Powered by Deep Web Technologies
Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hyperbaric hydrothermal atomic force microscope  

SciTech Connect

A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

Knauss, Kevin G. (Livermore, CA); Boro, Carl O. (Milpitas, CA); Higgins, Steven R. (Laramie, WY); Eggleston, Carrick M. (Laramie, WY)

2002-01-01T23:59:59.000Z

2

Atomic force microscope: Enhanced sensitivity  

SciTech Connect

Atomic force microscopes (AFMs) are a recent development representing the state of the art in measuring ultrafine surface features. Applications are found in such fields of research as biology, microfabrication, material studies, and surface chemistry. Fiber-optic interferometer techniques developed at LLNL offer the potential of improving the vertical resolution of these instruments by up to 2 orders of magnitude. We are attempting to replace the current AFM measurement scheme, which consists of an optical beam deflection approach, with our fiber-optic interferometer scheme, a much more sensitive displacement measurement technique. In performing this research, we hope to accomplish two important goals; (1) to enhance the sensitivity of the AFM, and (2) to achieve important improvements in our fiber-optic interferometer technology.

Davis, D.T.

1995-06-01T23:59:59.000Z

3

Model Development for Atomic Force Microscope Stage Mechanisms  

E-Print Network (OSTI)

Model Development for Atomic Force Microscope Stage Mechanisms Ralph C. Smith and Andrew G. Hatch of the Philippines Virginia Commonwealth University Diliman, Quezon City 1101 Richmond VA 23284 rcdelros titanate (PZT) devices employed in atomic force microscope stage mechanisms. We focus specifically on PZT

4

In-situ monitoring of electron beam induced deposition by atomic force microscopy in a scanning electron microscope  

Science Conference Proceedings (OSTI)

A new type of atomic force microscope is proposed for atomic force microscopic analysis inside a scanning electron microscope. We attached a piezoresisitive atomic force microscopic cantilever to a micro manipulator to achieve a compact and guidable ... Keywords: atomic force, electron beam induced deposition, in-situ monitoring, local gas injection, micro manipulator, microscope

S. Bauerdick; C. Burkhardt; R. Rudorf; W. Barth; V. Bucher; W. Nisch

2003-06-01T23:59:59.000Z

5

A Study on Carbon-Nanotube Local Oxidation Lithography Using an Atomic Force Microscope  

Science Conference Proceedings (OSTI)

In this paper, nanoscale anodic oxidation lithography using an atomic force microscope (AFM) is systematically studied on carbon nanotubes (CNTs). Trends between the produced feature size and the corresponding process parameters, such as applied voltage, ...

K. Kumar; O. Sul; S. Strauf; D. S. Choi; F. Fisher; M. G. Prasad; E. Yang

2011-07-01T23:59:59.000Z

6

Refined tip preparation by electrochemical etching and ultrahigh vacuum treatment to obtain atomically sharp tips for scanning tunneling microscope and atomic force microscope  

SciTech Connect

A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p {<=}10{sup -10} mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission.

Hagedorn, Till; Ouali, Mehdi El; Paul, William; Oliver, David; Miyahara, Yoichi; Gruetter, Peter [Department of Physics, McGill University, 3600 Rue University, Montreal, QC H3A2T8 (Canada)

2011-11-15T23:59:59.000Z

7

Atomic Force Microscope 2: Digital Instruments/Veeco ...  

Science Conference Proceedings (OSTI)

... Tapping mode; Contact mode; Phase mode; Magnetic force microscopy; Scanning tunneling microscopy; Stepper-motor controlled stage; Top view ...

2013-12-11T23:59:59.000Z

8

Note: A scanning electron microscope sample holder for bidirectional characterization of atomic force microscope probe tips  

Science Conference Proceedings (OSTI)

A novel sample holder that enables atomic force microscopy (AFM) tips to be mounted inside a scanning electron microscopy (SEM) for the purpose of characterizing the AFM tips is described. The holder provides quick and easy handling of tips by using a spring clip to hold them in place. The holder can accommodate two tips simultaneously in two perpendicular orientations, allowing both top and side view imaging of the tips by the SEM.

Eisenstein, Alon; Goh, M. Cynthia [Department of Chemistry and Institute for Optical Sciences, University of Toronto, 80 St. George Street, Toronto M5S 3H6 (Canada)

2012-03-15T23:59:59.000Z

9

Highly Reproducible Nanolithography by Dynamic Plough of an Atomic-Force Microscope Tip and Thermal-Annealing Treatment  

Science Conference Proceedings (OSTI)

An approach has been developed to use atomic-force microscope (AFM) to pattern materials at the nanoscale in a controlled manner. By introducing a thermal-annealing process above the glass-transition temperature of poly (methylmethacrylate) (PMMA), the ... Keywords: 2-D electron gas, Atomic-force microscope (AFM), nanolithography, self-switching diodes (SSDs)

Xiaofeng Lu; C. Balocco; Fuhua Yang; A. M. Song

2011-01-01T23:59:59.000Z

10

Calibrated Atomic Force Microscopy  

Science Conference Proceedings (OSTI)

... Vorburger, SL Tan, NG Orji, J. Fu, “Interlaboratory Comparison of Traceable Atomic Force Microscope Pitch Measurements,” SPIE Proceedings Vol. ...

2011-10-28T23:59:59.000Z

11

Seminar Announcement Nanoscale High Field Chemistry with the Atomic Force Microscope and Patterning January 15, 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

SEMINAR SEMINAR ANNOUNCMENT Thursday, January 15, 2009 11:00am - 12:00 noon EMSL Boardroom Nanoscale High Field Chemistry With the Atomic Force Microscope and Patterning Marco Rolandi Assistant Professor Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195 Facile and affordable processes for the fabrication of nanostructures are fundamental to future endeavors in nanoscale science and engineering. The atomic force microscope was designed primarily for imaging, and has evolved into a versatile tool for nanoscale surface modification. We have developed an AFM based scheme capable of direct writing of glassy carbon nanowires as fast as 1 cm/s. In brief, when a bias is applied across the tip-sample gap a molecular precursor undergoes high field reactions that result in the deposition of a cross- linked product on the surface. In order to gain a

12

A high-pressure atomic force microscope for imaging in supercritical carbon dioxide  

Science Conference Proceedings (OSTI)

A high-pressure atomic force microscope (AFM) that enables in situ, atomic scale measurements of topography of solid surfaces in contact with supercritical CO{sub 2} (scCO{sub 2}) fluids has been developed. This apparatus overcomes the pressure limitations of the hydrothermal AFM and is designed to handle pressures up to 100 atm at temperatures up to ?350 K. A standard optically-based cantilever deflection detection system was chosen. When imaging in compressible supercritical fluids such as scCO{sub 2} , precise control of pressure and temperature in the fluid cell is the primary technical challenge. Noise levels and imaging resolution depend on minimization of fluid density fluctuations that change the fluid refractive index and hence the laser path. We demonstrate with our apparatus in situ atomic scale imaging of a calcite (CaCO{sub 3}) mineral surface in scCO{sub 2}; both single, monatomic steps and dynamic processes occurring on the (10{overbar 1}4) surface are presented. This new AFM provides unprecedented in situ access to interfacial phenomena at solid–fluid interfaces under pressure.

Lea, A.S.; Higgins, S.R.; Knauss, K.G.; Rosso, K.M.

