sub 2}O{sub 3} conformed to the surface of the blown polyethylene film.

  14. Investigation of arsenic and antimony capping layers, and half cycle reactions during atomic layer deposition of Al{sub 2}O{sub 3} on GaSb(100)

    SciTech Connect (OSTI)

    Zhernokletov, Dmitry M.; Dong, Hong; Brennan, Barry; Kim, Jiyoung; Wallace, Robert M.; Yakimov, Michael; Tokranov, Vadim; Oktyabrsky, Serge

    2013-11-15

    In-situ monochromatic x-ray photoelectron spectroscopy, low energy electron diffraction, ion scattering spectroscopy, and transmission electron microscopy are used to examine the GaSb(100) surfaces grown by molecular beam epitaxy after thermal desorption of a protective As or Sb layer and subsequent atomic layer deposition (ALD) of Al{sub 2}O{sub 3}. An antimony protective layer is found to be more favorable compared to an arsenic capping layer as it prevents As alloys from forming with the GaSb substrate. The evolution of oxide free GaSb/Al{sub 2}O{sub 3} interface is investigated by “half-cycle” ALD reactions of trimethyl aluminum and deionized water.

  15. Plasmonic Three-Dimensional Transparent Conductor Based on Al-Doped Zinc Oxide-Coated Nanostructured Glass Using Atomic Layer Deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malek, Gary A.; Aytug, Tolga; Liu, Qingfeng; Wu, Judy

    2015-04-02

    Transparent nanostructured glass coatings, fabricated on glass substrates, with a unique three-dimensional (3D) architecture were utilized as the foundation for the design of plasmonic 3D transparent conductors. Transformation of the non-conducting 3D structure to a conducting 3D network was accomplished through atomic layer deposition of aluminum-doped zinc oxide (AZO). After AZO growth, gold nanoparticles (AuNPs) were deposited by electronbeam evaporation to enhance light trapping and decrease the overall sheet resistance. Field emission scanning electron microscopy and atomic force microcopy images revealed the highly porous, nanostructured morphology of the AZO coated glass surface along with the in-plane dimensions of the depositedmore » AuNPs. Sheet resistance measurements conducted on the coated samples verified that the electrical properties of the 3D network are comparable to that of the untextured two-dimensional AZO coated glass substrates. In addition, transmittance measurements of the glass samples coated with various AZO thicknesses showed preservation of the highly transparent nature of each sample, while the AuNPs demonstrated enhanced light scattering as well as light-trapping capability.« less

  16. Epitaxial c-axis oriented BaTiO{sub 3} thin films on SrTiO{sub 3}-buffered Si(001) by atomic layer deposition

    SciTech Connect (OSTI)

    Ngo, Thong Q.; McDaniel, Martin D.; Ekerdt, John G., E-mail: ekerdt@che.utexas.edu [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Posadas, Agham B.; Demkov, Alexander A. [Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States); Hu, Chengqing; Yu, Edward T. [Department of Electrical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Bruley, John [IBM Research Division, Yorktown Heights, New York 10593 (United States)

    2014-02-24

    Atomic layer deposition (ALD) of epitaxial c-axis oriented BaTiO{sub 3} (BTO) on Si(001) using a thin (1.6?nm) buffer layer of SrTiO{sub 3} (STO) grown by molecular beam epitaxy is reported. The ALD growth of crystalline BTO films at 225??C used barium bis(triisopropylcyclopentadienyl), titanium tetraisopropoxide, and water as co-reactants. X-ray diffraction (XRD) reveals a high degree of crystallinity and c-axis orientation of as-deposited BTO films. Crystallinity is improved after vacuum annealing at 600??C. Two-dimensional XRD confirms the tetragonal structure and orientation of 720-nm thick films. The effect of the annealing process on the BTO structure is discussed. A clean STO/Si interface is found using in-situ X-ray photoelectron spectroscopy and confirmed by cross-sectional scanning transmission electron microscopy. The capacitance-voltage characteristics of 720?nm-thick BTO films are examined and show an effective dielectric constant of ?660 for the heterostructure.

  17. Growth behavior and properties of atomic layer deposited tin oxide on silicon from novel tin(II)acetylacetonate precursor and ozone

    SciTech Connect (OSTI)

    Kannan Selvaraj, Sathees; Feinerman, Alan; Takoudis, Christos G.

    2014-01-15

    In this work, a novel liquid tin(II) precursor, tin(II)acetylacetonate [Sn(acac){sub 2}], was used to deposit tin oxide films on Si(100) substrate, using a custom-built hot wall atomic layer deposition (ALD) reactor. Three different oxidizers, water, oxygen, and ozone, were tried. Resulting growth rates were studied as a function of precursor dosage, oxidizer dosage, reactor temperature, and number of ALD cycles. The film growth rate was found to be 0.1??0.01?nm/cycle within the wide ALD temperature window of 175300?C using ozone; no film growth was observed with water or oxygen. Characterization methods were used to study the composition, interface quality, crystallinity, microstructure, refractive index, surface morphology, and resistivity of the resulting films. X-ray photoelectron spectra showed the formation of a clean SnO{sub x}Si interface. The resistivity of the SnO{sub x} films was calculated to be 0.3?? cm. Results of this work demonstrate the possibility of introducing Sn(acac){sub 2} as tin precursor to deposit conducting ALD SnO{sub x} thin films on a silicon surface, with clean interface and no formation of undesired SiO{sub 2} or other interfacial reaction products, for transparent conducting oxide applications.

  18. Conductivity and touch-sensor application for atomic layer deposition ZnO and Al:ZnO on nylon nonwoven fiber mats

    SciTech Connect (OSTI)

    Sweet, William J.; Oldham, Christopher J.; Parsons, Gregory N.

    2015-01-15

    Flexible electronics and wearable technology represent a novel and growing market for next generation devices. In this work, the authors deposit conductive zinc oxide films by atomic layer deposition onto nylon-6 nonwoven fiber mats and spun-cast films, and quantify the impact that deposition temperature, coating thickness, and aluminum doping have on the conductivity of the coated substrates. The authors produce aluminum doped zinc oxide (AZO) coated fibers with conductivity of 230?S/cm, which is ?6 more conductive than ZnO coated fibers. Furthermore, the authors demonstrate AZO coated fibers maintain 62% of their conductivity after being bent around a 3?mm radius cylinder. As an example application, the authors fabricate an all-fiber pressure sensor using AZO coated nylon-6 electrodes. The sensor signal scales exponentially under small applied force (<50?g/cm{sup 2}), yielding a ?10{sup 6} current change under 200?g/cm{sup 2}. This lightweight, flexible, and breathable touch/force sensor could function, for example, as an electronically active nonwoven for personal or engineered system analysis and diagnostics.

  19. Time-resolved surface infrared spectroscopy during atomic layer deposition of TiO{sub 2} using tetrakis(dimethylamido)titanium and water

    SciTech Connect (OSTI)

    Sperling, Brent A. Hoang, John; Kimes, William A.; Maslar, James E.; Steffens, Kristen L.; Nguyen, Nhan V.

    2014-05-15

    Atomic layer deposition of titanium dioxide using tetrakis(dimethylamido)titanium (TDMAT) and water vapor is studied by reflection-absorption infrared spectroscopy (RAIRS) with a time resolution of 120 ms. At 190 °C and 240 °C, a decrease in the absorption from adsorbed TDMAT is observed without any evidence of an adsorbed product. Ex situ measurements indicate that this behavior is not associated with an increase in the impurity concentration or a dramatic change in the growth rate. A desorbing decomposition product is consistent with these observations. RAIRS also indicates that dehydroxylation of the growth surface occurs only among one type of surface hydroxyl groups. Molecular water is observed to remain on the surface and participates in reactions even at a relatively high temperature (110 °C) and with long purge times (30 s)

  20. Surface and interfacial reaction study of half cycle atomic layer deposited HfO{sub 2} on chemically treated GaSb surfaces

    SciTech Connect (OSTI)

    Zhernokletov, D. M.; Dong, H.; Brennan, B.; Kim, J.; Yakimov, M.; Tokranov, V.; Oktyabrsky, S.; Wallace, R. M.; Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080

    2013-04-01

    An in situ half-cycle atomic layer deposition/X-ray photoelectron spectroscopy (XPS) study was conducted in order to investigate the evolution of the HfO{sub 2} dielectric interface with GaSb(100) surfaces after sulfur passivation and HCl etching, designed to remove the native oxides. With the first pulses of tetrakis(dimethylamido)hafnium(IV) and water, a decrease in the concentration of antimony oxide states present on the HCl-etched surface is observed, while antimony sulfur states diminished below the XPS detection limit on sulfur passivated surface. An increase in the amount of gallium oxide/sulfide is seen, suggesting oxygen or sulfur transfers from antimony to gallium during antimony oxides/sulfides decomposition.

  1. Infrared study on room-temperature atomic layer deposition of HfO{sub 2} using tetrakis(ethylmethylamino)hafnium and remote plasma-excited oxidizing agents

    SciTech Connect (OSTI)

    Kanomata, Kensaku [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan and Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Ohba, Hisashi; Pungboon Pansila, P.; Ahmmad, Bashir; Kubota, Shigeru; Hirahara, Kazuhiro; Hirose, Fumihiko, E-mail: fhirose@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan)

    2015-01-01

    Room-temperature atomic layer deposition (ALD) of HfO{sub 2} was examined using tetrakis (ethylmethylamino)hafnium (TEMAH) and remote plasma-excited water and oxygen. A growth rate of 0.26?nm/cycle at room temperature was achieved, and the TEMAH adsorption and its oxidization on HfO{sub 2} were investigated by multiple internal reflection infrared absorption spectroscopy. It was observed that saturated adsorption of TEMAH occurs at exposures of ?1??10{sup 5}?L (1 L?=?1??10{sup ?6} Torr s) at room temperature, and the use of remote plasma-excited water and oxygen vapor is effective in oxidizing the TEMAH molecules on the HfO{sub 2} surface, to produce OH sites. The infrared study suggested that HfOH plays a role as an adsorption site for TEMAH. The reaction mechanism of room temperature HfO{sub 2} ALD is discussed in this paper.

  2. Metal deposition using seed layers

    DOE Patents [OSTI]

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  3. Method of making dense, conformal, ultra-thin cap layers for nanoporous low-k ILD by plasma assisted atomic layer deposition

    DOE Patents [OSTI]

    Jiang, Ying-Bing; Cecchi, Joseph L.; Brinker, C. Jeffrey

    2011-05-24

    Barrier layers and methods for forming barrier layers on a porous layer are provided. The methods can include chemically adsorbing a plurality of first molecules on a surface of the porous layer in a chamber and forming a first layer of the first molecules on the surface of the porous layer. A plasma can then be used to react a plurality of second molecules with the first layer of first molecules to form a first layer of a barrier layer. The barrier layers can seal the pores of the porous material, function as a diffusion barrier, be conformal, and/or have a negligible impact on the overall ILD k value of the porous material.

  4. Influence of dosing sequence and film thickness on structure and resistivity of Al-ZnO films grown by atomic layer deposition

    SciTech Connect (OSTI)

    Pollock, Evan B. Lad, Robert J.

    2014-07-01

    Aluminum-doped zinc oxide (AZO) films were deposited onto amorphous silica substrates using an atomic layer deposition process with diethyl zinc (DEZ), trimethyl aluminum (TMA), and deionized water at 200?C. Three different Al doping sequences were used at a ZnO:Al ratio of 11:1 within the films. A minimum film resistivity of 1.6??10{sup ?3}?? cm was produced using sequential dosing of DEZ, TMA, DEZ, followed by H{sub 2}O for the Al doping step. This ZAZW sequence yielded an AZO film resistivity that is independent of film thickness, crystallographic texture, and grain size, as determined by high resolution x-ray diffraction (XRD). A pseudo-Voigt analysis method yields values for grain sizes that are smaller than those calculated using other XRD methods. Anisotropic grain sizes or variations in crystallographic texture have minimal influence on film resistivity, which suggests that factors other than film texture, such as intragrain scattering, may be important in influencing film resistivity.

  5. L{sub g}?=?100?nm In{sub 0.7}Ga{sub 0.3}As quantum well metal-oxide semiconductor field-effect transistors with atomic layer deposited beryllium oxide as interfacial layer

    SciTech Connect (OSTI)

    Koh, D., E-mail: dh.koh@utexas.edu, E-mail: Taewoo.Kim@sematech.org [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States); SEMATECH, Inc., Albany, New York 12203 (United States); Kwon, H. M. [Department of Electronics Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, T.-W., E-mail: dh.koh@utexas.edu, E-mail: Taewoo.Kim@sematech.org; Veksler, D.; Gilmer, D.; Kirsch, P. D. [SEMATECH, Inc., Albany, New York 12203 (United States); Kim, D.-H. [SEMATECH, Inc., Albany, New York 12203 (United States); GLOBALFOUNDRIES, Malta, New York 12020 (United States); Hudnall, Todd W. [Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, 78666 (United States); Bielawski, Christopher W. [Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712 (United States); Maszara, W. [GLOBALFOUNDRIES, Santa Clara, California 95054 (United States); Banerjee, S. K. [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States)

    2014-04-21

    In this study, we have fabricated nanometer-scale channel length quantum-well (QW) metal-oxide-semiconductor field effect transistors (MOSFETs) incorporating beryllium oxide (BeO) as an interfacial layer. BeO has high thermal stability, excellent electrical insulating characteristics, and a large band-gap, which make it an attractive candidate for use as a gate dielectric in making MOSFETs. BeO can also act as a good diffusion barrier to oxygen owing to its small atomic bonding length. In this work, we have fabricated In{sub 0.53}Ga{sub 0.47}As MOS capacitors with BeO and Al{sub 2}O{sub 3} and compared their electrical characteristics. As interface passivation layer, BeO/HfO{sub 2} bilayer gate stack presented effective oxide thickness less 1 nm. Furthermore, we have demonstrated In{sub 0.7}Ga{sub 0.3}As QW MOSFETs with a BeO/HfO{sub 2} dielectric, showing a sub-threshold slope of 100?mV/dec, and a transconductance (g{sub m,max}) of 1.1 mS/?m, while displaying low values of gate leakage current. These results highlight the potential of atomic layer deposited BeO for use as a gate dielectric or interface passivation layer for IIIV MOSFETs at the 7?nm technology node and/or beyond.

  6. Low sheet resistance titanium nitride films by low-temperature plasma-enhanced atomic layer deposition using design of experiments methodology

    SciTech Connect (OSTI)

    Burke, Micheal Blake, Alan; Povey, Ian M.; Schmidt, Michael; Petkov, Nikolay; Carolan, Patrick; Quinn, Aidan J.

    2014-05-15

    A design of experiments methodology was used to optimize the sheet resistance of titanium nitride (TiN) films produced by plasma-enhanced atomic layer deposition (PE-ALD) using a tetrakis(dimethylamino)titanium precursor in a N{sub 2}/H{sub 2} plasma at low temperature (250 °C). At fixed chamber pressure (300 mTorr) and plasma power (300 W), the plasma duration and N{sub 2} flow rate were the most significant factors. The lowest sheet resistance values (163 Ω/sq. for a 20 nm TiN film) were obtained using plasma durations ∼40 s, N{sub 2} flow rates >60 standard cubic centimeters per minute, and purge times ∼60 s. Time of flight secondary ion mass spectroscopy data revealed reduced levels of carbon contaminants in the TiN films with lowest sheet resistance (163 Ω/sq.), compared to films with higher sheet resistance (400–600 Ω/sq.) while transmission electron microscopy data showed a higher density of nanocrystallites in the low-resistance films. Further significant reductions in sheet resistance, from 163 Ω/sq. to 70 Ω/sq. for a 20 nm TiN film (corresponding resistivity ∼145 μΩ·cm), were achieved by addition of a postcycle Ar/N{sub 2} plasma step in the PE-ALD process.

  7. In situ study of the role of substrate temperature during atomic layer deposition of HfO{sub 2} on InP

    SciTech Connect (OSTI)

    Dong, H.; Santosh, K.C.; Qin, X.; Brennan, B.; McDonnell, S.; Kim, J.; Zhernokletov, D.; Hinkle, C. L.; Cho, K.; Wallace, R. M.; Department of Physics, University of Texas at Dallas, Richardson, Texas 75080

    2013-10-21

    The dependence of the “self cleaning” effect of the substrate oxides on substrate temperature during atomic layer deposition (ALD) of HfO{sub 2} on various chemically treated and native oxide InP (100) substrates is investigated using in situ X-ray photoelectron spectroscopy. The removal of In-oxide is found to be more efficient at higher ALD temperatures. The P oxidation states on native oxide and acid etched samples are seen to change, with the total P-oxide concentration remaining constant, after 10 cycles of ALD HfO{sub 2} at different temperatures. An (NH{sub 4}){sub 2} S treatment is seen to effectively remove native oxides and passivate the InP surfaces independent of substrate temperature studied (200 °C, 250 °C and 300 °C) before and after the ALD process. Density functional theory modeling provides insight into the mechanism of the changes in the P-oxide chemical states.

  8. Deposition temperature dependence of material and Si surface passivation properties of O{sub 3}-based atomic layer deposited Al{sub 2}O{sub 3}-based films and stacks

    SciTech Connect (OSTI)

    Bordihn, Stefan; Mertens, Verena; Mller, Jrg W.; Kessels, W. M. M.

    2014-01-15

    The material composition and the Si surface passivation of aluminum oxide (Al{sub 2}O{sub 3}) films prepared by atomic layer deposition using Al(CH{sub 3}){sub 3} and O{sub 3} as precursors were investigated for deposition temperatures (T{sub Dep}) between 200?C and 500?C. The growth per cycle decreased with increasing deposition temperature due to a lower Al deposition rate. In contrast the material composition was hardly affected except for the hydrogen concentration, which decreased from [H]?=?3 at. % at 200?C to [H]?layer Al{sub 2}O{sub 3} films, both for the chemical and field-effect passivation. The fixed charge density in the Al{sub 2}O{sub 3}/SiN{sub x} stacks, reflecting the field-effect passivation, was reduced by one order of magnitude from 310{sup 12}?cm{sup ?2} to 310{sup 11}?cm{sup ?2} when T{sub Dep} was increased from 300?C to 500?C. The level of the chemical passivation changed as well, but the total level of the surface passivation was hardly affected by the value of T{sub Dep}. When firing films prepared at of low T{sub Dep}, blistering of the films occurred and this strongly reduced the surface passivation. These results presented in this work demonstrate that a high level of surface passivation can be achieved for Al{sub 2}O{sub 3}-based films and stacks over a wide range of conditions when the combination of deposition temperature and annealing or firing temperature is carefully chosen.

  9. Shape-selective catalysts for Fischer-Tropsch chemistry : atomic layer deposition of active catalytic metals. Activity report : January 1, 2005 - September 30, 2005.

    SciTech Connect (OSTI)

    Cronauer, D. C.

    2011-04-15

    Argonne National Laboratory is carrying out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry - specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it is desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. The broad goal is to produce diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. Originally the goal was to prepare shape-selective catalysts that would limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' Such catalysts were prepared with silica-containing fractal cages. The activity was essentially the same as that of catalysts without the cages. We are currently awaiting follow-up experiments to determine the attrition strength of these catalysts. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product molecular weight distribution could be controlled. In order to rapidly evaluate the catalytic membranes, the ALD coating processes were performed in an 'exploratory mode' in which ALD procedures from the literature appropriate for coating flat surfaces were applied to the high surface area membranes. Consequently, the Fe and Ru loadings in the membranes were likely to be smaller than those expected for complete monolayer coverage. In addition, there was likely to be significant variation in the Fe and Ru loading among the membranes due to difficulties in nucleating these materials on the aluminum oxide surfaces. The first series of experiments using coated membranes demonstrated that the technology needed further improvement. Specifically, observed catalytic FT activity was low. This low activity appeared to be due to: (1) low available surface area, (2) atomic deposition techniques that needed improvements, and (3) insufficient preconditioning of the catalyst surface prior to FT testing. Therefore, experimentation was expanded to the use of particulate silica supports having defined channels and reasonably high surface area. This later experimentation will be discussed in the next progress report. Subsequently, we plan to evaluate membranes after the ALD techniques are improved with a careful study to control and quantify the Fe and Ru loadings. The preconditioning of these surfaces will also be further developed. (A number of improvements have been made with particulate supports; they will be discussed in the subsequent report.) In support of the above, there was an opportunity to undertake a short study of cobalt/promoter/support interaction using the Advanced Photon Source (APS) of Argonne. Five catalysts and a reference cobalt oxide were characterized during a temperature programmed EXAFS/XANES experimental study with the combined effort of Argonne and the Center for Applied Energy Research (CAER) of the University of Kentucky. This project was completed, and it resulted in an extensive understanding of the preconditioning step of reducing Co-containing FT catalysts. A copy of the resulting manuscript has been submitted and accepted for publication. A similar project was undertaken with iron-containing FT catalysts; the data is currently being studied.

  10. Underpotential deposition-mediated layer-by-layer growth of thin films

    DOE Patents [OSTI]

    Wang, Jia Xu; Adzic, Radoslav R.

    2015-05-19

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.

  11. Cathode encapsulation of organic light emitting diodes by atomic layer deposited Al{sub 2}O{sub 3} films and Al{sub 2}O{sub 3}/a-SiN{sub x}:H stacks

    SciTech Connect (OSTI)

    Keuning, W.; Weijer, P. van de; Lifka, H.; Kessels, W. M. M.; Creatore, M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Philips Research Laboratories, High Tech Campus 4, P.O. Box WAG12, 5656 AE Eindhoven (Netherlands); Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2012-01-15

    Al{sub 2}O{sub 3} thin films synthesized by plasma-enhanced atomic layer deposition (ALD) at room temperature (25 deg. C) have been tested as water vapor permeation barriers for organic light emitting diode devices. Silicon nitride films (a-SiN{sub x}:H) deposited by plasma-enhanced chemical vapor deposition served as reference and were used to develop Al{sub 2}O{sub 3}/a-SiN{sub x}:H stacks. On the basis of Ca test measurements, a very low intrinsic water vapor transmission rate of {<=} 2 x 10{sup -6} g m{sup -2} day{sup -1} and 4 x 10{sup -6} g m{sup -2} day{sup -1} (20 deg. C/50% relative humidity) were found for 20-40 nm Al{sub 2}O{sub 3} and 300 nm a-SiN{sub x}:H films, respectively. The cathode particle coverage was a factor of 4 better for the Al{sub 2}O{sub 3} films compared to the a-SiN{sub x}:H films and an average of 0.12 defects per cm{sup 2} was obtained for a stack consisting of three barrier layers (Al{sub 2}O{sub 3}/a-SiN{sub x}:H/Al{sub 2}O{sub 3}).

  12. Solvothermal Thin Film Deposition of Electron Blocking Layers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solvothermal Thin Film Deposition of Electron Blocking Layers Home > Research > ANSER Research Highlights > Solvothermal Thin Film Deposition of Electron Blocking Layers...

  13. Effect of postdeposition annealing on the electrical properties of ?-Ga{sub 2}O{sub 3} thin films grown on p-Si by plasma-enhanced atomic layer deposition

    SciTech Connect (OSTI)

    Altuntas, Halit; Donmez, Inci; Ozgit-Akgun, Cagla; Biyikli, Necmi

    2014-07-01

    Ga{sub 2}O{sub 3} dielectric thin films were deposited on (111)-oriented p-type silicon wafers by plasma-enhanced atomic layer deposition using trimethylgallium and oxygen plasma. Structural analysis of the Ga{sub 2}O{sub 3} thin films was carried out using grazing-incidence x-ray diffraction. As-deposited films were amorphous. Upon postdeposition annealing at 700, 800, and 900?C for 30?min under N{sub 2} ambient, films crystallized into ?-form monoclinic structure. Electrical properties of the ?-Ga{sub 2}O{sub 3} thin films were then investigated by fabricating and characterizing Al/?-Ga{sub 2}O{sub 3}/p-Si metaloxide-semiconductor capacitors. The effect of postdeposition annealing on the leakage current densities, leakage current conduction mechanisms, dielectric constants, flat-band voltages, reverse breakdown voltages, threshold voltages, and effective oxide charges of the capacitors were presented. The effective oxide charges (Q{sub eff}) were calculated from the capacitancevoltage (C-V) curves using the flat-band voltage shift and were found as 2.6??10{sup 12}, 1.9??10{sup 12}, and 2.5??10{sup 12} cm{sup ?2} for samples annealed at 700, 800, and 900?C, respectively. Effective dielectric constants of the films decreased with increasing annealing temperature. This situation was attributed to the formation of an interfacial SiO{sub 2} layer during annealing process. Leakage mechanisms in the regions where current increases gradually with voltage were well fitted by the Schottky emission model for films annealed at 700 and 900?C, and by the FrenkelPoole emission model for film annealed at 800?C. Leakage current density was found to improve with annealing temperature. ?-Ga{sub 2}O{sub 3} thin film annealed at 800?C exhibited the highest reverse breakdown field value.

  14. Layered Atom Arrangements in Complex Materials

    SciTech Connect (OSTI)

    K.E. Sikafus; R.W.Grimes; S.M.Corish; A.R. Cleave; M.Tang; C.R.Stanek; B.P. Uberuaga; J.A.Valdez

    2005-04-15

    In this report, we develop an atom layer stacking model to describe systematically the crystal structures of complex materials. To illustrate the concepts, we consider a sequence of oxide compounds in which the metal cations progress in oxidation state from monovalent (M{sup 1+}) to tetravalent (M{sup 4+}). We use concepts relating to geometric subdivisions of a triangular atom net to describe the layered atom patterns in these compounds (concepts originally proposed by Shuichi Iida). We demonstrate that as a function of increasing oxidation state (from M{sup 1+} to M{sup 4+}), the layer stacking motifs used to generate each successive structure (specifically, motifs along a 3 symmetry axis), progress through the following sequence: MMO, MO, M{sub r}O, MO{sub r/s}O{sub u/v}, MOO (where M and O represent fully dense triangular atom nets and r/s and u/v are fractions used to describe partially filled triangular atom nets). We also develop complete crystallographic descriptions for the compounds in our oxidation sequence using trigonal space group R{bar 3}.

  15. Nano-soldering to single atomic layer

    DOE Patents [OSTI]

    Girit, Caglar O.; Zettl, Alexander K.

    2011-10-11

    A simple technique to solder submicron sized, ohmic contacts to nanostructures has been disclosed. The technique has several advantages over standard electron beam lithography methods, which are complex, costly, and can contaminate samples. To demonstrate the soldering technique graphene, a single atomic layer of carbon, has been contacted, and low- and high-field electronic transport properties have been measured.

  16. Process for depositing Cr-bearing layer

    DOE Patents [OSTI]

    Ellis, Timothy W.; Lograsso, Thomas A.; Eshelman, Mark A.

    1995-05-09

    A method of applying a Cr-bearing layer to a substrate, comprises introducing an organometallic compound, in vapor or solid powder form entrained in a carrier gas to a plasma of an inductively coupled plasma torch or device to thermally decompose the organometallic compound and contacting the plasma and the substrate to be coated so as to deposit the Cr-bearing layer on the substrate. A metallic Cr, Cr alloy or Cr compound such as chromium oxide, nitride and carbide can be provided on the substrate. Typically, the organometallic compound is introduced to an inductively coupled plasma torch that is disposed in ambient air so to thermally decompose the organometallic compound in the plasma. The plasma is directed at the substrate to deposit the Cr-bearing layer or coating on the substrate.

  17. Process for depositing Cr-bearing layer

    DOE Patents [OSTI]

    Ellis, T.W.; Lograsso, T.A.; Eshelman, M.A.

    1995-05-09

    A method of applying a Cr-bearing layer to a substrate, comprises introducing an organometallic compound, in vapor or solid powder form entrained in a carrier gas to a plasma of an inductively coupled plasma torch or device to thermally decompose the organometallic compound and contacting the plasma and the substrate to be coated so as to deposit the Cr-bearing layer on the substrate. A metallic Cr, Cr alloy or Cr compound such as chromium oxide, nitride and carbide can be provided on the substrate. Typically, the organometallic compound is introduced to an inductively coupled plasma torch that is disposed in ambient air so to thermally decompose the organometallic compound in the plasma. The plasma is directed at the substrate to deposit the Cr-bearing layer or coating on the substrate. 7 figs.

  18. Method of depositing epitaxial layers on a substrate

    DOE Patents [OSTI]

    Goyal, Amit

    2003-12-30

    An epitaxial article and method for forming the same includes a substrate having a textured surface, and an electrochemically deposited substantially single orientation epitaxial layer disposed on and in contact with the textured surface. The epitaxial article can include an electromagnetically active layer and an epitaxial buffer layer. The electromagnetically active layer and epitaxial buffer layer can also be deposited electrochemically.

  19. Atomic-layer synthesis and imaging uncover broken inversion symmetry...

    Office of Scientific and Technical Information (OSTI)

    Atomic-layer synthesis and imaging uncover broken inversion symmetry in La 2 - x Sr x CuO 4 films Citation Details In-Document Search Title: Atomic-layer synthesis and imaging ...

  20. Solvothermal Thin Film Deposition of Electron Blocking Layers | ANSER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center | Argonne-Northwestern National Laboratory Solvothermal Thin Film Deposition of Electron Blocking Layers Home > Research > ANSER Research Highlights > Solvothermal Thin Film Deposition of Electron Blocking Layers

  1. Inkjet Deposition of Layer-by-Layer Assembled Films

    SciTech Connect (OSTI)

    Andres, C. M.; Kotov, Nicholas A.

    2010-09-23

    Layer-by-layer assembly (LBL) can create advanced composites with exceptional properties unavailable by other means, but the laborious deposition process and multiple dipping cycles hamper their utilization in microtechnologies and electronics. Multiple rinse steps provide both structural control and thermodynamic stability to LBL multilayers, but they significantly limit their practical applications and contribute significantly to the processing time and waste. Here we demonstrate that by employing inkjet technology one can deliver the necessary quantities of LBL components required for film buildup without excess, eliminating the need for repetitive rinsing steps. This feature differentiates this approach from all other recognized LBL modalities. Using a model system of negatively charged gold nanoparticles and positively charged poly(diallyldimethylammonium) chloride, the material stability, nanoscale control over thickness, and particle coverage offered by the inkjet LBL technique are shown to be equal or better than the case of multilayers made with traditional dipping cycles. The opportunity for fast deposition of complex metallic patterns using a simple inkjet printer is also shown. The additive nature of LBL deposition based on the formation of insoluble nanoparticle-polyelectrolyte complexes of various compositions provides an excellent opportunity for versatile, multicomponent, and noncontact patterning for the simple production of stratified patterns that are much needed in advanced devices.

  2. Dual ion beam assisted deposition of biaxially textured template layers

    DOE Patents [OSTI]

    Groves, James R.; Arendt, Paul N.; Hammond, Robert H.

    2005-05-31

    The present invention is directed towards a process and apparatus for epitaxial deposition of a material, e.g., a layer of MgO, onto a substrate such as a flexible metal substrate, using dual ion beams for the ion beam assisted deposition whereby thick layers can be deposited without degradation of the desired properties by the material. The ability to deposit thicker layers without loss of properties provides a significantly broader deposition window for the process.

  3. Isotope analysis of diamond-surface passivation effect of high-temperature H{sub 2}O-grown atomic layer deposition-Al{sub 2}O{sub 3} films

    SciTech Connect (OSTI)

    Hiraiwa, Atsushi E-mail: qs4a-hriw@asahi-net.or.jp; Saito, Tatsuya; Matsumura, Daisuke; Kawarada, Hiroshi

    2015-06-07

    The Al{sub 2}O{sub 3} film formed using an atomic layer deposition (ALD) method with trimethylaluminum as Al precursor and H{sub 2}O as oxidant at a high temperature (450?C) effectively passivates the p-type surface conduction (SC) layer specific to a hydrogen-terminated diamond surface, leading to a successful operation of diamond SC field-effect transistors at 400?C. In order to investigate this excellent passivation effect, we carried out an isotope analysis using D{sub 2}O instead of H{sub 2}O in the ALD and found that the Al{sub 2}O{sub 3} film formed at a conventional temperature (100?C) incorporates 50 times more CH{sub 3} groups than the high-temperature film. This CH{sub 3} is supposed to dissociate from the film when heated afterwards at a higher temperature (550?C) and causes peeling patterns on the H-terminated surface. The high-temperature film is free from this problem and has the largest mass density and dielectric constant among those investigated in this study. The isotope analysis also unveiled a relatively active H-exchange reaction between the diamond H-termination and H{sub 2}O oxidant during the high-temperature ALD, the SC still being kept intact. This dynamic and yet steady H termination is realized by the suppressed oxidation due to the endothermic reaction with H{sub 2}O. Additionally, we not only observed the kinetic isotope effect in the form of reduced growth rate of D{sub 2}O-oxidant ALD but found that the mass density and dielectric constant of D{sub 2}O-grown Al{sub 2}O{sub 3} films are smaller than those of H{sub 2}O-grown films. This is a new type of isotope effect, which is not caused by the presence of isotopes in the films unlike the traditional isotope effects that originate from the presence of isotopes itself. Hence, the high-temperature ALD is very effective in forming Al{sub 2}O{sub 3} films as a passivation and/or gate-insulation layer of high-temperature-operation diamond SC devices, and the knowledge of the aforementioned new isotope effect will be a basis for further enhancing ALD technologies in general.

