Powered by Deep Web Technologies
Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Ruthenium / aerogel nanocomposits via Atomic Layer Deposition  

SciTech Connect (OSTI)

We present a general approach to prepare metal/aerogel nanocomposites via template directed atomic layer deposition (ALD). In particular, we used a Ru ALD process consisting of alternating exposures to bis(cyclopentadienyl)ruthenium (RuCp{sub 2}) and air at 350 C to deposit metallic Ru nanoparticles on the internal surfaces of carbon and silica aerogels. The process does not affect the morphology of the aerogel template and offers excellent control over metal loading by simply adjusting the number of ALD cycles. We also discuss the limitations of our ALD approach, and suggest ways to overcome these.

Biener, J; Baumann, T F; Wang, Y; Nelson, E J; Kucheyev, S O; Hamza, A V; Kemell, M; Ritala, M; Leskela, M

2006-08-28T23:59:59.000Z

2

UNIVERSITY of CALIFORNIA ATOMIC LAYER DEPOSITION OF ALUMINUM OXIDE  

E-Print Network [OSTI]

UNIVERSITY of CALIFORNIA SANTA CRUZ ATOMIC LAYER DEPOSITION OF ALUMINUM OXIDE A thesis submitted deposition (ALD) of aluminum oxide on crystalline silicon and anodized aluminum substrates. A homemade ALD system is used with trimethylaluminum (TMA) and water as precursors to deposit uniform aluminum oxide

Belanger, David P.

3

Sandia National Laboratories: atomic layer deposition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wavearc-fault circuitatomic layer deposition

4

Nanostructure templating using low temperature atomic layer deposition  

DOE Patents [OSTI]

Methods are described for making nanostructures that are mechanically, chemically and thermally stable at desired elevated temperatures, from nanostructure templates having a stability temperature that is less than the desired elevated temperature. The methods comprise depositing by atomic layer deposition (ALD) structural layers that are stable at the desired elevated temperatures, onto a template employing a graded temperature deposition scheme. At least one structural layer is deposited at an initial temperature that is less than or equal to the stability temperature of the template, and subsequent depositions made at incrementally increased deposition temperatures until the desired elevated temperature stability is achieved. Nanostructure templates include three dimensional (3D) polymeric templates having features on the order of 100 nm fabricated by proximity field nanopatterning (PnP) methods.

Grubbs, Robert K. (Albuquerque, NM); Bogart, Gregory R. (Corrales, NM); Rogers, John A. (Champaign, IL)

2011-12-20T23:59:59.000Z

5

Development of Highly Selective Oxidation Catalysts by Atomic Layer Deposition  

Broader source: Energy.gov [DOE]

This factsheet describes a research project whose goal is to use Atomic Layer Deposition to construct nanostructured catalysts to improve the effectiveness of oxidative dehydrogenation of alkanes. More effective catalysts could enable higher specific conversion rates and result in drastic energy savings - up to 25 trillion Btu per year by 2020.

6

Biocompatibility of atomic layer-deposited alumina thin films  

E-Print Network [OSTI]

. These results sug- gest that patterning a substrate with hydrophilic and hydro- phobic groups can control cell and excellent dielectric properties for bio- micro electro mechanical systems (Bio-MEMS) in sensors, actuators of atomic layer-deposited (ALD) alumina (Al2O3) and hydro- phobic coatings. While these coatings

George, Steven M.

7

Atomic Layer Deposition | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDear Friend,Arthur J. NozikAtom Probe

8

Growth mode evolution of hafnium oxide by atomic layer deposition  

SciTech Connect (OSTI)

HfO{sub 2} thin films were deposited using tetrakis-ethylmethylamido hafnium and H{sub 2}O as precursors on silicon by atomic layer deposition (ALD). The morphology and microstructures at different ALD cycles were characterized by atomic force microscopy and high-resolution transmission electron microscopy. Based on the height–height correlation function and power spectral density function, quantitative analysis of surface morphologies was performed. Three characteristic dimensions (?{sub 1}, ?{sub 2}, and ?{sub 3}) corresponding to three surface structures, islands, local and global fluctuations, were identified. The evolution of ALD growth mode at range of the three critical scales was investigated, respectively. It suggests the transformation of growth mode from quasi two-dimensional layer-by-layer to three-dimensional island for global fluctuations.

Nie, Xianglong; Ma, Fei; Ma, Dayan, E-mail: madayan@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi (China); Xu, Kewei [State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, People's Republic of China and Department of Physics and Opt-electronic Engineering, Xi'an University of Arts and Science, Xi'an 710065, Shaanxi (China)

2014-01-15T23:59:59.000Z

9

Atomic layer deposition of TiN films Growth and electrical behavior down to  

E-Print Network [OSTI]

Atomic layer deposition of TiN films Growth and electrical behavior down to sub-nanometer scale Hao Van Bui #12;ATOMIC LAYER DEPOSITION OF TiN FILMS GROWTH AND ELECTRICAL BEHAVIOR DOWN TO SUBD. Thesis - University of Twente, Enschede, the Netherlands Title: Atomic layer deposition of TiN films

10

Vehicle Technologies Office Merit Review 2014: Atomic Layer Deposition for Stabilization of Silicon Anodes  

Broader source: Energy.gov [DOE]

Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about atomic layer deposition for...

11

Substrate-assisted nucleation of ultra-thin dielectric layers on graphene by atomic layer deposition  

E-Print Network [OSTI]

1 Published as: Applied Physics Letters 100, 173113 (2012) DOI: 10.1063/1.4707376 Substrate-assisted nucleation of ultra-thin dielectric layers on graphene by atomic layer deposition Bruno Dlubak, Piran R. Kidambi, Robert S... on monolayer graphene, without creating point defects. This enhanced wetting is achieved by greatly increasing the nucleation density through the use of polar traps induced on the graphene surface by an underlying metallic substrate. The resulting Al2O3...

Dlubak, Bruno; Kidambi, Piran R.; Weatherup, Robert S.; Hofmann, Stephan; Robertson, John

2012-04-26T23:59:59.000Z

12

Characterization of CZTSSe photovoltaic device with an atomic layer-deposited passivation layer  

SciTech Connect (OSTI)

We describe a CZTSSe (Cu{sub 2}ZnSn(S{sub 1?x},Se{sub x}){sub 4}) photovoltaic (PV) device with an ALD (atomic layer deposition) coated buffer dielectric layer for CZTSSe surface passivation. An ALD buffer layer, such as TiO{sub 2}, can be applied in order to reduce the interface recombination and improve the device's open-circuit voltage. Detailed characterization data including current-voltage, admittance spectroscopy, and capacitance profiling are presented in order to compare the performance of PV devices with and without the ALD layer.

Wu, Wei, E-mail: wei.wu@dupont.com; Cao, Yanyan; Caspar, Jonathan V.; Guo, Qijie; Johnson, Lynda K.; Mclean, Robert S.; Malajovich, Irina; Choudhury, Kaushik Roy [DuPont Central Research and Development, Wilmington, Delaware 19880 (United States)

2014-07-28T23:59:59.000Z

13

Channel cracks in atomic-layer and molecular-layer deposited multilayer thin film coatings  

SciTech Connect (OSTI)

Metal oxide thin film coatings produced by atomic layer deposition have been shown to be an effective permeation barrier. The primary failure mode of such coatings under tensile loads is the propagation of channel cracks that penetrate vertically into the coating films. Recently, multi-layer structures that combine the metal oxide material with relatively soft polymeric layers produced by molecular layer deposition have been proposed to create composite thin films with desired properties, including potentially enhanced resistance to fracture. In this paper, we study the effects of layer geometry and material properties on the critical strain for channel crack propagation in the multi-layer composite films. Using finite element simulations and a thin-film fracture mechanics formalism, we show that if the fracture energy of the polymeric layer is lower than that of the metal oxide layer, the channel crack tends to penetrate through the entire composite film, and dividing the metal oxide and polymeric materials into thinner layers leads to a smaller critical strain. However, if the fracture energy of the polymeric material is high so that cracks only run through the metal oxide layers, more layers can result in a larger critical strain. For intermediate fracture energy of the polymer material, we developed a design map that identifies the optimal structure for given fracture energies and thicknesses of the metal oxide and polymeric layers. These results can facilitate the design of mechanically robust permeation barriers, an important component for the development of flexible electronics.

Long, Rong, E-mail: rlongmech@gmail.com [Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 2G8 (Canada); Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Dunn, Martin L. [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Singapore University of Technology and Design, Singapore 138682 (Singapore)

2014-06-21T23:59:59.000Z

14

Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition  

E-Print Network [OSTI]

Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition M. Scharrer, X. Wu, A method to fabricate so-called "inverted opal" structures which have the long-range order, high filling into opal or inverted opal backbones.3,5,13,14 Recently, atomic layer deposition ALD has been pro- posed

Cao, Hui

15

Optical Properties of Zn(O,S) Thin Films Deposited by RF Sputtering, Atomic Layer Deposition, and Chemical Bath Deposition: Preprint  

SciTech Connect (OSTI)

Zn(O,S) thin films 27 - 100 nm thick were deposited on glass or Cu(InxGa1-x)Se2/Molybdenum/glass with RF sputtering, atomic layer deposition, and chemical bath deposition.

Li, J.; Glynn, S.; Christensen, S.; Mann, J.; To, B.; Ramanathan, K.; Noufi, R.; Furtak, T. E.; Levi, D.

2012-06-01T23:59:59.000Z

16

Heteroepitaxy of group IV-VI nitrides by atomic layer deposition  

SciTech Connect (OSTI)

Heteroepitaxial growth of selected group IV-VI nitrides on various orientations of sapphire (?-Al{sub 2}O{sub 3}) is demonstrated using atomic layer deposition. High quality, epitaxial films are produced at significantly lower temperatures than required by conventional deposition methods. Characterization of electrical and superconducting properties of epitaxial films reveals a reduced room temperature resistivity and increased residual resistance ratio for films deposited on sapphire compared to polycrystalline samples deposited concurrently on fused quartz substrates.

Klug, Jeffrey A., E-mail: jklug@anl.gov; Groll, Nickolas R.; Pellin, Michael J.; Proslier, Thomas, E-mail: prolier@anl.gov [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)] [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Becker, Nicholas G.; Cao, Chaoyue; Zasadzinski, John F. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States) [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Weimer, Matthew S. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States) [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

2013-11-18T23:59:59.000Z

17

Reduction of magnetostatic interactions in self-organized arrays of nickel nanowires using atomic layer deposition  

E-Print Network [OSTI]

Reduction of magnetostatic interactions in self-organized arrays of nickel nanowires using atomic of magnetic nanowires are commonly synthesized by electrodeposition in nanoporous alumina templates. Due atomic layer deposition we reduce the diameter of the pores prior to electrodeposition. This reduces

Boyer, Edmond

18

Chapter 6.24 Picosun Atomic Layer Deposition (ALD)  

E-Print Network [OSTI]

by the ALD could be used for diffusion barriers and similar applications. 2.0 Materials Controls: Source/s used in the ALD machine contains the desired metal for deposition. This metal is bonded)3 is precursors used to deposit aluminum oxide. 4.5.2 TTIP: Titanium Tetrakis Isopropoxide, which supplies Ti

Healy, Kevin Edward

19

An atomic layer deposition chamber for in situ x-ray diffraction and scattering analysis  

SciTech Connect (OSTI)

The crystal structure of thin films grown by atomic layer deposition (ALD) will determine important performance properties such as conductivity, breakdown voltage, and catalytic activity. We report the design of an atomic layer deposition chamber for in situ x-ray analysis that can be used to monitor changes to the crystal structural during ALD. The application of the chamber is demonstrated for Pt ALD on amorphous SiO{sub 2} and SrTiO{sub 3} (001) using synchrotron-based high resolution x-ray diffraction, grazing incidence x-ray diffraction, and grazing incidence small angle scattering.

Geyer, Scott M.; Methaapanon, Rungthiwa; Kim, Woo-Hee; Bent, Stacey F., E-mail: sbent@stanford.edu [Department of Chemical Engineering, Stanford University, Stanford, California 94305 (United States); Johnson, Richard W. [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); Van Campen, Douglas G.; Metha, Apurva [SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025 (United States)

2014-05-15T23:59:59.000Z

20

Functional Nano-Structures Using Atomic Layer Deposition  

E-Print Network [OSTI]

, in particular Suresh Mistry, Pete Bone, Owen Dunn, Ian Ganney, Sue Murkett, Sue Gymer and Tom Mitchell. Special thanks go to Tom for his extensive knowledge and for making the many hours spent in the cleanroom more enjoyable. I also wish to thank Prof. Sir Mark... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3.1 Principles of electrochemical deposition . . . . . . . . . . . . . . 54 5.3.2 Deposition of metals and metal oxides . . . . . . . . . . . . . . 55 5.4 Solar cell fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.4.1 Dye...

Salgård Cunha, Pedro

2014-05-27T23:59:59.000Z

Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alumina atomic layer deposition nanocoatings on primary diamond particles using a fluidized bed reactor  

E-Print Network [OSTI]

/high-temperature (HP/HT) synthesis methods [4­7] led to the discovery of polycrystalline diamond grit and the manufacture of polycrystalline diamond compact (PDC) materials [8]. PDC cutters are well known and widely usedAlumina atomic layer deposition nanocoatings on primary diamond particles using a fluidized bed

George, Steven M.

22

Novel Processing to Produce Polymer/Ceramic Nanocomposites by Atomic Layer Deposition  

E-Print Network [OSTI]

- scale ceramic inclusions within a polymer matrix was demon- strated. Micron-sized high density scale, but ceramics are not homogeneously dispersed in the polymer matrix at a nanoscopic level7Novel Processing to Produce Polymer/Ceramic Nanocomposites by Atomic Layer Deposition Xinhua Liang

George, Steven M.

23

ATOMIC-LAYER-DEPOSITED ALUMINUM OXIDE FOR THE SURFACE PASSIVATION OF HIGH-EFFICIENCY SILICON SOLAR CELLS  

E-Print Network [OSTI]

ATOMIC-LAYER-DEPOSITED ALUMINUM OXIDE FOR THE SURFACE PASSIVATION OF HIGH-EFFICIENCY SILICON SOLAR to those measured on reference cells passivated by an aluminum-annealed thermal SiO2, while those of the Al of aluminum ox- ide (Al2O3) grown by atomic layer deposition (ALD) pro- vide an excellent level of sur

24

Gas phase reaction products during tungsten atomic layer deposition using WF6 and Si2H6  

E-Print Network [OSTI]

Gas phase reaction products during tungsten atomic layer deposition using WF6 and Si2H6 R. K; published 23 July 2004 The gas phase reaction products during tungsten W atomic layer deposition ALD using WF6 and Si2H6 were studied using quadrupole mass spectrometry. The gas phase reactions products were

George, Steven M.

25

Fermi level de-pinning of aluminium contacts to n-type germanium using thin atomic layer deposited layers  

SciTech Connect (OSTI)

Fermi-level pinning of aluminium on n-type germanium (n-Ge) was reduced by insertion of a thin interfacial dielectric by atomic layer deposition. The barrier height for aluminium contacts on n-Ge was reduced from 0.7?eV to a value of 0.28?eV for a thin Al{sub 2}O{sub 3} interfacial layer (?2.8?nm). For diodes with an Al{sub 2}O{sub 3} interfacial layer, the contact resistance started to increase for layer thicknesses above 2.8?nm. For diodes with a HfO{sub 2} interfacial layer, the barrier height was also reduced but the contact resistance increased dramatically for layer thicknesses above 1.5?nm.

Gajula, D. R., E-mail: dgajula01@qub.ac.uk; Baine, P.; Armstrong, B. M.; McNeill, D. W. [School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH (United Kingdom)] [School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH (United Kingdom); Modreanu, M.; Hurley, P. K. [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland)] [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland)

2014-01-06T23:59:59.000Z

26

Fracture properties of atomic layer deposited aluminum oxide free-standing membranes  

SciTech Connect (OSTI)

The fracture strength of Al{sub 2}O{sub 3} membranes deposited by atomic layer deposition at 110, 150, 200, and 300?°C was investigated. The fracture strength was found to be in the range of 2.25–3.00?GPa using Weibull statistics and nearly constant as a function of deposition temperature. This strength is superior to common microelectromechanical systems materials such as diamondlike carbon, SiO{sub 2}, or SiC. As-deposited membranes sustained high cycling pressure loads >10 bar/s without fracture. Films featured, however, significant reduction in the resistance to failure after annealing (800?°C) or high humidity (95%, 60?°C) treatments.

Berdova, Maria, E-mail: maria.berdova@aalto.fi; Rontu, Ville; Franssila, Sami [Department of Materials Science and Engineering, Aalto University, P.O. Box 16200, FI-00076 Aalto (Finland); Ylivaara, Oili M. E.; Puurunen, Riikka L. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044VTT (Finland); Törmä, Pekka T. [Department of Micro- and Nanosciences, Aalto University, P.O. Box 13500, 00076 Aalto (Finland)

2015-01-01T23:59:59.000Z

27

Al{sub 2}O{sub 3} multi-density layer structure as a moisture permeation barrier deposited by radio frequency remote plasma atomic layer deposition  

SciTech Connect (OSTI)

Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition have been used for thin film encapsulation of organic light emitting diode. In this study, a multi-density layer structure consisting of two Al{sub 2}O{sub 3} layers with different densities are deposited with different deposition conditions of O{sub 2} plasma reactant time. This structure improves moisture permeation barrier characteristics, as confirmed by a water vapor transmission rate (WVTR) test. The lowest WVTR of the multi-density layer structure was 4.7 × 10{sup ?5} gm{sup ?2} day{sup ?1}, which is one order of magnitude less than WVTR for the reference single-density Al{sub 2}O{sub 3} layer. This improvement is attributed to the location mismatch of paths for atmospheric gases, such as O{sub 2} and H{sub 2}O, in the film due to different densities in the layers. This mechanism is analyzed by high resolution transmission electron microscopy, elastic recoil detection, and angle resolved X-ray photoelectron spectroscopy. These results confirmed that the multi-density layer structure exhibits very good characteristics as an encapsulation layer via location mismatch of paths for H{sub 2}O and O{sub 2} between the two layers.

Jung, Hyunsoo [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741 (Korea, Republic of); Jeon, Heeyoung [Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Choi, Hagyoung; Ham, Giyul; Shin, Seokyoon [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jeon, Hyeongtag, E-mail: hjeon@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

2014-02-21T23:59:59.000Z

28

Thermodynamic properties and interfacial layer characteristics of HfO{sub 2} thin films deposited by plasma-enhanced atomic layer deposition  

SciTech Connect (OSTI)

The thermodynamic properties and interfacial characteristics of HfO{sub 2} thin films that were deposited by the direct plasma atomic layer deposition (DPALD) method are investigated. The as-deposited HfO{sub 2} films that were deposited by the DPALD method show crystallization of the HfO{sub 2} layers, which initiates at approximately the 35th cycle (about 2.8 nm) of the DPALD process. Medium-energy ion scattering analysis reveals that the direct O{sub 2} plasma causes a compositional change in the interfacial layer as the process progresses. With an increase in the number of process cycles, the Si content decreases and the O content increases at that position, so that the HfO{sub 2}-like Hf-silicate layer is formed on top of the interfacial layer. The enhanced physical reactivity of the oxygen ions in the direct plasma and the Hf-silicate layer may be the driving forces that accelerate the early crystallization of the HfO{sub 2} layer in the DPALD process in the as-deposited state.

Kim, Inhoe; Kuk, Seoungwoo; Kim, Seokhoon; Kim, Jinwoo; Jeon, Hyeongtag; Cho, M.-H.; Chung, K.-B. [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Korea Research Institute of Standard and Science, Daejeon 305-600 (Korea, Republic of)

2007-05-28T23:59:59.000Z

29

Synthesis of multiferroic Er-Fe-O thin films by atomic layer and chemical vapor deposition  

SciTech Connect (OSTI)

R-Fe-O (R?=?rare earth) compounds have recently attracted high interest as potential new multiferroic materials. Here, we report a method based on the solid-state reaction between Er{sub 2}O{sub 3} and Fe layers, respectively grown by atomic layer deposition and chemical vapor deposition, to synthesize Er-Fe-O thin films. The reaction is induced by thermal annealing and evolution of the formed phases is followed by in situ grazing incidence X-ray diffraction. Dominant ErFeO{sub 3} and ErFe{sub 2}O{sub 4} phases develop following subsequent thermal annealing processes at 850?°C in air and N{sub 2}. Structural, chemical, and morphological characterization of the layers are conducted through X-ray diffraction and reflectivity, time-of-flight secondary ion-mass spectrometry, and atomic force microscopy. Magnetic properties are evaluated by magnetic force microscopy, conversion electron Mössbauer spectroscopy, and vibrating sample magnetometer, being consistent with the presence of the phases identified by X-ray diffraction. Our results constitute a first step toward the use of cost-effective chemical methods for the synthesis of this class of multiferroic thin films.

Mantovan, R., E-mail: roberto.mantovan@mdm.imm.cnr.it; Vangelista, S.; Wiemer, C.; Lamperti, A.; Tallarida, G. [Laboratorio MDM IMM-CNR, I-20864 Agrate Brianza (MB) (Italy); Chikoidze, E.; Dumont, Y. [GEMaC, Université de Versailles St. Quentin en Yvelines-CNRS, Versailles (France); Fanciulli, M. [Laboratorio MDM IMM-CNR, I-20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Milano (Italy)

2014-05-07T23:59:59.000Z

30

Growth mechanism of atomic layer deposition of zinc oxide: A density functional theory approach  

SciTech Connect (OSTI)

Atomic layer deposition of zinc oxide (ZnO) using diethylzinc (DEZ) and water is studied using density functional theory. The reaction pathways between the precursors and ZnO surface sites are discussed. Both reactions proceed by the formation of intermediate complexes on the surface. The Gibbs free energy of the formation of these complexes is positive at temperatures above ?120?°C and ?200?°C for DEZ and water half-reactions, respectively. Spectroscopic ellipsometry results show that the growth per cycle changes at approximately the same temperatures.

Afshar, Amir; Cadien, Kenneth C., E-mail: kcadien@ualberta.ca [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada)

2013-12-16T23:59:59.000Z

31

Ultra-low loading Pt nanocatalysts prepared by atomic layer deposition on carbon aerogels  

SciTech Connect (OSTI)

Using atomic layer deposition (ALD), we show that Pt nanoparticles can be deposited on the inner surfaces of carbon aerogels (CA). The resultant Pt-loaded materials exhibit high catalytic activity for the oxidation of CO even at loading levels as low as {approx}0.05 mg Pt/cm{sup 2}. We observe a conversion efficiency of nearly 100% in the temperatures range 150-250 C, and the total conversion rate seems to be only limited by the thermal stability of our CA support in ambient oxygen. Our ALD approach described here is universal in nature, and can be applied to the design of new catalytic materials for a variety of applications, including fuel cells, hydrogen storage, pollution control, green chemistry, and liquid fuel production.

King, J S; Wittstock, A; Biener, J; Kucheyev, S O; Wang, Y M; Baumann, T F; Giri, S; Hamza, A V; Baeumer, M; Bent, S F

2008-04-21T23:59:59.000Z

32

High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films  

SciTech Connect (OSTI)

Zinc oxide (ZnO) thin films with various thicknesses were fabricated by Atomic Layer Deposition on Chemical Vapor Deposition grown graphene films and their response to formaldehyde has been investigated. It was found that 0.5?nm ZnO films modified graphene sensors showed high response to formaldehyde with the resistance change up to 52% at the concentration of 9 parts-per-million (ppm) at room temperature. Meanwhile, the detection limit could reach 180 parts-per-billion (ppb) and fast response of 36?s was also obtained. The high sensitivity could be attributed to the combining effect from the highly reactive, top mounted ZnO thin films, and high conductive graphene base network. The dependence of ZnO films surface morphology and its sensitivity on the ZnO films thickness was also investigated.

Mu, Haichuan; Zhang, Zhiqiang; Wang, Keke; Xie, Haifen, E-mail: hfxie@ecust.edu.cn [Department of Physics, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Zhao, Xiaojing; Liu, Feng [Department of Physics, Shanghai Normal University, 100 Guilin Road, Shanghai 200234 (China)

2014-07-21T23:59:59.000Z

33

Property transformation of graphene with Al{sub 2}O{sub 3} films deposited directly by atomic layer deposition  

SciTech Connect (OSTI)

Al{sub 2}O{sub 3} films are deposited directly onto graphene by H{sub 2}O-based atomic layer deposition (ALD), and the films are pinhole-free and continuously cover the graphene surface. The growth process of Al{sub 2}O{sub 3} films does not introduce any detective defects in graphene, suppresses the hysteresis effect and tunes the graphene doping to n-type. The self-cleaning of ALD growth process, together with the physically absorbed H{sub 2}O and oxygen-deficient ALD environment consumes OH{sup ?} bonds, suppresses the p-doping of graphene, shifts Dirac point to negative gate bias and enhances the electron mobility.

Zheng, Li; Cao, Duo; Wang, Zhongjian; Xia, Chao [State Key Laboratory of Functional Materials for Informatics, SIMIT, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Cheng, Xinhong, E-mail: xh-cheng@mail.sim.ac.cn; Yu, Yuehui [State Key Laboratory of Functional Materials for Informatics, SIMIT, Chinese Academy of Sciences, Shanghai 200050 (China); Shen, Dashen [University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States)

2014-01-13T23:59:59.000Z

34

ATOMIC LAYER DEPOSITION OF TITANIUM OXIDE THIN FILMS ONNANOPOROUS ALUMINA TEMPLATES FOR MEDICAL APPLICATIONS  

SciTech Connect (OSTI)

Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of the nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Both the 20 nm and 100 nm titanium oxide-coated nanoporous alumina membranes did not exhibit statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. In addition, 20 nm pore size titanium oxide-coated nanoporous alumina membranes exposed to ultraviolet light demonstrated activity against Escherichia coli and Staphylococcus aureus bacteria. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.

Brigmon, R.

2009-05-05T23:59:59.000Z

35

Improved oxidation resistance of organic/inorganic composite atomic layer deposition coated cellulose nanocrystal aerogels  

SciTech Connect (OSTI)

Cellulose nanocrystal (CNC) aerogels are coated with thin conformal layers of Al{sub 2}O{sub 3} using atomic layer deposition to form hybrid organic/inorganic nanocomposites. Electron probe microanalysis and scanning electron microscopy analysis indicated the Al{sub 2}O{sub 3} penetrated more than 1500??m into the aerogel for extended precursor pulse and exposure/purge times. The measured profile of coated fiber radius versus depth from the aerogel surface agrees well with simulations of precursor penetration depth in modeled aerogel structures. Thermogravimetric analysis shows that Al{sub 2}O{sub 3} coated CNC aerogel nanocomposites do not show significant thermal degradation below 295?°C as compared with 175?°C for uncoated CNC aerogels, an improvement of over 100?°C.

Smith, Sean W.; Matthews, David J.; Conley, John F., E-mail: jconley@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, 1148 Kelley Engineering Center, Oregon State University, Corvallis, Oregon 97331 (United States); Buesch, Christian; Simonsen, John [Department of Wood Science and Engineering, Oregon State University, 119 Richardson Hall, Corvallis, Oregon 97331 (United States)

2014-07-01T23:59:59.000Z

36

Thermal chemistry of the Cu-KI5 atomic layer deposition precursor on a copper surface  

SciTech Connect (OSTI)

The thermal chemistry of a Cu(I) ketoiminate complex, Cu-KI5, resulting from the modification of the known Air Products CupraSelect{sup ®} copper CVD precursor Cu(hfac)(tmvs) designed to tether the two ligands via an isopropoxide linker, was studied under ultrahigh vacuum on a Cu(110) single-crystal surface by using a combination of temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy. Adsorption at low temperatures was determined to take place via the displacement of the vinyl ligand by the surface. Molecular desorption was seen at 210?K, and the evolution of Cu(II)-KI5{sub 2} was established to take place at 280?K, presumably from a disproportionation reaction that also leads to the deposition of Cu(0). Other sets of desorption products were seen at 150, 250, and 430?K, all containing copper atoms and small organic moieties with molecular masses below 100 amu. The latter TPD peak in particular indicates significant fragmentation of the ligands, likely at the C–N bond that holds the vinylsilane-isopropoxide moiety tethered to the ketoimine fragment, and possibly also at the union between the vinylsilane and the alkoxide linker. The 430?K temperature measured for this chemistry may set an upper limit for clean Cu film deposition, but since reactivity on the surface was also found to be inhibited at higher surface coverages, it may be delayed to higher temperatures under atomic layer deposition conditions.

Ma, Qiang; Zaera, Francisco, E-mail: zaera@ucr.edu [Department of Chemistry, University of California, Riverside, California 92521 (United States)

2015-01-01T23:59:59.000Z

37

Atomic layer deposition of tin oxide films using tetrakis,,dimethylamino... tin Jeffrey W. Elam,a  

E-Print Network [OSTI]

Atomic layer deposition of tin oxide films using tetrakis,,dimethylamino... tin Jeffrey W. Elam dimethylamino tin and hydrogen peroxide. This method avoids problems of corrosion and agglomeration associated with the halogenated compound, SnCl4. Tin oxide films were successfully deposited on a variety of substrates using

38

LDRD Project 52523 final report :Atomic layer deposition of highly conformal tribological coatings.  

SciTech Connect (OSTI)

Friction and wear are major concerns in the performance and reliability of micromechanical (MEMS) devices. While a variety of lubricant and wear resistant coatings are known which we might consider for application to MEMS devices, the severe geometric constraints of many micromechanical systems (high aspect ratios, shadowed surfaces) make most deposition methods for friction and wear-resistance coatings impossible. In this program we have produced and evaluate highly conformal, tribological coatings, deposited by atomic layer deposition (ALD), for use on surface micromachined (SMM) and LIGA structures. ALD is a chemical vapor deposition process using sequential exposure of reagents and self-limiting surface chemistry, saturating at a maximum of one monolayer per exposure cycle. The self-limiting chemistry results in conformal coating of high aspect ratio structures, with monolayer precision. ALD of a wide variety of materials is possible, but there have been no studies of structural, mechanical, and tribological properties of these films. We have developed processes for depositing thin (<100 nm) conformal coatings of selected hard and lubricious films (Al2O3, ZnO, WS2, W, and W/Al{sub 2}O{sub 3} nanolaminates), and measured their chemical, physical, mechanical and tribological properties. A significant challenge in this program was to develop instrumentation and quantitative test procedures, which did not exist, for friction, wear, film/substrate adhesion, elastic properties, stress, etc., of extremely thin films and nanolaminates. New scanning probe and nanoindentation techniques have been employed along with detailed mechanics-based models to evaluate these properties at small loads characteristic of microsystem operation. We emphasize deposition processes and fundamental properties of ALD materials, however we have also evaluated applications and film performance for model SMM and LIGA devices.

Jungk, John Michael (University of Minnesota); Dugger, Michael Thomas; George, Steve M. (University of Colorado); Prasad, Somuri V.; Grubbs, Robert K.; Moody, Neville Reid; Mayer, Thomas Michael; Scharf, Thomas W.; Goeke, Ronald S.; Gerberich, William W. (University of Minnesota)

2005-10-01T23:59:59.000Z

39

Roll-to-roll atomic layer deposition process for flexible electronics encapsulation applications  

SciTech Connect (OSTI)

At present flexible electronic devices are under extensive development and, among them, flexible organic light-emitting diode displays are the closest to a large market deployment. One of the remaining unsolved challenges is high throughput production of impermeable flexible transparent barrier layers that protect sensitive light-emitting materials against ambient moisture. The present studies deal with the adaptation of the atomic layer deposition (ALD) process to high-throughput roll-to-roll production using the spatial ALD concept. We report the development of such a process for the deposition of 20?nm thickness Al{sub 2}O{sub 3} diffusion barrier layers on 500?mm wide polymer webs. The process uses trimethylaluminum and water as precursors at a substrate temperature of 105?°C. The observation of self-limiting film growth behavior and uniformity of thickness confirms the ALD growth mechanism. Water vapor transmission rates for 20?nm Al{sub 2}O{sub 3} films deposited on polyethylene naphthalate (PEN) substrates were measured as a function of substrate residence time, that is, time of exposure of the substrate to one precursor zone. Moisture permeation levels measured at 38?°C/90% relative humidity by coulometric isostatic–isobaric method were below the detection limit of the instrument (<5?×?10{sup ?4}?g/m{sup 2} day) for films coated at web moving speed of 0.25?m/min. Measurements using the Ca test indicated water vapor transmission rates ?5?×?10{sup ?6} g/m{sup 2} day. Optical measurements on the coated web showed minimum transmission of 80% in the visible range that is the same as the original PEN substrate.

Maydannik, Philipp S., E-mail: philipp.maydannik@lut.fi; Kääriäinen, Tommi O.; Lahtinen, Kimmo; Cameron, David C. [Advanced Surface Technology Research Laboratory, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Söderlund, Mikko; Soininen, Pekka [Beneq Oy, P.O. Box 262, 01511 Vantaa (Finland); Johansson, Petri; Kuusipalo, Jurkka [Tampere University of Technology, Paper Converting and Packaging Technology, P.O. Box 589, 33101 Tampere (Finland); Moro, Lorenza; Zeng, Xianghui [Samsung Cheil Industries, San Jose R and D Center, 2186 Bering Drive, San Jose, California 95131 (United States)

2014-09-01T23:59:59.000Z

40

Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber  

SciTech Connect (OSTI)

A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al{sub 2}O{sub 3} layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al{sub 2}O{sub 3} films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

Dechana, A. [Program of Physics and General Science, Faculty of Science and Technology, Songkhla Rajabhat University, Songkhla 90000 (Thailand); Thamboon, P. [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Boonyawan, D., E-mail: dheerawan.b@cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

2014-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Low temperature atomic layer deposited ZnO photo thin film transistors  

SciTech Connect (OSTI)

ZnO thin film transistors (TFTs) are fabricated on Si substrates using atomic layer deposition technique. The growth temperature of ZnO channel layers are selected as 80, 100, 120, 130, and 250?°C. Material characteristics of ZnO films are examined using x-ray photoelectron spectroscopy and x-ray diffraction methods. Stoichiometry analyses showed that the amount of both oxygen vacancies and interstitial zinc decrease with decreasing growth temperature. Electrical characteristics improve with decreasing growth temperature. Best results are obtained with ZnO channels deposited at 80?°C; I{sub on}/I{sub off} ratio is extracted as 7.8 × 10{sup 9} and subthreshold slope is extracted as 0.116 V/dec. Flexible ZnO TFT devices are also fabricated using films grown at 80?°C. I{sub D}–V{sub GS} characterization results showed that devices fabricated on different substrates (Si and polyethylene terephthalate) show similar electrical characteristics. Sub-bandgap photo sensing properties of ZnO based TFTs are investigated; it is shown that visible light absorption of ZnO based TFTs can be actively controlled by external gate bias.

Oruc, Feyza B.; Aygun, Levent E.; Donmez, Inci; Biyikli, Necmi; Okyay, Ali K., E-mail: aokyay@ee.bilkent.edu.tr [Institute of Materials Science and Nanotechnology, Bilkent University, Bilkent, 06800 Ankara (Turkey); UNAM—National Nanotechnology Research Center, Bilkent University, Bilkent, 06800 Ankara (Turkey); Department of Electrical and Electronics Engineering, Bilkent University, Bilkent, 06800 Ankara (Turkey); Yu, Hyun Yong [The School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

2015-01-01T23:59:59.000Z

42

Fabrication of AlN/BN bishell hollow nanofibers by electrospinning and atomic layer deposition  

SciTech Connect (OSTI)

Aluminum nitride (AlN)/boron nitride (BN) bishell hollow nanofibers (HNFs) have been fabricated by successive atomic layer deposition (ALD) of AlN and sequential chemical vapor deposition (CVD) of BN on electrospun polymeric nanofibrous template. A four-step fabrication process was utilized: (i) fabrication of polymeric (nylon 6,6) nanofibers via electrospinning, (ii) hollow cathode plasma-assisted ALD of AlN at 100?°C onto electrospun polymeric nanofibers, (iii) calcination at 500?°C for 2 h in order to remove the polymeric template, and (iv) sequential CVD growth of BN at 450?°C. AlN/BN HNFs have been characterized for their chemical composition, surface morphology, crystal structure, and internal nanostructure using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction. Measurements confirmed the presence of crystalline hexagonal BN and AlN within the three dimensional (3D) network of bishell HNFs with relatively low impurity content. In contrast to the smooth surface of the inner AlN layer, outer BN coating showed a highly rough 3D morphology in the form of BN nano-needle crystallites. It is shown that the combination of electrospinning and plasma-assisted low-temperature ALD/CVD can produce highly controlled multi-layered bishell nitride ceramic hollow nanostructures. While electrospinning enables easy fabrication of nanofibrous template, self-limiting reactions of plasma-assisted ALD and sequential CVD provide control over the wall thicknesses of AlN and BN layers with sub-nanometer accuracy.

Haider, Ali; Kayaci, Fatma; Uyar, Tamer; Biyikli, Necmi, E-mail: biyikli@unam.bilkent.edu.tr [National Nanotechnology Research Center (UNAM), Bilkent University, Bilkent, Ankara 06800 (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, Bilkent, Ankara 06800 (Turkey); Ozgit-Akgun, Cagla [National Nanotechnology Research Center (UNAM), Bilkent University, Bilkent, Ankara 06800 (Turkey); Okyay, Ali Kemal [National Nanotechnology Research Center (UNAM), Bilkent University, Bilkent, Ankara 06800 (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, Bilkent, Ankara 06800 (Turkey); Department of Electrical and Electronics Engineering, Bilkent University, Bilkent, Ankara 06800 (Turkey)

2014-09-01T23:59:59.000Z

43

Aligned Carbon Nanotube Array Functionalization for Enhanced Atomic Layer Deposition of Platinum Electrocatalysts  

SciTech Connect (OSTI)

Uniform metal deposition onto high surface area supports is a key challenge of developing successful efficient catalyst materials. Atomic layer deposition (ALD) circumvents permeation difficulties, but relies on gas-surface reactions to initiate growth. Our work demonstrates that modified surfaces within vertically aligned carbon nanotube (CNT) arrays, from plasma and molecular precursor treatments, can lead to improved catalyst deposition. Gas phase functionalization influences the number of ALD nucleation sites and the onset of ALD growth and, in turn, affects the uniformity of the coating along the length of the CNTs within the aligned arrays. The induced chemical changes for each functionalization route are identified by X-ray photoelectron and Raman spectroscopies. The most effective functionalization routes increase the prevalence of oxygen moieties at defect sites on the carbon surfaces. The striking effects of the functionalization are demonstrated with ALD Pt growth as a function of surface treatment and ALD cycles examined by electron microscopy of the arrays and the individual CNTs. Finally, we demonstrate applicability of these materials as fuel cell electrocatalysts and show that surface functionalization affects their performance towards oxygen reduction reaction.

Dameron, A. A.; Pylypenko, S.; Bult, J. B.; Neyerlin, K. C.; Engtrakul, C.; Bochert, C.; Leong, G. J.; Frisco, S. L.; Simpson, L.; Dinh, H. N.; Pivovar, B.

2012-04-15T23:59:59.000Z

44

Modeling precursor diffusion and reaction of atomic layer deposition in porous structures  

SciTech Connect (OSTI)

Atomic layer deposition (ALD) is a technique for depositing thin films of materials with a precise thickness control and uniformity using the self-limitation of the underlying reactions. Usually, it is difficult to predict the result of the ALD process for given external parameters, e.g., the precursor exposure time or the size of the precursor molecules. Therefore, a deeper insight into ALD by modeling the process is needed to improve process control and to achieve more economical coatings. In this paper, a detailed, microscopic approach based on the model developed by Yanguas-Gil and Elam is presented and additionally compared with the experiment. Precursor diffusion and second-order reaction kinetics are combined to identify the influence of the porous substrate's microstructural parameters and the influence of precursor properties on the coating. The thickness of the deposited film is calculated for different depths inside the porous structure in relation to the precursor exposure time, the precursor vapor pressure, and other parameters. Good agreement with experimental results was obtained for ALD zirconiumdioxide (ZrO{sub 2}) films using the precursors tetrakis(ethylmethylamido)zirconium and O{sub 2}. The derivation can be adjusted to describe other features of ALD processes, e.g., precursor and reactive site losses, different growth modes, pore size reduction, and surface diffusion.

Keuter, Thomas, E-mail: t.keuter@fz-juelich.de; Menzler, Norbert Heribert; Mauer, Georg; Vondahlen, Frank; Vaßen, Robert; Buchkremer, Hans Peter [Forschungszentrum Jülich, Institute of Energy and Climate Research (IEK-1), 52425 Jülich (Germany)

2015-01-01T23:59:59.000Z

45

Characteristics of Hf-silicate thin films synthesized by plasma enhanced atomic layer deposition  

SciTech Connect (OSTI)

Hafnium silicate films were grown by alternating the deposition cycles of hafnium oxide and silicon oxide using a plasma enhanced atomic layer deposition process. The as-deposited and 900 deg. C annealed hafnium silicate films were determined to be amorphous using grazing incidence x-ray diffraction. This suggested that the formation of hafnium silicate suppressed the crystallization of HfO{sub 2} at high temperatures. The dielectric constants increased from {approx}5 to {approx}17 as the hafnium content increased from 9 to 17 at. % in the hafnium silicate films. The leakage currents through the Hf-rich Hf-silicate films were two to three orders of magnitude lower than that of SiO{sub 2} with the same equivalent oxide thickness in the range of 1.6-2.3 nm. The estimated band gap of Hf-silicate films from the O 1s plasma loss spectra increased with the increasing Si content due to the higher band gap of SiO{sub 2} than that of HfO{sub 2}.

Liu Jiurong; Martin, Ryan M.; Chang, Jane P. [Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095 (United States)

2008-09-15T23:59:59.000Z

46

An atomic layer deposition reactor with dose quantification for precursor adsorption and reactivity studies  

SciTech Connect (OSTI)

An atomic layer deposition reactor has been constructed with quantitative, precision dose control for studying precursor adsorption characteristics and to relate dose quantity and exposure dynamics to fluid flow in both the viscous and molecular flow regimes. A fixed volume of gas, held at a controlled temperature and measured pressure, is dosed into the reaction chamber by computer-controlled pneumatic valves. Dual in situ quartz crystal microbalances provide parallel mass measurement onto two differently coated substrates, which allows adsorption coverage and relative sticking coefficients to be determined. Gas composition in the reaction chamber was analyzed in situ by a quadrupole mass spectrometer. Absolute reactant exposure is unambiguously calculated from the impingement flux, and is related to dose, surface area, and growth rates. A range of control over the dose amount is demonstrated and consequences for film growth control are demonstrated and proposed.

Larrabee, T. J.; Mallouk, T. E.; Allara, D. L. [Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

2013-01-15T23:59:59.000Z

47

Atmospheric pressure spatial atomic layer deposition web coating with in situ monitoring of film thickness  

SciTech Connect (OSTI)

Spectral reflectometry was implemented as a method for in situ thickness monitoring in a spatial atomic layer deposition (ALD) system. Al{sub 2}O{sub 3} films were grown on a moving polymer web substrate at 100?°C using an atmospheric pressure ALD web coating system, with film growth of 0.11–0.13?nm/cycle. The modular coating head design and the in situ monitoring allowed for the characterization and optimization of the trimethylaluminum and water precursor exposures, purge flows, and web speed. A thickness uniformity of ±2% was achieved across the web. ALD cycle times as low as 76?ms were demonstrated with a web speed of 1?m/s and a vertical gap height of 0.5?mm. This atmospheric pressure ALD system with in situ process control demonstrates the feasibility of low-cost, high throughput roll-to-roll ALD.

Yersak, Alexander S.; Lee, Yung C. [Department of Mechanical Engineering, University of Colorado at Boulder, 1045 Regent Drive, 422 UCB, Boulder, Colorado 80309-0422 (United States); Spencer, Joseph A.; Groner, Markus D., E-mail: mgroner@aldnanosolutions.com [ALD NanoSolutions, Inc., 580 Burbank Street, Unit 100, Broomfield, Colorado 80020 (United States)

2014-01-15T23:59:59.000Z

48

Controlling Atomic Layer Deposition of TiO2 in Aerogels through Surface Functionalization  

SciTech Connect (OSTI)

This report demonstrates a chemical functionalization method for controlling atomic layer deposition (ALD) of TiO{sub 2} in low-density nanoporous materials. Functionalization of silica aerogel with trimethylsilane is shown to strongly suppress TiO{sub 2} growth via ALD. Subsequent modification of the functionalization through selective removal of the hydrocarbon groups reactivates the aerogel towards TiO{sub 2} deposition. These results demonstrate the potential use of ALD as a selective tool for creating novel nanoporous materials. Nanoporous materials present significant technological advantage for a wide range of applications, including catalysis, energy storage and conversion, nanoelectronics to name just a few (1-4). Hence, there is considerable interest in developing synthetic pathways for the fabrication of nanoporous materials with tailored properties. Aerogels (AGs) are unique low-density, open-cell porous materials consisting of submicrometer pores and ligaments that can be used as a robust material platform for designing novel nanoporous materials. In recent years, a synthetic approach based on ALD on AG templates has emerged as a promising method for the directed growth of nanoporous materials (5-11, 18). This approach has been used successfully to prepare millimeter-sized high aspect ratio aerogels coated uniformly with zinc oxide (ZnO), tungsten (W) and alumina (Al{sub 2}O{sub 3}) (10, 11). The ALD process utilizes two sequential, self-limiting surface reactions resulting in a layer-by-layer growth mode. The self limiting nature of the surface reactions makes ALD a particularly suitable technique for uniform deposition onto high aspect ratio porous substrates. Additionally, chemical specificity of the surface reactions in ALD enables one to control the deposition process through selective functionalization of the substrate surface. In fact the functionalization of planar substrates such as silicon wafers with organosilane groups (R{sub n}SiX{sub 4-n} (n = 1-3)) has been shown to deactivate the substrate towards ZrO{sub 2}, HfO{sub 2}, ZnO, and TiO{sub 2} ALD processes (12-16). A possible mechanism for the deactivation effect is the blocking of surface functional groups, such as hydroxyl (OH) moieties, which serve as chemisorption sites for the ALD precursors and hence are essential for nucleating the deposition process. Henceforth, we shall refer to these surface functional groups as nucleation sites for the ALD process.

Ghosal, S; Baumann, T F; King, J S; Kucheyev, S; Wang, Y; Worsley, M A; Biener, J; Bent, S F; Hamza, A V

2009-03-09T23:59:59.000Z

49

Surface smoothing effect of an amorphous thin film deposited by atomic layer deposition on a surface with nano-sized roughness  

SciTech Connect (OSTI)

Previously, Lau (one of the authors) pointed out that the deposition of an amorphous thin film by atomic layer deposition (ALD) on a substrate with nano-sized roughness probably has a surface smoothing effect. In this letter, polycrystalline zinc oxide deposited by ALD onto a smooth substrate was used as a substrate with nano-sized roughness. Atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM) were used to demonstrate that an amorphous aluminum oxide thin film deposited by ALD can reduce the surface roughness of a polycrystalline zinc oxide coated substrate.