2011-01-15T23:59:59.000Z

13

A high-pressure atomic force microscope for imaging in supercritical carbon dioxide  

Science Conference Proceedings (OSTI)

A high-pressure atomic force microscope (AFM) that enables in-situ, atomic scale measurements of topography of solid surfaces in contact with supercritical CO2 (scCO2) fluids has been developed. This apparatus overcomes the pressure limitations of the hydrothermal AFM and is designed to handle pressures up to 100 atm at temperatures up to ~ 350 K. A standard optically-based cantilever deflection detection system was chosen. When imaging in compressible supercritical fluids such as scCO2, precise control of pressure and temperature in the fluid cell is the primary technical challenge. Noise levels and imaging resolution depend on minimization of fluid density fluctuations that change the fluid refractive index and hence the laser path. We demonstrate with our apparatus in-situ atomic scale imaging of a calcite (CaCO3) mineral surface in scCO2; both single, monatomic steps and dynamic processes occurring on the (10¯14) surface are presented. This new AFM provides unprecedented in-situ access to interfacial phenomena at solid-fluid interfaces under pressure.

Lea, Alan S.; Higgins, Steven R.; Knauss, Kevin G.; Rosso, Kevin M.

2011-04-26T23:59:59.000Z

14

X-ray holographic microscopy using the atomic-force microscope  

Science Conference Proceedings (OSTI)

The present authors have been seeking for some time to improve the resolution of holographic microscopy and have engaged in a continuing series of experiments using the X1A soft x-ray undulator beam line at Brookhaven. The principle strategy for pushing the resolution lower in these experiments has been the use of polymer resists as x-ray detectors and the primary goal has been to develop the technique to become useful for examining wet biological material. In the present paper the authors report on progress in the use of resist for high-spatial-resolution x-ray detection. This is the key step in in-line holography and the one which sets the ultimate limit to the image resolution. The actual recording has always been quite easy, given a high-brightness undulator source, but the difficult step was the readout of the recorded pattern. The authors describe in what follows how they have built a special instrument: an atomic force microscope (AFM) to read holograms recorded in resist. They report the technical reasons for building, rather than buying, such an instrument and they give details of the design and performance of the device. The authors also describe the first attempts to use the system for real holography and the authors show results of both recorded holograms and the corresponding reconstructed images. Finally, the authors try to analyze the effect that these advances are likely to have on the future prospects for success in applications of x-ray holography and the degree to which the other technical systems that are needed for such success are available or within reach.

Howells, M.R. [Lawrence Berkeley Lab., CA (United States); Jacobsen, C.J.; Lindaas, S. [State Univ. of New York, Stony Brook, NY (United States). Physics Dept.

1993-09-01T23:59:59.000Z

15

Getting the Point: Real-Time Monitoring of Atomic-Microscope ...  

Science Conference Proceedings (OSTI)

... done with atomic force microscopy (AFM). ... small scales, so researchers use atomic force microscopes. ... of the tip with an electron microscope, a time ...

2012-10-15T23:59:59.000Z

16

Viscoelastic Study Using an Atomic Force Microscope Modified to Operate as a Nanorheometer  

E-Print Network (OSTI)

software interface. Measurements on an agar gel model substrate reveal a viscoelastic response that is well, considering the cantilever assembly instead as a load transducer, one can study the rheological behavior. Their approaches fall into the following general categories: (I) analysis of conventional force-distance curves,10

Attard, Phil

17

On single-molecule DNA sequencing with atomic force microscopy using functionalized carbon nanotube probes  

E-Print Network (OSTI)

A novel DNA sequencing method is proposed based on the specific binding nature of nucleotides and measured by an atomic force microscope (AFM). A single molecule of DNA is denatured and immobilized on an atomically fiat ...

Burns, Daniel James

2004-01-01T23:59:59.000Z

18

Atom Manipulation with the Scanning Tunneling Microscope  

Science Conference Proceedings (OSTI)

... nanostructure from an unknown random collection of atoms without human intervention. ... a set of extensible rules, and allows for error correction. ...

2013-04-26T23:59:59.000Z

19

Spectroscopy and atomic force microscopy of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectroscopy Spectroscopy and atomic force microscopy of biomass L. Tetard a,b , A. Passian a,b,n , R.H. Farahi a , U.C. Kalluri c , B.H. Davison c , T. Thundat a,b a Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA b Department of Physics, University of Tennessee, Knoxville, TN 37996, USA c Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA a r t i c l e i n f o Keywords: Atomic force microscopy Spectroscopy Plant cells Biomass Nanomechanics a b s t r a c t Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass

20

Automated Dna Curvature Profile Reconstruction In Atomic Force  

E-Print Network (OSTI)

An automated algorithm is presented to determine the DNA molecule intrinsic curvature profiles and the molecular spatial orientations in Atomic Force Microscope images. The curvature is composed by static and dynamic contributions. The first one is the intrinsic curvature, vectorial function of the DNA nucletide sequence, while the second one is due to thermal noise. This algorithm allows to reconstruct the intrinsic curvature profile excluding the thermal contribution and detects fragment orientation on AFM image with a percentage of molecular-orientation detection of 96.79 % for molecules with a high curvature peak. The automated approach allows to minimize the processing time compared to semi-automated methods, avoids errors introduced from operator bias and increases the amount of available information.

Microscope Images Elisa; Elisa Ficarra; Daniele Masotti; Luca Benini; Michela Milano

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Direct patterning of surface quantum wells with an atomic force J. Cortes Rosa, M. Wendel, H. Lorenz,a)  

E-Print Network (OSTI)

Direct patterning of surface quantum wells with an atomic force microscope J. Cortes Rosa, MAs­AlSb surface quantum wells. Sharp and sturdy electron beam deposited tips are developed to withstand the comparatively high N forces in the direct patterning process. By direct patterning the InAs surface quantum well

Ludwig-Maximilians-Universität, München

22

Feasibility and limitation of track studies using atomic force microscopy  

E-Print Network (OSTI)

Feasibility and limitation of track studies using atomic force microscopy D. Nikezic, J.P.Y. Ho, C.W.Y. Yip, V.S.Y. Koo, K.N. Yu * Department of Physics and Materials Science, City University of Hong Kong July 2002 Abstract Atomic force microscopy (AFM) has been employed to investigate characteristics

Yu, K.N.

23

Recurrence Tracking Microscope  

E-Print Network (OSTI)

In order to probe nanostructures on a surface we present a microscope based on the quantum recurrence phenomena. A cloud of atoms bounces off an atomic mirror connected to a cantilever and exhibits quantum recurrences. The times at which the recurrences occur depend on the initial height of the bouncing atoms above the atomic mirror, and vary following the structures on the surface under investigation. The microscope has inherent advantages over existing techniques of scanning tunneling microscope and atomic force microscope. Presently available experimental technology makes it possible to develop the device in the laboratory.

Farhan Saif

2006-04-04T23:59:59.000Z

24

Towards a quantum gas microscope for fermionic atoms  

E-Print Network (OSTI)

This thesis reports the achievement of a two-species apparatus for use in an upcoming experiment with fermionic ultracold atomic gases. First, we describe the construction of a laser system capable of cooling and trapping ...

Ramasesh, Vinay (Vinay V.)

2012-01-01T23:59:59.000Z

25

Nuclear forces and ab initio calculations of atomic nuclei  

E-Print Network (OSTI)

Nuclear forces and the nuclear many-body problem have been some of Gerry Brown's main topics in his so productive life as a theoretical physicist. In this talk, I outline how Gerry's work laid the foundations of the modern theory of nuclear forces and ab initio calculations of atomic nuclei. I also present some recent developments obtained in the framework of nuclear lattice simulations.