  4. Molecular layer deposition of alucone films using trimethylaluminum and hydroquinone

    SciTech Connect (OSTI)

    Choudhury, Devika; Sarkar, Shaibal K.; Mahuli, Neha

    2015-01-01

    A hybrid organicinorganic polymer film grown by molecular layer deposition (MLD) is demonstrated here. Sequential exposures of trimethylaluminum [Al(CH{sub 3}){sub 3}] and hydroquinone [C{sub 6}H{sub 4}(OH){sub 2}] are used to deposit the polymeric films, which is a representative of a class of aluminum oxide polymers known as alucones. In-situ quartz crystal microbalance (QCM) studies are employed to determine the growth characteristics. An average growth rate of 4.1 per cycle at 150?C is obtained by QCM and subsequently verified with x-ray reflectivity measurements. Surface chemistry during each MLD-half cycle is studied in depth by in-situ Fourier transform infrared (FTIR) vibration spectroscopy. Self limiting nature of the reaction is confirmed from both QCM and FTIR measurements. The conformal nature of the deposit, typical for atomic layer deposition and MLD, is verified with transmission electron microscopy imaging. Secondary ion mass spectroscopy measurements confirm the uniform elemental distribution along the depth of the films.

  5. Method for depositing layers of high quality semiconductor material

    DOE Patents [OSTI]

    Guha, Subhendu; Yang, Chi C.

    2001-08-14

    Plasma deposition of substantially amorphous semiconductor materials is carried out under a set of deposition parameters which are selected so that the process operates near the amorphous/microcrystalline threshold. This threshold varies as a function of the thickness of the depositing semiconductor layer; and, deposition parameters, such as diluent gas concentrations, must be adjusted as a function of layer thickness. Also, this threshold varies as a function of the composition of the depositing layer, and in those instances where the layer composition is profiled throughout its thickness, deposition parameters must be adjusted accordingly so as to maintain the amorphous/microcrystalline threshold.

  6. Sensitivity analysis of single-layer graphene resonators using atomic

    Office of Scientific and Technical Information (OSTI)

    finite element method (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Sensitivity analysis of single-layer graphene resonators using atomic finite element method Citation Details In-Document Search Title: Sensitivity analysis of single-layer graphene resonators using atomic finite element method Atomic finite element simulation is applied to study the natural frequency and sensitivity of a single-layer graphene-based resonator with CCCC, SSSS, CFCF, SFSF,

  7. Method of depositing buffer layers on biaxially textured metal...

    Office of Scientific and Technical Information (OSTI)

    eu; gd; tb; tm; resup1subx; resup2sub1-xsub2; osub3; buffer; layer; deposited; sol-gel; metal-organic; decomposition; laminate; article; layer; ybco; resup1subx; ...

  8. Atomic-Layer Engineering of Cuprate Superconductors (415th Brookhaven

    Office of Scientific and Technical Information (OSTI)

    Lecture) (Conference) | SciTech Connect Conference: Atomic-Layer Engineering of Cuprate Superconductors (415th Brookhaven Lecture) Citation Details In-Document Search Title: Atomic-Layer Engineering of Cuprate Superconductors (415th Brookhaven Lecture) Copper-oxide compounds, called cuprates, show superconducting properties at 163 degrees Kelvin, the highest temperature of any known superconducting material. Cuprates are therefore among the 'high-temperature superconductors' of extreme

  9. Method of depositing buffer layers on biaxially textured metal substrates

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Method of depositing buffer layers on biaxially textured metal substrates Citation Details In-Document Search Title: Method of depositing buffer layers on biaxially textured metal substrates × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  10. Method of depositing buffer layers on biaxially textured metal substrates

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Method of depositing buffer layers on biaxially textured metal substrates Citation Details In-Document Search Title: Method of depositing buffer layers on biaxially textured metal substrates A laminate article comprises a substrate and a biaxially textured (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer over the substrate, wherein 0 Authors: Beach, David B. [1] ; Morrell, Jonathan S. [1] ; Paranthaman, Mariappan [1] ; Chirayil, Thomas [1] ; Specht,

  11. Liquid-phase-deposited siloxane-based capping layers for silicon solar cells

    SciTech Connect (OSTI)

    Veith-Wolf, Boris; Wang, Jianhui; Hannu-Kuure, Milja; Chen, Ning; Hadzic, Admir; Williams, Paul; Leivo, Jarkko; Karkkainen, Ari; Schmidt, Jan

    2015-02-02

    We apply non-vacuum processing to deposit dielectric capping layers on top of ultrathin atomic-layer-deposited aluminum oxide (AlO{sub x}) films, used for the rear surface passivation of high-efficiency crystalline silicon solar cells. We examine various siloxane-based liquid-phase-deposited (LPD) materials. Our optimized AlO{sub x}/LPD stacks show an excellent thermal and chemical stability against aluminum metal paste, as demonstrated by measured surface recombination velocities below 10 cm/s on 1.3 Ωcm p-type silicon wafers after firing in a belt-line furnace with screen-printed aluminum paste on top. Implementation of the optimized LPD layers into an industrial-type screen-printing solar cell process results in energy conversion efficiencies of up to 19.8% on p-type Czochralski silicon.

  12. Method of depositing a high-emissivity layer

    DOE Patents [OSTI]

    Wickersham, Charles E.; Foster, Ellis L.

    1983-01-01

    A method of depositing a high-emissivity layer on a substrate comprising RF sputter deposition of a carbide-containing target in an atmosphere of a hydrocarbon gas and a noble gas. As the carbide is deposited on the substrate the hydrocarbon gas decomposes to hydrogen and carbon. The carbon deposits on the target and substrate causing a carbide/carbon composition gradient to form on the substrate. At a sufficiently high partial pressure of hydrocarbon gas, a film of high-emissivity pure carbon will eventually form over the substrate.

  13. Underpotential Deposition-Mediated Layer-by-Layer Growth of Thin Films -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Startup America Startup America Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Underpotential Deposition-Mediated Layer-by-Layer Growth of Thin Films Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Overpotential deposition of Ag monolayer and bilayer on Au( 1 1 1) mediated by Pb adlayer (236 KB) <p> Increase in catalytic activity for the oxygen reduction reaction (ORR)

  14. Passivation layer on polyimide deposited by combined plasma immersion ion implantation and deposition and cathodic vacuum arc technique

    SciTech Connect (OSTI)

    Han, Z. J.; Tay, B. K.; Sze, J. Y.; Ha, P. C. T.

    2007-05-15

    A thin passivation layer of aluminum oxide was deposited on polyimide by using the combined plasma immersion ion implantation and deposition (PIII and D) and cathodic vacuum arc technique. X-ray photoelectron spectroscopy C 1s spectra showed that the carbonyl bond (C=O) and ether group (C-O-C and C-N-C) presented in pristine polyimide were damaged by implantation of aluminum ions and deposition of an aluminum oxide passivation layer. O 1s and Al 2p spectra confirmed the formation of a thin aluminum oxide passivation layer. This passivation layer can be implemented in aerospace engineering where polyimide may suffer degradation from fast atomic oxygen in the low-earth-orbit environment. To test the protection of this passivation layer to energetic oxygen ions, a plasma-enhanced chemical vapor deposition system was used to simulate the oxygen-ion irradiation, and the results showed that a higher weight occurred for passivated samples compared to pristine ones. X-ray diffraction showed that Al peaks were presented on the surface region, but no aluminum oxide peak was detected. The authors then concluded that Al clusters were formed in polyimide besides aluminum oxide, which was in an x-ray amorphous state. Furthermore, contact-angle measurements showed a reduced contact angle for passivated polyimide from a pristine value of 78 deg. to 20 deg. by using deionized water. Several discussions have been made on the surface chemical and structural property changes by using the combined PIII and D and cathodic vacuum arc technique.

  15. Method of depositing buffer layers on biaxially textured metal substrates

    DOE Patents [OSTI]

    Beach, David B. (Knoxville, TN); Morrell, Jonathan S. (Knoxville, TN); Paranthaman, Mariappan (Knoxville, TN); Chirayil, Thomas (Knoxville, TN); Specht, Eliot D. (Knoxville, TN); Goyal, Amit (Knoxville, TN)

    2002-08-27

    A laminate article comprises a substrate and a biaxially textured (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer over the substrate, wherein 0layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  16. Preliminary studies of the use of an automated flow-cell electrodeposition system for the formation of CdTe thin films by electrochemical atomic layer epitaxy

    SciTech Connect (OSTI)

    Huang, B.M.; Colletti, L.P.; Gregory, B.W.; Anderson, J.L.; Stickney, J.L.

    1995-09-01

    This paper is the first report of the formation of thin films, thicker than ten monolayers, using electrochemical atomic layer epitaxy (ECALE). Thin films of CdTe have been electrodeposited on polycrystalline gold substrates in an electrochemical thin-layer flow-cell deposition system using the ECALE methodology. Studies of the deposit morphology have been performed using scanning electron microscopy and atomic force microscope Significant improvements in deposit morphology are reported as a result of changes to the ECALE cycle program and deposition hardware. Deposit components analyzed using electron probe microanalysis and inductively coupled plasma atomic emission spectrometry, were found to be stoichiometric and nearly independent of the number of cycles and the Cd deposition potential. In addition, the deposition rate was shown to be one CdTe monolayer per cycle (half monolayer of Cd and half monolayer of Te per ECALE cycle).

  17. Sol-gel deposition of buffer layers on biaxially textured metal...

    Office of Scientific and Technical Information (OSTI)

    Sol-gel deposition of buffer layers on biaxially textured metal substances Citation Details In-Document Search Title: Sol-gel deposition of buffer layers on biaxially textured ...

  18. Chemically deposited CdS by an ammonia-free process for solar cells window layers

    SciTech Connect (OSTI)

    Ochoa-Landin, R.; Sastre-Hernandez, J.; Vigil-Galan, O.; Ramirez-Bon, R.

    2010-02-15

    Chemically deposited CdS window layers were studied on two different transparent conductive substrates, namely indium tin oxide (ITO) and fluorine doped tin oxide (FTO), to determine the influence of their properties on CdS/CdTe solar cells performance. Three types of CdS films obtained from different chemical bath deposition (CBD) processes were studied. The three CBD processes employed sodium citrate as the complexing agent in partial or full substitution of ammonia. The CdS films were studied by X-ray diffraction, optical transmission spectroscopy and atomic force microscopy. CdS/CdTe devices were completed by depositing 3 {mu}m thick CdTe absorbent layers by means of the close-spaced vapor transport technique (CSVT). Evaporated Cu-Au was used as the back contact in all the solar cells. Dark and under illumination J-V characteristic and quantum efficiency measurements were done on the CdS/CdTe devices to determine their conversion efficiency and spectral response. The efficiency of the cells depended on the window layer and on the transparent contact with values between 5.7% and 8.7%. (author)

  19. Atomic Layer Deposition for Stabilization of Silicon Anodes

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Atomic-Layer Deposition on Noble Metal Powders

    Office of Scientific and Technical Information (OSTI)

    catalysts show enhanced properties - literature examples Sandia National Laboratories Electro-oxidation of formic acid on Pt catalyst active HCOOH + 12 O2 poisoned CO2 + H2O CO * ...

  1. An electroless approach to atomic layer deposition on noble metal...

    Office of Scientific and Technical Information (OSTI)

    Abstract not provided. Authors: Cappillino, Patrick ; Robinson, David ; Sugar, Joshua Daniel ; El Gabaly Marquez, Farid ; Cai, Trevor ; Liu, Zhi ; Stickney, John Publication Date: ...

  2. Atomic Layer Deposition for Stabilization of Amorphous Silicon Anodes |

    Broader source: Energy.gov (indexed) [DOE]

    Commemorate 1 Year Anniversary of Hurricane Sandy | Department of Energy NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Assistant Secretary Patricia Hoffman will join Congressmen Donald M. Payne, Jr. (NJ-10) and Frank Pallone, Jr. (NJ-6) and Public Service Energy & Gas (PSEG) Company President & CEO Ralph LaRossa in a press conference on the need to upgrade our power systems, invest in smart grid technologies, and make our electric grid more resilient. Between 2003 and 2012,

  3. The perfect atom sandwich requires an extra layer > Archived...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Titanium atoms (yellow) preferentially bond with oxygen atoms (gray) and sit at the center of a complete octahedron, making it energetically more favorable for titanium to switch ...

  4. Process for ion-assisted laser deposition of biaxially textured layer on substrate

    DOE Patents [OSTI]

    Russo, Richard E.; Reade, Ronald P.; Garrison, Stephen M.; Berdahl, Paul

    1995-01-01

    A process for depositing a biaxially aligned intermediate layer over a non-single crystal substrate is disclosed which permits the subsequent deposition thereon of a biaxially oriented superconducting film. The process comprises depositing on a substrate by laser ablation a material capable of being biaxially oriented and also capable of inhibiting the migration of substrate materials through the intermediate layer into such a superconducting film, while simultaneously bombarding the substrate with an ion beam. In a preferred embodiment, the deposition is carried out in the same chamber used to subsequently deposit a superconducting film over the intermediate layer. In a further aspect of the invention, the deposition of the superconducting layer over the biaxially oriented intermediate layer is also carried out by laser ablation with optional additional bombardment of the coated substrate with an ion beam during the deposition of the superconducting film.

  5. Process for ion-assisted laser deposition of biaxially textured layer on substrate

    DOE Patents [OSTI]

    Russo, R.E.; Reade, R.P.; Garrison, S.M.; Berdahl, P.

    1995-07-11

    A process for depositing a biaxially aligned intermediate layer over a non-single crystal substrate is disclosed which permits the subsequent deposition thereon of a biaxially oriented superconducting film. The process comprises depositing on a substrate by laser ablation a material capable of being biaxially oriented and also capable of inhibiting the migration of substrate materials through the intermediate layer into such a superconducting film, while simultaneously bombarding the substrate with an ion beam. In a preferred embodiment, the deposition is carried out in the same chamber used to subsequently deposit a superconducting film over the intermediate layer. In a further aspect of the invention, the deposition of the superconducting layer over the biaxially oriented intermediate layer is also carried out by laser ablation with optional additional bombardment of the coated substrate with an ion beam during the deposition of the superconducting film. 8 figs.

  6. Sol-gel deposition of buffer layers on biaxially textured metal substances

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Sol-gel deposition of buffer layers on biaxially textured metal substances Citation Details In-Document Search Title: Sol-gel deposition of buffer layers on biaxially textured metal substances A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing

  7. Controlling single and few-layer graphene crystals growth in a solid carbon source based chemical vapor deposition

    SciTech Connect (OSTI)

    Papon, Remi; Sharma, Subash; Shinde, Sachin M.; Vishwakarma, Riteshkumar; Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555 (Japan)

    2014-09-29

    Here, we reveal the growth process of single and few-layer graphene crystals in the solid carbon source based chemical vapor deposition (CVD) technique. Nucleation and growth of graphene crystals on a polycrystalline Cu foil are significantly affected by the injection of carbon atoms with pyrolysis rate of the carbon source. We observe micron length ribbons like growth front as well as saturated growth edges of graphene crystals depending on growth conditions. Controlling the pyrolysis rate of carbon source, monolayer and few-layer crystals and corresponding continuous films are obtained. In a controlled process, we observed growth of large monolayer graphene crystals, which interconnect and merge together to form a continuous film. On the other hand, adlayer growth is observed with an increased pyrolysis rate, resulting few-layer graphene crystal structure and merged continuous film. The understanding of monolayer and few-layer crystals growth in the developed CVD process can be significant to grow graphene with controlled layer numbers.

  8. Lubricant-Infused Nanoparticulate Coatings Assembled by Layer-by-Layer Deposition

    SciTech Connect (OSTI)

    Sunny, S; Vogel, N; Howell, C; Vu, TL; Aizenberg, J

    2014-09-01

    Omniphobic coatings are designed to repel a wide range of liquids without leaving stains on the surface. A practical coating should exhibit stable repellency, show no interference with color or transparency of the underlying substrate and, ideally, be deposited in a simple process on arbitrarily shaped surfaces. We use layer-by-layer (LbL) deposition of negatively charged silica nanoparticles and positively charged polyelectrolytes to create nanoscale surface structures that are further surface-functionalized with fluorinated silanes and infiltrated with fluorinated oil, forming a smooth, highly repellent coating on surfaces of different materials and shapes. We show that four or more LbL cycles introduce sufficient surface roughness to effectively immobilize the lubricant into the nanoporous coating and provide a stable liquid interface that repels water, low-surface-tension liquids and complex fluids. The absence of hierarchical structures and the small size of the silica nanoparticles enables complete transparency of the coating, with light transmittance exceeding that of normal glass. The coating is mechanically robust, maintains its repellency after exposure to continuous flow for several days and prevents adsorption of streptavidin as a model protein. The LbL process is conceptually simple, of low cost, environmentally benign, scalable, automatable and therefore may present an efficient synthetic route to non-fouling materials.

  9. Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition

    SciTech Connect (OSTI)

    Sunny, Steffi; Vogel, Nicolas; Howell, Caitlin; Vu, Thy L.; Aizenberg, Joanna

    2014-09-01

    Omniphobic coatings are designed to repel a wide range of liquids without leaving stains on the surface. A practical coating should exhibit stable repellency, show no interference with color or transparency of the underlying substrate and, ideally, be deposited in a simple process on arbitrarily shaped surfaces. We use layer-by-layer (LbL) deposition of negatively charged silica nanoparticles and positively charged polyelectrolytes to create nanoscale surface structures that are further surface-functionalized with fluorinated silanes and infiltrated with fluorinated oil, forming a smooth, highly repellent coating on surfaces of different materials and shapes. We show that four or more LbL cycles introduce sufficient surface roughness to effectively immobilize the lubricant into the nanoporous coating and provide a stable liquid interface that repels water, low-surface-tension liquids and complex fluids. The absence of hierarchical structures and the small size of the silica nanoparticles enables complete transparency of the coating, with light transmittance exceeding that of normal glass. The coating is mechanically robust, maintains its repellency after exposure to continuous flow for several days and prevents adsorption of streptavidin as a model protein. As a result, the LbL process is conceptually simple, of low cost, environmentally benign, scalable, automatable and therefore may present an efficient synthetic route to non-fouling materials.

  10. Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sunny, Steffi; Vogel, Nicolas; Howell, Caitlin; Vu, Thy L.; Aizenberg, Joanna

    2014-09-01

    Omniphobic coatings are designed to repel a wide range of liquids without leaving stains on the surface. A practical coating should exhibit stable repellency, show no interference with color or transparency of the underlying substrate and, ideally, be deposited in a simple process on arbitrarily shaped surfaces. We use layer-by-layer (LbL) deposition of negatively charged silica nanoparticles and positively charged polyelectrolytes to create nanoscale surface structures that are further surface-functionalized with fluorinated silanes and infiltrated with fluorinated oil, forming a smooth, highly repellent coating on surfaces of different materials and shapes. We show that four or more LbL cycles introducemore » sufficient surface roughness to effectively immobilize the lubricant into the nanoporous coating and provide a stable liquid interface that repels water, low-surface-tension liquids and complex fluids. The absence of hierarchical structures and the small size of the silica nanoparticles enables complete transparency of the coating, with light transmittance exceeding that of normal glass. The coating is mechanically robust, maintains its repellency after exposure to continuous flow for several days and prevents adsorption of streptavidin as a model protein. As a result, the LbL process is conceptually simple, of low cost, environmentally benign, scalable, automatable and therefore may present an efficient synthetic route to non-fouling materials.« less

  11. Static atomic displacements in a CdTe epitaxial layer on a GaAs substrate

    SciTech Connect (OSTI)

    Horning, R.D.; Staudenmann, J.

    1987-05-25

    A (001)CdTe epitaxial layer on a (001)GaAs substrate was studied by x-ray diffraction between 10 and 360 K. The CdTe growth took place at 380 /sup 0/C in a vertical gas flow metalorganic chemical vapor deposition reactor. Lattice parameters and integrated intensities of both the substrate and the epitaxial layer using the (00l) and (hhh) Bragg reflections reveal three important features. Firstly, the GaAs substrate does not exhibit severe strain after deposition and it is as perfect as a bulk GaAs. Secondly, the CdTe unit cell distorts tetragonally with a/sub perpendicular/>a/sub parallel/ below 300 K. The decay of the (00l) reflection intensities as a function of the temperature yields a Debye temperature of 142 K, the same value as for bulk CdTe. Thirdly, a temperature-dependent isotropic static displacement of the Cd and the Te atoms is introduced to account for the anomalous behavior of the (hhh) intensities.

  12. Homogeneous, dual layer, solid state, thin film deposition for structural and/or electrochemical characteristics

    DOE Patents [OSTI]

    Pitts, J. Roland; Lee, Se-Hee; Tracy, C. Edwin; Li, Wenming

    2014-04-08

    Solid state, thin film, electrochemical devices (10) and methods of making the same are disclosed. An exemplary device 10 includes at least one electrode (14) and an electrolyte (16) deposited on the electrode (14). The electrolyte (16) includes at least two homogenous layers of discrete physical properties. The two homogenous layers comprise a first dense layer (15) and a second porous layer (16).

  13. Connecting Three Atomic Layers Puts Semiconducting Science on...

    Office of Science (SC) Website

    the linear junction region along the triangular interface produces enhanced light emission (red region). The Science A new semiconducting material that is only three atomic...

  14. Room temperature atomic layerlike deposition of ZnS on organic thin films: Role of substrate functional groups and precursors

    SciTech Connect (OSTI)

    Shi, Zhiwei; Walker, Amy V.

    2015-09-15

    The room temperature atomic layerlike deposition (ALLD) of ZnS on functionalized self-assembled monolayers (SAMs) was investigated, using diethyl zinc (DEZ) and in situ generated H{sub 2}S as reactants. Depositions on SAMs with three different terminal groups, –CH{sub 3,} –OH, and –COOH, were studied. It was found that the reaction of DEZ with the SAM terminal group is critical in determining the film growth rate. Little or no deposition is observed on –CH{sub 3} terminated SAMs because DEZ does not react with the methyl terminal group. ZnS does deposit on both –OH and –COOH terminated SAMs, but the grow rate on –COOH terminated SAMs is ∼10% lower per cycle than on –OH terminated SAMs. DEZ reacts with the hydroxyl group on –OH terminated SAMs, while on –COOH terminated SAMs it reacts with both the hydroxyl and carbonyl bonds of the terminal groups. The carbonyl reaction is found to lead to the formation of ketones rather than deposition of ZnS, lowering the growth rate on –COOH terminated SAMs. SIMS spectra show that both –OH and –COOH terminated SAMs are covered by the deposited ZnS layer after five ALLD cycles. In contrast to ZnO ALLD where the composition of the film differs for the first few layers on –COOH and –OH terminated SAMs, the deposited film composition is the same for both –COOH and –OH terminated SAMs. The deposited film is found to be Zn-rich, suggesting that the reaction of H{sub 2}S with the Zn-surface adduct may be incomplete.

  15. Method of depositing multi-layer carbon-based coatings for field emission

    DOE Patents [OSTI]

    Sullivan, J.P.; Friedmann, T.A.

    1999-08-10

    A novel field emitter device is disclosed for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials. 8 figs.

  16. Method of depositing multi-layer carbon-based coatings for field emission

    DOE Patents [OSTI]

    Sullivan, John P.; Friedmann, Thomas A.

    1999-01-01

    A novel field emitter device for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials.

  17. Atomic oxygen flux determined by mixed-phase Ag/Ag2O deposition

    SciTech Connect (OSTI)

    Kaspar, Tiffany C.; Droubay, Timothy C.; Chambers, Scott A.

    2010-11-01

    The flux of atomic oxygen generated in a electron cyclotron resonance (ECR) microwave plasma source was quantified by two different methods. The commonly applied approach of monitoring the frequency change of a silver-coated quartz crystal microbalance (QCM) deposition rate monitor as the silver is oxidized was found to underestimate the atomic oxygen flux by an order of magnitude compared to a more direct deposition approach. In the mixed-phase Ag/Ag2O deposition method, silver films were deposited in the presence of the plasma such that the films were partially oxidized to Ag2O; x-ray photoelectron spectroscopy (XPS) was utilized for quantification of the oxidized fraction. The inaccuracy of the QCM oxidation method was tentatively attributed to efficient catalytic recombination of O atoms on the silver surface.

  18. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOE Patents [OSTI]

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2005-10-18

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  19. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOE Patents [OSTI]

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2003-09-09

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  20. Method of deposition of silicon carbide layers on substrates

    DOE Patents [OSTI]

    Angelini, P.; DeVore, C.E.; Lackey, W.J.; Blanco, R.E.; Stinton, D.P.

    1982-03-19

    A method for direct chemical vapor deposition of silicon carbide to substrates, especially nuclear waste particles, is provided by the thermal decomposition of methylsilane at 800 to 1050/sup 0/C when the substrates have been confined within a suitable coating environment.

  1. Fabrication of layered self-standing diamond film by dc arc plasma jet chemical vapor deposition

    SciTech Connect (OSTI)

    Chen, G. C.; Dai, F. W.; Li, B.; Lan, H.; Askari, J.; Tang, W. Z.; Lu, F. X.

    2007-01-15

    Layered self-standing diamond films, consisting of an upper layer, buffer layer, and a lower layer, were fabricated by fluctuating the ratio of methane to hydrogen in high power dc arc plasma jet chemical vapor deposition. There were micrometer-sized columnar diamond crystalline grains in both upper layer and lower layer. The size of the columnar diamond crystalline grains was bigger in the upper layer than that in the lower layer. The orientation of the upper layer was (110), while it was (111) for the lower layer. Raman results showed that no sp{sup 3} peak shift was found in the upper layer, but it was found and blueshifted in the lower layer. This indicated that the internal stress within the film body could be tailored by this layered structure. The buffer layer with nanometer-sized diamond grains formed by secondary nucleation was necessary in order to form the layered film. Growth rate was over 10 {mu}m/h in layered self-standing diamond film fabrication.

  2. Effects of varying CoCrV seed layer deposition pressure on Ru crystallinity in perpendicular magnetic recording media

    SciTech Connect (OSTI)

    Joost, W. [Heraeus Materials Technology, Chandler, Arizona 85226 (United States); School of Materials, Arizona State University, Tempe, Arizona 85287 (United States); Das, A. [Heraeus Materials Technology, Chandler, Arizona 85226 (United States); Alford, T. L. [School of Materials, Arizona State University, Tempe, Arizona 85287 (United States)

    2009-10-01

    The effects of varying deposition parameters of a CoCrV seed layer under Ru on the structural and interfacial properties of both layers were studied. While sputtering power showed little effect on film structure, sputtering pressure during deposition of the seed layer had a significant effect on the structural properties of the seed layer. In particular, the grain morphology and crystallinity of the seed layer varied considerably with deposition pressure. Deposition of Ru using a constant recipe for all samples demonstrated the effect of varying seed layer deposition pressure on the Ru layer. The strain energy of the Ru film, a measurement of contraction due to the registry with the seed layer, was greatest at moderate seed layer sputtering pressures, while the Ru(0002) peak area was greatest at low sputtering pressures. The competing contributions of interfacial energy and strain energy describe this effect, with interfacial energy dominating at low sputtering pressures.

  3. Evidence of a reduction reaction of oxidized iron/cobalt by boron atoms diffused toward naturally oxidized surface of CoFeB layer during annealing

    SciTech Connect (OSTI)

    Sato, Soshi Honjo, Hiroaki; Niwa, Masaaki; Ikeda, Shoji; Ohno, Hideo; Endoh, Tetsuo

    2015-04-06

    We have investigated the redox reaction on the surface of Ta/CoFeB/MgO/CoFeB magnetic tunnel junction stack samples after annealing at 300, 350, and 400 °C for 1 h using angle-resolved X-ray photoelectron spectroscopy for precise analysis of the chemical bonding states. At a capping tantalum layer thickness of 1 nm, both the capping tantalum layer and the surface of the underneath CoFeB layer in the as-deposited stack sample were naturally oxidized. By comparison of the Co 2p and Fe 2p spectra among the as-deposited and annealed samples, reduction of the naturally oxidized cobalt and iron atoms occurred on the surface of the CoFeB layer. The reduction reaction was more significant at higher annealing temperature. Oxidized cobalt and iron were reduced by boron atoms that diffused toward the surface of the top CoFeB layer. A single CoFeB layer was prepared on SiO{sub 2}, and a confirmatory evidence of the redox reaction with boron diffusion was obtained by angle-resolved X-ray photoelectron spectroscopy analysis of the naturally oxidized surface of the CoFeB single layer after annealing. The redox reaction is theoretically reasonable based on the Ellingham diagram.

  4. Atomic-layer synthesis and imaging uncover broken inversion symmetry in La

    Office of Scientific and Technical Information (OSTI)

    2 - x Sr x CuO 4 films (Journal Article) | DOE PAGES Publisher's Accepted Manuscript: Atomic-layer synthesis and imaging uncover broken inversion symmetry in La 2 - x Sr x CuO 4 films « Prev Next » Title: Atomic-layer synthesis and imaging uncover broken inversion symmetry in La 2 - x Sr x CuO 4 films Authors: Yacoby, Yizhak ; Zhou, Hua ; Pindak, Ron ; Božović, Ivan Publication Date: 2013-01-22 OSTI Identifier: 1101917 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B

  5. Atomic-layer synthesis and imaging uncover broken inversion symmetry in La

    Office of Scientific and Technical Information (OSTI)

    2 - x Sr x CuO 4 films (Journal Article) | SciTech Connect Atomic-layer synthesis and imaging uncover broken inversion symmetry in La 2 - x Sr x CuO 4 films Citation Details In-Document Search Title: Atomic-layer synthesis and imaging uncover broken inversion symmetry in La 2 - x Sr x CuO 4 films Authors: Yacoby, Yizhak ; Zhou, Hua ; Pindak, Ron ; Božović, Ivan Publication Date: 2013-01-22 OSTI Identifier: 1101917 Type: Publisher's Accepted Manuscript Journal Name: Physical Review B

  6. ZnS/Zn(O,OH)S-based buffer layer deposition for solar cells

    DOE Patents [OSTI]

    Bhattacharya, Raghu N.

    2009-11-03

    The invention provides CBD ZnS/Zn(O,OH)S and spray deposited ZnS/Zn(O,OH)S buffer layers prepared from a solution of zinc salt, thiourea and ammonium hydroxide dissolved in a non-aqueous/aqueous solvent mixture or in 100% non-aqueous solvent. Non-aqueous solvents useful in the invention include methanol, isopropanol and triethyl-amine. One-step deposition procedures are described for CIS, CIGS and other solar cell devices.

  7. Sol-gel deposition of buffer layers on biaxially textured metal substances

    Office of Scientific and Technical Information (OSTI)

    (Patent) | SciTech Connect Sol-gel deposition of buffer layers on biaxially textured metal substances Citation Details In-Document Search Title: Sol-gel deposition of buffer layers on biaxially textured metal substances × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  8. THE ELECTRICAL PROPERTIES OF NATIVE AND DEPOSITED THIN ALUMINUM OXIDE LA'YERS ON ALUMINUM:

    Office of Scientific and Technical Information (OSTI)

    ELECTRICAL PROPERTIES OF NATIVE AND DEPOSITED THIN ALUMINUM OXIDE LA'YERS ON ALUMINUM: HYDRATION EFFECTS J. P. Sullivan, J. C. Barbour, R G. Dunn, L A . Son, L. P. Montes, N. Missed, and R. G. Copeland Sandia National Laboratories, Albuquerque, NM 871 85 ABSTRACT The electronic defect density of native, anodic, and synthetic Al oxide layers on Al were studied by solid state electrical measurement as a function of hydration o F the oxide. The non-hydrated synthetic Al oxide layers, which

  9. CHARACTERIZATION OF DWPF MELTER OFF-GAS QUENCHER AND STEAM ATOMIZED SCRUBBER DEPOSIT SAMPLES

    SciTech Connect (OSTI)

    Zeigler, K; Ned Bibler, N

    2007-06-06

    This report summarizes the results from the characterization of deposits from the inlets of the primary off-gas Quencher and Steam Atomized Scrubber (SAS) in the Defense Waste Processing Facility (DWPF), as requested by a technical assistance request. DWPF requested elemental analysis and compound identification to help determine the potential causes for the substance formation. This information will be fed into Savannah River National Laboratory modeling programs to determine if there is a way to decrease the formation of the deposits. The general approach to the characterization of these samples included x-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical analysis. The following conclusions are drawn from the analytical results found in this report: (1) The deposits are not high level waste glass from the DWPF melt pool based on comparison of the compositions of deposits to the composition of a sample of glass taken from the pour stream of the melter during processing of Sludge Batch 3. (2) Chemical composition results suggest that the deposits are probably a combination of sludge and frit particles entrained in the off-gas. (3) Gamma emitters, such as Co-60, Cs-137, Eu-154, Am-241, and Am-243 were detected in both the Quencher and SAS samples with Cs-137 having the highest concentration of the gamma emitters. (4) No evidence existed for accumulation of fissile material (U-233, U-235, and Pu-239) relative to Fe in either deposit. (5) XRD results indicated both samples were primarily amorphorous and contained some crystals of the iron oxides, hematite and magnetite (Fe{sub 2}O{sub 3} and Fe(Fe{sub 2}O{sub 4})), along with sodium nitrate (NaNO{sub 3}). The other main crystalline compound in the SAS deposit was mercurous chloride. The main crystalline compound in the Quencher deposit was a uranium oxide compound. These are all sludge components. (6) SEM analysis of the Quencher deposit revealed crystalline uranium compounds within the sample. SEM analysis of the SAS sample could not be performed due to the presence of a significant concentration of Hg in the sample. (7) Essentially all the Na and the S in the off-gas samples were soluble in water. (8) The main soluble anion was NO{sub 3}{sup -} with SO{sub 4}{sup 2-} being second. (9) In contrast to the results for the off-gas deposits analyzed in 2003, soluble compounds of fluoride and chloride were detected; however, their concentrations in the Quencher and SAS deposits were less than one weight percent. (10) The results suggest that the S is primarily in the deposits as the sulfate anion.