Lau, W. S., E-mail: liuweicheng@zju.edu.cn; Wan, X.; Xu, Y.; Wong, H. [Zhejiang University, Department of Information Science and Electronic Engineering, No. 38 Zheda Road, Hangzhou 310027 (China)] [Zhejiang University, Department of Information Science and Electronic Engineering, No. 38 Zheda Road, Hangzhou 310027 (China); Zhang, J. [Zhejiang University, Department of Materials Science and Engineering, No. 38 Zheda Road, Hangzhou 310027 (China)] [Zhejiang University, Department of Materials Science and Engineering, No. 38 Zheda Road, Hangzhou 310027 (China); Luo, J. K. [Zhejiang University, Department of Information Science and Electronic Engineering, No. 38 Zheda Road, Hangzhou 310027 (China) [Zhejiang University, Department of Information Science and Electronic Engineering, No. 38 Zheda Road, Hangzhou 310027 (China); Institute of Renewable Energy and Environment Technology, Bolton University, Deane Road, Bolton BL3 5 AB (United Kingdom)

2014-02-15T23:59:59.000Z

50

Photoresponse properties of large-area MoS{sub 2} atomic layer synthesized by vapor phase deposition  

SciTech Connect (OSTI)

Photoresponse properties of a large area MoS{sub 2} atomic layer synthesized by vapor phase deposition method without any catalyst are studied. Scanning electron microscopy, atomic force microscopy, Raman spectrum, and photoluminescence spectrum characterizations confirm that the two-dimensional microstructures of MoS{sub 2} atomic layer are of high quality. Photoelectrical results indicate that the as-prepared MoS{sub 2} devices have an excellent sensitivity and a good reproducibility as a photodetector, which is proposed to be ascribed to the potential-assisted charge separation mechanism.

Luo, Siwei; Qi, Xiang, E-mail: xqi@xtu.edu.cn, E-mail: jxzhong@xtu.edu.cn; Ren, Long; Hao, Guolin; Fan, Yinping; Liu, Yundan; Han, Weijia; Zang, Chen; Li, Jun; Zhong, Jianxin, E-mail: xqi@xtu.edu.cn, E-mail: jxzhong@xtu.edu.cn [Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, People's Republic of China Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and Faculty of Materials and Optoelectronic Physics, Xiangtan University, Hunan 411105 (China)

2014-10-28T23:59:59.000Z

51

Electronic passivation of silicon surfaces by thin films of atomic layer deposited gallium oxide  

SciTech Connect (OSTI)

This paper proposes the application of gallium oxide (Ga{sub 2}O{sub 3}) thin films to crystalline silicon solar cells. Effective passivation of n- and p-type crystalline silicon surfaces has been achieved by the application of very thin Ga{sub 2}O{sub 3} films prepared by atomic layer deposition using trimethylgallium (TMGa) and ozone (O{sub 3}) as the reactants. Surface recombination velocities as low as 6.1?cm/s have been recorded with films less than 4.5?nm thick. A range of deposition parameters has been explored, with growth rates of approximately 0.2?Å/cycle providing optimum passivation. The thermal activation energy for passivation of the Si-Ga{sub 2}O{sub 3} interface has been found to be approximately 0.5?eV. Depassivation of the interface was observed for prolonged annealing at increased temperatures. The activation energy for depassivation was measured to be 1.9?eV.

Allen, T. G., E-mail: thomas.allen@anu.edu.au; Cuevas, A. [Research School of Engineering, Australian National University, Canberra 0200 (Australia)

2014-07-21T23:59:59.000Z

52

Impact of titanium addition on film characteristics of HfO{sub 2} gate dielectrics deposited by atomic layer deposition  

SciTech Connect (OSTI)

The impact of 8-to 45-at. % Ti on physical and electrical characteristics of atomic-layer-deposited and annealed hafnium dioxide was studied using vacuum-ultraviolet spectroscopic ellipsometry, secondary ion mass spectroscopy, transmission electron microscopy, atomic force microscopy, x-ray diffraction, Rutherford backscattering spectroscopy, x-ray photoelectron spectroscopy, and x-ray reflectometry. The role of Ti addition on the electrical performance is investigated using molybdenum (Mo)-gated capacitors. The film density decreases with increasing Ti addition. Ti addition stabilizes the amorphous phase of HfO{sub 2}, resulting in amorphous films as deposited. After a high-temperature annealing, the films transition from an amorphous to a polycrystalline phase. Orthorhombic Hf-Ti-O peaks are detected in polycrystalline films containing 33-at. % or higher Ti content. As Ti content is decreased, monoclinic HfO{sub 2} becomes the predominant microstructure. No TiSi is formed at the dielectric/Si interface, indicating films with good thermal stability. The band gap of Hf-Ti-O was found to be lower than that of HfO{sub 2}. Well-behaved capacitance-voltage and leakage current density-voltage characteristics were obtained for Hf-Ti-O. However, an increased leakage current density was observed with Ti addition. The data from capacitance-voltage stressing indicate a smaller flatband voltage (V{sub fb}) shift in the HfO{sub 2} films with low Ti content when compared with the HfO{sub 2} films. This indicates less charge trapping with a small amount of Ti addition.

Triyoso, D.H.; Hegde, R.I.; Zollner, S.; Ramon, M.E.; Kalpat, S.; Gregory, R.; Wang, X.-D.; Jiang, J.; Raymond, M.; Rai, R.; Werho, D.; Roan, D.; White, B.E. Jr.; Tobin, P.J. [Freescale Semiconductor, Inc., Advanced Products Research and Development Laboratory, 3501 Ed Bluestein Boulevard, Austin, Texas 78721 (United States)

2005-09-01T23:59:59.000Z

53

DOI 10.1155/JNM/2006/64501 Atomic Layer Deposition for the Conformal Coating of Nanoporous Materials  

E-Print Network [OSTI]

Atomic layer deposition (ALD) is ideal for applying precise and conformal coatings over nanoporous materials. We have recently used ALD to coat two nanoporous solids: anodic aluminum oxide (AAO) and silica aerogels. AAO possesses hexagonally ordered pores with diameters d ? 40 nm and pore length L

unknown authors

54

Barrier performance optimization of atomic layer deposited diffusion barriers for organic light emitting diodes using x-ray reflectivity investigations  

SciTech Connect (OSTI)

The importance of O{sub 3} pulse duration for encapsulation of organic light emitting diodes (OLEDs) with ultra thin inorganic atomic layer deposited Al{sub 2}O{sub 3} layers is demonstrated for deposition temperatures of 50 °C. X-ray reflectivity (XRR) measurements show that O{sub 3} pulse durations longer than 15?s produce dense and thin Al{sub 2}O{sub 3} layers. Correspondingly, black spot growth is not observed in OLEDs encapsulated with such layers during 91 days of aging under ambient conditions. This implies that XRR can be used as a tool for process optimization of OLED encapsulation layers leading to devices with long lifetimes.

Singh, Aarti, E-mail: aarti.singh@namlab.com; Schröder, Uwe [Nanoelectronics Materials Laboratory NaMLab gGmbH, Nöthnitzer Str. 64, 01187 Dresden (Germany)] [Nanoelectronics Materials Laboratory NaMLab gGmbH, Nöthnitzer Str. 64, 01187 Dresden (Germany); Klumbies, Hannes; Müller-Meskamp, Lars; Leo, Karl [Dresden Innovation Center Energy Efficiency, Institut für Angewandte Photophysik, Technische Universität Dresden, 01062 Dresden (Germany)] [Dresden Innovation Center Energy Efficiency, Institut für Angewandte Photophysik, Technische Universität Dresden, 01062 Dresden (Germany); Geidel, Marion; Knaut, Martin; Hoßbach, Christoph; Albert, Matthias [Institute of Semiconductor and Microsystems Technology, Technische Universität Dresden, 01187 Dresden (Germany)] [Institute of Semiconductor and Microsystems Technology, Technische Universität Dresden, 01187 Dresden (Germany); Mikolajick, Thomas [Nanoelectronics Materials Laboratory NaMLab gGmbH, Nöthnitzer Str. 64, 01187 Dresden (Germany) [Nanoelectronics Materials Laboratory NaMLab gGmbH, Nöthnitzer Str. 64, 01187 Dresden (Germany); Institute of Semiconductor and Microsystems Technology, Technische Universität Dresden, 01187 Dresden (Germany)

2013-12-02T23:59:59.000Z

55

Surface modification of nitrogen-doped carbon nanotubes by ozone via atomic layer deposition  

SciTech Connect (OSTI)

The use of ozone as an oxidizing agent for atomic layer deposition (ALD) processes is rapidly growing due to its strong oxidizing capabilities. However, the effect of ozone on nanostructured substrates such as nitrogen-doped multiwalled carbon nanotubes (NCNTs) and pristine multiwalled carbon nanotubes (PCNTs) are not very well understood and may provide an avenue toward functionalizing the carbon nanotube surface prior to deposition. The effects of ALD ozone treatment on NCNTs and PCNTs using 10?wt. % ozone at temperatures of 150, 250, and 300?°C are studied. The effect of ozone pulse time and ALD cycle number on NCNTs and PCNTs was also investigated. Morphological changes to the substrate were observed by scanning electron microscopy and high resolution transmission electron microscopy. Brunauer-Emmett-Teller measurements were also conducted to determine surface area, pore size, and pore size distribution following ozone treatment. The graphitic nature of both NCNTs and PCNTs was determined using Raman analysis while x-ray photoelectron spectroscopy (XPS) was employed to probe the chemical nature of NCNTs. It was found that O{sub 3} attack occurs preferentially to the outermost geometric surface of NCNTs. Our research also revealed that the deleterious effects of ozone are found only on NCNTs while little or no damage occurs on PCNTs. Furthermore, XPS analysis indicated that ALD ozone treatment on NCNTs, at elevated temperatures, results in loss of nitrogen content. Our studies demonstrate that ALD ozone treatment is an effective avenue toward creating low nitrogen content, defect rich substrates for use in electrochemical applications and ALD of various metal/metal oxides.

Lushington, Andrew; Liu, Jian; Tang, Yongji; Li, Ruying; Sun, Xueliang, E-mail: xsun@eng.uwo.ca [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada)

2014-01-15T23:59:59.000Z

56

Atomic layer deposited lithium aluminum oxide: (In)dependency of film properties from pulsing sequence  

SciTech Connect (OSTI)

Atomic layer deposition (ALD) holds markedly high potential of becoming the enabling method for achieving the three-dimensional all-solid-state thin-film lithium ion battery (LiB). One of the most crucial components in such a battery is the electrolyte that needs to hold both low electronic conductivity and at least fair lithium ion conductivity being at the same time pinhole free. To obtain these desired properties in an electrolyte film, one necessarily has to have a good control over the elemental composition of the deposited material. The present study reports on the properties of ALD lithium aluminum oxide (Li{sub x}Al{sub y}O{sub z}) thin films. In addition to LiB electrolyte applications, Li{sub x}Al{sub y}O{sub z} is also a candidate low dielectric constant (low-k) etch stop and diffusion barrier material in nanoelectronics applications. The Li{sub x}Al{sub y}O{sub z} films were deposited employing trimethylaluminum-O{sub 3} and lithium tert-butoxide-H{sub 2}O for Al{sub 2}O{sub 3} and Li{sub 2}O/LiOH, respectively. The composition was aimed to be controlled by varying the pulsing ratio of those two binary oxide ALD cycles. The films were characterized by several methods for composition, crystallinity and phase, electrical properties, hardness, porosity, and chemical environment. Regardless of the applied pulsing ratio of Al{sub 2}O{sub 3} and Li{sub 2}O/LiOH, all the studied ALD Li{sub x}Al{sub y}O{sub z} films of 200 and 400 nm in thickness were polycrystalline in the orthorhombic ?-LiAlO{sub 2} phase and also very similar to each other with respect to composition and other studied properties. The results are discussed in the context of both fundamental ALD chemistry and applicability of the films as thin-film LiB electrolytes and low-k etch stop and diffusion barriers.

Miikkulainen, Ville, E-mail: ville.miikkulainen@helsinki.fi; Nilsen, Ola; Fjellvåg, Helmer [Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, P.O. Box 1126 Blindern, NO-0318 Oslo (Norway); Li, Han; King, Sean W. [Intel Corporation, 5200 NE Elam Young Parkway, Hillsboro, Oregon 97124 (United States); Laitinen, Mikko; Sajavaara, Timo [Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä (Finland)

2015-01-01T23:59:59.000Z

57

Waterless TiO{sub 2} atomic layer deposition using titanium tetrachloride and titanium tetraisopropoxide  

SciTech Connect (OSTI)

The surface chemistry for TiO{sub 2} atomic layer deposition (ALD) typically utilizes water or other oxidants that can oxidize underlying substrates such as magnetic disks or semiconductors. To avoid this oxidation, waterless or oxidant-free surface chemistry can be used that involves titanium halides and titanium alkoxides. In this study, waterless TiO{sub 2} ALD was accomplished using titanium tetrachloride (TiCl{sub 4}) and titanium tetraisopropoxide (TTIP). In situ transmission Fourier transform infrared (FTIR) studies were employed to study the surface species and the reactions during waterless TiO{sub 2} ALD. At low temperatures between 125 and 225??°C, the FTIR absorbance spectra revealed that the isopropoxide species remained on the surface after TTIP exposures. The TiCl{sub 4} exposures then removed the isopropoxide species and deposited additional titanium species. At high temperatures between 250 and 300??°C, the isopropoxide species were converted to hydroxyl species by ?-hydride elimination. The observation of propene gaseous reaction product by quadrupole mass spectrometry (QMS) confirmed the ?-hydride elimination reaction pathway. The TiCl{sub 4} exposures then easily reacted with the hydroxyl species. QMS studies also observed the 2-chloropropane and HCl gaseous reaction products and monitored the self-limiting nature of the TTIP reaction. Additional studies examined the waterless TiO{sub 2} ALD growth at low and high temperature. Quartz crystal microbalance measurements observed growth rates of ?3?ng/cm{sup 2} at a low temperature of 150??°C. Much higher growth rates of ?15?ng/cm{sup 2} were measured at a higher temperature of 250??°C under similar reaction conditions. X-ray reflectivity analysis measured a growth rate of 0.55 ± 0.05?Å/cycle at 250??°C. X-ray photoelectron depth-profile studies showed that the TiO{sub 2} films contained low Cl concentrations <1 at. %. This waterless TiO{sub 2} ALD process using TiCl{sub 4} and TTIP should be valuable to prevent substrate oxidation during TiO{sub 2} ALD on oxygen-sensitive substrates.

Anderson, Virginia R.; Cavanagh, Andrew S.; Abdulagatov, Aziz I. [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215 (United States); Gibbs, Zachary M. [Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309-0424 (United States); George, Steven M., E-mail: Steven.George@Colorado.Edu [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215 and Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309-0427. (United States)

2014-01-15T23:59:59.000Z

58

Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier  

SciTech Connect (OSTI)

Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells.

Ip, Alexander H.; Labelle, André J.; Sargent, Edward H., E-mail: ted.sargent@utoronto.ca [Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4 (Canada)

2013-12-23T23:59:59.000Z

59

New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.  

SciTech Connect (OSTI)

Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution better than 25 nm. Limiting factors for Stardust STXM analyses were self-imposed limits of photon dose due to radiation damage concerns, and significant attenuation of <1500 eV X-rays by {approx}80{micro}m thick, {approx}25 mg/cm{sup 3} density silica aerogel capture medium. In practice, the ISPE team characterized the major, light elements using STXM (O, Mg, Al, Si) and the heavier minor and trace elements using SXRF. The two data sets overlapped only with minor Fe and Ni ({approx}1% mass abundance), providing few quantitative cross-checks. New improved standards for cross calibration are essential for consortium-based analyses of Stardust interstellar and cometary particles, IDPs. Indeed, they have far reaching application across the whole synchrotron-based analytical community. We have synthesized three ALD multilayers simultaneously on silicon nitride membranes and silicon and characterized them using RBS (on Si), XRF (on Si{sub 3}N{sub 4}) and STXM/XAS (holey Si{sub 3}N{sub 4}). The systems we have started to work with are Al-Zn-Fe and Y-Mg-Er. We have found these ALD multi-layers to be uniform at {micro}m- to nm scales, and have found excellent consistency between four analytical techniques so far. The ALD films can also be used as a standard for e-beam instruments, eg., TEM EELS or EDX. After some early issues with the consistency of coatings to the back-side of the membrane windows, we are confident to be able to show multi-analytical agreement to within 10%. As the precision improves, we can use the new standards to verify or improve the tabulated cross-sections.

Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J. (UCB)

2012-03-13T23:59:59.000Z

60

A non-destructive method for measuring the mechanical properties of ultrathin films prepared by atomic layer deposition  

SciTech Connect (OSTI)

The mechanical properties of ultrathin films synthesized by atomic layer deposition (ALD) are critical for the liability of their coated devices. However, it has been a challenge to reliably measure critical properties of ALD films due to the influence from the substrate. In this work, we use the laser acoustic wave (LAW) technique, a non-destructive method, to measure the elastic properties of ultrathin Al{sub 2}O{sub 3} films by ALD. The measured properties are consistent with previous work using other approaches. The LAW method can be easily applied to measure the mechanical properties of various ALD thin films for multiple applications.

Zhang, Qinglin [General Motors Global Research and Development Center, Warren, Michigan 48090 (United States); Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046 (United States); Xiao, Xingcheng, E-mail: xingcheng.xiao@gm.com; Verbrugge, Mark W. [General Motors Global Research and Development Center, Warren, Michigan 48090 (United States); Cheng, Yang-Tse [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046 (United States)

2014-08-11T23:59:59.000Z

Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Nucleation and growth of MgO atomic layer deposition: A real-time spectroscopic ellipsometry study  

SciTech Connect (OSTI)

The atomic layer deposition (ALD) of MgO thin films from bis(cyclopentadienyl) magnesium and H{sub 2}O was studied using in-situ real-time spectroscopic ellipsometry (SE), ex-situ x-ray photoelectron spectroscopy, and grazing-incidence x-ray diffraction. It is found that the initial growth is not linear during the first ten cycles, and magnesium silicate forms spontaneously on the SiO{sub 2}/Si substrates at 250 °C. Submonolayer sensitivity of SE is demonstrated by the analysis of each half-cycle and self-limiting adsorption, revealing characteristic features of hetero- and homo-MgO ALD processes.

Wang, Han; Fu, Kan [Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269. (United States)] [Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269. (United States)

2013-11-15T23:59:59.000Z

62

Growth of controllable ZnO film by atomic layer deposition technique via inductively coupled plasma treatment  

SciTech Connect (OSTI)

An inductively coupled plasma technique (ICP), namely, remote-plasma treatment was introduced to ionize the water molecules as the precursor for the deposition of ZnO film via the atomic layer deposition processes. Compared with the H{sub 2}O gas as the precursor for the ALD growth, the ionized water molecules can provide a lesser energy to uniformly stabilize oxidization processes, resulting in a better film quality with a higher resistivity owing to less formation of intrinsic defects at a lower growth temperature. The relationship between resistivity and formation mechanisms have been discussed and investigated through analyses of atomic force microscopy, photonluminescence, and absorption spectra, respectively. Findings indicate that the steric hindrance of the ligands plays an important rule for the ALD-ZnO film sample with the ICP treatment while the limited number of bonding sites will be dominant for the ALD-ZnO film without the ICP treatment owing to decreasing of the reactive sites via the ligand-exchange reaction during the dissociation process. Finally, the enhanced aspect-ratio into the anodic aluminum oxide with the better improved uniform coating of ZnO layer after the ICP treatment was demonstrated, providing an important information for a promising application in electronics based on ZnO ALD films.

Huang, Hsin-Wei; Chang, Wen-Chih; Lin, Su-Jien; Chueh, Yu-Lun [Department of Materials Science Engineering and Center For Nanotechnology, Material Science, and Microsystem, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

2012-12-15T23:59:59.000Z

63

Low temperature thin film transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels  

SciTech Connect (OSTI)

We report GaN thin film transistors (TFT) with a thermal budget below 250?°C. GaN thin films are grown at 200?°C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3?nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (I{sub ON}/I{sub OFF}) of 10{sup 3} and sub-threshold swing of 3.3?V/decade. The entire TFT device fabrication process temperature is below 250?°C, which is the lowest process temperature reported for GaN based transistors, so far.

Bolat, S., E-mail: bolat@ee.bilkent.edu.tr, E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, B. [Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800 (Turkey); UNAM, National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Ozgit-Akgun, C.; Biyikli, N. [UNAM, National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Okyay, A. K., E-mail: bolat@ee.bilkent.edu.tr, E-mail: aokyay@ee.bilkent.edu.tr [Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800 (Turkey); UNAM, National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey)

2014-06-16T23:59:59.000Z

64

Initial growth, refractive index, and crystallinity of thermal and plasma-enhanced atomic layer deposition AlN films  

SciTech Connect (OSTI)

The authors have studied and compared the initial growth and properties of AlN films deposited on Si(111) by thermal and plasma-enhanced atomic layer deposition (ALD) using trimethylaluminum and either ammonia or a N{sub 2}-H{sub 2} mixture as precursors. In-situ spectroscopic ellipsometry was employed to monitor the growth and measure the refractive index of the films during the deposition. The authors found that an incubation stage only occurred for thermal ALD. The linear growth for plasma-enhanced ALD (PEALD) started instantly from the beginning due to the higher nuclei density provided by the presence of plasma. The authors observed the evolution of the refractive index of AlN during the growth, which showed a rapid increase up to a thickness of about 30?nm followed by a saturation. Below this thickness, higher refractive index values were obtained for AlN films grown by PEALD, whereas above that the refractive index was slightly higher for thermal ALD films. X-ray diffraction characterization showed a wurtzite crystalline structure with a (101{sup ¯}0) preferential orientation obtained for all the layers with a slightly better crystallinity for films grown by PEALD.

Van Bui, Hao, E-mail: H.VanBui@utwente.nl; Wiggers, Frank B.; Gupta, Anubha; Nguyen, Minh D.; Aarnink, Antonius A. I.; Jong, Michel P. de; Kovalgin, Alexey Y., E-mail: A.Y.Kovalgin@utwente.nl [MESA Institute for Nanotechnology, University of Twente, P. O. Box 217, 7500 AE Enschede (Netherlands)

2015-01-01T23:59:59.000Z

65

Plasma-enhanced atomic layer deposition of silicon dioxide films using plasma-activated triisopropylsilane as a precursor  

SciTech Connect (OSTI)

The plasma-enhanced atomic layer deposition (PEALD) process was developed as a growth technique of SiO{sub 2} thin films using a plasma-activated triisopropylsilane [TIPS, ((iPr){sub 3}SiH)] precursor. TIPS was activated by an argon plasma at the precursor injection stage of the process. Using the activated TIPS, it was possible to control the growth rate per cycle of the deposited films by adjusting the plasma ignition time. The PEALD technique allowed deposition of SiO{sub 2} films at temperatures as low as 50?°C without carbon impurities. In addition, films obtained with plasma ignition times of 3?s and 10?s had similar values of root-mean-square surface roughness. In order to evaluate the suitability of TIPS as a precursor for low-temperature deposition of SiO{sub 2} films, the vapor pressure of TIPS was measured. The thermal stability and the reactivity of the gas-phase TIPS with respect to water vapor were also investigated by analyzing the intensity changes of the C–H and Si–H peaks in the Fourier-transform infrared spectrum of TIPS.

Jeon, Ki-Moon [Vacuum Center, Division of Industrial Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340, South Korea and Department of Advanced Materials Engineering, Dae Jeon University, Daejeon 300-716 (Korea, Republic of); Shin, Jae-Su [Department of Advanced Materials Engineering, Dae Jeon University, Daejeon 300-716 (Korea, Republic of); Yun, Ju-Young [Vacuum Center, Division of Industrial Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340, South Korea and Department of Nano and Bio Surface Science, University of Science and Technology (UST), Daejeon 305-333 (Korea, Republic of); Jun Lee, Sang [Center of Nanomaterials Characterization, Division of Industrial Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340, South Korea and Department of Nano Science, University of Science and Technology (UST), Daejeon 305-333 (Korea, Republic of); Kang, Sang-Woo, E-mail: swkang@kriss.re.kr [Vacuum Center, Division of Industrial Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340, South Korea and Department of Advanced Device Technology, University of Science and Technology (UST), Daejeon 305-333 (Korea, Republic of)

2014-05-15T23:59:59.000Z

66

Epitaxial strontium titanate films grown by atomic layer deposition on SrTiO{sub 3}-buffered Si(001) substrates  

SciTech Connect (OSTI)

Epitaxial strontium titanate (STO) films have been grown by atomic layer deposition (ALD) on Si(001) substrates with a thin STO buffer layer grown by molecular beam epitaxy (MBE). Four unit cells of STO grown by MBE serve as the surface template for ALD growth. The STO films grown by ALD are crystalline as-deposited with minimal, if any, amorphous SiO{sub x} layer at the STO-Si interface. The growth of STO was achieved using bis(triisopropylcyclopentadienyl)-strontium, titanium tetraisopropoxide, and water as the coreactants at a substrate temperature of 250 Degree-Sign C. In situ x-ray photoelectron spectroscopy (XPS) analysis revealed that the ALD process did not induce additional Si-O bonding at the STO-Si interface. Postdeposition XPS analysis also revealed sporadic carbon incorporation in the as-deposited films. However, annealing at a temperature of 250 Degree-Sign C for 30 min in moderate to high vacuum (10{sup -6}-10{sup -9} Torr) removed the carbon species. Higher annealing temperatures (>275 Degree-Sign C) gave rise to a small increase in Si-O bonding, as indicated by XPS, but no reduced Ti species were observed. X-ray diffraction revealed that the as-deposited STO films were c-axis oriented and fully crystalline. A rocking curve around the STO(002) reflection gave a full width at half maximum of 0.30 Degree-Sign {+-} 0.06 Degree-Sign for film thicknesses ranging from 5 to 25 nm. Cross-sectional transmission electron microscopy revealed that the STO films were continuous with conformal growth to the substrate and smooth interfaces between the ALD- and MBE-grown STO. Overall, the results indicate that thick, crystalline STO can be grown on Si(001) substrates by ALD with minimal formation of an amorphous SiO{sub x} layer using a four-unit-cell STO buffer layer grown by MBE to serve as the surface template.

McDaniel, Martin D.; Posadas, Agham; Ngo, Thong Q.; Dhamdhere, Ajit; Smith, David J.; Demkov, Alexander A.; Ekerdt, John G. [Department of Chemical Engineering, University of Texas at Austin, 1 University Station C0400, Austin, Texas 78712 (United States); Department of Physics, University of Texas at Austin, 1 University Station C1600, Austin, Texas 78712 (United States); Department of Chemical Engineering, University of Texas at Austin, 1 University Station C0400, Austin, Texas 78712 (United States); Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States); Department of Physics, University of Texas at Austin, 1 University Station C1600, Austin, Texas 78712 (United States); Department of Chemical Engineering, University of Texas at Austin, 1 University Station C0400, Austin, Texas 78712 (United States)

2013-01-15T23:59:59.000Z

67

Effective work function of Pt, Pd, and Re on atomic layer deposited HfO{sub 2}  

SciTech Connect (OSTI)

Platinum and Pd show a significant difference in work function on SiO{sub 2} and high-K materials (HfO{sub 2}). The effective metal work functions for Pd, Pt, and Re on atomic layer deposited HfO{sub 2}, which are different from the vacuum work function and important for device threshold voltage control, are measured by the C-V method. The difference is attributed to the dipoles at the metal/HfO{sub 2} interface, which is a result of charge transfer across the interface. Moreover, the extracted charge neutrality level and screening parameter are correlated with the phase development, film stoichiometry, and density of interface states at the metal/high-K interface.

Gu Diefeng; Dey, Sandwip K.; Majhi, Prashant [Department of Chemical and Materials Engineering, Arizona State University, Tempe, Arizona 85287-6006 (United States) and Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287-5706 (United States); Planar CMOS Scaling, SEMATECH, Austin, Texas 78741 (United States)

2006-08-21T23:59:59.000Z

68

In situ study of HfO{sub 2} atomic layer deposition on InP(100)  

SciTech Connect (OSTI)

The interfacial chemistry of the native oxide and chemically treated InP samples during atomic layer deposition (ALD) HfO{sub 2} growth at 250 Degree-Sign C has been studied by in situ X-ray photoelectron spectroscopy. The In-oxide concentration is seen to gradually decrease on the native oxide and acid etched samples. No significant changes of the P-oxide concentrations are detected, while the P-oxides chemical states are seen to change gradually during the initial cycles of ALD on the native oxide and the chemically treated samples. (NH{sub 4}){sub 2}S treatment strongly decreases In-oxide and P-oxide concentrations prior to ALD and maintains low concentrations during the ALD process.

Dong, H.; Brennan, B.; Kim, J.; Hinkle, C. L.; Wallace, R. M. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States)] [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States); Zhernokletov, D. [Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States)] [Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States)

2013-04-29T23:59:59.000Z

69

Schottky barrier source-gated ZnO thin film transistors by low temperature atomic layer deposition  

SciTech Connect (OSTI)

We have fabricated ZnO source-gated thin film transistors (SGTFTs) with a buried TiW source Schottky barrier and a top gate contact. The ZnO active channel and thin high-? HfO{sub 2} dielectric utilized are both grown by atomic layer deposition at temperatures less than 130?°C, and their material and electronic properties are characterized. These SGTFTs demonstrate enhancement-mode operation with a threshold voltage of 0.91?V, electron mobility of 3.9 cm{sup 2} V{sup ?1} s{sup ?1}, and low subthreshold swing of 192?mV/decade. The devices also exhibit a unique combination of high breakdown voltages (>20?V) with low output conductances.

Ma, Alex M.; Gupta, Manisha; Shoute, Gem; Tsui, Ying Y.; Barlage, Douglas W., E-mail: barlage@ualberta.ca [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada); Afshar, Amir; Cadien, Kenneth C. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada)] [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada)

2013-12-16T23:59:59.000Z

70

Self-aligned process for forming microlenses at the tips of vertical silicon nanowires by atomic layer deposition  

SciTech Connect (OSTI)

The microlens is a key enabling technology in optoelectronics, permitting light to be efficiently coupled to and from devices such as image sensors and light-emitting diodes. Their ubiquitous nature motivates the development of new fabrication techniques, since existing methods face challenges as microlenses are scaled to smaller dimensions. Here, the authors demonstrate the formation of microlenses at the tips of vertically oriented silicon nanowires via a rapid atomic layer deposition process. The nature of the process is such that the microlenses are centered on the nanowires, and there is a self-limiting effect on the final sizes of the microlenses arising from the nanowire spacing. Finite difference time domain electromagnetic simulations are performed of microlens focusing properties, including showing their ability to enhance visible-wavelength absorption in silicon nanowires.

Dan, Yaping, E-mail: yaping.dan@sjtu.edu.cn; Chen, Kaixiang [University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240 (China); Crozier, Kenneth B. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

2015-01-01T23:59:59.000Z

71

Vapor-Phase Metalation by Atomic Layer Deposition in a Metal-Organic Framework  

E-Print Network [OSTI]

encompass deposition onto micro- and nanopowders14 and coating of nanoparticle films15 as well as aerogel coating of porous materials that exhibit ultrahigh-aspect ratios.12,13 To date, some striking examples

72

Synthesis of Pt?Pd Core?Shell Nanostructures by Atomic Layer Deposition: Application in Propane Oxidative Dehydrogenation to Propylene  

SciTech Connect (OSTI)

Atomic layer deposition (ALD) was employed to synthesize supported Pt?Pd bimetallic particles in the 1 to 2 nm range. The metal loading and composition of the supported Pt?Pd nanoparticles were controlled by varying the deposition temperature and by applying ALD metal oxide coatings to modify the support surface chemistry. Highresolution scanning transmission electron microscopy images showed monodispersed Pt?Pd nanoparticles on ALD Al2O3 - and TiO2 -modi?ed SiO2 gel. X-ray absorption spectroscopy revealed that the bimetallic nanoparticles have a stable Pt-core, Pd-shell nanostructure. Density functional theory calculations revealed that the most stable surface con?guration for the Pt? Pd alloys in an H2 environment has a Pt-core, Pd-shell nanostructure. In comparison to their monometallic counterparts, the small Pt?Pd bimetallic core?shell nanoparticles exhibited higher activity in propane oxidative dehydrogenation as compared to their physical mixture.

Lei, Y.; Liu, Bin; Lu, Junling; Lobo-Lapidus, Rodrigo J.; Wu, Tianpin; Feng, Hao; Xia, Xiaoxing; Mane, Anil U.; Libera, Joseph A.; Greeley, Jeffrey P.; Miller, Jeffrey T.; Elam, J. W.

2012-08-20T23:59:59.000Z

73

Highly Conformal Thin Films of Tungsten Nitride Prepared by Atomic Layer Deposition from a Novel  

E-Print Network [OSTI]

) deposition temperatures under 350 °C (due to the thermal instability of low-k materials); (8) good growth, and electrically conducting. All of the films showed good adhesion to the substrates, were acid-resistant, and did resistivity than aluminum, 1.7 versus 2.7 µ-cm, respectively (bulk values). This property of copper enables

74

Comparative band alignment of plasma-enhanced atomic layer deposited high-k dielectrics on gallium nitride  

SciTech Connect (OSTI)

Al{sub 2}O{sub 3} films, HfO{sub 2} films, and HfO{sub 2}/Al{sub 2}O{sub 3} stacked structures were deposited on n-type, Ga-face, GaN wafers using plasma-enhanced atomic layer deposition (PEALD). The wafers were first treated with a wet-chemical clean to remove organics and an in-situ combined H{sub 2}/N{sub 2} plasma at 650 Degree-Sign C to remove residual carbon contamination, resulting in a clean, oxygen-terminated surface. This cleaning process produced slightly upward band bending of 0.1 eV. Additional 650 Degree-Sign C annealing after plasma cleaning increased the upward band bending by 0.2 eV. After the initial clean, high-k oxide films were deposited using oxygen PEALD at 140 Degree-Sign C. The valence band and conduction band offsets (VBOs and CBOs) of the Al{sub 2}O{sub 3}/GaN and HfO{sub 2}/GaN structures were deduced from in-situ x-ray and ultraviolet photoemission spectroscopy (XPS and UPS). The valence band offsets were determined to be 1.8 and 1.4 eV, while the deduced conduction band offsets were 1.3 and 1.0 eV, respectively. These values are compared with the theoretical calculations based on the electron affinity model and charge neutrality level model. Moreover, subsequent annealing had little effect on these offsets; however, the GaN band bending did change depending on the annealing and processing. An Al{sub 2}O{sub 3} layer was investigated as an interfacial passivation layer (IPL), which, as results suggest, may lead to improved stability, performance, and reliability of HfO{sub 2}/IPL/GaN structures. The VBOs were {approx}0.1 and 1.3 eV, while the deduced CBOs were 0.6 and 1.1 eV for HfO{sub 2} with respect to Al{sub 2}O{sub 3} and GaN, respectively.

Yang Jialing; Eller, Brianna S.; Zhu Chiyu; England, Chris; Nemanich, Robert J. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States)

2012-09-01T23:59:59.000Z

75

Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer  

E-Print Network [OSTI]

advancements, the power conversion efficiency (PCE) of organic solar cells (OSCs) has been improved with PCE more than 4% was demonstrated.7 However,Cs2CO3 exhibitsdeliquescencewhichaffects severely a PCE of 3.09%.14 Hau et al. adopted spin-coated ZnO nanoparticles as the electron selective layer

76

Infrared spectroscopic study of atomic layer deposition mechanism for hafnium silicate thin films using HfCl2N,,SiMe3...22 and H2O  

E-Print Network [OSTI]

Infrared spectroscopic study of atomic layer deposition mechanism for hafnium silicate thin films was used to study the atomic layer deposition mechanism of hafnium silicate films with dichlorobis EOT.2 Among many other high-k materials, hafnium silicate is considered to be the most promising

George, Steven M.

77

Deposition of TiN and HfO{sub 2} in a commercial 200 mm remote plasma atomic layer deposition reactor  

SciTech Connect (OSTI)

The authors describe a remote plasma atomic layer deposition reactor (Oxford Instruments FlexAL trade mark sign ) that includes an inductively coupled plasma source and a load lock capable of handling substrates up to 200 mm in diameter. The deposition of titanium nitride (TiN) and hafnium oxide (HfO{sub 2}) is described for the combination of the metal-halide precursor TiCl{sub 4} and H{sub 2}-N{sub 2} plasma and the combination of the metallorganic precursor Hf[N(CH{sub 3})(C{sub 2}H{sub 5})]{sub 4} and O{sub 2} plasma, respectively. The influence of the plasma exposure time and substrate temperature has been studied and compositional, structural, and electrical properties are reported. TiN films with a low Cl impurity content were obtained at 350 deg. C at a growth rate of 0.35 A /cycle with an electrical resistivity as low as 150 {mu}{omega} cm. Carbon-free (detection limit <2 at. %) HfO{sub 2} films were obtained at a growth rate of 1.0 A /cycle at 290 deg. C. The thickness and resisitivity nonuniformity was <5% for the TiN and the thickness uniformality was <2% for the HfO{sub 2} films as determined over 200 mm wafers.

Heil, S. B. S.; Hemmen, J. L. van; Hodson, C. J.; Singh, N.; Klootwijk, J. H.; Roozeboom, F.; Sanden, M. C. M. van de; Kessels, W. M. M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Oxford Instruments Plasma Technology, North End, Yatton BS49 4AP (United Kingdom); Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); NXP Semiconductors Research, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

2007-09-15T23:59:59.000Z

78

Band offsets of Al{sub 2}O{sub 3} and HfO{sub 2} oxides deposited by atomic layer deposition technique on hydrogenated diamond  

SciTech Connect (OSTI)

High-k oxide insulators (Al{sub 2}O{sub 3} and HfO{sub 2}) have been deposited on a single crystalline hydrogenated diamond (H-diamond) epilayer by an atomic layer deposition technique at temperature as low as 120 Degree-Sign C. Interfacial electronic band structures are characterized by X-ray photoelectron spectroscopy. Based on core-level binding energies and valence band maximum values, valence band offsets are found to be 2.9 {+-} 0.2 and 2.6 {+-} 0.2 eV for Al{sub 2}O{sub 3}/H-diamond and HfO{sub 2}/H-diamond heterojunctions, respectively. Band gaps of the Al{sub 2}O{sub 3} and HfO{sub 2} have been determined to be 7.2 {+-} 0.2 and 5.4 {+-} 0.2 eV by measuring O 1s energy loss spectra, respectively. Both the Al{sub 2}O{sub 3}/H-diamond and HfO{sub 2}/H-diamond heterojunctions are concluded to be type-II staggered band configurations with conduction band offsets of 1.2 {+-} 0.2 and 2.7 {+-} 0.2 eV, respectively.

Liu, J. W.; Liao, M. Y.; Imura, M. [Optical and Electronic Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Koide, Y. [Optical and Electronic Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Nanofabrication Platform, NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Center of Materials Research for Low Carbon Emission, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

2012-12-17T23:59:59.000Z

79

Low temperature hydrogen plasma-assisted atomic layer deposition of copper studied using in situ infrared reflection absorption spectroscopy  

SciTech Connect (OSTI)

Atomic layer deposition (ALD) is an ideal technique to deposit ultrathin, conformal, and continuous metal thin films. However, compared to the ALD of binary materials such as metal oxides and metal nitrides, the surface reaction mechanisms during metal ALD are not well understood. In this study, the authors have designed and implemented an in situ reflection-absorption infrared spectroscopy (IRAS) setup to study the surface reactions during the ALD of Cu on Al{sub 2}O{sub 3} using Cu hexafluoroacetylacetonate [Cu(hfac){sub 2}] and a remote H{sub 2} plasma. Our infrared data show that complete ligand-exchange reactions occur at a substrate temperature of 80?°C in the absence of surface hydroxyl groups. Based on infrared data and previous studies, the authors propose that Cu(hfac){sub 2} dissociatively chemisorbs on the Al{sub 2}O{sub 3} surface, where the Al-O-Al bridge acts as the surface reactive site, leading to surface O-Cu-hfac and O-Al-hfac species. Surface saturation during the Cu(hfac){sub 2} half-cycle occurs through blocking of the available chemisorption sites. In the next half-reaction cycle, H radicals from an H{sub 2} plasma completely remove these surface hfac ligands. Through this study, the authors have demonstrated the capability of in situ IRAS as a tool to study surface reactions during ALD of metals. While transmission and internal reflection infrared spectroscopy are limited to the first few ALD cycles, IRAS can be used to probe all stages of metal ALD starting from initial nucleation to the formation of a continuous film.

Chaukulkar, Rohan P.; Rai, Vikrant R.; Agarwal, Sumit, E-mail: sagarwal@mines.edu [Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401 (United States); Thissen, Nick F. W. [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands)

2014-01-15T23:59:59.000Z

80

Surface modification of Au/TiO2 catalysts by SiO2 via atomic layer deposition  

SciTech Connect (OSTI)

Atomic layer deposition (ALD) was utilized for the surface engineering of metallic nanoparticles to tame their sintering problems and catalytic activities. We chose the surface modification of gold nanocatalysts as an example to demonstrate the concept of this ALD-based approach. Herein, an active Au/TiO{sub 2} catalyst was modified by amorphous SiO{sub 2} via ALD, and the samples were characterized by inductively coupled plasma-optical emission spectrometry (ICP-OES), scanning (SEM-EDX) and transmission electron microscope-energy-dispersive X-ray spectrometry (TEM-EDX), X-ray diffraction (XRD), and thermogravimetry/differential thermogravimetry (TG/DTG), and the catalytic activities in CO oxidation and H{sub 2} oxidation were tested with respect to the pretreatment temperature and SiO{sub 2} content. A significant sintering resistance and changes in catalytic activities were observed. The difference between the SiO{sub 2}/Au/TiO{sub 2} samples prepared by gas-phase ALD and solution-phase chemical grafting was discussed.

Ma, Zhen [ORNL; Brown, Suree [ORNL; Howe, Jane Y [ORNL; Overbury, Steven {Steve} H [ORNL; Dai, Sheng [ORNL

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Tunneling spectroscopy of superconducting MoN and NbTiN grown by atomic layer deposition  

SciTech Connect (OSTI)

A tunneling spectroscopy study is presented of superconducting MoN and Nb{sub 0.8}Ti{sub 0.2}N thin films grown by atomic layer deposition (ALD). The films exhibited a superconducting gap of 2?meV and 2.4?meV, respectively, with a corresponding critical temperature of 11.5?K and 13.4?K, among the highest reported T{sub c} values achieved by the ALD technique. Tunnel junctions were obtained using a mechanical contact method with a Au tip. While the native oxides of these films provided poor tunnel barriers, high quality tunnel junctions with low zero bias conductance (below ?10%) were obtained using an artificial tunnel barrier of Al{sub 2}O{sub 3} on the film's surface grown ex situ by ALD. We find a large critical current density on the order of 4?×?10{sup 6}?A/cm{sup 2} at T?=?0.8T{sub c} for a 60?nm MoN film and demonstrate conformal coating capabilities of ALD onto high aspect ratio geometries. These results suggest that the ALD technique offers significant promise for thin film superconducting device applications.

Groll, Nickolas R., E-mail: ngroll@anl.gov; Klug, Jeffrey A.; Claus, Helmut; Pellin, Michael J.; Proslier, Thomas, E-mail: proslier@anl.gov [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Cao, Chaoyue; Becker, Nicholas G.; Zasadzinski, John F. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Altin, Serdar [Fen Edebiyat Fakultesi, Fizik Bolumu, Inonu Universitesi, 44280 Malatya (Turkey)

2014-03-03T23:59:59.000Z

82

Density dependence of the room temperature thermal conductivity of atomic layer deposition-grown amorphous alumina (Al{sub 2}O{sub 3})  

SciTech Connect (OSTI)

We report on the thermal conductivity of atomic layer deposition-grown amorphous alumina thin films as a function of atomic density. Using time domain thermoreflectance, we measure the thermal conductivity of the thin alumina films at room temperature. The thermal conductivities vary ?35% for a nearly 15% change in atomic density and are substrate independent. No density dependence of the longitudinal sound speeds is observed with picosecond acoustics. The density dependence of the thermal conductivity agrees well with a minimum limit to thermal conductivity model that is modified with a differential effective-medium approximation.

Gorham, Caroline S.; Gaskins, John T.; Hopkins, Patrick E., E-mail: phopkins@virginia.edu [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Parsons, Gregory N.; Losego, Mark D. [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

2014-06-23T23:59:59.000Z

83

Energy band alignment of atomic layer deposited HfO{sub 2} oxide film on epitaxial (100)Ge, (110)Ge, and (111)Ge layers  

SciTech Connect (OSTI)

Crystallographically oriented epitaxial Ge layers were grown on (100), (110), and (111)A GaAs substrates by in situ growth process using two separate molecular beam epitaxy chambers. The band alignment properties of atomic layer hafnium oxide (HfO{sub 2}) film deposited on crystallographically oriented epitaxial Ge were investigated using x-ray photoelectron spectroscopy (XPS). Valence band offset, {Delta}E{sub v} values of HfO{sub 2} relative to (100)Ge, (110)Ge, and (111)Ge orientations were 2.8 eV, 2.28 eV, and 2.5 eV, respectively. Using XPS data, variation in valence band offset, {Delta}E{sub V}(100)Ge>{Delta}E{sub V}(111)Ge>{Delta}E{sub V}(110)Ge, was obtained related to Ge orientation. Also, the conduction band offset, {Delta}E{sub c} relation, {Delta}E{sub c}(110)Ge>{Delta}E{sub c}(111)Ge>{Delta}E{sub c}(100)Ge related to Ge orientations was obtained using the measured bandgap of HfO{sub 2} on each orientation and with the Ge bandgap of 0.67 eV. These band offset parameters for carrier confinement would offer an important guidance to design Ge-based p- and n-channel metal-oxide field-effect transistor for low-power application.

Hudait, Mantu K.; Zhu Yan [Advanced Devices and Sustainable Energy Laboratory (ADSEL), Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)

2013-03-21T23:59:59.000Z

84

Atomic layer deposition of bismuth oxide using Bi(OCMe{sub 2}{sup i}Pr){sub 3} and H{sub 2}O  

SciTech Connect (OSTI)

Bismuth oxide thin films were deposited by atomic layer deposition using Bi(OCMe{sub 2}{sup i}Pr){sub 3} and H{sub 2}O at deposition temperatures between 90 and 270?°C on Si{sub 3}N{sub 4}, TaN, and TiN substrates. Films were analyzed using spectroscopic ellipsometry, x-ray diffraction, x-ray reflectivity, high-resolution transmission electron microscopy, and Rutherford backscattering spectrometry. Bi{sub 2}O{sub 3} films deposited at 150?°C have a linear growth per cycle of 0.039?nm/cycle, density of 8.3?g/cm{sup 3}, band gap of approximately 2.9?eV, low carbon content, and show the ? phase structure with a (201) preferred crystal orientation. Deposition temperatures above 210?°C and postdeposition anneals caused uneven volumetric expansion, resulting in a decrease in film density, increased interfacial roughness, and degraded optical properties.