Meißner, Ulf-G

2014-01-01T23:59:59.000Z

26

Using Atom Interferometry to Search for New Forces  

SciTech Connect

Atom interferometry is a rapidly advancing field and this Letter proposes an experiment based on existing technology that can search for new short distance forces. With current technology it is possible to improve the sensitivity by up to a factor of 10{sup 2} and near-future advances will be able to rewrite the limits for forces with ranges from 100 {micro}m to 1km.

Wacker, Jay G.; /SLAC

2009-12-11T23:59:59.000Z

27

Study of anion adsorption at the gold--aqueous solution interface by atomic force microscopy  

SciTech Connect

The forces between a gold coated colloidal silica sphere and a pure gold plate have been measured in aqueous solution as a function of electrolyte concentration using an atomic force microscope (AFM). Forces in the presence of gold(III) chloride (HAuCl[sub 4]), sodium chloride, and trisodium citrate were recorded as a function of concentration. Each of these anion species is present during the formation of colloidal gold by the reduction of gold(III) chloride with trisodium citrate. In pure water the force between the gold surfaces was exclusively attractive. In sodium chloride or trisodium citrate solution a repulsive interaction was observed which is attributed to the adsorption of these anions at the gold/water interface. The observed interaction force in gold(III) chloride solution was always attractive, the surface potential never exceeding 20 mV. Data taken in aqueous solutions of citrate and chloride ions together suggested that the citrate ions were preferentially adsorbed to the surface of the gold. Addition of gold(III) chloride to the AFM liquid cell after the pre-adsorption of citrate anions caused the force of interaction to change from a repulsvie force to an attractive one initially as the gold(III) chloride was reduced to gold by the citrate anions. 33 refs., 11 figs.

Biggs, S.; Mulvaney, P.; Grieser, F. (Univ. of Melbourne (Australia)); Zukoski, C.F. (Univ. of Illinois, Urbana, IL (United States))

1994-10-05T23:59:59.000Z

28

Quantitative Nanostructure Characterization Using Atomic Pair Distribution Functions Obtained From Laboratory Electron Microscopes  

Science Conference Proceedings (OSTI)

Quantitatively reliable atomic pair distribution functions (PDFs) have been obtained from nanomaterials in a straightforward way from a standard laboratory transmission electron microscope (TEM). The approach looks very promising for making electron derived PDFs (ePDFs) a routine step in the characterization of nanomaterials because of the ubiquity of such TEMs in chemistry and materials laboratories. No special attachments such as energy filters were required on the microscope. The methodology for obtaining the ePDFs is described as well as some opportunities and limitations of the method.

Abeykoon M.; Billinge S.; Malliakas, C.D.; Juhas, P.; Bozin, E.S.; Kanatzidis, M.G.

2012-05-01T23:59:59.000Z

29

APS/123-QED Understanding the atomic-scale contrast in Kelvin Probe Force  

E-Print Network (OSTI)

APS/123-QED Understanding the atomic-scale contrast in Kelvin Probe Force Microscopy Laurent Nony 1 are crucial to understand the atomic-scale KPFM signal. The calculations of the force #12;eld were performed

Recanati, Catherine

30

Potential contributions of noncontact atomic force microscopy for the future Casimir force measurements  

E-Print Network (OSTI)

Surface electric noise, i.e., the non-uniform distribution of charges and potentials on a surface, poses a great experimental challenge in modern precision force measurements. Such a challenge is encountered in a number of different experimental circumstances. The scientists employing atomic force microscopy (AFM) have long focused their efforts to understand the surface-related noise issues via variants of AFM techniques, such as Kelvin probe force microscopy or electric force microscopy. Recently, the physicists investigating quantum vacuum fluctuation phenomena between two closely-spaced objects have also begun to collect experimental evidence indicating a presence of surface effects neglected in their previous analyses. It now appears that the two seemingly disparate science communities are encountering effects rooted in the same surface phenomena. In this report, we suggest specific experimental tasks to be performed in the near future that are crucial not only for fostering needed collaborations between the two communities, but also for providing valuable data on the surface effects in order to draw the most realistic conclusion about the actual contribution of the Casimir force (or van der Waals force) between a pair of real materials.

W. J. Kim; U. D. Schwarz

2010-10-18T23:59:59.000Z

31

Atomic Imaging Using Secondary Electrons in a Scanning Transmission Electron Microscope: Experimental Observations and Possible Mechanisms  

SciTech Connect

We report detailed investigation of high-resolution imaging using secondaryelectrons (SE) with a sub-nanometer probe in an aberration-corrected transmissionelectron microscope, Hitachi HD2700C. This instrument also allows us to acquire the corresponding annular dark-field (ADF) images both simultaneously and separately. We demonstrate that atomic SE imaging is achievable for a wide range of elements, from uranium to carbon. Using the ADF images as a reference, we studied the SE image intensity and contrast as functions of applied bias, atomic number, crystal tilt, and thickness to shed light on the origin of the unexpected ultrahigh resolution in SE imaging. We have also demonstrated that the SE signal is sensitive to the terminating species at a crystal surface. Apossiblemechanism for atomic-scale SE imaging is proposed. The ability to image both the surface and bulk of a sample at atomic-scale is unprecedented, and can have important applications in the field of electron microscopy and materials characterization.

Su, D.; Inada, H.; Egerton, R.F.; Konno, M.; Wua, L.; Ciston, J.; Wall, J.; Zhu, Y.

2011-11-11T23:59:59.000Z

32

Observation of Localized Corrosion of Ni-Based Alloys Using Coupled Orientation Imaging Microscopy and Atomic Force Microscopy  

DOE Green Energy (OSTI)

We present a method for assessing the relative vulnerabilities of distinct classes of grain boundaries to localized corrosion. Orientation imaging microscopy provides a spatial map which identifies and classifies grain boundaries at a metal surface. Once the microstructure of a region of a sample surface has been characterized, a sample can be exposed to repeated cycles of exposure to a corrosive environment alternating with topographic measurement by an atomic force microscope in the same region in which the microstructure had been mapped. When this procedure is applied to Ni and Ni-based alloys, we observe enhanced attack at random grain boundaries relative to special boundaries and twins in a variety of environments.

Bedrossian, P.J.

1999-11-24T23:59:59.000Z

33

Effect of Roughness as Determined by Atomic Force Microscopy on the Wetting Properties of PTFE Thin  

E-Print Network (OSTI)

Effect of Roughness as Determined by Atomic Force Microscopy on the Wetting Properties of PTFE Thin Engineering College of Mines and Earth Sciences University of Utah Salt Lake City, Utah 84112 and G. YAMAUCHI films has been investigated using atomic force microscopy (AFM) and contact angle goniometry. Surface

Drelich, Jaroslaw W.

34

Depth Charge: Using Atomic Force Microscopy to Study ...  

Science Conference Proceedings (OSTI)

... right circumstances, surface science instruments such ... Electric force microscopy can be used to ... superior strength and electrical conductance, added ...

2010-10-05T23:59:59.000Z

35

Scientists Report First Observation of an “Atomic Air Force”  

Science Conference Proceedings (OSTI)

... orbit but then very quickly decay back to the lower energy state by ... cubic arrangement of the atomic clusters changes as the intensity and frequency ...