  10. Single-layer MoS{sub 2} roughness and sliding friction quenching by interaction with atomically flat substrates

    SciTech Connect (OSTI)

    Quereda, J.; Castellanos-Gomez, A.; Agrat, N.; Rubio-Bollinger, G.

    2014-08-04

    We experimentally study the surface roughness and the lateral friction force in single-layer MoS{sub 2} crystals deposited on different substrates: SiO{sub 2}, mica, and hexagonal boron nitride (h-BN). Roughness and sliding friction measurements are performed by atomic force microscopy. We find a strong dependence of the MoS{sub 2} roughness on the underlying substrate material, being h-BN the substrate which better preserves the flatness of the MoS{sub 2} crystal. The lateral friction also lowers as the roughness decreases, and attains its lowest value for MoS{sub 2} flakes on h-BN substrates. However, it is still higher than for the surface of a bulk MoS{sub 2} crystal, which we attribute to the deformation of the flake due to competing tip-to-flake and flake-to-substrate interactions.

  11. Method of depositing a protective layer over a biaxially textured alloy substrate and composition therefrom

    DOE Patents [OSTI]

    Goyal, Amit; Kroeger, Donald M.; Paranthaman, Mariappan; Lee, Dominic F.; Feenstra, Roeland; Norton, David P.

    2002-01-01

    A laminate article consists of a substrate and a biaxially textured protective layer over the substrate. The substrate can be biaxially textured and also have reduced magnetism over the magnetism of Ni. The substrate can be selected from the group consisting of nickel, copper, iron, aluminum, silver and alloys containing any of the foregoing. The protective layer can be selected from the group consisting of gold, silver, platinum, palladium, and nickel and alloys containing any of the foregoing. The protective layer is also non-oxidizable under conditions employed to deposit a desired, subsequent oxide buffer layer. Layers of YBCO, CeO.sub.2, YSZ, LaAlO.sub.3, SrTiO.sub.3, Y.sub.2 O.sub.3, RE.sub.2 O.sub.3, SrRuO.sub.3, LaNiO.sub.3 and La.sub.2 ZrO.sub.3 can be deposited over the protective layer. A method of forming the laminate article is also disclosed.

  12. Fabricating amorphous silicon solar cells by varying the temperature _of the substrate during deposition of the amorphous silicon layer

    DOE Patents [OSTI]

    Carlson, David E.

    1982-01-01

    An improved process for fabricating amorphous silicon solar cells in which the temperature of the substrate is varied during the deposition of the amorphous silicon layer is described. Solar cells manufactured in accordance with this process are shown to have increased efficiencies and fill factors when compared to solar cells manufactured with a constant substrate temperature during deposition of the amorphous silicon layer.

  13. A simple stochastic quadrant model for the transport and deposition of particles in turbulent boundary layers

    SciTech Connect (OSTI)

    Jin, C.; Potts, I.; Reeks, M. W.

    2015-05-15

    We present a simple stochastic quadrant model for calculating the transport and deposition of heavy particles in a fully developed turbulent boundary layer based on the statistics of wall-normal fluid velocity fluctuations obtained from a fully developed channel flow. Individual particles are tracked through the boundary layer via their interactions with a succession of random eddies found in each of the quadrants of the fluid Reynolds shear stress domain in a homogeneous Markov chain process. In this way, we are able to account directly for the influence of ejection and sweeping events as others have done but without resorting to the use of adjustable parameters. Deposition rate predictions for a wide range of heavy particles predicted by the model compare well with benchmark experimental measurements. In addition, deposition rates are compared with those obtained from continuous random walk models and Langevin equation based ejection and sweep models which noticeably give significantly lower deposition rates. Various statistics related to the particle near wall behavior are also presented. Finally, we consider the model limitations in using the model to calculate deposition in more complex flows where the near wall turbulence may be significantly different.

  14. Fabrication of Sr silicate buffer layer on Si(100) substrate by pulsed laser deposition using a SrO target

    SciTech Connect (OSTI)

    Imanaka, Atsuhiro; Sasaki, Tsubasa; Hotta, Yasushi Satoh, Shin-ichi

    2014-09-01

    The authors fabricated 2??1 Sr-reconstructed Si(100) substrates using thin SrO layers, and used them to direct growth of crystalline perovskite oxide on Si. The SrO layers used to reconstruct the Si(100) substrates were grown by pulsed laser deposition from a SrO single crystal target, followed by postdeposition-annealing (PDA) of the SrO/Si(100) structure. In situ observations of reflective high-energy electron diffraction during PDA confirmed a 2??1 reconstruction of the Si surface and x-ray photoemission spectroscopy of the annealed samples confirmed the existence of Sr atoms in a silicate phase, which indicated that a 2??1 Sr-reconstructed Si surface was achieved. The optimal fabrication conditions were annealing at 720?C for 1?min and an equivalent SrO layer thickness (ML{sub eq}) of 2.5 ML{sub eq}. The temperature condition was very narrow, at 720??20?C, for an acceptable product. Subsequently, the authors demonstrated the growth of crystalline SrTiO{sub 3} films on the 2??1 Sr-reconstructed Si(100) surfaces.

  15. Institute for Atom-Efficient Chemical Transformations - Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of which are crucial for evaluating performance in the proverbial vacuum. Using atomic layer deposition (ALD), researchers can create highly specific nanobowls, controlling...

  16. Niobium boride layers deposition on the surface AISI D2 steel by a duplex treatment

    SciTech Connect (OSTI)

    Kon, O.; Pazarlioglu, S.

    2015-03-30

    In this paper, we investigated the possibility of deposition of niobium boride layers on the surface of AISI D2 steel by a duplex treatment. At the first step of duplex treatment, boronizing was performed on AISI D2 steel samples at 1000{sup o}C for 2h and then pre-boronized samples niobized at 850C, 900C and 950C using thermo-reactive deposition method for 14 h. The presence of the niobium boride layers such as NbB, NbB{sub 2} and Nb{sub 3}B{sub 4} and also iron boride phases such as FeB, Fe{sub 2}B were examined by X-ray diffraction analysis. Scanning electron microscope (SEM) and micro-hardness measurements were realized. Experimental studies showed that the depth of the coating layers increased with increasing temperature and times and also ranged from 0.42 m to 2.43 m, depending on treatment time and temperature. The hardness of the niobium boride layer was 2620180 HV{sub 0.005}.

  17. Graphene layer growth on silicon substrates with nickel film by pulse arc plasma deposition

    SciTech Connect (OSTI)

    Fujita, K.; Banno, K.; Aryal, H. R.; Egawa, T.

    2012-10-15

    Carbon layer has been grown on a Ni/SiO{sub 2}/Si(111) substrate under high vacuum pressure by pulse arc plasma deposition. From the results of Raman spectroscopy for the sample, it is found that graphene was formed by ex-situ annealing of sample grown at room temperature. Furthermore, for the sample grown at high temperature, graphene formation was shown and optimum temperature was around 1000 Degree-Sign C. Transmission electron microscopy observation of the sample suggests that the graphene was grown from step site caused by grain of Ni film. The results show that the pulse arc plasma technique has the possibility for acquiring homogenous graphene layer with controlled layer thickness.

  18. Atomic-scale friction modulated by potential corrugation in multi-layered graphene materials

    SciTech Connect (OSTI)

    Zhuang, Chunqiang; Liu, Lei

    2015-03-21

    Friction is an important issue that has to be carefully treated for the fabrication of graphene-based nano-scale devices. So far, the friction mechanism of graphene materials on the atomic scale has not yet been clearly presented. Here, first-principles calculations were employed to unveil the friction behaviors and their atomic-scale mechanism. We found that potential corrugations on sliding surfaces dominate the friction force and the friction anisotropy of graphene materials. Higher friction forces correspond to larger corrugations of potential energy, which are tuned by the number of graphene layers. The friction anisotropy is determined by the regular distributions of potential energy. The sliding along a fold-line path (hollow-atop-hollow) has a relatively small potential energy barrier. Thus, the linear sliding observed in macroscopic friction experiments may probably be attributed to the fold-line sliding mode on the atomic scale. These findings can also be extended to other layer-structure materials, such as molybdenum disulfide (MoS{sub 2}) and graphene-like BN sheets.

  19. Epitaxial growth of AlN films via plasma-assisted atomic layer epitaxy

    SciTech Connect (OSTI)

    Nepal, N.; Qadri, S. B.; Hite, J. K.; Mahadik, N. A.; Mastro, M. A.; Eddy, C. R. Jr.

    2013-08-19

    Thin AlN layers were grown at 200650 C by plasma assisted atomic layer epitaxy (PA-ALE) simultaneously on Si(111), sapphire (1120), and GaN/sapphire substrates. The AlN growth on Si(111) is self-limited for trimethyaluminum (TMA) pulse of length > 0.04 s, using a 10 s purge. However, the AlN nucleation on GaN/sapphire is non-uniform and has a bimodal island size distribution for TMA pulse of ?0.03 s. The growth rate (GR) remains almost constant for T{sub g} between 300 and 400 C indicating ALE mode at those temperatures. The GR is increased by 20% at T{sub g} = 500 C. Spectroscopic ellipsometry (SE) measurement shows that the ALE AlN layers grown at T{sub g} ? 400 C have no clear band edge related features, however, the theoretically estimated band gap of 6.2 eV was measured for AlN grown at T{sub g} ? 500 C. X-ray diffraction measurements on 37 nm thick AlN films grown at optimized growth conditions (T{sub g} = 500 C, 10 s purge, 0.06 s TMA pulse) reveal that the ALE AlN on GaN/sapphire is (0002) oriented with rocking curve full width at the half maximum (FWHM) of 670 arc sec. Epitaxial growth of crystalline AlN layers by PA-ALE at low temperatures broadens application of the material in the technologies that require large area conformal growth at low temperatures with thickness control at the atomic scale.

  20. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    SciTech Connect (OSTI)

    Airapetov, A. A.; Begrambekov, L. B.; Buzhinskiy, O. I.; Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A.

    2015-12-15

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400–1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  1. Formation of manganese {delta}-doped atomic layer in wurtzite GaN

    SciTech Connect (OSTI)

    Shi Meng; Chinchore, Abhijit; Wang Kangkang; Mandru, Andrada-Oana; Liu Yinghao; Smith, Arthur R.

    2012-09-01

    We describe the formation of a {delta}-doped manganese layer embedded within c-plane wurtzite gallium nitride using a special molecular beam epitaxy growth process. Manganese is first deposited on the gallium-poor GaN (0001) surface, forming a {radical}(3) Multiplication-Sign {radical}(3)-R30 Degree-Sign reconstructed phase. This well-defined surface reconstruction is then nitrided using plasma nitridation, and gallium nitride is overgrown. The manganese content of the {radical}(3) Multiplication-Sign {radical}(3)-R30 Degree-Sign phase, namely one Mn per each {radical}(3) Multiplication-Sign {radical}(3)-R30 Degree-Sign unit cell, implies that the MnGaN alloy layer has a Mn concentration of up to 33%. The structure and chemical content of the surface are monitored beginning from the initial growth stage up through the overgrowth of 20 additional monolayers (MLs) of GaN. An exponential-like drop-off of the Mn signal with increasing GaN monolayers, as measured by Auger electron spectroscopy, indicates that the highly concentrated Mn layer remains at the {delta}-doped interface. A model of the resultant {delta}-doped structure is formulated based on the experimental data, and implications for possible spintronic applications are discussed.

  2. Method for preparing ultraflat, atomically perfect areas on large regions of a crystal surface by heteroepitaxy deposition

    DOE Patents [OSTI]

    El Gabaly, Farid; Schmid, Andreas K.

    2013-03-19

    A novel method of forming large atomically flat areas is described in which a crystalline substrate having a stepped surface is exposed to a vapor of another material to deposit a material onto the substrate, which material under appropriate conditions self arranges to form 3D islands across the substrate surface. These islands are atomically flat at their top surface, and conform to the stepped surface of the substrate below at the island-substrate interface. Thereafter, the deposited materials are etched away, in the etch process the atomically flat surface areas of the islands transferred to the underlying substrate. Thereafter the substrate may be cleaned and annealed to remove any remaining unwanted contaminants, and eliminate any residual defects that may have remained in the substrate surface as a result of pre-existing imperfections of the substrate.

  3. Atomically Thin Heterostructures Based on Single-Layer Tungsten Diselenide and Graphene [Plus Supplemental Information

    SciTech Connect (OSTI)

    Lin, Yu-Chuan; Chang, Chih-Yuan S.; Ghosh, Ram Krishna; Li, Jie; Zhu, Hui; Addou, Rafik; Diaconescu, Bogdan; Ohta, Taisuke; Peng, Xin; Lu, Ning; Kim, Moon J.; Robinson, Jeremy T.; Wallace, Robert M.; Mayer, Theresa S.; Datta, Suman; Li, Lain-Jong; Robinson, Joshua A.

    2014-11-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. We report the direct growth of highly crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG). Raman spectroscopy and photoluminescence confirms high-quality WSe2 monolayers; while transmission electron microscopy shows an atomically sharp interface and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that a tunnel barrier exists due to the van der Waals gap, and is supported by density functional theory that predicts a 1.6 eV barrier for transport from WSe2 to graphene.

  4. Atomically Thin Heterostructures Based on Single-Layer Tungsten Diselenide and Graphene [Plus Supplemental Information

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Yu-Chuan; Chang, Chih-Yuan S.; Ghosh, Ram Krishna; Li, Jie; Zhu, Hui; Addou, Rafik; Diaconescu, Bogdan; Ohta, Taisuke; Peng, Xin; Lu, Ning; et al

    2014-11-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. We report the direct growth of highly crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG). Raman spectroscopy and photoluminescence confirms high-quality WSe2 monolayers; while transmission electron microscopy shows an atomically sharp interface and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that a tunnel barrier exists due to the van der Waals gap, and is supported by density functional theorymore » that predicts a 1.6 eV barrier for transport from WSe2 to graphene.« less

  5. Pulsed Plasma with Synchronous Boundary Voltage for Rapid Atomic Layer Etching

    SciTech Connect (OSTI)

    Economou, Demetre J.; Donnelly, Vincent M.

    2014-05-13

    Atomic Layer ETching (ALET) of a solid with monolayer precision is a critical requirement for advancing nanoscience and nanotechnology. Current plasma etching techniques do not have the level of control or damage-free nature that is needed for patterning delicate sub-20 nm structures. In addition, conventional ALET, based on pulsed gases with long reactant adsorption and purging steps, is very slow. In this work, novel pulsed plasma methods with synchronous substrate and/or “boundary electrode” bias were developed for highly selective, rapid ALET. Pulsed plasma and tailored bias voltage waveforms provided controlled ion energy and narrow energy spread, which are critical for highly selective and damage-free etching. The broad goal of the project was to investigate the plasma science and engineering that will lead to rapid ALET with monolayer precision. A combined experimental-simulation study was employed to achieve this goal.

  6. Electrochemical removal of hydrogen atoms in Mg-doped GaN epitaxial layers

    SciTech Connect (OSTI)

    Lee, June Key E-mail: hskim7@jbnu.ac.kr; Hyeon, Gil Yong; Tawfik, Wael Z.; Choi, Hee Seok; Ryu, Sang-Wan; Jeong, Tak; Jung, Eunjin; Kim, Hyunsoo E-mail: hskim7@jbnu.ac.kr

    2015-05-14

    Hydrogen atoms inside of an Mg-doped GaN epitaxial layer were effectively removed by the electrochemical potentiostatic activation (EPA) method. The role of hydrogen was investigated in terms of the device performance of light-emitting diodes (LEDs). The effect of the main process parameters for EPA such as solution type, voltage, and time was studied and optimized for application to LED fabrication. In optimized conditions, the light output of 385-nm LEDs was improved by about 26% at 30 mA, which was caused by the reduction of the hydrogen concentration by ∼35%. Further removal of hydrogen seems to be involved in the breaking of Ga-H bonds that passivate the nitrogen vacancies. An EPA process with high voltage breaks not only Mg-H bonds that generate hole carriers but also Ga-H bonds that generate electron carriers, thus causing compensation that impedes the practical increase of hole concentration, regardless of the drastic removal of hydrogen atoms. A decrease in hydrogen concentration affects the current-voltage characteristics, reducing the reverse current by about one order and altering the forward current behavior in the low voltage region.

  7. Atomic Layer Deposition of the Solid Electrolyte LiPON (Journal...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 27; Journal Issue: 15; Journal ID: ISSN 0897-4756 Publisher: American Chemical Society Sponsoring Org: USDOE Office of Science...

  8. Mechanistic study of atomic layer deposition of Al{sub x}Si{sub...

    Office of Scientific and Technical Information (OSTI)

    Authors: Cho, Jea ; Kim, Taeseung ; Seegmiller, Trevor ; Chang, Jane P., E-mail: jpchang@ucla.edu 1 + Show Author Affiliations Department of Chemical and Biomolecular ...

  9. Implantable devices having ceramic coating applied via an atomic layer deposition method

    DOE Patents [OSTI]

    Liang, Xinhua; Weimer, Alan W.; Bryant, Stephanie J.

    2016-03-08

    Substrates coated with films of a ceramic material such as aluminum oxides and titanium oxides are biocompatible, and can be used in a variety of applications in which they are implanted in a living body. The substrate is preferably a porous polymer, and may be biodegradable. An important application for the ceramic-coated substrates is as a tissue engineering scaffold for forming artificial tissue.

  10. Ozone-Based Atomic Layer Deposition of Crystalline V2O5Films...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: bio-inspired, energy storage (including batteries and capacitors), defects, charge transport, synthesis (novel ...

  11. Probing the initiation of voltage decay in Li-rich layered cathode materials at the atomic scale

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Yan; Ma, Cheng; Yang, Jihui; Li, Zicheng; Allard, Jr., Lawrence Frederick; Liang, Chengdu; Chi, Miaofang

    2015-01-01

    Li-rich layered oxides hold great promise for improving the energy density of present-day Li-ion batteries. However, their application is limited by the voltage decay upon cycling, and the origin of such a phenomenon is poorly understood. A major issue is determining the voltage range over which detrimental reactions originate. In the present study, a unique yet effective approach was employed to probe this issue. Instead of studying the materials during the first cycle, electrochemical behavior and evolution of the atomic structures were compared in extensively cycled specimens under varied charge/discharge voltages. With the upper cutoff voltage lowered from 4.8 tomore » 4.4 V, the voltage decay ceased to occur even after 60 cycles. In the meantime, the material maintained its layered structure without any spinel phase emerging at the surface, which is unambiguously shown by the atomic-resolution Z-contrast imaging and electron energy loss spectroscopy. These results have conclusively demonstrated that structural/chemical changes responsible for the voltage decay began between 4.4 and 4.8 V, where the layered-to-spinel transition was the most dramatic structural change observed. Thus, this discovery lays important groundwork for the mechanistic understanding of the voltage decay in Li-rich layered cathode materials.« less

  12. Fabrication of heterojunction solar cells by improved tin oxide deposition on insulating layer

    DOE Patents [OSTI]

    Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

    1980-01-01

    Highly efficient tin oxide-silicon heterojunction solar cells are prepared by heating a silicon substrate, having an insulating layer thereon, to provide a substrate temperature in the range of about 300.degree. C. to about 400.degree. C. and thereafter spraying the so-heated substrate with a solution of tin tetrachloride in a organic ester boiling below about 250.degree. C. Preferably the insulating layer is naturally grown silicon oxide layer.

  13. Deposition of dopant impurities and pulsed energy drive-in

    DOE Patents [OSTI]

    Wickboldt, Paul; Carey, Paul G.; Smith, Patrick M.; Ellingboe, Albert R.

    2008-01-01

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.

  14. Deposition of dopant impurities and pulsed energy drive-in

    DOE Patents [OSTI]

    Wickboldt, P.; Carey, P.G.; Smith, P.M.; Ellingboe, A.R.

    1999-06-29

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique is disclosed. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques. 2 figs.

  15. Deposition of dopant impurities and pulsed energy drive-in

    DOE Patents [OSTI]

    Wickboldt, Paul; Carey, Paul G.; Smith, Patrick M.; Ellingboe, Albert R.

    1999-01-01

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.

  16. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOE Patents [OSTI]

    Ruffner, Judith Alison

    1999-01-01

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet ("DUV") and Extreme Ultra-Violet ("EUV") wavelengths. The method results in a product with minimum feature sizes of less than 0.10-.mu.m for the shortest wavelength (13.4-nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R.sup.2 factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates.

  17. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOE Patents [OSTI]

    Ruffner, J.A.

    1999-06-15

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet (DUV) and Extreme Ultra-Violet (EUV) wavelengths. The method results in a product with minimum feature sizes of less than 0.10 [micro]m for the shortest wavelength (13.4 nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R[sup 2] factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates. 15 figs.

  18. Process for depositing thin film layers onto surfaces modified with organic functional groups and products formed thereby

    DOE Patents [OSTI]

    Tarasevich, Barbara J.; Rieke, Peter C.

    1998-01-01

    A method is provided for producing a thin film product, comprising a first step in which an underlying substrate of a first material is provided. The underlying substrate includes a plurality of unmodified sites. The underlying substrate is then chemically modified wherein a plurality of organic functional groups are attached to a plurality of the unmodified sites. The arrangement and type of the functional group used can be selected for the purpose of controlling particular properties of the second material deposited. A thin film layer of at least one second material is then deposited onto the chemically modified underlying substrate. This can be accomplished by connecting the thin film to the underlying substrate by binding the thin film to the functional groups.

  19. Process for depositing thin film layers onto surfaces modified with organic functional groups and products formed thereby

    DOE Patents [OSTI]

    Tarasevich, B.J.; Rieke, P.C.

    1998-06-02

    A method is provided for producing a thin film product, comprising a first step in which an underlying substrate of a first material is provided. The underlying substrate includes a plurality of unmodified sites. The underlying substrate is then chemically modified wherein a plurality of organic functional groups are attached to a plurality of the unmodified sites. The arrangement and type of the functional group used can be selected for the purpose of controlling particular properties of the second material deposited. A thin film layer of at least one second material is then deposited onto the chemically modified underlying substrate. This can be accomplished by connecting the thin film to the underlying substrate by binding the thin film to the functional groups. 5 figs.

  20. Air-stable ink for scalable, high-throughput layer deposition

    DOE Patents [OSTI]

    Weil, Benjamin D; Connor, Stephen T; Cui, Yi

    2014-02-11

    A method for producing and depositing air-stable, easily decomposable, vulcanized ink on any of a wide range of substrates is disclosed. The ink enables high-volume production of optoelectronic and/or electronic devices using scalable production methods, such as roll-to-roll transfer, fast rolling processes, and the like.

  1. Method of deposition of silicon carbide layers on substrates and product

    DOE Patents [OSTI]

    Angelini, Peter; DeVore, Charles E.; Lackey, Walter J.; Blanco, Raymond E.; Stinton, David P.

    1984-01-01

    A method for direct chemical vapor deposition of silicon carbide to substrates, especially nuclear waste particles, is provided by the thermal decomposition of methylsilane at about 800.degree. C. to 1050.degree. C. when the substrates have been confined within a suitable coating environment.

  2. Compositional modulated atomic layer stacking and uniaxial magnetocrystalline anisotropy of CoPt alloy sputtered films with close-packed plane orientation

    SciTech Connect (OSTI)

    Saito, Shin Nozawa, Naoki; Hinata, Shintaro; Takahashi, Migaku; Shibuya, Kazunari; Hoshino, Kazuya; Awaya, Satoru

    2015-05-07

    An atomic layer stacking structure in hexagonal close packed (hcp) Co{sub 100?x}Pt{sub x} alloy films with c-plane sheet texture was directly observed by a high-angle annular dark-field imaging scanning transmission electron microscopy. The analysis of sequential and/or compositional atomic layer stacking structure and uniaxial magnetocrystalline anisotropy (K{sub u}?=?K{sub u1}?+?K{sub u2}) revealed that (1) integrated intensity of the superlattice diffraction takes the maximum at x?=?20 at. % and shows broadening feature against x for the film fabricated under the substrate temperature (T{sub sub}) of 400?C. (2) Compositional separation structure in atomic layers is formed for the films fabricated under T{sub sub}?=?400?C. A sequential alternative stacking of atomic layers with different compositions is hardly formed in the film with x?=?50 at. %, whereas easily formed in the film with x?=?20 at. %. This peculiar atomic layer stacking structure consists of in-plane-disordered Pt-rich and Pt-poor layers, which is completely different from the so-called atomic site ordered structure. (3) A face centered cubic atomic layer stacking as faults appeared in the host hcp atomic layer stacking exists in accompanies with irregularities for the periodicity of the compositional modulation atomic layers. (4) K{sub u1} takes the maximum of 1.4??10{sup 7?}erg/cm{sup 3} at around x?=?20 at. %, whereas K{sub u2} takes the maximum of 0.7??10{sup 7?}erg/cm{sup 3} at around x?=?40 at. %, which results in the maximum of 1.8??10{sup 7?}erg/cm{sup 3} of K{sub u} at x?=?30 at. % and a shoulder in compositional dependence of K{sub u} in the range of x?=?3060 at. %. Not only compositional separation of atomic layers but also sequential alternative stacking of different compositional layers is quite important to improve essential uniaxial magnetocrystalline anisotropy.

  3. The Effect of High Temperature Annealing on the Grain Characteristics of a Thin Chemical Vapor Deposition Silicon Carbide Layer.

    SciTech Connect (OSTI)

    Isabella J van Rooyen; Philippus M van Rooyen; Mary Lou Dunzik-Gougar

    2013-08-01

    The unique combination of thermo-mechanical and physiochemical properties of silicon carbide (SiC) provides interest and opportunity for its use in nuclear applications. One of the applications of SiC is as a very thin layer in the TRi-ISOtropic (TRISO) coated fuel particles for high temperature gas reactors (HTGRs). This SiC layer, produced by chemical vapor deposition (CVD), is designed to withstand the pressures of fission and transmutation product gases in a high temperature, radiation environment. Various researchers have demonstrated that macroscopic properties can be affected by changes in the distribution of grain boundary plane orientations and misorientations [1 - 3]. Additionally, various researchers have attributed the release behavior of Ag through the SiC layer as a grain boundary diffusion phenomenon [4 - 6]; further highlighting the importance of understanding the actual grain characteristics of the SiC layer. Both historic HTGR fission product release studies and recent experiments at Idaho National Laboratory (INL) [7] have shown that the release of Ag-110m is strongly temperature dependent. Although the maximum normal operating fuel temperature of a HTGR design is in the range of 1000-1250C, the temperature may reach 1600C under postulated accident conditions. The aim of this specific study is therefore to determine the magnitude of temperature dependence on SiC grain characteristics, expanding upon initial studies by Van Rooyen et al, [8; 9].

  4. More stable hybrid organic solar cells deposited on amorphous Si electron transfer layer

    SciTech Connect (OSTI)

    Samiee, Mehran; Modtland, Brian; Dalal, Vikram L.; Aidarkhanov, Damir

    2014-05-26

    We report on defect densities, performance, and stability of organic/inorganic hybrid solar cells produced using n-doped inorganic amorphous silicon-carbide layers as the electron transport layer (ETL). The organic material was poly-3-hexyl-thiophene (P3HT) and heterojunction was formed using phenyl-C{sub 71}-Butyric-Acid-Methyl Ester (PCBM). For comparison, inverted solar cells fabricated using Cs{sub 2}CO{sub 3} as ETL were fabricated. Defect densities and subgap quantum efficiency curves were found to be nearly identical for both types of cells. The cells were subjected to 2xsun illumination and it was found that the cells produced using doped a-Si as ETL were much more stable than the cells produced using Cs{sub 2}CO{sub 3}.

  5. Fluorocarbon assisted atomic layer etching of SiO2 and Si using cyclic Ar/C4F8 and Ar/CHF3 plasma

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Metzler, Dominik; Li, Chen; Engelmann, Sebastian; Bruce, Robert L.; Joseph, Eric A.; Oehrlein, Gottlieb S.

    2015-11-11

    The need for atomic layer etching (ALE) is steadily increasing as smaller critical dimensions and pitches are required in device patterning. A flux-control based cyclic Ar/C4F8 ALE based on steady-state Ar plasma in conjunction with periodic, precise C4F8 injection and synchronized plasma-based low energy Ar+ ion bombardment has been established for SiO2.1 In this work, the cyclic process is further characterized and extended to ALE of silicon under similar process conditions. The use of CHF3 as a precursor is examined and compared to C4F8. CHF3 is shown to enable selective SiO2/Si etching using a fluorocarbon (FC) film build up. Othermore » critical process parameters investigated are the FC film thickness deposited per cycle, the ion energy, and the etch step length. Etching behavior and mechanisms are studied using in situ real time ellipsometry and X-ray photoelectron spectroscopy. Silicon ALE shows less self-limitation than silicon oxide due to higher physical sputtering rates for the maximum ion energies used in this work, ranged from 20 to 30 eV. The surface chemistry is found to contain fluorinated silicon oxide during the etching of silicon. As a result, plasma parameters during ALE are studied using a Langmuir probe and establish the impact of precursor addition on plasma properties.« less

  6. Tunability of exchange bias in Ni@NiO core-shell nanoparticles obtained by sequential layer deposition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    D'Addato, Sergio; Spadaro, Maria Chiara; Luches, Paola; Valeri, Sergio; Grillo, Vincenzo; Rotunno, Enzo; Roldan Gutierrez, Manuel A.; Pennycook, Stephen J.; Ferretti, Anna Maria; Capetti, Elena; et al

    2015-01-01

    Films of magnetic Ni@NiO core–shell nanoparticles (NPs, core diameter d ≅ 12 nm, nominal shell thickness variable between 0 and 6.5 nm) obtained with sequential layer deposition were investigated, to gain insight into the relationships between shell thickness/morphology, core-shell interface, and magnetic properties. Different values of NiO shell thickness ts could be obtained while keeping the Ni core size fixed, at variance with conventional oxidation procedures where the oxide shell is grown at the expense of the core. Chemical composition, morphology of the as-produced samples and structural features of the Ni/NiO interface were investigated with x-ray photoelectron spectroscopy and microscopymore » (scanning electron microscopy, transmission electron microscopy) techniques, and related with results from magnetic measurements obtained with a superconducting quantum interference device. The effect of the shell thickness on the magnetic properties could be studied. The exchange bias (EB) field Hbias is small and almost constant for ts up to 1.6 nm; then it rapidly grows, with no sign of saturation. This behavior is clearly related to the morphology of the top NiO layer, and is mostly due to the thickness dependence of the NiO anisotropy constant. The ability to tune the EB effect by varying the thickness of the last NiO layer represents a step towards the rational design and synthesis of core–shell NPs with desired magnetic properties.« less

  7. Performance of Anode-Supported Solid Oxide Fuel Cell with Thin Bi-Layer Electrolyte by Pulsed Laser Deposition

    SciTech Connect (OSTI)

    Lu, Zigui; Hardy, John S.; Templeton, Jared W.; Stevenson, Jeffry W.; Fisher, Daniel; Wu, Naijuan; Ignatiev, Alex

    2012-07-15

    Anode-supported yttria stabilized zirconia (YSZ)/samaria doped ceria (SDC) bi-layer electrolytes with uniform thickness and high density were fabricated by pulsed laser deposition at 1000 degrees C. Fuel cells with such bi-layer electrolytes were fabricated and tested, yielding open circuit voltages from 0.94 to 1.0 V at 600-700 degrees C. Power densities from 0.4 to 1.0 W cm{sup -2} at 0.7 V were achieved in air at temperatures of 600-700 degrees C. Cell performance was improved in flowing oxygen, with an estimated peak power density of over 2 W cm{sup -2} at 650 degrees C, assuming the same overall resistance over the entire range of current density. The high cell performance was attributed to the very low ohmic resistance of the fuel cell, owing to the small thickness of the electrolyte. Stable performance was also demonstrated in that the voltage of the fuel cell showed very little change at a constant current density of 1 A cm{sup -2} during more than 400 hours of operation at 650 degrees C in flowing oxygen. SEM analysis of the fuel cell after testing showed that the bi-layer electrolyte had retained its chemical and mechanical integrity.

  8. Fourth-generation plasma immersion ion implantation and deposition facility for hybrid surface modification layer fabrication

    SciTech Connect (OSTI)

    Wang Langping; Huang Lei; Xie Zhiwen; Wang Xiaofeng; Tang Baoyin

    2008-02-15

    The fourth-generation plasma immersion ion implantation and deposition (PIIID) facility for hybrid and batch treatment was built in our laboratory recently. Comparing with our previous PIIID facilities, several novel designs are utilized. Two multicathode pulsed cathodic arc plasma sources are fixed on the chamber wall symmetrically, which can increase the steady working time from 6 h (the single cathode source in our previous facilities) to about 18 h. Meanwhile, the inner diameter of the pulsed cathodic arc plasma source is increased from the previous 80 to 209 mm, thus, large area metal plasma can be obtained by the source. Instead of the simple sample holder in our previous facility, a complex revolution-rotation sample holder composed of 24 shafts, which can rotate around its axis and adjust its position through revolving around the center axis of the vacuum chamber, is fixed in the center of the vacuum chamber. In addition, one magnetron sputtering source is set on the chamber wall instead of the top cover in the previous facility. Because of the above characteristic, the PIIID hybrid process involving ion implantation, vacuum arc, and magnetron sputtering deposition can be acquired without breaking vacuum. In addition, the PIIID batch treatment of cylinderlike components can be finished by installing these components on the rotating shafts on the sample holder.

  9. Direct observation of electron emission from the grain boundaries of chemical vapour deposition diamond films by tunneling atomic force microscopy

    SciTech Connect (OSTI)

    Chatterjee, Vijay; Harniman, Robert; May, Paul W.; Barhai, P. K.