Austin, Dustin Z., E-mail: austind@eecs.oregonstate.edu; Conley, John F., E-mail: jconley@eecs.oregonstate.edu [Department of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331 (United States); Allman, Derryl; Price, David; Hose, Sallie [ON Semiconductor, Technology Development, Gresham, Oregon 97030 (United States); Saly, Mark [SAFC Hitech, Haverhill, Massachusetts 01832 (United States)

2014-01-15T23:59:59.000Z

85

Radio frequency plasma power dependence of the moisture permeation barrier characteristics of Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition  

SciTech Connect (OSTI)

In the present study, we investigated the gas and moisture permeation barrier properties of Al{sub 2}O{sub 3} films deposited on polyethersulfone films (PES) by capacitively coupled plasma (CCP) type Remote Plasma Atomic Layer Deposition (RPALD) at Radio Frequency (RF) plasma powers ranging from 100 W to 400 W in 100 W increments using Trimethylaluminum [TMA, Al(CH{sub 3}){sub 3}] as the Al source and O{sub 2} plasma as the reactant. To study the gas and moisture permeation barrier properties of 100-nm-thick Al{sub 2}O{sub 3} at various plasma powers, the Water Vapor Transmission Rate (WVTR) was measured using an electrical Ca degradation test. WVTR decreased as plasma power increased with WVTR values for 400 W and 100 W of 2.6 × 10{sup ?4} gm{sup ?2}day{sup ?1} and 1.2 × 10{sup ?3} gm{sup ?2}day{sup ?1}, respectively. The trends for life time, Al-O and O-H bond, density, and stoichiometry were similar to that of WVTR with improvement associated with increasing plasma power. Further, among plasma power ranging from 100 W to 400 W, the highest power of 400 W resulted in the best moisture permeation barrier properties. This result was attributed to differences in volume and amount of ion and radical fluxes, to join the ALD process, generated by O{sub 2} plasma as the plasma power changed during ALD process, which was determined using a plasma diagnosis technique called the Floating Harmonic Method (FHM). Plasma diagnosis by FHM revealed an increase in ion flux with increasing plasma power. With respect to the ALD process, our results indicated that higher plasma power generated increased ion and radical flux compared with lower plasma power. Thus, a higher plasma power provides the best gas and moisture permeation barrier properties.

Jung, Hyunsoo [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of) [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741 (Korea, Republic of); Choi, Hagyoung; Lee, Sanghun [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)] [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jeon, Heeyoung [Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)] [Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jeon, Hyeongtag [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of) [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

2013-11-07T23:59:59.000Z

86

Surface Passivation of Nanoporous TiO2 via Atomic Layer Deposition of ZrO2 for Solid-State Dye-Sensitized Solar Cell Applications  

E-Print Network [OSTI]

to the spiro-OMeTAD. Introduction Dye-sensitized solar cells (DSCs) based on mesoporous titania and liquidSurface Passivation of Nanoporous TiO2 via Atomic Layer Deposition of ZrO2 for Solid-State Dye-Sensitized Solar Cell Applications Tina C. Li, Ma´rcio S. Go´es,,§ Francisco Fabregat-Santiago,*, Juan Bisquert

87

Laser damage properties of TiO{sub 2}/Al{sub 2}O{sub 3} thin films grown by atomic layer deposition  

SciTech Connect (OSTI)

Research on thin film deposited by atomic layer deposition (ALD) for laser damage resistance is rare. In this paper, it has been used to deposit TiO{sub 2}/Al{sub 2}O{sub 3} films at 110 deg. C and 280 deg. C on fused silica and BK7 substrates. Microstructure of the thin films was investigated by x-ray diffraction. The laser-induced damage threshold (LIDT) of samples was measured by a damage test system. Damage morphology was studied under a Nomarski differential interference contrast microscope and further checked under an atomic force microscope. Multilayers deposited at different temperatures were compared. The results show that the films deposited by ALD had better uniformity and transmission; in this paper, the uniformity is better than 99% over 100 mm {Phi} samples, and the transmission is more than 99.8% at 1064 nm. Deposition temperature affects the deposition rate and the thin film microstructure and further influences the LIDT of the thin films. As to the TiO{sub 2}/Al{sub 2}O{sub 3} films, the LIDTs were 6.73{+-}0.47 J/cm{sup 2} and 6.5{+-}0.46 J/cm{sup 2} at 110 deg. C on fused silica and BK7 substrates, respectively. The LIDTs at 110 deg. C are notably better than 280 deg. C.

Wei Yaowei; Liu Hao; Sheng Ouyang; Liu Zhichao; Chen Songlin; Yang Liming

2011-08-20T23:59:59.000Z

88

Reduction of native oxides on InAs by atomic layer deposited Al{sub 2}O{sub 3} and HfO{sub 2}  

SciTech Connect (OSTI)

Thin high-{kappa} oxide films on InAs, formed by atomic layer deposition, are the key to achieve high-speed metal-oxide-semiconductor devices. We have studied the native oxide and the interface between InAs and 2 nm thick Al{sub 2}O{sub 3} or HfO{sub 2} layers using synchrotron x-ray photoemission spectroscopy. Both films lead to a strong oxide reduction, obtaining less than 10% of the native As-oxides and between 10% and 50% of the native In-oxides, depending on the deposition temperature. The ratio of native In- to As-oxides is determined to be 2:1. The exact composition and the influence of different oxidation states and suboxides is discussed in detail.

Timm, R.; Fian, A.; Hjort, M.; Thelander, C.; Lind, E.; Andersen, J. N.; Wernersson, L.-E.; Mikkelsen, A. [Department of Physics, Nanometer Structure Consortium, Lund University, P.O. Box 118, 22 100 Lund (Sweden)

2010-09-27T23:59:59.000Z

89

In Situ Synchrotron Based X-ray Fluorescence and Scattering Measurements During Atomic Layer Deposition: Initial Growth of HfO2 on Si and Ge Substrates  

SciTech Connect (OSTI)

The initial growth of HfO{sub 2} was studied by means of synchrotron based in situ x-ray fluorescence (XRF) and grazing incidence small angle x-ray scattering (GISAXS). HfO{sub 2} was deposited by atomic layer deposition (ALD) using tetrakis(ethylmethylamino)hafnium and H{sub 2}O on both oxidized and H-terminated Si and Ge surfaces. XRF quantifies the amount of deposited material during each ALD cycle and shows an inhibition period on H-terminated substrates. No inhibition period is observed on oxidized substrates. The evolution of film roughness was monitored using GISAXS. A correlation is found between the inhibition period and the onset of surface roughness.

K Devloo-Casier; J Dendooven; K Ludwig; G Lekens; J DHaen; C Detavernier

2011-12-31T23:59:59.000Z

90

Thermal conductivity of Er{sup +3}:Y{sub 2}O{sub 3} films grown by atomic layer deposition  

SciTech Connect (OSTI)

Cross-plane thermal conductivity of 800, 458, and 110?nm erbium-doped crystalline yttria (Er{sup +3}:Y{sub 2}O{sub 3}) films deposited via atomic layer deposition was measured using the 3? method at room temperature. Thermal conductivity results show 16-fold increase in thermal conductivity from 0.49?W m{sup ?1}K{sup ?1} to 8?W m{sup ?1}K{sup ?1} upon post deposition annealing, partially due to the suppression of the number of the -OH/H{sub 2}O bonds in the films after annealing. Thermal conductivity of the annealed film was ?70% lower than undoped bulk single crystal yttria. The cumulative interface thermal resistivity of substrate-Er{sup +3}:Y{sub 2}O{sub 3}-metal heater was determined to be ?2.5?×?10{sup ?8} m{sup 2} K/W.

Raeisi Fard, Hafez; Hess, Andrew; Pashayi, Kamyar; Borca-Tasciuc, Theodorian, E-mail: borcat@rpi.edu [Mechanical, Aerospace and Nuclear Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)] [Mechanical, Aerospace and Nuclear Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Becker, Nicholas; Proslier, Thomas; Pellin, Michael [Material Sciences Division, Argonne National Laboratory 9700 S. Cass Avenue, Lemont, Illinois 60439 (United States)] [Material Sciences Division, Argonne National Laboratory 9700 S. Cass Avenue, Lemont, Illinois 60439 (United States)

2013-11-04T23:59:59.000Z

91

High-reliability passivation of hydrogen-terminated diamond surface by atomic layer deposition of Al{sub 2}O{sub 3}  

SciTech Connect (OSTI)

Although the two-dimensional hole gas (2DHG) of a hydrogen-terminated diamond surface provides a unique p-type conducting layer for high-performance transistors, the conductivity is highly sensitive to its environment. Therefore, the surface must be passivated to preserve the 2DHG, especially at high temperature. We passivated the surface at high temperature (450?°C) without the loss of C-H surface bonds by atomic layer deposition (ALD) and investigated the thermal reliability of the Al{sub 2}O{sub 3} film. As a result, C-H bonds were preserved, and the hole accumulation effect appeared after the Al{sub 2}O{sub 3} deposition by ALD with H{sub 2}O as an oxidant. The sheet resistivity and hole density were almost constant between room temperature and 500?°C by the passivation with thick Al{sub 2}O{sub 3} film thicker than 38?nm deposited by ALD at 450?°C. After the annealing at 550?°C in air The sheet resistivity and hole density were preserved. These results indicate the possibility of high-temperature application of the C-H surface diamond device in air. In the case of lower deposition temperatures, the sheet resistivity increased after air annealing, suggesting an insufficient protection capability of these films. Given the result of sheet resistivity after annealing, the increase in the sheet resistivity of these samples was not greatly significant. However, bubble like patterns were observed in the Al{sub 2}O{sub 3} films formed from 200 to 400?°C by air annealing at 550?°C for 1 h. On the other hand, the patterns were no longer observed at 450?°C deposition. Thus, this 450?°C deposition is the sole solution to enabling power device application, which requires high reliability at high temperatures.

Daicho, Akira, E-mail: notevayas-tales@ruri.waseda.jp; Saito, Tatsuya; Kurihara, Shinichiro; Kawarada, Hiroshi, E-mail: kawarada@waseda.jp [School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Hiraiwa, Atsushi [Institute for Nanoscience and Nanotechnology, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan)

2014-06-14T23:59:59.000Z

92

Low interface defect density of atomic layer deposition BeO with self-cleaning reaction for InGaAs metal oxide semiconductor field effect transistors  

SciTech Connect (OSTI)

In this paper, we discuss atomic configuration of atomic layer deposition (ALD) beryllium oxide (BeO) using the quantum chemistry to understand the theoretical origin. BeO has shorter bond length, higher reaction enthalpy, and larger bandgap energy compared with those of ALD aluminum oxide. It is shown that the excellent material properties of ALD BeO can reduce interface defect density due to the self-cleaning reaction and this contributes to the improvement of device performance of InGaAs MOSFETs. The low interface defect density and low leakage current of InGaAs MOSFET were demonstrated using X-ray photoelectron spectroscopy and the corresponding electrical results.

Shin, H. S. [Department of Electronics Engineering, Chungnam National University, Daejeon (Korea, Republic of) [Department of Electronics Engineering, Chungnam National University, Daejeon (Korea, Republic of); SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741 (United States); The University of Texas, Austin, Texas 78758 (United States); Yum, J. H. [SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741 (United States) [SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741 (United States); The University of Texas, Austin, Texas 78758 (United States); Johnson, D. W. [SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741 (United States) [SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741 (United States); Texas A and M University College Station, Texas 77843 (United States); Harris, H. R. [Texas A and M University College Station, Texas 77843 (United States)] [Texas A and M University College Station, Texas 77843 (United States); Hudnall, Todd W. [Texas State University, 601 University Drive, San Marcos, Texas 78666 (United States)] [Texas State University, 601 University Drive, San Marcos, Texas 78666 (United States); Oh, J. [Yonsei University, Incheon, 406-840 (Korea, Republic of)] [Yonsei University, Incheon, 406-840 (Korea, Republic of); Kirsch, P.; Wang, W.-E. [SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741 (United States)] [SEMATECH, 2706 Montopolis Dr., Austin, Texas 78741 (United States); Bielawski, C. W.; Banerjee, S. K.; Lee, J. C. [The University of Texas, Austin, Texas 78758 (United States)] [The University of Texas, Austin, Texas 78758 (United States); Lee, H. D. [Department of Electronics Engineering, Chungnam National University, Daejeon (Korea, Republic of)] [Department of Electronics Engineering, Chungnam National University, Daejeon (Korea, Republic of)

2013-11-25T23:59:59.000Z

93

Highly transparent low capacitance plasma enhanced atomic layer deposition Al{sub 2}O{sub 3}-HfO{sub 2} tunnel junction engineering  

SciTech Connect (OSTI)

The development of metallic single electron transistor (SET) depends on the downscaling and the electrical properties of its tunnel junctions. These tunnel junctions should insure high tunnel current levels, low thermionic current, and low capacitance. The authors use atomic layer deposition to fabricate Al{sub 2}O{sub 3} and HfO{sub 2} thin layers. Tunnel barrier engineering allows the achievement of low capacitance Al{sub 2}O{sub 3} and HfO{sub 2} tunnel junctions using optimized annealing and plasma exposure conditions. Different stacks were designed and fabricated to increase the transparency of the tunnel junction while minimizing thermionic current. This tunnel junction is meant to be integrated in SET to enhance its electrical properties (e.g., operating temperature, I{sub ON}/I{sub OFF} ratio)

El Hajjam, Khalil, E-mail: khalil.el-hajjam@insa-lyon.fr [INL, INSA, UMR CNRS 5270, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex, France and Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada); Baboux, Nicolas; Calmon, Francis [INL, INSA, UMR CNRS 5270, 7 Avenue Jean Capelle, 69621 Villeurbanne Cedex (France); Souifi, Abdelkader [Laboratoire Nanotechnologies Nanosystèmes (LN2)-CNRS UMI-3463, Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada); Poncelet, Olivier; Francis, Laurent A. [ICTEAM, ELEN, UCL, Place du Levant 3, 1348 Louvain-la-Neuve (Belgium); Ecoffey, Serge; Drouin, Dominique [Laboratoire Nanotechnologies Nanosystèmes (LN2)-CNRS UMI-3463, Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec, Canada and Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada)

2014-01-15T23:59:59.000Z

94

Interface effect on dielectric constant of HfO{sub 2}/Al{sub 2}O{sub 3} nanolaminate films deposited by plasma-enhanced atomic layer deposition  

SciTech Connect (OSTI)

The effect of the interface between Al{sub 2}O{sub 3} and HfO{sub 2} sublayers on the dielectric constant was investigated in HfO{sub 2}/Al{sub 2}O{sub 3} nanolaminate films deposited using plasma-enhanced atomic layer deposition. After annealing at 700 deg. C, the dielectric constants of the nanolaminate films with a sublayer thickness of 40 A ring or greater were the same as the calculated values for a series of capacitors consisting of amorphous Al{sub 2}O{sub 3} and monoclinic or tetragonal HfO{sub 2}. As the sublayer thickness was reduced to 10 A, the dielectric constant increased up to 17.7 because a thin Hf-O-Al mixture layer, of which the number increases drastically in the nanolaminate films with thin sublayers, is formed at the interface.

Park, Pan Kwi; Cha, Eun-Soo; Kang, Sang-Won [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

2007-06-04T23:59:59.000Z

95

Synchrotron radiation photoemission study of interfacial electronic structure of HfO{sub 2} on In{sub 0.53}Ga{sub 0.47}As(001)-4?×?2 from atomic layer deposition  

SciTech Connect (OSTI)

The growth of a passivating layer on a In{sub 0.53}Ga{sub 0.47}As(001)-4?×?2 surface by atomic-layer deposition of tetrakis[ethylmethylamino]Hafnium (TEMAHf)) followed by the water pulse was investigated by synchrotron radiation photoemission. The Hf atoms maintain four-fold coordination, both after the initial TEMAHf deposition and the subsequent water pulse. The Hf atoms initially bond to the As dangling bonds of the surface As atom located on the edges of the raised ridges. One EMA ligand is removed in this process. Subsequent water exposure substitutes OH ligand for one or more remaining EMA ligands. These in turn react with TEMAHf to form Hf-O-Hf bonds allowing the hafnium oxides to grow. The surface In atoms on the terrace of the raised ridges were partially removed, but none bonded of the precursor atoms. Correlations between the interfacial electronic structure and the electric performance are discussed.

Pi, T. W., E-mail: pi@nsrrc.org.tw, E-mail: gkwer@verizon.net, E-mail: raynien@phys.nthu.edu.tw, E-mail: mhong@phys.ntu.edu.tw [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Lin, T. D.; Chang, Y. C.; Hong, M., E-mail: pi@nsrrc.org.tw, E-mail: gkwer@verizon.net, E-mail: raynien@phys.nthu.edu.tw, E-mail: mhong@phys.ntu.edu.tw [Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Lin, H. Y.; Kwo, J., E-mail: pi@nsrrc.org.tw, E-mail: gkwer@verizon.net, E-mail: raynien@phys.nthu.edu.tw, E-mail: mhong@phys.ntu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wertheim, G. K., E-mail: pi@nsrrc.org.tw, E-mail: gkwer@verizon.net, E-mail: raynien@phys.nthu.edu.tw, E-mail: mhong@phys.ntu.edu.tw [Woodland Consulting, 175 Woodland Ave., Morristown, New Jersey 07960 (United States)

2014-01-27T23:59:59.000Z

96

Metal deposition using seed layers  

DOE Patents [OSTI]

Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

2013-11-12T23:59:59.000Z

97

Growth behavior and properties of atomic layer deposited tin oxide on silicon from novel tin(II)acetylacetonate precursor and ozone  

SciTech Connect (OSTI)

In this work, a novel liquid tin(II) precursor, tin(II)acetylacetonate [Sn(acac){sub 2}], was used to deposit tin oxide films on Si(100) substrate, using a custom-built hot wall atomic layer deposition (ALD) reactor. Three different oxidizers, water, oxygen, and ozone, were tried. Resulting growth rates were studied as a function of precursor dosage, oxidizer dosage, reactor temperature, and number of ALD cycles. The film growth rate was found to be 0.1?±?0.01?nm/cycle within the wide ALD temperature window of 175–300?°C using ozone; no film growth was observed with water or oxygen. Characterization methods were used to study the composition, interface quality, crystallinity, microstructure, refractive index, surface morphology, and resistivity of the resulting films. X-ray photoelectron spectra showed the formation of a clean SnO{sub x}–Si interface. The resistivity of the SnO{sub x} films was calculated to be 0.3?? cm. Results of this work demonstrate the possibility of introducing Sn(acac){sub 2} as tin precursor to deposit conducting ALD SnO{sub x} thin films on a silicon surface, with clean interface and no formation of undesired SiO{sub 2} or other interfacial reaction products, for transparent conducting oxide applications.

Kannan Selvaraj, Sathees [Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Feinerman, Alan [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Takoudis, Christos G., E-mail: takoudis@uic.edu [Departments of Bioengineering and Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States)

2014-01-15T23:59:59.000Z

98

In situ study of the role of substrate temperature during atomic layer deposition of HfO{sub 2} on InP  

SciTech Connect (OSTI)

The dependence of the “self cleaning” effect of the substrate oxides on substrate temperature during atomic layer deposition (ALD) of HfO{sub 2} on various chemically treated and native oxide InP (100) substrates is investigated using in situ X-ray photoelectron spectroscopy. The removal of In-oxide is found to be more efficient at higher ALD temperatures. The P oxidation states on native oxide and acid etched samples are seen to change, with the total P-oxide concentration remaining constant, after 10 cycles of ALD HfO{sub 2} at different temperatures. An (NH{sub 4}){sub 2} S treatment is seen to effectively remove native oxides and passivate the InP surfaces independent of substrate temperature studied (200 °C, 250 °C and 300 °C) before and after the ALD process. Density functional theory modeling provides insight into the mechanism of the changes in the P-oxide chemical states.

Dong, H.; Santosh, K.C.; Qin, X.; Brennan, B.; McDonnell, S.; Kim, J. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States)] [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States); Zhernokletov, D. [Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States)] [Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States); Hinkle, C. L.; Cho, K.; Wallace, R. M. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States) [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States); Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States)

2013-10-21T23:59:59.000Z

99

Surface and interfacial reaction study of half cycle atomic layer deposited HfO{sub 2} on chemically treated GaSb surfaces  

SciTech Connect (OSTI)

An in situ half-cycle atomic layer deposition/X-ray photoelectron spectroscopy (XPS) study was conducted in order to investigate the evolution of the HfO{sub 2} dielectric interface with GaSb(100) surfaces after sulfur passivation and HCl etching, designed to remove the native oxides. With the first pulses of tetrakis(dimethylamido)hafnium(IV) and water, a decrease in the concentration of antimony oxide states present on the HCl-etched surface is observed, while antimony sulfur states diminished below the XPS detection limit on sulfur passivated surface. An increase in the amount of gallium oxide/sulfide is seen, suggesting oxygen or sulfur transfers from antimony to gallium during antimony oxides/sulfides decomposition.

Zhernokletov, D. M. [Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States)] [Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States); Dong, H.; Brennan, B.; Kim, J. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States)] [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States); Yakimov, M.; Tokranov, V.; Oktyabrsky, S. [College of Nanoscale Science and Engineering, University at Albany - SUNY, Albany, New York 12203 (United States)] [College of Nanoscale Science and Engineering, University at Albany - SUNY, Albany, New York 12203 (United States); Wallace, R. M. [Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States) [Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States); Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States)

2013-04-01T23:59:59.000Z

100

Atomic layer deposition of Al{sub 2}O{sub 3} on GaSb using in situ hydrogen plasma exposure  

SciTech Connect (OSTI)

In this report, we study the effectiveness of hydrogen plasma surface treatments for improving the electrical properties of GaSb/Al{sub 2}O{sub 3} interfaces. Prior to atomic layer deposition of an Al{sub 2}O{sub 3} dielectric, p-GaSb surfaces were exposed to hydrogen plasmas in situ, with varying plasma powers, exposure times, and substrate temperatures. Good electrical interfaces, as indicated by capacitance-voltage measurements, were obtained using higher plasma powers, longer exposure times, and increasing substrate temperatures up to 250 Degree-Sign C. X-ray photoelectron spectroscopy reveals that the most effective treatments result in decreased SbO{sub x}, decreased Sb, and increased GaO{sub x} content at the interface. This in situ hydrogen plasma surface preparation improves the semiconductor/insulator electrical interface without the use of wet chemical pretreatments and is a promising approach for enhancing the performance of Sb-based devices.

Ruppalt, Laura B.; Cleveland, Erin R.; Champlain, James G.; Prokes, Sharka M.; Brad Boos, J.; Park, Doewon; Bennett, Brian R. [Electronics Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States)

2012-12-03T23:59:59.000Z

Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Time-resolved surface infrared spectroscopy during atomic layer deposition of TiO{sub 2} using tetrakis(dimethylamido)titanium and water  

SciTech Connect (OSTI)

Atomic layer deposition of titanium dioxide using tetrakis(dimethylamido)titanium (TDMAT) and water vapor is studied by reflection-absorption infrared spectroscopy (RAIRS) with a time resolution of 120?ms. At 190?°C and 240?°C, a decrease in the absorption from adsorbed TDMAT is observed without any evidence of an adsorbed product. Ex situ measurements indicate that this behavior is not associated with an increase in the impurity concentration or a dramatic change in the growth rate. A desorbing decomposition product is consistent with these observations. RAIRS also indicates that dehydroxylation of the growth surface occurs only among one type of surface hydroxyl groups. Molecular water is observed to remain on the surface and participates in reactions even at a relatively high temperature (110?°C) and with long purge times (30?s)

Sperling, Brent A., E-mail: brent.sperling@nist.gov; Hoang, John; Kimes, William A.; Maslar, James E. [Chemical Sciences Division, National Institute of Standards and Technology, 100 Bureau Dr., Stop 8320, Gaithersburg, Maryland 20899-8320 (United States); Steffens, Kristen L. [Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Dr., Stop 8362, Gaithersburg, Maryland 20899-8362 (United States); Nguyen, Nhan V. [Semiconductor and Dimensional Metrology Division, National Institute of Standards and Technology, 100 Bureau Dr., Stop 8120, Gaithersburg, Maryland 20899-8120 (United States)

2014-05-15T23:59:59.000Z

102

Infrared study on room-temperature atomic layer deposition of HfO{sub 2} using tetrakis(ethylmethylamino)hafnium and remote plasma-excited oxidizing agents  

SciTech Connect (OSTI)

Room-temperature atomic layer deposition (ALD) of HfO{sub 2} was examined using tetrakis (ethylmethylamino)hafnium (TEMAH) and remote plasma-excited water and oxygen. A growth rate of 0.26?nm/cycle at room temperature was achieved, and the TEMAH adsorption and its oxidization on HfO{sub 2} were investigated by multiple internal reflection infrared absorption spectroscopy. It was observed that saturated adsorption of TEMAH occurs at exposures of ?1?×?10{sup 5}?L (1 L?=?1?×?10{sup ?6} Torr s) at room temperature, and the use of remote plasma-excited water and oxygen vapor is effective in oxidizing the TEMAH molecules on the HfO{sub 2} surface, to produce OH sites. The infrared study suggested that Hf–OH plays a role as an adsorption site for TEMAH. The reaction mechanism of room temperature HfO{sub 2} ALD is discussed in this paper.

Kanomata, Kensaku [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan and Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Ohba, Hisashi; Pungboon Pansila, P.; Ahmmad, Bashir; Kubota, Shigeru; Hirahara, Kazuhiro; Hirose, Fumihiko, E-mail: fhirose@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan)

2015-01-01T23:59:59.000Z

103

L{sub g}?=?100?nm In{sub 0.7}Ga{sub 0.3}As quantum well metal-oxide semiconductor field-effect transistors with atomic layer deposited beryllium oxide as interfacial layer  

SciTech Connect (OSTI)

In this study, we have fabricated nanometer-scale channel length quantum-well (QW) metal-oxide-semiconductor field effect transistors (MOSFETs) incorporating beryllium oxide (BeO) as an interfacial layer. BeO has high thermal stability, excellent electrical insulating characteristics, and a large band-gap, which make it an attractive candidate for use as a gate dielectric in making MOSFETs. BeO can also act as a good diffusion barrier to oxygen owing to its small atomic bonding length. In this work, we have fabricated In{sub 0.53}Ga{sub 0.47}As MOS capacitors with BeO and Al{sub 2}O{sub 3} and compared their electrical characteristics. As interface passivation layer, BeO/HfO{sub 2} bilayer gate stack presented effective oxide thickness less 1 nm. Furthermore, we have demonstrated In{sub 0.7}Ga{sub 0.3}As QW MOSFETs with a BeO/HfO{sub 2} dielectric, showing a sub-threshold slope of 100?mV/dec, and a transconductance (g{sub m,max}) of 1.1 mS/?m, while displaying low values of gate leakage current. These results highlight the potential of atomic layer deposited BeO for use as a gate dielectric or interface passivation layer for III–V MOSFETs at the 7?nm technology node and/or beyond.

Koh, D., E-mail: dh.koh@utexas.edu, E-mail: Taewoo.Kim@sematech.org [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States); SEMATECH, Inc., Albany, New York 12203 (United States); Kwon, H. M. [Department of Electronics Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, T.-W., E-mail: dh.koh@utexas.edu, E-mail: Taewoo.Kim@sematech.org; Veksler, D.; Gilmer, D.; Kirsch, P. D. [SEMATECH, Inc., Albany, New York 12203 (United States); Kim, D.-H. [SEMATECH, Inc., Albany, New York 12203 (United States); GLOBALFOUNDRIES, Malta, New York 12020 (United States); Hudnall, Todd W. [Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, 78666 (United States); Bielawski, Christopher W. [Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712 (United States); Maszara, W. [GLOBALFOUNDRIES, Santa Clara, California 95054 (United States); Banerjee, S. K. [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States)

2014-04-21T23:59:59.000Z

104

Capacitance and conductance versus voltage characterization of Al{sub 2}O{sub 3} layers prepared by plasma enhanced atomic layer deposition at 25?°C??T???200?°C  

SciTech Connect (OSTI)

In this work, plasma enhanced atomic layer deposited (PE-ALD) samples were prepared at substrate temperatures in the range between room temperature (RT) and 200?°C and investigated by capacitance–voltage and conductance–voltage recordings. The measurements are compared to standard thermal atomic layer deposition (T-ALD) at 200?°C. Very low interface state density (D{sub it}) ?10{sup 11}?eV{sup ?1}?cm{sup ?2} could be achieved for the PE-ALD process at 200?°C substrate temperature after postdeposition anneal (PDA) in forming gas at 450?°C. The PDA works very effectively for both the PE-ALD and T-ALD at 200?°C substrate temperature delivering also similar values of negative fixed charge density (N{sub fix}) around ?2.5?×?10{sup 12}?cm{sup ?2}. At the substrate temperature of 150?°C, highest N{sub fix} (?2.9?×?10{sup 12}?cm{sup ?2}) and moderate D{sub it} (2.7?×?10{sup 11}?eV{sup ?1}?cm{sup ?2}) values were observed. The as deposited PE-ALD layer at RT shows both low D{sub it} in the range of (1 to 3)?×?10{sup 11}?eV{sup ?1} cm{sup ?2} and low N{sub fix} (?4.4?×?10{sup 11}?cm{sup ?2}) at the same time. The dependencies of N{sub fix}, D{sub it}, and relative permittivity on the substrate temperatures and its adjustability are discussed.

Henkel, Karsten, E-mail: henkel@tu-cottbus.de; Tallarida, Massimo; Schmeißer, Dieter [Applied Physics and Sensors, Brandenburg University of Technology Cottbus-Senftenberg, K.-Wachsmann-Allee 17, D-03046 Cottbus (Germany); Gargouri, Hassan; Gruska, Bernd; Arens, Michael [Sentech Instruments GmbH, Schwarzschildstraße 2, 12489 Berlin (Germany)

2014-01-15T23:59:59.000Z

105

Method of making dense, conformal, ultra-thin cap layers for nanoporous low-k ILD by plasma assisted atomic layer deposition  

DOE Patents [OSTI]

Barrier layers and methods for forming barrier layers on a porous layer are provided. The methods can include chemically adsorbing a plurality of first molecules on a surface of the porous layer in a chamber and forming a first layer of the first molecules on the surface of the porous layer. A plasma can then be used to react a plurality of second molecules with the first layer of first molecules to form a first layer of a barrier layer. The barrier layers can seal the pores of the porous material, function as a diffusion barrier, be conformal, and/or have a negligible impact on the overall ILD k value of the porous material.

Jiang, Ying-Bing (Albuquerque, NM); Cecchi, Joseph L. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM)

2011-05-24T23:59:59.000Z

106

Atomic layer deposition of Hf{sub x}Al{sub y}C{sub z} as a work function material in metal gate MOS devices  

SciTech Connect (OSTI)

As advanced silicon semiconductor devices are transitioning from planar to 3D structures, new materials and processes are needed to control the device characteristics. Atomic layer deposition (ALD) of Hf{sub x}Al{sub y}C{sub z} films using hafnium chloride and trimethylaluminum precursors was combined with postdeposition anneals and ALD liners to control the device characteristics in high-k metal-gate devices. Combinatorial process methods and technologies were employed for rapid electrical and materials characterization of various materials stacks. The effective work function in metal–oxide–semiconductor capacitor devices with the Hf{sub x}Al{sub y}C{sub z} layer coupled with an ALD HfO{sub 2} dielectric was quantified to be mid-gap at ?4.6?eV. Thus, Hf{sub x}Al{sub y}C{sub z} is a promising metal gate work function material that allows for the tuning of device threshold voltages (V{sub th}) for anticipated multi-V{sub th} integrated circuit devices.

Lee, Albert, E-mail: alee@intermolecular.com; Fuchigami, Nobi; Pisharoty, Divya; Hong, Zhendong; Haywood, Ed; Joshi, Amol; Mujumdar, Salil; Bodke, Ashish; Karlsson, Olov [Intermolecular, 3011 North First Street, San Jose, California 95134 (United States); Kim, Hoon; Choi, Kisik [GLOBALFOUNDRIES Technology Research Group, 257 Fuller Road, Albany, New York 12309 (United States); Besser, Paul [GLOBALFOUNDRIES, 1050 East Arques, Sunnyvale, California 94085 (United States)

2014-01-15T23:59:59.000Z

107

On the reliability of nanoindentation hardness of Al{sub 2}O{sub 3} films grown on Si-wafer by atomic layer deposition  

SciTech Connect (OSTI)

The interest in applying thin films on Si-wafer substrate for microelectromechanical systems devices by using atomic layer deposition (ALD) has raised the demand on reliable mechanical property data of the films. This study aims to find a quick method for obtaining nanoindentation hardness of thin films on silicon with improved reliability. This is achieved by ensuring that the film hardness is determined under the condition that no plastic deformation occurs in the substrate. In the study, ALD Al{sub 2}O{sub 3} films having thickness varying from 10 to 600?nm were deposited on a single-side polished silicon wafer at 300?°C. A sharp cube-corner indenter was used for the nanoindentation measurements. A thorough study on the Si-wafer reference revealed that at a specific contact depth of about 8?nm the wafer deformation in loading transferred from elastic to elastic–plastic state. Furthermore, the occurrence of this transition was associated with a sharp increase of the power-law exponent, m, when the unloading data were fitted to a power-law relation. Since m is only slightly material dependent and should fall between 1.2 and 1.6 for different indenter geometry having elastic contact to common materials, it is proposed that the high m values are the results from the inelastic events during unloading. This inelasticity is linked to phase transformations during pressure releasing, a unique phenomenon widely observed in single crystal silicon. Therefore, it is concluded that m could be used to monitor the mechanical state of the Si substrate when the whole coating system is loaded. A suggested indentation depth range can then be assigned to each film thickness to provide guidelines for obtaining reliable property data. The results show good consistence for films thicker than 20?nm and the nanoindentation hardness is about 11?GPa independent of film thickness.

Liu, Xuwen, E-mail: xuwen.liu@aalto.fi; Haimi, Eero; Hannula, Simo-Pekka [Department of Materials Science and Engineering, Aalto University School of Chemical Technology, Vuorimiehentie 2A, FI-00076 Espoo (Finland); Ylivaara, Oili M. E.; Puurunen, Riikka L. [VTT Technical Research Centre of Finland, Tietotie 3, FI-02044 Espoo (Finland)

2014-01-15T23:59:59.000Z

108

Energy band alignment of atomic layer deposited HfO{sub 2} on epitaxial (110)Ge grown by molecular beam epitaxy  

SciTech Connect (OSTI)

The band alignment properties of atomic layer HfO{sub 2} film deposited on epitaxial (110)Ge, grown by molecular beam epitaxy, was investigated using x-ray photoelectron spectroscopy. The cross-sectional transmission electron microscopy exhibited a sharp interface between the (110)Ge epilayer and the HfO{sub 2} film. The measured valence band offset value of HfO{sub 2} relative to (110)Ge was 2.28 {+-} 0.05 eV. The extracted conduction band offset value was 2.66 {+-} 0.1 eV using the bandgaps of HfO{sub 2} of 5.61 eV and Ge bandgap of 0.67 eV. These band offset parameters and the interface chemical properties of HfO{sub 2}/(110)Ge system are of tremendous importance for the design of future high hole mobility and low-power Ge-based metal-oxide transistor devices.

Hudait, M. K.; Zhu, Y. [Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)] [Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Maurya, D.; Priya, S. [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States)] [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States)

2013-03-04T23:59:59.000Z

109

Impact of composition and crystallization behavior of atomic layer deposited strontium titanate films on the resistive switching of Pt/STO/TiN devices  

SciTech Connect (OSTI)

The resistive switching (RS) properties of strontium titanate (Sr{sub 1+x}Ti{sub 1+y}O{sub 3+(x+2y)}, STO) based metal-oxide-metal structures prepared from industrial compatible processes have been investigated focusing on the effects of composition, microstructure, and device size. Metastable perovskite STO films were prepared on Pt-coated Si substrates utilizing plasma-assisted atomic layer deposition (ALD) from cyclopentadienyl-based metal precursors and oxygen plasma at 350?°C, and a subsequent annealing at 600?°C in nitrogen. Films of 15?nm and 12?nm thickness with three different compositions [Sr]/([Sr]?+?[Ti]) of 0.57 (Sr-rich STO), 0.50 (stoichiometric STO), and 0.46 (Ti-rich STO) were integrated into Pt/STO/TiN crossbar structures with sizes ranging from 100??m{sup 2} to 0.01??m{sup 2}. Nano-structural characterizations revealed a clear effect of the composition of the as-deposited STO films on their crystallization behavior and thus on the final microstructures. Local current maps obtained by local-conductivity atomic force microscopy were in good agreement with local changes of the films' microstructures. Correspondingly, also the initial leakage currents of the Pt/STO/TiN devices were affected by the STO compositions and by the films' microstructures. An electroforming process set the Pt/STO/TiN devices into the ON-state, while the forming voltage decreased with increasing initial leakage current. After a RESET process under opposite voltage has been performed, the Pt/STO/TiN devices showed a stable bipolar RS behavior with non-linear current-voltage characteristics for the high (HRS) and the low (LRS) resistance states. The obtained switching polarity and nearly area independent LRS values agree with a filamentary character of the RS behavior according to the valence change mechanism. The devices of 0.01??m{sup 2} size with a 12?nm polycrystalline stoichiometric STO film were switched at a current compliance of 50??A with voltages of about ±1.0?V between resistance states of about 40?k? (LRS) and 1 M? (HRS). After identification of the influences of the films' microstructures, i.e., grain boundaries and small cracks, the remaining RS properties could be ascribed to the effect of the [Sr]/([Sr]?+?[Ti]) composition of the ALD STO thin films.

Aslam, N.; Rodenbücher, C.; Szot, K.; Waser, R.; Hoffmann-Eifert, S., E-mail: su.hoffmann@fz-juelich.de [Peter-Grünberg Institute (PGI-7), Forschungszentrum Jülich and JARA-FIT, 52425 Jülich (Germany); Longo, V.; Roozeboom, F.; Kessels, W. M. M. [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands)

2014-08-14T23:59:59.000Z

110

Shape-selective catalysts for Fischer-Tropsch chemistry : atomic layer deposition of active catalytic metals. Activity report : January 1, 2005 - September 30, 2005.  

SciTech Connect (OSTI)

Argonne National Laboratory is carrying out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry - specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it is desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. The broad goal is to produce diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. Originally the goal was to prepare shape-selective catalysts that would limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' Such catalysts were prepared with silica-containing fractal cages. The activity was essentially the same as that of catalysts without the cages. We are currently awaiting follow-up experiments to determine the attrition strength of these catalysts. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product molecular weight distribution could be controlled. In order to rapidly evaluate the catalytic membranes, the ALD coating processes were performed in an 'exploratory mode' in which ALD procedures from the literature appropriate for coating flat surfaces were applied to the high surface area membranes. Consequently, the Fe and Ru loadings in the membranes were likely to be smaller than those expected for complete monolayer coverage. In addition, there was likely to be significant variation in the Fe and Ru loading among the membranes due to difficulties in nucleating these materials on the aluminum oxide surfaces. The first series of experiments using coated membranes demonstrated that the technology needed further improvement. Specifically, observed catalytic FT activity was low. This low activity appeared to be due to: (1) low available surface area, (2) atomic deposition techniques that needed improvements, and (3) insufficient preconditioning of the catalyst surface prior to FT testing. Therefore, experimentation was expanded to the use of particulate silica supports having defined channels and reasonably high surface area. This later experimentation will be discussed in the next progress report. Subsequently, we plan to evaluate membranes after the ALD techniques are improved with a careful study to control and quantify the Fe and Ru loadings. The preconditioning of these surfaces will also be further developed. (A number of improvements have been made with particulate supports; they will be discussed in the subsequent report.) In support of the above, there was an opportunity to undertake a short study of cobalt/promoter/support interaction using the Advanced Photon Source (APS) of Argonne. Five catalysts and a reference cobalt oxide were characterized during a temperature programmed EXAFS/XANES experimental study with the combined effort of Argonne and the Center for Applied Energy Research (CAER) of the University of Kentucky. This project was completed, and it resulted in an extensive understanding of the preconditioning step of reducing Co-containing FT catalysts. A copy of the resulting manuscript has been submitted and accepted for publication. A similar project was undertaken with iron-containing FT catalysts; the data is currently being studied.

Cronauer, D. C. (Chemical Sciences and Engineering Division)

2011-04-15T23:59:59.000Z

111

Genesis and evolution of surface species during Pt atomic layer deposition on oxide supports characterized by in-situ XAFS analysis and water-gas shift reaction.  

SciTech Connect (OSTI)

Platinum atomic layer deposition (ALD) using MeCpPtMe{sub 3} was employed to prepare high loadings of uniform-sized, 1-2 nm Pt nanoparticles on high surface area Al{sub 2}O{sub 3}, TiO{sub 2}, and SrTiO{sub 3} supports. X-ray absorption fine structure was utilized to monitor the changes in the Pt species during each step of the synthesis. The temperature, precursor exposure time, treatment gas, and number of ALD cycles were found to affect the Pt particle size and density. Lower-temperature MeCpPtMe{sub 3} adsorption yielded smaller particles due to reduced thermal decomposition. A 300 C air treatment of the adsorbed MeCpPtMe{sub 3} leads to PtO. In subsequent ALD cycles, the MeCpPtMe{sub 3} reduces the PtO to metallic Pt in the ratio of one precursor molecule per PtO. A 200 C H{sub 2} treatment of the adsorbed MeCpPtMe{sub 3} leads to the formation of 1-2 nm, metallic Pt nanoparticles. During subsequent ALD cycles, MeCpPtMe{sub 3} adsorbs on the support, which, upon reduction, yields additional Pt nanoparticles with a minimal increase in size of the previously formed nanoparticles. The catalysts produced by ALD had identical water-gas shift reaction rates and reaction kinetics to those of Pt catalysts prepared by standard solution methods. ALD synthesis of catalytic nanoparticles is an attractive method for preparing novel model and practical catalysts.

Setthapun, W.; Williams, W.; Kim, S.; Feng, H.; Elam, J.; Rabuffetti, F.; Poeppelmeier, K.; Stair, P.; Stach, E.; Ribeiro, F.; Miller, J.; Marshall, C.; Northwestern Univ.; Purdue Univ.

2010-06-03T23:59:59.000Z

112

As-Received, Ozone Cleaned and Ar+ Sputtered Surfaces of Hafnium Oxide Grown by Atomic Layer Deposition and Studied by XPS  

SciTech Connect (OSTI)

In this study, X-ray photoelectron spectroscopy (XPS) characterization was performed on 47 nm thick hafnium oxide (HfO{sub 2}) films grown by atomic layer deposition using TEMA-Hf/H{sub 2}O at 250 C substrate temperature. HfO{sub 2} is currently being studied as a possible replacement for Silicon Oxide (SiO{sub 2}) as a gate dielectric in electronics transistors. XPS spectra were collected on a Physical Electronics Quantum 2000 Scanning ESCA Microprobe using a monochromatic Al K{sub a} X-ray (1486.7 eV) excitation source. The sample was analyzed under the following conditions: as received, after UV irradiation for five minutes, and after sputter cleaning with 2 kV Ar{sup +} ions for 180 seconds. Survey scans showed carbon, oxygen, and hafnium as the major species in the film, while the only minor species of argon and carbide was detected after sputtering. Adventitious carbon initially composed approximately 18.6 AT% of the surface, but after UV cleaning it was reduced to 2.4 AT%. This demonstrated that that the majority of carbon was due to adventitious carbon. However, after 2 kV Ar{sup +} sputtering there was still only trace amounts of carbon at {approx}1 AT%, Some of this trace carbon is now in the form of a carbide due to the interaction with Ar{sup +} used for sputter cleaning. Furthermore, the stoiciometric ratio of oxygen and hafnium is consistent with a high quality HfO{sub 2} film.

Engelhard, Mark H.; Herman, Jacob A.; Wallace, Robert; Baer, Donald R.

2012-06-27T23:59:59.000Z

113

Impact of surface morphology of Si substrate on performance of Si/ZnO heterojunction devices grown by atomic layer deposition technique  

SciTech Connect (OSTI)

In this paper, the authors have investigated the structural, optical, and electrical characteristics of silicon nanowire (SiNW)/zinc oxide (ZnO) core–shell nanostructure heterojunctions and compared their characteristics with Si/ZnO planar heterojunctions to investigate the effect of surface morphology of Si substrate in the characteristics of Si/ZnO heterojunction devices. In this work, ZnO thin film was conformally deposited on both p-type ?100? planar Si substrate and substrate with vertically aligned SiNW arrays by atomic layer deposition (ALD) method. The x-ray diffraction spectra show that the crystalline structures of Si/ZnO heterojunctions are having (101) preferred orientation, whereas vertically oriented SiNW/ZnO core–shell heterojunctions are having (002)-oriented wurtzite crystalline structures. The photoluminescence (PL) spectra of Si/ZnO heterojunctions show a very sharp single peak at 377?nm, corresponding to the bandgap of ZnO material with no other defect peaks in visible region; hence, these devices can have applications only in UV region. On the other hand, SiNW/ZnO heterojunctions are having band-edge peak at 378?nm along with a broad emission band, spreading almost throughout the entire visible region with a peak around 550?nm. Therefore, ALD-grown SiNW/ZnO heterojunctions can emit green and red light simultaneously. Reflectivity measurement of the heterojunctions further confirms the enhancement of visible region peak in the PL spectra of SiNW/ZnO heterojunctions, as the surface of the SiNW/ZnO heterojunctions exhibits extremely low reflectance (<3%) in the visible wavelength region compared to Si/ZnO heterojunctions (>20%). The current–voltage characteristics of both Si/ZnO and SiNW/ZnO heterojunctions are measured with large area ohmic contacts on top and bottom of the structure to compare the electrical characteristics of the devices. Due to large surface to-volume ratio of SiNW/ZnO core–shell heterojunction devices, the output current rating is about 130 times larger compared to their planar version at 2 V forward bias voltage. This higher output current rating can be exploited for fabricating high-performance nanoelectronic and optoelectronic devices in near future.

Hazra, Purnima; Singh, Satyendra Kumar [Department of Electronics and Communication Engineering, Motilal Neheru National Institute of Technology, Allahabad 211004 (India); Jit, Satyabrata, E-mail: sjit.ece@itbhu.ac.in [Department of Electronics Engineering, Indian Institute of Technology (BHU), Varanasi 221005 (India)

2015-01-01T23:59:59.000Z

114

Electronic transport in atomically thin layered materials  

E-Print Network [OSTI]

Electronic transport in atomically thin layered materials has been a burgeoning field of study since the discovery of isolated single layer graphene in 2004. Graphene, a semi-metal, has a unique gapless Dirac-like band ...

Baugher, Britton William Herbert

2014-01-01T23:59:59.000Z

115

Effects of N{sub 2} remote plasma nitridation on the structural and electrical characteristics of the HfO{sub 2} gate dielectrics grown using remote plasma atomic layer deposition methods  

SciTech Connect (OSTI)

The characteristics of remote plasma atomic layer deposited HfO{sub 2} on Si, which has a very thin SiO{sub 2} interlayer with and without remote plasma nitridation (RPN), have been investigated. Small amounts of N atoms were successfully incorporated by RPN pretreatment, in which the dominant emission species were excited atomic nitrogen (N{sup *}) and excited molecular nitrogen (N{sub 2}{sup *}), into a very thin SiO{sub 2} interlayer for the growth of HfO{sub 2} thin film. The thin ({approx}1.5 nm) intermediate layer containing nitrogen, which was prepared by sequential O{sub 2} and N{sub 2} remote plasma treatment of the Si substrate, can effectively suppress growth of the unintentional interface layer. In addition, it enhances the thermal stability and the resistance to oxygen diffusion during rapid thermal annealing. The HfO{sub 2} film containing the remote plasma nitrided SiO{sub 2} interlayer annealed at 800 deg. C showed a lower equivalent oxide thickness of {approx}1.89 nm and a lower leakage current density (3.78x10{sup -7} A cm{sup -2} at |V{sub G}-V{sub FB}|=2 V) compared to a non-nitrided sample of the same physical thickness. Also, we compared the characteristics of HfO{sub 2} films annealed in two different ambient environments, N{sub 2} and O{sub 2}.