2012-12-20T23:59:59.000Z

36

Determining Mechanical Properties of Carbon Microcoils Using Lateral Force Microscopy  

Science Conference Proceedings (OSTI)

Mechanical properties of amorphous carbon microcoil (CMC) synthesized by thermal chemical vapor deposition method were examined in compression and tension tests, using the lateral force mode of atomic force microscope (AFM). The AFM cantilever tip was ... Keywords: Atomic force microscopy (AFM), atomic force microscopy, carbon microcoil, shear modulus, spring constant

Neng-Kai Chang; Shuo-Hung Chang

2008-03-01T23:59:59.000Z

37

Ultrasonic-Based Mode-Synthesizing Atomic Force Microscopy  

In a single run and without damaging the sample, ORNL’s mode-synthesizingatomic force microscopy (MSAFM), along with mode-synthesizing sensing, ...

38

Spin microscope based on optically detected magnetic resonance  

DOE Patents (OSTI)

The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

2010-07-13T23:59:59.000Z

39

Spin microscope based on optically detected magnetic resonance  

Science Conference Proceedings (OSTI)

The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

2009-10-27T23:59:59.000Z

40

Spin microscope based on optically detected magnetic resonance  

SciTech Connect

The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

2010-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Spin microscope based on optically detected magnetic resonance  

DOE Patents (OSTI)

The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

2009-11-10T23:59:59.000Z

42

Spin microscope based on optically detected magnetic resonance  

SciTech Connect

The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

2007-12-11T23:59:59.000Z

43

Atomic Force Microscopy Studies of Lipophosphoglycan (LPG) Molecules in Lipid Bilayers  

SciTech Connect

Lipophosphoglycan (LPG) is a lypopolysaccharide found on the surface of the parasite Leishmania donovani that is thought to play an essential role in the infection of humans with leishamniasis. LPG acts as an adhesion point for the parasite to the gut of the sand fly, whose bite is responsible for transmitting the disease. In addition, LPG acts to inhibit protein kinase C (PKC) in the human macrophage, possibly by structural changes in the membrane. The Ca{sup 2+} ion is believed to play a role in the infection cycle, acting both as a crosslinker between LPG molecules and by playing a part in modulating PKC activity. To gain insight into the structure of LPG within a supported lipid membrane and into the structural changes that occur due to Ca{sup 2+} ions, we have employed the atomic force microscope (AFM). We have observed that the LPG molecules inhibit bilayer fusion, resulting in bilayer islands on the mica surface. One experiment suggests that the LPG molecules are parallel to the mica surface and that the structure of the LPG changes upon addition of Ca{sup 2+}, with an increase in the height of the LPG molecules from the bilayer surface and an almost complete coverage of LPG on the bilayer island.

LAST, JULIE A.; HUBER, TINA; SASAKI, DARRYL Y.; SALVATORE, BRIAN; TURCO, SALVATORE J.

2003-03-01T23:59:59.000Z

44

Fractal properties in fundamental force coupling constants, in atomic energies, and in elementary particle masses  

E-Print Network (OSTI)

Using the discrete-scale invariance theory, we show that the coupling constants of fundamental forces, the atomic masses and energies, and the elementary particle masses, obey to the fractal properties.

Boris Tatischeff

2011-04-28T23:59:59.000Z

45

Whole-cell sensing for a harmful bloom-forming microscopic alga by measuring antibody--antigen forces  

E-Print Network (OSTI)

Abstract—Aureococcus anophagefferens, a harmful bloomforming alga responsible for brown tides in estuaries of the Middle Atlantic U.S., has been investigated by atomic force microscopy for the first time, using probes functionalized with a monoclonal antibody specific for the alga. The rupture force between a single monoclonal antibody and the surface of A. anophagefferens was experimentally found to be 246 6 11 pN at the load rate of 12 nN/s. Force histograms for A. anophagefferens and other similarly-sized algae are presented and analyzed. The results illustrate the effects of load rates, and demonstrate that force-distance measurements can be used to build biosensors with high signal-to-noise ratios for A. anophagefferens. The methods described in this paper can be used, in principle, to construct sensors with single-cell resolution for arbitrary cells for which monoclonal antibodies are available. Index Terms—Atomic force microscopy, Aureococcus anophagefferens, biosensors, force-distance measurements, single-cell identification.

Er S. Lee; Mrinal Mahapatro; David A. Caron; Aristides A. G. Requicha; Life Fellow; Beth A. Stauffer; Mark E. Thompson; Chongwu Zhou

2006-01-01T23:59:59.000Z

46

A high-pressure atomic force microscope for imaging in supercritical carbon dioxide  

E-Print Network (OSTI)

National Laboratory (PNNL). The research was performed usingResearch and located at PNNL. 1 R. S. Arvidson, M. Collier,

Lea, A.S.

2012-01-01T23:59:59.000Z

47

Presentation to the Atomic Energy Commission and the Air Force, June 14, 1962  

SciTech Connect

This volume contains the charts and backup material presented to the Atomic Energy Commission and Air Force on June 14, 1962 concerning General Electric's Nuclear Materials and Propulsion Operation (formerly the Aircraft Nuclear Propulsion Department), during its work on the development of a nuclear power plant for manned aircraft.

1962-10-01T23:59:59.000Z

48

Very large-scale structures in sintered silica aerogels as evidenced by atomic force microscopy and ultra-small angle  

E-Print Network (OSTI)

Very large-scale structures in sintered silica aerogels as evidenced by atomic force microscopy of silica aerogels has been extensively studied mainly by scattering techniques (neutrons, X-rays, light) and atomic force microscopy (AFM) experiments have been carried out on aerogels at dierent steps of densi

Demouchy, Sylvie

49

Whole-Cell Sensing for a Harmful Bloom-Forming Microscopic Alga by Measuring Antibody-Antigen Forces  

E-Print Network (OSTI)

Fawley, “Diversity of coccoid algae in shallow lakes duringof small coccoid green algae from Lake Itasca, Minnesota,BLOOM-FORMING MICROSCOPIC ALGA BY MEASURING ANTIBODY–

2006-01-01T23:59:59.000Z

50

Loss tangent imaging: Theory and simulations of repulsive-mode tapping atomic force microscopy  

Science Conference Proceedings (OSTI)

An expression for loss tangent measurement of a surface in amplitude modulation atomic force microscopy is derived using only the cantilever phase and the normalized cantilever amplitude. This provides a direct measurement of substrate compositional information that only requires tuning of the cantilever resonance to provide quantitative information. Furthermore, the loss tangent expression incorporates both the lost and stored energy into one term that represents a fundamental interpretation of the phase signal in amplitude modulation imaging. Numerical solutions of a cantilever tip interacting with a simple Voigt modeled surface agree with the derived loss tangent to within a few percent.

Proksch, Roger [Asylum Research, Santa Barbara, California 93117 (United States); Yablon, Dalia G. [ExxonMobil Research and Engineering, Annandale, New Jersey (United States)

2012-02-13T23:59:59.000Z

51

ATOMIC FORCE LITHOGRAPHY OF NANO/MICROFLUIDIC CHANNELS FOR VERIFICATION AND MONITORING OF AQUEOUS SOLUTIONS  

SciTech Connect

The growing interest in the physics of fluidic flow in nanoscale channels, as well as the possibility for high sensitive detection of ions and single molecules is driving the development of nanofluidic channels. The enrichment of charged analytes due to electric field-controlled flow and surface charge/dipole interactions along the channel can lead to enhancement of sensitivity and limits-of-detection in sensor instruments. Nuclear material processing, waste remediation, and nuclear non-proliferation applications can greatly benefit from this capability. Atomic force microscopy (AFM) provides a low-cost alternative for the machining of disposable nanochannels. The small AFM tip diameter (< 10 nm) can provide for features at scales restricted in conventional optical and electron-beam lithography. This work presents preliminary results on the fabrication of nano/microfluidic channels on polymer films deposited on quartz substrates by AFM lithography.