    2014-04-28

    The emission of electrons from diamond in vacuum occurs readily as a result of the negative electron affinity of the hydrogenated surface due to features with nanoscale dimensions, which can concentrate electric fields high enough to induce electron emission from them. Electrons can be emitted as a result of an applied electric field (field emission) with possible uses in displays or cold-cathode devices. Alternatively, electrons can be emitted simply by heating the diamond in vacuum to temperatures as low as 350?C (thermionic emission), and this may find applications in solar energy generation or energy harvesting devices. Electron emission studies usually use doped polycrystalline diamond films deposited onto Si or metallic substrates by chemical vapor deposition, and these films have a rough, faceted morphology on the micron or nanometer scale. Electron emission is often improved by patterning the diamond surface into sharp points or needles, the idea being that the field lines concentrate at the points lowering the barrier for electron emission. However, there is little direct evidence that electrons are emitted from these sharp tips. The few reports in the literature that have studied the emission sites suggested that emission came from the grain boundaries and not the protruding regions. We now present direct observation of the emission sites over a large area of polycrystalline diamond using tunneling atomic force microscopy. We confirm that the emission current comes mostly from the grain boundaries, which is consistent with a model for emission in which the non-diamond phase is the source of electrons with a threshold that is determined by the surrounding hydrogenated diamond surface.

  10. Atom-scale covalent electrochemical modification of single-layer graphene on SiC substrates by diaryliodonium salts

    SciTech Connect (OSTI)

    Gearba, Raluca I.; Mueller, Kory M.; Veneman, Peter A.; Holliday, Bradley J.; Chan, Calvin K.; Stevenson, Keith J.

    2015-05-09

    Owing to its high conductivity, graphene holds promise as an electrode for energy devices such as batteries and photovoltaics. However, to this end, the work function and doping levels in graphene need to be precisely tuned. One promising route for modifying graphenes electronic properties is via controlled covalent electrochemical grafting of molecules. We show that by employing diaryliodonium salts instead of the commonly used diazonium salts, spontaneous functionalization is avoided. This then allows for precise tuning of the grafting density. Moreover, by employing bis(4-nitrophenyl)iodonium(III) tetrafluoroborate (DNP) salt calibration curves, the surface functionalization density (coverage) of glassy carbon was controlled using cyclic voltammetry in varying salt concentrations. These electro-grafting conditions and calibration curves translated directly over to modifying single layer epitaxial graphene substrates (grown on insulating 6H-SiC (0 0 0 1)). In addition to quantifying the functionalization densities using electrochemical methods, samples with low grafting densities were characterized by low-temperature scanning tunneling microscopy (LT-STM). We show that the use of buffer-layer free graphene substrates is required for clear observation of the nitrophenyl modifications. Furthermore, atomically-resolved STM images of single site modifications were obtained, showing no preferential grafting at defect sites or SiC step edges as supposed previously in the literature. Most of the grafts exhibit threefold symmetry, but occasional extended modifications (larger than 4 nm) were observed as well.

  11. Atom-scale covalent electrochemical modification of single-layer graphene on SiC substrates by diaryliodonium salts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gearba, Raluca I.; Mueller, Kory M.; Veneman, Peter A.; Holliday, Bradley J.; Chan, Calvin K.; Stevenson, Keith J.

    2015-05-09

    Owing to its high conductivity, graphene holds promise as an electrode for energy devices such as batteries and photovoltaics. However, to this end, the work function and doping levels in graphene need to be precisely tuned. One promising route for modifying graphene’s electronic properties is via controlled covalent electrochemical grafting of molecules. We show that by employing diaryliodonium salts instead of the commonly used diazonium salts, spontaneous functionalization is avoided. This then allows for precise tuning of the grafting density. Moreover, by employing bis(4-nitrophenyl)iodonium(III) tetrafluoroborate (DNP) salt calibration curves, the surface functionalization density (coverage) of glassy carbon was controlled usingmore » cyclic voltammetry in varying salt concentrations. These electro-grafting conditions and calibration curves translated directly over to modifying single layer epitaxial graphene substrates (grown on insulating 6H-SiC (0 0 0 1)). In addition to quantifying the functionalization densities using electrochemical methods, samples with low grafting densities were characterized by low-temperature scanning tunneling microscopy (LT-STM). We show that the use of buffer-layer free graphene substrates is required for clear observation of the nitrophenyl modifications. Furthermore, atomically-resolved STM images of single site modifications were obtained, showing no preferential grafting at defect sites or SiC step edges as supposed previously in the literature. Most of the grafts exhibit threefold symmetry, but occasional extended modifications (larger than 4 nm) were observed as well.« less

  12. Tunability of exchange bias in Ni@NiO core-shell nanoparticles obtained by sequential layer deposition

    SciTech Connect (OSTI)

    D'Addato, Sergio; Spadaro, Maria Chiara; Luches, Paola; Valeri, Sergio; Grillo, Vincenzo; Rotunno, Enzo; Roldan Gutierrez, Manuel A.; Pennycook, Stephen J.; Ferretti, Anna Maria; Capetti, Elena; Ponti, A.

    2015-01-01

    Films of magnetic Ni@NiO core–shell nanoparticles (NPs, core diameter d ≅ 12 nm, nominal shell thickness variable between 0 and 6.5 nm) obtained with sequential layer deposition were investigated, to gain insight into the relationships between shell thickness/morphology, core-shell interface, and magnetic properties. Different values of NiO shell thickness ts could be obtained while keeping the Ni core size fixed, at variance with conventional oxidation procedures where the oxide shell is grown at the expense of the core. Chemical composition, morphology of the as-produced samples and structural features of the Ni/NiO interface were investigated with x-ray photoelectron spectroscopy and microscopy (scanning electron microscopy, transmission electron microscopy) techniques, and related with results from magnetic measurements obtained with a superconducting quantum interference device. The effect of the shell thickness on the magnetic properties could be studied. The exchange bias (EB) field Hbias is small and almost constant for ts up to 1.6 nm; then it rapidly grows, with no sign of saturation. This behavior is clearly related to the morphology of the top NiO layer, and is mostly due to the thickness dependence of the NiO anisotropy constant. The ability to tune the EB effect by varying the thickness of the last NiO layer represents a step towards the rational design and synthesis of core–shell NPs with desired magnetic properties.

  13. Method of transferring a thin crystalline semiconductor layer

    DOE Patents [OSTI]

    Nastasi, Michael A.; Shao, Lin; Theodore, N. David

    2006-12-26

    A method for transferring a thin semiconductor layer from one substrate to another substrate involves depositing a thin epitaxial monocrystalline semiconductor layer on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the thin semiconductor layer is bonded to a second substrate and the thin layer is separated away at the interface, which results in transferring the thin epitaxial semiconductor layer from one substrate to the other substrate.

  14. Photoluminescence study of the substitution of Cd by Zn during the growth by atomic layer epitaxy of alternate CdSe and ZnSe monolayers

    SciTech Connect (OSTI)

    Hernndez-Caldern, I.; Salcedo-Reyes, J. C.

    2014-05-15

    We present a study of the substitution of Cd atoms by Zn atoms during the growth of alternate ZnSe and CdSe compound monolayers (ML) by atomic layer epitaxy (ALE) as a function of substrate temperature. Samples contained two quantum wells (QWs), each one made of alternate CdSe and ZnSe monolayers with total thickness of 12 ML but different growth parameters. The QWs were studied by low temperature photoluminescence (PL) spectroscopy. We show that the Cd content of underlying CdSe layers is affected by the exposure of the quantum well film to the Zn flux during the growth of ZnSe monolayers. The amount of Cd of the quantum well film decreases with higher exposures to the Zn flux. A brief discussion about the difficulties to grow the Zn{sub 0.5}Cd{sub 0.5}Se ordered alloy (CuAu-I type) by ALE is presented.

  15. Electron-stimulated reactions in layered CO/H2O films: Hydrogen atom diffusion and the sequential hydrogenation of CO to methanol

    SciTech Connect (OSTI)

    Petrik, Nikolay G.; Monckton, Rhiannon J.; Koehler, Sven; Kimmel, Gregory A.

    2014-05-28

    Low-energy (100 eV) electron-stimulated reactions in layered H2O/CO/H2O ices are investigated. For CO trapped within approximately 50 ML of the vacuum interface in the amorphous solid water (ASW) films, both oxidation and reduction reactions are observed. However for CO buried more deeply in the film, only the reduction of CO to methanol is observed. Experiments with layered films of H2O and D2O show that the hydrogen atoms participating in the reduction of the buried CO originate in region from ~10 40 ML below the surface of the ASW films and subsequently diffuse through the film. For deeply buried CO layers, the CO reduction reactions quickly increase with temperature above ~60 K. We present a simple chemical kinetic model that treats the diffusion of hydrogen atoms in the ASW and sequential hydrogenation of the CO to methanol that accounts for the observations.

  16. Nucleation of Ultrathin, Continuous, Conformal Metal Films Using Atomic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Layer Deposition and Applications as Fuel Cell Catalysts - Energy Innovation Portal Hydrogen and Fuel Cell Hydrogen and Fuel Cell Advanced Materials Advanced Materials Find More Like This Return to Search Nucleation of Ultrathin, Continuous, Conformal Metal Films Using Atomic Layer Deposition and Applications as Fuel Cell Catalysts University of Colorado Contact CU About This Technology Technology Marketing SummaryA research team at the University of Colorado at Boulder led by Steven George

  17. High spatial resolution mapping of deposition layers on plasma facing materials by laser ablation microprobe time-of-flight mass spectroscopy

    SciTech Connect (OSTI)

    Xiao, Qingmei; Li, Cong; Hai, Ran; Zhang, Lei; Feng, Chunlei; Ding, Hongbin, E-mail: hding@dlut.edu.cn [School of Physics and Optical Electronic Technology, Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Chinese Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Zhou, Yan; Yan, Longwen; Duan, Xuru [Southwestern Institute of Physics, P.O. Box 432, No. 3 South Section 3, Circle Road 2, Chengdu 610041, Sichuan (China)

    2014-05-15

    A laser ablation microprobe time-of-flight mass spectroscopy (LAM-TOF-MS) system with high spatial resolution, ?20 nm in depth and ?500 ?m or better on the surface, is developed to analyze the composition distributions of deposition layers on the first wall materials or first mirrors in tokamak. The LAM-TOF-MS system consists of a laser ablation microprobe combined with a TOF-MS and a data acquisition system based on a LabVIEW program software package. Laser induced ablation combined with TOF-MS is an attractive method to analyze the depth profile of deposited layer with successive laser shots, therefore, it can provide information for composition reconstruction of the plasma wall interaction process. In this work, we demonstrate that the LAM-TOF-MS system is capable of characterizing the depth profile as well as mapping 2D composition of deposited film on the molybdenum first mirror retrieved from HL-2A tokamak, with particular emphasis on some of the species produced during the ablation process. The presented LAM-TOF-MS system provides not only the 3D characterization of deposition but also the removal efficiency of species of concern.

  18. Electron-stimulated reactions in layered CO/H{sub 2}O films: Hydrogen atom diffusion and the sequential hydrogenation of CO to methanol

    SciTech Connect (OSTI)

    Petrik, Nikolay G.; Kimmel, Greg A.; Monckton, Rhiannon J.; Koehler, Sven P. K.

    2014-05-28

    Low-energy (100 eV) electron-stimulated reactions in layered H{sub 2}O/CO/H{sub 2}O ices are investigated. For CO layers buried in amorphous solid water (ASW) films at depths of 50 monolayers (ML) or less from the vacuum interface, both oxidation and reduction reactions are observed. However, for CO buried more deeply in ASW films, only the reduction of CO to methanol is observed. Experiments with layered films of H{sub 2}O and D{sub 2}O show that the hydrogen atoms participating in the reduction of the buried CO originate in the region that is 1050 ML below the surface of the ASW films and subsequently diffuse through the film. For deeply buried CO layers, the CO reduction reactions quickly increase with temperature above ?60 K. We present a simple chemical kinetic model that treats the diffusion of hydrogen atoms in the ASW and sequential hydrogenation of the CO to methanol to account for the observations.

  19. Atomic-Resolution Visualization of Distinctive Chemical Mixing Behavior of Ni, Co and Mn with Li in Layered Lithium Transition-Metal Oxide Cathode Materials

    SciTech Connect (OSTI)

    Yan, Pengfei; Zheng, Jianming; Lv, Dongping; Wei, Yi; Zheng, Jiaxin; Wang, Zhiguo; Kuppan, Saravanan; Yu, Jianguo; Luo, Langli; Edwards, Danny J.; Olszta, Matthew J.; Amine, Khalil; Liu, Jun; Xiao, Jie; Pan, Feng; Chen, Guoying; Zhang, Jiguang; Wang, Chong M.

    2015-07-06

    Capacity and voltage fading of layer structured cathode based on lithium transition metal oxide is closely related to the lattice position and migration behavior of the transition metal ions. However, it is scarcely clear about the behavior of each of these transition metal ions. We report direct atomic resolution visualization of interatomic layer mixing of transition metal (Ni, Co, Mn) and lithium ions in layer structured oxide cathodes for lithium ion batteries. Using chemical imaging with aberration corrected scanning transmission electron microscope (STEM) and DFT calculations, we discovered that in the layered cathodes, Mn and Co tend to reside almost exclusively at the lattice site of transition metal (TM) layer in the structure or little interlayer mixing with Li. In contrast, Ni shows high degree of interlayer mixing with Li. The fraction of Ni ions reside in the Li layer followed a near linear dependence on total Ni concentration before reaching saturation. The observed distinctively different behavior of Ni with respect to Co and Mn provides new insights on both capacity and voltage fade in this class of cathode materials based on lithium and TM oxides, therefore providing scientific basis for selective tailoring of oxide cathode materials for enhanced performance.

  20. Lubricant-infused nanoparticulate coatings assembled by layer...

    Office of Scientific and Technical Information (OSTI)

    Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition Title: Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition ...

  1. Direct growth of few-layer graphene on 6H-SiC and 3C-SiC/Si via propane chemical vapor deposition

    SciTech Connect (OSTI)

    Michon, A.; Vezian, S.; Portail, M.; Ouerghi, A.; Zielinski, M.; Chassagne, T.

    2010-10-25

    We propose to grow graphene on SiC by a direct carbon feeding through propane flow in a chemical vapor deposition reactor. X-ray photoemission and low energy electron diffraction show that propane allows to grow few-layer graphene (FLG) on 6H-SiC(0001). Surprisingly, FLG grown on (0001) face presents a rotational disorder similar to that observed for FLG obtained by annealing on (000-1) face. Thanks to a reduced growth temperature with respect to the classical SiC annealing method, we have also grown FLG/3C-SiC/Si(111) in a single growth sequence. This opens the way for large-scale production of graphene-based devices on silicon substrate.

  2. Conductance enhancement due to interface magnons in electron-beam evaporated MgO magnetic tunnel junctions with CoFeB free layer deposited at different pressure

    SciTech Connect (OSTI)

    Guo, P.; Yu, G. Q.; Wei, H. X.; Han, X. F. E-mail: xfhan@aphy.iphy.ac.cn; Li, D. L.; Feng, J. F. E-mail: xfhan@aphy.iphy.ac.cn; Kurt, H.; Chen, J. Y.; Coey, J. M. D.

    2014-10-21

    Electron-beam evaporated MgO-based magnetic tunnel junctions have been fabricated with the CoFeB free layer deposited at Ar pressure from 1 to 4 mTorr, and their tunneling process has been studied as a function of temperature and bias voltage. By changing the growth pressure, the junction dynamic conductance dI/dV, inelastic electron tunneling spectrum d²I/dV², and tunneling magnetoresistance vary with temperature. Moreover, the low-energy magnon cutoff energy E{sub C} derived from the conductance versus temperature curve agrees with interface magnon energy obtained directly from the inelastic electron tunneling spectrum, which demonstrates that interface magnons are involved in the electron tunneling process, opening an additional conductance channel and thus enhancing the total conductance.

  3. Method for depositing a uniform layer of particulate material on the surface of an article having interconnected porosity

    DOE Patents [OSTI]

    Wrenn, Jr., George E. (Clinton, TN); Lewis, Jr., John (Oak Ridge, TN)

    1984-01-01

    The invention is a method for depositing liquid-suspended particles on an immersed porous article characterized by interconnected porosity. In one form of the invention, coating is conducted in a vessel containing an organic liquid supporting a colloidal dispersion of graphite sized to lodge in surface pores of the article. The liquid comprises a first volatile component (e.g., acetone) and a second less-volatile component (e.g., toluene) containing a dissolved organic graphite-bonding agent. The liquid also contains an organic agent (e.g., cellulose gum) for maintaining the particles in suspension. A porous carbon article to be coated is immersed in the liquid so that it is permeated therewith. While the liquid is stirred to maintain a uniform blend, the vessel headspace is evacuated to effect flashing-off of the first component from the interior of the article. This causes particle-laden liquid exterior of the article to flow inwardly through its surface pores, lodging particles in these pores and forming a continuous graphite coating. The coated article is retrieved and heated to resin-bond the graphite. The method can be used to form a smooth, adherent, continuous coating of various materials on various porous articles. The method is rapid and reproducible.

  4. Method for depositing a uniform layer of particulate material on the surface of an article having interconnected porosity

    DOE Patents [OSTI]

    Wrenn, G.E. Jr.; Lewis, J. Jr.

    1982-09-29

    The invention is a method for depositing liquid-suspended particles on an immersed porous article characterized by interconnected porosity. In one form of the invention, coating is conducted in a vessel containing an organic liquid supporting a colloidal dispersion of graphite sized to lodge in surface pores of the article. The liquid comprises a first volatile component (e.g., acetone) and a second less-volatile component (e.g., toluene) containing a dissolved organic graphite-bonding agent. The liquid also contains an organic agent (e.g., cellulose gum) for maintaining the particles in suspension. A porous carbon article to be coated is immersed in the liquid so that it is permeated therewith. While the liquid is stirred to maintain a uniform blend, the vessel headspace is evacuated to effect flashing-off of the first component from the interior of the article. This causes particle-laden liquid exterior of the article to flow inwardly through its surface pores, lodging particles in these pores and forming a continuous graphite coating. The coated article is retrieved and heated to resin-bond the graphite. The method can be used to form a smooth, adherent, continuous coating of various materials on various porous articles. The method is rapid and reproducible.

  5. Surface roughness and interface width scaling of magnetron sputter deposited Ni/Ti multilayers

    SciTech Connect (OSTI)

    Maidul Haque, S.; Biswas, A.; Tokas, R. B.; Bhattacharyya, D.; Sahoo, N. K.; Bhattacharya, Debarati

    2013-09-14

    Using an indigenously built r.f. magnetron sputtering system, several single layer Ti and Ni films have been deposited at varying deposition conditions. All the samples have been characterized by Grazing Incidence X-ray Reflectivity (GIXR) and Atomic Force Microscopy to estimate their thickness, density, and roughness and a power law dependence of the surface roughness on the film thickness has been established. Subsequently, at optimized deposition condition of Ti and Ni, four Ni/Ti multilayers of 11-layer, 21-layer, 31-layer, and 51-layer having different bilayer thickness have been deposited. The multilayer samples have been characterized by GIXR and neutron reflectivity measurements and the experimental data have been fitted assuming an appropriate sample structure. A power law correlation between the interface width and bilayer thickness has been observed for the multilayer samples, which was explained in the light of alternate roughening/smoothening of multilayers and assuming that at the interface the growth restarts every time.

  6. Fluorocarbon assisted atomic layer etching of SiO2 and Si using cyclic Ar/C4F8 and Ar/CHF3 plasma

    SciTech Connect (OSTI)

    Metzler, Dominik; Li, Chen; Engelmann, Sebastian; Bruce, Robert L.; Joseph, Eric A.; Oehrlein, Gottlieb S.

    2015-11-11

    The need for atomic layer etching (ALE) is steadily increasing as smaller critical dimensions and pitches are required in device patterning. A flux-control based cyclic Ar/C4F8 ALE based on steady-state Ar plasma in conjunction with periodic, precise C4F8 injection and synchronized plasma-based low energy Ar+ ion bombardment has been established for SiO2.1 In this work, the cyclic process is further characterized and extended to ALE of silicon under similar process conditions. The use of CHF3 as a precursor is examined and compared to C4F8. CHF3 is shown to enable selective SiO2/Si etching using a fluorocarbon (FC) film build up. Other critical process parameters investigated are the FC film thickness deposited per cycle, the ion energy, and the etch step length. Etching behavior and mechanisms are studied using in situ real time ellipsometry and X-ray photoelectron spectroscopy. Silicon ALE shows less self-limitation than silicon oxide due to higher physical sputtering rates for the maximum ion energies used in this work, ranged from 20 to 30 eV. The surface chemistry is found to contain fluorinated silicon oxide during the etching of silicon. As a result, plasma parameters during ALE are studied using a Langmuir probe and establish the impact of precursor addition on plasma properties.

  7. Atom Interferometry

    ScienceCinema (OSTI)

    Mark Kasevich

    2010-01-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton?s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  8. Method and system using power modulation for maskless vapor deposition of spatially graded thin film and multilayer coatings with atomic-level precision and accuracy

    DOE Patents [OSTI]

    Montcalm, Claude; Folta, James Allen; Tan, Swie-In; Reiss, Ira

    2002-07-30

    A method and system for producing a film (preferably a thin film with highly uniform or highly accurate custom graded thickness) on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source operated with time-varying flux distribution. In preferred embodiments, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. A user selects a source flux modulation recipe for achieving a predetermined desired thickness profile of the deposited film. The method relies on precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.

  9. Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits

    SciTech Connect (OSTI)

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; Fowlkes, Jason Davidson; Rack, Philip D.

    2015-06-30

    Electron-beam-induced deposition patterns, with composition of PtC5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H2O molecules via a localized injection of inert Ar–H2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification process caused some loss of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. Lastly, a sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.

  10. Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; Fowlkes, Jason Davidson; Rack, Philip D.

    2015-06-30

    Electron-beam-induced deposition patterns, with composition of PtC5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H2O molecules via a localized injection of inert Ar–H2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification process caused some lossmore » of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. Lastly, a sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.« less

  11. Liquid-phase exfoliation of chemical vapor deposition-grown single layer graphene and its application in solution-processed transparent electrodes for flexible organic light-emitting devices

    SciTech Connect (OSTI)

    Wu, Chaoxing; Li, Fushan E-mail: gtl-fzu@hotmail.com; Wu, Wei; Chen, Wei; Guo, Tailiang E-mail: gtl-fzu@hotmail.com

    2014-12-15

    Efficient and low-cost methods for obtaining high performance flexible transparent electrodes based on chemical vapor deposition (CVD)-grown graphene are highly desirable. In this work, the graphene grown on copper foil was exfoliated into micron-size sheets through controllable ultrasonication. We developed a clean technique by blending the exfoliated single layer graphene sheets with conducting polymer to form graphene-based composite solution, which can be spin-coated on flexible substrate, forming flexible transparent conducting film with high conductivity (?8 ?/?), high transmittance (?81% at 550?nm), and excellent mechanical robustness. In addition, CVD-grown-graphene-based polymer light emitting diodes with excellent bendable performances were demonstrated.

  12. Zinc-oxide charge trapping memory cell with ultra-thin chromium-oxide trapping layer

    SciTech Connect (OSTI)

    El-Atab, Nazek; Rizk, Ayman; Nayfeh, Ammar; Okyay, Ali K.; UNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara

    2013-11-15

    A functional zinc-oxide based SONOS memory cell with ultra-thin chromium oxide trapping layer was fabricated. A 5 nm CrO{sub 2} layer is deposited between Atomic Layer Deposition (ALD) steps. A threshold voltage (V{sub t}) shift of 2.6V was achieved with a 10V programming voltage. Also for a 2V V{sub t} shift, the memory with CrO{sub 2} layer has a low programming voltage of 7.2V. Moreover, the deep trapping levels in CrO{sub 2} layer allows for additional scaling of the tunnel oxide due to an increase in the retention time. In addition, the structure was simulated using Physics Based TCAD. The results of the simulation fit very well with the experimental results providing an understanding of the charge trapping and tunneling physics.

  13. Atomic and electronic structures of single-layer FeSe on SrTiO3(001): The role of oxygen deficiency

    SciTech Connect (OSTI)

    Bang, Junhyeok; Li, Zhi; Sun, Y. Y.; Samanta, Amit; Zhang, Y. Y.; Zhang, Wenhao; Wang, Lili; Chen, X.; Ma, Xucun; Xue, Q.-K.; Zhang, S. B.

    2013-06-06

    Using first-principles calculation, we propose an interface structure for single triple-layer FeSe on the SrTiO3(001) surface, a high-Tc superconductor found recently. The key component of this structure is the oxygen deficiency on the top layer of the SrTiO3 substrate, as a result of Se etching used in preparing the high-Tc samples. The O vacancies strongly bind the FeSe triple layer to the substrate giving rise to a (21) reconstruction, as observed by scanning tunneling microscopy. The enhanced binding correlates to the significant increase of Tc observed in experiment. The O vacancies also serve as the source of electron doping, which modifies the Fermi surface of the first FeSe layer by filling the hole pocket near the center of the surface Brillouin zone, as suggested from angle-resolved photoemission spectroscopy measurement.

  14. Atomic and electronic structures of single-layer FeSe on SrTiO3(001): The role of oxygen deficiency

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bang, Junhyeok; Li, Zhi; Sun, Y. Y.; Samanta, Amit; Zhang, Y. Y.; Zhang, Wenhao; Wang, Lili; Chen, X.; Ma, Xucun; Xue, Q.-K.; et al

    2013-06-06

    Using first-principles calculation, we propose an interface structure for single triple-layer FeSe on the SrTiO3(001) surface, a high-Tc superconductor found recently. The key component of this structure is the oxygen deficiency on the top layer of the SrTiO3 substrate, as a result of Se etching used in preparing the high-Tc samples. The O vacancies strongly bind the FeSe triple layer to the substrate giving rise to a (2×1) reconstruction, as observed by scanning tunneling microscopy. The enhanced binding correlates to the significant increase of Tc observed in experiment. The O vacancies also serve as the source of electron doping, whichmore » modifies the Fermi surface of the first FeSe layer by filling the hole pocket near the center of the surface Brillouin zone, as suggested from angle-resolved photoemission spectroscopy measurement.« less

  15. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, Xiaonan; Sheldon, Peter

    1998-01-01

    A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  16. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, X.; Sheldon, P.

    1998-01-27

    A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  17. Compliant layer chucking surface

    DOE Patents [OSTI]

    Blaedel, Kenneth L.; Spence, Paul A.; Thompson, Samuel L.

    2004-12-28

    A method and apparatus are described wherein a thin layer of complaint material is deposited on the surface of a chuck to mitigate the deformation that an entrapped particle might cause in the part, such as a mask or a wafer, that is clamped to the chuck. The harder particle will embed into the softer layer as the clamping pressure is applied. The material composing the thin layer could be a metal or a polymer for vacuum or electrostatic chucks. It may be deposited in various patterns to affect an interrupted surface, such as that of a "pin" chuck, thereby reducing the probability of entrapping a particle.

  18. Oxygen-reducing catalyst layer

    DOE Patents [OSTI]

    O'Brien, Dennis P.; Schmoeckel, Alison K.; Vernstrom, George D.; Atanasoski, Radoslav; Wood, Thomas E.; Yang, Ruizhi; Easton, E. Bradley; Dahn, Jeffrey R.; O'Neill, David G.

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  19. Organic electronic devices with multiple solution-processed layers

    DOE Patents [OSTI]

    Forrest, Stephen R.; Lassiter, Brian E.; Zimmerman, Jeramy D.

    2015-08-04

    A method of fabricating a tandem organic photosensitive device involves depositing a first layer of an organic electron donor type material film by solution-processing of the organic electron donor type material dissolved in a first solvent; depositing a first layer of an organic electron acceptor type material over the first layer of the organic electron donor type material film by a dry deposition process; depositing a conductive layer over the interim stack by a dry deposition process; depositing a second layer of the organic electron donor type material over the conductive layer by solution-processing of the organic electron donor type material dissolved in a second solvent, wherein the organic electron acceptor type material and the conductive layer are insoluble in the second solvent; depositing a second layer of an organic electron acceptor type material over the second layer of the organic electron donor type material film by a dry deposition process, resulting in a stack.

  20. Adhesion and Atomic Structures of Gold on Ceria Nanostructures:The Role of Surface Structure and Oxidation State of Ceria Supports

    SciTech Connect (OSTI)

    Lin, Yuyuan [Northwestern University, Evanston; Wu, Zili [ORNL; Wen, Jianguo [Argonne National Laboratory (ANL); Poeppelmeier, Kenneth R [Northwestern University, Evanston; Marks, Laurence D [Northwestern University, Evanston

    2015-01-01

    Recent advances in heterogeneous catalysis have demonstrated that oxides supports with the same material but different shapes can result in metal catalysts with distinct catalytic properties. The shape-dependent catalysis was not well-understood owing to the lack of direct visualization of the atomic structures at metal-oxide interface. Herein, we utilized aberration-corrected electron microscopy and revealed the atomic structures of gold particles deposited on ceria nanocubes and nanorods with {100} or {111} facets exposed. For the ceria nanocube support, gold nanoparticles have extended atom layers at the metal-support interface. In contrast, regular gold nanoparticles and rafts are present on the ceria nanorod support. After hours of water gas shift reaction, the extended gold atom layers and rafts vanish, which is associated with the decrease of the catalytic activities. By understanding the atomic structures of the support surfaces, metal-support interfaces, and morphologies of the gold particles, a direct structure-property relationship is established.

  1. Multi-chamber deposition system

    DOE Patents [OSTI]

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-06-27

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  2. Multi-chamber deposition system

    DOE Patents [OSTI]

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-10-17

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  3. Atomic-scale electrochemistry on the surface of a manganite

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vasudevan, Rama K; Tselev, Alexander; Baddorf, Arthur P; Kalinin, Sergei V

    2015-01-01

    The doped manganese oxides (manganites) have been widely studied for their colossal magnetoresistive effects, for potential applications in oxide spintronics, electroforming in resistive switching devices, and are materials of choice as cathodes in modern solid oxide fuel cells. However, little experimental knowledge of the dynamics of the surfaces of perovskite manganites at the atomic scale exists. Here, through in-situ scanning tunnelling microscopy (STM), we demonstrate atomic resolution on samples of La0.625Ca0.375MnO3 grown on (001) SrTiO3 by pulsed laser deposition (PLD). Furthermore, by applying triangular DC waveforms of increasing amplitude to the STM tip, and measuring the tunnelling current, we demonstratemore » the ability to both perform and monitor surface electrochemical processes at the atomic level, including, for the first time in a manganite, formation of single and multiple oxygen vacancies, disruption of the overlying manganite layers, and removal and deposition of individual atomic units or clusters. Our work paves the way for better understanding of surface oxygen reactions in these systems.« less

  4. Atomic-scale electrochemistry on the surface of a manganite

    SciTech Connect (OSTI)

    Vasudevan, Rama K; Tselev, Alexander; Baddorf, Arthur P; Kalinin, Sergei V

    2015-01-01

    The doped manganese oxides (manganites) have been widely studied for their colossal magnetoresistive effects, for potential applications in oxide spintronics, electroforming in resistive switching devices, and are materials of choice as cathodes in modern solid oxide fuel cells. However, little experimental knowledge of the dynamics of the surfaces of perovskite manganites at the atomic scale exists. Here, through in-situ scanning tunnelling microscopy (STM), we demonstrate atomic resolution on samples of La0.625Ca0.375MnO3 grown on (001) SrTiO3 by pulsed laser deposition (PLD). Furthermore, by applying triangular DC waveforms of increasing amplitude to the STM tip, and measuring the tunnelling current, we demonstrate the ability to both perform and monitor surface electrochemical processes at the atomic level, including, for the first time in a manganite, formation of single and multiple oxygen vacancies, disruption of the overlying manganite layers, and removal and deposition of individual atomic units or clusters. Our work paves the way for better understanding of surface oxygen reactions in these systems.

  5. Selective growth of Pb islands on graphene/SiC buffer layers

    SciTech Connect (OSTI)

    Liu, X. T.; Miao, Y. P.; Ma, D. Y.; Hu, T. W.; Ma, F. E-mail: kwxu@mail.xjtu.edu.cn; Chu, Paul K.; Xu, K. W. E-mail: kwxu@mail.xjtu.edu.cn

    2015-02-14

    Graphene is fabricated by thermal decomposition of silicon carbide (SiC) and Pb islands are deposited by Pb flux in molecular beam epitaxy chamber. It is found that graphene domains and SiC buffer layer coexist. Selective growth of Pb islands on SiC buffer layer rather than on graphene domains is observed. It can be ascribed to the higher adsorption energy of Pb atoms on the 6?(3) reconstruction of SiC. However, once Pb islands nucleate on graphene domains, they will grow very large owing to the lower diffusion barrier of Pb atoms on graphene. The results are consistent with first-principle calculations. Since Pb atoms on graphene are nearly free-standing, Pb islands grow in even-number mode.

  6. Structured luminescence conversion layer

    DOE Patents [OSTI]

    Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

    2012-12-11

    An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

  7. Fabrication of a single layer graphene by copper intercalation on a SiC(0001) surface

    SciTech Connect (OSTI)

    Yagyu, Kazuma; Tochihara, Hiroshi; Tomokage, Hajime; Suzuki, Takayuki; Tajiri, Takayuki; Kohno, Atsushi; Takahashi, Kazutoshi

    2014-02-03

    Cu atoms deposited on a zero layer graphene grown on a SiC(0001) substrate, intercalate between the zero layer graphene and the SiC substrate after the thermal annealing above 600?C, forming a Cu-intercalated single layer graphene. On the Cu-intercalated single layer graphene, a graphene lattice with superstructure due to moir pattern is observed by scanning tunneling microscopy, and specific linear dispersion at the K{sup } point as well as a characteristic peak in a C{sub 1s} core level spectrum, which is originated from a free-standing graphene, is confirmed by photoemission spectroscopy. The Cu-intercalated single layer graphene is found to be n-doped.