Choi, Jihoon; Kim, Seokhoon; Kim, Jinwoo; Kang, Hyunseok; Jeon, Hyeongtag; Bae, Choelhwyi [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

2006-07-15T23:59:59.000Z

116

Cathode encapsulation of organic light emitting diodes by atomic layer deposited Al{sub 2}O{sub 3} films and Al{sub 2}O{sub 3}/a-SiN{sub x}:H stacks  

SciTech Connect (OSTI)

Al{sub 2}O{sub 3} thin films synthesized by plasma-enhanced atomic layer deposition (ALD) at room temperature (25 deg. C) have been tested as water vapor permeation barriers for organic light emitting diode devices. Silicon nitride films (a-SiN{sub x}:H) deposited by plasma-enhanced chemical vapor deposition served as reference and were used to develop Al{sub 2}O{sub 3}/a-SiN{sub x}:H stacks. On the basis of Ca test measurements, a very low intrinsic water vapor transmission rate of {<=} 2 x 10{sup -6} g m{sup -2} day{sup -1} and 4 x 10{sup -6} g m{sup -2} day{sup -1} (20 deg. C/50% relative humidity) were found for 20-40 nm Al{sub 2}O{sub 3} and 300 nm a-SiN{sub x}:H films, respectively. The cathode particle coverage was a factor of 4 better for the Al{sub 2}O{sub 3} films compared to the a-SiN{sub x}:H films and an average of 0.12 defects per cm{sup 2} was obtained for a stack consisting of three barrier layers (Al{sub 2}O{sub 3}/a-SiN{sub x}:H/Al{sub 2}O{sub 3}).

Keuning, W.; Weijer, P. van de; Lifka, H.; Kessels, W. M. M.; Creatore, M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Philips Research Laboratories, High Tech Campus 4, P.O. Box WAG12, 5656 AE Eindhoven (Netherlands); Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

2012-01-15T23:59:59.000Z

117

Atomic layer deposition of photoactive CoO/SrTiO{sub 3} and CoO/TiO{sub 2} on Si(001) for visible light driven photoelectrochemical water oxidation  

SciTech Connect (OSTI)

Cobalt oxide (CoO) films are grown epitaxially on Si(001) by atomic layer deposition (ALD) using a thin (1.6 nm) buffer layer of strontium titanate (STO) grown by molecular beam epitaxy. The ALD growth of CoO films is done at low temperature (170–180 °C), using cobalt bis(diisopropylacetamidinate) and water as co-reactants. Reflection high-energy electron diffraction, X-ray diffraction, and cross-sectional scanning transmission electron microscopy are performed to characterize the crystalline structure of the films. The CoO films are found to be crystalline as-deposited even at the low growth temperature with no evidence of Co diffusion into Si. The STO-buffered Si (001) is used as a template for ALD growth of relatively thicker epitaxial STO and TiO{sub 2} films. Epitaxial and polycrystalline CoO films are then grown by ALD on the STO and TiO{sub 2} layers, respectively, creating thin-film heterostructures for photoelectrochemical testing. Both types of heterostructures, CoO/STO/Si and CoO/TiO{sub 2}/STO/Si, demonstrate water photooxidation activity under visible light illumination. In-situ X-ray photoelectron spectroscopy is used to measure the band alignment of the two heterojunctions, CoO/STO and CoO/TiO{sub 2}. The experimental band alignment is compared to electronic structure calculations using density functional theory.

Ngo, Thong Q.; Hoang, Son; McDaniel, Martin D.; Buddie Mullins, C.; Ekerdt, John G. [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)] [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Posadas, Agham; Seo, Hosung; Demkov, Alexander A. [Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States)] [Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States); Utess, Dirk; Triyoso, Dina H. [GLOBALFOUNDRIES Dresden, Wilschdorfer Landstrasse 101, Dresden DE-01109 (Germany)] [GLOBALFOUNDRIES Dresden, Wilschdorfer Landstrasse 101, Dresden DE-01109 (Germany)

2013-08-28T23:59:59.000Z

118

Systematic Modulation of Quantum (Electron) Tunneling Behavior by Atomic Layer Deposition on Nanoparticulate SnO2 and TiO2  

E-Print Network [OSTI]

, such as the nanoparticulate and semiconducting photoanode of a dye-sensitized solar cell (DSC), with a layer of a second metal. Hupp*,, Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center

119

Nano-soldering to single atomic layer  

DOE Patents [OSTI]

A simple technique to solder submicron sized, ohmic contacts to nanostructures has been disclosed. The technique has several advantages over standard electron beam lithography methods, which are complex, costly, and can contaminate samples. To demonstrate the soldering technique graphene, a single atomic layer of carbon, has been contacted, and low- and high-field electronic transport properties have been measured.

Girit, Caglar O. (Berkeley, CA); Zettl, Alexander K. (Kensington, CA)

2011-10-11T23:59:59.000Z

120

Realization of high-quality HfO{sub 2} on In{sub 0.53}Ga{sub 0.47}As by in-situ atomic-layer-deposition  

SciTech Connect (OSTI)

High {kappa} dielectric of HfAlO/HfO{sub 2} was an in-situ atomic-layer-deposited directly on molecular beam epitaxy grown In{sub 0.53}Ga{sub 0.47}As surface without using pre-treatments or interfacial passivation layers, where HfAlO (HfO{sub 2}:Al{sub 2}O{sub 3} {approx} 4:1) with high re-crystallization temperature was employed as the top oxide layer. The HfAlO ({approx}4.5 nm)/HfO{sub 2} (0.8 nm)/In{sub 0.53}Ga{sub 0.47}As metal oxide semiconductor capacitors have exhibited an oxide/In{sub 0.53}Ga{sub 0.47}As interface free of arsenic-related defective bonding, thermodynamic stability at 800 deg. C, and low leakage current densities of <10{sup -7} A/cm{sup 2} at {+-}1 MV/cm. The interfacial trap density (D{sub it}) spectra in absence of mid-gap peaks were obtained by temperature-dependent capacitance and conductance with D{sub it}'s of 2-3 x 10{sup 12} eV{sup -1} cm{sup -2} below and 6-12 x 10{sup 11} eV{sup -1} cm{sup -2} above the mid-gap of In{sub 0.53}Ga{sub 0.47}As, respectively. An equivalent oxide thickness of less than 1 nm has been achieved by reducing the HfAlO thickness to {approx}2.7 nm with the same initial HfO{sub 2} thickness of {approx}0.8 nm.

Lin, T. D.; Hong, M. [Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Y. H. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lin, C. A.; Huang, M. L.; Lee, W. C. [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Kwo, J. [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan (China)

2012-04-23T23:59:59.000Z

Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Monday, March 12, 2007 MARS POLAR LAYERED DEPOSITS  

E-Print Network [OSTI]

acquired a unique dataset over the north polar layered deposits and residual ices. Here, we reviewMonday, March 12, 2007 MARS POLAR LAYERED DEPOSITS 2:30 p.m. Marina Plaza Ballroom Chairs: R. J. Phillips J. J. Plaut 2:30 p.m. Tanaka K. L. * North Polar Layered Deposits on Mars as Revealed by Hi

Rathbun, Julie A.

122

Effective passivation of In{sub 0.2}Ga{sub 0.8}As by HfO{sub 2} surpassing Al{sub 2}O{sub 3} via in-situ atomic layer deposition  

SciTech Connect (OSTI)

High {kappa} gate dielectrics of HfO{sub 2} and Al{sub 2}O{sub 3} were deposited on molecular beam epitaxy-grown In{sub 0.2}Ga{sub 0.8}As pristine surface using in-situ atomic-layer-deposition (ALD) without any surface treatment or passivation layer. The ALD-HfO{sub 2}/p-In{sub 0.2}Ga{sub 0.8}As interface showed notable reduction in the interfacial density of states (D{sub it}), deduced from quasi-static capacitance-voltage and conductance-voltage (G-V) at room temperature and 100 Degree-Sign C. More significantly, the midgap peak commonly observed in the D{sub it}(E) of ALD-oxides/In{sub 0.2}Ga{sub 0.8}As is now greatly diminished. The midgap D{sub it} value decreases from {>=}15 Multiplication-Sign 10{sup 12} eV{sup -1} cm{sup -2} for ALD-Al{sub 2}O{sub 3} to {approx}2-4 Multiplication-Sign 10{sup 12} eV{sup -1} cm{sup -2} for ALD-HfO{sub 2}. Further, thermal stability at 850 Degree-Sign C was achieved in the HfO{sub 2}/In{sub 0.2}Ga{sub 0.8}As, whereas C-V characteristics of Al{sub 2}O{sub 3}/p-In{sub 0.2}Ga{sub 0.8}As degraded after the high temperature annealing. From in-situ x-ray photoelectron spectra, the AsO{sub x}, which is not the oxidized state from the native oxide, but is an induced state from adsorption of trimethylaluminum and H{sub 2}O, was found at the ALD-Al{sub 2}O{sub 3}/In{sub 0.2}Ga{sub 0.8}As interface, while that was not detected at the ALD-HfO{sub 2}/In{sub 0.2}Ga{sub 0.8}As interface.

Chang, Y. H.; Chiang, T. H. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lin, C. A.; Liu, Y. T.; Lin, H. Y.; Huang, M. L.; Kwo, J. [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lin, T. D.; Hong, M. [Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Pi, T. W. [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China)

2012-10-22T23:59:59.000Z

123

Environmental Performance Characterization of Atomic Layer Deposition  

E-Print Network [OSTI]

temperature can only save 3~5% of total energy consumption.all invariable, the total energy consumption, Q, is directlyLabview program. The total energy consumption of the circuit

Yuan, Chris; Dornfeld, David

2008-01-01T23:59:59.000Z

124

ARGONNE'S ATOMIC LAYER DEPOSITION Customized Nanoengineered Coatings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations2AP-XPSAPS50 -Issue 60ARCSHIGH

125

Atom Nano-lithography with Multi-layer Light Masks: Particle Optics Analysis  

E-Print Network [OSTI]

We study the focusing of atoms by multiple layers of standing light waves in the context of atom lithography. In particular, atomic localization by a double-layer light mask is examined using the optimal squeezing approach. Operation of the focusing setup is analyzed both in the paraxial approximation and in the regime of nonlinear spatial squeezing for the thin-thin as well as thin-thick atom lens combinations. It is shown that the optimized double light mask may considerably reduce the imaging problems, improve the quality of focusing and enhance the contrast ratio of the deposited structures.

R. Arun; I. Sh. Averbukh; T. Pfau

2005-03-22T23:59:59.000Z

126

Anodic Aluminum Oxide Templated Channel Electrodes via Atomic Layer A. B. F. Martinsona,b  

E-Print Network [OSTI]

60439, USA Dye-sensitized solar cells (DSSCs) utilize high surface area metal oxide sintered particle aluminum oxide membranes via atomic layer deposition. Introduction Dye sensitized solar cells (DSSCs) These photoelectrochemical cells use molecular dyes to sensitize high area, wide band gap semiconductor oxide photoanodes

127

Atomic Layer-by-Layer Thermoelectric Conversion in Topological Insulator Bismuth/Antimony Tellurides  

E-Print Network [OSTI]

Supporting Information ABSTRACT: Material design for direct heat-to-electricity conversion with substantial that the thermoelectric conversion can be interiorly achieved at the atomic steps of a homogeneous medium by directAtomic Layer-by-Layer Thermoelectric Conversion in Topological Insulator Bismuth

Jo, Moon-Ho

128

In situ study of erosion and deposition of amorphous hydrogenated carbon films by exposure to a hydrogen atom beam  

SciTech Connect (OSTI)

This paper reports on the first dual-beam experiment employing a hydrogen atom beam for sample exposure and an ion beam for analysis, enabling in situ and real-time studies of hydrogen atom interaction with materials. The erosion of an amorphous hydrogenated carbon (a-C:H) layer by deuterium atoms at 580 K sample temperature was studied and the uptake of deuterium during the erosion process was measured in real time. The deuterium areal density increased at the beginning to 7.3 Multiplication-Sign 10{sup 15} D cm{sup -2}, but then stabilized at a constant value of 5.5 Multiplication-Sign 10{sup 15} D cm{sup -2}. Formation of a polymer-like deposit on an a-C:H layer held at room temperature and subjected to the deuterium atom beam was observed and also studied in situ. For both erosion and deposition studies an a-{sup 13}C:H layer on top of an Si substrate was used as a sample, making the experiments isotopically fully specified and thereby differentiating the deposited from the original layer and the interacting D atoms from H atoms present in the layer and in the residual vacuum. From the deposition study it was shown that carbon in the deposited layer originates from carbon-carrying species in the background vacuum that interact with hydrogen atoms. The areal density of the carbon at the surface was determined from the energy shift of the Si edge in the Rutherford backscattering spectrum. The cross section for {sup 7}Li on D at 4.3 MeV Li ion energy and at a recoil angle of 30 Degree-Sign was also determined to be (236 {+-} 16) Multiplication-Sign 10{sup -27} cm{sup 2}/sr. This is a factor of 3 {+-} 0.2 times higher than the Rutherford elastic cross section.

Markelj, Sabina; Pelicon, Primoz; Cadez, Iztok; Schwarz-Selinger, Thomas; Jacob, Wolfgang [Jozef Stefan Institute and Association EURATOM-MHEST, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Max-Planck-Institut fuer Plasmaphysik (IPP), EURATOM Association, Boltzmannstr. 2, D-85748 Garching (Germany)

2012-07-15T23:59:59.000Z

129

Atomic oxygen flux determined by mixed-phase Ag/Ag2O deposition...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

oxygen flux determined by mixed-phase AgAg2O deposition. Atomic oxygen flux determined by mixed-phase AgAg2O deposition. Abstract: The flux of atomic oxygen generated in a...

130

Deposition of thin silicon layers on transferred large area graphene  

SciTech Connect (OSTI)

Physical vapor deposition of Si onto transferred graphene is investigated. At elevated temperatures, Si nucleates preferably on wrinkles and multilayer graphene islands. In some cases, however, Si can be quasi-selectively grown only on the monolayer graphene regions while the multilayer islands remain uncovered. Experimental insights and ab initio calculations show that variations in the removal efficiency of carbon residuals after the transfer process can be responsible for this behavior. Low-temperature Si seed layer results in improved wetting and enables homogeneous growth. This is an important step towards realization of electronic devices in which graphene is embedded between two Si layers.

Lupina, Grzegorz, E-mail: lupina@ihp-microelectronics.com; Kitzmann, Julia; Lukosius, Mindaugas; Dabrowski, Jarek; Wolff, Andre; Mehr, Wolfgang [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany)] [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany)

2013-12-23T23:59:59.000Z

131

Development of an Electroless Method to Deposit Corrosion-Resistant Silicate Layers on Metallic Substrates  

E-Print Network [OSTI]

Development of an Electroless Method to Deposit Corrosion-Resistant Silicate Layers on Metallic, USA A novel electroless method for depositing corrosion-resistant silicate layers on metallic substrates from aqueous solutions has been developed. The silicate layer was deposited from an aqueous

Popov, Branko N.

132

Synchrotron Radiation Photoemission Spectroscopic Study of Band Offsets and Interface Self-cleaning by Atomic Layer Deposited HfO2 on In0.53Ga0.47As and In0.52Al0.48As  

SciTech Connect (OSTI)

The Synchrotron Radiation Photoemission Spectroscopic (SRPES) study was conducted to (a) investigate the surface chemistry of In{sub 0.53}Ga{sub 0.47}As and In{sub 0.52}Al{sub 0.48}As post chemical and thermal treatments, (b) construct band diagram and (c) investigate the interface property of HfO{sub 2}/In{sub 0.53}Ga{sub 0.47}As and HfO{sub 2}/In{sub 0.52}Al{sub 0.48}As. Dilute HCl and HF etch remove native oxides on In{sub 0.53}Ga{sub 0.47}As and In{sub 0.52}Al{sub 0.47}As, whereas in-situ vacuum annealing removes surface arsenic pile-up. After the atomic layer deposition of HfO{sub 2}, native oxides were considerably reduced compared to that in as-received epi-layers, strongly suggesting the self-clean mechanism. Valence and conduction band offsets are measured to be 3.37 {+-} 0.1eV, 1.80 {+-} 0.3eV for In{sub 0.53}Ga{sub 0.47}As and 3.00 {+-} 0.1eV, 1.47 {+-} 0.3eV for In{sub 0.52}Al{sub 0.47}As, respectively.

Kobayashi, Masaharu; /SLAC, SSRL; Chen, P.T.; Sun, Y.; Goel, N.; Majhi, P.; Garner, M; Tsai, W.; Pianetta, P.; Nishi, Y.; /SLAC, SSRL

2008-10-31T23:59:59.000Z

133

E-Print Network 3.0 - atom layer scale Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to simulate the atomic assembly processes during oxidation of ultra-thin (6 A ) aluminum layer... atomic scale structures of any material can be gained provided a high...

134

Plasma atomic layer etching using conventional plasma equipment  

SciTech Connect (OSTI)

The decrease in feature sizes in microelectronics fabrication will soon require plasma etching processes having atomic layer resolution. The basis of plasma atomic layer etching (PALE) is forming a layer of passivation that allows the underlying substrate material to be etched with lower activation energy than in the absence of the passivation. The subsequent removal of the passivation with carefully tailored activation energy then removes a single layer of the underlying material. If these goals are met, the process is self-limiting. A challenge of PALE is the high cost of specialized equipment and slow processing speed. In this work, results from a computational investigation of PALE will be discussed with the goal of demonstrating the potential of using conventional plasma etching equipment having acceptable processing speeds. Results will be discussed using inductively coupled and magnetically enhanced capacitively coupled plasmas in which nonsinusoidal waveforms are used to regulate ion energies to optimize the passivation and etch steps. This strategy may also enable the use of a single gas mixture, as opposed to changing gas mixtures between steps.

Agarwal, Ankur; Kushner, Mark J. [Department of Chemical and Biomolecular Engineering, University of Illinois, 600 S. Mathews Ave., Urbana, Illinois 61801 (United States); Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States)

2009-01-15T23:59:59.000Z

135

High-performance self-aligned inversion-channel In{sub 0.53}Ga{sub 0.47}As metal-oxide-semiconductor field-effect-transistors by in-situ atomic-layer-deposited HfO{sub 2}  

SciTech Connect (OSTI)

Self-aligned inversion-channel In{sub 0.53}Ga{sub 0.47}As metal-oxide-semiconductor field-effect-transistors (MOSFETs) have been fabricated using the gate dielectrics of in-situ directly atomic-layer-deposited (ALD) HfO{sub 2} followed by ALD-Al{sub 2}O{sub 3}. There were no surface pretreatments and no interfacial passivation/barrier layers prior to the ALD. TiN/Al{sub 2}O{sub 3} (4?nm)/HfO{sub 2} (1?nm)/In{sub 0.53}Ga{sub 0.47}As/InP MOS capacitors exhibited well-behaved capacitance-voltage characteristics with true inversion behavior, low leakage current densities of ?10{sup ?8}?A/cm{sup 2} at ±1?MV/cm, and thermodynamic stability at high temperatures. Al{sub 2}O{sub 3} (3?nm)/HfO{sub 2} (1?nm)/In{sub 0.53}Ga{sub 0.47}As MOSFETs of 1 ?m gate length, with 700?°C–800?°C rapid thermal annealing in source/drain activation, have exhibited high extrinsic drain current (I{sub D}) of 1.5?mA/?m, transconductance (G{sub m}) of 0.84 mS/?m, I{sub ON}/I{sub OFF} of ?10{sup 4}, low sub-threshold swing of 103?mV/decade, and field-effect electron mobility of 1100 cm{sup 2}/V?·?s. The devices have also achieved very high intrinsic I{sub D} and G{sub m} of 2?mA/?m and 1.2?mS/?m, respectively.

Lin, T. D.; Chang, W. H.; Chang, Y. C.; Hong, M., E-mail: raynien@phys.nthu.edu.tw, E-mail: mhong@phys.ntu.edu.tw [Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Chu, R. L.; Chang, Y. H. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)] [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lee, M. Y.; Hong, P. F.; Chen, Min-Cheng [National Nano Device Laboratories, Hsinchu 30076, Taiwan (China)] [National Nano Device Laboratories, Hsinchu 30076, Taiwan (China); Kwo, J., E-mail: raynien@phys.nthu.edu.tw, E-mail: mhong@phys.ntu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

2013-12-16T23:59:59.000Z

136

Process for ion-assisted laser deposition of biaxially textured layer on substrate  

DOE Patents [OSTI]

A process for depositing a biaxially aligned intermediate layer over a non-single crystal substrate is disclosed which permits the subsequent deposition thereon of a biaxially oriented superconducting film. The process comprises depositing on a substrate by laser ablation a material capable of being biaxially oriented and also capable of inhibiting the migration of substrate materials through the intermediate layer into such a superconducting film, while simultaneously bombarding the substrate with an ion beam. In a preferred embodiment, the deposition is carried out in the same chamber used to subsequently deposit a superconducting film over the intermediate layer. In a further aspect of the invention, the deposition of the superconducting layer over the biaxially oriented intermediate layer is also carried out by laser ablation with optional additional bombardment of the coated substrate with an ion beam during the deposition of the superconducting film.

Russo, Richard E. (Walnut Creek, CA); Reade, Ronald P. (Berkeley, CA); Garrison, Stephen M. (Palo Alto, CA); Berdahl, Paul (Oakland, CA)

1995-01-01T23:59:59.000Z

137

CO-CATALYTIC ABSORPTION LAYERS FOR CONTROLLED LASER-INDUCED CHEMICAL VAPOR DEPOSITION OF CARBON NANOTUBES  

E-Print Network [OSTI]

The concept of co-catalytic layer structures for controlled laser-induced chemical vapor deposition of carbon nanotubes is established, in which a thin Ta support layer chemically aids the initial Fe catalyst reduction. This enables a significant...

Michaelis, F.B.; Weatherup, R.S.; Bayer, B.C.; Bock, M.C.D; Sugime, H.; Caneva, S.; Robertson, J.; Baumberg, J.J.; Hofmann, S.

2014-02-24T23:59:59.000Z

138

Homogeneous, dual layer, solid state, thin film deposition for structural and/or electrochemical characteristics  

DOE Patents [OSTI]

Solid state, thin film, electrochemical devices (10) and methods of making the same are disclosed. An exemplary device 10 includes at least one electrode (14) and an electrolyte (16) deposited on the electrode (14). The electrolyte (16) includes at least two homogenous layers of discrete physical properties. The two homogenous layers comprise a first dense layer (15) and a second porous layer (16).

Pitts, J. Roland; Lee, Se-Hee; Tracy, C. Edwin; Li, Wenming

2014-04-08T23:59:59.000Z

139

Integrated Sustainability Analysis of Atomic Layer Deposition for Microelectronics Manufacturing  

E-Print Network [OSTI]

monitoring, etc. The total energy consumption of the ALDof 42.7% of the total energy consumption; pumping duringwhich is 32.8% of total energy consumption; the electronics

Yuan, Chris Yingchun; David Dornfeld

2010-01-01T23:59:59.000Z

140

Atomic Layer Deposition for Stabilization of Silicon Anodes  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

atomic layer deposited: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

standards in addition to performing the desired optical function, which includes filters, beam (more) Gabriel, Nicholas Theodore 2011-01-01 213 Novel inverse opal based...

142

atomic layer deposition: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

standards in addition to performing the desired optical function, which includes filters, beam (more) Gabriel, Nicholas Theodore 2011-01-01 213 Novel inverse opal based...

143

Atomic Layer Deposition of Insulating Hafnium and Zirconium Nitrides  

E-Print Network [OSTI]

author. E-mail: gordon@chemistry.harvard.edu. (1) Toth, L. E. Transition Metal Carbides and Nitrides homoleptic tetrakis(dialkylamido)- metal(IV) complexes and ammonia at low substrate temperatures (150-250 °C). The precursor vapors were alternately pulsed into a heated reactor, yielding 1.15-1.20 � of metal nitride film

144

Atomic Layer Deposition (ALD) Preparation of Noble Metal Catalysts - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience Program Cumulus Humilis Aerosol ProcessingPrograms |

145

Atomic Layer Deposition for Stabilization of Amorphous Silicon Anodes |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope Change #1Impacts |Services

146

Development of a Novel Electrochemical Method to Deposit High Corrosion Resistant Silicate Layers on Metal  

E-Print Network [OSTI]

Development of a Novel Electrochemical Method to Deposit High Corrosion Resistant Silicate Layers LLC, Moberly, Missouri 65270, USA A novel method for electrodepositing silicates on metallic on galvanized steel. The silicate layer was deposited cathodically from a bath containing PQ Corporation N

Popov, Branko N.

147

Direct atomic-scale observation of layer-by-layer oxide growth during magnesium oxidation  

SciTech Connect (OSTI)

The atomic-scale oxide growth dynamics are directly revealed by in situ high resolution transmission electron microscopy during the oxidation of Mg surface. The oxidation process is characterized by the layer-by-layer growth of magnesium oxide (MgO) nanocrystal via the adatom process. Consistently, the nucleated MgO crystals exhibit faceted surface morphology as enclosed by (200) lattice planes. It is believed that the relatively lower surface energies of (200) lattice planes should play important roles, governing the growth mechanism. These results facilitate the understanding of the nanoscale oxide growth mechanism that will have an important impact on the development of magnesium or magnesium alloys with improved resistance to oxidation.

Zheng, He; Wu, Shujing; Sheng, Huaping; Liu, Chun; Liu, Yu; Cao, Fan; Zhou, Zhichao; Zhao, Dongshan, E-mail: wang@whu.edu.cn, E-mail: dszhao@whu.edu.cn; Wang, Jianbo, E-mail: wang@whu.edu.cn, E-mail: dszhao@whu.edu.cn [School of Physics and Technology, Center for Electron Microscopy and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072 (China); Zhao, Xingzhong [School of Physics and Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072 (China)

2014-04-07T23:59:59.000Z

148

E-Print Network 3.0 - atomic layer graphene Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

graphene Search Powered by Explorit Topic List Advanced Search Sample search results for: atomic layer graphene Page: << < 1 2 3 4 5 > >> 1 Graphite Handout Graphite is a...

149

E-Print Network 3.0 - atomic layer epitaxy Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the surface of the grown MnSi layer. On the atomic scale, scanning... Epitaxial growth of silicide layers on Si substrates has attracted much attention due to their...

150

Method of depositing multi-layer carbon-based coatings for field emission  

DOE Patents [OSTI]

A novel field emitter device for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials.

Sullivan, John P. (Albuquerque, NM); Friedmann, Thomas A. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

151

RANDOM DEPOSITION MODEL OF CDS LAYER IN CDS/CDTE THINFILM SOLAR CELLS  

E-Print Network [OSTI]

THESIS RANDOM DEPOSITION MODEL OF CDS LAYER IN CDS/CDTE THIN­FILM SOLAR CELLS Submitted by Lei Chen LAYER IN CDS/CDTE THIN­FILM SOLAR CELLS BE AC- CEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE MODEL OF CDS LAYER IN CDS/CDTE THIN­FILM SOLAR CELLS Thin­film solar cells are developing dramatically

Sites, James R.

152

Surface diffusion coefficient of Au atoms on single layer graphene grown on Cu  

SciTech Connect (OSTI)

A 5?nm thick Au film was deposited on single layer graphene sheets grown on Cu. By thermal processes, the dewetting phenomenon of the Au film on the graphene was induced so to form Au nanoparticles. The mean radius, surface-to-surface distance, and surface density evolution of the nanoparticles on the graphene sheets as a function of the annealing temperature were quantified by scanning electron microscopy analyses. These quantitative data were analyzed within the classical mean-field nucleation theory so to obtain the temperature-dependent Au atoms surface diffusion coefficient on graphene: D{sub S}(T)=[(8.2±0.6)×10{sup ?8}]exp[?(0.31±0.02(eV)/(at) )/kT]?cm{sup 2}/s.

Ruffino, F., E-mail: francesco.ruffino@ct.infn.it; Cacciato, G.; Grimaldi, M. G. [Dipartimento di Fisica ed Astronomia-Universitá di Catania, via S. Sofia 64, 95123 Catania, Italy and MATIS IMM-CNR, via S. Sofia 64, 95123 Catania (Italy)

2014-02-28T23:59:59.000Z

153

Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom  

DOE Patents [OSTI]

An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

2005-10-18T23:59:59.000Z

154

Single- and few-layer graphene by ambient pressure chemical vapor deposition on nickel  

E-Print Network [OSTI]

An ambient pressure chemical vapor deposition (APCVD) process is used to fabricate graphene based films consisting of one to several graphene layers across their area. Polycrystalline Ni thin films are used and the graphene ...

Reina Ceeco, Alfonso

2010-01-01T23:59:59.000Z

155

Nano-Al{sub 2}O{sub 3} multilayer film deposition on cotton fabrics by layer-by-layer deposition method  

SciTech Connect (OSTI)

Highlights: {yields} Cationic charges were created on the cotton fibre surfaces with 2,3-epoxypropyltrimethylammonium chloride. {yields} Al{sub 2}O{sub 3} nanoparticles were deposited on the cotton fabrics by layer-by-layer deposition. {yields} The fabrics deposited with the Al{sub 2}O{sub 3} nanoparticles exhibit better UV-protection and significant flame retardancy properties. {yields} The mechanical properties were improved after surface film deposition. -- Abstract: Al{sub 2}O{sub 3} nanoparticles were used for fabrication of multilayer nanocomposite film deposition on cationic cotton fabrics by electrostatic self-assembly to improve the mechanical, UV-protection and flame retardancy properties of cotton fabrics. Cotton fabric surface was modified with a chemical reaction to build-up cationic charge known as cationization. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy were used to verify the presence of deposited nanolayers. Air permeability, whiteness value, tensile strength, UV-transmittance and Limited Oxygen Index properties of cotton fabrics were analyzed before and after the treatment of Al{sub 2}O{sub 3} nanoparticles by electrostatic self-assemblies. It was proved that the flame retardancy, tensile strength and UV-transmittance of cotton fabrics can be improved by Al{sub 2}O{sub 3} nanoparticle additive through electrostatic self-assembly process.

Ugur, Sule S., E-mail: sule@mmf.sdu.edu.tr [Department of Textile Engineering, Sueleyman Demirel University, Isparta 32260 (Turkey); Sariisik, Merih [Department of Textile Engineering, Dokuz Eyluel University, Izmir 35160 (Turkey)] [Department of Textile Engineering, Dokuz Eyluel University, Izmir 35160 (Turkey); Aktas, A. Hakan [Department of Chemistry, Sueleyman Demirel University, Isparta 32260 (Turkey)] [Department of Chemistry, Sueleyman Demirel University, Isparta 32260 (Turkey)

2011-08-15T23:59:59.000Z

156

E-Print Network 3.0 - atomic layer growth Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

212, 281 (1999) Subject classification: 68.45.Da; S1.3 Summary: growth. 4. When the Sb atoms are buried under the epitaxial Ag layer, they will change their positions... ckel...

157

ZnS/Zn(O,OH)S-based buffer layer deposition for solar cells  

DOE Patents [OSTI]

The invention provides CBD ZnS/Zn(O,OH)S and spray deposited ZnS/Zn(O,OH)S buffer layers prepared from a solution of zinc salt, thiourea and ammonium hydroxide dissolved in a non-aqueous/aqueous solvent mixture or in 100% non-aqueous solvent. Non-aqueous solvents useful in the invention include methanol, isopropanol and triethyl-amine. One-step deposition procedures are described for CIS, CIGS and other solar cell devices.

Bhattacharya, Raghu N. (Littleton, CO)

2009-11-03T23:59:59.000Z

158

An atomic-scale analysis of catalytically-assisted chemical vapor deposition of carbon nanotubes  

E-Print Network [OSTI]

An atomic-scale analysis of catalytically-assisted chemical vapor deposition of carbon nanotubes M Growth of carbon nanotubes during transition-metal particles catalytically-assisted thermal decomposition of various nanotube surface and edge reactions (e.g. adsorption of hydrocarbons and hydrogen onto the surface

Grujicic, Mica

159

In-situ deposition of high-k dielectrics on III-V compound semiconductor in MOCVD system  

E-Print Network [OSTI]

In situ deposition of high-k materials to passivate the GaAs in metal organic chemical vapor deposition (MOCVD) system was well demonstrated. Both atomic layer deposition (ALD) and chemical vapor deposition (CVD) methods ...

Cheng, Cheng-Wei, Ph.D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

160

Detecting sub-glacial aquifers in the north polar layered deposits with Mars Express/MARSIS  

E-Print Network [OSTI]

water ice cap and underlying dusty-ice polar layered deposits or PLD) via melting from ice insulation effects, local geothermal hot spots, or heat-generating glacial sliding. Ice cap basal melting may at the ice/rock interface under the Antarctic ice cap [Oswald and Robin, 1973]. Clifford [1987, 1993] has

Gurnett, Donald A.

Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Pore evolution during high pressure atomic vapor deposition D. D. Hass Y. Y. Yang H. N. G. Wadley  

E-Print Network [OSTI]

The development of physical vapor deposition systems that employ inert gas jets to entrain and deposit atomic conditions can contain a higher volume fraction of porosity and a different pore morphology to coatings created by conventional, low pressure (\\10-4 Pa) deposition processes. A recent direct simulation Monte

Wadley, Haydn

162

Atomic absorption monitor for deposition process control of aluminum at 394 nm using frequency-doubled diode laser  

E-Print Network [OSTI]

Atomic absorption monitor for deposition process control of aluminum at 394 nm using frequency November 1995 A monitor for Al vapor density based on atomic absorption AA using a frequency of atomic absorption AA as a monitor for thickness and composition control in physical vapor deposi- tion

Fejer, Martin M.

163

Fabricating amorphous silicon solar cells by varying the temperature _of the substrate during deposition of the amorphous silicon layer  

DOE Patents [OSTI]

An improved process for fabricating amorphous silicon solar cells in which the temperature of the substrate is varied during the deposition of the amorphous silicon layer is described. Solar cells manufactured in accordance with this process are shown to have increased efficiencies and fill factors when compared to solar cells manufactured with a constant substrate temperature during deposition of the amorphous silicon layer.

Carlson, David E. (Yardley, PA)

1982-01-01T23:59:59.000Z

164

New oxygen radical source using selective sputtering of oxygen atoms for high rate deposition of TiO{sub 2} films  

SciTech Connect (OSTI)

We have developed a new oxygen radical source based on the reactive sputtering phenomena of a titanium target for high rate deposition of TiO{sub 2} films. In this oxygen radical source, oxygen radicals are mainly produced by two mechanisms: selective sputter-emission of oxygen atoms from the target surface covered with a titanium oxide layer, and production of high-density oxygen plasma in the space near the magnetron-sputtering cathode. Compared with molecular oxygen ions, the amount of atomic oxygen radicals increased significantly with an increase in discharge current so that atomic oxygen radicals were mainly produced by this radical source. It should be noted that oxygen atoms were selectively sputtered from the target surface, and titanium atoms sputter-emitted from the target cathode were negligibly small. The amount of oxygen radicals supplied from this radical source increased linearly with increasing discharge current, and oxygen radicals of 1 Multiplication-Sign 10{sup 15} atoms/s/cm{sup 2} were supplied to the substrate surface at a discharge current of 1.2 A. We conclude that our newly developed oxygen radical source can be a good tool to achieve high rate deposition and to control the structure of TiO{sub 2} films for many industrial design applications.

Yasuda, Yoji; Lei, Hao; Hoshi, Yoichi [Department of Electronics and Information Technology, Tokyo Polytechnic University, Kanagawa 243-0297 (Japan); State Key Laboratory for Corrosion and Protection, Surface Engineering of Materials Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Department of Electronics and Information Technology, Tokyo Polytechnic University, Kanagawa 243-0297 (Japan)

2012-11-15T23:59:59.000Z

165

Method of depositing a protective layer over a biaxially textured alloy substrate and composition therefrom  

DOE Patents [OSTI]

A laminate article consists of a substrate and a biaxially textured protective layer over the substrate. The substrate can be biaxially textured and also have reduced magnetism over the magnetism of Ni. The substrate can be selected from the group consisting of nickel, copper, iron, aluminum, silver and alloys containing any of the foregoing. The protective layer can be selected from the group consisting of gold, silver, platinum, palladium, and nickel and alloys containing any of the foregoing. The protective layer is also non-oxidizable under conditions employed to deposit a desired, subsequent oxide buffer layer. Layers of YBCO, CeO.sub.2, YSZ, LaAlO.sub.3, SrTiO.sub.3, Y.sub.2 O.sub.3, RE.sub.2 O.sub.3, SrRuO.sub.3, LaNiO.sub.3 and La.sub.2 ZrO.sub.3 can be deposited over the protective layer. A method of forming the laminate article is also disclosed.

Goyal, Amit (Knoxville, TN); Kroeger, Donald M. (Knoxville, TN); Paranthaman, Mariappan (Knoxville, TN); Lee, Dominic F. (Knoxville, TN); Feenstra, Roeland (Knoxville, TN); Norton, David P. (Gainesville, FL)

2002-01-01T23:59:59.000Z

166

Fabrication of Sr silicate buffer layer on Si(100) substrate by pulsed laser deposition using a SrO target  

SciTech Connect (OSTI)

The authors fabricated 2?×?1 Sr-reconstructed Si(100) substrates using thin SrO layers, and used them to direct growth of crystalline perovskite oxide on Si. The SrO layers used to reconstruct the Si(100) substrates were grown by pulsed laser deposition from a SrO single crystal target, followed by postdeposition-annealing (PDA) of the SrO/Si(100) structure. In situ observations of reflective high-energy electron diffraction during PDA confirmed a 2?×?1 reconstruction of the Si surface and x-ray photoemission spectroscopy of the annealed samples confirmed the existence of Sr atoms in a silicate phase, which indicated that a 2?×?1 Sr-reconstructed Si surface was achieved. The optimal fabrication conditions were annealing at 720?°C for 1?min and an equivalent SrO layer thickness (ML{sub eq}) of 2.5 ML{sub eq}. The temperature condition was very narrow, at 720?±?20?°C, for an acceptable product. Subsequently, the authors demonstrated the growth of crystalline SrTiO{sub 3} films on the 2?×?1 Sr-reconstructed Si(100) surfaces.

Imanaka, Atsuhiro; Sasaki, Tsubasa [Department of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Hotta, Yasushi, E-mail: hotta@eng.u-hyogo.ac.jp; Satoh, Shin-ichi [Department of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan and CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

2014-09-01T23:59:59.000Z

167

Single-layer MoS{sub 2} roughness and sliding friction quenching by interaction with atomically flat substrates  

SciTech Connect (OSTI)

We experimentally study the surface roughness and the lateral friction force in single-layer MoS{sub 2} crystals deposited on different substrates: SiO{sub 2}, mica, and hexagonal boron nitride (h-BN). Roughness and sliding friction measurements are performed by atomic force microscopy. We find a strong dependence of the MoS{sub 2} roughness on the underlying substrate material, being h-BN the substrate which better preserves the flatness of the MoS{sub 2} crystal. The lateral friction also lowers as the roughness decreases, and attains its lowest value for MoS{sub 2} flakes on h-BN substrates. However, it is still higher than for the surface of a bulk MoS{sub 2} crystal, which we attribute to the deformation of the flake due to competing tip-to-flake and flake-to-substrate interactions.

Quereda, J. [Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049 (Spain); Castellanos-Gomez, A. [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Agraït, N. [Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049 (Spain); Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA-Nanociencia, E-28049 Madrid (Spain); Instituto de Ciencia de Materiales Nicolás Cabrera, Campus de Cantoblanco, E-28049 Madrid (Spain); Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Rubio-Bollinger, G., E-mail: gabino.rubio@uam.es [Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049 (Spain); Instituto de Ciencia de Materiales Nicolás Cabrera, Campus de Cantoblanco, E-28049 Madrid (Spain); Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid (Spain)

2014-08-04T23:59:59.000Z

168

Solution deposited NiO thin-films as hole transport layers in organic photovoltaics  

SciTech Connect (OSTI)

Organic solar cells require suitable anode surface modifiers in order to selectively collect positive charge carriers and improve device performance. We employ a nickel metal organic ink precursor to fabricate NiO hole transport layers on indium tin oxide anodes. This solution deposited NiO annealed at 250 °C and plasma treated, achieves similar OPV device results reported with NiO films from PLD as well as PEDOT:PSS. We demonstrate a tunable work function by post-processing the NiO with an O{sub 2}-plasma surface treatment of varied power and time. We find that plasma treatment is necessary for optimal device performance. Optimal devices utilizing a solution deposited NiO hole transport layer show lower series resistance and increased fill factor when compared to solar cells with PEDOT:PSS.

Steirer, K. Xerxes [Colorado School of Mines, Golden, CO (United States); Chesin, Jordan P. [Division of Engineering, Brown Univ., Providence, RI (United States); Widjonarko, N. Edwin [University of Colorado, Dept of Physics, Boulder, CO (United States); Berry, Joseph J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Miedaner, Alexander [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ginley, David S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Olson, Dana C. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

2010-01-01T23:59:59.000Z

169

aluminum oxide layer: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALUMINUM OXIDE FOR THE SURFACE PASSIVATION OF HIGH-EFFICIENCY SILICON SOLAR CELLS Renewable Energy Websites Summary: ATOMIC-LAYER-DEPOSITED ALUMINUM OXIDE FOR THE...

170

aluminum oleate layered: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALUMINUM OXIDE FOR THE SURFACE PASSIVATION OF HIGH-EFFICIENCY SILICON SOLAR CELLS Renewable Energy Websites Summary: ATOMIC-LAYER-DEPOSITED ALUMINUM OXIDE FOR THE...

171

aluminum oxide layers: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALUMINUM OXIDE FOR THE SURFACE PASSIVATION OF HIGH-EFFICIENCY SILICON SOLAR CELLS Renewable Energy Websites Summary: ATOMIC-LAYER-DEPOSITED ALUMINUM OXIDE FOR THE...

172

Carlo Beenakker, Leiden University Graphene is a mono-atomic layer of carbon atoms, arranged in a honeycomb la ice. Con-  

E-Print Network [OSTI]

Graphene Carlo Beenakker, Leiden University Graphene is a mono-atomic layer of carbon atoms = 106 m/s that is inde- pendent of their energy E. [1] Explain why the conduction electrons in graphene", and is a unique feature of graphene. We introduce a potential barrier U (x) (see gure). An electron moves

Galis, Frietson

173

Resonance enhanced multiphoton ionization probing of H atoms and CH3 radicals in a hot lament chemical vapour deposition reactor  

E-Print Network [OSTI]

- lished route for forming polycrystalline diamond ®lms, which are ®nding ever increasing roles reactor used for diamond chemical vapour deposition (CVD). Parameters varied include the hydrocarbon (CH4 to reinforce the consensus view that H atom production during diamond CVD in a hot ®lament reactor arises

Bristol, University of

174

Method for preparing ultraflat, atomically perfect areas on large regions of a crystal surface by heteroepitaxy deposition  

DOE Patents [OSTI]

A novel method of forming large atomically flat areas is described in which a crystalline substrate having a stepped surface is exposed to a vapor of another material to deposit a material onto the substrate, which material under appropriate conditions self arranges to form 3D islands across the substrate surface. These islands are atomically flat at their top surface, and conform to the stepped surface of the substrate below at the island-substrate interface. Thereafter, the deposited materials are etched away, in the etch process the atomically flat surface areas of the islands transferred to the underlying substrate. Thereafter the substrate may be cleaned and annealed to remove any remaining unwanted contaminants, and eliminate any residual defects that may have remained in the substrate surface as a result of pre-existing imperfections of the substrate.

El Gabaly, Farid; Schmid, Andreas K.

2013-03-19T23:59:59.000Z

175

Pulsed Plasma with Synchronous Boundary Voltage for Rapid Atomic Layer Etching  

SciTech Connect (OSTI)

Atomic Layer ETching (ALET) of a solid with monolayer precision is a critical requirement for advancing nanoscience and nanotechnology. Current plasma etching techniques do not have the level of control or damage-free nature that is needed for patterning delicate sub-20 nm structures. In addition, conventional ALET, based on pulsed gases with long reactant adsorption and purging steps, is very slow. In this work, novel pulsed plasma methods with synchronous substrate and/or “boundary electrode” bias were developed for highly selective, rapid ALET. Pulsed plasma and tailored bias voltage waveforms provided controlled ion energy and narrow energy spread, which are critical for highly selective and damage-free etching. The broad goal of the project was to investigate the plasma science and engineering that will lead to rapid ALET with monolayer precision. A combined experimental-simulation study was employed to achieve this goal.

Economou, Demetre J.; Donnelly, Vincent M.

2014-05-13T23:59:59.000Z

176

Effective Control of the Charge and Magnetic States of Transition-Metal Atoms on Single-Layer Boron Nitride  

E-Print Network [OSTI]

Nitride Bing Huang,1 Hongjun Xiang,2 Jaejun Yu,3 and Su-Huai Wei1 1 National Renewable Energy LaboratoryEffective Control of the Charge and Magnetic States of Transition-Metal Atoms on Single-Layer Boron devices but is still challenging. Here we suggest that the magnetic and charge states of transition

Gong, Xingao

177

atomic-layer-deposited gate dielectric: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

standards in addition to performing the desired optical function, which includes filters, beam (more) Gabriel, Nicholas Theodore 2011-01-01 167 Novel inverse opal based...

178

Title of Document: SENSOR BASED ATOMIC LAYER DEPOSITION FOR RAPID PROCESS  

E-Print Network [OSTI]

processes. A novel wafer scale ALD reactor, which features fast gas switching, good process sensing manufacturability, we have explored new reactor designs and applied in-situ process sensing to W and HfO2 ALD compatibility and significant similarity to the real manufacturing environment, is constructed. The reactor has

Anlage, Steven

179

Mechanisms of Atomic Layer Deposition on Substrates with Ultrahigh Aspect Ratios  

E-Print Network [OSTI]

as a very promising method for controlled coating of the inner surfaces of monolithic nanoporous aerogel (AG suited for coating substrates with ultrahigh aspect ratios (J103), including nanoporous solids. Here, we study the ALD of Cu and Cu3N on the inner surfaces of low-density nanoporous silica aerogel monoliths

180

Wall-Mounted QCM Fixture for Atomic Layer Deposition | Argonne National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30,WP-07 power

Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Deposition of dopant impurities and pulsed energy drive-in  

DOE Patents [OSTI]

A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.

Wickboldt, Paul (Walnut Creek, CA); Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Jose, CA); Ellingboe, Albert R. (Malahide, IE)

2008-01-01T23:59:59.000Z

182

Deposition of dopant impurities and pulsed energy drive-in  

DOE Patents [OSTI]

A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.