Mendez-Torres, A.; Torres, R.; Lam, P.

2011-07-15T23:59:59.000Z

52

ATOMIC FORCE LITHOGRAPHY OF NANO MICROFLUIDIC CHANNELS FOR VERIFICATION AND MONITORING IN AQUEOUS SOLUTIONS  

SciTech Connect

The growing interest in the physics of fluidic flow in nanoscale channels, as well as the possibility for high sensitive detection of ions and single molecules is driving the development of nanofluidic channels. The enrichment of charged analytes due to electric field-controlled flow and surface charge/dipole interactions along the channel can lead to enhancement of sensitivity and limits-of-detection in sensor instruments. Nuclear material processing, waste remediation, and nuclear non-proliferation applications can greatly benefit from this capability. Atomic force microscopy (AFM) provides a low-cost alternative for the machining of disposable nanochannels. The small AFM tip diameter (< 10 nm) can provide for features at scales restricted in conventional optical and electron-beam lithography. This work presents preliminary results on the fabrication of nano/microfluidic channels on polymer films deposited on quartz substrates by AFM lithography.

Torres, R.; Mendez-Torres, A.; Lam, P.

2011-06-09T23:59:59.000Z

53

The unification of the fundamental interaction within Maxwell electromagnetism: Model of hydrogen atom. Gravity as the secondary electric force. Calculation of the unified inertia force  

E-Print Network (OSTI)

Considering two static, electrically charged, elementary particles, we demonstrate a possible way of proving that all known fundamental forces in the nature are the manifestations of the single, unique interaction. We re-define the gauging of integration constants in the Schwarzschild solution of Einstein field equations. We consider the potential energy in this context regardless it is gravitational or electric potential energy. With the newly gauged constants, we sketch how the unique interaction can be described with the help of an appropriate solution of the well-known Maxwell equations. According the solution, there are two zones, in the system of two oppositely charged particles, where the force is oscillating. The first particle can be in a stable, constant distance from the second particle, between the neighbouring regions of repulsion and attraction. In an outer oscillation zone, the corresponding energy levels in the proton-electron systems are identical (on the level of accuracy of values calculated by the Dirac's equations) to some experimentally determined levels in the hydrogen atom. For each system of two particles, there is also the zone with the macroscopic, i.e. monotonous behavior of the force. As well, the solution can be used to demonstrate that the net force between two assemblies consisting each (or at least one) of the same numbers of both positively and negatively charged particles is never zero. A secondary electric force, having the same orientation as the primary electric force between the oppositely charged particles, is always present. It can be identified to the gravity. Finally, the solution of the Maxwell equations can be used to calculate the inertia force of a particle. The consistent formulas for both acting and inertia forces enable to construct the dimensionless (without gravitational constant, permitivity of vacuum, etc.) equation of motion.

L. Neslusan

2010-12-28T23:59:59.000Z

54

Experimental Optical-quality geological calcite was cleaved into fragments. In situ atomic force microscope (AFM) imaging was  

E-Print Network (OSTI)

/s and a solution concentration of = References 1 A. A. Chernov, Modern Crystallography III. Crystal Growth, Vol, Crystal Structures, Vol. 2 (Interscience Publishers, New York, 1960). 21 R. A. Berner, Rev. Mineral 31 Saddle River, NJ, 1997). 23 A. Mucci, The American Journal of Science 283, 780-790 (1983

Dickinson, J. Thomas

55

Big microscope  

NLE Websites -- All DOE Office Websites (Extended Search)

microscope Name: stacy Status: NA Age: NA Location: NA Country: NA Date: Around 1993 Question: What type of Microscope has the highest magnification? Replies: What type of...

56

atomic  

NLE Websites -- All DOE Office Websites (Extended Search)

theory and fundamental quantum mechanics In addition to research on hadronic and nuclear physics, we also conduct research in atomic physics, neutron physics, and quantum...

57

Electrical transport and mechanical properties of alkylsilane self-assembled monolayers on silicon surfaces probed by atomic force microscopy  

SciTech Connect

The correlation between molecular conductivity and mechanical properties (molecular deformation and frictional responses) of hexadecylsilane self-assembled monolayers was studied with conductive probe atomic force microscopy/friction force microscopy in ultrahigh vacuum. Current and friction were measured as a function of applied pressure, simultaneously, while imaging the topography of self-assembled monolayer molecule islands and silicon surfaces covered with a thin oxide layer. Friction images reveal lower friction over the molecules forming islands than over the bare silicon surface, indicating the lubricating functionality of alkylsilane molecules. By measuring the tunneling current change due to changing of the height of the molecular islands by tilting the molecules under pressure from the tip, we obtained an effective conductance decay constant ({beta}) of 0.52/{angstrom}.

Park, Jeong Young; Qi, Yabing; Ashby, Paul D.; Hendriksen, Bas L.M.; Salmeron, Miquel

2009-02-06T23:59:59.000Z

58

Haptics and graphic analogies for the understanding of atomic force microscopy  

Science Conference Proceedings (OSTI)

This paper aims to evaluate the benefits of using virtual reality and force-feedback to help teaching nanoscale applications. We propose a teaching aid that combines graphic analogies and haptics intended to improve the grasp of non-intuitive nanoscale ... Keywords: Analogies, Education, Haptic I/O, Human factors, Micro/nano technology

Guillaume Millet, Anatole LéCuyer, Jean-Marie Burkhardt, Sinan Haliyo, StéPhane RéGnier

2013-05-01T23:59:59.000Z

59

Isolating and moving single atoms using silicon nanocrystals  

DOE Patents (OSTI)

A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.

Carroll, Malcolm S. (Albuquerque, NM)

2010-09-07T23:59:59.000Z

60

microscopes_2001  

NLE Websites -- All DOE Office Websites (Extended Search)

5 . His work was a giant 6 6 6 6 6 for science. Today, microscopes are much stronger. An electron microscope can make tiny organisms look 200,000 times 7 7 7 7 7 size. A few...

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Novel Protein Crystal Growth Electrochemical Cell For Applications in X-ray Diffraction and Atomic Force Microscopy  

Science Conference Proceedings (OSTI)

A new crystal growth cell based on transparent indium tin oxide (ITO) glass-electrodes for electrochemically assisted protein crystallization allows for reduced nucleation and crystal quality enhancement. The crystallization behavior of lysozyme and ferritin was monitored as a function of the electric current applied to the growth cell. The X-ray diffraction analysis showed that for specific currents, the crystal quality is substantially improved. No conformational changes were observed in the 3D crystallographic structures determined for crystals grown under different electric current regimes. Finally, the strong crystal adhesion on the surface of ITO electrode because of the electroadhesion allows a sufficiently strong fixing of the protein crystals, to undergo atomic force microscopy investigations in a fluid cell.