  8. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming

    2010-02-23

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  9. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming; Liao, Xianbo; Du, Wenhui

    2011-10-04

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  10. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming; Liao, Xianbo; Du, Wenhui

    2011-02-01

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  11. The effects of high temperature processing on the structural and optical properties of oxygenated CdS window layers in CdTe solar cells

    SciTech Connect (OSTI)

    Paudel, Naba R.; Grice, Corey R.; Xiao, Chuanxiao; Yan, Yanfa

    2014-07-28

    High efficiency CdTe solar cells typically use oxygenated CdS (CdS:O) window layers. We synthesize CdS:O window layers at room temperature (RT) and 270 °C using reactive sputtering. The band gaps of CdS:O layers deposited at RT increase when O{sub 2}/(O{sub 2} + Ar) ratios in the deposition chamber increase. On the other hand, the band gaps of CdS:O layers deposited at 270 °C decrease as the O{sub 2}/(O{sub 2} + Ar) ratios increase. Interestingly, however, our high temperature closed-space sublimation (CSS) processed CdTe solar cells using CdS:O window layers deposited at RT and 270 °C exhibit very similar cell performance, including similar short-circuit current densities. To understand the underlying reasons, CdS:O thin films deposited at RT and 270 °C are annealed at temperatures that simulate the CSS process of CdTe deposition. X-ray diffraction, atomic force microscopy, and UV-visible light absorption spectroscopy characterization of the annealed films reveals that the CdS:O films deposited at RT undergo grain regrowth and/or crystallization and exhibit reduced band gaps after the annealing. Our results suggest that CdS:O thin films deposited at RT and 270 °C should exhibit similar optical properties after the deposition of CdTe layers, explaining the similar cell performance.

  12. Conductive layer for biaxially oriented semiconductor film growth

    DOE Patents [OSTI]

    Findikoglu, Alp T.; Matias, Vladimir

    2007-10-30

    A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.

  13. Method of deposition by molecular beam epitaxy

    DOE Patents [OSTI]

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time.

  14. Method of deposition by molecular beam epitaxy

    DOE Patents [OSTI]

    Chalmers, S.A.; Killeen, K.P.; Lear, K.L.

    1995-01-10

    A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time. 9 figures.

  15. Design of a compact ultrahigh vacuum-compatible setup for the analysis of chemical vapor deposition processes

    SciTech Connect (OSTI)

    Weiss, Theodor; Nowak, Martin; Zielasek, Volkmar Bäumer, Marcus; Mundloch, Udo; Kohse-Höinghaus, Katharina

    2014-10-15

    Optimizing thin film deposition techniques requires contamination-free transfer from the reactor into an ultrahigh vacuum (UHV) chamber for surface science analysis. A very compact, multifunctional Chemical Vapor Deposition (CVD) reactor for direct attachment to any typical UHV system for thin film analysis was designed and built. Besides compactness, fast, easy, and at the same time ultimately clean sample transfer between reactor and UHV was a major goal. It was achieved by a combination of sample manipulation parts, sample heater, and a shutter mechanism designed to fit all into a NW38 Conflat six-ways cross. The present reactor design is versatile to be employed for all commonly employed variants of CVD, including Atomic Layer Deposition. A demonstration of the functionality of the system is provided. First results of the setup (attached to an Omicron Multiprobe x-ray photoelectron spectroscopy system) on the temperature dependence of Pulsed Spray Evaporation-CVD of Ni films from Ni acetylacetonate as the precursor demonstrate the reactor performance and illustrate the importance of clean sample transfer without breaking vacuum in order to obtain unambiguous results on the quality of CVD-grown thin Ni films. The widely applicable design holds promise for future systematic studies of the fundamental processes during chemical vapor deposition or atomic layer deposition.

  16. Growth of graphene underlayers by chemical vapor deposition

    SciTech Connect (OSTI)

    Fabiane, Mopeli; Khamlich, Saleh; Bello, Abdulhakeem; Dangbegnon, Julien; Momodu, Damilola; Manyala, Ncholu; Charlie Johnson, A. T.

    2013-11-15

    We present a simple and very convincing approach to visualizing that subsequent layers of graphene grow between the existing monolayer graphene and the copper catalyst in chemical vapor deposition (CVD). Graphene samples were grown by CVD and then transferred onto glass substrates by the bubbling method in two ways, either direct-transfer (DT) to yield poly (methyl methacrylate) (PMMA)/graphene/glass or (2) inverted transfer (IT) to yield graphene/PMMA/glass. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to reveal surface features for both the DT and IT samples. The results from FE-SEM and AFM topographic analyses of the surfaces revealed the underlayer growth of subsequent layers. The subsequent layers in the IT samples are visualized as 3D structures, where the smaller graphene layers lie above the larger layers stacked in a concentric manner. The results support the formation of the so-called inverted wedding cake stacking in multilayer graphene growth.

  17. Direct synthesis of large area graphene on insulating substrate by gallium vapor-assisted chemical vapor deposition

    SciTech Connect (OSTI)

    Murakami, Katsuhisa Hiyama, Takaki; Kuwajima, Tomoya; Fujita, Jun-ichi; Tanaka, Shunsuke; Hirukawa, Ayaka; Kano, Emi; Takeguchi, Masaki

    2015-03-02

    A single layer of graphene with dimensions of 20?mm??20?mm was grown directly on an insulating substrate by chemical vapor deposition using Ga vapor catalysts. The graphene layer showed highly homogeneous crystal quality over a large area on the insulating substrate. The crystal quality of the graphene was measured by Raman spectroscopy and was found to improve with increasing Ga vapor density on the reaction area. High-resolution transmission electron microscopy observations showed that the synthesized graphene had a perfect atomic-scale crystal structure within its grains, which ranged in size from 50?nm to 200?nm.

  18. Chemical solution seed layer for rabits tapes

    SciTech Connect (OSTI)

    Goyal, Amit; Paranthaman, Mariappan; Wee, Sung-Hun

    2014-06-10

    A method for making a superconducting article includes the steps of providing a biaxially textured substrate. A seed layer is then deposited. The seed layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different rare earth or transition metal cations. A superconductor layer is grown epitaxially such that the superconductor layer is supported by the seed layer.

  19. Electrowetting on plasma-deposited fluorocarbon hydrophobic films for biofluid transport in microfluidics

    SciTech Connect (OSTI)

    Bayiati, P.; Tserepi, A.; Petrou, P. S.; Kakabakos, S. E.; Misiakos, K.; Gogolides, E. [Institute of Microelectronics-NCSR 'Demokritos', POB 60228, 153 10 Aghia Paraskevi, Attiki (Greece); Institute of Radioisotopes and Radiodiagnostic Products-NCSR 'Demokritos', POB 60228, 153 10 Aghia Paraskevi, Attiki (Greece); Institute of Microelectronics-NCSR 'Demokritos', POB 60228, 153 10 Aghia Paraskevi, Attiki (Greece)

    2007-05-15

    The present work focuses on the plasma deposition of fluorocarbon (FC) films on surfaces and the electrostatic control of their wettability (electrowetting). Such films can be employed for actuation of fluid transport in microfluidic devices, when deposited over patterned electrodes. Here, the deposition was performed using C{sub 4}F{sub 8} and the plasma parameters that permit the creation of films with optimized properties desirable for electrowetting were established. The wettability of the plasma-deposited surfaces was characterized by means of contact angle measurements (in the static and dynamic mode). The thickness of the deposited films was probed in situ by means of spectroscopic ellipsometry, while the surface roughness was provided by atomic force microscopy. These plasma-deposited FC films in combination with silicon nitride, a material of high dielectric constant, were used to create a dielectric structure that requires reduced voltages for successful electrowetting. Electrowetting experiments using protein solutions were conducted on such optimized dielectric structures and were compared with similar structures bearing commercial spin-coated Teflon registered amorphous fluoropolymer (AF) film as the hydrophobic top layer. Our results show that plasma-deposited FC films have desirable electrowetting behavior and minimal protein adsorption, a requirement for successful transport of biological solutions in 'digital' microfluidics.

  20. Optoelectronic properties of Mg{sub 2}Si semiconducting layers with high absorption coefficients

    SciTech Connect (OSTI)

    Kato, Takashi; Sago, Yuichiro; Fujiwara, Hiroyuki

    2011-09-15

    In an attempt to develop a low-cost material for solar cell devices, polycrystalline magnesium silicide (poly-Mg{sub 2}Si) semiconducting layers have been prepared by applying rf magnetron sputtering using a Mg{sub 2}Si target. The optimum substrate temperature for the poly-Mg{sub 2}Si growth was found to be T{sub s} = 200 deg. C; the film deposition at higher temperatures leads to desorption of Mg atoms from the growing surface, while the amorphous phase formation occurs at room temperature. The poly-Mg{sub 2}Si layer deposited at T{sub s} = 200 deg. C shows the (111) preferential orientation with a uniform grain size of {approx}50 nm. The dielectric function of the poly-Mg{sub 2}Si layer has been determined accurately by spectroscopic ellipsometry. From the analysis, quite high absorption coefficients and an indirect gap of 0.77 eV in the poly-Mg{sub 2}Si layer have been confirmed. The above poly-Mg{sub 2}Si layer shows clear photoconductivity and can be applied as a narrow-gap bottom layer in multi-junction solar cell devices.

  1. Forming aspheric optics by controlled deposition

    DOE Patents [OSTI]

    Hawryluk, Andrew M.

    1998-01-01

    An aspheric optical element formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin (.about.100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application.

  2. Forming aspheric optics by controlled deposition

    DOE Patents [OSTI]

    Hawryluk, A.M.

    1998-04-28

    An aspheric optical element is disclosed formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin ({approx}100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application. 4 figs.

  3. Chemical vapor deposition of sialon

    DOE Patents [OSTI]

    Landingham, R.L.; Casey, A.W.

    A laminated composite and a method for forming the composite by chemical vapor deposition are described. The composite includes a layer of sialon and a material to which the layer is bonded. The method includes the steps of exposing a surface of the material to an ammonia containing atmosphere; heating the surface to at least about 1200/sup 0/C; and impinging a gas containing N/sub 2/, SiCl/sub 4/, and AlCl/sub 3/ on the surface.

  4. Biaxially textured metal substrate with palladium layer

    DOE Patents [OSTI]

    Robbins, William B.

    2002-12-31

    Described is an article comprising a biaxially textured metal substrate and a layer of palladium deposited on at least one major surface of the metal substrate; wherein the palladium layer has desired in-plane and out-of-plane crystallographic orientations, which allow subsequent layers that are applied on the article to also have the desired orientations.

  5. Atom-probe tomographic study of interfaces of Cu{sub 2}ZnSnS{sub 4} photovoltaic cells

    SciTech Connect (OSTI)

    Tajima, S. Asahi, R.; Itoh, T.; Hasegawa, M.; Ohishi, K.; Isheim, D.; Seidman, D. N.

    2014-09-01

    The heterophase interfaces between the CdS buffer layer and the Cu{sub 2}ZnSnS{sub 4} (CZTS) absorption layers are one of the main factors affecting photovoltaic performance of CZTS cells. We have studied the compositional distributions at heterophase interfaces in CZTS cells using three-dimensional atom-probe tomography. The results demonstrate: (a) diffusion of Cd into the CZTS layer; (b) segregation of Zn at the CdS/CZTS interface; and (c) a change of oxygen and hydrogen concentrations in the CdS layer depending on the heat treatment. Annealing at 573?K after deposition of CdS improves the photovoltaic properties of CZTS cells probably because of the formation of a heterophase epitaxial junction at the CdS/CZTS interface. Conversely, segregation of Zn at the CdS/CZTS interface after annealing at a higher temperature deteriorates the photovoltaic properties.

  6. Low-frequency Raman 'fingerprints' of two-dimensional metal dichalcogenide layer stacking configurations

    SciTech Connect (OSTI)

    Puretzky, Alexander A; Liang, Liangbo; Li, Xufan; Xiao, Kai; Wang, Kai; Mahjouri-Samani, Masoud; Basile, Leonardo; Idrobo Tapia, Juan Carlos; Sumpter, Bobby G; Meunier, Vincent; Geohegan, David B

    2015-01-01

    Stacked monolayers of two-dimensional (2D) materials present a new class of hybrid materials with tunable optoelectronic properties determined by their stacking orientation, order, and atomic registry. Atomic-resolution Z-contrast scanning transmission electron microscopy (AR-Z-STEM) and electron energy loss spectroscopy (EELS) can be used to determine the exact atomic registration between different layers, in few-layer 2D stacks, however fast optical characterization techniques are essential for rapid development of the field. Here, using two- and three-layer MoSe2 and WSe2 crystals synthesized by chemical vapor deposition we show that the generally unexplored low frequency (LF) Raman modes (< 50 cm-1) that originate from interlayer vibrations can serve as fingerprints to characterize not only the number of layers, but also their stacking configurations. Ab initio calculations and group theory analysis corroborate the experimental assignments determined by AR-Z-STEM and show that the calculated LF mode fingerprints are related to the 2D crystal symmetries.

  7. Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Puretzky, Alexander A.; Liang, Liangbo; Li, Xufan; Xiao, Kai; Wang, Kai; Mahjouri-Samani, Masoud; Basile, Leonardo; Idrobo, Juan Carlos; Sumpter, Bobby G.; Meunier, Vincent; et al

    2015-05-12

    In this study, stacked monolayers of two-dimensional (2D) materials present a new class of hybrid materials with tunable optoelectronic properties determined by their stacking orientation, order, and atomic registry. Atomic-resolution Z-contrast scanning transmission electron microscopy (AR-Z-STEM) and electron energy loss spectroscopy (EELS) can be used to determine the exact atomic registration between different layers, in few-layer 2D stacks, however fast optical characterization techniques are essential for rapid development of the field. Here, using two- and three-layer MoSe2 and WSe2 crystals synthesized by chemical vapor deposition we show that the generally unexplored low frequency (LF) Raman modes (< 50 cm-1) thatmore » originate from interlayer vibrations can serve as fingerprints to characterize not only the number of layers, but also their stacking configurations. Ab initio calculations and group theory analysis corroborate the experimental assignments determined by AR-Z-STEM and show that the calculated LF mode fingerprints are related to the 2D crystal symmetries.« less

  8. Chemical vapor deposition of epitaxial silicon

    DOE Patents [OSTI]

    Berkman, Samuel

    1984-01-01

    A single chamber continuous chemical vapor deposition (CVD) reactor is described for depositing continuously on flat substrates, for example, epitaxial layers of semiconductor materials. The single chamber reactor is formed into three separate zones by baffles or tubes carrying chemical source material and a carrier gas in one gas stream and hydrogen gas in the other stream without interaction while the wafers are heated to deposition temperature. Diffusion of the two gas streams on heated wafers effects the epitaxial deposition in the intermediate zone and the wafers are cooled in the final zone by coolant gases. A CVD reactor for batch processing is also described embodying the deposition principles of the continuous reactor.

  9. ATOM | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACATOM content top Network Optimization Models (RNAS and ATOM) Posted by Admin on Mar 1, 2012 in | Comments 0 comments Many critical infrastructures can be represented by a network of interconnected nodes and links. Mathematically sound nonlinear optimization techniques can then be applied to these networks to understand their behavior under normal and disrupted situations. Network optimization models are particularly useful for evaluating transportation system disruption effects on system

  10. Near-field microwave microscopy of high-? oxides grown on graphene with an organic seeding layer

    SciTech Connect (OSTI)

    Tselev, Alexander Kalinin, Sergei V.; Sangwan, Vinod K.; Jariwala, Deep; Lauhon, Lincoln J.; Marks, Tobin J.; Hersam, Mark C.; Department of Chemistry, Northwestern University, Evanston, Illinois 60208

    2013-12-09

    Near-field scanning microwave microscopy (SMM) is used for non-destructive nanoscale characterization of Al{sub 2}O{sub 3} and HfO{sub 2} films grown on epitaxial graphene on SiC by atomic layer deposition using a self-assembled perylene-3,4,9,10-tetracarboxylic dianhydride seeding layer. SMM allows imaging of buried inhomogeneities in the dielectric layer with a spatial resolution close to 100?nm. The results indicate that, while topographic features on the substrate surface cannot be eliminated as possible sites of defect nucleation, the use of a vertically heterogeneous Al{sub 2}O{sub 3}/HfO{sub 2} stack suppresses formation of large outgrowth defects in the oxide film, ultimately improving lateral uniformity of the dielectric film.

  11. Resistive switching phenomena in TiO{sub x} nanoparticle layers for memory applications

    SciTech Connect (OSTI)

    Goren, Emanuelle; Tsur, Yoed; Ungureanu, Mariana; Zazpe, Raul; Rozenberg, Marcelo; Hueso, Luis E.; Casanova, Flix; Stoliar, Pablo

    2014-10-06

    Electrical characteristics of a Co/ TiO{sub x}/Co resistive memory device, fabricated by two different methods, are reported. In addition to crystalline TiO{sub 2} layers fabricated via conventional atomic layer deposition (ALD), an alternative method has been examined, where TiO{sub x} nanoparticle layers were fabricated via sol-gel. The different devices have shown different hysteresis loops with a unique crossing point for the sol-gel devices. A simple qualitative model is introduced to describe the different current-voltage behaviours by suggesting only one active metal-oxide interface for the ALD devices and two active metal-oxide interfaces for the sol-gel devices. Furthermore, we show that the resistive switching behaviour could be easily tuned by proper interface engineering and that despite having a similar active material, different fabrication methods can lead to dissimilar resistive switching properties.

  12. Uncooled thin film infrared imaging device with aerogel thermal isolation: Deposition and planarization techniques

    SciTech Connect (OSTI)

    Ruffner, J.A.; Clem, P.G.; Tuttle, B.A.; Brinker, C.J. [Sandia National Labs., Albuquerque, NM (United States); Sriram, C.S. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Bullington, J.A. [AMMPEC, Inc., Albuquerque, NM (United States)

    1998-04-01

    The authors have successfully integrated a thermally insulating silica aerogel thin film into a new uncooled monolithic thin film infrared (IR) imaging device. Compared to other technologies (bulk ceramic and microbridge), use of an aerogel layer provides superior thermal isolation of the pyroelectric imaging element from the relatively massive heat sinking integrated circuit. This results in significantly higher thermal and temporal resolutions. They have calculated noise equivalent temperature differences of 0.04--0.10 C from a variety of Pb{sub x}Zr{sub y}Ti{sub 1{minus}y}O{sub 3} (PZT) and Pb{sub x}La{sub 1{minus}x}Zr{sub y}Ti{sub 1{minus}y}O{sub 3} (PLZT) pyroelectric imaging elements in monolithic structures. In addition, use of aerogels results in an easier, less expensive fabrication process and a more robust device. Fabrication of these monolithic devices entails sol-gel deposition of the aerogel, sputter deposition of the electrodes, and solution chemistry deposition of the pyroelectric imaging elements. Uniform pyroelectric response is achieved across the device by use of appropriate planarization techniques. These deposition and planarization techniques are described. Characterization of the individual layers and monolithic structure using scanning electron microscopy, atomic force microscopy and Byer-Roundy techniques also is discussed.

  13. Synthesis of layer-tunable graphene: A combined kinetic implantation and thermal ejection approach

    SciTech Connect (OSTI)

    Wang, Gang; Zhang, Miao; Liu, Su; Xie, Xiaoming; Ding, Guqiao; Wang, Yongqiang; Chu, Paul K.; Gao, Heng; Ren, Wei; Yuan, Qinghong; Zhang, Peihong; Wang, Xi; Di, Zengfeng

    2015-05-04

    Layer-tunable graphene has attracted broad interest for its potentials in nanoelectronics applications. However, synthesis of layer-tunable graphene by using traditional chemical vapor deposition (CVD) method still remains a great challenge due to the complex experimental parameters and the carbon precipitation process. Herein, by performing ion implantation into a Ni/Cu bilayer substrate, the number of graphene layers, especially single or double layer, can be controlled precisely by adjusting the carbon ion implant fluence. The growth mechanism of the layer-tunable graphene is revealed by monitoring the growth process is observed that the entire implanted carbon atoms can be expelled towards the substrate surface and thus graphene with designed layer number can be obtained. Such a growth mechanism is further confirmed by theoretical calculations. The proposed approach for the synthesis of layer-tunable graphene offers more flexibility in the experimental conditions. Being a core technology in microelectronics processing, ion implantation can be readily implemented in production lines and is expected to expedite the application of graphene to nanoelectronics.

  14. Synthesis of layer-tunable graphene: A combined kinetic implantation and thermal ejection approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Gang; Zhang, Miao; Liu, Su; Xie, Xiaoming; Ding, Guqiao; Wang, Yongqiang; Chu, Paul K.; Gao, Heng; Ren, Wei; Yuan, Qinghong; et al

    2015-05-04

    Layer-tunable graphene has attracted broad interest for its potentials in nanoelectronics applications. However, synthesis of layer-tunable graphene by using traditional chemical vapor deposition (CVD) method still remains a great challenge due to the complex experimental parameters and the carbon precipitation process. Herein, by performing ion implantation into a Ni/Cu bilayer substrate, the number of graphene layers, especially single or double layer, can be controlled precisely by adjusting the carbon ion implant fluence. The growth mechanism of the layer-tunable graphene is revealed by monitoring the growth process is observed that the entire implanted carbon atoms can be expelled towards the substratemore » surface and thus graphene with designed layer number can be obtained. Such a growth mechanism is further confirmed by theoretical calculations. The proposed approach for the synthesis of layer-tunable graphene offers more flexibility in the experimental conditions. Being a core technology in microelectronics processing, ion implantation can be readily implemented in production lines and is expected to expedite the application of graphene to nanoelectronics.« less

  15. Tuning the properties of Ge-quantum dots superlattices in amorphous silica matrix through deposition conditions

    SciTech Connect (OSTI)

    Pinto, S. R. C.; Ramos, M. M. D.; Gomes, M. J. M.; Buljan, M.; Chahboun, A.; Roldan, M. A.; Molina, S. I.; Bernstorff, S.; Varela, M.; Pennycook, S. J.; Barradas, N. P.; Alves, E.

    2012-04-01

    In this work, we investigate the structural properties of Ge quantum dot lattices in amorphous silica matrix, prepared by low-temperature magnetron sputtering deposition of (Ge+SiO{sub 2})/SiO{sub 2} multilayers. The dependence of quantum dot shape, size, separation, and arrangement type on the Ge-rich (Ge + SiO{sub 2}) layer thickness is studied. We show that the quantum dots are elongated along the growth direction, perpendicular to the multilayer surface. The size of the quantum dots and their separation along the growth direction can be tuned by changing the Ge-rich layer thickness. The average value of the quantum dots size along the lateral (in-plane) direction along with their lateral separation is not affected by the thickness of the Ge-rich layer. However, the thickness of the Ge-rich layer significantly affects the quantum dot ordering. In addition, we investigate the dependence of the multilayer average atomic composition and also the quantum dot crystalline quality on the deposition parameters.

  16. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOE Patents [OSTI]

    Murduck, James M.; Lepetre, Yves J.; Schuller, Ivan K.; Ketterson, John B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

  17. Superconducting structure with layers of niobium nitride and aluminum nitride

    DOE Patents [OSTI]

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-07-04

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

  18. Atomic magnetometer

    DOE Patents [OSTI]

    Schwindt, Peter; Johnson, Cort N.

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  19. Method for deposition of a conductor in integrated circuits

    DOE Patents [OSTI]

    Creighton, J.R.; Dominguez, F.; Johnson, A.W.; Omstead, T.R.

    1997-09-02

    A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten. 2 figs.

  20. Method for deposition of a conductor in integrated circuits

    DOE Patents [OSTI]

    Creighton, J. Randall; Dominguez, Frank; Johnson, A. Wayne; Omstead, Thomas R.

    1997-01-01

    A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten.

  1. Synthesis and in vacuo deposition of iron oxide nanoparticles by microplasma-assisted decomposition of ferrocene

    SciTech Connect (OSTI)

    Schaefer, Michael E-mail: axk650@case.edu E-mail: schlaf@mail.usf.edu; Kumar, Ajay E-mail: axk650@case.edu E-mail: schlaf@mail.usf.edu; Mohan Sankaran, R. E-mail: axk650@case.edu E-mail: schlaf@mail.usf.edu; Schlaf, Rudy E-mail: axk650@case.edu E-mail: schlaf@mail.usf.edu

    2014-10-07

    Microplasma-assisted gas-phase nucleation has emerged as an important new approach to produce high-purity, nanometer-sized, and narrowly dispersed particles. This study aims to integrate this technique with vacuum conditions to enable synthesis and deposition in an ultrahigh vacuum compatible environment. The ultimate goal is to combine nanoparticle synthesis with photoemission spectroscopy-based electronic structure analysis. Such measurements require in vacuo deposition to prevent surface contamination from sample transfer, which can be deleterious for nanoscale materials. A homebuilt microplasma reactor was integrated into an existing atomic layer deposition system attached to a surface science multi-chamber system equipped with photoemission spectroscopy. As proof-of-concept, we studied the decomposition of ferrocene vapor in the microplasma to synthesize iron oxide nanoparticles. The injection parameters were optimized to achieve complete precursor decomposition under vacuum conditions, and nanoparticles were successfully deposited. The stoichiometry of the deposited samples was characterized in situ using X-ray photoelectron spectroscopy indicating that iron oxide was formed. Additional transmission electron spectroscopy characterization allowed the determination of the size, shape, and crystal lattice of the particles, confirming their structural properties.

  2. Chemical vapor deposition of sialon

    DOE Patents [OSTI]

    Landingham, Richard L.; Casey, Alton W.

    1982-01-01

    A laminated composite and a method for forming the composite by chemical vapor deposition. The composite includes a layer of sialon and a material to which the layer is bonded. The method includes the steps of exposing a surface of the material to an ammonia containing atmosphere; heating the surface to at least about 1200.degree. C.; and impinging a gas containing in a flowing atmosphere of air N.sub.2, SiCl.sub.4, and AlCl.sub.3 on the surface.

  3. Layered CU-based electrode for high-dielectric constant oxide thin film-based devices

    DOE Patents [OSTI]

    Auciello, Orlando

    2010-05-11

    A layered device including a substrate; an adhering layer thereon. An electrical conducting layer such as copper is deposited on the adhering layer and then a barrier layer of an amorphous oxide of TiAl followed by a high dielectric layer are deposited to form one or more of an electrical device such as a capacitor or a transistor or MEMS and/or a magnetic device.

  4. The Electrical Properties of Native and Deposited Thin Aluminum Oxide

    Office of Scientific and Technical Information (OSTI)

    Layers on Aluminum: Hydration Effects (Conference) | SciTech Connect Conference: The Electrical Properties of Native and Deposited Thin Aluminum Oxide Layers on Aluminum: Hydration Effects Citation Details In-Document Search Title: The Electrical Properties of Native and Deposited Thin Aluminum Oxide Layers on Aluminum: Hydration Effects × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical

  5. Process for thin film deposition of cadmium sulfide

    DOE Patents [OSTI]

    Muruska, H. Paul; Sansregret, Joseph L.; Young, Archie R.

    1982-01-01

    The present invention teaches a process for depositing layers of cadmium sulfide. The process includes depositing a layer of cadmium oxide by spray pyrolysis of a cadmium salt in an aqueous or organic solvent. The oxide film is then converted into cadmium sulfide by thermal ion exchange of the O.sup.-2 for S.sup.-2 by annealing the oxide layer in gaseous sulfur at elevated temperatures.

  6. Superconductive articles including cerium oxide layer

    DOE Patents [OSTI]

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  7. Mn deposition on Ni{sub 2}MnGa(100) (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    The spot profile analysis indicates that after 0.2 monolayer (ML) deposition, the LEED ... (c) 2012 American Institute of Physics; Country of input: International Atomic Energy ...

  8. Method of adhesion between an oxide layer and a metal layer

    DOE Patents [OSTI]

    Jennison, Dwight R.; Bogicevic, Alexander; Kelber, Jeffry A.; Chambers, Scott A.

    2004-09-14

    A method of controlling the wetting characteristics and increasing the adhesion between a metal and an oxide layer. By introducing a negatively-charged species to the surface of an oxide layer, layer-by-layer growth of metal deposited onto the oxide surface is promoted, increasing the adhesion strength of the metal-oxide interface. The negatively-charged species can either be deposited onto the oxide surface or a compound can be deposited that dissociates on, or reacts with, the surface to form the negatively-charged species. The deposited metal adatoms can thereby bond laterally to the negatively-charged species as well as vertically to the oxide surface as well as react with the negatively charged species, be oxidized, and incorporated on or into the surface of the oxide.

  9. Fabrication of Emissible Metallic Layer-by-Layer Photonic Crystals Using

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microtransfer Molding with Electro-Deposition - Energy Innovation Portal Solar Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Fabrication of Emissible Metallic Layer-by-Layer Photonic Crystals Using Microtransfer Molding with Electro-Deposition Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Iowa State University and Ames Laboratory researchers have

  10. Fabrication of Emissible Metallic Layer-by-Layer Photonic Crystals Using

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microtransfer Molding with Electro-Deposition - Energy Innovation Portal Fabrication of Emissible Metallic Layer-by-Layer Photonic Crystals Using Microtransfer Molding with Electro-Deposition Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Photonic crystals are optical materials that can be used to control and manipulate the flow of light. Ames Laboratory researchers have developed a method for the producing photonic crystals that can be used as highly

  11. Direct chemical vapor deposition of graphene on dielectric surfaces

    DOE Patents [OSTI]

    Zhang, Yuegang; Ismach, Ariel

    2014-04-29

    A substrate is provided that has a metallic layer on a substrate surface of a substrate. A film made of a two dimensional (2-D) material, such as graphene, is deposited on a metallic surface of the metallic layer. The metallic layer is dewet and/or removed to provide the film on the substrate surface.

  12. Photobiomolecular deposition of metallic particles and films

    DOE Patents [OSTI]

    Hu, Zhong-Cheng

    2005-02-08

    The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.

  13. Melanin as an active layer in biosensors

    SciTech Connect (OSTI)

    Piacenti da Silva, Marina Congiu, Mirko Oliveira Graeff, Carlos Frederico de; Fernandes, Jssica Colnaghi Biziak de Figueiredo, Natlia Mulato, Marcelo

    2014-03-15

    The development of pH sensors is of great interest due to its extensive application in several areas such as industrial processes, biochemistry and particularly medical diagnostics. In this study, the pH sensing properties of an extended gate field effect transistor (EGFET) based on melanin thin films as active layer are investigated and the physical mechanisms related to the device operation are discussed. Thin films were produced from different melanin precursors on indium tin oxide (ITO) and gold substrates and were investigated by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. Experiments were performed in the pH range from 2 to 12. EGFETs with melanin deposited on ITO and on gold substrates showed sensitivities ranging from 31.3 mV/pH to 48.9 mV/pH, depending on the melanin precursor and the substrate used. The pH detection is associated with specific binding sites in its structure, hydroxyl groups and quinone imine.

  14. Method for making photovoltaic devices using oxygenated semiconductor thin film layers

    SciTech Connect (OSTI)

    Johnson, James Neil; Albin, David Scott; Feldman-Peabody, Scott; Pavol, Mark Jeffrey; Gossman, Robert Dwayne

    2014-12-16

    A method for making a photovoltaic device is presented. The method includes steps of disposing a window layer on a substrate and disposing an absorber layer on the window layer. Disposing the window layer, the absorber layer, or both layers includes introducing a source material into a deposition zone, wherein the source material comprises oxygen and a constituent of the window layer, of the absorber layer or of both layers. The method further includes step of depositing a film that comprises the constituent and oxygen.

  15. Atom Trajectory Viewer

    Energy Science and Technology Software Center (OSTI)

    2015-12-28

    Atom Trajectory Viewer is a visualization tool developed to enable interactive exploration of atomic trajectories and corresponding statistics in molecular dynamics.

  16. Hydrocarbon and Deposit Morphology Effects on EGR Cooler Deposit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Deposit Morphology Effects on EGR Cooler Deposit Stability and Removal Hydrocarbon and Deposit Morphology Effects on EGR Cooler Deposit Stability and Removal This paper reports ...

  17. Conductive and robust nitride buffer layers on biaxially textured substrates

    DOE Patents [OSTI]

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  18. Conductive and robust nitride buffer layers on biaxially textured substrates

    DOE Patents [OSTI]

    Sankar, Sambasivan; Goyal, Amit; Barnett, Scott A.; Kim, Ilwon; Kroeger, Donald M.

    2004-08-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metal and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layers. In some embodiments the article further comprises electromagnetic devices which may be super conducting properties.

  19. Method for depositing high-quality microcrystalline semiconductor materials

    DOE Patents [OSTI]

    Guha, Subhendu; Yang, Chi C.; Yan, Baojie

    2011-03-08

    A process for the plasma deposition of a layer of a microcrystalline semiconductor material is carried out by energizing a process gas which includes a precursor of the semiconductor material and a diluent with electromagnetic energy so as to create a plasma therefrom. The plasma deposits a layer of the microcrystalline semiconductor material onto the substrate. The concentration of the diluent in the process gas is varied as a function of the thickness of the layer of microcrystalline semiconductor material which has been deposited. Also disclosed is the use of the process for the preparation of an N-I-P type photovoltaic device.