Wickboldt, Paul (Walnut Creek, CA); Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Ellingboe, Albert R. (Fremont, CA)

1999-01-01T23:59:59.000Z

183

Deposition of dopant impurities and pulsed energy drive-in  

DOE Patents [OSTI]

A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique is disclosed. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques. 2 figs.

Wickboldt, P.; Carey, P.G.; Smith, P.M.; Ellingboe, A.R.

1999-06-29T23:59:59.000Z

184

CdS/CdTe Solar Cells Containing Directly Deposited CdSxTe1-x Alloy Layers: Preprint  

SciTech Connect (OSTI)

A CdSxTe1-x layer forms by interdiffusion of CdS and CdTe during the fabrication of thin-film CdTe photovoltaic (PV) devices. The CdSxTe1-x layer is thought to be important because it relieves strain at the CdS/CdTe interface that would otherwise exist due to the 10% lattice mismatch between these two materials. Our previous work [1] has indicated that the electrical junction is located in this interdiffused CdSxTe1-x region. Further understanding, however, is essential to predict the role of this CdSxTe1-x layer in the operation of CdS/CdTe devices. In this study, CdSxTe1-x alloy films were deposited by radio-frequency (RF) magnetron sputtering and co-evaporation from CdTe and CdS sources. Both RF-magnetron-sputtered and co-evaporated CdSxTe1-x films of lower S content (x<0.3) have a cubic zincblende (ZB) structure akin to CdTe, whereas those of higher S content have a hexagonal wurtzite (WZ) structure like that of CdS. Films become less preferentially oriented as a result of a CdCl2 heat treatment (HT) at ~400 degrees C for 5 min. Films sputtered in a 1% O2/Ar ambient are amorphous as deposited, but show CdTe ZB, CdS WZ, and CdTe oxide phases after a CdCl2 HT. Films sputtered in O2 partial pressure have a much wider bandgap than expected. This may be explained by nanocrystalline size effects seen previously [2] for sputtered oxygenated CdS (CdS:O) films. Initial PV device results show that the introduction of a directly-deposited CdSxTe1-x alloy layer into the device structure produces devices of comparable performance to those without the alloy layer when a CdCl2 HT is performed. Further investigation is required to determine whether the CdCl2 heat treatment step can be altered or eliminated through direct deposition of the alloy layer.

Duenow, J. N.; Dhere, R. G.; Moutinho, H. R.; To, B.; Pankow, J. W.; Kuciauskas, D.; Gessert, T. A.

2011-07-01T23:59:59.000Z

185

CdS/CdTe Solar Cells Containing Directly-Deposited CdSxTe1-x Alloy Layers  

SciTech Connect (OSTI)

A CdS{sub x}Te{sub 1-x} layer forms by interdiffusion of CdS and CdTe during the fabrication of thin-film CdTe photovoltaic (PV) devices. The CdS{sub x}Te{sub 1-x} layer is thought to be important because it relieves strain at the CdS/CdTe interface that would otherwise exist due to the 10% lattice mismatch between these two materials. Our previous work [1] has indicated that the electrical junction is located in this interdiffused CdS{sub x}Te{sub 1-x} region. Further understanding, however, is essential to predict the role of this CdS{sub x}Te{sub 1-x} layer in the operation of CdS/CdTe devices. In this study, CdS{sub x}Te{sub 1-x} alloy films were deposited by radio-frequency (RF) magnetron sputtering and co-evaporation from CdTe and CdS sources. Both RF-magnetron-sputtered and co-evaporated CdS{sub x}Te{sub 1-x} films of lower S content (x<;0.3) have a cubic zincblende (ZB) structure akin to CdTe, whereas those of higher S content have a hexagonal wurtzite (WZ) structure like that of CdS. Films become less preferentially oriented as a result of a CdCl{sub 2} heat treatment (HT) at {approx}400 C for 5 min. Films sputtered in a 1% O{sub 2}/Ar ambient are amorphous as deposited, but show CdTe ZB, CdS WZ, and CdTe oxide phases after a CdCl{sub 2} HT. Films sputtered in O{sub 2} partial pressure have a much wider bandgap than expected. This may be explained by nanocrystalline size effects seen previously [2] for sputtered oxygenated CdS (CdS:O) films. Initial PV device results show that the introduction of a directly-deposited CdS{sub x}Te{sub 1-x} alloy layer into the device structure produces devices of comparable performance to those without the alloy layer when a CdCl{sub 2} HT is performed. Further investigation is required to determine whether the CdCl{sub 2} heat treatment step can be altered or eliminated through direct deposition of the alloy layer.

Duenow, J. N.; Dhere, R. G.; Moutinho, H. R.; To, B.; Pankow, J. W.; Kuciauskas, D.; Gessert, T. A.

2011-01-01T23:59:59.000Z

186

Fabrication of heterojunction solar cells by improved tin oxide deposition on insulating layer  

DOE Patents [OSTI]

Highly efficient tin oxide-silicon heterojunction solar cells are prepared by heating a silicon substrate, having an insulating layer thereon, to provide a substrate temperature in the range of about 300.degree. C. to about 400.degree. C. and thereafter spraying the so-heated substrate with a solution of tin tetrachloride in a organic ester boiling below about 250.degree. C. Preferably the insulating layer is naturally grown silicon oxide layer.

Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

1980-01-01T23:59:59.000Z

187

Abstract --A physical-vapour-deposition (PVD) of AlN thin films is presented in this paper. For AlN layers that are  

E-Print Network [OSTI]

high quality layers with as high as possible thermal conductivity kTH, different materials have been are developed. The deposition parameters are tuned to guarantee low stress, high thermal conductivity , the dielectric constant about 8, and the thermal conductivity around -1 -1 11 Wm K . The deposition conditions

Technische Universiteit Delft

188

Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors  

DOE Patents [OSTI]

A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet (DUV) and Extreme Ultra-Violet (EUV) wavelengths. The method results in a product with minimum feature sizes of less than 0.10 [micro]m for the shortest wavelength (13.4 nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R[sup 2] factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates. 15 figs.

Ruffner, J.A.

1999-06-15T23:59:59.000Z

189

Characterization of metal oxide layers grown on CVD graphene  

SciTech Connect (OSTI)

Growth of a fully oxidized aluminum oxide layer with low surface roughness on graphene grown by chemical vapor deposition is demonstrated. This is accomplished by the deposition of a 0.2 nm thick titanium seed layer on the graphene prior to the deposition of the aluminum under ultra high vacuum conditions, which was subsequently oxidized. The stoichiometry and surface roughness of the oxide layers were measured for a range of titanium and aluminum depositions utilizing ex situ x-ray photoelectron spectrometry and atomic force microscopy. These fully oxidized films are expected to produce good dielectric layers for use in graphene based electronic devices.

Matsubayashi, Akitomo; Abel, Joseph; Prasad Sinha, Dhiraj; Lee, Ji Ung; LaBella, Vincent P. [College of Nanoscale Science and Engineering, University at Albany, SUNY, Albany, New York 12203 (United States)

2013-03-15T23:59:59.000Z

190

E-Print Network 3.0 - atomic layer chemical Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Diamond and Related Materials A kinetic model of diamond nucleation and silicon carbide interlayer formation during Summary: diffusion of carbon atoms into the silicon...

191

The Effect of High Temperature Annealing on the Grain Characteristics of a Thin Chemical Vapor Deposition Silicon Carbide Layer.  

SciTech Connect (OSTI)

The unique combination of thermo-mechanical and physiochemical properties of silicon carbide (SiC) provides interest and opportunity for its use in nuclear applications. One of the applications of SiC is as a very thin layer in the TRi-ISOtropic (TRISO) coated fuel particles for high temperature gas reactors (HTGRs). This SiC layer, produced by chemical vapor deposition (CVD), is designed to withstand the pressures of fission and transmutation product gases in a high temperature, radiation environment. Various researchers have demonstrated that macroscopic properties can be affected by changes in the distribution of grain boundary plane orientations and misorientations [1 - 3]. Additionally, various researchers have attributed the release behavior of Ag through the SiC layer as a grain boundary diffusion phenomenon [4 - 6]; further highlighting the importance of understanding the actual grain characteristics of the SiC layer. Both historic HTGR fission product release studies and recent experiments at Idaho National Laboratory (INL) [7] have shown that the release of Ag-110m is strongly temperature dependent. Although the maximum normal operating fuel temperature of a HTGR design is in the range of 1000-1250°C, the temperature may reach 1600°C under postulated accident conditions. The aim of this specific study is therefore to determine the magnitude of temperature dependence on SiC grain characteristics, expanding upon initial studies by Van Rooyen et al, [8; 9].

Isabella J van Rooyen; Philippus M van Rooyen; Mary Lou Dunzik-Gougar

2013-08-01T23:59:59.000Z

192

Air-stable ink for scalable, high-throughput layer deposition  

DOE Patents [OSTI]

A method for producing and depositing air-stable, easily decomposable, vulcanized ink on any of a wide range of substrates is disclosed. The ink enables high-volume production of optoelectronic and/or electronic devices using scalable production methods, such as roll-to-roll transfer, fast rolling processes, and the like.

Weil, Benjamin D; Connor, Stephen T; Cui, Yi

2014-02-11T23:59:59.000Z

193

Atomically precise (catalytic) particles synthesized by a novel cluster deposition instrument  

SciTech Connect (OSTI)

We report a new high vacuum instrument which is dedicated to the preparation of well-defined clusters supported on model and technologically relevant supports for catalytic and materials investigations. The instrument is based on deposition of size selected metallic cluster ions that are produced by a high flux magnetron cluster source. The throughput of the apparatus is maximized by collecting and focusing ions utilizing a conical octupole ion guide and a linear ion guide. The size selection is achieved by a quadrupole mass filter. The new design of the sample holder provides for the preparation of multiple samples on supports of various sizes and shapes in one session. After cluster deposition onto the support of interest, samples will be taken out of the chamber for a variety of testing and characterization.

Yin, C.; Tyo, E. [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)] [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Kuchta, K. [Extrel CMS, LLC, 575 Epsilon Dr. Suite 2, Pittsburgh, Pennsylvania 15238-2838 (United States)] [Extrel CMS, LLC, 575 Epsilon Dr. Suite 2, Pittsburgh, Pennsylvania 15238-2838 (United States); Issendorff, B. von [Physikalisches Institut, Universität Freiburg, Stefan-Meier Str. 21, D-79104 Freiburg (Germany)] [Physikalisches Institut, Universität Freiburg, Stefan-Meier Str. 21, D-79104 Freiburg (Germany); Vajda, S., E-mail: vajda@anl.gov [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Nanoscience and Technology Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Institute for Molecular Engineering, The University of Chicago, 5747 South Ellis Avenue, Chicago, Illinois 60637 (United States); Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, 9 Hillhouse Avenue, New Haven, Connecticut 06520 (United States)

2014-05-07T23:59:59.000Z

194

More stable hybrid organic solar cells deposited on amorphous Si electron transfer layer  

SciTech Connect (OSTI)

We report on defect densities, performance, and stability of organic/inorganic hybrid solar cells produced using n-doped inorganic amorphous silicon-carbide layers as the electron transport layer (ETL). The organic material was poly-3-hexyl-thiophene (P3HT) and heterojunction was formed using phenyl-C{sub 71}-Butyric-Acid-Methyl Ester (PCBM). For comparison, inverted solar cells fabricated using Cs{sub 2}CO{sub 3} as ETL were fabricated. Defect densities and subgap quantum efficiency curves were found to be nearly identical for both types of cells. The cells were subjected to 2xsun illumination and it was found that the cells produced using doped a-Si as ETL were much more stable than the cells produced using Cs{sub 2}CO{sub 3}.

Samiee, Mehran; Modtland, Brian; Dalal, Vikram L., E-mail: vdalal@iastate.edu [Iowa State University, Dept. of Electrical and Computer Engineering, Ames, Iowa 50011 (United States); Aidarkhanov, Damir [Nazarbayev University, Astana (Kazakhstan)

2014-05-26T23:59:59.000Z

195

Large-Area Quality Control of Atomically-Thin Layered Materials  

E-Print Network [OSTI]

and K. S. Novoselov, Nature Materials 6, 183 (2007) 8. R. E.R) (2007). Chapter 3 Material Layer Identification Techniqueto Charge Density Wave Materials,” MRS Proceed. , Vol. 1344,

Nolen, Craig Merten

2012-01-01T23:59:59.000Z

196

A multiscale study of atomic interactions in the electrochemical double layer applied to electrocatalysis  

E-Print Network [OSTI]

This work is an integrated study of chemical and electrostatic interactions in the electrochemical double layer, and their significance for accurate prediction of reaction kinetics in electrocatalysis. First, a kinetic ...

Bonnet, Nicéphore

2011-01-01T23:59:59.000Z

197

The adhesion of electroless Ni(P) on alumina ceramic using a vacuum-deposited Ti-Pd activator layer  

SciTech Connect (OSTI)

The adhesion of electrolessly deposited nickel on Al[sub 2]O[sub 3] ceramic substrates using sputtered and evaporated Ti-Pd activator films was studied. The adhesion was measured using the direct pull-off test and the 90[degree] peel test. The morphology and the chemical composition of the fracture surfaces of the samples with evaporated Ti-Pd activator film were studied with scanning electron microscopy/energy, dispersive x-ray, and static secondary ion mass spectroscopy. Failure did not occur along the metal-ceramic interface, but mainly in the alumina, and therefore the strength of the system is determined primarily by the substrate material. Cross-sectional transmission electron microscopy and high-resolution transmission electron microscopy were used to study the interface structure before failure. The oxidation state of Ti at the interface was measured with X-ray photoelectron spectroscopy. This was carried out in the (sub)monolayer range by using a Ti wedge deposited on alumina with a maximum thickness of 0.35 nm. It is concluded that the strong adhesion at the metal-ceramic interface is caused by chemical bonding of the first Ti monolayer with substrate oxygen atoms.

Severin, J.W.; Hokke, R.; Wel, H. van der; Johnson, M.T.; With, G. de (Philips Research Labs., Eindhoven (Netherlands))

1993-06-01T23:59:59.000Z

198

Method of transferring a thin crystalline semiconductor layer  

DOE Patents [OSTI]

A method for transferring a thin semiconductor layer from one substrate to another substrate involves depositing a thin epitaxial monocrystalline semiconductor layer on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the thin semiconductor layer is bonded to a second substrate and the thin layer is separated away at the interface, which results in transferring the thin epitaxial semiconductor layer from one substrate to the other substrate.

Nastasi, Michael A. (Sante Fe, NM); Shao, Lin (Los Alamos, NM); Theodore, N. David (Mesa, AZ)

2006-12-26T23:59:59.000Z

199

Effect of e-beam irradiation on graphene layer grown by chemical vapor deposition  

SciTech Connect (OSTI)

We have grown graphene by chemical vapor deposition (CVD) and transferred it onto Si/SiO{sub 2} substrates to make tens of micron scale devices for Raman spectroscopy study. The effect of electron beam (e-beam) irradiation of various doses (600 to 12 000 {mu}C/cm{sup 2}) on CVD grown graphene has been examined by using Raman spectroscopy. It is found that the radiation exposures result in the appearance of the strong disorder D band attributed the damage to the lattice. The evolution of peak frequencies, intensities, and widths of the main Raman bands of CVD graphene is analyzed as a function of defect created by e-beam irradiation. Especially, the D and G peak evolution with increasing radiation dose follows the amorphization trajectory, which suggests transformation of graphene to the nanocrystalline and then to amorphous form. We have also estimated the strain induced by e-beam irradiation in CVD graphene. These results obtained for CVD graphene are in line with previous findings reported for the mechanically exfoliated graphene [D. Teweldebrhan and A. A. Balandin, Appl. Phys. Lett. 94, 013101 (2009)]. The results have important implications for CVD graphene characterization and device fabrication, which rely on the electron microscopy.

Iqbal, M. Z.; Kumar Singh, Arun; Iqbal, M. W.; Seo, Sunae; Eom, Jonghwa [Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of)

2012-04-15T23:59:59.000Z

200

The perfect atom sandwich requires an extra layer > EMC2 News > The Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe MolecularPlaceTheofThe Houseformation.The

Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Thermal stability and long term hydrogen/deuterium release from soft to hard amorphous carbon layers analyzed using in-situ Raman spectroscopy. Comparison with Tore Supra deposits  

E-Print Network [OSTI]

The thermal stability of 200 nm thick plasma enhanced chemical vapor deposited a-C:H and a-C:D layers ranging from soft to hard layers has been studied and compared to that of deposits collected on the Tore Supra tokamak plasma facing components by means of in-situ Raman spectroscopy. Linear ramp heating and long term isotherms (from several minutes to 21 days) have been performed and correlations between spectrometric parameters have been found. The information obtained on the sp 2 clustering has been investigated by comparing the G band shift and the 514 nm photon absorption evolution due to the thermal treatment of the layer. The effects of isotopic substitution have also been investigated.

Pardanaud, C; Giacometti, G; Mellet, N; Pégourié, B; Roubin, P

2015-01-01T23:59:59.000Z

202

Influences of alcoholic solvents on spray pyrolysis deposition of TiO{sub 2} blocking layer films for solid-state dye-sensitized solar cells  

SciTech Connect (OSTI)

Influences of alcoholic solvents for titanium diisopropoxide bis(acetylacetonate) (TPA) precursor solutions on the spray pyrolysis deposited TiO{sub 2} films and the photovoltaic performance of the solid-state dye-sensitized solar cells (SDSCs) using these TiO{sub 2} films as the blocking layers were investigated. Smooth TiO{sub 2} films were obtained by spray pyrolysis deposition of a TPA solution in isopropanol (IPA) at a relatively low temperature of 260 Degree-Sign C. On the other hand, when ethanol was used as solvent, the TiO{sub 2} films fabricated at the same temperature showed much rougher surfaces with many pinholes. Our results showed that ethanol reacts with TPA to form titanium diethoxide bis(acetylacetonate) (TEA), which requires a higher thermal decomposition temperature than that of TPA. SDSCs with TiO{sub 2} blocking layer films fabricated using a TPA solution in IPA showed higher power conversion efficiencies with smaller variations. - Graphical abstract: Alcoholic solvents used for the TiO{sub 2} precursor play a critical role in determining the surface morphology of blocking layers and thus the photovoltaic performance of the SDSCs. Highlights: Black-Right-Pointing-Pointer Solvent influences morphology of spray pyrolysis deposited TiO{sub 2} blocking layer. Black-Right-Pointing-Pointer Ethanol reacts with TPA, resulting poor quality of blocking layer. Black-Right-Pointing-Pointer Isopropanol is better than ethanol for obtaining smooth blocking layer. Black-Right-Pointing-Pointer SDSC with blocking layer made with isopropanol showed better performance.

Jiang, Changyun, E-mail: jiangc@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore)] [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore); Koh, Wei Lin; Leung, Man Yin [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore)] [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore); Hong, Wei [Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West ON, Waterloo, Canada N2L 3G1 (Canada)] [Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West ON, Waterloo, Canada N2L 3G1 (Canada); Li, Yuning, E-mail: yuning.li@uwaterloo.ca [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore) [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore); Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West ON, Waterloo, Canada N2L 3G1 (Canada); Zhang, Jie [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore)] [Institute of Materials Research and Engineering, A-STAR, 3 Research Link, 117602 Singapore (Singapore)

2013-02-15T23:59:59.000Z

203

Diode-laser-based atomic absorption monitor using frequency-modulation spectroscopy for physical vapor deposition process control  

E-Print Network [OSTI]

Diode-laser-based atomic absorption monitor using frequency-modulation spectroscopy for physical, and the dynamic events occur- ring as vapors condense on a substrate. Atomic absorption AA spectroscopy also been measured by means of the Doppler frequency shifts of the atomic absorption with respect

Fejer, Martin M.

204

Topography, complex refractive index, and conductivity of graphene layers measured by correlation of optical interference contrast, atomic force, and back scattered electron microscopy  

SciTech Connect (OSTI)

The optical phase shift by reflection on graphene is measured by interference contrast microscopy. The height profile across graphene layers on 300?nm thick SiO{sub 2} on silicon is derived from the phase profile. The complex refractive index and conductivity of graphene layers on silicon with 2?nm thin SiO{sub 2} are evaluated from a phase profile, while the height profile of the layers is measured by atomic force microscopy. It is observed that the conductivity measured on thin SiO{sub 2} is significantly greater than on thick SiO{sub 2}. Back scattered electron contrast of graphene layers is correlated to the height of graphene layers.

Vaupel, Matthias, E-mail: Matthias.vaupel@zeiss.com; Dutschke, Anke [Training Application Support Center, Carl Zeiss Microscopy GmbH, Königsallee 9-21, 37081 Göttingen (Germany); Wurstbauer, Ulrich; Pasupathy, Abhay [Department of Physics, Columbia University New York, 538 West 120th Street, New York, New York 10027 (United States); Hitzel, Frank [DME Nanotechnologie GmbH, Geysostr. 13, D-38106 Braunschweig (Germany)

2013-11-14T23:59:59.000Z

205

Photoluminescence study of the substitution of Cd by Zn during the growth by atomic layer epitaxy of alternate CdSe and ZnSe monolayers  

SciTech Connect (OSTI)

We present a study of the substitution of Cd atoms by Zn atoms during the growth of alternate ZnSe and CdSe compound monolayers (ML) by atomic layer epitaxy (ALE) as a function of substrate temperature. Samples contained two quantum wells (QWs), each one made of alternate CdSe and ZnSe monolayers with total thickness of 12 ML but different growth parameters. The QWs were studied by low temperature photoluminescence (PL) spectroscopy. We show that the Cd content of underlying CdSe layers is affected by the exposure of the quantum well film to the Zn flux during the growth of ZnSe monolayers. The amount of Cd of the quantum well film decreases with higher exposures to the Zn flux. A brief discussion about the difficulties to grow the Zn{sub 0.5}Cd{sub 0.5}Se ordered alloy (CuAu-I type) by ALE is presented.

Hernández-Calderón, I. [Physics Department,Cinvestav, Ave. IPN2508, 07360, México City, DF. (Mexico); Salcedo-Reyes, J. C. [Thin Films Group, Physics Department, Pontificia Universidad Javeriana, Cr. 7 No. 43-82, Ed. 53, Lab. 404, Bogotá, D.C. (Colombia)

2014-05-15T23:59:59.000Z

206

The optimization of interfaces in InAsSb/InGaAs strained-layer superlattices grown by metal-organic chemical vapor deposition  

SciTech Connect (OSTI)

We have prepared InAsSb/InGaAs strained-layer superlattice (SLS) semiconductors by metal-organic chemical vapor deposition (MOCVD) under a variety of conditions. Presence of an InGaAsSb interface layer is indicated by x-ray diffraction patterns. Optimized growth conditions involved the use of low pressure, short purge times, and no reactant flow during the purges. MOCVD was used to prepare an optically pumped, single heterostructure InAsSb/InGaAs SLS/InPSb laser which emitted at 3.9 {mu}m with a maximum operating temperature of approximately 100 K.

Biefeld, R.M.; Baucom, K.C.; Kurtz, S.R.

1993-12-31T23:59:59.000Z

207

Optimization of InAsSb/InGaAs strained-layer superlattice growth by metal-organic chemical vapor deposition for use in infrared emitters  

SciTech Connect (OSTI)

We have prepared InAsSb/InGaAs strained-layer superlattices (SLSs) by metal-organic chemical vapor deposition using a variety of growth conditions. Presence of an InGaAsSb interface layer was indicated by x-ray diffraction. This interface effect was minimized by optimizing the purge times, reactant flows, and growth conditions. The optimized growth conditions involved the use of low pressure, short purge times between the growth of the layers, and no reactant flow during the purges. Electron diffraction indicates that CuPt-type compositional ordering occurs in InAs{sub 1{minus}x}Sb{sub x} alloys and SLSs which explains an observed bandgap reduction from previously accepted alloy values.

Biefeld, R.M.; Baucom, K.C.; Follstaedt, D.M.; Kurtz, S.R.

1994-08-01T23:59:59.000Z

208

Effects of Adsorbed Pyridine Derivatives and Ultrathin Atomic-Layer-Deposited Alumina Coatings on the Conduction Band-Edge Energy  

E-Print Network [OSTI]

to the identity of shuttle molecules. INTRODUCTION Dye-sensitized solar cells (DSCs) constitute a promising (such as alumina) are known to boost open-circuit photovoltages substantially for dye-sensitized solar. The archetypal cell utilizes a Ru-based dye,7 typically N719 (i.e., ditetrabutyl-ammonium cis

209

In situ examination of tin oxide atomic layer deposition using quartz crystal microbalance and Fourier transform infrared techniques  

E-Print Network [OSTI]

-type semiconductor metal oxide that has many applications in various fields due to its special optical, electrical capacity anode for next gen- eration lithium ion batteries.3,4 SnO2 can also be used as a catalyst typically around 10-2 cm. The adsorp- tion of O2 from air removes the electron charge carriers from

George, Steven M.

210

Rapid SiO2 Atomic Layer Deposition Using Tris(tert-pentoxy)silanol B. B. Burton,  

E-Print Network [OSTI]

temperatures and higher TPS pressures. SiO2 ALD thicknesses of 125-140 � were observed at the highest TPS requires high temperatures of >325 °C and large reactant exposure of >109 L (1 L ) 10-6 Torr s).4-7 However ALD films using liquid tris(tert-pentoxy)silanol (TPS). The SiO2 film thicknesses were determined

George, Steven M.

211

Electron-stimulated reactions in layered CO/H{sub 2}O films: Hydrogen atom diffusion and the sequential hydrogenation of CO to methanol  

SciTech Connect (OSTI)

Low-energy (100 eV) electron-stimulated reactions in layered H{sub 2}O/CO/H{sub 2}O ices are investigated. For CO layers buried in amorphous solid water (ASW) films at depths of 50 monolayers (ML) or less from the vacuum interface, both oxidation and reduction reactions are observed. However, for CO buried more deeply in ASW films, only the reduction of CO to methanol is observed. Experiments with layered films of H{sub 2}O and D{sub 2}O show that the hydrogen atoms participating in the reduction of the buried CO originate in the region that is 10–50 ML below the surface of the ASW films and subsequently diffuse through the film. For deeply buried CO layers, the CO reduction reactions quickly increase with temperature above ?60 K. We present a simple chemical kinetic model that treats the diffusion of hydrogen atoms in the ASW and sequential hydrogenation of the CO to methanol to account for the observations.

Petrik, Nikolay G.; Kimmel, Greg A., E-mail: gregory.kimmel@pnnl.gov [Physical Sciences Division, Pacific Northwest National Laboratory, MSIN K8-88, P.O. Box 999, Richland, Washington 99352 (United States); Monckton, Rhiannon J.; Koehler, Sven P. K. [School of Chemistry, The University of Manchester, Manchester M13 9PL (United Kingdom); Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom); UK Dalton Cumbrian Facility, The University of Manchester, Moor Row, Whitehaven CA24 3HA (United Kingdom)

2014-05-28T23:59:59.000Z

212

In situ metal-organic chemical vapor deposition atomic-layer deposition of aluminum oxide on GaAs using trimethyaluminum  

E-Print Network [OSTI]

IPA is chosen as the oxygen source for the ALD in the MOCVD. Second, IPA will not react precursor pulse time. b Dependence of ALD Al2O3 growth rate on temperature. The pulse time for TMA and IPA

213

Li atoms deposited on single crystalline MgO(001) surface. A combined experimental and theoretical study  

E-Print Network [OSTI]

measured for such systems provide a measure of the oxide basicity [7]. The interaction of lithium with Mg November 2007 Available online 22 November 2007 Abstract In this Letter the interaction of Li atoms is to change the electronic properties of the sur- face e.g. by creating electron rich surface sites [2

Gao, Hongjun

214

Direct observation of electron emission from the grain boundaries of chemical vapour deposition diamond films by tunneling atomic force microscopy  

E-Print Network [OSTI]

.1063/1.3475506 Direct observation of electron emission site on boron-doped polycrystalline diamond thin films using or energy harvesting devices. Electron emission studies usually use doped polycrystalline diamond films observation of the emission sites over a large area of polycrystalline diamond using tunneling atomic force

Bristol, University of

215

High-Speed Data Transmission in Multi-Layer Deposited Silicon Photonics for Advanced Photonic Networks-on-Chip  

E-Print Network [OSTI]

the potential to supply an immense amount of bandwidth, while reducing the total energy consumption. The extent a waveguide coupled to a microring resonator, forming an optical filter with a through port (Fig. 3). The 60 layer, comprising another waveguide, providing a drop port to this optical filter (Fig. 3). All

Bergman, Keren

216

Received 1 May 2013 | Accepted 26 Jul 2013 | Published 3 Sep 2013 Atomic layer lithography of wafer-scale  

E-Print Network [OSTI]

because of the lack of reliable technology to fabricate uniform nanogaps with atomic-scale resolution and simple adhesive-tape-based planarization. Using this method, we create vertically oriented gaps in opaque the nanogaps, enabling background- free transmission measurements. We observe resonant transmission of near

Park, Namkyoo

217

Current induced annealing and electrical characterization of single layer graphene grown by chemical vapor deposition for future interconnects in VLSI circuits  

SciTech Connect (OSTI)

Single layer graphene (SLG) grown by chemical vapor deposition (CVD) has been investigated for its prospective application as horizontal interconnects in very large scale integrated circuits. However, the major bottleneck for its successful application is its degraded electronic transport properties due to the resist residual trapped in the grain boundaries and on the surface of the polycrystalline CVD graphene during multi-step lithographic processes, leading to increase in its sheet resistance up to 5 M?/sq. To overcome this problem, current induced annealing has been employed, which helps to bring down the sheet resistance to 10?k?/sq (of the order of its initial value). Moreover, the maximum current density of ?1.2?×?10{sup 7?}A/cm{sup 2} has been obtained for SLG (1?×?2.5??m{sup 2}) on SiO{sub 2}/Si substrate, which is about an order higher than that of conventionally used copper interconnects.

Prasad, Neetu, E-mail: neetu.prasad@south.du.ac.in, E-mail: neetu23686@gmail.com; Kumari, Anita; Bhatnagar, P. K.; Mathur, P. C. [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021 (India); Bhatia, C. S. [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

2014-09-15T23:59:59.000Z

218

Conductance enhancement due to interface magnons in electron-beam evaporated MgO magnetic tunnel junctions with CoFeB free layer deposited at different pressure  

SciTech Connect (OSTI)

Electron-beam evaporated MgO-based magnetic tunnel junctions have been fabricated with the CoFeB free layer deposited at Ar pressure from 1 to 4?mTorr, and their tunneling process has been studied as a function of temperature and bias voltage. By changing the growth pressure, the junction dynamic conductance dI/dV, inelastic electron tunneling spectrum d{sup 2}I/dV{sup 2}, and tunneling magnetoresistance vary with temperature. Moreover, the low-energy magnon cutoff energy E{sub C} derived from the conductance versus temperature curve agrees with interface magnon energy obtained directly from the inelastic electron tunneling spectrum, which demonstrates that interface magnons are involved in the electron tunneling process, opening an additional conductance channel and thus enhancing the total conductance.

Guo, P.; Yu, G. Q.; Wei, H. X.; Han, X. F., E-mail: jiafengfeng@aphy.iphy.ac.cn, E-mail: xfhan@aphy.iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, D. L.; Feng, J. F., E-mail: jiafengfeng@aphy.iphy.ac.cn, E-mail: xfhan@aphy.iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); CRANN and School of Physics, Trinity College, Dublin 2 (Ireland); Kurt, H. [CRANN and School of Physics, Trinity College, Dublin 2 (Ireland); Department of Engineering Physics, Istanbul Medeniyet University, 34720 Istanbul (Turkey); Chen, J. Y.; Coey, J. M. D. [CRANN and School of Physics, Trinity College, Dublin 2 (Ireland)

2014-10-21T23:59:59.000Z

219

Direct growth of few-layer graphene on 6H-SiC and 3C-SiC/Si via propane chemical vapor deposition  

SciTech Connect (OSTI)

We propose to grow graphene on SiC by a direct carbon feeding through propane flow in a chemical vapor deposition reactor. X-ray photoemission and low energy electron diffraction show that propane allows to grow few-layer graphene (FLG) on 6H-SiC(0001). Surprisingly, FLG grown on (0001) face presents a rotational disorder similar to that observed for FLG obtained by annealing on (000-1) face. Thanks to a reduced growth temperature with respect to the classical SiC annealing method, we have also grown FLG/3C-SiC/Si(111) in a single growth sequence. This opens the way for large-scale production of graphene-based devices on silicon substrate.

Michon, A.; Vezian, S.; Portail, M. [CNRS-CRHEA, Rue Bernard Gregory, 06560 Valbonne (France); Ouerghi, A. [CNRS-LPN, Route de Nozay, 91460 Marcoussis (France); Zielinski, M.; Chassagne, T. [NOVASiC, Savoie Technolac, Arche Bat 4, BP267, 73375 Le Bourget du Lac (France)

2010-10-25T23:59:59.000Z

220

Intermixing of InGaAs/GaAs quantum wells and quantum dots using sputter-deposited silicon oxynitride capping layers  

SciTech Connect (OSTI)

Various approaches can be used to selectively control the amount of intermixing in III-V quantum well and quantum dot structures. Impurity-free vacancy disordering is one technique that is favored for its simplicity, however this mechanism is sensitive to many experimental parameters. In this study, a series of silicon oxynitride capping layers have been used in the intermixing of InGaAs/GaAs quantum well and quantum dot structures. These thin films were deposited by sputter deposition in order to minimize the incorporation of hydrogen, which has been reported to influence impurity-free vacancy disordering. The degree of intermixing was probed by photoluminescence spectroscopy and this is discussed with respect to the properties of the SiO{sub x}N{sub y} films. This work was also designed to monitor any additional intermixing that might be attributed to the sputtering process. In addition, the high-temperature stress is known to affect the group-III vacancy concentration, which is central to the intermixing process. This stress was directly measured and the experimental values are compared with an elastic-deformation model.

McKerracher, Ian; Fu Lan; Hoe Tan, Hark; Jagadish, Chennupati [Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia)

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Method for depositing a uniform layer of particulate material on the surface of an article having interconnected porosity  

DOE Patents [OSTI]

The invention is a method for depositing liquid-suspended particles on an immersed porous article characterized by interconnected porosity. In one form of the invention, coating is conducted in a vessel containing an organic liquid supporting a colloidal dispersion of graphite sized to lodge in surface pores of the article. The liquid comprises a first volatile component (e.g., acetone) and a second less-volatile component (e.g., toluene) containing a dissolved organic graphite-bonding agent. The liquid also contains an organic agent (e.g., cellulose gum) for maintaining the particles in suspension. A porous carbon article to be coated is immersed in the liquid so that it is permeated therewith. While the liquid is stirred to maintain a uniform blend, the vessel headspace is evacuated to effect flashing-off of the first component from the interior of the article. This causes particle-laden liquid exterior of the article to flow inwardly through its surface pores, lodging particles in these pores and forming a continuous graphite coating. The coated article is retrieved and heated to resin-bond the graphite. The method can be used to form a smooth, adherent, continuous coating of various materials on various porous articles. The method is rapid and reproducible.

Wrenn, G.E. Jr.; Lewis, J. Jr.

1982-09-29T23:59:59.000Z

222

Vacancies Ordered in Screw Form (VOSF) and Layered Indium Selenide...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Form (VOSF) and Layered Indium Selenide Thin Film Deposition by Laser Back Ablation. Vacancies Ordered in Screw Form (VOSF) and Layered Indium Selenide Thin Film Deposition by...

223

Nanocrystalline-Si-dot multi-layers fabrication by chemical vapor deposition with H-plasma surface treatment and evaluation of structure and quantum confinement effects  

SciTech Connect (OSTI)

100-nm-thick nanocrystalline silicon (nano-Si)-dot multi-layers on a Si substrate were fabricated by the sequential repetition of H-plasma surface treatment, chemical vapor deposition, and surface oxidation, for over 120 times. The diameter of the nano-Si dots was 5–6 nm, as confirmed by both the transmission electron microscopy and X-ray diffraction analysis. The annealing process was important to improve the crystallinity of the nano-Si dot. We investigated quantum confinement effects by Raman spectroscopy and photoluminescence (PL) measurements. Based on the experimental results, we simulated the Raman spectrum using a phenomenological model. Consequently, the strain induced in the nano-Si dots was estimated by comparing the experimental and simulated results. Taking the estimated strain value into consideration, the band gap modulation was measured, and the diameter of the nano-Si dots was calculated to be 5.6 nm by using PL. The relaxation of the q ? 0 selection rule model for the nano-Si dots is believed to be important to explain both the phenomena of peak broadening on the low-wavenumber side observed in Raman spectra and the blue shift observed in PL measurements.

Kosemura, Daisuke, E-mail: d-kose@isc.meiji.ac.jp; Mizukami, Yuki; Takei, Munehisa; Numasawa, Yohichiroh; Ogura, Atsushi [School of Science and Technology, Meiji University, Kawasaki 214-8571 (Japan)] [School of Science and Technology, Meiji University, Kawasaki 214-8571 (Japan); Ohshita, Yoshio [Toyota Technological Institute, Nagoya 468-8511 (Japan)] [Toyota Technological Institute, Nagoya 468-8511 (Japan)

2014-01-15T23:59:59.000Z

224

Aspects of the SrO-CuO-TiO2 Ternary System Related to the Deposition of SrTiO3 and Copper-Doped SrTiO3 Thin-Film Buffer Layers  

SciTech Connect (OSTI)

YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) coated conductors are promising materials for large-scale superconductivity applications. One version of a YBCO coated conductor is based on ion beam assisted deposition (IBAD) of magnesium oxide (MgO) onto polycrystalline metal substrates. SrTiO{sub 3} (STO) is often deposited by physical vapor deposition (PVD) methods as a buffer layer between the YBCO and IBAD MgO due to its chemical stability and lattice mismatch of only {approx}1.5% with YBCO. In this work, some aspects of the stability of STO with respect to copper (Cu) and chemical solution deposition of STO on IBAD MgO templates were examined. Solubility limits of Cu in STO were established by processing Cu-doped STO powders by conventional bulk preparation techniques. The maximum solubility of Cu in STO was {approx}1% as determined by transmission electron microscopy (TEM) and Rietveld refinements of x-ray diffraction (XRD) data. XRD analysis, performed in collaboration with NIST, on powder compositions on the STO/SrCuO{sub 2} tie line did not identify any ternary phases. SrCu{sub 0.10}Ti{sub 0.90}O{sub y} buffer layers were prepared by pulsed laser deposition (PLD) and CSD on IBAD MgO flexible metallic textured tapes. TEM analysis of a {approx}100 nm thick SrCu{sub 0.10}Ti{sub 0.90}O{sub y} buffer layer deposited by PLD showed a smooth Cu-doped STO/MgO interface. A {approx}600 nm thick YBCO film, deposited onto the SrCu{sub 0.10}Ti{sub 0.90}O{sub y} buffer by PLD, exhibited a T{sub c} of 87 K and critical current density (J{sub c}) of {approx}1 MA/cm{sup 2}. STO and Cu-doped STO thin films by CSD were {approx}30 nm thick. The in plane alignment (FWHM) after deposition of the STO improved by {approx}1{sup o} while it degraded by {approx}2{sup o} with the SrCu{sub 0.05}TiO{sub y} buffer. YBCO was deposited by PLD on the STO and SrCu{sub 0.05}TiO{sub y} buffers. The in plane alignment (FWHM) of the YBCO with the STO buffer layer slightly improved while that of the YBCO with the SrCu{sub 0.05}TiO{sub y} buffer layer remained constant. A goal of the CSD approach to fabrication of coated conductors is process simplicity. In this study, single layer textured films were obtained without a nucleating seed layer that has been deemed necessary by several investigators. These results indicate that Cu-doped STO buffer layers deposited by PLD or CSD are compatible with IBAD MgO and YBCO and that CSD is a viable approach to coated conductor fabrication.

A. Ayala

2004-12-20T23:59:59.000Z

225

Triple-Junction a-Si Solar Cells Deposited With Improved Intrinsic Layers X. Deng, W. Wang, X.B. Liao, S. Han, H. Povolny, X.B. Xiang, and W. Du  

E-Print Network [OSTI]

-Si/a-SiGe/a-SiGe triple cells with 12.7% initial efficiency. Figure 1 shows the IV curve of the 12.7% triple cell, GD585.7%. Figure 1 IV curve of a UT fabricated triple cell, showing 12.7% initial, active-area efficiency. Figure 2Triple-Junction a-Si Solar Cells Deposited With Improved Intrinsic Layers X. Deng, W. Wang, X

Deng, Xunming

226

Experimental study on the energy deposition of an ns-DBD plasma actuator and its effect on a laminar boundary layer:.  

E-Print Network [OSTI]

??An experimental study aimed at the influence of different barrier materials on the energy deposition of nanosecond pulsed dielectric barrier discharge (ns-DBD) plasma actuator was… (more)

Winkel, R.

2015-01-01T23:59:59.000Z

227

Improved graphite furnace atomizer  

DOE Patents [OSTI]

A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

Siemer, D.D.

1983-05-18T23:59:59.000Z

228

The effects of high temperature processing on the structural and optical properties of oxygenated CdS window layers in CdTe solar cells  

SciTech Connect (OSTI)

High efficiency CdTe solar cells typically use oxygenated CdS (CdS:O) window layers. We synthesize CdS:O window layers at room temperature (RT) and 270?°C using reactive sputtering. The band gaps of CdS:O layers deposited at RT increase when O{sub 2}/(O{sub 2}?+?Ar) ratios in the deposition chamber increase. On the other hand, the band gaps of CdS:O layers deposited at 270?°C decrease as the O{sub 2}/(O{sub 2}?+?Ar) ratios increase. Interestingly, however, our high temperature closed-space sublimation (CSS) processed CdTe solar cells using CdS:O window layers deposited at RT and 270?°C exhibit very similar cell performance, including similar short-circuit current densities. To understand the underlying reasons, CdS:O thin films deposited at RT and 270?°C are annealed at temperatures that simulate the CSS process of CdTe deposition. X-ray diffraction, atomic force microscopy, and UV-visible light absorption spectroscopy characterization of the annealed films reveals that the CdS:O films deposited at RT undergo grain regrowth and/or crystallization and exhibit reduced band gaps after the annealing. Our results suggest that CdS:O thin films deposited at RT and 270?°C should exhibit similar optical properties after the deposition of CdTe layers, explaining the similar cell performance.

Paudel, Naba R.; Grice, Corey R.; Xiao, Chuanxiao; Yan, Yanfa [Department of Physics and Astronomy, and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, Ohio 43606 (United States)

2014-07-28T23:59:59.000Z

229

Unexpected behaviour of one Pb monolayer deposited on aluminum oxide thin film grown on Ag(111)  

SciTech Connect (OSTI)

Using scanning tunneling microscopy (STM), Auger electron spectroscopy, and low energy electron diffraction, we have observed a surprising complete dissolution at room temperature of one lead monolayer deposited by evaporation on an aluminum oxide thin film (?0.8?nm thick) previously grown on Ag (111). We have observed the quasi-instantaneous diffusion of the lead deposit through the oxide layer to the silver/oxide interface. After the diffusion process, lead atoms form a Moiré superstructure, which is characterized by STM through the oxide layer. This unexpected behavior puts in light the very weak interaction between the aluminum oxide and the silver substrate.

Vizzini, Sébastien, E-mail: sebastien.vizzini@im2np.fr; Bertoglio, M. [IM2NP CNRS, Aix Marseille Université, F-13397 Marseille (France)] [IM2NP CNRS, Aix Marseille Université, F-13397 Marseille (France); Oughaddou, Hamid [Institut des Sciences Moléculaires d'Orsay, ISMO CNRS, Université de Paris, F-91405 Orsay, France and Deptartamento de Physique, Université de Cergy-Pontoise, F-95031 Cergy-Pontoise (France)] [Institut des Sciences Moléculaires d'Orsay, ISMO CNRS, Université de Paris, F-91405 Orsay, France and Deptartamento de Physique, Université de Cergy-Pontoise, F-95031 Cergy-Pontoise (France); Hoarau, J. Y.; Biberian, J. P.; Aufray, B. [CINaM CNRS, Aix Marseille Université, F-13288 Marseille (France)] [CINaM CNRS, Aix Marseille Université, F-13288 Marseille (France)

2013-12-23T23:59:59.000Z

230

Atom Interferometry  

ScienceCinema (OSTI)

Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton?s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

Mark Kasevich

2010-01-08T23:59:59.000Z

231

High performance organic field-effect transistors with ultra-thin HfO{sub 2} gate insulator deposited directly onto the organic semiconductor  

SciTech Connect (OSTI)

We have produced stable organic field-effect transistors (OFETs) with an ultra-thin HfO{sub 2} gate insulator deposited directly on top of rubrene single crystals by atomic layer deposition (ALD). We find that ALD is a gentle deposition process to grow thin films without damaging rubrene single crystals, as results these devices have a negligibly small threshold voltage and are very stable against gate-bias-stress, and the mobility exceeds 1 cm{sup 2}/V s. Moreover, the devices show very little degradation even when kept in air for more than 2 months. These results demonstrate thin HfO{sub 2} layers deposited by ALD to be well suited as high capacitance gate dielectrics in OFETs operating at small gate voltage. In addition, the dielectric layer acts as an effective passivation layer to protect the organic semiconductor.

Ono, S., E-mail: shimpei@criepi.denken.or.jp [Central Research Institute of Electric Power Industry, Komae, Tokyo 201-8511 (Japan); Häusermann, R. [Central Research Institute of Electric Power Industry, Komae, Tokyo 201-8511 (Japan) [Central Research Institute of Electric Power Industry, Komae, Tokyo 201-8511 (Japan); Laboratory for Solid State Physics, ETH Zurich, Zurich 8093 (Switzerland); Chiba, D. [Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan) [Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 322-0012 (Japan); Department of Applied Physics, University of Tokyo, Tokyo 113-8656 (Japan); Shimamura, K.; Ono, T. [Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)] [Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Batlogg, B. [Laboratory for Solid State Physics, ETH Zurich, Zurich 8093 (Switzerland)] [Laboratory for Solid State Physics, ETH Zurich, Zurich 8093 (Switzerland)

2014-01-06T23:59:59.000Z

232

Self-cleaning and surface recovery with arsine pretreatment in ex situ atomic-layer-deposition of Al2O3 on GaAs  

E-Print Network [OSTI]

/Thomas Swan close-coupled showerhead cold-wall MOCVD system. The buffer epilayers of GaAs were grown on 2 in for these interfaces. In addition, when designing an in situ MOCVD process, the typical TMA/H2O is incompatible

233

Atomic Layer Deposition of Indium Tin Oxide Thin Films Using Nonhalogenated Jeffrey W. Elam,*, David A. Baker, Alex B. F. Martinson,, Michael J. Pellin, and  

E-Print Network [OSTI]

precise coatings to be applied on all exposed surfaces of nanoporous substrates such as aerogels10 using ALD techniques to apply metal oxide coatings onto porous supports such as anodic aluminum oxide

234

Variable temperature semiconductor film deposition  

DOE Patents [OSTI]

A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

Li, X.; Sheldon, P.

1998-01-27T23:59:59.000Z

235

The Polar Deposits of Mars Shane Byrne  

E-Print Network [OSTI]

- tian polar layered deposits and understanding the role of the residual ice caps that cover them of the stratigraphy of the polar layered deposits in unprecedented detail. Additionally, change within the residualThe Polar Deposits of Mars Shane Byrne Lunar and Planetary Laboratory, University of Arizona

Jellinek, Mark

236

Deposition of biaxially textured yttria-stabilized zirconia by ion-beam-assisted deposition.  