G Gil-Alvaradejo; R Ruiz-Arellano; C Owen; A Rodriguez-Romero; E Rudino-Pinera; M Antwi; V Stojanoff; A Moreno

2011-12-31T23:59:59.000Z

62

Microscope collision protection apparatus  

DOE Patents (OSTI)

A microscope collision protection apparatus for a remote control microscope which protects the optical and associated components from damage in the event of an uncontrolled collision with a specimen, regardless of the specimen size or shape. In a preferred embodiment, the apparatus includes a counterbalanced slide for mounting the microscope's optical components. This slide replaces the rigid mounts on conventional upright microscopes with a precision ball bearing slide. As the specimen contacts an optical component, the contacting force will move the slide and the optical components mounted thereon. This movement will protect the optical and associated components from damage as the movement causes a limit switch to be actuated, thereby stopping all motors responsible for the collision.

DeNure, Charles R. (Pocatello, ID)

2001-10-23T23:59:59.000Z

63

Reduction of the Casimir Force from Indium Tin Oxide Film by UV Treatment  

Science Conference Proceedings (OSTI)

A significant decrease in the magnitude of the Casimir force (from 21% to 35%) was observed after an indium tin oxide sample interacting with an Au sphere was subjected to the UV treatment. Measurements were performed by using an atomic force microscope in high vacuum. The experimental results are compared with theory and a hypothetical explanation for the observed phenomenon is proposed.

Chang, C.-C.; Banishev, A. A.; Mohideen, U. [Department of Physics and Astronomy, University of California, Riverside, California 92521 (United States); Klimchitskaya, G. L. [North-West Technical University, Millionnaya Street 5, St. Petersburg, 191065 (Russian Federation); Mostepanenko, V. M. [Noncommercial Partnership ''Scientific Instruments,'' Tverskaya Street 11, Moscow, 103905 (Russian Federation)

2011-08-26T23:59:59.000Z

64

Reduction of the Casimir force from indium tin oxide film by UV treatment  

E-Print Network (OSTI)

A significant decrease in the magnitude of the Casimir force (from 21% to 35%) was observed after an indium tin oxide (ITO) sample interacting with an Au sphere was subjected to the UV treatment. Measurements were performed by using an atomic force microscope (AFM) in high vacuum. The experimental results are compared with theory, and a hypothetical explanation for the observed phenomenon is proposed.

Chang, C C; Klimchitskaya, G L; Mostepanenko, V M; Mohideen, U

2011-01-01T23:59:59.000Z

65

Reduction of the Casimir force from indium tin oxide film by UV treatment  

E-Print Network (OSTI)

A significant decrease in the magnitude of the Casimir force (from 21% to 35%) was observed after an indium tin oxide (ITO) sample interacting with an Au sphere was subjected to the UV treatment. Measurements were performed by using an atomic force microscope (AFM) in high vacuum. The experimental results are compared with theory, and a hypothetical explanation for the observed phenomenon is proposed.

C. C. Chang; A. A. Banishev; G. L. Klimchitskaya; V. M. Mostepanenko; U. Mohideen

2011-08-03T23:59:59.000Z

66

Mechanical Property Measurements of Membranes and Viruses by Using Fluorescence Interference Contrast Microscopy and Atomic Force Microscopy  

E-Print Network (OSTI)

Casimir Force from Indium Tin Oxide Film by UV Treatment.Casimir Force from Indium Tin Oxide Film by UV Treatment.

Gui, Dong

2013-01-01T23:59:59.000Z

67

Surface and Microscopic Characterization of Manufactured ...  

Science Conference Proceedings (OSTI)

Advances in Characterization of Graphene-related Nanomaterials Using Atomic ... Current state of atomic force microscopy (AFM) imaging of graphene and its ...

68

Measuring the Casimir force gradient from graphene on a SiO_2 substrate  

E-Print Network (OSTI)

The gradient of the Casimir force between a Si-SiO${}_2$-graphene substrate and an Au-coated sphere is measured by means of a dynamic atomic force microscope operated in the frequency shift technique. It is shown that the presence of graphene leads to up to 9% increase in the force gradient at the shortest separation considered. This is in qualitative agreement with the predictions of an additive theory using the Dirac model of graphene.

A. A. Banishev; H. Wen; J. Xu; R. K. Kawakami; G. L. Klimchitskaya; V. M. Mostepanenko; U. Mohideen

2013-01-28T23:59:59.000Z

69

Note: Helical nanobelt force sensors  

Science Conference Proceedings (OSTI)

We present the fabrication and characterization of helical nanobelt force sensors. These self-sensing force sensors are based on the giant piezoresistivity of helical nanobelts. The three-dimensional helical nanobelts are self-formed from 27 nm-thick n-type InGaAs/GaAs bilayers using rolled-up techniques, and assembled onto electrodes on a micropipette using nanorobotic manipulations. The helical nanobelt force sensors can be calibrated using a calibrated atomic force microscope cantilever system under scanning electron microscope. Thanks to their giant piezoresistance coefficient (515 Multiplication-Sign 10{sup -10} Pa{sup -1}), low stiffness (0.03125 N/m), large-displacement capability ({approx}10 {mu}m), and good fatigue resistance, they are well suited to function as stand-alone, compact ({approx}20 {mu}m without the plug-in support), light ({approx}5 g including the plug-in support), versatile and large range ({approx}{mu}N) and high resolution ({approx}nN) force sensors.

Hwang, G. [Laboratory for Photonics and Nanostructures, Centre National de la Recherche Scientifique, Marcoussis 91460 (France); Hashimoto, H. [Department of EECE, Chuo University 1-13-27 Kasuga, Bunkyo-ku, Tokyo (Japan)

2012-12-15T23:59:59.000Z

70

Geek-Up[6.3.2011]: Inked PV, Diagnostic Tools and Tough Microscopes |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3.2011]: Inked PV, Diagnostic Tools and Tough Microscopes 3.2011]: Inked PV, Diagnostic Tools and Tough Microscopes Geek-Up[6.3.2011]: Inked PV, Diagnostic Tools and Tough Microscopes June 3, 2011 - 2:04pm Addthis Novartis Diagnostics scientist Cleo Salisbury and Biological Nanostructures Facility director Ron Zuckermann discuss their collaboration to discover new therapies for Alzheimer's. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? Researchers have developed new inorganic nanocrystal arrays created by spraying a new type of colloidal "ink." Scientists have engineered a technique to help doctors identify Alzheimer's in its early stages and discover new therapies for this disease. Scientists have developed a new type of atomic force microscope that

71

Transmission Electron Microscope and Scanning Electron Microscopes -  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities > Transmission Electron Facilities > Transmission Electron Microscope and Scanning Electron Microscopes FACILITIES Transmission Electron Microscope and Scanning Electron Microscopes Overview Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Transmission Electron Microscope and Scanning Electron Microscopes The research activities of the Corrosion and Mechanics of Materials Section are supported by complete metallography/sample preparation rooms equipped with several optical and electron microscopes: a Transmission Electron Microscope and two Scanning Electron Microscopes. Bookmark and Share Transmission electron microscope (TEM) Detail of JEOL 100CXII TEM Figure 1: Detail of JEOL 100CXII TEM. Click on image to view larger image.

72

Microscopic Probes of High-Temperature Superconductivity  

Science Conference Proceedings (OSTI)

The granularity of the cuprate superconductors limits the effectiveness of many experimental probes that average over volumes containing many atoms. This report presents theoretical studies on muon spin relaxation and positron annihilation, two microscopic experimental techniques that can probe the properties of both high- and low-temperature superconductors on the atomic scale.