  20. Multi-layer carbon-based coatings for field emission

    DOE Patents [OSTI]

    Sullivan, J.P.; Friedmann, T.A.

    1998-10-13

    A multi-layer resistive carbon film field emitter device for cold cathode field emission applications is disclosed. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. 8 figs.

  1. Multi-layer carbon-based coatings for field emission

    DOE Patents [OSTI]

    Sullivan, John P.; Friedmann, Thomas A.

    1998-01-01

    A multi-layer resistive carbon film field emitter device for cold cathode field emission applications. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced.

  2. Vacuum deposition and curing of liquid monomers

    DOE Patents [OSTI]

    Affinito, J.D.

    1995-03-07

    The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of ``standard`` polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.

  3. Vacuum deposition and curing of liquid monomers

    DOE Patents [OSTI]

    Affinito, John D. (Richland, WA)

    1993-01-01

    The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.

  4. Vacuum deposition and curing of liquid monomers

    DOE Patents [OSTI]

    Affinito, John D. (Kennewick, WA)

    1995-01-01

    The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.

  5. Vacuum deposition and curing of liquid monomers

    DOE Patents [OSTI]

    Affinito, J.D.

    1993-11-09

    The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of standard polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.

  6. Electrostatic force assisted deposition of graphene

    DOE Patents [OSTI]

    Liang, Xiaogan

    2011-11-15

    An embodiment of a method of depositing graphene includes bringing a stamp into contact with a substrate over a contact area. The stamp has at least a few layers of the graphene covering the contact area. An electric field is developed over the contact area. The stamp is removed from the vicinity of the substrate which leaves at least a layer of the graphene substantially covering the contact area.

  7. Local elastic modulus of RF sputtered HfO{sub 2} thin film by atomic force acoustic microscopy

    SciTech Connect (OSTI)

    Jena, S. Tokas, R. B. Sarkar, P. Thakur, S.; Sahoo, N. K.; Misal, J. S.; Rao, K. D.

    2014-04-24

    Atomic force acoustic microscopy (AFAM) is a useful nondestructive technique for measurement of local elastic modulus of materials at nano-scale spatial resolution by measuring the contact resonance spectra for higher order modes of the AFM cantilever. The elastic modulus of RF sputtered HfO{sub 2} thin film has been measured quantitatively, using reference approach in which measurements are performed on the test and reference samples. Using AFAM, the measured elastic modulus of the HfO{sub 2} thin film is 223±27 GPa, which is in agreement with the literature value of 220±40 GPa for atomic layer deposited HfO{sub 2} thin film using nanoindentation technique.

  8. Back contact buffer layer for thin-film solar cells

    DOE Patents [OSTI]

    Compaan, Alvin D.; Plotnikov, Victor V.

    2014-09-09

    A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.

  9. Modification of the structural and magnetic properties of granular FePt films by seed layer conditioning

    SciTech Connect (OSTI)

    Wicht, S.; Neu, V.; Schultz, L.; Rellinghaus, B.; Mehta, V.; Jain, S.; Reiner, J.; Mosendz, O.; Hellwig, O.; Weller, D.

    2015-01-07

    The steadily increasing amount of digital information necessitates the availability of reliable high capacity magnetic data storage. Here, future hard disk drives with extended areal storage densities beyond 1.0 Tb/in{sup 2} are envisioned by using high anisotropy granular and chemically L1{sub 0}-ordered FePt (002) perpendicular media within a heat-assisted magnetic recording scheme. Perpendicular texturing of the [001] easy axes of the individual grains can be achieved by using MgO seed layers. It is therefore investigated, if and how an Ar{sup +} ion irradiation of the MgO seed layer prior to the deposition of the magnetic material influences the MgO surface properties and hereby the FePt [001] texture. Structural investigations reveal a flattening of the seed layer surface accompanied by a change in the morphology of the FePt grains. Moreover, the fraction of small second layer particles and the degree of coalescence of the primarily deposited FePt grains strongly increases. As for the magnetic performance, this results in a reduced coercivity along the magnetic easy axis (out of plane) and in enhanced hard axis (in-plane) remanence values. The irradiation induced changes in the magnetic properties of the granular FePt-C films are traced back to the accordingly modified atomic structure of the FePt-MgO interface region.

  10. Deposition head for laser

    DOE Patents [OSTI]

    Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

    1999-01-01

    A deposition head for use as a part of apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. The deposition head delivers the laser beam and powder to a deposition zone, which is formed at the tip of the deposition head. A controller comprised of a digital computer directs movement of the deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which the deposition head moves along the tool path.

  11. direct_deposit_111609

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PROTECT YOUR BANKING INFORMATION: DO NOT complete this form until you are ready to submit it to the Payroll Department. DIRECT DEPOSIT REQUEST Directions: 1. Provide required information neatly, legibly; 2. If Checking Account Direct Deposit, include a voided check. a. DO NOT submit a deposit slip! 3. If Savings Account Direct Deposit, include a copy of savings card. 4. Sign this form; 5. Inter-office mail it to Craft Payroll at "P238." DIRECT DEPOSITION AUTHORIZATION I hereby

  12. Performance enhancement of GaN metalsemiconductormetal ultraviolet photodetectors by insertion of ultrathin interfacial HfO{sub 2} layer

    SciTech Connect (OSTI)

    Kumar, Manoj E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, Burak; Okyay, Ali Kemal E-mail: aokyay@ee.bilkent.edu.tr

    2015-03-15

    The authors demonstrate improved device performance of GaN metalsemiconductormetal ultraviolet (UV) photodetectors (PDs) by ultrathin HfO{sub 2} (UT-HfO{sub 2}) layer on GaN. The UT-HfO{sub 2} interfacial layer is grown by atomic layer deposition. The dark current of the PDs with UT-HfO{sub 2} is significantly reduced by more than two orders of magnitude compared to those without HfO{sub 2} insertion. The photoresponsivity at 360?nm is as high as 1.42 A/W biased at 5 V. An excellent improvement in the performance of the devices is ascribed to allowed electron injection through UT-HfO{sub 2} on GaN interface under UV illumination, resulting in the photocurrent gain with fast response time.

  13. Methods of electrophoretic deposition for functionally graded porous

    Office of Scientific and Technical Information (OSTI)

    nanostructures and systems thereof (Patent) | SciTech Connect Methods of electrophoretic deposition for functionally graded porous nanostructures and systems thereof Citation Details In-Document Search Title: Methods of electrophoretic deposition for functionally graded porous nanostructures and systems thereof In one embodiment, an aerogel includes a layer of shaped particles having a particle packing density gradient in a thickness direction of the layer, wherein the shaped particles are

  14. Optical devices featuring textured semiconductor layers

    DOE Patents [OSTI]

    Moustakas, Theodore D.; Cabalu, Jasper S.

    2012-08-07

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  15. Optical devices featuring textured semiconductor layers

    DOE Patents [OSTI]

    Moustakas, Theodore D.; Cabalu, Jasper S.

    2011-10-11

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  16. Optical devices featuring nonpolar textured semiconductor layers

    DOE Patents [OSTI]

    Moustakas, Theodore D; Moldawer, Adam; Bhattacharyya, Anirban; Abell, Joshua

    2013-11-26

    A semiconductor emitter, or precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate in a nonpolar orientation. The textured layers enhance light extraction, and the use of nonpolar orientation greatly enhances internal quantum efficiency compared to conventional devices. Both the internal and external quantum efficiencies of emitters of the invention can be 70-80% or higher. The invention provides highly efficient light emitting diodes suitable for solid state lighting.

  17. Electro-deposition of superconductor oxide films

    DOE Patents [OSTI]

    Bhattacharya, Raghu N.

    2001-01-01

    Methods for preparing high quality superconducting oxide precursors which are well suited for further oxidation and annealing to form superconducting oxide films. The method comprises forming a multilayered superconducting precursor on a substrate by providing an electrodeposition bath comprising an electrolyte medium and a substrate electrode, and providing to the bath a plurality of precursor metal salts which are capable of exhibiting superconducting properties upon subsequent treatment. The superconducting precursor is then formed by electrodepositing a first electrodeposited (ED) layer onto the substrate electrode, followed by depositing a layer of silver onto the first electrodeposited (ED) layer, and then electrodepositing a second electrodeposited (ED) layer onto the Ag layer. The multilayered superconducting precursor is suitable for oxidation at a sufficient annealing temperature in air or an oxygen-containing atmosphere to form a crystalline superconducting oxide film.

  18. Methods for patterned deposition on a substrate

    DOE Patents [OSTI]

    Rye, Robert R. (Albuquerque, NM); Ricco, Antonio J. (Albuquerque, NM); Hampden-Smith, M. J. (Albuquerque, NM); Kodas, T. T. (Albuquerque, NM)

    1995-01-01

    A method is described for patterned depositions of a material onto a substrate. A surface of a polymeric substrate is first etched so as to form an etched layer having enhanced adhesions characteristics and then selected portions of the etched layer are removed so as to define a pattern having enhanced and diminished adhesion characteristics for the deposition of a conductor onto the remaining etched layer. In one embodiment, a surface of a PTFE substrate is chemically etched so as to improve the adhesion of copper thereto. Thereafter, selected portions of the etched surface are irradiated with a laser beam so as to remove the etched selected portions of the etched surface and form patterns of enhanced and diminished adhesion of copper thereto.

  19. Methods for patterned deposition on a substrate

    DOE Patents [OSTI]

    Rye, R.R.; Ricco, A.J.; Hampden-Smith, M.J.; Kodas, T.T.

    1995-01-10

    A method is described for patterned depositions of a material onto a substrate. A surface of a polymeric substrate is first etched so as to form an etched layer having enhanced adhesions characteristics and then selected portions of the etched layer are removed so as to define a pattern having enhanced and diminished adhesion characteristics for the deposition of a conductor onto the remaining etched layer. In one embodiment, a surface of a PTFE substrate is chemically etched so as to improve the adhesion of copper thereto. Thereafter, selected portions of the etched surface are irradiated with a laser beam so as to remove the etched selected portions of the etched surface and form patterns of enhanced and diminished adhesion of copper thereto. 5 figures.

  20. Atomizing nozzle and process

    DOE Patents [OSTI]

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1993-07-20

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  1. Atomizing nozzle and process

    DOE Patents [OSTI]

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1992-06-30

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  2. Deposition method for producing silicon carbide high-temperature semiconductors

    DOE Patents [OSTI]

    Hsu, George C.; Rohatgi, Naresh K.

    1987-01-01

    An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.

  3. Atomic Energy Commission Takes Over Responsibility for all Atomic...

    National Nuclear Security Administration (NNSA)

    Takes Over Responsibility for all Atomic Energy Programs Atomic Energy Commission Takes Over Responsibility for all Atomic Energy Program Washington, DC In accordance with the ...

  4. Atomic-Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jesse, Stephen; He, Qian; Lupini, Andrew R.; Leonard, Donovan N.; Oxley, Mark P.; Ovchinnikov, Oleg; Unocic, Raymond R.; Tselev, Alexander; Fuentes-Cabrera, Miguel; Sumpter, Bobby G.; et al

    2015-10-19

    We demonstrate atomic-level sculpting of 3D crystalline oxide nanostructures from metastable amorphous layer in a scanning transmission electron microscope (STEM). Strontium titanate nanostructures grow epitaxially from the crystalline substrate following the beam path. This method can be used for fabricating crystalline structures as small as 1-2 nm and the process can be observed in situ with atomic resolution. We further demonstrate fabrication of arbitrary shape structures via control of the position and scan speed of the electron beam. Combined with broad availability of the atomic resolved electron microscopy platforms, these observations suggest the feasibility of large scale implementation of bulkmore » atomic-level fabrication as a new enabling tool of nanoscience and technology, providing a bottom-up, atomic-level complement to 3D printing.« less

  5. The Future of Atomic Energy

    DOE R&D Accomplishments [OSTI]

    Fermi, E.

    1946-05-27

    There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

  6. Method for forming a barrier layer

    DOE Patents [OSTI]

    Weihs, Timothy P. (Baltimore, MD); Barbee, Jr., Troy W. (Palo Alto, CA)

    2002-01-01

    Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

  7. Superconductive articles including cerium oxide layer

    DOE Patents [OSTI]

    Wu, X.D.; Muenchausen, R.E.

    1993-11-16

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.

  8. Buffer layers on biaxially textured metal substrates

    DOE Patents [OSTI]

    Shoup, Shara S. (Woodstock, GA); Paranthamam, Mariappan (Knoxville, TN); Beach, David B. (Knoxville, TN); Kroeger, Donald M. (Knoxville, TN); Goyal, Amit (Knoxville, TN)

    2001-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  9. Atomically Thin Heterostructures based on Single-Layer Tungsten...

    Office of Scientific and Technical Information (OSTI)

    Number: AC04-94AL85000 Resource Type: Journal Article Resource Relation: Journal Name: Nano Letters Research Org: Sandia National Laboratories (SNL-NM), Albuquerque, NM (United...

  10. Next-Generation Lithium Metal Anode Engineering via Atomic Layer...

    Office of Scientific and Technical Information (OSTI)

    Number: SC0001160 Resource Type: Journal Article Resource Relation: Journal Name: ACS Nano; Journal Volume: In Press; Related Information: NEES partners with University of...

  11. Atomic-Layer Engineering of Cuprate Superconductors (415th Brookhaven...

    Office of Scientific and Technical Information (OSTI)

    Research to learn their secrets is one of the hottest topics in the field of materials ... Country of Publication: United States Language: English Subject: 75 CONDENSED MATTER ...

  12. Layer-dependent electronic structure of an atomically heavy two...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 91; Journal Issue: 4; Journal ID: ISSN 1098-0121 Publisher: American Physical Society Sponsoring Org: USDOE Office of Science (SC), ...

  13. Atomic-Layer Engineering of Cuprate Superconductors (415th Brookhaven...

    Office of Scientific and Technical Information (OSTI)

    Subject: 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; BNL; CUPRATES; SUPERCONDUCTORS Word Cloud More Like This Multimedia File size NAView Multimedia View ...

  14. Atomic Energy Commission : Atomic Power at Shippingport - 1958 Educational Film

    SciTech Connect (OSTI)

    2013-02-02

    The United States Atomic Energy Commission & Westinghouse Electric Company take us on a tour of an atomic power station.

  15. PARTICLE ACCELERATORS; 74 ATOMIC AND MOLECULAR PHYSICS; ATOMS...

    Office of Scientific and Technical Information (OSTI)

    74 ATOMIC AND MOLECULAR PHYSICS; ATOMS; ELECTRONS; HELIUM; LIGHT SOURCES; RADIATIONS; STORAGE RINGS; SYNCHROTRONS SYNCHROTRON RADIATION SYNCHROTRONLIGHT SOURCES QUANTUM CHAOS...

  16. Atomic Energy Commission : Atomic Power at Shippingport - 1958 Educational Film

    ScienceCinema (OSTI)

    None

    2014-07-31

    The United States Atomic Energy Commission & Westinghouse Electric Company take us on a tour of an atomic power station.

  17. Mitigation of substrate defects in reticles using multilayer buffer layers

    DOE Patents [OSTI]

    Mirkarimi, Paul B.; Bajt, Sasa; Stearns, Daniel G.

    2001-01-01

    A multilayer film is used as a buffer layer to minimize the size of defects on a reticle substrate prior to deposition of a reflective coating on the substrate. The multilayer buffer layer deposited intermediate the reticle substrate and the reflective coating produces a smoothing of small particles and other defects on the reticle substrate. The reduction in defect size is controlled by surface relaxation during the buffer layer growth process and by the degree of intermixing and volume contraction of the materials at the multilayer interfaces. The buffer layers are deposited at near-normal incidence via a low particulate ion beam sputtering process. The growth surface of the buffer layer may also be heated by a secondary ion source to increase the degree of intermixing and improve the mitigation of defects.

  18. Atomic Energy Commission Takes Over Responsibility for all Atomic Energy

    National Nuclear Security Administration (NNSA)

    Programs | National Nuclear Security Administration Takes Over Responsibility for all Atomic Energy Programs Atomic Energy Commission Takes Over Responsibility for all Atomic Energy Program Washington, DC In accordance with the Atomic Energy Act of 1946, all atomic energy activities are transferred to the newly created Atomic Energy Commission

  19. Dual Layer Solid State Thin Film Deposition - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summary Lithium-ion batteries are a preferred battery technology due ... The lithium metal or lithiated electrode in lithium-based batteries can be subject to ...

  20. Epitaxial growth of silicon for layer transfer

    DOE Patents [OSTI]

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  1. Method for continuous control of composition and doping of pulsed laser deposited films by pressure control

    DOE Patents [OSTI]

    Lowndes, Douglas H.; McCamy, James W.

    1996-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  2. Method for continuous control of composition and doping of pulsed laser deposited films

    DOE Patents [OSTI]

    Lowndes, Douglas H.; McCamy, James W.

    1995-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  3. Low temperature junction growth using hot-wire chemical vapor deposition

    DOE Patents [OSTI]

    Wang, Qi; Page, Matthew; Iwaniczko, Eugene; Wang, Tihu; Yan, Yanfa

    2014-02-04

    A system and a process for forming a semi-conductor device, and solar cells (10) formed thereby. The process includes preparing a substrate (12) for deposition of a junction layer (14); forming the junction layer (14) on the substrate (12) using hot wire chemical vapor deposition; and, finishing the semi-conductor device.

  4. CHEMICAL SOLUTION DEPOSITION BASED OXIDE BUFFERS AND YBCO COATED CONDUCTORS

    SciTech Connect (OSTI)

    Paranthaman, Mariappan Parans

    2011-01-01

    We have reviewed briefly the growth of buffer and high temperature superconducting oxide thin films using a chemical solution deposition (CSD) method. In the Rolling-Assisted Biaxially Textured Substrates (RABiTS) process, developed at Oak Ridge National Laboratory, utilizes the thermo mechanical processing to obtain the flexible, biaxially oriented copper, nickel or nickel-alloy substrates. Buffers and Rare Earth Barium Copper Oxide (REBCO) superconductors have been deposited epitaxially on the textured nickel alloy substrates. The starting substrate serves as a template for the REBCO layer, which has substantially fewer weak links. Buffer layers play a major role in fabricating the second generation REBCO wire technology. The main purpose of the buffer layers is to provide a smooth, continuous and chemically inert surface for the growth of the REBCO film, while transferring the texture from the substrate to the superconductor layer. To achieve this, the buffer layers need to be epitaxial to the substrate, i.e. they have to nucleate and grow in the same bi-axial texture provided by the textured metal foil. The most commonly used RABiTS multi-layer architectures consist of a starting template of biaxially textured Ni-5 at.% W (Ni-W) substrate with a seed (first) layer of Yttrium Oxide (Y2O3), a barrier (second) layer of Yttria Stabilized Zirconia (YSZ), and a Cerium Oxide (CeO2) cap (third) layer. These three buffer layers are generally deposited using physical vapor deposition (PVD) techniques such as reactive sputtering. On top of the PVD template, REBCO film is then grown by a chemical solution deposition. This article reviews in detail about the list of oxide buffers and superconductor REBCO films grown epitaxially on single crystal and/or biaxially textured Ni-W substrates using a CSD method.

  5. Sputter deposition for multi-component thin films

    DOE Patents [OSTI]

    Krauss, A.R.; Auciello, O.

    1990-05-08

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams. 10 figs.

  6. Sputter deposition for multi-component thin films

    DOE Patents [OSTI]

    Krauss, Alan R.; Auciello, Orlando

    1990-01-01

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.

  7. Chemical vapor deposition of group IIIB metals

    DOE Patents [OSTI]

    Erbil, Ahmet

    1989-01-01

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula (I) ##STR1## where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula I is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula I and a heat decomposable tellurium compound under nonoxidizing conditions.

  8. Chemical vapor deposition of group IIIB metals

    DOE Patents [OSTI]

    Erbil, A.

    1989-11-21

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

  9. Metal atom oxidation laser

    DOE Patents [OSTI]

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

  10. Metal atom oxidation laser

    DOE Patents [OSTI]

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

  11. The Harnessed Atom

    Broader source: Energy.gov [DOE]

    The Harnessed Atom is a new middle school science, technology, engineering, and math (STEM) curriculum extension that focuses on nuclear science and energy. It offers teachers accurate, unbiased,...

  12. Buffer layers for REBCO films for use in superconducting devices

    SciTech Connect (OSTI)

    Goyal, Amit; Wee, Sung-Hun

    2014-06-10

    A superconducting article includes a substrate having a biaxially textured surface. A biaxially textured buffer layer, which can be a cap layer, is supported by the substrate. The buffer layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different transition metal cations. A biaxially textured superconductor layer is deposited so as to be supported by the buffer layer. A method of making a superconducting article is also disclosed.

  13. Modified Embedded Atom Method

    Energy Science and Technology Software Center (OSTI)

    2012-08-01

    Interatomic force and energy calculation subroutine to be used with the molecular dynamics simulation code LAMMPS (Ref a.). The code evaluated the total energy and atomic forces (energy gradient) according to a cubic spline-based variant (Ref b.) of the Modified Embedded Atom Method (MEAM) with a additional Stillinger-Weber (SW) contribution.

  14. Surface acoustic wave dust deposition monitor

    DOE Patents [OSTI]

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  15. Method for making MgO buffer layers on rolled nickel or copper as superconductor substrates

    DOE Patents [OSTI]

    Paranthaman, Mariappan (Knoxville, TN); Goyal, Amit (Knoxville, TN); Kroeger, Donald M. (Knoxville, TN); List, III, Frederic A. (Andersonville, TN)

    2002-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled-Ni and/or Cu substrates for high current conductors, and more particularly buffer layer architectures such as MgO/Ag/Pt/Ni, MgO/Ag/Pd/Ni, MgO/Ag/Ni, MgO/Ag/Pd/Cu, MgO/Ag/Pt/Cu, and MgO/Ag/Cu. Techniques used to deposit these buffer layers include electron beam evaporation, thermal evaporation, rf magnetron sputtering, pulsed laser deposition, metal-organic chemical vapor deposition (MOCVD), combustion CVD, and spray pyrolysis.

  16. MgO buffer layers on rolled nickel or copper as superconductor substrates

    DOE Patents [OSTI]

    Paranthaman, Mariappan (Knoxville, TN); Goyal, Amit (Knoxville, TN); Kroeger, Donald M. (Knoxville, TN); List, III, Frederic A. (Andersonville, TN)

    2001-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled-Ni and/or Cu substrates for high current conductors, and more particularly buffer layer architectures such as MgO/Ag/Pt/Ni, MgO/Ag/Pd/Ni, MgO/Ag/Ni, MgO/Ag/Pd/Cu, MgO/Ag/Pt/Cu, and MgO/Ag/Cu. Techniques used to deposit these buffer layers include electron beam evaporation, thermal evaporation, rf magnetron sputtering, pulsed laser deposition, metal-organic chemical vapor deposition (MOCVD), combustion CVD, and spray pyrolysis.

  17. Method of controllong the deposition of hydrogenated amorphous silicon and apparatus therefor

    DOE Patents [OSTI]

    Hanak, Joseph J. (Lawrenceville, NJ)

    1985-06-25

    An improved method and apparatus for the controlled deposition of a layer of hydrogenated amorphous silicon on a substrate. Means is provided for the illumination of the coated surface of the substrate and measurement of the resulting photovoltage at the outermost layer of the coating. Means is further provided for admixing amounts of p type and n type dopants to the reactant gas in response to the measured photovoltage to achieve a desired level and type of doping of the deposited layer.

  18. Radionuclide deposition control

    DOE Patents [OSTI]

    Brehm, William F.; McGuire, Joseph C.

    1980-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  19. Solution deposition assembly

    DOE Patents [OSTI]

    Roussillon, Yann; Scholz, Jeremy H; Shelton, Addison; Green, Geoff T; Utthachoo, Piyaphant

    2014-01-21

    Methods and devices are provided for improved deposition systems. In one embodiment of the present invention, a deposition system is provided for use with a solution and a substrate. The system comprises of a solution deposition apparatus; at least one heating chamber, at least one assembly for holding a solution over the substrate; and a substrate curling apparatus for curling at least one edge of the substrate to define a zone capable of containing a volume of the solution over the substrate. In another embodiment of the present invention, a deposition system for use with a substrate, the system comprising a solution deposition apparatus; at heating chamber; and at least assembly for holding solution over the substrate to allow for a depth of at least about 0.5 microns to 10 mm.

  20. Layered solid sorbents for carbon dioxide capture

    DOE Patents [OSTI]

    Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

    2014-11-18

    A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

  1. Peaceful Uses of the Atom and Atoms for Peace

    Office of Scientific and Technical Information (OSTI)

    Eisenhower's "Atoms for Peace" speech to the UN General Assembly Atoms for Peace (video 12:00 Minutes) Atoms for Peace Address given by Dwight D. Eisenhower before the General ...

  2. Metal atomization spray nozzle

    DOE Patents [OSTI]

    Huxford, Theodore J.

    1993-01-01

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.

  3. Metal atomization spray nozzle

    DOE Patents [OSTI]

    Huxford, T.J.

    1993-11-16

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  4. Atomizing nozzle and method

    DOE Patents [OSTI]

    Ting, Jason (Ames, IA); Anderson, Iver E. (Ames, IA); Terpstra, Robert L. (Ames, IA)

    2000-03-16

    A high pressure close-coupled gas atomizing nozzle includes multiple discrete gas jet discharge orifices having aerodynamically designed convergent-divergent geometry with an first converging section communicated to a gas supply manifold and to a diverging section by a constricted throat section to increase atomizing gas velocity. The gas jet orifices are oriented at gas jet apex angle selected relative to the melt supply tip apex angle to establish a melt aspiration condition at the melt supply tip.

  5. Optical atomic magnetometer

    DOE Patents [OSTI]

    Budker, Dmitry; Higbie, James; Corsini, Eric P

    2013-11-19

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  6. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOE Patents [OSTI]

    Riley, B.; Szreders, B.E.

    1988-04-26

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  7. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOE Patents [OSTI]

    Brian, Riley; Szreders, Bernard E.

    1989-01-01

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  8. Orderly Deposition of Uncontaminated Graphene - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Orderly Deposition of Uncontaminated Graphene Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryXiaogan Liang of Berkeley Lab has invented an inexpensive, high-throughput process for depositing pure few-layer-graphene (FLG) in a desired pattern onto substrates, such as silicon wafers. This method uses electrostatic forces to

  9. Perspectives on Deposition Velocity

    Office of Environmental Management (EM)

    Deposition Velocity ... Going down the rabbit hole to explain that sinking feeling Brian DiNunno, Ph.D. Project Enhancement Corporation June 6 th , 2012 Discussion Framework  Development of the HSS Deposition Velocity Safety Bulletin  Broader discussion of appropriate conservatism within dispersion modeling and DOE-STD-3009 DOE-STD-3009 Dose Comparison "General discussion is provided for source term calculation and dose estimation, as well as prescriptive guidance for the latter. The

  10. Photonic layered media

    DOE Patents [OSTI]

    Fleming, James G.; Lin, Shawn-Yu

    2002-01-01

    A new class of structured dielectric media which exhibit significant photonic bandstructure has been invented. The new structures, called photonic layered media, are easy to fabricate using existing layer-by-layer growth techniques, and offer the ability to significantly extend our practical ability to tailor the properties of such optical materials.

  11. The Harnessed Atom | Department of Energy

    Office of Environmental Management (EM)

    The Harnessed Atom The Harnessed Atom The Harnessed Atom The Harnessed Atom is a new middle school science, technology, engineering, and math (STEM) curriculum extension...

  12. General Atomics (GA) | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Atomics (GA) Subscribe to RSS - General Atomics (GA) General Atomics Image: General Atomics (GA) The Scorpion's Strategy: "Catch and Subdue" Read more about The Scorpion's...

  13. Deposition of device quality, low hydrogen content, hydrogenated amorphous silicon at high deposition rates with increased stability using the hot wire filament technique

    DOE Patents [OSTI]

    Molenbroek, Edith C.; Mahan, Archie Harvin; Gallagher, Alan C.

    2000-09-26

    A method or producing hydrogenated amorphous silicon on a substrate, comprising the steps of: positioning the substrate in a deposition chamber at a distance of about 0.5 to 3.0 cm from a heatable filament in the deposition chamber; maintaining a pressure in said deposition chamber in the range of about 10 to 100 millitorr and pressure times substrate-filament spacing in the range of about 10 to 100 millitorr-cm, heating the filament to a temperature in the range of about 1,500 to 2,000.degree. C., and heating the substrate to a surface temperature in the range of about 280 to 475.degree. C.; and flowing silicohydride gas into the deposition chamber with said heated filament, decomposing said silicohydride gas into silicon and hydrogen atomic species and allowing products of gas reactions between said atomic species and the silicohydride gas to migrate to and deposit on said substrate while adjusting and maintaining said pressure times substrate-filament spacing in said deposition chamber at a value in said 10 to 100 millitorr range to produce statistically about 3 to 50 atomic collisions between the silicon and hydrogen atomic species migrating to said substrate and undecomposed molecules of the silane or other silicohydride gas in the deposition chamber.

  14. Large area graphene ion sensitive field effect transistors with tantalum pentoxide sensing layers for pH measurement at the Nernstian limit

    SciTech Connect (OSTI)

    Fakih, Ibrahim, E-mail: ibrahim.fakih@mail.mcgill.ca; Sabri, Shadi; Szkopek, Thomas, E-mail: thomas.szkopek@mcgill.ca [Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec H3A 2A7 (Canada); Mahvash, Farzaneh [Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec H3A 2A7 (Canada); Dpartement de Chimie et Biochimie, Universite du Qubec Montral, Montreal, Quebec H3C 3P8 (Canada); Nannini, Matthieu [McGill Nanotools Microfab, McGill University, Montreal, Quebec H3A 2A7 (Canada); Siaj, Mohamed [Dpartement de Chimie et Biochimie, Universite du Qubec Montral, Montreal, Quebec H3C 3P8 (Canada)

    2014-08-25

    We have fabricated and characterized large area graphene ion sensitive field effect transistors (ISFETs) with tantalum pentoxide sensing layers and demonstrated pH sensitivities approaching the Nernstian limit. Low temperature atomic layer deposition was used to deposit tantalum pentoxide atop large area graphene ISFETs. The charge neutrality point of graphene, inferred from quantum capacitance or channel conductance, was used to monitor surface potential in the presence of an electrolyte with varying pH. Bare graphene ISFETs exhibit negligible response, while graphene ISFETs with tantalum pentoxide sensing layers show increased sensitivity reaching up to 55?mV/pH over pH 3 through pH 8. Applying the Bergveld model, which accounts for site binding and a Guoy-Chapman-Stern picture of the surface-electrolyte interface, the increased pH sensitivity can be attributed to an increased buffer capacity reaching up to 10{sup 14} sites/cm{sup 2}. ISFET response was found to be stable to better than 0.05 pH units over the course of two weeks.

  15. ALD Produced B{sub 2}O{sub 3}, Al{sub 2}O{sub 3} and TiO{sub 2} Coatings on Gd{sub 2}O{sub 3} Burnable Poison Nanoparticles and Carbonaceous TRISO Coating Layers

    SciTech Connect (OSTI)

    Weimer, Alan

    2012-11-26

    This project will demonstrate the feasibility of using atomic layer deposition (ALD) to apply ultrathin neutron-absorbing, corrosion-resistant layers consisting of ceramics, metals, or combinations thereof, on particles for enhanced nuclear fuel pellets. Current pellet coating technology utilizes chemical vapor deposition (CVD) in a fluidized bed reactor to deposit thick, porous layers of C (or PyC) and SiC. These graphitic/carbide materials degrade over time owing to fission product bombardment, active oxidation, thermal management issues, and long-term irradiation effects. ALD can be used to deposit potential ceramic barrier materials of interest, including ZrO{sub 2}, Y{sub 2}O{sub 3}:ZrO{sub 2} (YSZ), Al{sub 2}O{sub 3}, and TiO{sub 2}, or neutron-absorbing materials, namely B (in BN or B{sub 2}O{sub 3}) and Gd (in Gd{sub 2}O{sub 3}). This project consists of a two-pronged approach to integrate ALD into the next-generation nuclear plant (NGNP) fuel pellet manufacturing process:

  16. Effect of L1{sub 2} ordering in antiferromagnetic Ir-Mn epitaxial layer on exchange bias of FePd films

    SciTech Connect (OSTI)

    Chang, Y. C.; Duh, J. G. E-mail: lin.yg@nsrrc.org.tw; Hsiao, S. N. E-mail: lin.yg@nsrrc.org.tw; Liu, S. H.; Su, S. H.; Chiu, K. F.; Hsieh, W. C.; Chen, S. K.; Lin, Y. G. E-mail: lin.yg@nsrrc.org.tw; Lee, H. Y.; Sung, C. K.

    2015-05-07

    Two series of samples of single-layer IrMn and IrMn/FePd bilayer films, deposited on a single-crystal MgO substrate at different IrMn deposition temperatures (T{sub s} = 300–700 °C), were investigated using magnetron sputtering. L1{sub 2} ordering was revealed for the 30 nm-thick IrMn epitaxial (001) films with T{sub s} ≥ 400 °C, determined by synchrotron radiation x-ray diffractometry (XRD). XRD results also provide evidence of the epitaxial growth of the IrMn films on MgO substrate. Increasing T{sub s} from 400 to 700 °C monotonically increases the ordering parameter of L1{sub 2} phases from 0.17 to 0.81. An in-plane exchange bias field (H{sub eb}) of 22 Oe is obtained in a 10 nm-thick FePd film that is deposited on the disordered IrMn films. As the L1{sub 2} ordering of the IrMn layers increases, the H{sub eb} gradually decreases to 0 Oe, meaning that the exchange bias behavior vanishes. The increased surface roughness, revealed by atomic force microscopy, of the epitaxial IrMn layers with increasing T{sub s} cannot be the main cause of the decrease in H{sub eb} due to the compensated surface spins regardless of the disordered and ordered (001) IrMn layers. The change of antiferromagnetic structure from the A1 to the L1{sub 2} phase was correlated with the evolution of H{sub eb}.