SciTech Connect (OSTI)

Biaxially textured yttria (8 mol %)-stabilized zirconia (YSZ) thin films were deposited on randomly oriented Hastelloy C and Stainless Steel 304 at room temperature as a buffer layer for subsequent deposition of oriented YBa{sub 2}Cu{sub 3}O{sub x} films. The 0.16-1.3 {micro}m thick YSZ films were deposited by e-beam evaporation at rates of 1.2-3.2 {angstrom}/sec. Biaxially textured films were produced with an Ar/O{sub 2} ion beam directed at the substrate during film growth. X-ray diffraction was used to study in-plane and out-of-plane orientation as a function of ion-bombardment angle, film thickness, ion-to-atom flux ratio, and substrate material. In-plane and out-of-plane average-misorientation angles on these YSZ films that were deposited by ion-beam-assisted deposition were as low as 17 and 5.4{degree}, respectively, on as-received substrates.

Chudzik, M. P.

1998-09-17T23:59:59.000Z

237

Atomic and electronic structures of single-layer FeSe on SrTiO3(001): The role of oxygen deficiency  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Using first-principles calculation, we propose an interface structure for single triple-layer FeSe on the SrTiO3(001) surface, a high-Tc superconductor found recently. The key component of this structure is the oxygen deficiency on the top layer of the SrTiO3 substrate, as a result of Se etching used in preparing the high-Tc samples. The O vacancies strongly bind the FeSe triple layer to the substrate giving rise to a (2×1) reconstruction, as observed by scanning tunneling microscopy. The enhanced binding correlates to the significant increase of Tc observed in experiment. The O vacancies also serve as the source of electron doping, which modifies the Fermi surface of the first FeSe layer by filling the hole pocket near the center of the surface Brillouin zone, as suggested from angle-resolved photoemission spectroscopy measurement.

Bang, Junhyeok; Li, Zhi; Sun, Y. Y.; Samanta, Amit; Zhang, Y. Y.; Zhang, Wenhao; Wang, Lili; Chen, X.; Ma, Xucun; Xue, Q.-K.; Zhang, S. B.

2013-06-01T23:59:59.000Z

238

Crater ice deposits near the south pole of Mars  

E-Print Network [OSTI]

Layered deposits atop both Martian poles are thought to preserve a record of past climatic conditions in up to three km of water ice and dust. Just beyond the extent of these south polar layered deposits (SPLD), dozens of ...

Westbrook, Owen William

2009-01-01T23:59:59.000Z

239

Oxygen-reducing catalyst layer  

DOE Patents [OSTI]

An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

O'Brien, Dennis P. (Maplewood, MN); Schmoeckel, Alison K. (Stillwater, MN); Vernstrom, George D. (Cottage Grove, MN); Atanasoski, Radoslav (Edina, MN); Wood, Thomas E. (Stillwater, MN); Yang, Ruizhi (Halifax, CA); Easton, E. Bradley (Halifax, CA); Dahn, Jeffrey R. (Hubley, CA); O'Neill, David G. (Lake Elmo, MN)

2011-03-22T23:59:59.000Z

240

Atomic and electronic structures of single-layer FeSe on SrTiO3(001): The role of oxygen deficiency  

SciTech Connect (OSTI)

Using first-principles calculation, we propose an interface structure for single triple-layer FeSe on the SrTiO3(001) surface, a high-Tc superconductor found recently. The key component of this structure is the oxygen deficiency on the top layer of the SrTiO3 substrate, as a result of Se etching used in preparing the high-Tc samples. The O vacancies strongly bind the FeSe triple layer to the substrate giving rise to a (2×1) reconstruction, as observed by scanning tunneling microscopy. The enhanced binding correlates to the significant increase of Tc observed in experiment. The O vacancies also serve as the source of electron doping, which modifies the Fermi surface of the first FeSe layer by filling the hole pocket near the center of the surface Brillouin zone, as suggested from angle-resolved photoemission spectroscopy measurement.

Bang, Junhyeok; Li, Zhi; Sun, Y. Y.; Samanta, Amit; Zhang, Y. Y.; Zhang, Wenhao; Wang, Lili; Chen, X.; Ma, Xucun; Xue, Q.-K.; Zhang, S. B.

2013-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fabrication of a single layer graphene by copper intercalation on a SiC(0001) surface  

SciTech Connect (OSTI)

Cu atoms deposited on a zero layer graphene grown on a SiC(0001) substrate, intercalate between the zero layer graphene and the SiC substrate after the thermal annealing above 600?°C, forming a Cu-intercalated single layer graphene. On the Cu-intercalated single layer graphene, a graphene lattice with superstructure due to moiré pattern is observed by scanning tunneling microscopy, and specific linear dispersion at the K{sup ¯} point as well as a characteristic peak in a C{sub 1s} core level spectrum, which is originated from a free-standing graphene, is confirmed by photoemission spectroscopy. The Cu-intercalated single layer graphene is found to be n-doped.

Yagyu, Kazuma; Tochihara, Hiroshi; Tomokage, Hajime; Suzuki, Takayuki [Department of Electronics Engineering and Computer Science, Fukuoka University, Fukuoka 814-0180 (Japan); Tajiri, Takayuki; Kohno, Atsushi [Department of Applied Physics, Fukuoka University, Fukuoka 814-0180 (Japan); Takahashi, Kazutoshi [Synchrotron Light Application Center, Saga University, 1 Honjo, Saga 840-8502 (Japan)

2014-02-03T23:59:59.000Z

242

Structured luminescence conversion layer  

DOE Patents [OSTI]

An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

2012-12-11T23:59:59.000Z

243

Hybrid window layer for photovoltaic cells  

DOE Patents [OSTI]

A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

Deng, Xunming (Syvania, OH); Liao, Xianbo (Toledo, OH); Du, Wenhui (Toledo, OH)

2011-10-04T23:59:59.000Z

244

Hybrid window layer for photovoltaic cells  

DOE Patents [OSTI]

A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

Deng, Xunming (Syvania, OH)

2010-02-23T23:59:59.000Z

245

Hybrid window layer for photovoltaic cells  

DOE Patents [OSTI]

A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

Deng, Xunming (Sylvania, OH); Liao, Xianbo (Toledo, OH); Du, Wenhui (Toledo, OH)

2011-02-01T23:59:59.000Z

246

Conductive layer for biaxially oriented semiconductor film growth  

DOE Patents [OSTI]

A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.

Findikoglu, Alp T. (Los Alamos, NM); Matias, Vladimir (Santa Fe, NM)

2007-10-30T23:59:59.000Z

247

Design of a compact ultrahigh vacuum-compatible setup for the analysis of chemical vapor deposition processes  

SciTech Connect (OSTI)

Optimizing thin film deposition techniques requires contamination-free transfer from the reactor into an ultrahigh vacuum (UHV) chamber for surface science analysis. A very compact, multifunctional Chemical Vapor Deposition (CVD) reactor for direct attachment to any typical UHV system for thin film analysis was designed and built. Besides compactness, fast, easy, and at the same time ultimately clean sample transfer between reactor and UHV was a major goal. It was achieved by a combination of sample manipulation parts, sample heater, and a shutter mechanism designed to fit all into a NW38 Conflat six-ways cross. The present reactor design is versatile to be employed for all commonly employed variants of CVD, including Atomic Layer Deposition. A demonstration of the functionality of the system is provided. First results of the setup (attached to an Omicron Multiprobe x-ray photoelectron spectroscopy system) on the temperature dependence of Pulsed Spray Evaporation-CVD of Ni films from Ni acetylacetonate as the precursor demonstrate the reactor performance and illustrate the importance of clean sample transfer without breaking vacuum in order to obtain unambiguous results on the quality of CVD-grown thin Ni films. The widely applicable design holds promise for future systematic studies of the fundamental processes during chemical vapor deposition or atomic layer deposition.

Weiss, Theodor; Nowak, Martin; Zielasek, Volkmar, E-mail: zielasek@uni-bremen.de; Bäumer, Marcus [Institut für Angewandte und Physikalische Chemie, Universität Bremen, Leobener Straße UFT, D-28359 Bremen (Germany); Mundloch, Udo; Kohse-Höinghaus, Katharina [Physikalische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld (Germany)

2014-10-15T23:59:59.000Z

248

Antimicrobial Activity of Cationic Antiseptics in Layer-by-Layer Thin Film Assemblies  

E-Print Network [OSTI]

Layer-by-layer (LbL) assembly has proven to be a powerful technique for assembling thin films with a variety of properties including electrochromic, molecular sensing, oxygen barrier, and antimicrobial. LbL involves the deposition of alternating...

Dvoracek, Charlene M.

2010-07-14T23:59:59.000Z

249

Electrochemically Controlled Atom by Atom Deposition of Gold to  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles as Selective Sorbents . | EMSLSolid Oxide Fuel

250

Electrowetting on plasma-deposited fluorocarbon hydrophobic films for biofluid transport in microfluidics  

SciTech Connect (OSTI)

The present work focuses on the plasma deposition of fluorocarbon (FC) films on surfaces and the electrostatic control of their wettability (electrowetting). Such films can be employed for actuation of fluid transport in microfluidic devices, when deposited over patterned electrodes. Here, the deposition was performed using C{sub 4}F{sub 8} and the plasma parameters that permit the creation of films with optimized properties desirable for electrowetting were established. The wettability of the plasma-deposited surfaces was characterized by means of contact angle measurements (in the static and dynamic mode). The thickness of the deposited films was probed in situ by means of spectroscopic ellipsometry, while the surface roughness was provided by atomic force microscopy. These plasma-deposited FC films in combination with silicon nitride, a material of high dielectric constant, were used to create a dielectric structure that requires reduced voltages for successful electrowetting. Electrowetting experiments using protein solutions were conducted on such optimized dielectric structures and were compared with similar structures bearing commercial spin-coated Teflon registered amorphous fluoropolymer (AF) film as the hydrophobic top layer. Our results show that plasma-deposited FC films have desirable electrowetting behavior and minimal protein adsorption, a requirement for successful transport of biological solutions in 'digital' microfluidics.

Bayiati, P.; Tserepi, A.; Petrou, P. S.; Kakabakos, S. E.; Misiakos, K.; Gogolides, E. [Institute of Microelectronics-NCSR 'Demokritos', POB 60228, 153 10 Aghia Paraskevi, Attiki (Greece); Institute of Radioisotopes and Radiodiagnostic Products-NCSR 'Demokritos', POB 60228, 153 10 Aghia Paraskevi, Attiki (Greece); Institute of Microelectronics-NCSR 'Demokritos', POB 60228, 153 10 Aghia Paraskevi, Attiki (Greece)

2007-05-15T23:59:59.000Z

251

Interfacial and structural properties of sputtered HfO{sub 2} layers  

SciTech Connect (OSTI)

Magnetron sputtered HfO{sub 2} layers formed on a heated Si substrate were studied by spectroscopic ellipsometer (SE), x-ray diffraction (XRD), Fourier transform infrared (FTIR), and x-ray photoelectron spectroscopy (XPS) depth profiling techniques. The results show that the formation of a SiO{sub x} suboxide layer at the HfO{sub 2}/Si interface is unavoidable. The HfO{sub 2} thickness and suboxide formation are highly affected by the growth parameters such as sputtering power, O{sub 2}/Ar gas ratio during sputtering, sputtering time, and substrate temperature. XRD spectra show that the deposited film has (111) monoclinic phase of HfO{sub 2}, which is also supported by FTIR spectra. The atomic concentration and chemical environment of Si, Hf, and O have been measured as a function of depth starting from the surface of the sample by XPS technique. It shows that HfO{sub 2} layers of a few nanometers are formed at the top surface. Below this thin layer, Si-Si bonds are detected just before the Si suboxide layer, and then the Si substrate is reached during the depth profiling by XPS. It is clearly understood that the highly reactive sputtered Hf atoms consume some of the oxygen atoms from the underlying SiO{sub 2} to form HfO{sub 2}, leaving Si-Si bonds behind.

Aygun, G. [Department of Physics, Izmir Institute of Technology, Urla, TR-35430 Izmir (Turkey); Yildiz, I. [Department of Physics, Middle East Technical University, TR-06531 Ankara (Turkey); Central Laboratory, Middle East Technical University, TR-06531 Ankara (Turkey)

2009-07-01T23:59:59.000Z

252

High coercivity CoCrPt films achieved by post-deposition rapid thermal annealing  

E-Print Network [OSTI]

layer, a CoCrPt mag- netic layer, a capping Mn diffusion layer, and a final CrTi oxidation protection conditions were stud- ied. II. EXPERIMENT All layers were deposited onto glass substrates by rf di- ode, and CrTi oxida- tion protection layer were all 200 Ã? thick. Post-deposition annealing was performed

Laughlin, David E.

253

Growth of graphene underlayers by chemical vapor deposition  

SciTech Connect (OSTI)

We present a simple and very convincing approach to visualizing that subsequent layers of graphene grow between the existing monolayer graphene and the copper catalyst in chemical vapor deposition (CVD). Graphene samples were grown by CVD and then transferred onto glass substrates by the bubbling method in two ways, either direct-transfer (DT) to yield poly (methyl methacrylate) (PMMA)/graphene/glass or (2) inverted transfer (IT) to yield graphene/PMMA/glass. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to reveal surface features for both the DT and IT samples. The results from FE-SEM and AFM topographic analyses of the surfaces revealed the underlayer growth of subsequent layers. The subsequent layers in the IT samples are visualized as 3D structures, where the smaller graphene layers lie above the larger layers stacked in a concentric manner. The results support the formation of the so-called “inverted wedding cake” stacking in multilayer graphene growth.

Fabiane, Mopeli; Khamlich, Saleh; Bello, Abdulhakeem; Dangbegnon, Julien; Momodu, Damilola; Manyala, Ncholu, E-mail: ncholu.manyala@up.ac.za [Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa)] [Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Charlie Johnson, A. T. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)] [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

2013-11-15T23:59:59.000Z

254

2007 2 8 ( )-9 ( ) / Layer Deposition  

E-Print Network [OSTI]

of Branched Structure ZnO Nanowires for Use in Dye- Sensitized Solar Cell Applications : , >), 4, UF

Hwang, Sung Woo

255

Chemical solution seed layer for rabits tapes  

SciTech Connect (OSTI)

A method for making a superconducting article includes the steps of providing a biaxially textured substrate. A seed layer is then deposited. The seed layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different rare earth or transition metal cations. A superconductor layer is grown epitaxially such that the superconductor layer is supported by the seed layer.

Goyal, Amit; Paranthaman, Mariappan; Wee, Sung-Hun

2014-06-10T23:59:59.000Z

256

Forming aspheric optics by controlled deposition  

DOE Patents [OSTI]

An aspheric optical element formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin (.about.100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application.

Hawryluk, Andrew M. (Modesto, CA)

1998-01-01T23:59:59.000Z

257

Hadronic Atoms  

E-Print Network [OSTI]

We review the theory of hadronic atoms in QCD+QED. The non-relativistic effective Lagrangian approach, used to describe this type of bound states, is illustrated with the case of pi+pi- atoms. In addition, we discuss the evaluation of isospin-breaking corrections to hadronic atom observables by invoking chiral perturbation theory.

J. Gasser; V. E. Lyubovitskij; A. Rusetsky

2009-03-02T23:59:59.000Z

258

Chemical vapor deposition of epitaxial silicon  

DOE Patents [OSTI]

A single chamber continuous chemical vapor deposition (CVD) reactor is described for depositing continuously on flat substrates, for example, epitaxial layers of semiconductor materials. The single chamber reactor is formed into three separate zones by baffles or tubes carrying chemical source material and a carrier gas in one gas stream and hydrogen gas in the other stream without interaction while the wafers are heated to deposition temperature. Diffusion of the two gas streams on heated wafers effects the epitaxial deposition in the intermediate zone and the wafers are cooled in the final zone by coolant gases. A CVD reactor for batch processing is also described embodying the deposition principles of the continuous reactor.

Berkman, Samuel (Florham Park, NJ)

1984-01-01T23:59:59.000Z

259

Diffusion of In{sub 0.53}Ga{sub 0.47}As elements through hafnium oxide during post deposition annealing  

SciTech Connect (OSTI)

Diffusion of indium through HfO{sub 2} after post deposition annealing in N{sub 2} or forming gas environments is observed in HfO{sub 2}/In{sub 0.53}Ga{sub 0.47}As stacks by low energy ion scattering and X-ray photo electron spectroscopy and found to be consistent with changes in interface layer thickness observed by transmission electron microscopy. Prior to post processing, arsenic oxide is detected at the surface of atomic layer deposition-grown HfO{sub 2} and is desorbed upon annealing at 350?°C. Reduction of the interfacial layer thickness and potential densification of HfO{sub 2}, resulting from indium diffusion upon annealing, is confirmed by an increase in capacitance.

Cabrera, W.; Brennan, B.; Dong, H.; Wallace, R. M.; Chabal, Y. J., E-mail: chabal@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States); O'Regan, T. P.; Povey, I. M.; Monaghan, S.; O'Connor, É.; Hurley, P. K. [Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork (Ireland)] [Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork (Ireland)

2014-01-06T23:59:59.000Z

260

Atom-probe tomographic study of interfaces of Cu{sub 2}ZnSnS{sub 4} photovoltaic cells  

SciTech Connect (OSTI)

The heterophase interfaces between the CdS buffer layer and the Cu{sub 2}ZnSnS{sub 4} (CZTS) absorption layers are one of the main factors affecting photovoltaic performance of CZTS cells. We have studied the compositional distributions at heterophase interfaces in CZTS cells using three-dimensional atom-probe tomography. The results demonstrate: (a) diffusion of Cd into the CZTS layer; (b) segregation of Zn at the CdS/CZTS interface; and (c) a change of oxygen and hydrogen concentrations in the CdS layer depending on the heat treatment. Annealing at 573?K after deposition of CdS improves the photovoltaic properties of CZTS cells probably because of the formation of a heterophase epitaxial junction at the CdS/CZTS interface. Conversely, segregation of Zn at the CdS/CZTS interface after annealing at a higher temperature deteriorates the photovoltaic properties.

Tajima, S., E-mail: e0954@mosk.tytlabs.co.jp; Asahi, R.; Itoh, T.; Hasegawa, M.; Ohishi, K. [Toyota Central R and D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Isheim, D.; Seidman, D. N. [Northwestern University, Evanston, Illinois 60208-3108 (United States)

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Near-field microwave microscopy of high-? oxides grown on graphene with an organic seeding layer  

SciTech Connect (OSTI)

Near-field scanning microwave microscopy (SMM) is used for non-destructive nanoscale characterization of Al{sub 2}O{sub 3} and HfO{sub 2} films grown on epitaxial graphene on SiC by atomic layer deposition using a self-assembled perylene-3,4,9,10-tetracarboxylic dianhydride seeding layer. SMM allows imaging of buried inhomogeneities in the dielectric layer with a spatial resolution close to 100?nm. The results indicate that, while topographic features on the substrate surface cannot be eliminated as possible sites of defect nucleation, the use of a vertically heterogeneous Al{sub 2}O{sub 3}/HfO{sub 2} stack suppresses formation of large outgrowth defects in the oxide film, ultimately improving lateral uniformity of the dielectric film.

Tselev, Alexander, E-mail: tseleva@ornl.gov; Kalinin, Sergei V. [Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, Tennessee 37831 (United States)] [Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, Tennessee 37831 (United States); Sangwan, Vinod K.; Jariwala, Deep; Lauhon, Lincoln J. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States)] [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Marks, Tobin J.; Hersam, Mark C. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States) [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States)

2013-12-09T23:59:59.000Z

262

Uncooled thin film infrared imaging device with aerogel thermal isolation: Deposition and planarization techniques  

SciTech Connect (OSTI)

The authors have successfully integrated a thermally insulating silica aerogel thin film into a new uncooled monolithic thin film infrared (IR) imaging device. Compared to other technologies (bulk ceramic and microbridge), use of an aerogel layer provides superior thermal isolation of the pyroelectric imaging element from the relatively massive heat sinking integrated circuit. This results in significantly higher thermal and temporal resolutions. They have calculated noise equivalent temperature differences of 0.04--0.10 C from a variety of Pb{sub x}Zr{sub y}Ti{sub 1{minus}y}O{sub 3} (PZT) and Pb{sub x}La{sub 1{minus}x}Zr{sub y}Ti{sub 1{minus}y}O{sub 3} (PLZT) pyroelectric imaging elements in monolithic structures. In addition, use of aerogels results in an easier, less expensive fabrication process and a more robust device. Fabrication of these monolithic devices entails sol-gel deposition of the aerogel, sputter deposition of the electrodes, and solution chemistry deposition of the pyroelectric imaging elements. Uniform pyroelectric response is achieved across the device by use of appropriate planarization techniques. These deposition and planarization techniques are described. Characterization of the individual layers and monolithic structure using scanning electron microscopy, atomic force microscopy and Byer-Roundy techniques also is discussed.

Ruffner, J.A.; Clem, P.G.; Tuttle, B.A.; Brinker, C.J. [Sandia National Labs., Albuquerque, NM (United States); Sriram, C.S. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Bullington, J.A. [AMMPEC, Inc., Albuquerque, NM (United States)

1998-04-01T23:59:59.000Z

263

Scalable Manufacture of Built-to-Order Nanomedicine: Spray-Assisted Layer-by-Layer Functionalization of PRINT Nanoparticles  

E-Print Network [OSTI]

Scalable methods, PRINT particle fabrication, and spray-assisted Layer-by-Layer deposition are combined to generate uniform and functional nanotechnologies with precise control over composition, size, shape, and surface ...

Herlihy, Kevin P.

264

Strain relaxation in graphene grown by chemical vapor deposition  

SciTech Connect (OSTI)

The growth of single layer graphene by chemical vapor deposition on polycrystalline Cu substrates induces large internal biaxial compressive strain due to thermal expansion mismatch. Raman backscattering spectroscopy and atomic force microscopy were used to study the strain relaxation during and after the transfer process from Cu foil to SiO{sub 2}. Interestingly, the growth of graphene results in a pronounced ripple structure on the Cu substrate that is indicative of strain relaxation of about 0.76% during the cooling from the growth temperature. Removing graphene from the Cu substrates and transferring it to SiO{sub 2} results in a shift of the 2D phonon line by 27?cm{sup ?1} to lower frequencies. This translates into additional strain relaxation. The influence of the processing steps, used etching solution and solvents on strain, is investigated.

Troppenz, Gerald V., E-mail: gerald.troppenz@helmholtz-berlin.de; Gluba, Marc A.; Kraft, Marco; Rappich, Jörg; Nickel, Norbert H. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institut für Silizium Photovoltaik, Kekuléstr. 5, D-12489 Berlin (Germany)

2013-12-07T23:59:59.000Z

265

Method for deposition of a conductor in integrated circuits  

DOE Patents [OSTI]

A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten. 2 figs.

Creighton, J.R.; Dominguez, F.; Johnson, A.W.; Omstead, T.R.

1997-09-02T23:59:59.000Z

266

Method for deposition of a conductor in integrated circuits  

DOE Patents [OSTI]

A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten.

Creighton, J. Randall (Albuquerque, NM); Dominguez, Frank (Albuquerque, NM); Johnson, A. Wayne (Albuquerque, NM); Omstead, Thomas R. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

267

Tuning the properties of Ge-quantum dots superlattices in amorphous silica matrix through deposition conditions  

SciTech Connect (OSTI)

In this work, we investigate the structural properties of Ge quantum dot lattices in amorphous silica matrix, prepared by low-temperature magnetron sputtering deposition of (Ge+SiO{sub 2})/SiO{sub 2} multilayers. The dependence of quantum dot shape, size, separation, and arrangement type on the Ge-rich (Ge + SiO{sub 2}) layer thickness is studied. We show that the quantum dots are elongated along the growth direction, perpendicular to the multilayer surface. The size of the quantum dots and their separation along the growth direction can be tuned by changing the Ge-rich layer thickness. The average value of the quantum dots size along the lateral (in-plane) direction along with their lateral separation is not affected by the thickness of the Ge-rich layer. However, the thickness of the Ge-rich layer significantly affects the quantum dot ordering. In addition, we investigate the dependence of the multilayer average atomic composition and also the quantum dot crystalline quality on the deposition parameters.

Pinto, S. R. C.; Ramos, M. M. D.; Gomes, M. J. M. [University of Minho, Centre of Physics and Physics Department, Braga 4710-057 (Portugal); Buljan, M. [Ruder Boskovic Institute, Bijenicka cesta 54, Zagreb 10000 (Croatia); Chahboun, A. [University of Minho, Centre of Physics and Physics Department, Braga 4710-057 (Portugal); Physics Department, FST Tanger, Tanger BP 416 (Morocco); Roldan, M. A.; Molina, S. I. [Departamento de Ciencia de los Materiales e Ing. Metalurgica y Q. I., Universidad de Cadiz, Cadiz (Spain); Bernstorff, S. [Sincrotrone Trieste, SS 14 km163, 5, Basovizza 34012 (Italy); Varela, M.; Pennycook, S. J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Barradas, N. P.; Alves, E. [Instituto Superior Tecnico e Instituto Tecnologico e Nuclear-, EN10, Sacavem 2686-953 (Portugal)

2012-04-01T23:59:59.000Z

268

Tuning the properties of Ge-quantum dots superlattices in amorphous silica matrix through deposition conditions  

SciTech Connect (OSTI)

In this work, we investigate the structural properties of Ge quantum dot lattices in amorphous silica matrix, prepared by low-temperature magnetron sputtering deposition of (Ge+SiO{sub 2})/SiO{sub 2} multilayers. The dependence of quantum dot shape, size, separation, and arrangement type on the Ge-rich (Ge + SiO{sub 2}) layer thickness is studied. We show that the quantum dots are elongated along the growth direction, perpendicular to the multilayer surface. The size of the quantum dots and their separation along the growth direction can be tuned by changing the Ge-rich layer thickness. The average value of the quantum dots size along the lateral (in-plane) direction along with their lateral separation is not affected by the thickness of the Ge-rich layer. However, the thickness of the Ge-rich layer significantly affects the quantum dot ordering. In addition, we investigate the dependence of the multilayer average atomic composition and also the quantum dot crystalline quality on the deposition parameters.

Pinto, S. [University of Minho, Portugal; Roldan Gutierrez, Manuel A [ORNL; Ramos, M. M.D. [University of Minho, Portugal; Gomes, M.J.M. [University of Minho, Portugal; Molina, S. I. [Universidad de Cadiz, Spain; Pennycook, Stephen J [ORNL; Varela del Arco, Maria [ORNL; Buljan, M. [R. Boskovic Institute, Zagreb, Croatia; Barradas, N. [Instituto Tecnologico e Nuclear (ITN), Lisbon, Portugal; Alves, E. [Instituto Tecnologico e Nuclear (ITN), Lisbon, Portugal; Chahboun, A. [FST Tanger, Morocco; Bernstorff, S. [Sincrotrone Trieste, Basovizza, Italy

2012-01-01T23:59:59.000Z

269

Superconducting structure with layers of niobium nitride and aluminum nitride  

DOE Patents [OSTI]

A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

Murduck, James M. (Lisle, IL); Lepetre, Yves J. (Lauris, FR); Schuller, Ivan K. (Woodridge, IL); Ketterson, John B. (Evanston, IL)

1989-01-01T23:59:59.000Z

270

Superconducting structure with layers of niobium nitride and aluminum nitride  

DOE Patents [OSTI]

A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

1989-07-04T23:59:59.000Z

271

Interaction of epitaxial silicene with overlayers formed by exposure to Al atoms and O{sub 2} molecules  

SciTech Connect (OSTI)

As silicene is not chemically inert, the study and exploitation of its electronic properties outside of ultrahigh vacuum environments require the use of insulating capping layers. In order to understand if aluminum oxide might be a suitable encapsulation material, we used high-resolution synchrotron photoelectron spectroscopy to study the interactions of Al atoms and O{sub 2} molecules, as well as the combination of both, with epitaxial silicene on thin ZrB{sub 2}(0001) films grown on Si(111). The deposition of Al atoms onto silicene, up to the coverage of about 0.4 Al per Si atoms, has little effect on the chemical state of the Si atoms. The silicene-terminated surface is also hardly affected by exposure to O{sub 2} gas, up to a dose of 4500 L. In contrast, when Al-covered silicene is exposed to the same dose, a large fraction of the Si atoms becomes oxidized. This is attributed to dissociative chemisorption of O{sub 2} molecules by Al atoms at the surface, producing reactive atomic oxygen species that cause the oxidation. It is concluded that aluminum oxide overlayers prepared in this fashion are not suitable for encapsulation since they do not prevent but actually enhance the degradation of silicene.

Friedlein, R.; Yamada-Takamura, Y. [Japan Advanced Institute of Science and Technology, School of Materials Science, Nomi, Ishikawa 923-1292 (Japan); Van Bui, H.; Wiggers, F. B.; Kovalgin, A. Y.; Jong, M. P. de, E-mail: M.P.deJong@utwente.nl [MESA Institute for Nanotechnology, University of Twente, 7500 AE Enschede (Netherlands)

2014-05-28T23:59:59.000Z

272

Direct chemical vapor deposition of graphene on dielectric surfaces  

DOE Patents [OSTI]

A substrate is provided that has a metallic layer on a substrate surface of a substrate. A film made of a two dimensional (2-D) material, such as graphene, is deposited on a metallic surface of the metallic layer. The metallic layer is dewet and/or removed to provide the film on the substrate surface.

Zhang, Yuegang; Ismach, Ariel

2014-04-29T23:59:59.000Z

273

Atom probe tomography studies of Al{sub 2}O{sub 3} gate dielectrics on GaN  

SciTech Connect (OSTI)

Atom probe tomography was used to achieve three-dimensional characterization of in situ Al{sub 2}O{sub 3}/GaN structures grown by metal organic chemical vapor deposition (MOCVD). Al{sub 2}O{sub 3} dielectrics grown at three different temperatures of 700, 900, and 1000?°C were analyzed and compared. A low temperature GaN cap layer grown atop Al{sub 2}O{sub 3} enabled a high success rate in the atom probe experiments. The Al{sub 2}O{sub 3}/GaN interfaces were found to be intermixed with Ga, N, and O over the distance of a few nm. Impurity measurements data showed that the 1000?°C sample contains higher amounts of C (4?×?10{sup 19}/cm{sup 3}) and lower amounts of H (7?×?10{sup 19}/cm{sup 3}), whereas the 700?°C sample exhibits lower C impurities (<10{sup 17}/cm{sup 3}) and higher H incorporation (2.2?×?10{sup 20}/cm{sup 3}). On comparing with Al{sub 2}O{sub 3} grown by atomic layer deposition (ALD), it was found that the MOCVD Al{sub 2}O{sub 3}/GaN interface is comparatively abrupt. Scanning transmission electron microscopy data showed that the 900?°C and 1000?°C MOCVD films exhibit polycrystalline nature, while the ALD films were found to be amorphous.

Mazumder, Baishakhi, E-mail: bmazumder@engineering.ucsb.edu; Wu, Feng; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Liu, Xiang; Yeluri, Ramya; Mishra, Umesh K. [Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106 (United States)

2014-10-07T23:59:59.000Z

274

Method for making photovoltaic devices using oxygenated semiconductor thin film layers  

DOE Patents [OSTI]

A method for making a photovoltaic device is presented. The method includes steps of disposing a window layer on a substrate and disposing an absorber layer on the window layer. Disposing the window layer, the absorber layer, or both layers includes introducing a source material into a deposition zone, wherein the source material comprises oxygen and a constituent of the window layer, of the absorber layer or of both layers. The method further includes step of depositing a film that comprises the constituent and oxygen.

Johnson, James Neil; Albin, David Scott; Feldman-Peabody, Scott; Pavol, Mark Jeffrey; Gossman, Robert Dwayne

2014-12-16T23:59:59.000Z

275

Effect of plasma CVD operating temperature on nanomechanical properties of TiC nanostructured coating investigated by atomic force microscopy  

SciTech Connect (OSTI)

Highlights: ? The TiC{sub x} nanostructure coatings have been deposited by PACVD method. ? Dominant mechanism of growth structure at 490 °C is island-layer type. ? TiC{sub x} nanostructure coating applied at 490 °C, exhibits lowest friction coefficient. ? Young's moduli are 289.9, 400 and 187.6 GPa for 470, 490 and 510 °C, respectively. ? This higher elastic modulus and higher hardness of nanocoating obtain at 490 °C. -- Abstract: The structure, composition, and mechanical properties of nanostructured titanium carbide (TiC) coatings deposited on H{sub 11} hot-working tool steel by pulsed-DC plasma assisted chemical vapor deposition at three different temperatures are investigated. Nanoindentation and nanoscratch tests are carried out by atomic force microscopy to determine the mechanical properties such as hardness, elastic modulus, surface roughness, and friction coefficient. The nanostructured TiC coatings prepared at 490 °C exhibit lower friction coefficient (0.23) than the ones deposited at 470 and 510 °C. Increasing the deposition temperature reduces the Young's modulus and hardness. The overall superior mechanical properties such as higher hardness and lower friction coefficient render the coatings deposited at 490 °C suitable for wear resistant applications.

Shanaghi, Ali, E-mail: alishanaghi@gmail.com [Materials Engineering Department, Faculty of Engineering, Malayer University, P.O. Box: 95863-65719, Malayer (Iran, Islamic Republic of)] [Materials Engineering Department, Faculty of Engineering, Malayer University, P.O. Box: 95863-65719, Malayer (Iran, Islamic Republic of); Rouhaghdam, Ali Reza Sabour, E-mail: sabour01@modares.ac.ir [Surface Engineering Laboratory, Materials Engineering Department, Faculty of Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Ahangarani, Shahrokh, E-mail: sh.ahangarani@gmail.com [Advanced Materials and Renewable Energies Department, Iranian Research Organization for Science and Technology, P.O. Box 15815-3538, Tehran (Iran, Islamic Republic of)] [Advanced Materials and Renewable Energies Department, Iranian Research Organization for Science and Technology, P.O. Box 15815-3538, Tehran (Iran, Islamic Republic of); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

2012-09-15T23:59:59.000Z

276

Investigation of leakage current paths in n-GaN by conductive atomic force microscopy  

SciTech Connect (OSTI)

We have investigated electrical characteristics of leakage current paths in n-GaN layer grown by metal-organic chemical vapor deposition with conductive-atomic force microscopy (C-AFM). The C-AFM mapping shows two kinds of leakage current paths existing in the n-GaN layer: open-core dislocation and pure screw dislocation. From the localized I-V curves measured by C-AFM, we confirmed that the open-core screw dislocation shows more significant leakage current. We explained these results in terms of a modified Schottky band model based on donor states formed by oxygen segregation at the (10?10) sidewall of the open-core screw dislocation.

Kim, Bumho; Park, Yongjo, E-mail: yp0520@snu.ac.kr, E-mail: eyoon@snu.ac.kr [Energy Semiconductor Research Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of)] [Energy Semiconductor Research Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Moon, Daeyoung; Nanishi, Yasushi [WCU Hybrid Materials Program, Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)] [WCU Hybrid Materials Program, Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Joo, Kisu [Energy Semiconductor Research Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of) [Energy Semiconductor Research Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Oh, Sewoung [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)] [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Young Kuk [Korea Research Institute of Chemical Technology, Daejon 305-600 (Korea, Republic of)] [Korea Research Institute of Chemical Technology, Daejon 305-600 (Korea, Republic of); Yoon, Euijoon, E-mail: yp0520@snu.ac.kr, E-mail: eyoon@snu.ac.kr [Energy Semiconductor Research Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of) [Energy Semiconductor Research Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); WCU Hybrid Materials Program, Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

2014-03-10T23:59:59.000Z

277

Photobiomolecular deposition of metallic particles and films  

DOE Patents [OSTI]

The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.

Hu, Zhong-Cheng

2005-02-08T23:59:59.000Z

278

Method for depositing high-quality microcrystalline semiconductor materials  

DOE Patents [OSTI]

A process for the plasma deposition of a layer of a microcrystalline semiconductor material is carried out by energizing a process gas which includes a precursor of the semiconductor material and a diluent with electromagnetic energy so as to create a plasma therefrom. The plasma deposits a layer of the microcrystalline semiconductor material onto the substrate. The concentration of the diluent in the process gas is varied as a function of the thickness of the layer of microcrystalline semiconductor material which has been deposited. Also disclosed is the use of the process for the preparation of an N-I-P type photovoltaic device.

Guha, Subhendu (Bloomfield Hills, MI); Yang, Chi C. (Troy, MI); Yan, Baojie (Rochester Hills, MI)

2011-03-08T23:59:59.000Z

279

Melanin as an active layer in biosensors  

SciTech Connect (OSTI)

The development of pH sensors is of great interest due to its extensive application in several areas such as industrial processes, biochemistry and particularly medical diagnostics. In this study, the pH sensing properties of an extended gate field effect transistor (EGFET) based on melanin thin films as active layer are investigated and the physical mechanisms related to the device operation are discussed. Thin films were produced from different melanin precursors on indium tin oxide (ITO) and gold substrates and were investigated by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy. Experiments were performed in the pH range from 2 to 12. EGFETs with melanin deposited on ITO and on gold substrates showed sensitivities ranging from 31.3 mV/pH to 48.9 mV/pH, depending on the melanin precursor and the substrate used. The pH detection is associated with specific binding sites in its structure, hydroxyl groups and quinone imine.

Piacenti da Silva, Marina, E-mail: marinaness@yahoo.com; Congiu, Mirko, E-mail: congiumat@gmail.com; Oliveira Graeff, Carlos Frederico de, E-mail: graeff@fc.unesp.br [Department of Physics, Faculty of Sciences - UNESP, Bauru, SP (Brazil); Fernandes, Jéssica Colnaghi, E-mail: jeziga-cf@yahoo.com.br; Biziak de Figueiredo, Natália, E-mail: natbiziak@yahoo.com.br; Mulato, Marcelo, E-mail: mmulato@ffclrp.usp.br [Department of Physics, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil)] [Department of Physics, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil)

2014-03-15T23:59:59.000Z

280

Conductive and robust nitride buffer layers on biaxially textured substrates  

DOE Patents [OSTI]

The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

2009-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Metal-gate-induced reduction of the interfacial layer in Hf oxide gate stacks  

SciTech Connect (OSTI)

The properties of high-{kappa} metal oxide gate stacks are often determined in the final processing steps following dielectric deposition. We report here results from medium energy ion scattering and x-ray photoelectron spectroscopy studies of oxygen and silicon diffusion and interfacial layer reactions in multilayer gate stacks. Our results show that Ti metallization of HfO{sub 2}/SiO{sub 2}/Si stacks reduces the SiO{sub 2} interlayer and (to a more limited extent) the HfO{sub 2} layer. We find that Si atoms initially present in the interfacial SiO{sub 2} layer incorporate into the bottom of the high-{kappa} layer. Some evidence for Ti-Si interdiffusion through the high-{kappa} film in the presence of a Ti gate in the crystalline HfO{sub 2} films is also reported. This diffusion is likely to be related to defects in crystalline HfO{sub 2} films, such as grain boundaries. High-resolution transmission electron microscopy and corresponding electron energy loss spectroscopy scans show aggressive Ti-Si intermixing and oxygen diffusion to the outermost Ti layer, given high enough annealing temperature. Thermodynamic calculations show that the driving forces exist for some of the observed diffusion processes.

Goncharova, L. V.; Dalponte, M.; Gustafsson, T.; Celik, O.; Garfunkel, E.; Lysaght, P. S.; Bersuker, G. [Department of Physics and Astronomy, and Laboratory for Surface Modification, Rutgers University, 136 Frelinghuysen Rd., Piscataway, New Jersey 08854 (United States); Department of Chemistry and Chemical Biology, and Laboratory for Surface Modification, Rutgers University, 610 Taylor Rd., Piscataway, New Jersey 08854 (United States); SEMATECH, 2705 Montopolis Dr., Austin, Texas 78741 (United States)

2007-03-15T23:59:59.000Z

282

Electrostatic force assisted deposition of graphene  

DOE Patents [OSTI]

An embodiment of a method of depositing graphene includes bringing a stamp into contact with a substrate over a contact area. The stamp has at least a few layers of the graphene covering the contact area. An electric field is developed over the contact area. The stamp is removed from the vicinity of the substrate which leaves at least a layer of the graphene substantially covering the contact area.

Liang, Xiaogan (Berkeley, CA)

2011-11-15T23:59:59.000Z

283

Inclined substrate deposition of magnesium oxide for YBCO-coated conductors.  

SciTech Connect (OSTI)

Thin films of YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) were grown on MgO buffered metallic substrates by pulsed laser deposition (PLD). The MgO buffer films, which provide the initial biaxial texture, had been grown on polished Hastelloy C276 (HC) tapes using inclined substrate deposition (ISD). The ISD process is promising for the fabrication of coated superconductor wires because it produces biaxially textured template films on nontextured substrate at high deposition rates. Biaxially aligned MgO films were deposited at deposition rates of 20 to 100 {angstrom}/sec. The buffer films were deposited on these template films before ablation of the YBCO films by PLD. The microstructure was studied by scanning electron microscopy and atomic force microscopy. X-ray pole figure analysis and {phi}- and {omega}-scans were used for texture characterization. Good in- and out-of-plane textures were observed on the ISD MgO films ({approx}1.5 {micro}m thick). The full width at half maximums were 9.2{sup o} for the MgO (002) {phi}-scan and 5.4{sup o} for the {omega}-scan. Cube-on-cube epitaxial growth of yttria-stabilized zirconia (YSZ) and ceria (CeO{sub 2}) films on the ISD MgO films was also achieved by PLD. A superconducting critical temperature of 90 K, with a sharp transition, and transport critical current density of >2.5 x 10{sup 5} A/cm{sup 2} were obtained on a 0.5-{micro}m-thick, 0.5-cm-wide, and 1-cm-long YBCO film with MgO buffer layer at 77 K in self-field.

Ma, B.; Li, M.; Fisher, B. L.; Koritala, R. E.; Dorris, S. E.; Maroni, V. A.; Balachandran, U.

2002-04-26T23:59:59.000Z

284

E-Print Network 3.0 - assisted deposition method Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the individual deposit compositions within a stepped material... the effects of LENS processing parameters on dilution in simple, single-layer ... Source: DuPont, John N. -...

285

Back contact buffer layer for thin-film solar cells  

DOE Patents [OSTI]

A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.

Compaan, Alvin D.; Plotnikov, Victor V.

2014-09-09T23:59:59.000Z

286

Interface magnetism of Co{sub 2}FeGe Heusler alloy layers and magnetoresistance of Co{sub 2}FeGe/MgO/Fe magnetic tunnel junctions  

SciTech Connect (OSTI)

The interface magnetism between Co{sub 2}FeGe Heusler alloy layers and MgO layers was investigated using {sup 57}Fe Mössbauer spectroscopy. Interface-sensitive samples, where the {sup 57}Fe isotope was used only for the interfacial atomic layer of the Co{sub 2}FeGe layer on the MgO layer, were prepared using atomically controlled alternate deposition. The {sup 57}Fe Mössbauer spectra of the interface-sensitive samples at room temperature were found similar to those of the bulk-sensitive Co{sub 2}FeGe films in which the {sup 57}Fe isotope was distributed throughout the films. On the other hand, the tunnel magnetoresistance effect of magnetic tunnel junctions with Co{sub 2}FeGe layers as the ferromagnetic electrodes showed strong reduction at room temperature. These results indicate that the strong temperature dependence of the tunneling magnetoresistance of magnetic tunnel junctions using Heusler alloy electrodes cannot be attributed simply to the reduction of the magnetization at the interfaces between the Heusler alloy and insulator layers.

Tanaka, M. A., E-mail: mtanaka@nitech.ac.jp; Maezaki, D.; Ishii, T.; Okubo, A.; Mibu, K. [Department of Engineering Physics, Electronics and Mechanics, Nagoya Institute of Technology, Nagoya, Aichi 466-8555 (Japan); Hiramatsu, R.; Ono, T. [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)

2014-10-28T23:59:59.000Z

287

High density Ru nanocrystal deposition for nonvolatile memory applications  

E-Print Network [OSTI]

High density Ru nanocrystal deposition for nonvolatile memory applications Damon B. Farmer School density optimizes the charge storing capability of the floating layer, while a high degree of size

288

Local elastic modulus of RF sputtered HfO{sub 2} thin film by atomic force acoustic microscopy  

SciTech Connect (OSTI)

Atomic force acoustic microscopy (AFAM) is a useful nondestructive technique for measurement of local elastic modulus of materials at nano-scale spatial resolution by measuring the contact resonance spectra for higher order modes of the AFM cantilever. The elastic modulus of RF sputtered HfO{sub 2} thin film has been measured quantitatively, using reference approach in which measurements are performed on the test and reference samples. Using AFAM, the measured elastic modulus of the HfO{sub 2} thin film is 223±27 GPa, which is in agreement with the literature value of 220±40 GPa for atomic layer deposited HfO{sub 2} thin film using nanoindentation technique.

Jena, S., E-mail: shuvendujena9@gmail.com; Tokas, R. B., E-mail: shuvendujena9@gmail.com; Sarkar, P., E-mail: shuvendujena9@gmail.com; Thakur, S.; Sahoo, N. K. [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India); Misal, J. S.; Rao, K. D. [Optics and Thin Film Laboratory, Autonagar, BARC-Vizag, Visakhapatnam-530 012 (India)

2014-04-24T23:59:59.000Z

289

Colloidal particle deposition in turbulent flow  

SciTech Connect (OSTI)

A theoretical analysis is presented which describes the initial deposition of monodispersed spherical colloidal particles from a steady fully developed turbulent flow onto conduit walls. When the net particle-conduit electrical interaction potential is attractive, particle deposition is shown to be often governed by turbulent hydrodynamics. When the net particle-conduit electrical interaction potential possess a repulsive maximum, particle deposition to first order is uniform and depends solely on electrical interaction effects. The developed theoretical model specialized to orifice deposition with the use of Harwell Flow3D turbulence modelling software qualitatively described the deposition of 0.5 {mu}m silica particles onto glass orifices from an aqueous suspension. The effect of the electrical double layer on the rate of colloidal particle deposition in laminar flow has been described by Spielman and Friedlander (1), Dahneke (2), Bowen et al. (3) and Bowen and Epstein (4). This article describes the extension of their work to colloidal particle deposition under steady fully developed turbulent flow conditions. This article also reports the results of orifice particle deposition experiments which were conducted to qualitatively investigate the developed theoretical model.

Morton, D.S.

1994-05-01T23:59:59.000Z

290

Wax Deposition and Aging in Flowlines from Irreversible Thermodynamics  

E-Print Network [OSTI]

, 2007. ReVised Manuscript ReceiVed April 4, 2008 The development of waxy crude oil and some gas of the wax deposit. However, most of these models assume that the wax-oil (gel) deposit has a constant wax and the composition of the gel layer as a function of position and time. The wax-oil gel region is considered

Firoozabadi, Abbas

291

Deposition method for producing silicon carbide high-temperature semiconductors  

DOE Patents [OSTI]

An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.