1992-07-01T23:59:59.000Z

73

Instrument Series: Microscopy Environmental Transmission Electron Microscope  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Transmission Environmental Transmission Electron Microscope EMSL's environmental transmission electron microscope (ETEM) provides in situ capabilities that enable atomic-resolution imaging and spectroscopic studies of materials under dynamic operating conditions. In contrast to traditional operation of TEM under high vacuum, EMSL's ETEM uniquely allows imaging within high- temperature and gas environments-with a gas pressure up to 20 Torr. With a spherical aberration corrector for the objective lens, the ETEM captures atomic-level processes as they occur, enabling vital research across a range of scientific fields. Research Applications Chemical science and engineering - providing in situ observation of catalytic processes with atomic-level resolution Materials science and engineering - allowing

74

Site-specific force-distance characteristics on NaCl(001): Measurements versus atomistic simulations  

Science Conference Proceedings (OSTI)

A scanning force microscope was used to measure the frequency shift above various atomic sites on a NaCl(001) surface at 7 K. The data was converted to force and compared to the results of atomistic simulations using model NaCl and MgO tips. We find that the NaCl tip demonstrates better agreement in the magnitude of the forces in experiments, supporting the observation that the tip first came into contact with the sample. Using the MgO tip as a model of the originally oxidized silicon tip, we further demonstrate a possible mechanism for tip contamination at low temperatures.

Lantz, M. A.; Hoffmann, R.; Hidber, H. R. [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Foster, A. S. [Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, 02015 HUT (Finland); Baratoff, A.; Hug, H. J.; Guentherodt, H.-J. [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); National Center of Competence in Research (NCCR) on Nanoscale Science, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

2006-12-15T23:59:59.000Z

75

Characterization of the molecular structure and mechanical properties of polymer surfaces and protein/polymer interfaces by sum frequency generation vibrational spectroscopy and atomic force microscopy  

SciTech Connect

Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and other complementary surface-sensitive techniques have been used to study the surface molecular structure and surface mechanical behavior of biologically-relevant polymer systems. SFG and AFM have emerged as powerful analytical tools to deduce structure/property relationships, in situ, for polymers at air, liquid and solid interfaces. The experiments described in this dissertation have been performed to understand how polymer surface properties are linked to polymer bulk composition, substrate hydrophobicity, changes in the ambient environment (e.g., humidity and temperature), or the adsorption of macromolecules. The correlation of spectroscopic and mechanical data by SFG and AFM can become a powerful methodology to study and engineer materials with tailored surface properties. The overarching theme of this research is the interrogation of systems of increasing structural complexity, which allows us to extend conclusions made on simpler model systems. We begin by systematically describing the surface molecular composition and mechanical properties of polymers, copolymers, and blends having simple linear architectures. Subsequent chapters focus on networked hydrogel materials used as soft contact lenses and the adsorption of protein and surfactant at the polymer/liquid interface. The power of SFG is immediately demonstrated in experiments which identify the chemical parameters that influence the molecular composition and ordering of a polymer chain's side groups at the polymer/air and polymer/liquid interfaces. In general, side groups with increasingly greater hydrophobic character will be more surface active in air. Larger side groups impose steric restrictions, thus they will tend to be more randomly ordered than smaller hydrophobic groups. If exposed to a hydrophilic environment, such as water, the polymer chain will attempt to orient more of its hydrophilic groups to the surface in order to minimize the total surface energy. With an understanding of the structural and environmental parameters which govern polymer surface structure, SFG is then used to explore the effects of surface hydrophobicity and solvent polarity on the orientation and ordering of amphiphilic neutral polymers adsorbed at the solid/liquid interface. SFG spectra show that poly(propylene glycol) (PPG) and poly(ethylene glycol) (PEG) adsorb with their hydrophobic moieties preferentially oriented toward hydrophobic polystyrene surfaces. These same moieties, however, disorder when adsorbed onto a hydrophilic silica/water interface. Water is identified as a critical factor for mediating the orientation and ordering of hydrophobic moieties in polymers adsorbed at hydrophobic interfaces. The role of bulk water content and water vapor, as they influence hydrogel surface structure and mechanics, continues to be explored in the next series of experiments. A method was developed to probe the surface viscoelastic properties of hydroxylethyl methacrylate (HEMA) based contact lens materials by analyzing AFM force-distance curves. AFM analysis indicates that the interfacial region is dehydrated, relative to the bulk. Experiments performed on poly(HEMA+MA) (MA = methacrylic acid), a more hydrophilic copolymer with greater bulk water content, show even greater water depletion at the surface. SFG spectra, as well as surface energy arguments, suggest that the more hydrophilic polymer component (such as MA) is not favored at the air interface; this may explain anomalies in water retention at the hydrogel surface. Adsorption of lysozyme onto poly(HEMA+MA) was found to further reduce near-surface viscous behavior, suggesting lower surface water content. Lastly, protein adsorption is studied using a model polymer system of polystyrene covalently bound with a monolayer of bovine serum albumin. SFG results indicate that some amino acid residues in proteins adopt preferred orientations. SFG spectra also show that the phenyl rings of the bare polystyrene substrate in contact with air or

Koffas, Telly Stelianos

2004-05-15T23:59:59.000Z

76

On thermodynamic and microscopic reversibility  

E-Print Network (OSTI)

On Thermodynamic and Microscopic Reversibility Abstract. Theof the University of California. On Thermodynamic andMicroscopic Reversibility Thermodynamic reversibility The

Crooks, Gavin E.

2012-01-01T23:59:59.000Z

77

Reading Comprehension - Microscopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Microscopes Microscopes It happened over 300 years _________ since ago before after in Holland. Anton van Leeuwenhoek (AN-tun van LAY-vun-hook) had a new microscope that he had _________ made lost previewed delivered . One day he _________ fell broke looked went through it at a drop of lake water. What he saw surprised him. The water was alive with what Leeuwenhoek called "wee beasties." The microscope made tiny organisms look 200 times _________ farther smaller darker larger than life size. Leeuwenhoek was one of the first scientists to see living things that were that _________ life small darker larger . His work was a giant _________ turtle gorilla step tower for science. Today, microscopes are much stronger. An electron microscope can make tiny organisms look 200,000 times _________ small over under life size. A few

78

October 15, 1994 / Vol. 19, No. 20 / OPTICS LETTERS 1651 Quantized atom-field force at the surface of a microsphere  

E-Print Network (OSTI)

in the F = 3, MF = 3 hyperfine magnetic sub- level of the 5S ground state (quantization axis Oz). The 5P3 from the atomic transition by several hundred megahertz, couples the ground state to a combina- tion of excited substates with F = 2, 3, 4, a situation equivalent to a two-level atom with a dipole matrix

Sandoghdar, Vahid

79

Microscopes - Teacher Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Standards of Learning Download this Activity Background: With the invention of the microscope, scientist could see things they never could before. They discovered that we were...

80

Towards a Neutron Microscope  

Science Conference Proceedings (OSTI)

Towards a Neutron Microscope. Summary: ... The novel lens is a Wolter Optic similar in design to the telescope of the CHANDRA x-ray observatory. ...

2013-07-23T23:59:59.000Z

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Microscopic Properties of Horizons  

E-Print Network (OSTI)

We suggest that all horizons of spacetime, no matter whether they are black hole, Rindler or de Sitter horizons, have certain microscopic properties in common. We propose that these propertues may be used as the starting points, or postulates, of a microscopic theory of gravity.