  17. Ultrashort pulse laser deposition of thin films

    DOE Patents [OSTI]

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  18. Deposition of device quality low H content, amorphous silicon films

    DOE Patents [OSTI]

    Mahan, A.H.; Carapella, J.C.; Gallagher, A.C.

    1995-03-14

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH{sub 4}) over a high temperature, 2,000 C, tungsten (W) filament in the proximity of a high temperature, 400 C, substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20--30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content. 7 figs.

  19. Deposition of device quality low H content, amorphous silicon films

    DOE Patents [OSTI]

    Mahan, Archie H.; Carapella, Jeffrey C.; Gallagher, Alan C.

    1995-01-01

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH.sub.4) over a high temperature, 2000.degree. C., tungsten (W) filament in the proximity of a high temperature, 400.degree. C., substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20-30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content.

  20. Scintillator reflective layer coextrusion

    DOE Patents [OSTI]

    Yun, Jae-Chul; Para, Adam

    2001-01-01

    A polymeric scintillator has a reflective layer adhered to the exterior surface thereof. The reflective layer comprises a reflective pigment and an adhesive binder. The adhesive binder includes polymeric material from which the scintillator is formed. A method of forming the polymeric scintillator having a reflective layer adhered to the exterior surface thereof is also provided. The method includes the steps of (a) extruding an inner core member from a first amount of polymeric scintillator material, and (b) coextruding an outer reflective layer on the exterior surface of the inner core member. The outer reflective layer comprises a reflective pigment and a second amount of the polymeric scintillator material.

  1. Vacuum deposition and curing of liquid monomers apparatus

    DOE Patents [OSTI]

    Affinito, John D. (Kennewick, WA)

    1996-01-01

    The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of "standard" polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface.

  2. Vacuum deposition and curing of liquid monomers apparatus

    DOE Patents [OSTI]

    Affinito, J.D.

    1996-08-20

    The present invention is the formation of solid polymer layers under vacuum. More specifically, the present invention is the use of ``standard`` polymer layer-making equipment that is generally used in an atmospheric environment in a vacuum, and degassing the monomer material prior to injection into the vacuum. Additional layers of polymer or metal or oxide may be vacuum deposited onto solid polymer layers. Formation of polymer layers under a vacuum improves material and surface characteristics, and subsequent quality of bonding to additional layers. Further advantages include use of less to no photoinitiator for curing, faster curing, fewer impurities in the polymer electrolyte, as well as improvement in material properties including no trapped gas resulting in greater density, and reduced monomer wetting angle that facilitates spreading of the monomer and provides a smoother finished surface. 3 figs.

  3. Atomic Scale Characterization of Compound Semiconductors using Atom Probe

    Office of Scientific and Technical Information (OSTI)

    Tomography: Preprint (Conference) | SciTech Connect Conference: Atomic Scale Characterization of Compound Semiconductors using Atom Probe Tomography: Preprint Citation Details In-Document Search Title: Atomic Scale Characterization of Compound Semiconductors using Atom Probe Tomography: Preprint Internal interfaces are critical in determining the performance of III-V multijunction solar cells. Studying these interfaces with atomic resolution using a combination of transmission electron

  4. Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique

    DOE Patents [OSTI]

    Wang, Qi; Iwaniczko, Eugene

    2006-10-17

    A thin-film solar cell is provided. The thin-film solar cell comprises an a-SiGe:H (1.6 eV) n-i-p solar cell having a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer by hot wire chemical vapor deposition. A method for fabricating a thin film solar cell is also provided. The method comprises depositing a n-i-p layer at a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer.

  5. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1986-08-15

    The atomic vapor laser isotope separation (AVLIS) process for the enrichment of uranium is evaluated. (AIP)

  6. Ru/FeCoB double layered film with high in-plane magnetic anisotropy field of 500 Oe

    SciTech Connect (OSTI)

    Hirata, Ken-ichiro; Hashimoto, Atsuto; Matsuu, Toshimitsu; Nakagawa, Shigeki

    2009-04-01

    FeCoB layers prepared on Ru underlayer possess a high saturation magnetization M{sub s} and a high in-plane magnetic anisotropy filed H{sub k}. Effects of preparation conditions were investigated. Low Ar gas pressure condition and thicker film thickness were effective to attain distortion of FeCo crystallite. As the crystallinity of Ru underlayer became higher, higher H{sub k} was induced. The accumulation of anisotropic stress in the film caused by the oblique incidences of depositing atoms with high energy seems to be one of the important effects to attain high anisotropy field. It was succeeded to prepare the Ru/FeCoB film with high H{sub k} of 500 Oe.

  7. Iowa Powder Atomization Technologies

    SciTech Connect (OSTI)

    2012-01-01

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  8. Atomic Force Microscope

    SciTech Connect (OSTI)

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  9. Iowa Powder Atomization Technologies

    ScienceCinema (OSTI)

    None

    2013-03-01

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  10. Thick adherent dielectric films on plastic substrates and method for depositing same

    DOE Patents [OSTI]

    Wickboldt, Paul; Ellingboe, Albert R.; Theiss, Steven D.; Smith, Patrick M.

    2002-01-01

    Thick adherent dielectric films deposited on plastic substrates for use as a thermal barrier layer to protect the plastic substrates from high temperatures which, for example, occur during laser annealing of layers subsequently deposited on the dielectric films. It is desirable that the barrier layer has properties including: a thickness of 1 .mu.m or greater, adheres to a plastic substrate, does not lift-off when cycled in temperature, has few or no cracks and does not crack when subjected to bending, resistant to lift-off when submersed in fluids, electrically insulating and preferably transparent. The thick barrier layer may be composed, for example, of a variety of dielectrics and certain metal oxides, and may be deposited on a variety of plastic substrates by various known deposition techniques. The key to the method of forming the thick barrier layer on the plastic substrate is maintaining the substrate cool during deposition of the barrier layer. Cooling of the substrate maybe accomplished by the use of a cooling chuck on which the plastic substrate is positioned, and by directing cooling gas, such as He, Ar and N.sub.2, between the plastic substrate and the cooling chucks. Thick adherent dielectric films up to about 5 .mu.m have been deposited on plastic substrates which include the above-referenced properties, and which enable the plastic substrates to withstand laser processing temperatures applied to materials deposited on the dielectric films.

  11. Growth of oxide exchange bias layers

    DOE Patents [OSTI]

    Chaiken, A.; Michel, R.P.

    1998-07-21

    An oxide (NiO, CoO, NiCoO) antiferromagnetic exchange bias layer produced by ion beam sputtering of an oxide target in pure argon (Ar) sputtering gas, with no oxygen gas introduced into the system. Antiferromagnetic oxide layers are used, for example, in magnetoresistive readback heads to shift the hysteresis loops of ferromagnetic films away from the zero field axis. For example, NiO exchange bias layers have been fabricated using ion beam sputtering of an NiO target using Ar ions, with the substrate temperature at 200 C, the ion beam voltage at 1000V and the beam current at 20 mA, with a deposition rate of about 0.2 {angstrom}/sec. The resulting NiO film was amorphous. 4 figs.

  12. Growth of oxide exchange bias layers

    DOE Patents [OSTI]

    Chaiken, Alison; Michel, Richard P.

    1998-01-01

    An oxide (NiO, CoO, NiCoO) antiferromagnetic exchange bias layer produced by ion beam sputtering of an oxide target in pure argon (Ar) sputtering gas, with no oxygen gas introduced into the system. Antiferromagnetic oxide layers are used, for example, in magnetoresistive readback heads to shift the hysteresis loops of ferromagnetic films away from the zero field axis. For example, NiO exchange bia layers have been fabricated using ion beam sputtering of an NiO target using Ar ions, with the substrate temperature at 200.degree. C., the ion beam voltage at 1000V and the beam current at 20 mA, with a deposition rate of about 0.2 .ANG./sec. The resulting NiO film was amorphous.

  13. Method for large-scale fabrication of atomic-scale structures on material surfaces using surface vacancies

    DOE Patents [OSTI]

    Lim, Chong Wee; Ohmori, Kenji; Petrov, Ivan Georgiev; Greene, Joseph E.

    2004-07-13

    A method for forming atomic-scale structures on a surface of a substrate on a large-scale includes creating a predetermined amount of surface vacancies on the surface of the substrate by removing an amount of atoms on the surface of the material corresponding to the predetermined amount of the surface vacancies. Once the surface vacancies have been created, atoms of a desired structure material are deposited on the surface of the substrate to enable the surface vacancies and the atoms of the structure material to interact. The interaction causes the atoms of the structure material to form the atomic-scale structures.

  14. Method for making oxygen-reducing catalyst layers

    DOE Patents [OSTI]

    O'Brien, Dennis P.; Schmoeckel, Alison K.; Vernstrom, George D.; Atanasoski, Radoslav; Wood, Thomas E.; O'Neill, David G.

    2010-06-22

    Methods are provided for making oxygen-reducing catalyst layers, which include simultaneous or sequential stops of physical vapor depositing an oxygen-reducing catalytic material onto a substrate, the catalytic material comprising a transition metal that is substantially free of platinum; and thermally treating the catalytic material. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  15. INL Laboratory Scale Atomizer

    SciTech Connect (OSTI)

    C.R. Clark; G.C. Knighton; R.S. Fielding; N.P. Hallinan

    2010-01-01

    A laboratory scale atomizer has been built at the Idaho National Laboratory. This has proven useful for laboratory scale tests and has been used to fabricate fuel used in the RERTR miniplate experiments. This instrument evolved over time with various improvements being made ‘on the fly’ in a trial and error process.

  16. Effects of rapid thermal annealing on the structural and local atomic properties of ZnO: Ge nanocomposite thin films

    SciTech Connect (OSTI)

    Ceylan, Abdullah Ozcan, Sadan; Rumaiz, Abdul K.; Caliskan, Deniz; Ozbay, Ekmel; Woicik, J. C.

    2015-03-14

    We have investigated the structural and local atomic properties of Ge nanocrystals (Ge-ncs) embedded ZnO (ZnO: Ge) thin films. The films were deposited by sequential sputtering of ZnO and Ge thin film layers on z-cut quartz substrates followed by an ex-situ rapid thermal annealing (RTA) at 600 °C for 30, 60, and 90 s under forming gas atmosphere. Effects of RTA time on the evolution of Ge-ncs were investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), hard x-ray photoelectron spectroscopy (HAXPES), and extended x-ray absorption fine structure (EXAFS). XRD patterns have clearly shown that fcc diamond phase Ge-ncs of sizes ranging between 18 and 27 nm are formed upon RTA and no Ge-oxide peak has been detected. However, cross-section SEM images have clearly revealed that after RTA process, Ge layers form varying size nanoclusters composed of Ge-ncs regions. EXAFS performed at the Ge K-edge to probe the local atomic structure of the Ge-ncs has revealed that as prepared ZnO:Ge possesses Ge-oxide but subsequent RTA leads to crystalline Ge structure without the oxide layer. In order to study the occupied electronic structure, HAXPES has been utilized. The peak separation between the Zn 2p and Ge 3d shows no significant change due to RTA. This implies little change in the valence band offset due to RTA.

  17. Method of depositing an electrically conductive oxide film on a textured metallic substrate and articles formed therefrom

    DOE Patents [OSTI]

    Christen, David K.; He, Qing

    2001-01-01

    The present invention provides a biaxially textured laminate article having a polycrystalline biaxially textured metallic substrate with an electrically conductive oxide layer epitaxially deposited thereon and methods for producing same. In one embodiment a biaxially texture Ni substrate has a layer of LaNiO.sub.3 deposited thereon. An initial layer of electrically conductive oxide buffer is epitaxially deposited using a sputtering technique using a sputtering gas which is an inert or forming gas. A subsequent layer of an electrically conductive oxide layer is then epitaxially deposited onto the initial layer using a sputtering gas comprising oxygen. The present invention will enable the formation of biaxially textured devices which include HTS wires and interconnects, large area or long length ferromagnetic and/or ferroelectric memory devices, large area or long length, flexible light emitting semiconductors, ferroelectric tapes, and electrodes.

  18. Method of depositing an electrically conductive oxide film on a textured metallic substrate and articles formed therefrom

    DOE Patents [OSTI]

    Christen, David K.; He, Qing

    2003-04-29

    The present invention provides a biaxially textured laminate article having a polycrystalline biaxially textured metallic substrate with an electrically conductive oxide layer epitaxially deposited thereon and methods for producing same. In one embodiment a biaxially texture Ni substrate has a layer of LaNiO.sub.3 deposited thereon. An initial layer of electrically conductive oxide buffer is epitaxially deposited using a sputtering technique using a sputtering gas which is an inert or forming gas. A subsequent layer of an electrically conductive oxide layer is then epitaxially deposited onto the initial layer using a sputtering gas comprising oxygen. The present invention will enable the formation of biaxially textured devices which include HTS wires and interconnects, large area or long length ferromagnetic and/or ferroelectric memory devices, large area or long length, flexible light emitting semiconductors, ferroelectric tapes, and electrodes.

  19. Near-infrared light absorption by polycrystalline SiSn alloys grown on insulating layers

    SciTech Connect (OSTI)

    Kurosawa, Masashi; Kato, Motohiro; Yamaha, Takashi; Taoka, Noriyuki; Nakatsuka, Osamu; Zaima, Shigeaki

    2015-04-27

    High-Sn-content SiSn alloys are strongly desired for the next-generation near-infrared optoelectronics. A polycrystalline growth study has been conducted on amorphous SiSn layers with a Sn-content of 2%30% deposited on either a substrate of SiO{sub 2} or SiN. Incorporating 30% Sn into Si permits the crystallization of the amorphous layers at annealing temperatures below the melting point of Sn (231.9?C). Composition analyses indicate that approximately 20% of the Sn atoms are substituted into the Si lattice after solid-phase crystallization at 150220?C for 5?h. Correspondingly, the optical absorption edge is red-shifted from 1.12?eV (Si) to 0.83?eV (Si{sub 1?x}Sn{sub x} (x???0.18??0.04)), and the difference between the indirect and direct band gap is significantly reduced from 3.1?eV (Si) to 0.22?eV (Si{sub 1?x}Sn{sub x} (x???0.18??0.04)). These results suggest that with higher substitutional Sn content the SiSn alloys could become a direct band-gap material, which would provide benefits for Si photonics.

  20. Chemical solution deposition method of fabricating highly aligned MgO templates

    DOE Patents [OSTI]

    Paranthaman, Mariappan Parans (Knoxville, TN); Sathyamurthy, Srivatsan (Knoxville, TN); Aytug, Tolga (Knoxville, TN); Arendt, Paul N (Los Alamos, NM); Stan, Liliana (Los Alamos, NM); Foltyn, Stephen R (Los Alamos, NM)

    2012-01-03

    A superconducting article includes a substrate having an untextured metal surface; an untextured barrier layer of La.sub.2Zr.sub.2O.sub.7 or Gd.sub.2Zr.sub.2O.sub.7 supported by and in contact with the surface of the substrate; a biaxially textured buffer layer supported by the untextured barrier layer; and a biaxially textured superconducting layer supported by the biaxially textured buffer layer. Moreover, a method of forming a buffer layer on a metal substrate includes the steps of: providing a substrate having an untextured metal surface; coating the surface of the substrate with a barrier layer precursor; converting the precursor to an untextured barrier layer; and depositing a biaxially textured buffer layer above and supported by the untextured barrier layer.

  1. Layered plasma polymer composite membranes

    DOE Patents [OSTI]

    Babcock, Walter C.

    1994-01-01

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is .gtoreq.2 and is the number of selective layers.

  2. Layered plasma polymer composite membranes

    DOE Patents [OSTI]

    Babcock, W.C.

    1994-10-11

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

  3. Surface plasmon dispersion engineering via double-metallic AU/AG layers for nitride light-emitting diodes

    DOE Patents [OSTI]

    Tansu, Nelson; Zhao, Hongping; Zhang, Jing; Liu, Guangyu

    2014-04-01

    A double-metallic deposition process is used whereby adjacent layers of different metals are deposited on a substrate. The surface plasmon frequency of a base layer of a first metal is tuned by the surface plasmon frequency of a second layer of a second metal formed thereon. The amount of tuning is dependent upon the thickness of the metallic layers, and thus tuning can be achieved by varying the thicknesses of one or both of the metallic layers. In a preferred embodiment directed to enhanced LED technology in the green spectrum regime, a double-metallic Au/Ag layer comprising a base layer of gold (Au) followed by a second layer of silver (Ag) formed thereon is deposited on top of InGaN/GaN quantum wells (QWs) on a sapphire/GaN substrate.

  4. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOE Patents [OSTI]

    Jansen, Kai W.; Maley, Nagi

    2000-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  5. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOE Patents [OSTI]

    Jansen, Kai W.; Maley, Nagi

    2001-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  6. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Wednesday, 21 December 2005 00:00 Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features

  7. Los Alamos National Laboratory ATOMIC PHOTOGRAPHY ATOMIC PHOTOGRAPHY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATOMIC PHOTOGRAPHY ATOMIC PHOTOGRAPHY BLASTS FROM THE PAST BLASTS FROM THE PAST Twenty-five U.S. atmospheric nuclear weapons operations (each a series of tests) were conducted from ...

  8. Lawrenciums ionization potential, atom by atom

    SciTech Connect (OSTI)

    Miller, Johanna L.

    2015-06-15

    Researchers in Japan have begun probing the atomic physics of elements that can be produced only in minute quantities.

  9. Theoretical atomic physics code development I: CATS: Cowan Atomic Structure

    Office of Scientific and Technical Information (OSTI)

    Code (Technical Report) | SciTech Connect Technical Report: Theoretical atomic physics code development I: CATS: Cowan Atomic Structure Code Citation Details In-Document Search Title: Theoretical atomic physics code development I: CATS: Cowan Atomic Structure Code × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize

  10. Photovoltaic device comprising compositionally graded intrinsic photoactive layer

    DOE Patents [OSTI]

    Hoffbauer, Mark A; Williamson, Todd L

    2013-04-30

    Photovoltaic devices and methods of making photovoltaic devices comprising at least one compositionally graded photoactive layer, said method comprising providing a substrate; growing onto the substrate a uniform intrinsic photoactive layer having one surface disposed upon the substrate and an opposing second surface, said intrinsic photoactive layer consisting essentially of In.sub.1-xA.sub.xN,; wherein: i. 0.ltoreq.x.ltoreq.1; ii. A is gallium, aluminum, or combinations thereof; and iii. x is at least 0 on one surface of the intrinsic photoactive layer and is compositionally graded throughout the layer to reach a value of 1 or less on the opposing second surface of the layer; wherein said intrinsic photoactive layer is isothermally grown by means of energetic neutral atom beam lithography and epitaxy at a temperature of 600.degree. C. or less using neutral nitrogen atoms having a kinetic energy of from about 1.0 eV to about 5.0 eV, and wherein the intrinsic photoactive layer is grown at a rate of from about 5 nm/min to about 100 nm/min.

  11. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, Terry W.

    1994-01-01

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  12. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, T.W.

    1994-09-06

    A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

  13. Method of making a layered composite electrode/electrolyte

    DOE Patents [OSTI]

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2005-01-25

    An electrode/electrolyte structure is prepared by a plurality of methods. An unsintered (possibly bisque fired) moderately catalytic electronically-conductive or homogeneous mixed ionic electronic conductive electrode material is deposited on a layer composed of a sintered or unsintered ionically-conductive electrolyte material prior to being sintered. A layer of particulate electrode material is deposited on an unsintered ("green") layer of electrolyte material and the electrode and electrolyte layers are sintered simultaneously, sometimes referred to as "co-firing," under conditions suitable to fully densify the electrolyte while the electrode retains porosity. Or, the layer of particulate electrode material is deposited on a previously sintered layer of electrolyte, and then sintered. Subsequently, a catalytic material is added to the electrode structure by infiltration of an electrolcatalyst precursor (e.g., a metal salt such as a transition metal nitrate). This may be followed by low temperature firing to convert the precursor to catalyst. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in an ionic (electrochemical) device such as fuel cells and electrolytic gas separation systems.

  14. Multiple layer insulation cover

    DOE Patents [OSTI]

    Farrell, James J.; Donohoe, Anthony J.

    1981-11-03

    A multiple layer insulation cover for preventing heat loss in, for example, a greenhouse, is disclosed. The cover is comprised of spaced layers of thin foil covered fabric separated from each other by air spaces. The spacing is accomplished by the inflation of spaced air bladders which are integrally formed in the cover and to which the layers of the cover are secured. The bladders are inflated after the cover has been deployed in its intended use to separate the layers of the foil material. The sizes of the material layers are selected to compensate for sagging across the width of the cover so that the desired spacing is uniformly maintained when the cover has been deployed. The bladders are deflated as the cover is stored thereby expediting the storage process and reducing the amount of storage space required.

  15. Atomic arrangement at ZnTe/CdSe interfaces determined by high resolution scanning transmission electron microscopy and atom probe tomography

    SciTech Connect (OSTI)

    Bonef, Bastien; Rouvire, Jean-Luc; Jouneau, Pierre-Henri; Bellet-Amalric, Edith; Grard, Lionel; Mariette, Henri; Andr, Rgis; Bougerol, Catherine; Grenier, Adeline

    2015-02-02

    High resolution scanning transmission electron microscopy and atom probe tomography experiments reveal the presence of an intermediate layer at the interface between two binary compounds with no common atom, namely, ZnTe and CdSe for samples grown by Molecular Beam Epitaxy under standard conditions. This thin transition layer, of the order of 1 to 3 atomic planes, contains typically one monolayer of ZnSe. Even if it occurs at each interface, the direct interface, i.e., ZnTe on CdSe, is sharper than the reverse one, where the ZnSe layer is likely surrounded by alloyed layers. On the other hand, a CdTe-like interface was never observed. This interface knowledge is crucial to properly design superlattices for optoelectronic applications and to master band-gap engineering.

  16. Enhanced memory effect via quantum confinement in 16?nm InN nanoparticles embedded in ZnO charge trapping layer

    SciTech Connect (OSTI)

    El-Atab, Nazek; Nayfeh, Ammar; Cimen, Furkan; Alkis, Sabri; Orta, Blend; Alevli, Mustafa; Dietz, Nikolaus; Okyay, Ali K.

    2014-06-23

    In this work, the fabrication of charge trapping memory cells with laser-synthesized indium-nitride nanoparticles (InN-NPs) embedded in ZnO charge trapping layer is demonstrated. Atomic layer deposited Al{sub 2}O{sub 3} layers are used as tunnel and blocking oxides. The gate contacts are sputtered using a shadow mask which eliminates the need for any lithography steps. High frequency C-V{sub gate} measurements show that a memory effect is observed, due to the charging of the InN-NPs. With a low operating voltage of 4?V, the memory shows a noticeable threshold voltage (V{sub t}) shift of 2?V, which indicates that InN-NPs act as charge trapping centers. Without InN-NPs, the observed memory hysteresis is negligible. At higher programming voltages of 10?V, a memory window of 5?V is achieved and the V{sub t} shift direction indicates that electrons tunnel from channel to charge storage layer.

  17. Zinc Oxide Thin Films Fabricated with Direct Current Magnetron Sputtering Deposition Technique

    SciTech Connect (OSTI)

    Hoon, Jian-Wei; Chan, Kah-Yoong; Krishnasamy, Jegenathan; Tou, Teck-Yong

    2011-03-30

    Zinc oxide (ZnO) is a very promising material for emerging large area electronic applications including thin-film sensors, transistors and solar cells. We fabricated ZnO thin films by employing direct current (DC) magnetron sputtering deposition technique. ZnO films with different thicknesses ranging from 100 nm to 1020 nm were deposited on silicon (Si) substrate. The deposition pressure was varied from 12 mTorr to 25 mTorr. The influences of the film thickness and the deposition pressure on structural properties of the ZnO films were investigated using Mahr surface profilometer and atomic force microscopy (AFM). The experimental results reveal that the film thickness and the deposition pressure play significant role in the structural formation of the deposited ZnO thin films. ZnO films deposited on Si substrates are promising for variety of thin-film sensor applications.

  18. Budget Atomization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Budget Atomization Budget Atomization Howard Dickenson, Deputy Associate Administrator for Acquisition and Project Management presented on Budget Atomization from the NNSA perspective. Howard presented an overview of the NNSA budget structure and an example of LANL controls. Chris Johns, Director of the Budget Office, DOE Office of the CFO presented on Budget Atomization from the DOE perspective. Chris provided an overview of funding, provided examples, and demonstrated the effect on labs/sites.

  19. From the tiny atom to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From the tiny atom to the supernovae Atom-split it for nuclear energy Fermi-leader of the team that produced the first self-sustain- ing controlled nuclear chain reaction; contributed to ending WWII Calutron-invented by E. O. Lawrence; for maximum pro- ductivity, critical sensitive adjustments were provided by the 'Calutron Girls' Seaborg-Chairman of the Atomic Energy Commission 1961-1971; discovered many elements Buckyball-Buckminsterfullerene; 60 carbon atoms in the shape of a soccer ball;

  20. Study on copper phthalocyanine and perylene-based ambipolar organic light-emitting field-effect transistors produced using neutral beam deposition method

    SciTech Connect (OSTI)

    Kim, Dae-Kyu; Oh, Jeong-Do; Shin, Eun-Sol; Seo, Hoon-Seok; Choi, Jong-Ho

    2014-04-28

    The neutral cluster beam deposition (NCBD) method has been applied to the production and characterization of ambipolar, heterojunction-based organic light-emitting field-effect transistors (OLEFETs) with a top-contact, multi-digitated, long-channel geometry. Organic thin films of n-type N,N?-ditridecylperylene-3,4,9,10-tetracarboxylic diimide and p-type copper phthalocyanine were successively deposited on the hydroxyl-free polymethyl-methacrylate (PMMA)-coated SiO{sub 2} dielectrics using the NCBD method. Characterization of the morphological and structural properties of the organic active layers was performed using atomic force microscopy and X-ray diffraction. Various device parameters such as hole- and electron-carrier mobilities, threshold voltages, and electroluminescence (EL) were derived from the fits of the observed current-voltage and current-voltage-light emission characteristics of OLEFETs. The OLEFETs demonstrated good field-effect characteristics, well-balanced ambipolarity, and substantial EL under ambient conditions. The device performance, which is strongly correlated with the surface morphology and the structural properties of the organic active layers, is discussed along with the operating conduction mechanism.

  1. Atomizer with liquid spray quenching

    DOE Patents [OSTI]

    Anderson, I.E.; Osborne, M.G.; Terpstra, R.L.

    1998-04-14

    Method and apparatus are disclosed for making metallic powder particles wherein a metallic melt is atomized by a rotating disk or other atomizer at an atomizing location in a manner to form molten droplets moving in a direction away from said atomizing location. The atomized droplets pass through a series of thin liquid quenching sheets disposed in succession about the atomizing location with each successive quenching sheet being at an increasing distance from the atomizing location. The atomized droplets are incrementally cooled and optionally passivated as they pass through the series of liquid quenching sheets without distorting the atomized droplets from their generally spherical shape. The atomized, cooled droplets can be received in a chamber having a collection wall disposed outwardly of the series of liquid quenching sheets. A liquid quenchant can be flowed proximate the chamber wall to carry the cooled atomized droplets to a collection chamber where atomized powder particles and the liquid quenchant are separated such that the liquid quenchant can be recycled. 6 figs.

  2. Atomizer with liquid spray quenching

    DOE Patents [OSTI]

    Anderson, Iver E.; Osborne, Matthew G.; Terpstra, Robert L.

    1998-04-14

    Method and apparatus for making metallic powder particles wherein a metallic melt is atomized by a rotating disk or other atomizer at an atomizing location in a manner to form molten droplets moving in a direction away from said atomizing location. The atomized droplets pass through a series of thin liquid quenching sheets disposed in succession about the atomizing location with each successive quenching sheet being at an increasing distance from the atomizing location. The atomized droplets are incrementally cooled and optionally passivated as they pass through the series of liquid quenching sheets without distorting the atomized droplets from their generally spherical shape. The atomized, cooled droplets can be received in a chamber having a collection wall disposed outwardly of the series of liquid quenching sheets. A liquid quenchant can be flowed proximate the chamber wall to carry the cooled atomized droplets to a collection chamber where atomized powder particles and the liquid quenchant are separated such that the liquid quenchant can be recycled.

  3. Boundary Layer Structure:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boundary Layer Structure: a comparison between methods and sites Thiago Biscaro Suzane de Sá Jae-In Song Shaoyue "Emily" Qiu Mentors: Virendra Ghate and Ewan O'Connor July 24 2015 1 st ever ARM Summer Training Outline * IntroducQon * Methodology * Results - SGP - MAO - Comparison between the 2 sites * Conclusions INTRODUCTION Focus: esQmates of PBL height Boundary Layer: "The boUom layer of the troposphere that is in contact with the surface of the earth." (AMS, Glossary of

  4. High rate chemical vapor deposition of carbon films using fluorinated gases

    DOE Patents [OSTI]

    Stafford, Byron L.; Tracy, C. Edwin; Benson, David K.; Nelson, Arthur J.

    1993-01-01

    A high rate, low-temperature deposition of amorphous carbon films is produced by PE-CVD in the presence of a fluorinated or other halide gas. The deposition can be performed at less than 100.degree. C., including ambient room temperature, with a radio frequency plasma assisted chemical vapor deposition process. With less than 6.5 atomic percent fluorine incorporated into the amorphous carbon film, the characteristics of the carbon film, including index of refraction, mass density, optical clarity, and chemical resistance are within fifteen percent (15%) of those characteristics for pure amorphous carbon films, but the deposition rates are high.

  5. Enhanced adhesion for LIGA microfabrication by using a buffer layer

    DOE Patents [OSTI]

    Bajikar, Sateesh S.; De Carlo, Francesco; Song, Joshua J.

    2001-01-01

    The present invention is an improvement on the LIGA microfabrication process wherein a buffer layer is applied to the upper or working surface of a substrate prior to the placement of a resist onto the surface of the substrate. The buffer layer is made from an inert low-Z material (low atomic weight), a material that absorbs secondary X-rays emissions from the substrate that are generated from the substrate upon exposure to a primary X-rays source. Suitable materials for the buffer layer include polyamides and polyimide. The preferred polyimide is synthesized form pyromellitic anhydride and oxydianiline (PMDA-ODA).

  6. Enhanced adhesion for LIGA microfabrication by using a buffer layer

    DOE Patents [OSTI]

    Bajikar, Sateesh S.; De Carlo, Francesco; Song, Joshua J.

    2004-01-27

    The present invention is an improvement on the LIGA microfabrication process wherein a buffer layer is applied to the upper or working surface of a substrate prior to the placement of a resist onto the surface of the substrate. The buffer layer is made from an inert low-Z material (low atomic weight), a material that absorbs secondary X-rays emissions from the substrate that are generated from the substrate upon exposure to a primary X-rays source. Suitable materials for the buffer layer include polyamides and polyimide. The preferred polyimide is synthesized form pyromellitic anhydride and oxydianiline (PMDA-ODA).

  7. Rare earth zirconium oxide buffer layers on metal substrates

    DOE Patents [OSTI]

    Williams, Robert K.; Paranthaman, Mariappan; Chirayil, Thomas G.; Lee, Dominic F.; Goyal, Amit; Feenstra, Roeland

    2001-01-01

    A laminate article comprises a substrate and a biaxially textured (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer over the substrate, wherein 0layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  8. Atomic data for fusion

    SciTech Connect (OSTI)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A.; Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  9. Cleaning graphene with a titanium sacrificial layer

    SciTech Connect (OSTI)

    Joiner, C. A. Roy, T.; Hesabi, Z. R.; Vogel, E. M.; Chakrabarti, B.

    2014-06-02

    Graphene is a promising material for future electronic applications and chemical vapor deposition of graphene on copper is a promising method for synthesizing graphene on the wafer scale. The processing of such graphene films into electronic devices introduces a variety of contaminants which can be difficult to remove. An approach to cleaning residues from the graphene channel is presented in which a thin layer of titanium is deposited via thermal e-beam evaporation and immediately removed. This procedure does not damage the graphene as evidenced by Raman spectroscopy, greatly enhances the electrical performance of the fabricated graphene field effect transistors, and completely removes the chemical residues from the surface of the graphene channel as evidenced by x-ray photoelectron spectroscopy.

  10. Carbides composite surface layers produced by (PTA)

    SciTech Connect (OSTI)

    Tajoure, Meloud; Tajouri, Ali E-mail: dr.mokhtarphd@yahoo.com; Abuzriba, Mokhtar E-mail: dr.mokhtarphd@yahoo.com; Akreem, Mosbah

    2013-12-16

    The plasma transferred arc technique was applied to deposit a composite layer of nickel base with tungsten carbide in powder form on to surface of low alloy steel 18G2A type according to polish standard. Results showed that, plasma transferred arc hard facing process was successfully conducted by using Deloro alloy 22 plus tungsten carbide powders. Maximum hardness of 1489 HV and minimum dilution of 8.4 % were achieved by using an arc current of 60 A. However, when the current was further increased to 120 A and the dilution increases with current increase while the hardness decreases. Microstructure of the nickel base deposit with tungsten carbide features uniform distribution of reinforcement particles with regular grain shape half - dissolved in the matrix.