Hsu, George C. (La Crescenta, CA); Rohatgi, Naresh K. (W. Corine, CA)

1987-01-01T23:59:59.000Z

292

Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD  

SciTech Connect (OSTI)

An optical study based on spectroscopic ellipsometry, performed on ultrathin hydrogenated amorphous silicon (a-Si:H) layers, is presented in this work. Ultrathin layers of intrinsic amorphous silicon have been deposited on n-type mono-crystalline silicon (c-Si) wafers by plasma enhanced chemical vapor deposition (PECVD). The layer thicknesses along with their optical properties –including their refractive index and optical loss- were characterized by spectroscopic ellipsometry (SE) in a wavelength range from 250 nm to 850 nm. The data was fitted to a Tauc-Lorentz optical model and the fitting parameters were extracted and used to compute the refractive index, extinction coefficient and optical bandgap. Furthermore, the a-Si:H film grown on silicon was etched at a controlled rate using a TMAH solution prepared at room temperature. The optical properties along with the Tauc-Lorentz fitting parameters were extracted from the model as the film thickness was reduced. The etch rate for ultrathin a-Si:H layers in TMAH at room temperature was found to slow down drastically as the c-Si interface is approached. From the Tauc-Lorentz parameters obtained from SE, it was found that the a-Si film exhibited properties that evolved with thickness suggesting that the deposited film is non-homogeneous across its depth. It was also found that the degree of crystallinity and optical (Tauc) bandgap increased as the layers were reduced in thickness and coming closer to the c-Si substrate interface, suggesting the presence of nano-structured clusters mixed into the amorphous phase for the region close to the crystalline silicon substrate. Further results from Atomic Force Microscopy and Transmission Electron Microscopy confirmed the presence of an interfacial transitional layer between the amorphous film and the underlying substrate showing silicon nano-crystalline enclosures that can lead to quantum confinement effects. Quantum confinement is suggested to be the cause of the observed increase in the optical bandgap of a-Si:H films close to the a-Si:H/cSi interface.

Abdulraheem, Yaser, E-mail: yaser.abdulraheem@kuniv.edu.kw [Electrical Engineering Department, College of Engineering and Petroleum, Kuwait University. P.O. Box 5969, 13060 Safat (Kuwait); Gordon, Ivan; Bearda, Twan; Meddeb, Hosny; Poortmans, Jozef [IMEC, Kapeldreef 75, 3001, Leuven (Belgium)

2014-05-15T23:59:59.000Z

293

Electro-deposition of superconductor oxide films  

DOE Patents [OSTI]

Methods for preparing high quality superconducting oxide precursors which are well suited for further oxidation and annealing to form superconducting oxide films. The method comprises forming a multilayered superconducting precursor on a substrate by providing an electrodeposition bath comprising an electrolyte medium and a substrate electrode, and providing to the bath a plurality of precursor metal salts which are capable of exhibiting superconducting properties upon subsequent treatment. The superconducting precursor is then formed by electrodepositing a first electrodeposited (ED) layer onto the substrate electrode, followed by depositing a layer of silver onto the first electrodeposited (ED) layer, and then electrodepositing a second electrodeposited (ED) layer onto the Ag layer. The multilayered superconducting precursor is suitable for oxidation at a sufficient annealing temperature in air or an oxygen-containing atmosphere to form a crystalline superconducting oxide film.

Bhattacharya, Raghu N. (Littleton, CO)

2001-01-01T23:59:59.000Z

294

Atomic magnetometer  

DOE Patents [OSTI]

An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

Schwindt, Peter (Albuquerque, NM); Johnson, Cort N. (Albuquerque, NM)

2012-07-03T23:59:59.000Z

295

Optical devices featuring nonpolar textured semiconductor layers  

DOE Patents [OSTI]

A semiconductor emitter, or precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate in a nonpolar orientation. The textured layers enhance light extraction, and the use of nonpolar orientation greatly enhances internal quantum efficiency compared to conventional devices. Both the internal and external quantum efficiencies of emitters of the invention can be 70-80% or higher. The invention provides highly efficient light emitting diodes suitable for solid state lighting.

Moustakas, Theodore D; Moldawer, Adam; Bhattacharyya, Anirban; Abell, Joshua

2013-11-26T23:59:59.000Z

296

Optical devices featuring textured semiconductor layers  

DOE Patents [OSTI]

A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

Moustakas, Theodore D. (Dover, MA); Cabalu, Jasper S. (Cary, NC)

2012-08-07T23:59:59.000Z

297

Optical devices featuring textured semiconductor layers  

DOE Patents [OSTI]

A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

Moustakas, Theodore D. (Dover, MA); Cabalu, Jasper S. (Cary, NC)

2011-10-11T23:59:59.000Z

298

Oriented Y-type hexagonal ferrite thin films prepared by chemical solution deposition  

SciTech Connect (OSTI)

Thin films of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (Y) hexaferrite were prepared through the chemical solution deposition method on SrTiO{sub 3}(1 1 1) (ST) single crystal substrates using epitaxial SrFe{sub 12}O{sub 19} (M) hexaferrite thin layer as a seed template layer. The process of crystallization was mainly investigated by means of X-ray diffraction and atomic force microscopy. A detailed inspection revealed that growth of seed layer starts through the break-up of initially continuous film into isolated grains with expressive shape anisotropy and hexagonal habit. The vital parameters of the seed layer, i.e. thickness, substrate coverage, crystallization conditions and temperature ramp were optimized with the aim to obtain epitaxially crystallized Y phase. X-ray diffraction Pole figure measurements and ? scans reveal perfect parallel in-plane alignment of SrTiO{sub 3} substrate and both hexaferrite phases. - Graphical abstract: XRD pole figure and AFM patterns of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} thin film epitaxially grown on SrTiO{sub 3}(1 1 1) single crystal using seeding layer templating. - Highlights: • Single phase Y-type hexagonal ferrite thin films were prepared by CSD method. • Seed M layer breaks into isolated single crystal islands and serves as a template. • Large seed grains grow by consuming the grains within the bulk of recoated film. • We explained the observed orientation relation of epitaxial domains. • Epitaxial growth on SrTiO{sub 3}(1 1 1) with relation (0 0 1){sub M,Y}//(1 1 1){sub ST}+[1 0 0]{sub M,Y}//[2 ?1 ?1]{sub ST}.

Buršík, J., E-mail: bursik@iic.cas.cz [Institute of Inorganic Chemistry of the AS CR, v.v.i., 250 68 Husinec-?ež 1001 (Czech Republic); Kužel, R. [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 5, 121 16 Praha 2 (Czech Republic); Knížek, K.; Drbohlav, I. [Institute of Physics of the AS CR, v.v.i., Na Slovance 2, 182 21 Praha 8 (Czech Republic)

2013-07-15T23:59:59.000Z

299

E-Print Network 3.0 - atomic shell structure Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Physics 8 Strain in Layered Nanocrystals Russel E. Caflisch Summary: in optoelectronic devices 5. Because of the small size of these systems, their atomic structure is...

300

E-Print Network 3.0 - atomic vapor laser Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with the exception of pagination. IEEE TRANSACTIONS ON PLASMA SCIENCE 1 Summary: vapor, atomic physics and vapor ionization, absorption reflection in a heated plasma layer, and...

Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Low temperature junction growth using hot-wire chemical vapor deposition  

DOE Patents [OSTI]

A system and a process for forming a semi-conductor device, and solar cells (10) formed thereby. The process includes preparing a substrate (12) for deposition of a junction layer (14); forming the junction layer (14) on the substrate (12) using hot wire chemical vapor deposition; and, finishing the semi-conductor device.

Wang, Qi; Page, Matthew; Iwaniczko, Eugene; Wang, Tihu; Yan, Yanfa

2014-02-04T23:59:59.000Z

302

Superconductive articles including cerium oxide layer  

DOE Patents [OSTI]

A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.

Wu, X.D.; Muenchausen, R.E.

1993-11-16T23:59:59.000Z

303

Method for forming a barrier layer  

SciTech Connect (OSTI)

Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

Weihs, Timothy P. (Baltimore, MD); Barbee, Jr., Troy W. (Palo Alto, CA)

2002-01-01T23:59:59.000Z

304

Atomic Calligraphy: The Direct Writing of Nanoscale Structures using MEMS  

E-Print Network [OSTI]

We present a micro-electromechanical system (MEMS) based method for the resist free patterning of nano-structures. Using a focused ion beam (FIB) to customize larger MEMS machines, we fabricate apertures as small as 50 nm on plates that can be moved with nanometer precision over an area greater than 20x20 {\\mu}m^2. Depositing thermally evaporated gold atoms though the apertures while moving the plate results in the deposition of nanoscale metal patterns. Adding a shutter only microns above the aperture, enables high speed control of not only where but also when atoms are deposited. Using a shutter, different sized apertures can be selectively opened and closed for nano-structure fabrication with features ranging from nano- to micrometers in scale. The ability to evaporate materials with high precision, and thereby fabricate circuits and structures in situ, enables new kinds of experiments based on the interactions of a small number of atoms and eventually even single atoms.

Matthias Imboden; Han Han; Jackson Chang; Flavio Pardo; Cristian A. Bolle; Evan Lowell; David J. Bishop

2013-04-04T23:59:59.000Z

305

Particle deposition in ventilation ducts  

E-Print Network [OSTI]

and An Evaluation of Thermophoretic Deposition Rates C.1of estimated thermophoretic deposition velocities, v th+ ,of estimated thermophoretic deposition velocities, v th+ ,

Sippola, Mark R.

2002-01-01T23:59:59.000Z

306

Sputter deposition for multi-component thin films  

DOE Patents [OSTI]

Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.

Krauss, Alan R. (Plainfield, IL); Auciello, Orlando (Cary, NC)

1990-01-01T23:59:59.000Z

307

Sputter deposition for multi-component thin films  

DOE Patents [OSTI]

Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams. 10 figs.

Krauss, A.R.; Auciello, O.

1990-05-08T23:59:59.000Z

308

Method for continuous control of composition and doping of pulsed laser deposited films  

DOE Patents [OSTI]

A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

Lowndes, Douglas H. (Knoxville, TN); McCamy, James W. (Knoxville, TN)

1995-01-01T23:59:59.000Z

309

Method for continuous control of composition and doping of pulsed laser deposited films by pressure control  

DOE Patents [OSTI]

A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

Lowndes, Douglas H. (Knoxville, TN); McCamy, James W. (Knoxville, TN)

1996-01-01T23:59:59.000Z

310

IMPROVED pc-Si p-LAYER AND a-Si i-LAYER MATERIALS USING VHF PLASMA X. Deng, S. J. Jones, T. Liu, M. Izu and S. R. Ovshinsky  

E-Print Network [OSTI]

conventional RF (13.56 MHz) plasma enhanced chemical vapor deposition (PECVD) process, the window in deposition by improving their p-layers, and 2) establishrng a wider process window for the deposition of high quality p of these studies were focused on the thin film properties of the VHF deposited materials. Few studies were carried

Deng, Xunming

311

Chemical vapor deposition of group IIIB metals  

DOE Patents [OSTI]

Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

Erbil, A.

1989-11-21T23:59:59.000Z

312

Influence of oxygen pressure and aging on LaAlO{sub 3} films grown by pulsed laser deposition on SrTiO{sub 3} substrates  

SciTech Connect (OSTI)

The crystal structures of LaAlO{sub 3} films grown by pulsed laser deposition on SrTiO{sub 3} substrates at oxygen pressure of 10{sup ?3} millibars or 10{sup ?5} millibars, where kinetics of ablated species hardly depend on oxygen background pressure, are compared. Our results show that the interface between LaAlO{sub 3} and SrTiO{sub 3} is sharper when the oxygen pressure is lower. Over time, the formation of various crystalline phases is observed while the crystalline thickness of the LaAlO{sub 3} layer remains unchanged. X-ray scattering as well as atomic force microscopy measurements indicate three-dimensional growth of such phases, which appear to be fed from an amorphous capping layer present in as-grown samples.

Park, Jihwey; Aeppli, Gabriel [London Centre for Nanotechnology, University College London, London WC1H 0AH (United Kingdom); Soh, Yeong-Ah, E-mail: yeongahsoh@gmail.com [London Centre for Nanotechnology, University College London, London WC1H 0AH (United Kingdom); Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom); David, Adrian; Lin, Weinan [Division of Physics and Applied Physics, Nanyang Technological University, Singapore 637371 (Singapore); Wu, Tom [Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia)

2014-02-24T23:59:59.000Z

313

The Effect of Nanoparticles on the Thermal Transitions of Hydrated Layer-by-Layer Assemblies  

E-Print Network [OSTI]

). 27 Figure 9. The various film configurations studied in this work. Parts a), c), and e) correspond to films incorporating SiO2 nanospheres, while parts b), d), and f) correspond to films incorporating LAP nanoplatelets. Polyethyleneimine... the nanospheres slowly embedding themselves in the film, thereby leading to film densification. SiO2 embedment in a PDAC layer is not an unusual phenomenon, being previously observed by Xu et al. [49]. In their experiments a single layer of PDAC was deposited...

Puhr, Joseph Timothy

2014-04-25T23:59:59.000Z

314

Building biomedical materials layer-by-layer  

E-Print Network [OSTI]

In this materials perspective, the promise of water based layer-by-layer (LbL) assembly as a means of generating drug-releasing surfaces for biomedical applications, from small molecule therapeutics to biologic drugs and ...

Hammond, Paula T.

315

Buffer layers for REBCO films for use in superconducting devices  

SciTech Connect (OSTI)

A superconducting article includes a substrate having a biaxially textured surface. A biaxially textured buffer layer, which can be a cap layer, is supported by the substrate. The buffer layer includes a double perovskite of the formula A.sub.2B'B''O.sub.6, where A is rare earth or alkaline earth metal and B' and B'' are different transition metal cations. A biaxially textured superconductor layer is deposited so as to be supported by the buffer layer. A method of making a superconducting article is also disclosed.

Goyal, Amit; Wee, Sung-Hun

2014-06-10T23:59:59.000Z

316

atom-atom collisions: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atomic Safronova, Marianna 3 Atom-atom correlations in colliding Bose-Einstein condensates Quantum Physics (arXiv) Summary: We analyze atom-atom correlations in the s-wave...

317

Surface acoustic wave dust deposition monitor  

DOE Patents [OSTI]

A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

Fasching, G.E.; Smith, N.S. Jr.

1988-02-12T23:59:59.000Z

318

Neutral atom traps.  

SciTech Connect (OSTI)

This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

Pack, Michael Vern

2008-12-01T23:59:59.000Z

319

Atomization, charge and deposition characteristics of electrostatically charged aircraft sprays  

E-Print Network [OSTI]

96. 1 a3 / 91 5 89. 3 8, . 2 85. 1 83. 2 81. 3 79. 4 , 7. 6 7 5 9 74. 3 2. 7 71. 1 69. 6 68. 1 6E. 7 65. 4 64. 0 62. 7 61 5 651. 5 635. 2 619. 7 604. 8 590. 6 577. 0 564. 0 551. 5 539. 5 527. 9 516. 8 506. 2 495. 9 48E. 0 476. 4... 4648-04 0 496f-04 0 530E-04 0 564 E-04 0 GOOE-04 0 63eE-04 0 67'IE-04 0 713E-04 0. 752E-04 0 793E-04 0 835E-04 0. 878E-04 0 922E-04 0. 967E. 04 0. IO IE-03 0 IDGE-D3 0 111E-03 0 1168-03 0. 121E-03 0 126E-03 0 131E-03 0. 137f-03 0. 142E...

Kim, Bong Hun

2012-06-07T23:59:59.000Z

320

Dual Layer Solid State Thin Film Deposition - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnalCommittee Draftfor $1.14Energy Storage

Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Solvothermal Thin Film Deposition of Electron Blocking Layers | ANSER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus Tom Fletcher,Future | DepartmentSolar andSolving theCenter |

322

Conjugate heat transfer and particle transport in outside vapor deposition process  

SciTech Connect (OSTI)

A numerical study of conjugate heat transfer and particle transport has been carried out for the outside vapor deposition process. A buoyant jet flow impinging on a two-layered cylinder has been analyzed including heat conduction occurring through the two-layered cylinder, which consists of the original target rod and the deposited porous layers. Temperature and flow fields have been obtained by an iterative method, and thermophoretic particle deposition has been studied. Of particular interest are the effects of the thickness of deposited layers, the torch speed, the rotation speed of the cylinder, and the distance between the torch and the cylinder on the heat transfer and particle deposition. Effects of variable properties and tube rotation are also included.

Choi, M.; Song, Y.; Kang, S.H. [Seoul National Univ., Seoul (Korea, Republic of). Dept. of Mechanical Engineering

1995-07-01T23:59:59.000Z

323

Excitonic recombinations in hBN: from bulk to exfoliated layers A. Pierret,1, 2  

E-Print Network [OSTI]

Excitonic recombinations in hBN: from bulk to exfoliated layers A. Pierret,1, 2 J. Loayza,1, 3 B mechanically exfoliated from them. First the link between the presence of structural defects-BN thickness was reduced down to six atomic layers, using mechanical exfoliation, as evidenced by atomic force

324

Charge Transfer Properties Through Graphene Layers in Gas Detectors  

E-Print Network [OSTI]

Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical, electrical and optical properties. For the first time graphene layers suspended on copper meshes were installed into a gas detector equipped with a gaseous electron multiplier. Measurements of low energy electron and ion transfer through graphene were conducted. In this paper we describe the sample preparation for suspended graphene layers, the testing procedures and we discuss the preliminary results followed by a prospect of further applications.

P. Thuiner; R. Hall-Wilton; R. B. Jackman; H. Müller; T. T. Nguyen; E. Oliveri; D. Pfeiffer; F. Resnati; L. Ropelewski; J. A. Smith; M. van Stenis; R. Veenhof

2015-03-23T23:59:59.000Z

325

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents [OSTI]

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Riley, B.; Szreders, B.E.

1988-04-26T23:59:59.000Z

326

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents [OSTI]

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Brian, Riley (Willimantic, CT); Szreders, Bernard E. (Oakdale, CT)

1989-01-01T23:59:59.000Z

327

Instrument Series: Deposition and Microfabrication Sputter Deposition  

E-Print Network [OSTI]

Sensors ­ thin film growth of functional material systems for developing highly sensitive and portable chemical and biological sensors Energy sources ­ development of thin film materials systems for research and solid oxide fuel cells and solar cells for energy generation Microfabrication ­ deposition

328

7 -ATOMIC PROCESSES Atomic processes can be  

E-Print Network [OSTI]

1 7 - ATOMIC PROCESSES Atomic processes can be: 1. Scattering 2. Absorption/Thermal Emission scattering, although the results won't change much when this condition is relaxed. Absorption/Thermal Emission Free-free (continuum) ("Bremsstrahlung") Emission/Absorption #12;2 Bound-Bound & Bound

Sitko, Michael L.

329

7 -ATOMIC PROCESSES Atomic processes can be  

E-Print Network [OSTI]

1 7 - ATOMIC PROCESSES Atomic processes can be: 1. Scattering 2. Absorption/Thermal Emission scattering, although the results won't change much when this condition is relaxed. #12;2 Absorption/Thermal Emission Free-free (continuum) ("Bremsstrahlung") Emission/Absorption Bound-Bound & Bound-Free Processes

Sitko, Michael L.

330

Radionuclide deposition control  

DOE Patents [OSTI]

The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

Brehm, William F. (Richland, WA); McGuire, Joseph C. (Richland, WA)

1980-01-01T23:59:59.000Z

331

Experimental study of the residual stress-induced self-assembly of MEMS structures during deposition  

E-Print Network [OSTI]

The possibility of using residual stresses favorably as a means of self-assembling MEMS during material deposition is experimentally investigated. Two atomic force microscope cantilevers are placed in contact at their free ends. Material...

Kim, Sang-Hyun

2005-11-01T23:59:59.000Z

332

Layered solid sorbents for carbon dioxide capture  

SciTech Connect (OSTI)

A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.

Li, Bingyun; Jiang, Bingbing; Gray, McMahan L; Fauth, Daniel J; Pennline, Henry W; Richards, George A

2014-11-18T23:59:59.000Z

333

Solution deposition assembly  

DOE Patents [OSTI]

Methods and devices are provided for improved deposition systems. In one embodiment of the present invention, a deposition system is provided for use with a solution and a substrate. The system comprises of a solution deposition apparatus; at least one heating chamber, at least one assembly for holding a solution over the substrate; and a substrate curling apparatus for curling at least one edge of the substrate to define a zone capable of containing a volume of the solution over the substrate. In another embodiment of the present invention, a deposition system for use with a substrate, the system comprising a solution deposition apparatus; at heating chamber; and at least assembly for holding solution over the substrate to allow for a depth of at least about 0.5 microns to 10 mm.

Roussillon, Yann; Scholz, Jeremy H; Shelton, Addison; Green, Geoff T; Utthachoo, Piyaphant

2014-01-21T23:59:59.000Z

334

Biomimetic thin film deposition  

SciTech Connect (OSTI)

Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

1995-09-01T23:59:59.000Z

335

Impact of the Vertical Mixing Induced by Low-level Jets on Boundary Layer Ozone4 Concentration5  

E-Print Network [OSTI]

to the ground, while the upper24 region of the daytime mixed layer becomes the residual layer (RL). Mixing40 chemical reactions and dry deposition, which resulted in lower O3 peak values on the next day.41 layer (SBL) near45 the surface that is typically quite shallow. Above the SBL is a residual layer (RL

Xue, Ming

336

Properties of tungsten oxide thin films formed by ion-plasma and laser deposition methods for MOSiC-based hydrogen sensors  

SciTech Connect (OSTI)

Thin-film structures based on gas-sensitive tungsten oxide and catalytic platinum are fabricated by room-temperature deposition on a silicon carbide wafer using pulsed laser and ion-plasma methods. Oxide layer annealing in air to 600 Degree-Sign C caused the formation of microstructured and nanostructured crystalline states depending on the deposition conditions. Structural differences affect the electrical parameters and the stability of characteristics. The maximum response to hydrogen is detected in the structure fabricated by depositing a low-energy laser-induced flow of tungsten atoms in oxygen. The voltage shift of the currentvoltage curves for 2% H{sub 2} in air at 350 Degree-Sign C was 4.6 V at a current of {approx}10 {mu}A. The grown structures' metastability caused a significant decrease in the shift after long-term cyclic testing. The most stable shifts of {approx}2 V at positive bias on the Pt contact were detected for oxide films deposited by ion-plasma sputtering.

Fominski, V. Y., E-mail: vyfominskij@mephi.ru [National Research Nuclear University 'MEPhI' (Russian Federation); Grigoriev, S. N. [Moscow State Technological University 'Stankin' (Russian Federation); Romanov, R. I.; Zuev, V. V.; Grigoriev, V. V. [National Research Nuclear University 'MEPhI' (Russian Federation)

2012-03-15T23:59:59.000Z

337

The Future of Atomic Energy  

DOE R&D Accomplishments [OSTI]

There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

Fermi, E.

1946-05-27T23:59:59.000Z

338

ALD Produced B{sub 2}O{sub 3}, Al{sub 2}O{sub 3} and TiO{sub 2} Coatings on Gd{sub 2}O{sub 3} Burnable Poison Nanoparticles and Carbonaceous TRISO Coating Layers  

SciTech Connect (OSTI)

This project will demonstrate the feasibility of using atomic layer deposition (ALD) to apply ultrathin neutron-absorbing, corrosion-resistant layers consisting of ceramics, metals, or combinations thereof, on particles for enhanced nuclear fuel pellets. Current pellet coating technology utilizes chemical vapor deposition (CVD) in a fluidized bed reactor to deposit thick, porous layers of C (or PyC) and SiC. These graphitic/carbide materials degrade over time owing to fission product bombardment, active oxidation, thermal management issues, and long-term irradiation effects. ALD can be used to deposit potential ceramic barrier materials of interest, including ZrO{sub 2}, Y{sub 2}O{sub 3}:ZrO{sub 2} (YSZ), Al{sub 2}O{sub 3}, and TiO{sub 2}, or neutron-absorbing materials, namely B (in BN or B{sub 2}O{sub 3}) and Gd (in Gd{sub 2}O{sub 3}). This project consists of a two-pronged approach to integrate ALD into the next-generation nuclear plant (NGNP) fuel pellet manufacturing process:

Alan Weimer

2012-11-26T23:59:59.000Z

339

Controlled polarity of sputter-deposited aluminum nitride on metals observed by aberration corrected scanning transmission electron microscopy  

SciTech Connect (OSTI)

The polarity determination process of sputter-deposited aluminum nitride (AlN) on metals has been analyzed using aberration corrected atomic resolution scanning transmission electron microscope. Direct growth of c-axis orientated AlN on face centered cubic metals (fcc) (111) with the local epitaxy has been observed, and the polarity was determined at the AlN/metal interface. We found that the AlN polarity can be controlled by the base metal layer: N-polarity AlN grows on Pt(111) while Al-polarity AlN forms on Al(111). Based on these results, the growth mechanism of AlN on metals is discussed.

Harumoto, T. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1-S8-6 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Department of Materials Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Sannomiya, T.; Matsukawa, Y.; Muraishi, S.; Shi, J.; Nakamura, Y. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1-S8-6 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Sawada, H. [Japan Electron Optics Laboratory (JEOL) Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Tanaka, T.; Tanishiro, Y.; Takayanagi, K. [Department of Physics, Tokyo Institute of Technology, 2-12-1-H-51 O-okayama, Meguro-ku, Tokyo 152-8551 (Japan)

2013-02-28T23:59:59.000Z

340

A simplified model of thin layer static/flowing dynamics for granular materials with yield  

E-Print Network [OSTI]

/deposition processes when a layer of particles is flowing over a static layer or near the destabilization and arrestA simplified model of thin layer static/flowing dynamics for granular materials with yield, 75005 Paris, France, 4 ANGE team, INRIA, CETMEF, Lab. J.-L. Lions, Paris, France Abstract We introduce

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Atomizing nozzle and process  

DOE Patents [OSTI]

High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

Anderson, I.E.; Figliola, R.S.; Molnar, H.M.

1993-07-20T23:59:59.000Z

342

Large area graphene ion sensitive field effect transistors with tantalum pentoxide sensing layers for pH measurement at the Nernstian limit  

SciTech Connect (OSTI)

We have fabricated and characterized large area graphene ion sensitive field effect transistors (ISFETs) with tantalum pentoxide sensing layers and demonstrated pH sensitivities approaching the Nernstian limit. Low temperature atomic layer deposition was used to deposit tantalum pentoxide atop large area graphene ISFETs. The charge neutrality point of graphene, inferred from quantum capacitance or channel conductance, was used to monitor surface potential in the presence of an electrolyte with varying pH. Bare graphene ISFETs exhibit negligible response, while graphene ISFETs with tantalum pentoxide sensing layers show increased sensitivity reaching up to 55?mV/pH over pH 3 through pH 8. Applying the Bergveld model, which accounts for site binding and a Guoy-Chapman-Stern picture of the surface-electrolyte interface, the increased pH sensitivity can be attributed to an increased buffer capacity reaching up to 10{sup 14} sites/cm{sup 2}. ISFET response was found to be stable to better than 0.05 pH units over the course of two weeks.

Fakih, Ibrahim, E-mail: ibrahim.fakih@mail.mcgill.ca; Sabri, Shadi; Szkopek, Thomas, E-mail: thomas.szkopek@mcgill.ca [Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec H3A 2A7 (Canada); Mahvash, Farzaneh [Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec H3A 2A7 (Canada); Département de Chimie et Biochimie, Universite du Québec à Montréal, Montreal, Quebec H3C 3P8 (Canada); Nannini, Matthieu [McGill Nanotools Microfab, McGill University, Montreal, Quebec H3A 2A7 (Canada); Siaj, Mohamed [Département de Chimie et Biochimie, Universite du Québec à Montréal, Montreal, Quebec H3C 3P8 (Canada)

2014-08-25T23:59:59.000Z

343

Connecting Three Atomic Layers Puts Semiconducting Science on Its Edge |  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJune 2008 BasicCharlesCondensed Matter andConeliusU.S.

344

Deposition of device quality, low hydrogen content, hydrogenated amorphous silicon at high deposition rates with increased stability using the hot wire filament technique  

DOE Patents [OSTI]

A method or producing hydrogenated amorphous silicon on a substrate, comprising the steps of: positioning the substrate in a deposition chamber at a distance of about 0.5 to 3.0 cm from a heatable filament in the deposition chamber; maintaining a pressure in said deposition chamber in the range of about 10 to 100 millitorr and pressure times substrate-filament spacing in the range of about 10 to 100 millitorr-cm, heating the filament to a temperature in the range of about 1,500 to 2,000.degree. C., and heating the substrate to a surface temperature in the range of about 280 to 475.degree. C.; and flowing silicohydride gas into the deposition chamber with said heated filament, decomposing said silicohydride gas into silicon and hydrogen atomic species and allowing products of gas reactions between said atomic species and the silicohydride gas to migrate to and deposit on said substrate while adjusting and maintaining said pressure times substrate-filament spacing in said deposition chamber at a value in said 10 to 100 millitorr range to produce statistically about 3 to 50 atomic collisions between the silicon and hydrogen atomic species migrating to said substrate and undecomposed molecules of the silane or other silicohydride gas in the deposition chamber.

Molenbroek, Edith C. (Utrecht, NL); Mahan, Archie Harvin (Golden, CO); Gallagher, Alan C. (Louisville, CO)

2000-09-26T23:59:59.000Z

345

Thick adherent dielectric films on plastic substrates and method for depositing same  

DOE Patents [OSTI]

Thick adherent dielectric films deposited on plastic substrates for use as a thermal barrier layer to protect the plastic substrates from high temperatures which, for example, occur during laser annealing of layers subsequently deposited on the dielectric films. It is desirable that the barrier layer has properties including: a thickness of 1 .mu.m or greater, adheres to a plastic substrate, does not lift-off when cycled in temperature, has few or no cracks and does not crack when subjected to bending, resistant to lift-off when submersed in fluids, electrically insulating and preferably transparent. The thick barrier layer may be composed, for example, of a variety of dielectrics and certain metal oxides, and may be deposited on a variety of plastic substrates by various known deposition techniques. The key to the method of forming the thick barrier layer on the plastic substrate is maintaining the substrate cool during deposition of the barrier layer. Cooling of the substrate maybe accomplished by the use of a cooling chuck on which the plastic substrate is positioned, and by directing cooling gas, such as He, Ar and N.sub.2, between the plastic substrate and the cooling chucks. Thick adherent dielectric films up to about 5 .mu.m have been deposited on plastic substrates which include the above-referenced properties, and which enable the plastic substrates to withstand laser processing temperatures applied to materials deposited on the dielectric films.

Wickboldt, Paul (Walnut Creek, CA); Ellingboe, Albert R. (Fremont, CA); Theiss, Steven D. (Woodbury, MN); Smith, Patrick M. (San Ramon, CA)

2002-01-01T23:59:59.000Z

346

Ash deposit workshop: Class outline  

SciTech Connect (OSTI)

Ash deposits formed from the combustion of coal and other fuels have plagued the steam production industry from the start. The ash fusion test has been around for over eighty years. As steam plant size increased, so have the problems associated with ash deposits. This workshop is designed to cover: (1) The basic types of deposits. (2) Causes of deposits. (3) Analytical procedures for resolving, or at least providing information about deposits and fuels, and (4) Deposit removal and reduction techniques.

Hatt, R. [Commercial Testing & Engineering Co., Lexington, KY (United States)

1996-12-31T23:59:59.000Z

347

Deposition of device quality low H content, amorphous silicon films  

DOE Patents [OSTI]

A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH{sub 4}) over a high temperature, 2,000 C, tungsten (W) filament in the proximity of a high temperature, 400 C, substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20--30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content. 7 figs.

Mahan, A.H.; Carapella, J.C.; Gallagher, A.C.

1995-03-14T23:59:59.000Z

348

Ultrashort pulse laser deposition of thin films  

DOE Patents [OSTI]

Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

Perry, Michael D. (Livermore, CA); Banks, Paul S. (Livermore, CA); Stuart, Brent C. (Fremont, CA)

2002-01-01T23:59:59.000Z

349

Substrate-dependent wetting layer formation during GaN growth: Impact on the morphology of the films  

SciTech Connect (OSTI)

We have compared epitaxial growth of GaN films on 6H-SiC(0001)-({radical}(3)x{radical}(3))R30 deg. -Ga and on (0001)-sapphire. Predeposited Ga layers were nitrided by ion beam assisted molecular beam epitaxy. Whereas on SiC the initially deposited Ga covers the substrate surface completely, on sapphire only Ga droplets are present. The different distribution of the predeposited Ga affects the morphology of GaN significantly. Scanning electron microscopy and atomic force microscopy analysis of the grown films show that the complete wetting of the SiC substrate with Ga enhances finally the size and the flatness of GaN terraces and thus the quality of the film. X-ray photoelectron spectroscopy measurements reveal that metallic Ga resides also on top of the GaN films during the growth.

Sidorenko, A.; Peisert, H.; Neumann, H.; Chasse, T. [Universitaet Tuebingen, Institut fuer Physikalische und Theoretische Chemie, Auf der Morgenstelle 8, D-72076 Tuebingen (Germany); Leibniz-Institut fuer Oberflaechenmodifizierung e.V. Permoserstrasse 15, D-04318 Leipzig (Germany); Universitaet Tuebingen, Institut fuer Physikalische und Theoretische Chemie, Auf der Morgenstelle 8, D-72076 Tuebingen (Germany)

2007-08-15T23:59:59.000Z

350

As-deposited low-strain LPCVD (low-pressure, chemical-vapor-deposition) polysilicon  

SciTech Connect (OSTI)

As-deposited polysilicon films with very low residual strain (lower than 5 x 10/sup -5/) are obtained by a low-pressure, chemical-vapor-deposition (LPCVD) process. Straight polysilicon bridges 300 ..mu..m long, 1.2 ..mu..m thick, and 2 to 20 ..mu..m wide, made using this process. No buckling has been observed in any of the nearly one thousand bridges of this type made in two separate process runs. In addition, no problems of sticking between the bridges and the substrate were encountered with these structures. The polysilicon films from which the beams were fabricated were deposited by pyrolyzing silane at 605/degree/C on a phosphosilicate-glass (PSG) layer (8 wt % P). The PSG layer serves as a sacrificial layer to be subsequently etched away to free the bridge. Our research is aimed at obtaining an understanding of these relationships through consideration of the role of interfacial stresses and the kinetics of initial crystalline nucleation. The technique for producing these low-strain films is significant, however, because no high-temperature annealing steps are required to produce them. 4 refs., 4 figs.

Fan, L.S.; Muller, R.S.

1988-08-01T23:59:59.000Z

351

Underpotential Deposition-Mediated Layer-by-Layer Growth of Thin Films -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear23, 2014 Meetingsays | ArgonneEnergy

352

Chemical solution deposition method of fabricating highly aligned MgO templates  

DOE Patents [OSTI]

A superconducting article includes a substrate having an untextured metal surface; an untextured barrier layer of La.sub.2Zr.sub.2O.sub.7 or Gd.sub.2Zr.sub.2O.sub.7 supported by and in contact with the surface of the substrate; a biaxially textured buffer layer supported by the untextured barrier layer; and a biaxially textured superconducting layer supported by the biaxially textured buffer layer. Moreover, a method of forming a buffer layer on a metal substrate includes the steps of: providing a substrate having an untextured metal surface; coating the surface of the substrate with a barrier layer precursor; converting the precursor to an untextured barrier layer; and depositing a biaxially textured buffer layer above and supported by the untextured barrier layer.

Paranthaman, Mariappan Parans (Knoxville, TN); Sathyamurthy, Srivatsan (Knoxville, TN); Aytug, Tolga (Knoxville, TN); Arendt, Paul N (Los Alamos, NM); Stan, Liliana (Los Alamos, NM); Foltyn, Stephen R (Los Alamos, NM)

2012-01-03T23:59:59.000Z

353

Method for making oxygen-reducing catalyst layers  

DOE Patents [OSTI]

Methods are provided for making oxygen-reducing catalyst layers, which include simultaneous or sequential stops of physical vapor depositing an oxygen-reducing catalytic material onto a substrate, the catalytic material comprising a transition metal that is substantially free of platinum; and thermally treating the catalytic material. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

O'Brien, Dennis P.; Schmoeckel, Alison K.; Vernstrom, George D.; Atanasoski, Radoslav; Wood, Thomas E.; O'Neill, David G.

2010-06-22T23:59:59.000Z

354

Phases of underpotentially deposited Hg on Au(111): An in situ surface X-ray diffraction study  

SciTech Connect (OSTI)

We report on an in situ surface X-ray diffraction study of the underpotential deposition (UPD) of mercury on Au(111). We have observed three UPD phases present at potentials prior to bulk mercury deposition. These phases consist of two well-ordered intermediate states and what appears to be either a fully discharged two-dimensional liquid Hg layer or a monolayer of an amorphous Hg-Au alloy. Both ordered intermediate phases have hexagonal structures with lattice vectors that are rotated 30{degree} from those of the Au(111) substrate. The first phase (phase I), present at a potential of +0.68 V, was only observed on fresh flame-annealed Au(111) electrodes and appears to be an open incommensurate structure with a lattice constant of 3.86 {+-} 0.03 A. This phase appears to be metastable since it changes to a second ordered phase (phase II) after a certain time. The second phase has a more compact lattice with a = 3.34 {+-} 0.01 A and appears to be a commensurate 2x2 structure with 2/3 of the Hg atoms at threefold hollow sites and 1/3 on atop sites. Similar to the first one, this phase is also metastable and can be transformed to a final, fully discharged, state of a two-dimensional liquid Hg layer or an amorphous Hg-Au alloy. The entire Hg UPD process, from Hg{sup 2+} to the fully discharged metallic Hg layer, agrees well with a multistep mechanism based on previous electrochemical kinetic studies on polycrystalline Au electrodes. 31 refs., 10 figs., 2 tabs.

Li, J.; Abruna, H.D. [Cornell Univ., Ithaca, NY (United States)] [Cornell Univ., Ithaca, NY (United States)

1997-04-10T23:59:59.000Z

355

Surface plasmon dispersion engineering via double-metallic AU/AG layers for nitride light-emitting diodes  

DOE Patents [OSTI]

A double-metallic deposition process is used whereby adjacent layers of different metals are deposited on a substrate. The surface plasmon frequency of a base layer of a first metal is tuned by the surface plasmon frequency of a second layer of a second metal formed thereon. The amount of tuning is dependent upon the thickness of the metallic layers, and thus tuning can be achieved by varying the thicknesses of one or both of the metallic layers. In a preferred embodiment directed to enhanced LED technology in the green spectrum regime, a double-metallic Au/Ag layer comprising a base layer of gold (Au) followed by a second layer of silver (Ag) formed thereon is deposited on top of InGaN/GaN quantum wells (QWs) on a sapphire/GaN substrate.

Tansu, Nelson; Zhao, Hongping; Zhang, Jing; Liu, Guangyu

2014-04-01T23:59:59.000Z

356

E-Print Network 3.0 - alumina based capacitive Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clarkson University Collection: Materials Science 71 Atomic layer deposited protective coatings for micro-electromechanical systems Summary: of conformal layer deposition, ALD...

357

Vacuum arc deposition devices  

SciTech Connect (OSTI)

The vacuum arc is a high-current, low-voltage electrical discharge which produces a plasma consisting of vaporized and ionized electrode material. In the most common cathodic arc deposition systems, the arc concentrates at minute cathode spots on the cathode surface and the plasma is emitted as a hypersonic jet, with some degree of contamination by molten droplets [known as macroparticles (MPs)] of the cathode material. In vacuum arc deposition systems, the location and motion of the cathode spots are confined to desired surfaces by an applied magnetic field and shields around undesired surfaces. Substrates are mounted on a holder so that they intercept some portion of the plasma jet. The substrate often provides for negative bias to control the energy of depositing ions and heating or cooling to control the substrate temperature. In some systems, a magnetic field is used to guide the plasma around an obstacle which blocks the MPs. These elements are integrated with a deposition chamber, cooling, vacuum gauges and pumps, and power supplies to produce a vacuum arc deposition system.

Boxman, R.L.; Zhitomirsky, V.N. [Electrical Discharge and Plasma Laboratory, Faculty of Engineering, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978 (Israel)

2006-02-15T23:59:59.000Z

358

Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts  

DOE Patents [OSTI]

High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

Jansen, Kai W. (Lawrenceville, NJ); Maley, Nagi (Exton, PA)

2001-01-01T23:59:59.000Z

359

Multiplicative Sets of Atoms.  

E-Print Network [OSTI]

??It is possible for an element to have both an atom factorization and a factorization that will always contain a reducible element. This leads us… (more)

Rand, Ashley Nicole

2013-01-01T23:59:59.000Z

360

Atomic Collapse Observed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and professor of Physics at UC Berkeley. Nonrelativistic electrons orbiting a subcritical nucleus exhibit the traditional circular Bohr orbit of atomic physics. But when the...

Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy deposition by Alfven waves into the dayside auroral oval: Cluster and FAST observations  

E-Print Network [OSTI]

Energy deposition by Alfve´n waves into the dayside auroral oval: Cluster and FAST observations C observations from the Cluster and FAST spacecraft showing the deposition of energy into the auroral ionosphere from broadband ULF waves in the cusp and low-latitude boundary layer. A comparison of the wave Poynting

California at Berkeley, University of

362

Ambipolar silicon nanowire FETs with stenciled-deposited metal gate Davide Sacchetto  

E-Print Network [OSTI]

Ambipolar silicon nanowire FETs with stenciled-deposited metal gate Davide Sacchetto , Veronica Keywords: Schottky barrier Ambipolarity Si nanowire Stencil lithography FET Silicide a b s t r a c t We chemical vapor deposition (LPCVD) of amorphous Si (a-Si) and SiO2 layers as well as metal gate patterning

De Micheli, Giovanni

363

Study on copper phthalocyanine and perylene-based ambipolar organic light-emitting field-effect transistors produced using neutral beam deposition method  

SciTech Connect (OSTI)

The neutral cluster beam deposition (NCBD) method has been applied to the production and characterization of ambipolar, heterojunction-based organic light-emitting field-effect transistors (OLEFETs) with a top-contact, multi-digitated, long-channel geometry. Organic thin films of n-type N,N?-ditridecylperylene-3,4,9,10-tetracarboxylic diimide and p-type copper phthalocyanine were successively deposited on the hydroxyl-free polymethyl-methacrylate (PMMA)-coated SiO{sub 2} dielectrics using the NCBD method. Characterization of the morphological and structural properties of the organic active layers was performed using atomic force microscopy and X-ray diffraction. Various device parameters such as hole- and electron-carrier mobilities, threshold voltages, and electroluminescence (EL) were derived from the fits of the observed current-voltage and current-voltage-light emission characteristics of OLEFETs. The OLEFETs demonstrated good field-effect characteristics, well-balanced ambipolarity, and substantial EL under ambient conditions. The device performance, which is strongly correlated with the surface morphology and the structural properties of the organic active layers, is discussed along with the operating conduction mechanism.

Kim, Dae-Kyu; Oh, Jeong-Do; Shin, Eun-Sol; Seo, Hoon-Seok; Choi, Jong-Ho, E-mail: jhc@korea.ac.kr [Department of Chemistry, Research Institute for Natural Sciences, Korea University, Anam-Dong, Seoul 136-701 (Korea, Republic of)

2014-04-28T23:59:59.000Z

364

E-Print Network 3.0 - atomic layer-by-layer force Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from the 3D hut cluster growth mode to the ... Source: Kim, Sehun - Department of Chemistry, Korea Advanced Institute of Science and Technology Collection: Computer...

365

Method of making a layered composite electrode/electrolyte  

DOE Patents [OSTI]

An electrode/electrolyte structure is prepared by a plurality of methods. An unsintered (possibly bisque fired) moderately catalytic electronically-conductive or homogeneous mixed ionic electronic conductive electrode material is deposited on a layer composed of a sintered or unsintered ionically-conductive electrolyte material prior to being sintered. A layer of particulate electrode material is deposited on an unsintered ("green") layer of electrolyte material and the electrode and electrolyte layers are sintered simultaneously, sometimes referred to as "co-firing," under conditions suitable to fully densify the electrolyte while the electrode retains porosity. Or, the layer of particulate electrode material is deposited on a previously sintered layer of electrolyte, and then sintered. Subsequently, a catalytic material is added to the electrode structure by infiltration of an electrolcatalyst precursor (e.g., a metal salt such as a transition metal nitrate). This may be followed by low temperature firing to convert the precursor to catalyst. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in an ionic (electrochemical) device such as fuel cells and electrolytic gas separation systems.

Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

2005-01-25T23:59:59.000Z

366

Stability of polymer-dielectric bi-layers for athermal silicon photonics  

E-Print Network [OSTI]

Temperature sensitivity of Si based rings can be nullified by the use of polymer over-cladding. Integration of athermal passive rings in an electronic-photonic architecture requires the possibility of multi-layer depositions ...

Raghunathan, Vivek

367

Atomic dark matter  

SciTech Connect (OSTI)

We propose that dark matter is dominantly comprised of atomic bound states. We build a simple model and map the parameter space that results in the early universe formation of hydrogen-like dark atoms. We find that atomic dark matter has interesting implications for cosmology as well as direct detection: Weak-scale dark atoms can accommodate hyperfine splittings of order 100 keV, consistent with the inelastic dark matter interpretation of the DAMA data while naturally evading direct detection bounds. Moreover, protohalo formation can be suppressed below M{sub proto} ? 10{sup 3}–10{sup 6}M{sub s}un for weak scale dark matter due to Ion-Radiation and Ion-Atom interactions in the dark sector.

Kaplan, David E.; Krnjaic, Gordan Z.; Rehermann, Keith R.; Wells, Christopher M., E-mail: dkaplan@pha.jhu.edu, E-mail: gordan@pha.jhu.edu, E-mail: keith@pha.jhu.edu, E-mail: cwells13@pha.jhu.edu [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686 (United States)

2010-05-01T23:59:59.000Z

368

Layered plasma polymer composite membranes  

DOE Patents [OSTI]

Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

Babcock, W.C.

1994-10-11T23:59:59.000Z

369

Epitaxial graphene prepared by chemical vapor deposition on single crystal thin iridium films on sapphire  

E-Print Network [OSTI]

Epitaxial graphene prepared by chemical vapor deposition on single crystal thin iridium films Cedex 9, France (Dated: 15 March 2011) Uniform single layer graphene was grown on single-crystal Ir. These graphene layers have a single crystallographic orientation and a very low density of defects, as shown

Boyer, Edmond

370

Pulsed electrodeposition of copper/nickel multilayers on a rotating disk electrode. 2: Potentiostatic deposition  

SciTech Connect (OSTI)

Thin Cu/Ni multilayers were deposited on a rotating disk electrode (RDE) by square-wave potentiostatic pulses. A theoretical model was developed to predict the copper content in the Ni layer on the RDE. The copper content in the Ni layer was measured under a variety of experimental conditions. Theory agrees well with experimental results.