  11. Rapid low-temperature epitaxial growth using a hot-element assisted chemical vapor deposition process

    DOE Patents [OSTI]

    Iwancizko, Eugene; Jones, Kim M.; Crandall, Richard S.; Nelson, Brent P.; Mahan, Archie Harvin

    2001-01-01

    The invention provides a process for depositing an epitaxial layer on a crystalline substrate, comprising the steps of providing a chamber having an element capable of heating, introducing the substrate into the chamber, heating the element at a temperature sufficient to decompose a source gas, passing the source gas in contact with the element; and forming an epitaxial layer on the substrate.

  12. Methods for improved growth of group III nitride buffer layers

    DOE Patents [OSTI]

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  13. USES OF HYPERTHERMAL ATOMIC BEAM FOR LOW TEMPERATURE DIAMOND GROWTH |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab USES OF HYPERTHERMAL ATOMIC BEAM FOR LOW TEMPERATURE DIAMOND GROWTH Growing films on substrates normally normally requires high temperature (~1000° C) films to be deposited on low temperature substrates (<100° C) without sacrificing the quality of the film. An example is growing diamond films with large micrometer sized grains below 100° C. Reducing the growth temperature requires finding ways of selectively providing energy to the growing film to enhance

  14. Atomically resolved force microscopy at room temperature

    SciTech Connect (OSTI)

    Morita, Seizo

    2014-04-24

    Atomic force microscopy (AFM) can now not only image individual atoms but also construct atom letters using atom manipulation method even at room temperature (RT). Therefore, the AFM is the second generation atomic tool following the scanning tunneling microscopy (STM). However the AFM can image even insulating atoms, and also directly measure/map the atomic force and potential at the atomic scale. Noting these advantages, we have been developing a bottom-up nanostructuring system at RT based on the AFM. It can identify chemical species of individual atoms and then manipulate selected atom species to the predesigned site one-by-one to assemble complex nanostructures consisted of multi atom species at RT. Here we introduce our results toward atom-by-atom assembly of composite nanostructures based on the AFM at RT including the latest result on atom gating of nano-space for atom-by-atom creation of atom clusters at RT for semiconductor surfaces.

  15. Buffer layers and articles for electronic devices

    DOE Patents [OSTI]

    Paranthaman, Mariappan P.; Aytug, Tolga; Christen, David K.; Feenstra, Roeland; Goyal, Amit

    2004-07-20

    Materials for depositing buffer layers on biaxially textured and untextured metallic and metal oxide substrates for use in the manufacture of superconducting and other electronic articles comprise RMnO.sub.3, R.sub.1-x A.sub.x MnO.sub.3, and combinations thereof; wherein R includes an element selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y, and A includes an element selected from the group consisting of Be, Mg, Ca, Sr, Ba, and Ra.

  16. MultiLayer solid electrolyte for lithium thin film batteries

    SciTech Connect (OSTI)

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  17. Selective layer disordering in intersubband Al0.028Ga0.972 N/AlN superlattices with silicon nitride capping layer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wierer, Jonathan J.; Allerman, Andrew A.; Skogen, Erik J.; Tauke-Pedretti, Anna; Vawter, Gregory A.; Montaño, Ines

    2015-06-01

    We demonstrate the selective layer disordering in intersubband Al0.028Ga0.972 N/AlN superlattices using a silicon nitride (SiNx) capping layer. The (SiNx) capped superlattice exhibits suppressed layer disordering under high-temperature annealing. In addition, the rate of layer disordering is reduced with increased SiNx thickness. The layer disordering is caused by Si diffusion, and the SiNx layer inhibits vacancy formation at the crystal surface and ultimately, the movement of Al and Ga atoms across the heterointerfaces. In conclusion, patterning of the SiNx layer results in selective layer disordering, an attractive method to integrate active and passive III–nitride-based intersubband devices.

  18. Deposition System Controller

    Energy Science and Technology Software Center (OSTI)

    2005-10-01

    This software is a complete thin film deposition controller. The software takes as its input a script file that dictates enablinig/disabling of sputtering power supplies, pause times, velocities and distances to move a substrate. An emulator has been created and built into the software package that can debug in advance any deposition script and decide if there is an overrun condition, accidental infinite look, and can estimate a time for completion. All necessary process variablesmore » are data logged and recorded for later inspection. This emulator currently interfaces to a Parker-Compumotor SX6 stepper moror indexer, but the software is written in such a way that it is easily modifiable for interface to othe brand and models of motor drivers. Other process I/O variables may be easily added. The software uses any multifunction DAQ card from National Instruments via their free NIDAQ API package, but again, the software is written such that othe brand DAQ cards may be used.« less

  19. Layered electrode for electrochemical cells

    DOE Patents [OSTI]

    Swathirajan, Swathy; Mikhail, Youssef M.

    2001-01-01

    There is provided an electrode structure comprising a current collector sheet and first and second layers of electrode material. Together, the layers improve catalyst utilization and water management.

  20. Electroless deposition process for zirconium and zirconium alloys

    DOE Patents [OSTI]

    Donaghy, Robert E.; Sherman, Anna H.

    1981-01-01

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer.

  1. Electroless deposition process for zirconium and zirconium alloys

    DOE Patents [OSTI]

    Donaghy, R. E.; Sherman, A. H.

    1981-08-18

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer. 1 fig.

  2. The Collective Atomic Recoil Laser

    SciTech Connect (OSTI)

    Courteille, Ph.W.; Cube, C. avon; Deh, B.; Kruse, D.; Ludewig, A.; Slama, S.; Zimmermann, C.

    2005-05-05

    An ensemble of periodically ordered atoms coherently scatters the light of an incident laser beam. The scattered and the incident light may interfere and give rise to a light intensity modulation and thus to optical dipole forces which, in turn, emphasize the atomic ordering. This positive feedback is at the origin of the collective atomic recoil laser (CARL). We demonstrate this dynamics using ultracold atoms confined by dipole forces in a unidirectionally pumped far red-detuned high-finesse optical ring cavity. Under the influence of an additional dissipative force exerted by an optical molasses the atoms, starting from an unordered distribution, spontaneously form a density grating moving at constant velocity. Additionally, steady state lasing is observed in the reverse direction if the pump laser power exceeds a certain threshold. We compare the dynamics of the atomic trajectories to the behavior of globally coupled oscillators, which exhibit phase transitions from incoherent to coherent states if the coupling strength exceeds a critical value.

  3. Photo-crystallization in a-Se layer structures: Effects of film-substrate interface-rigidity

    SciTech Connect (OSTI)

    Lindberg, G. P.; Gross, N.; Weinstein, B. A.; O'Loughlin, T.; Mishchenko, A.; Reznik, A.; Abbaszadeh, S.; Karim, K. S.; Belev, G.

    2014-11-21

    Amorphous selenium (a-Se) films deposited on rigid substrates can undergo photo-induced crystallization (PC) even at temperatures (T) well below the glass transition, T{sub g}???313?K. Substrate-generated shear strain is known to promote the PC process. In the present work, we explore the influence of different substrates (Si and glass), and different film-layer-substrate combinations, on the PC in a variety of a-Se films and film-structures. The intermediate layers (indium tin oxide and polyimide) are chosen to promote conductivity and/or to be a buffer against interface strain in structures of interest for digital imaging applications. The PC characteristics in these samples are evaluated and compared using optical microscopy, atomic-force microscopy, Raman mapping, and T-dependent Raman spectroscopy. Both the presence of a soft intermediate layer, and the thermal softening that occurs for T increasing through T{sub g}, inhibit the tendency for the onset of PC. The extensive PC mapping results in the wide range of samples studied here, as well as the suppression of PC near T{sub g} in this array of samples, strongly support the generality of this behavior. As a consequence, one may expect that the stability of a-Se films against PC can be enhanced by decreasing the rigidity of the film-substrate interface. In this regard, advanced film structures that employ flexible substrates, soft intermediate layers, and/or are designed to be operated near T{sub g} should be explored.

  4. Oxidation preventative capping layer for deep-ultra-violet and soft x-ray multilayers

    DOE Patents [OSTI]

    Prisbrey, Shon T.

    2004-07-06

    The invention uses iridium and iridium compounds as a protective capping layer on multilayers having reflectivity in the deep ultra-violet to soft x-ray regime. The iridium compounds can be formed in one of two ways: by direct deposition of the iridium compound from a prepared target or by depositing a thin layer (e.g., 5-50 angstroms) of iridium directly onto an element. The deposition energy of the incoming iridium is sufficient to activate the formation of the desired iridium compound. The compounds of most interest are iridium silicide (IrSi.sub.x) and iridium molybdenide (IrMo.sub.x).

  5. Layered semiconductor neutron detectors

    DOE Patents [OSTI]

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  6. General Atomics | Open Energy Information

    Open Energy Info (EERE)

    Product: General Atomics offers research, development and consulting services to the nuclear industry, including nuclear energy production, manufacturing, defense and related...

  7. Thermal conductivity of nitride films of Ti, Cr, and W deposited by reactive magnetron sputtering

    SciTech Connect (OSTI)

    Jagannadham, Kasichainula

    2015-05-15

    Nitride films of Ti, Cr, and W were deposited using reactive magnetron sputtering from metal targets in argon and nitrogen plasma. TiN films with (200) orientation were achieved on silicon (100) at the substrate temperature of 500 and 600?C. The films were polycrystalline at lower temperature. An amorphous interface layer was observed between the TiN film and Si wafer deposited at 600?C. TiN film deposited at 600?C showed the nitrogen to Ti ratio to be near unity, but films deposited at lower temperature were nitrogen deficient. CrN film with (200) orientation and good stoichiometry was achieved at 600?C on Si(111) wafer but the film deposited at 500?C showed cubic CrN and hexagonal Cr{sub 2}N phases with smaller grain size and amorphous back ground in the x-ray diffraction pattern. An amorphous interface layer was not observed in the cubic CrN film on Si(111) deposited at 600?C. Nitride film of tungsten deposited at 600?C on Si(100) wafer was nitrogen deficient, contained both cubic W{sub 2}N and hexagonal WN phases with smaller grain size. Nitride films of tungsten deposited at 500?C were nonstoichiometric and contained cubic W{sub 2}N and unreacted W phases. There was no amorphous phase formed along the interface for the tungsten nitride film deposited at 600?C on the Si wafer. Thermal conductivity and interface thermal conductance of all the nitride films of Ti, Cr, and W were determined by transient thermoreflectance technique. The thermal conductivity of the films as function of deposition temperature, microstructure, nitrogen stoichiometry and amorphous interaction layer at the interface was determined. Tungsten nitride film containing both cubic and hexagonal phases was found to exhibit much higher thermal conductivity and interface thermal conductance. The amorphous interface layer was found to reduce effective thermal conductivity of TiN and CrN films.

  8. MCrAlY bond coat with enhanced Yttrium layer

    DOE Patents [OSTI]

    Jablonski, Paul D; Hawk, Jeffrey A

    2015-04-21

    One or more embodiments relates to an MCrAlY bond coat comprising an MCrAlY layer in contact with a Y--Al.sub.2O.sub.3 layer. The MCrAlY layer is comprised of a .gamma.-M solid solution, a .beta.-MAl intermetallic phase, and Y-type intermetallics. The Y--Al.sub.2O.sub.3 layer is comprised of Yttrium atoms coordinated with oxygen atoms comprising the Al.sub.2O.sub.3 lattice. Both the MCrAlY layer and the Y--Al.sub.2O.sub.3 layer have a substantial absence of Y--Al oxides, providing advantage in the maintainability of the Yttrium reservoir within the MCrAlY bulk. The MCrAlY bond coat may be fabricated through application of a Y.sub.2O.sub.3 paste to an MCrAlY material, followed by heating in a non-oxidizing environment.

  9. Atomic Scale Characterization of Compound Semiconductors Using Atom Probe Tomography

    SciTech Connect (OSTI)

    Gorman, B. P.; Norman, A. G.; Lawrence, D.; Prosa, T.; Guthrey, H.; Al-Jassim, M.

    2011-01-01

    Internal interfaces are critical in determining the performance of III-V multijunction solar cells. Studying these interfaces with atomic resolution using a combination of transmission electron microscopy (TEM), atom probe tomography (APT), and density functional calculations enables a more fundamental understanding of carrier dynamics in photovoltaic (PV) device structures. To achieve full atomic scale spatial and chemical resolution, data acquisition parameters in laser pulsed APT must be carefully studied to eliminate surface diffusion. Atom probe data with minimized group V ion clustering and expected stoichiometry can be achieved by adjusting laser pulse power, pulse repetition rate, and specimen preparation parameters such that heat flow away from the evaporating surface is maximized. Applying these improved analysis conditions to III-V based PV gives an atomic scale understanding of compositional and dopant profiles across interfaces and tunnel junctions and the initial stages of alloy clustering and dopant accumulation. Details on APT experimental methods and future in-situ instrumentation developments are illustrated.

  10. Systems having optical absorption layer for mid and long wave infrared and methods for making the same

    DOE Patents [OSTI]

    Kuzmenko, Paul J

    2013-10-01

    An optical system according to one embodiment includes a substrate; and an optical absorption layer coupled to the substrate, wherein the optical absorption layer comprises a layer of diamond-like carbon, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). A method for applying an optical absorption layer to an optical system according to another embodiment includes depositing a layer of diamond-like carbon of an optical absorption layer above a substrate using plasma enhanced chemical vapor deposition, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). Additional systems and methods are also presented.

  11. Biocompatible Coating (Parylene) Deposition System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Containing Diamond-Like Carbon Deposition System Varshni Singh and Jost Goettert Center for Advanced Microstructures & Devices, Louisiana State University, 6980 Jefferson Hwy., Baton Rouge, LA-70806 Summary CAMD/LSU received funds from the Board of Regents' Enhancement Program for modifying and upgrading of a diamond like carbon (DLC) deposition system. This included a magnetron with shield, DC power supply and pulsing unit, mass flow controllers and in-situ thin film deposition

  12. Momentum Deposition in Curvilinear Coordinates

    SciTech Connect (OSTI)

    Cleveland, Mathew Allen; Lowrie, Robert Byron; Rockefeller, Gabriel M.; Thompson, Kelly Glen; Wollaber, Allan Benton

    2015-08-03

    The momentum imparted into a material by thermal radiation deposition is an important physical process in astrophysics and inertial confinement fusion (ICF) simulations. In recent work we presented a new method of evaluating momentum deposition that relies on the combination of a time-averaged approximation and a numerical integration scheme. This approach robustly and efficiently evaluates the momentum deposition in spherical geometry. Future work will look to extend this approach to 2D cylindrical geometries.

  13. Structural tuning of residual conductivity in highly mismatched III-V layers

    DOE Patents [OSTI]

    Han, Jung; Figiel, Jeffrey J.

    2002-01-01

    A new process to control the electrical conductivity of gallium nitride layers grown on a sapphire substrate has been developed. This process is based on initially coating the sapphire substrate with a thin layer of aluminum nitride, then depositing the gallium nitride thereon. This process allows one to controllably produce gallium nitride layers with resistivity varying over as much as 10 orders of magnitude, without requiring the introduction and activation of suitable dopants.

  14. Carbonate Deposition | Open Energy Information

    Open Energy Info (EERE)

    Alteration Products Carbonate deposits come in many forms and sometimes develop into spectacular colorful terraces such as these at Mammoth Hot Springs in Yellowstone National...

  15. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    DOE Patents [OSTI]

    Sarin, V.K.

    1991-07-30

    A process is disclosed for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900--1500 C and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  16. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    DOE Patents [OSTI]

    Sarin, Vinod K.

    1991-01-01

    A process for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900.degree.-1500.degree. C. and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  17. The Atomic City / The Magic of the Atom - 1950's Atomic Energy Commission Documentary

    SciTech Connect (OSTI)

    2012-06-04

    The story of American cities located near atomic power plants, and steps taken monitoring radiation to ensure the safety of the public who live nearby. .

  18. The Atomic City / The Magic of the Atom - 1950's Atomic Energy Commission Documentary

    ScienceCinema (OSTI)

    None

    2014-07-31

    The story of American cities located near atomic power plants, and steps taken monitoring radiation to ensure the safety of the public who live nearby. .

  19. Photopumped red-emitting InP/In{sub 0.5}Al{sub 0.3}Ga{sub 0.2}P self-assembled quantum dot heterostructure lasers grown by metalorganic chemical vapor deposition

    SciTech Connect (OSTI)

    Ryou, J. H.; Dupuis, R. D.; Walter, G.; Kellogg, D. A.; Holonyak, N.; Mathes, D. T.; Hull, R.; Reddy, C. V.; Narayanamurti, V.

    2001-06-25

    We report the 300 K operation of optically pumped red-emitting lasers fabricated from InP self-assembled quantum dots embedded in In{sub 0.5}Al{sub 0.3}Ga{sub 0.2}P layers on GaAs (100) substrates grown by metalorganic chemical vapor deposition. Quantum dots grown at 650{degree}C on In{sub 0.5}Al{sub 0.3}Ga{sub 0.2}P layers have a high density on the order of 10{sup 10} cm{sup {minus}2} and the dominant size of individual quantum dots ranges from {similar_to}5 to {similar_to}10 nm for 7.5 monolayer {open_quotes}equivalent growth.{close_quotes} These InP/In{sub 0.5}Al{sub 0.3}Ga{sub 0.2}P quantum dot heterostructures are characterized by atomic force microscopy, high-resolution transmission electron microscopy, and photoluminescence. Laser structures are prepared from wafers having two vertically stacked InP quantum dot active layers within a 100-nm-thick In{sub 0.5}Al{sub 0.3}Ga{sub 0.2}P waveguide and upper and lower 600 nm InAlP cladding layers. We observe lasing at {lambda}{similar_to}680 nm at room temperature in optically pumped samples. {copyright} 2001 American Institute of Physics.

  20. Buffer layers on rolled nickel or copper as superconductor substrates

    DOE Patents [OSTI]

    Paranthaman, Mariappan; Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled substrates of nickel and/or copper and their alloys for high current conductors, and more particularly buffer layer architectures such as Y.sub.2 O.sub.3 /Ni, YSZ/Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Ni, Yb.sub.2 O.sub.3 /CeO.sub.2 /Ni, RE.sub.2 O.sub.3 /Ni (RE=Rare Earth), and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Ni, Y.sub.2 O.sub.3 /Cu, YSZ/Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /Y.sub.2 O.sub.3 /Cu, Yb.sub.2 O.sub.3 /CeO.sub.2 /Cu, RE.sub.2 O.sub.3 /Cu, and Yb.sub.2 O.sub.3 /YSZ/CeO.sub.2 /Cu. Deposition methods include physical vapor deposition techniques which include electron-beam evaporation, rf magnetron sputtering, pulsed laser deposition, thermal evaporation, and solution precursor approach, which includes chemical vapor deposition, combustion CVD, metal-organic decomposition, sol-gel processing, and plasma spray.

  1. Enhancement of photoluminescence properties in ZnO/AlN bilayer

    Office of Scientific and Technical Information (OSTI)

    heterostructures grown by atomic layer deposition (Journal Article) | SciTech Connect Enhancement of photoluminescence properties in ZnO/AlN bilayer heterostructures grown by atomic layer deposition Citation Details In-Document Search Title: Enhancement of photoluminescence properties in ZnO/AlN bilayer heterostructures grown by atomic layer deposition The AlN/ZnO bilayer heterostructures were deposited on Si (100) substrate by thermal atomic layer deposition. X-ray diffraction results show

  2. The NSLS-II Multilayer Laue Lens Deposition System

    SciTech Connect (OSTI)

    Conley, R.; Bouet, N.; Biancarosa, J.; Shen, Q.; Boas, L.; Feraca, J.; Rosenbaum, L.

    2009-08-02

    The NSLS-II[1] program has a requirement for an unprecedented level of x-ray nanofocusing and has selected the wedged multilayer Laue lens[2,3] (MLL) as the optic of choice to meet this goal. In order to fabricate the MLL a deposition system is required that is capable of depositing depth-graded and laterally-graded multilayers with precise thickness control over many thousands of layers, with total film growth in one run up to 100?m thick or greater. This machine design expounds on the positive features of a rotary deposition system[4] constructed previously for MLLs and will contain multiple stationary, horizontally-oriented magnetron sources where a transport will move a substrate back and forth in a linear fashion over shaped apertures at well-defined velocities to affect a multilayer coating.

  3. Low Speed Carbon Deposition Process for Hermetic Optical Fibers

    SciTech Connect (OSTI)

    ABRAMCZYK,JAROSLAW; ARTHUR,SARA E. TALLANT,DAVID R.; HIKANSSON,ADAM S.; LINDHOLM,ERIC A.; LO,JIE

    1999-09-29

    For optical fibers used in adverse environments, a carbon coating is frequently deposited on the fiber surface to prevent water and hydrogen ingression that lead respectively to strength degradation through fatigue and hydrogen-induced attenuation. The deposition of a hermetic carbon coating onto an optical fiber during the draw process holds a particular challenge when thermally-cured specialty coatings are subsequently applied because of the slower drawing rate. In this paper, we report on our efforts to improve the low-speed carbon deposition process by altering the composition and concentration of hydrocarbon precursor gases. The resulting carbon layers have been analyzed for electrical resistance, Raman spectra, coating thickness, and surface roughness, then compared to strength data and dynamic fatigue behavior.

  4. Stable thin film resistors using double layer structure

    SciTech Connect (OSTI)

    Jia, Q.X.; Lee, H.J.; Ma, E.; Anderson, W.A.; Collins, F.M.

    1995-06-01

    Highly stable bilayer thin film resistors, which consist of an underlying layer of tantalum nitride and of a capping layer of ruthenium oxide, were developed by taking advantage of the desired characteristics of two different materials in a single system. The resistors fabricated in such a way were highly stable under power loading or thermal cycling. Resistors with one digit temperature coefficient of resistance could be easily controlled by the layer thickness ratio of the tantalum nitride to the ruthenium oxide and the {ital ex} {ital situ} annealing temperature or duration. Auger electron spectroscopy depth profile on the thin films indicates that the ruthenium oxide layer is well defined for the as-deposited form. Nevertheless, interdiffusion takes place after thermal treatment of the bilayer which is used to tune the temperature coefficient of resistance and to stabilize the resistance of the resistors.

  5. Enhanced memory effect with embedded graphene nanoplatelets in ZnO charge trapping layer

    SciTech Connect (OSTI)

    El-Atab, Nazek; Nayfeh, Ammar; Cimen, Furkan; Alkis, Sabri; Okyay, Ali K.

    2014-07-21

    A charge trapping memory with graphene nanoplatelets embedded in atomic layer deposited ZnO (GNIZ) is demonstrated. The memory shows a large threshold voltage V{sub t} shift (4?V) at low operating voltage (6/?6?V), good retention (>10 yr), and good endurance characteristic (>10{sup 4} cycles). This memory performance is compared to control devices with graphene nanoplatelets (or ZnO) and a thicker tunnel oxide. These structures showed a reduced V{sub t} shift and retention characteristic. The GNIZ structure allows for scaling down the tunnel oxide thickness along with improving the memory window and retention of data. The larger V{sub t} shift indicates that the ZnO adds available trap states and enhances the emission and retention of charges. The charge emission mechanism in the memory structures with graphene nanoplatelets at an electric field E???5.57 MV/cm is found to be based on Fowler-Nordheim tunneling. The fabrication of this memory device is compatible with current semiconductor processing, therefore, has great potential in low-cost nano-memory applications.

  6. Deposited films with improved microstructures

    DOE Patents [OSTI]

    Patten, James W.; Moss, Ronald W.; McClanahan, Edwin D.

    1984-01-01

    Methods for improving microstructures of line-of-sight deposited films are described. Columnar growth defects ordinarily produced by geometrical shadowing during deposition of such films are eliminated without resorting to post-deposition thermal or mechanical treatments. The native, as-deposited coating qualities, including homogeneity, fine grain size, and high coating-to-substrate adherence, can thus be retained. The preferred method includes the steps of emitting material from a source toward a substrate to deposit a coating non-uniformly on the substrate surface, removing a portion of the coating uniformly over the surface, again depositing material onto the surface, but from a different direction, and repeating the foregoing steps. The quality of line-of-sight deposited films such as those produced by sputtering, progressively deteriorates as the angle of incidence between the flux and the surface becomes increasingly acute. Depositing non-uniformly, so that the coating becomes progressively thinner as quality deteriorates, followed by uniformly removing some of the coating, such as by resputtering, eliminates the poor quality portions, leaving only high quality portions of the coating. Subsequently sputtering from a different direction applies a high quality coating to other regions of the surface. Such steps can be performed either simultaneously or sequentially to apply coatings of a uniformly high quality, closed microstructure to three-dimensional or large planar surfaces.

  7. Layered seal for turbomachinery

    DOE Patents [OSTI]

    Sarawate, Neelesh Nandkumar; Morgan, Victor John; Weber, David Wayne

    2015-11-20

    The present application provides seal assemblies for reducing leakages between adjacent components of turbomachinery. The seal assemblies may include outer shims, and at least a portion of the outer shims may be substantially impervious. At least one of the outer shims may be configured for sealing engagement with seal slots of the adjacent components. The seal assemblies may also include at least one of an inner shim and a filler layer positioned between the outer shims. The at least one inner shim may be substantially solid and the at least one filler layer may be relatively porous. The seal assemblies may be sufficiently flexible to account for misalignment between the adjacent components, sufficiently stiff to meet assembly requirements, and sufficiently robust to operating meet requirements associated with turbomachinery.

  8. Method and apparatus for the evaluation of a depth profile of thermo-mechanical properties of layered and graded materials and coatings

    DOE Patents [OSTI]

    Finot, Marc; Kesler, Olivera; Suresh, Subra

    1998-01-01

    A technique for determining properties such as Young's modulus, coefficient of thermal expansion, and residual stress of individual layers within a multi-layered sample is presented. The technique involves preparation of a series of samples, each including one additional layer relative to the preceding sample. By comparison of each sample to a preceding sample, properties of the topmost layer can be determined, and residual stress at any depth in each sample, resulting from deposition of the top layer, can be determined.

  9. Growth of atomically smooth MgO films on graphene by molecular beam epitaxy

    SciTech Connect (OSTI)

    Wang, W. H.; Han, W.; Pi, K.; McCreary, K. M.; Miao, F.; Bao, W.; Lau, C. N.; Kawakami, R. K.

    2008-11-03

    We investigate the growth of MgO films on graphene by molecular beam epitaxy and find that surface diffusion promotes a rough morphology. To reduce the mobility of surface atoms, the graphene surface is dressed by Ti atoms prior to MgO deposition. With as little as 0.5 ML (monolayer) of Ti, the MgO overlayer becomes atomically smooth. Furthermore, no aggregation of MgO is observed at the edges of the graphene sheet. These results are important for the fabrication of nanoscale electronic and spintronic devices.

  10. In-situ control system for atomization

    DOE Patents [OSTI]

    Anderson, I.E.; Figliola, R.S.; Terpstra, R.L.

    1995-06-13

    Melt atomizing apparatus comprising a melt supply orifice for supplying the melt for atomization and gas supply orifices proximate the melt supply orifice for supplying atomizing gas to atomize the melt as an atomization spray is disclosed. The apparatus includes a sensor, such as an optical and/or audio sensor, for providing atomization spray data, and a control unit responsive to the sensed atomization spray data for controlling at least one of the atomizing gas pressure and an actuator to adjust the relative position of the gas supply orifice and melt supply in a manner to achieve a desired atomization spray. 3 figs.

  11. In-situ control system for atomization

    DOE Patents [OSTI]

    Anderson, Iver E.; Figliola, Richard S.; Terpstra, Robert L.

    1995-06-13

    Melt atomizing apparatus comprising a melt supply orifice for supplying the melt for atomization and gas supply orifices proximate the melt supply orifice for supplying atomizing gas to atomize the melt as an atomization spray. The apparatus includes a sensor, such as an optical and/or audio sensor, for providing atomization spray data, and a control unit responsive to the sensed atomization spray data for controlling at least one of the atomizing gas pressure and an actuator to adjust the relative position of the gas supply orifice and melt supply in a manner to achieve a desired atomization spray.

  12. Supersonic coal water slurry fuel atomizer

    DOE Patents [OSTI]

    Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Balsavich, John (Foxborough, MA)

    1991-01-01

    A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

  13. Los Alamos National Laboratory ATOMIC PHOTOGRAPHY ATOMIC PHOTOGRAPHY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATOMIC PHOTOGRAPHY ATOMIC PHOTOGRAPHY BLASTS FROM THE PAST BLASTS FROM THE PAST Twenty-five U.S. atmospheric nuclear weapons operations (each a series of tests) were conducted from 1945 to 1963, primarily at the Pacific Proving Grounds and at the Nevada Test Site, southeastern Nevada. Below, observers witness Operation Greenhouse, Eniwetok Atoll, spring 1951. Greenhouse was a series of four tests. 17 Proof of principle for thermonuclear weapons, the 225-kiloton George test, May 8, 1951, of

  14. ATOMIC ENERGY ACT OF 1946

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ACT OF 1946 (Public Law 585, 79'h Congress) Excerpted from "LEGISLATIVE HISTORY OF THE ATOMIC ENERGY ACT OF 1946 (Public Law 585, 70th Congrcss)" Coinpilcd by Janics D. Niisc AEC Hcadqoartcrs Library Voliiinc I Principal Docriiiiciits U.S. ATOMIC ENERGY COMMISSION WASHINGTON, 1965 [PUBLIC LAW 5 8 5 - 7 9 ~ ~ CONQRESS] [CHAPTER 724-2~ SESSION] [S. 17171 AN ACT For the development and control o f atomic energy. Be it enacted 6y the Senate and House of Re resentdives of t b United States

  15. Method for removing semiconductor layers from salt substrates

    DOE Patents [OSTI]

    Shuskus, Alexander J.; Cowher, Melvyn E.

    1985-08-27

    A method is described for removing a CVD semiconductor layer from an alkali halide salt substrate following the deposition of the semiconductor layer. The semiconductor-substrate combination is supported on a material such as tungsten which is readily wet by the molten alkali halide. The temperature of the semiconductor-substrate combination is raised to a temperature greater than the melting temperature of the substrate but less than the temperature of the semiconductor and the substrate is melted and removed from the semiconductor by capillary action of the wettable support.

  16. Direct Deposit Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Deposit Form Direct Deposit Form PDF icon Direct Deposit Form More Documents & Publications Employee In-Processing Forms Agreement for Minority Financial Institutions Participation in the Bank Deposit Financial Assistance Program Agreement for Minority Financial Institutions Participation in the Bank Deposit Financial Assistance Program

  17. Method of deforming a biaxially textured buffer layer on a textured metallic substrate and articles therefrom

    DOE Patents [OSTI]

    Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    The present invention provides methods and biaxially textured articles having a deformed epitaxial layer formed therefrom for use with high temperature superconductors, photovoltaic, ferroelectric, or optical devices. A buffer layer is epitaxially deposited onto biaxially-textured substrates and then mechanically deformed. The deformation process minimizes or eliminates grooves, or other irregularities, formed on the buffer layer while maintaining the biaxial texture of the buffer layer. Advantageously, the biaxial texture of the buffer layer is not altered during subsequent heat treatments of the deformed buffer. The present invention provides mechanical densification procedures which can be incorporated into the processing of superconducting films through the powder deposit or precursor approaches without incurring unfavorable high-angle grain boundaries.

  18. Fabrication of contacts for silicon solar cells including printing burn through layers

    DOE Patents [OSTI]

    Ginley, David S; Kaydanova, Tatiana; Miedaner, Alexander; Curtis, Calvin J; Van Hest, Marinus Franciscus Antonius Maria

    2014-06-24

    A method for fabricating a contact (240) for a solar cell (200). The method includes providing a solar cell substrate (210) with a surface that is covered or includes an antireflective coating (220). For example, the substrate (210) may be positioned adjacent or proximate to an outlet of an inkjet printer (712) or other deposition device. The method continues with forming a burn through layer (230) on the coating (220) by depositing a metal oxide precursor (e.g., using an inkjet or other non-contact printing method to print or apply a volume of liquid or solution containing the precursor). The method includes forming a contact layer (240) comprising silver over or on the burn through layer (230), and then annealing is performed to electrically connect the contact layer (240) to the surface of the solar cell substrate (210) through a portion of the burn through layer (230) and the coating (220).

  19. Redox Active Layer-by-Layer Structures containing MnO2 Nanoparticles

    SciTech Connect (OSTI)

    Bazito, Fernanda; O'Brien, Robert; Buttry, Daniel A.

    2005-02-01

    Nanoscale materials provide unique properties that will enable new technologies and enhance older ones. One area of intense activity in which nanoscale materials are being used is in the development of new functional materials for battery applications. This effort promises superior materials with properties that circumvent many of the problems associated with traditional battery materials. Previously we have worked on several approaches for using nanoscale materials for application as cathode materials in rechargeable Li batteries. Our recent work has focused on synthesizing MnO2 nanoparticles and using these in layer-by-layer (LbL) structures to probe the redox properties of the nanoparticles. We show that the aqueous colloidal nanoparticles produced by butanol reduction of tetramethylammonium permanganate can be trapped in thin films using a layer-by-layer deposition approach, and that these films are both redox active and exhibit kinetically facile electrochemical responses. We show cyclic voltammetry of MnO2 colloidal nanoparticles entrapped in a LbL thin film at an ITO electrode surface using poly(diallyldimethylammonium chloride) (PDDA). CV experiments demonstrate that Li+ insertion accompanies Mn(IV) reduction in LiClO4 supporting electrolytes, and that reduction is hindered in supporting electrolytes containing only tetrabutylammonium cations. We also show that electron propagation through multilayer films is facile, suggesting that electrons percolate through the films via electron exchange between nanoparticles.

  20. Method of physical vapor deposition of metal oxides on semiconductors

    DOE Patents [OSTI]

    Norton, David P.

    2001-01-01

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.