Yang, C.C.; Cheh, H.Y. [Columbia Univ., New York, NY (United States). Dept. of Chemical Engineering and Applied Chemistry

1995-09-01T23:59:59.000Z

371

Photovoltaic device comprising compositionally graded intrinsic photoactive layer  

DOE Patents [OSTI]

Photovoltaic devices and methods of making photovoltaic devices comprising at least one compositionally graded photoactive layer, said method comprising providing a substrate; growing onto the substrate a uniform intrinsic photoactive layer having one surface disposed upon the substrate and an opposing second surface, said intrinsic photoactive layer consisting essentially of In.sub.1-xA.sub.xN,; wherein: i. 0.ltoreq.x.ltoreq.1; ii. A is gallium, aluminum, or combinations thereof; and iii. x is at least 0 on one surface of the intrinsic photoactive layer and is compositionally graded throughout the layer to reach a value of 1 or less on the opposing second surface of the layer; wherein said intrinsic photoactive layer is isothermally grown by means of energetic neutral atom beam lithography and epitaxy at a temperature of 600.degree. C. or less using neutral nitrogen atoms having a kinetic energy of from about 1.0 eV to about 5.0 eV, and wherein the intrinsic photoactive layer is grown at a rate of from about 5 nm/min to about 100 nm/min.

Hoffbauer, Mark A; Williamson, Todd L

2013-04-30T23:59:59.000Z

372

Method for large-scale fabrication of atomic-scale structures on material surfaces using surface vacancies  

DOE Patents [OSTI]

A method for forming atomic-scale structures on a surface of a substrate on a large-scale includes creating a predetermined amount of surface vacancies on the surface of the substrate by removing an amount of atoms on the surface of the material corresponding to the predetermined amount of the surface vacancies. Once the surface vacancies have been created, atoms of a desired structure material are deposited on the surface of the substrate to enable the surface vacancies and the atoms of the structure material to interact. The interaction causes the atoms of the structure material to form the atomic-scale structures.

Lim, Chong Wee (Urbana, IL); Ohmori, Kenji (Urbana, IL); Petrov, Ivan Georgiev (Champaign, IL); Greene, Joseph E. (Champaign, IL)

2004-07-13T23:59:59.000Z

373

Mass changes in NSTX Surface Layers with Li Conditioning as Measured by Quartz Microbalances  

SciTech Connect (OSTI)

Dynamic retention, lithium deposition, and the stability of thick deposited layers were measured by three quartz crystal microbalances (QMB) deployed in plasma shadowed areas at the upper and lower divertor and outboard midplane in the National Spherical Torus Experiment (NSTX). Deposition of 185 {micro}/g/cm{sup 2} over 3 months in 2007 was measured by a QMB at the lower divertor while a QMB on the upper divertor, that was shadowed from the evaporator, received an order of magnitude less deposition. During helium glow discharge conditioning both neutral gas collisions and the ionization and subsequent drift of Li{sup +} interrupted the lithium deposition on the lower divertor. We present calculations of the relevant mean free paths. Occasionally strong variations in the QMB frequency were observed of thick lithium films suggesting relaxation of mechanical stress and/or flaking or peeling of the deposited layers.

C.H. Skinner, H.W. Kugel, A. L. Roquemore, PS. Krstic and A. Beste

2008-06-09T23:59:59.000Z

374

Layered Cathode Materials  

Broader source: Energy.gov (indexed) [DOE]

Layered Cathode Materials presented by Michael Thackeray Chemical Sciences and Engineering Division, Argonne Annual Merit Review DOE Vehicle Technologies Program Washington, D.C....

375

Depth profiling of oxidized a-C:D Layers on Be -- A comparison of {sup 4}He RBS and {sup 28}Si ERD analysis  

SciTech Connect (OSTI)

In applications dealing with the deposition of amorphous hydrogenated carbon layers or in the determination of the composition of deposited layers on the walls of nuclear fusion plasma experiments, the analysis of mixtures of light elements on heavy substrates is necessary. Depth profiling by means of RBS is often difficult due to the overlap of the backscattering intensities of different constituents from different depths. The erosion and reaction of deposited amorphous deuterated carbon (a-C:D) films with a Be substrate due to annealing in air poses an analytical challenge especially if simultaneously the exchange of hydrogen isotopes should be monitored. The analysis of the different recoiling atoms from collisions with heavy ions in Elastic Recoil Detection (ERD) can provide a tool which resolves all constituents in a single analysis. In the present study the composition of intermixed layers on Be containing H, D, Be, C and O has been analyzed using conventional {sup 4}He RBS at 2.2 MeV together with 2.5 MeV {sup 4}He ERD for hydrogen isotope analysis. At these energies, an overlap of signals from different constituents could be avoided in most cases. As alternative method heavy ion ERD using Si{sup 7+} ions extracted from a 5 MeV Tandem Van de Graff accelerator was investigated. At a scattering angle of 30{degree} Si ions could not be scattered into the detector and a solid state detector without protecting foil could be used. Even in the intermixed layers at terminal energies of 5 MeV the heavy constituents could be separated while signals from recoiling hydrogen and deuterium atoms could be resolved on top of the signal from the Be substrate. For the analysis of the RBS and ERD data the newly developed spectra simulation program SIMNRA has been used which includes a large data bank for scattering and nuclear reaction cross sections. The depth profiles of all constituents extracted from the simulation are compared for both methods.

Roth, J.; Mayer, M. [EURATOM-Association, Garching (Germany). Max-Planck-Inst. fuer Plasmaphysik; Walsh, D.; Wampler, W.R. [Sandia National Labs., Albuquerque, NM (United States)

1997-06-01T23:59:59.000Z

376

Wide magnetic field range of Ni-P/PZT/Ni-P cylindrical layered magnetoelectric composites  

E-Print Network [OSTI]

magnetoelectric (ME) composites were prepared by electroless deposition. The Ni-P layer has an amorphous with epoxy,5 electrodeposition,6,7 and electroless deposition.8,9 The objective and the develop- ment trend films with good interfacial bonding.12 Nickel is a kind of conventional magnetic material suitable

Volinsky, Alex A.

377

Layering as Optimization Decomposition 3-1 Layering as OptimizationLayering as Optimization  

E-Print Network [OSTI]

1 Layering as Optimization Decomposition 3-1 Layering as OptimizationLayering as Optimization DecompositionDecomposition Layering as Optimization Decomposition 3-2 CONTENTSCONTENTS Introduction (Marta;2 Layering as Optimization Decomposition 3-3 Layering as Optimization Decomposition Introduction By Marta

Fan, Xingzhe

378

Methods for improved growth of group III nitride buffer layers  

DOE Patents [OSTI]

Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

2014-07-15T23:59:59.000Z

379

Multiple density layered insulator  

DOE Patents [OSTI]

A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

Alger, T.W.

1994-09-06T23:59:59.000Z

380

Multiple density layered insulator  

DOE Patents [OSTI]

A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

Alger, Terry W. (Tracy, CA)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Uranium deposits of Brazil  

SciTech Connect (OSTI)

Brazil is a country of vast natural resources, including numerous uranium deposits. In support of the country`s nuclear power program, Brazil has developed the most active uranium industry in South America. Brazil has one operating reactor (Angra 1, a 626-MWe PWR), and two under construction. The country`s economic challenges have slowed the progress of its nuclear program. At present, the Pocos de Caldas district is the only active uranium production. In 1990, the Cercado open-pit mine produced approximately 45 metric tons (MT) U{sub 3}O{sub 8} (100 thousand pounds). Brazil`s state-owned uranium production and processing company, Uranio do Brasil, announced it has decided to begin shifting its production from the high-cost and nearly depleted deposits at Pocos de Caldas, to lower-cost reserves at Lagoa Real. Production at Lagoa Real is schedules to begin by 1993. In addition to these two districts, Brazil has many other known uranium deposits, and as a whole, it is estimated that Brazil has over 275,000 MT U{sub 3}O{sub 8} (600 million pounds U{sub 3}O{sub 8}) in reserves.

NONE

1991-09-01T23:59:59.000Z

382

Optical imaging of Rydberg atoms .  

E-Print Network [OSTI]

??We present an experiment exploring electromagnetically induced transparency (EIT) in Rydberg atoms in order to observe optical nonlinearities at the single photon level. ??Rb atoms… (more)

Mazurenko, Anton

2012-01-01T23:59:59.000Z

383

Rydberg Atoms for Quantum Information.  

E-Print Network [OSTI]

??I examine interactions between ensembles of cold Rydberg atoms, and between Rydberg atoms and an intense, optical standing wave. Because of their strong electrostatic interactions,… (more)

Younge, Kelly Cooper

2010-01-01T23:59:59.000Z

384

Modeling of thermophoretic deposition of aerosols in nuclear reactor containments  

SciTech Connect (OSTI)

Aerosol released in postulated or real nuclear reactor accidents can deposit on containment surfaces via motion induced by temperature gradients in addition to the motion due to diffusion and gravity. The deposition due to temperature gradients is known as thermophoretic deposition, and it is currently modeled in codes such as CONTAIN in direct analogy with heat transfer, but there have been questions about such analogies. This paper focuses on a numerical solution of the particle continuity equation in laminar flow condition characteristics of natural convection. First, the thermophoretic deposition rate is calculated as a function of the Prandtl and Schmidt numbers, the thermophoretic coefficient K, and the temperature difference between the atmosphere and the wall. Then, the cases of diffusion alone and a boundary-layer approximation (due to Batchelor and Shen) to the full continuity equation are considered. It is noted that an analogy with heat transfer does not hold, but for the circumstances considered in this paper, the deposition rates from the diffusion solution and the boundary-layer approximation can be added to provide reasonably good agreement (maximum deviation 30%) with the full solution of the particle continuity equation. Finally, correlations useful for implementation in the reactor source term codes are provided.

Fernandes, A.; Loyalka, S.K. [Univ. of Missouri, Columbia, MO (United States)

1996-12-01T23:59:59.000Z

385

Multiple layer insulation cover  

DOE Patents [OSTI]

A multiple layer insulation cover for preventing heat loss in, for example, a greenhouse, is disclosed. The cover is comprised of spaced layers of thin foil covered fabric separated from each other by air spaces. The spacing is accomplished by the inflation of spaced air bladders which are integrally formed in the cover and to which the layers of the cover are secured. The bladders are inflated after the cover has been deployed in its intended use to separate the layers of the foil material. The sizes of the material layers are selected to compensate for sagging across the width of the cover so that the desired spacing is uniformly maintained when the cover has been deployed. The bladders are deflated as the cover is stored thereby expediting the storage process and reducing the amount of storage space required.

Farrell, James J. (Livingston Manor, NY); Donohoe, Anthony J. (Ovid, NY)

1981-11-03T23:59:59.000Z

386

Carbides composite surface layers produced by (PTA)  

SciTech Connect (OSTI)

The plasma transferred arc technique was applied to deposit a composite layer of nickel base with tungsten carbide in powder form on to surface of low alloy steel 18G2A type according to polish standard. Results showed that, plasma transferred arc hard facing process was successfully conducted by using Deloro alloy 22 plus tungsten carbide powders. Maximum hardness of 1489 HV and minimum dilution of 8.4 % were achieved by using an arc current of 60 A. However, when the current was further increased to 120 A and the dilution increases with current increase while the hardness decreases. Microstructure of the nickel base deposit with tungsten carbide features uniform distribution of reinforcement particles with regular grain shape half - dissolved in the matrix.

Tajoure, Meloud, E-mail: Tajoore2000@yahoo.com [MechanicalEng.,HIHM,Gharian (Libya); Tajouri, Ali, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com; Abuzriba, Mokhtar, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com [Materials and Metallurgical Eng., UOT, Tripoli (Libya); Akreem, Mosbah, E-mail: makreem@yahoo.com [Industrial Research Centre,Tripoli (Libya)

2013-12-16T23:59:59.000Z

387

Cleaning graphene with a titanium sacrificial layer  

SciTech Connect (OSTI)

Graphene is a promising material for future electronic applications and chemical vapor deposition of graphene on copper is a promising method for synthesizing graphene on the wafer scale. The processing of such graphene films into electronic devices introduces a variety of contaminants which can be difficult to remove. An approach to cleaning residues from the graphene channel is presented in which a thin layer of titanium is deposited via thermal e-beam evaporation and immediately removed. This procedure does not damage the graphene as evidenced by Raman spectroscopy, greatly enhances the electrical performance of the fabricated graphene field effect transistors, and completely removes the chemical residues from the surface of the graphene channel as evidenced by x-ray photoelectron spectroscopy.

Joiner, C. A., E-mail: cjoiner3@gatech.edu; Roy, T.; Hesabi, Z. R.; Vogel, E. M. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Chakrabarti, B. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, Texas 75080 (United States)

2014-06-02T23:59:59.000Z

388

Modifications of the surface properties of metals by oxide overlayers: 1, Oxidized zirconium deposited on the Pt(100) single crystal surface  

SciTech Connect (OSTI)

Metallic zirconium was deposited on a single crystal Pt(100) surface by thermal evaporation in UHV conditions. The deposit was oxidized by exposure to oxygen immediately after deposition. Oxidized zirconium was found to grow on the platinum ace by the layer-by-layer mechanism. The adsorption of carbon monoxide on the surface was studied as a function of the zirconium coverage. The results show that oxidized zirconium forms a chemically inert layer which blocks the adsorptive sites of the underlying platinum substrate. The properties of the free Pt surface were unaffected by the presence of the oxidized zirconium layer.

Bardi, U.; Ross, P.N.

1986-06-01T23:59:59.000Z

389

Optical atomic magnetometer  

DOE Patents [OSTI]

An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

Budker, Dmitry; Higbie, James; Corsini, Eric P

2013-11-19T23:59:59.000Z

390

Metal atomization spray nozzle  

DOE Patents [OSTI]

A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

Huxford, T.J.

1993-11-16T23:59:59.000Z

391

Enhanced adhesion for LIGA microfabrication by using a buffer layer  

DOE Patents [OSTI]

The present invention is an improvement on the LIGA microfabrication process wherein a buffer layer is applied to the upper or working surface of a substrate prior to the placement of a resist onto the surface of the substrate. The buffer layer is made from an inert low-Z material (low atomic weight), a material that absorbs secondary X-rays emissions from the substrate that are generated from the substrate upon exposure to a primary X-rays source. Suitable materials for the buffer layer include polyamides and polyimide. The preferred polyimide is synthesized form pyromellitic anhydride and oxydianiline (PMDA-ODA).

Bajikar, Sateesh S.; De Carlo, Francesco; Song, Joshua J.

2004-01-27T23:59:59.000Z

392

Experimental study of a shock accelerated thin gas layer  

SciTech Connect (OSTI)

Planar laser-induced fluorescence imaging is utilized in shock-tube experiments to visualize the development of a shock-accelerated thin gas layer. The Richtmyer-Meshkov instability of both sides of the heavy gas layer causes perturbations initially imposed on the two interfaces to develop into one of three distinct flow patterns. Two of the patterns exhibit vortex pairs which travel either upstream or downstream in the shock tube, while the third is a sinuous pattern that shows no vortex development until late in its evolution. The development of the observed patterns as well as the growth in the layer thickness is modeled by considering the dynamics of vorticity deposited in the layer by the shock interaction process. This model yields an expression for the layer growth which is in good agreement with measurements.

Jacobs, J.W. [Arizona Univ., Tucson, AZ (United States). Dept. of Aerospace and Mechanical Engineering; Jenkins, D.G.; Klein, D.L.; Benjamin, R.F. [Los Alamos National Lab., NM (United States)

1993-08-01T23:59:59.000Z

393

Atomic mass compilation 2012  

SciTech Connect (OSTI)

Atomic mass reflects the total binding energy of all nucleons in an atomic nucleus. Compilations and evaluations of atomic masses and derived quantities, such as neutron or proton separation energies, are indispensable tools for research and applications. In the last decade, the field has evolved rapidly after the advent of new production and measuring techniques for stable and unstable nuclei resulting in substantial ameliorations concerning the body of data and their precision. Here, we present a compilation of atomic masses comprising the data from the evaluation of 2003 as well as the results of new measurements performed. The relevant literature in refereed journals and reports as far as available, was scanned for the period beginning 2003 up to and including April 2012. Overall, 5750 new data points have been collected. Recommended values for the relative atomic masses have been derived and a comparison with the 2003 Atomic Mass Evaluation has been performed. This work has been carried out in collaboration with and as a contribution to the European Nuclear Structure and Decay Data Network of Evaluations.

Pfeiffer, B., E-mail: bpfeiffe@uni-mainz.de [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen (Germany); GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Venkataramaniah, K. [Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam (India)] [Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam (India); Czok, U. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen (Germany)] [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen (Germany); Scheidenberger, C. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany) [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen (Germany)

2014-03-15T23:59:59.000Z

394

Bridging the pressure gap: In situ atomic-level investigations of model platinum catalyst surfaces under reaction conditions by scanning tunneling microscopy  

SciTech Connect (OSTI)

Results of this thesis show that STM measurements can provide information about the surfaces and their adsorbates. Stability of Pt(110) under high pressures of H2, O2, and CO was studied (Chap. 4). In situ UHV and high vacuum experiments were carried out for sulfur on Pt(111) (Chap.5). STM studies of CO/S/Pt(111) in high CO pressures showed that the Pt substrate undergoes a stacking-fault-domain reconstruction involving periodic transitions from fcc to hcp stacking of top-layer atoms (Chap.6). In Chap.7, the stability of propylene on Pt(111) and the decomposition products were studied in situ with the HPSTM. Finally, in Chap.8, results are presented which show how the Pt tip of the HPSTM was used to locally rehydrogenate and oxidize carbonaceous clusters deposited on the Pt(111) surface; the Pt tip acted as a catalyst after activation by short voltage pulses.

McIntyre, B.J.

1994-05-01T23:59:59.000Z

395

Ris Report No. 285 Danish Atomic Energy Commission  

E-Print Network [OSTI]

X / Risø Report No. 285 c Danish Atomic Energy Commission Research Establishment Risø On the Kinetic Energy Spectrum of Atmospheric Motions in the Planetary Boundary Layer by Erik Lundtarg Petersen January 1975 Sola (Uitrlpuon: ivA. OJfttorap, 17, M v p * , DK-1W7 Afotloblt on txekangtfrom: Library, Dtt

396

Electroless deposition process for zirconium and zirconium alloys  

DOE Patents [OSTI]

A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer.

Donaghy, Robert E. (Wilmington, NC); Sherman, Anna H. (Wilmington, NC)

1981-01-01T23:59:59.000Z

397

Electroless deposition process for zirconium and zirconium alloys  

DOE Patents [OSTI]

A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer. 1 fig.

Donaghy, R. E.; Sherman, A. H.

1981-08-18T23:59:59.000Z

398

Heteroepitaxial Growth of NSMO on Silicon by Pulsed Laser Deposition  

SciTech Connect (OSTI)

The following is the optimized pulsed laser deposition (PLD) procedure by which we prepared the final samples that were sent to LLNL. These samples are epitaxial multilayer structures of Si/YSZ/CeO/NSMO, where the abbreviations are explained in the following table. In this heterostructure, YSZ serves as a buffer layer to prevent deleterious chemical reactions, and also serves to de-oxygenate the amorphous SiO{sub 2} layer to generate a crystalline template for epitaxy. CeO and BTO serve as template layers to minimize the effects of thermal and lattice mismatch strains, respectively. More details on the buffer and template layer scheme are included in the manuscript [Yong et al., 2008] attached to this report.

Kolagani, R; Friedrich, S

2008-06-25T23:59:59.000Z

399

WHAT'S GRAPHENE? Mono or few layers of sp2 bonded  

E-Print Network [OSTI]

WHAT'S GRAPHENE? · Mono or few layers of sp2 bonded carbon atoms in a honeycomb lattice 105cm2/Vs at RT. 1 Due to its unique transport properties, graphene is suitable for implementation sampling (EOS) timeresolved spectroscopy to optically pump and THz probe exfoliated graphene ribbons (GR

Mellor-Crummey, John

400

Noninvasive picosecond ultrasonic detection of ultrathin interfacial layers: CFx at the AVSi interface  

E-Print Network [OSTI]

ultrasonics technique has been used to detect interfacial fluorocarbon (CF,) layers as thin as 0.5 nm between, demonstrated in this letter by application to fluorocarbon (CF,) residues as thin as 0.5 nm at the Al schematically in Fig. 1. The sample consists of a thin layer of polymeric fluorocarbon (CF,) deposited onto

Rubloff, Gary W.

Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Atomic and electronic shells of Al77 X. G. Gong,1,2  

E-Print Network [OSTI]

Atomic and electronic shells of Al77 X. G. Gong,1,2 D. Y. Sun,2,1 and Xiao-Qian Wang2 1 Institute shell structures for the experimentally characterized Al77 . The onionlike Al77 structure can be described by a stable Al13 inner core covered by a two-layer atomic shell. The stability of Al77

Gong, Xingao

402

(001) Oriented piezoelectric films prepared by chemical solution deposition on Ni foils  

SciTech Connect (OSTI)

Flexible metal foil substrates are useful in some microelectromechanical systems applications including wearable piezoelectric sensors or energy harvesters based on Pb(Zr,Ti)O{sub 3} (PZT) thin films. Full utilization of the potential of piezoelectrics on metal foils requires control of the film crystallographic texture. In this study, (001) oriented PZT thin films were grown by chemical solution deposition (CSD) on Ni foil and Si substrates. Ni foils were passivated using HfO{sub 2} grown by atomic layer deposition in order to suppress substrate oxidation during subsequent thermal treatment. To obtain the desired orientation of PZT film, strongly (100) oriented LaNiO{sub 3} films were integrated by CSD on the HfO{sub 2} coated substrates. A high level of (001) LaNiO{sub 3} and PZT film orientation were confirmed by X-ray diffraction patterns. Before poling, the low field dielectric permittivity and loss tangents of (001) oriented PZT films on Ni are near 780 and 0.04 at 1?kHz; the permittivity drops significantly on poling due to in-plane to out-of-plane domain switching. (001) oriented PZT film on Ni displayed a well-saturated hysteresis loop with a large remanent polarization ?36??C/cm{sup 2}, while (100) oriented PZT on Si showed slanted P-E hysteresis loops with much lower remanent polarizations. The |e{sub 31,f}| piezoelectric coefficient was around 10.6?C/m{sup 2} for hot-poled (001) oriented PZT film on Ni.

Yeo, Hong Goo, E-mail: hxy162@psu.edu; Trolier-McKinstry, Susan [Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

2014-07-07T23:59:59.000Z

403

Systems having optical absorption layer for mid and long wave infrared and methods for making the same  

SciTech Connect (OSTI)

An optical system according to one embodiment includes a substrate; and an optical absorption layer coupled to the substrate, wherein the optical absorption layer comprises a layer of diamond-like carbon, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). A method for applying an optical absorption layer to an optical system according to another embodiment includes depositing a layer of diamond-like carbon of an optical absorption layer above a substrate using plasma enhanced chemical vapor deposition, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). Additional systems and methods are also presented.

Kuzmenko, Paul J

2013-10-01T23:59:59.000Z

404

Deposition and Microfabrication | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. The Desert Southwest RegionInsideDeposition and

405

Educational Multiwavelength Atomic Emission Spectrometer  

E-Print Network [OSTI]

atomic absorption is the capability for simultaneous multielement analysis. It can be used colleges had acquired atomic absorption instruments by the year 1990.[2] In contrast, atomic emission with the acetylene-air flame source taken from an existing atomic absorption instrument. Two spectrometer units

Nazarenko, Alexander

406

Layered Spinach Salad Ingredients  

E-Print Network [OSTI]

cucumbers 2 tomatoes 1/2 cup low-fat mayonnaise 1/2 cup parmesan cheese, grated 1/4 cup milk 1 1/2 teaspoons size pieces, layer on bottom of a large bowl. 2. Rinse mushrooms off under cool water and use a soft half. Layer on top of vegetables. 6. To make salad dressing, add mayonnaise, cheese, milk, dill weed

Liskiewicz, Maciej

407

Low temperature atmospheric pressure chemical vapor deposition of group 14 oxide films  

SciTech Connect (OSTI)

Depositions of high quality SiO{sub 2} and SnO{sub 2} films from the reaction of homoleptic amido precursors M(NMe{sub 2})4 (M = Si,Sn) and oxygen were carried out in an atmospheric pressure chemical vapor deposition r. The films were deposited on silicon, glass and quartz substrates at temperatures of 250 to 450C. The silicon dioxide films are stoichiometric (O/Si = 2.0) with less than 0.2 atom % C and 0.3 atom % N and have hydrogen contents of 9 {plus_minus} 5 atom %. They are deposited with growth rates from 380 to 900 {angstrom}/min. The refractive indexes of the SiO{sub 2} films are 1.46, and infrared spectra show a possible Si-OH peak at 950 cm{sup {minus}1}. X-Ray diffraction studies reveal that the SiO{sub 2} film deposited at 350C is amorphous. The tin oxide films are stoichiometric (O/Sn = 2.0) and contain less than 0.8 atom % carbon, and 0.3 atom % N. No hydrogen was detected by elastic recoil spectroscopy. The band gap for the SnO{sub 2} films, as estimated from transmission spectra, is 3.9 eV. The resistivities of the tin oxide films are in the range 10{sup {minus}2} to 10{sup {minus}3} {Omega}cm and do not vary significantly with deposition temperature. The tin oxide film deposited at 350C is cassitterite with some (101) orientation.

Hoffman, D.M. [Houston Univ., TX (United States); Atagi, L.M. [Houston Univ., TX (United States)]|[Los Alamos National Lab., NM (United States); Chu, Wei-Kan; Liu, Jia-Rui; Zheng, Zongshuang [Houston Univ., TX (United States); Rubiano, R.R. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Springer, R.W.; Smith, D.C. [Los Alamos National Lab., NM (United States)

1994-06-01T23:59:59.000Z

408

Deposition of CVD diamond onto GaN P.W. May a,*, H.Y. Tsai b  

E-Print Network [OSTI]

of the polycrystalline diamond surface would prevent light from leaking out of the GaN layer and channel it to the endsDeposition of CVD diamond onto GaN P.W. May a,*, H.Y. Tsai b , W.N. Wang c , J.A. Smith a a School performed to deposit continuous layers of CVD diamond onto epitaxial GaN films. Such diamond coatings would

Bristol, University of

409

Fabrication of alkali halide UV photocathodes by pulsed laser deposition  

SciTech Connect (OSTI)

A technique has been proposed for the fabrication of atmospheric corrosion resistant alkali halide UV photocathodes by pulsed laser deposition. We produced photocathodes with a highly homogeneous photoemissive layer well-adherent to the substrate. The photocathodes were mounted in a vacuum photodiode, and a tungsten grid was used as an anode. Using pulsed UV lasers, we carried out experiments aimed at evaluating the quantum efficiency of the photocathodes. With a dc voltage applied between the photocathode and anode grid, we measured a shunt signal proportional to the total charge emitted by the cathode exposed to UV laser light. The proposed deposition technique enables one to produce photocathodes with photoemissive layers highly uniform in quantum efficiency, which is its main advantage over thin film growth by resistive evaporation. (laser technologies)

Brendel', V M; Bukin, V V; Garnov, Sergei V; Bagdasarov, V Kh; Denisov, N N; Garanin, Sergey G; Terekhin, V A; Trutnev, Yurii A

2012-12-31T23:59:59.000Z

410

Atomic Force Microscope  

SciTech Connect (OSTI)

The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

Day, R.D.; Russell, P.E.

1988-12-01T23:59:59.000Z

411

Iowa Powder Atomization Technologies  

SciTech Connect (OSTI)

The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

None

2012-01-01T23:59:59.000Z

412

Iowa Powder Atomization Technologies  

ScienceCinema (OSTI)

The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

None

2013-03-01T23:59:59.000Z

413

Atomic Josephson vortices  

SciTech Connect (OSTI)

We show that Josephson vortices in a quasi-one-dimensional atomic Bose Josephson junction can be controllably manipulated by imposing a difference of chemical potentials on the atomic Bose-Einstein condensate waveguides forming the junction. This effect, which has its origin in the Berry phase structure of a vortex, turns out to be very robust in the whole range of the parameters where such vortices can exist. We also propose that a Josephson vortex can be created by the phase imprinting technique and can be identified by a specific tangential feature in the interference picture produced by expanding clouds released from the waveguides.

Kaurov, V. M.; Kuklov, A. B. [Department of Engineering Science and Physics, College of Staten Island, CUNY, Staten Island, New York 10314 (United States)

2006-01-15T23:59:59.000Z

414

Atom Probe Tomography | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDear Friend,Arthur J. NozikAtom Probe Tomography Atom Probe

415

Atomic Collapse Observed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDear Friend,Arthur J. NozikAtom Probe Tomography Atom

416

Ni-Pt Silicide Formation Through Ti Mediating Layers  

SciTech Connect (OSTI)

With Ni1-xPtxSi, the variation in queue time between the final surface cleaning and Ni-Pt deposition represents a significant manufacturability issue. A short queue time is often difficult to maintain, leading to the formation of an oxide layer on the Si substrate prior to Ni-Pt deposition that can affect the formation of Ni1-xPtxSi and its texture. In this manuscript, it will be shown that an extended queue time prior to Ni-Pt deposition leads to morphological changes in the Ni1-xPtxSi formation sequence. A layer of Ti deposited between Ni-Pt and Si reduces the native oxide and may facilitate Ni1-xPtxSi formation. With increasing Ti thickness, the presence of metal-rich phases is gradually reduced and the formation temperature of Ni1-xPtxSi increases, suggesting a direct formation of Ni1-xPtxSi from Ni-Pt. In the presence of an interfacial oxide, an increase in formation temperature is also observed with increasing Ti interlayer thickness. When the Ti layer is sufficiently thick, the phase formation sequence becomes relatively insensitive to the presence of an interfacial oxide or extended queue time.

Besser,P.; Lavoie, C.; Ozcan, A.; Murray, C.; Strane, J.; Wong, K.; Gribelyuk, M.; Wang, Y.; Parks, C.; Jordan-Sweet, J.

2007-01-01T23:59:59.000Z

417

Layered electrode for electrochemical cells  

DOE Patents [OSTI]

There is provided an electrode structure comprising a current collector sheet and first and second layers of electrode material. Together, the layers improve catalyst utilization and water management.

Swathirajan, Swathy (West Bloomfield, MI); Mikhail, Youssef M. (Sterling Heights, MI)

2001-01-01T23:59:59.000Z

418

Composition Control in the Direct Laser-Deposition Process R.R. UNOCIC and J.N. DuPONT  

E-Print Network [OSTI]

in the LENS system makes this feasible. Dissimilar powder materials can be placed into separate powder hoppers the composition within each layer deposit. Previous work in the closely related process of fusion welding has changes in a continuous manner from one target value to another. However, with a direct metal- deposition

DuPont, John N.

419

Graphene-based textured surface by pulsed laser deposition as a robust platform for surface enhanced Raman scattering applications  

E-Print Network [OSTI]

1 Graphene-based textured surface by pulsed laser deposition as a robust platform for surface scattering (SERS)-active substrate based on gold nanoparticles-decorated few-layer (fl) graphene grown by pulsed laser deposition. Diamond-Like Carbon film has been converted to fl-graphene after thermal

Boyer, Edmond

420

IN-LINE HIGH-RATE DEPOSITION OF ALUMINUM ONTO RISE SOLAR CELLS BY ELECTRON BEAM TECHNOLOGY  

E-Print Network [OSTI]

depositions water cooled copper crucible and ceramic crucibles were used. The ceramic crucibles were found at dynamic deposition rates of 3.6 µm�m/min from ceramic crucibles onto RISE EWT solar cells. The cell by a dielectric passivation layer consisting of a thermal silicon oxide and ­ depending on the embodiment

Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Elements & Compounds Atoms (Elements)  

E-Print Network [OSTI]

#12;Elements & Compounds #12;Atoms (Elements) Molecules (Compounds) Cells Elements & Compounds #12 #12;First shell Second shell Third shell Hydrogen 1H Lithium 3Li Sodium 11Na Beryllium 4Be Magnesium energy Higher energy (a) A ball bouncing down a flight of stairs provides an analogy for energy levels

Frey, Terry

422

Growth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Precipitation on Polycrystalline Ni Surfaces  

E-Print Network [OSTI]

We report graphene films composed mostly of one or two layers of graphene grown by controlled carbon precipitation on the surface of polycrystalline Ni thin films during atmospheric chemical vapor deposition (CVD). Controlling ...

Reina, Alfonso

2009-01-01T23:59:59.000Z

423

Conformal GaP layers on Si wire arrays for solar energy applications Adele C. Tamboli,a  

E-Print Network [OSTI]

P layers on arrays of Si microwires. Silicon wires grown using chlorosilane chemical vapor deposition were collection.2 We have previously shown high fidelity synthesis of vertically ori- ented, high aspect ratio

Kimball, Gregory

424

Enhancement of the nucleation of smooth and dense nanocrystalline diamond films by using molybdenum seed layers  

SciTech Connect (OSTI)

A method for the nucleation enhancement of nanocrystalline diamond (NCD) films on silicon substrates at low temperature is discussed. A sputter deposition of a Mo seed layer with thickness 50 nm on Si substrates was applied followed by an ultrasonic seeding step with nanosized detonation diamond powders. Hot-filament chemical vapor deposition (HF-CVD) was used to nucleate and grow NCD films on substrates heated up at 550 deg. C. The nucleation of diamond and the early stages of NCD film formation were investigated at different methane percentages in methane/hydrogen gas mixtures by atomic force microscopy, micro-Raman spectroscopy, scanning electron microscopy, and grazing incidence x-ray analyses in order to gain specific insight in the nucleation process of NCD films. The nucleation kinetics of diamond on the Mo-coated Si substrates was found to be up to ten times higher than on blank Si substrates. The enhancement of the nucleation of diamond on thin Mo interlayers results from two effects, namely, (a) the nanometer rough Mo surface shows an improved embedding of ultrasonically introduced nanosized diamond seeds that act as starting points for the diamond nucleation during HF-CVD and (b) the rapid carbonization of the Mo surface causes the formation of Mo{sub 2}C onto which diamond easily nucleates. The diamond nucleation density progressively increases at increasing methane percentages and is about 5x10{sup 10} cm{sup -2} at 4.0% methane. The improved nucleation kinetics of diamond on Mo interlayers facilitates the rapid formation of NCD films possessing a very low surface roughness down to {approx}6 nm, and allows a submicron thickness control.

Buijnsters, J. G. [Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Leuven (Belgium); Institute for Molecules and Materials, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Vazquez, L. [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Cantoblanco, C/Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain); Dreumel, G. W. G. van; Meulen, J. J. ter; Enckevort, W. J. P. van [Institute for Molecules and Materials, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Celis, J. P. [Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Leuven (Belgium)

2010-11-15T23:59:59.000Z

425

Layered semiconductor neutron detectors  

DOE Patents [OSTI]

Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

Mao, Samuel S; Perry, Dale L

2013-12-10T23:59:59.000Z

426

Growth of CdTe Films on Amorphous Substrates Using CaF2 Nanorods as a Buffer Layer  

E-Print Network [OSTI]

Growth of CdTe Films on Amorphous Substrates Using CaF2 Nanorods as a Buffer Layer NICHOLAS LICAUSI biaxially textured CdTe films were grown on biaxial CaF2 buffer layers. The CaF2 nanorods were grown by oblique angle vapor deposition and possessed a {111}h121i biaxial texture. The CdTe film was deposited

Wang, Gwo-Ching

427

Atom-by-atom nucleation and growth of graphene nanopores  

E-Print Network [OSTI]

Atom-by-atom nucleation and growth of graphene nanopores Christopher J. Russoa,b and J. A February 17, 2012 (received for review December 9, 2011) Graphene is an ideal thin membrane substrate structures in graphene with atomic preci- sion. It consists of inducing defect nucleation centers with ener

Golovchenko, Jene A.

428

Tritium deposition patterns in TFTR  

E-Print Network [OSTI]

Tritium deposition patterns in TFTR Presented by C. H. Skinner with key contributions from Charles, JAERI #12;· TFTR was a limiter machine - no divertor. · Operated with tritium Nov `93 - April `97. · NetV Limiter Temperature @ 28 MW NBI Low density, high temperature edge #12;Tritium deposition patterns in TFTR

Princeton Plasma Physics Laboratory

429

Method of deforming a biaxially textured buffer layer on a textured metallic substrate and articles therefrom  

DOE Patents [OSTI]

The present invention provides methods and biaxially textured articles having a deformed epitaxial layer formed therefrom for use with high temperature superconductors, photovoltaic, ferroelectric, or optical devices. A buffer layer is epitaxially deposited onto biaxially-textured substrates and then mechanically deformed. The deformation process minimizes or eliminates grooves, or other irregularities, formed on the buffer layer while maintaining the biaxial texture of the buffer layer. Advantageously, the biaxial texture of the buffer layer is not altered during subsequent heat treatments of the deformed buffer. The present invention provides mechanical densification procedures which can be incorporated into the processing of superconducting films through the powder deposit or precursor approaches without incurring unfavorable high-angle grain boundaries.

Lee, Dominic F. (Knoxville, TN); Kroeger, Donald M. (Knoxville, TN); Goyal, Amit (Knoxville, TN)

2000-01-01T23:59:59.000Z

430

Fabrication of contacts for silicon solar cells including printing burn through layers  

DOE Patents [OSTI]

A method for fabricating a contact (240) for a solar cell (200). The method includes providing a solar cell substrate (210) with a surface that is covered or includes an antireflective coating (220). For example, the substrate (210) may be positioned adjacent or proximate to an outlet of an inkjet printer (712) or other deposition device. The method continues with forming a burn through layer (230) on the coating (220) by depositing a metal oxide precursor (e.g., using an inkjet or other non-contact printing method to print or apply a volume of liquid or solution containing the precursor). The method includes forming a contact layer (240) comprising silver over or on the burn through layer (230), and then annealing is performed to electrically connect the contact layer (240) to the surface of the solar cell substrate (210) through a portion of the burn through layer (230) and the coating (220).

Ginley, David S; Kaydanova, Tatiana; Miedaner, Alexander; Curtis, Calvin J; Van Hest, Marinus Franciscus Antonius Maria

2014-06-24T23:59:59.000Z

431

Atomic phenomena in dense plasmas  

SciTech Connect (OSTI)

The following chapters are included: (1) the plasma environment, (2) perturbations of atomic structure, (3) perturbations of atomic collisions, (4) formation of spectral lines, and (5) dielectronic recombination. (MOW)

Weisheit, J.C.

1981-03-01T23:59:59.000Z

432

Use of separate ZnTe interface layers to form OHMIC contacts to p-CdTe films  

DOE Patents [OSTI]

A method of improving electrical contact to a thin film of a p-type tellurium-containing II-VI semiconductor comprising: depositing a first undoped layer of ZnTe on a thin film of p-type tellurium containing II-VI semiconductor with material properties selected to limit the formation of potential barriers at the interface between the p-CdTe and the undoped layer, to a thickness sufficient to control diffusion of the metallic-doped ZnTe into the p-type tellurim-containing II-VI semiconductor, but thin enough to minimize affects of series resistance; depositing a second heavy doped p-type ZnTe layer to the first layer using an appropriate dopant; and depositing an appropriate metal onto the outer-most surface of the doped ZnTe layer for connecting an external electrical conductor to an ohmic contact.

Gessert, Timothy A. (Conifer, CO)

1999-01-01T23:59:59.000Z

433

Use of separate ZnTe interface layers to form ohmic contacts to p-CdTe films  

DOE Patents [OSTI]

A method of is disclosed improving electrical contact to a thin film of a p-type tellurium-containing II-VI semiconductor comprising: depositing a first undoped layer of ZnTe on a thin film of p-type tellurium containing II-VI semiconductor with material properties selected to limit the formation of potential barriers at the interface between the p-CdTe and the undoped layer, to a thickness sufficient to control diffusion of the metallic-doped ZnTe into the p-type tellurium-containing II-VI semiconductor, but thin enough to minimize affects of series resistance; depositing a second heavy doped p-type ZnTe layer to the first layer using an appropriate dopant; and depositing an appropriate metal onto the outer-most surface of the doped ZnTe layer for connecting an external electrical conductor to an ohmic contact. 11 figs.

Gessert, T.A.

1999-06-01T23:59:59.000Z

434

Kinetic Monte Carlo Simulation of Electrodeposition using the Embedded-Atom Method  

E-Print Network [OSTI]

A kinetic Monte Carlo (KMC) method is presented to simulate the electrodeposition of a metal on a single crystal surface of the same metal under galvanostatic conditions. This method utilizes the multi-body embedded-atom method (EAM) potential to characterize the interactions of metal atoms and adatoms. The KMC method accounts for deposition and surface diffusion processes including hopping, atom exchange and step-edge atom exchange. Steady-state deposition configurations obtained using the KMC method are validated by comparison with the structures obtained through the use of molecular dynamics (MD) simulations to relax KMC constraints. The results of this work support the use of the proposed KMC method to simulate electrodeposition processes at length (microns) and time (seconds) scales that are not feasible using other methods.

Treeratanaphitak, Tanyakarn; Abukhdeir, Nasser Mohieddin

2013-01-01T23:59:59.000Z

435

A microfabricated atomic clock  

SciTech Connect (OSTI)

Fabrication techniques usually applied to microelectromechanical systems (MEMS) are used to reduce the size and operating power of the core physics assembly of an atomic clock. With a volume of 9.5 mm{sup 3}, a fractional frequency instability of 2.5x10{sup -10} at 1 s of integration, and dissipating less than 75 mW of power, the device has the potential to bring atomically precise timing to hand-held, battery-operated devices. In addition, the design and fabrication process allows for wafer-level assembly of the structures, enabling low-cost mass-production of thousands of identical units with the same process sequence, and easy integration with other electronics.

Knappe, Svenja; Shah, Vishal; Schwindt, Peter D.D.; Hollberg, Leo; Kitching, John; Liew, Li-Anne; Moreland, John [Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305-3328 (United States); Electromagnetics Division, National Institute of Standards and Technology, Boulder, Colorado 80305-3328 (United States)

2004-08-30T23:59:59.000Z

436

Delay in Atomic Photoionization  

SciTech Connect (OSTI)

We analyze the time delay between emission of photoelectrons from the outer valence ns and np subshells in noble gas atoms following absorption of an attosecond extreme ultraviolet pulse. Various processes such as elastic scattering of the photoelectron on the parent ion and many-electron correlation affect the apparent 'time zero' when the photoelectron leaves the atom. This qualitatively explains the time delay between photoemission from the 2s and 2p subshells of Ne as determined experimentally by attosecond streaking [Science 328, 1658 (2010)]. However, with our extensive numerical modeling, we were only able to account for less than half of the measured time delay of 21{+-}5 as. We argue that the extreme ultraviolet pulse alone cannot produce such a large time delay and it is the streaking IR field that is most likely responsible for this effect.

Kheifets, A. S. [Research School of Physical Sciences, Australian National University, Canberra ACT 0200 (Australia); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030 (United States); Ivanov, I. A. [Research School of Physical Sciences, Australian National University, Canberra ACT 0200 (Australia)

2010-12-03T23:59:59.000Z

437

Improved magnetoelectric performance of the Ni-P/Ni/Pb(Zr,TiO)3 cylindrical layered composites  

E-Print Network [OSTI]

) cylindrical layered magnetoelectric (ME) composites have been prepared by electroless deposition, and electroless deposition.9­12 Improving magnetoelectric device characteristics can be achieved by enhancing via magnetic flux concentration. Nickel is a kind of universal strong magnetic material, while Ni

Volinsky, Alex A.

438

MODELING OF THERMOPHORETIC SOOT DEPOSITION ANDHYDROCARBON CONDENSATION IN EGR COOLERS  

SciTech Connect (OSTI)

EGR coolers are effective to reduce NOx emissions from diesel engines due to lower intake charge temperature. EGR cooler fouling reduces heat transfer capacity of the cooler significantly and increases pressure drop across the cooler. Engine coolant provided at 40-90 C is used to cool EGR coolers. The presence of a cold surface in the cooler causes particulate soot deposition and hydrocarbon condensation. The experimental data also indicates that the fouling is mainly caused by soot and hydrocarbons. In this study, a 1-D model is extended to simulate particulate soot and hydrocarbon deposition on a concentric tube EGR cooler with a constant wall temperature. The soot deposition caused by thermophoresis phenomena is taken into account the model. Condensation of a wide range of hydrocarbon molecules are also modeled but the results show condensation of only heavy molecules at coolant temperature. Thermal properties of fouled layer are calculated based on mass fraction of deposited soot and hydrocarbons. The experiments with the same conditions ran to validate the model. Hot EGR gases flow through the inner pipe and the coolant circulates around it in the outer pipe to keep a constant wall temperature. Effectiveness, deposited soot mass, condensed hydrocarbon mass, and pressure drop across the cooler are the parameters that have been compared. The results of the model are in a reasonably good agreement with the experimental results although there are some fields that need to be studied in future to improve the model.

Abarham, Mehdi [University of Michigan; Hoard, John W. [University of Michigan; Assanis, Dennis [University of Michigan; Styles, Dan [Ford Motor Company; Curtis, Eric W. [Ford Motor Company; Ramesh, Nitia [Ford Motor Company; Sluder, Scott [ORNL; Storey, John Morse [ORNL

2009-01-01T23:59:59.000Z

439

Appendix G: Radiation HYDROGEN ATOM  

E-Print Network [OSTI]

. People are exposed to naturally occurring radiation constantly. For example, cosmic radiation; radon effects on the environment and biological systems. Radiation comes from natural and human-made sourcesAppendix G: Radiation #12;#12;P P P E E E N NN HYDROGEN ATOM DEUTERIUM ATOM TRITIUM ATOM HYDROGEN

Pennycook, Steve

440

Appendix A: Radiation HYDROGEN ATOM  

E-Print Network [OSTI]

. People are exposed to naturally occurring radiation constantly. For example, cosmic radiation; radon effects on the environment and biological systems. Radiation comes from natural and human-made sourcesAppendix A: Radiation #12;P P P E E E N NN HYDROGEN ATOM DEUTERIUM ATOM TRITIUM ATOM HYDROGEN

Pennycook, Steve

Note: This page contains sample records for the topic "atomic layer deposition" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

VARIOUS APPLICATIONS OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY  

E-Print Network [OSTI]

APPLICATIONS OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPYthe Zeeman effect to atomic absorption spectroscopy has beenthe Zeeman effect on atomic absorption spectrometry has been

Koizumi, Hideaki

2011-01-01T23:59:59.000Z

442

atoms: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory...

443

TULSA UNIVERSITY PARAFFIN DEPOSITION PROJECTS  

SciTech Connect (OSTI)

As oil and gas production moves to deeper and colder water, subsea multiphase production systems become critical for economic feasibility. It will also become increasingly imperative to adequately identify the conditions for paraffin precipitation and predict paraffin deposition rates to optimize the design and operation of these multiphase production systems. Although several oil companies have paraffin deposition predictive capabilities for single-phase oil flow, these predictive capabilities are not suitable for the multiphase flow conditions encountered in most flowlines and wellbores. For deepwater applications in the Gulf of Mexico, it is likely that multiphase production streams consisting of crude oil, produced water and gas will be transported in a single multiphase pipeline to minimize capital cost and complexity at the mudline. Existing single-phase (crude oil) paraffin deposition predictive tools are clearly inadequate to accurately design these pipelines because they do not account for the second and third phases, namely, produced water and gas. The objective of this program is to utilize the current test facilities at The University of Tulsa, as well as member company expertise, to accomplish the following: enhance our understanding of paraffin deposition in single and two-phase (gas-oil) flows; conduct focused experiments to better understand various aspects of deposition physics; and, utilize knowledge gained from experimental modeling studies to enhance the computer progr