Jarmo Makela

2001-08-13T23:59:59.000Z

82

Low Temperature Scanning Force Microscopy of the Si(111)-( 7x7) Surface  

Science Conference Proceedings (OSTI)

A low temperature scanning force microscope (SFM) operating in a dynamic mode in ultrahigh vacuum was used to study the Si(111)-(7x7) surface at 7.2 K. Not only the twelve adatoms but also the six rest atoms of the unit cell are clearly resolved for the first time with SFM. In addition, the first measurements of the short range chemical bonding forces above specific atomic sites are presented. The data are in good agreement with first principles computations and indicate that the nearest atoms in the tip and sample relax significantly when the tip is within a few Angstrom of the surface. (c) 2000 The American Physical Society.

Lantz, M. A. [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, (Switzerland); Hug, H. J. [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, (Switzerland); Schendel, P. J. A. van [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, (Switzerland); Hoffmann, R. [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, (Switzerland); Martin, S. [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, (Switzerland); Baratoff, A. [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, (Switzerland); Abdurixit, A. [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, (Switzerland); Guentherodt, H.-J. [Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, (Switzerland); Gerber, Ch. [IBM Research Division, Zuerich Research Laboratory, Saeumerstrasse 4, CH-8803 Rueschlikon, (Switzerland)

2000-03-20T23:59:59.000Z

83

Infrared microscope inspection apparatus  

DOE Patents (OSTI)

Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

Forman, S.E.; Caunt, J.W.

1985-02-26T23:59:59.000Z

84

Modifying the Casimir force between indium tin oxide film and Au sphere  

E-Print Network (OSTI)

We present complete results of the experiment on measuring the Casimir force between an Au-coated sphere and an untreated or, alternatively, UV-treated indium tin oxide film deposited on a quartz substrate. Measurements were performed using an atomic force microscope in a high vacuum chamber. The measurement system was calibrated electrostatically. Special analysis of the systematic deviations is performed, and respective corrections in the calibration parameters are introduced. The corrected parameters are free from anomalies discussed in the literature. The experimental data for the Casimir force from two measurement sets for both untreated and UV-treated samples are presented. The experimental errors are determined at a 95% confidence level. It is demonstrated that the UV treatment of an I TO plate results in a significant decrease in the magnitude of the Casimir force (from 21% to 35% depending on separation). However, ellipsometry measurements of the imaginary parts of dielectric permittivities of the un...

Banishev, A A; Castillo-Garza, R; Klimchitskaya, G L; Mostepanenko, V M; Mohideen, U; 10.1103/PhysRevB.85.045436

2012-01-01T23:59:59.000Z

85

Ion photon emission microscope  

DOE Patents (OSTI)

An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

Doyle, Barney L. (Albuquerque, NM)

2003-04-22T23:59:59.000Z

86

Scanning Confocal Electron Microscope (SCEM)  

Transmission/Scanning Transmission Electron Microscope. The SCEM enables imaging of sub-surface structures of thick, optically opaque materials, ...

87

Aberration Corrected Analytical Electron Microscope  

Science Conference Proceedings (OSTI)

... resolution scanning transmission electron microscope (STEM), where ... the beam electrons as they ... filtered transmission electron microscopy (EFTEM ...

2012-10-01T23:59:59.000Z

88

Solid state optical microscope  

DOE Patents (OSTI)

A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.

Young, I.T.

1983-08-09T23:59:59.000Z

89

Solid state optical microscope  

DOE Patents (OSTI)

A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

Young, Ian T. (Pleasanton, CA)

1983-01-01T23:59:59.000Z

90

Multi-sensorial interaction with a nano-scale phenomenon : the force curve  

E-Print Network (OSTI)

Using Atomic Force Microscopes (AFM) to manipulate nano-objects is an actual challenge for surface scientists. Basic haptic interfacesbetween the AFM and experimentalists have already been implemented. Themulti-sensory renderings (seeing, hearing and feeling) studied from acognitive point of view increase the efficiency of the actual interfaces. Toallow the experimentalist to feel and touch the nano-world, we add mixedrealities between an AFM and a force feedback device, enriching thus thedirect connection by a modeling engine. We present in this paper the firstresults from a real-time remote-control handling of an AFM by our ForceFeedback Gestural Device through the example of the approach-retract curve.

Marliere, Sylvain; Florens, Jean-Loup; Marchi, Florence

2010-01-01T23:59:59.000Z

91

Light-induced gauge fields for ultracold atoms  

E-Print Network (OSTI)

Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length scales, our universe is ruled by gravity, whose gauge structure suggests the existence of a particle - the graviton - that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge fields of different nature: materials can be immersed in external electromagnetic fields, but they can also feature emerging gauge fields in their low-energy description. In this review, we focus on another kind of gauge field: those engineered in systems of ultracold neutral atoms. In these setups, atoms are suitably coupled to laser fields that generate effective gauge potentials in their description. Neutral atoms "feeling" laser-induced gauge potentials can potentially mimic the behavior of an electron gas subjected to a magnetic field, but also, the interaction of elementary particles with non-Abelian gauge fields. Here, we review different realized and proposed techniques for creating gauge potentials - both Abelian and non-Abelian - in atomic systems and discuss their implication in the context of quantum simulation. While most of these setups concern the realization of background and classical gauge potentials, we conclude with more exotic proposals where these synthetic fields might be made dynamical, in view of simulating interacting gauge theories with cold atoms.

N. Goldman; G. Juzeliunas; P. Ohberg; I. B. Spielman

2013-08-29T23:59:59.000Z

92

Metal atomization spray nozzle  

DOE Patents (OSTI)

A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.

Huxford, Theodore J. (Harriman, TN)

1993-01-01T23:59:59.000Z

93

Metal atomization spray nozzle  

DOE Patents (OSTI)

A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

Huxford, T.J.

1993-11-16T23:59:59.000Z

94

Molecular Dynamics Simulation of Tri-n-Butyl-Phophate Liquid: A Force Field Comparative Study  

SciTech Connect

Molecular dynamics (MD) simulations were conducted to compare the performance of four force fields in predicting thermophysical properties of tri-n-butyl-phosphate (TBP) in the liquid phase. The intramolecular force parameters used were from the Assisted Model Building with Energy Refinement (AMBER) force field model. The van der Waals parameters were based on either the AMBER or the Optimized Potential for Liquid Simulation (OPLS) force fields. The atomic partial charges were either assigned by performing quantum chemistry calculations or utilized previously published data, and were scaled to approximate the average experimental value of the electric dipole moment. Canonical ensemble computations based on the aforementioned parameters were performed near the atmospheric pressure and temperature to obtain the electric dipole moment, mass density, and self-diffusion coefficient. In addition, the microscopic structure of the liquid was characterized via pair correlation functions between selected atoms. It has been demonstrated that the electric dipole moment can be approximated within 1% of the average experimental value by virtue of scaled atomic partial charges. The liquid mass density can be predicted within 0.5-1% of its experimentally determined value when using the corresponding charge scaling. However, in all cases the predicted self- diffusion coefficient is significantly smaller than a commonly quoted experimental measurement; this result is qualified by the fact that the uncertainty of the experimental value was not available.

Cui, Shengting [ORNL; de Almeida, Valmor F [ORNL; Hay, Benjamin [ORNL; Ye, Xianggui [ORNL; Khomami, Bamin [ORNL

2012-01-01T23:59:59.000Z

95

Transmission electron microscope CCD camera  

DOE Patents (OSTI)

In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

Downing, Kenneth H. (Lafayette, CA)

1999-01-01T23:59:59.000Z

96

Nuclear forces  

Science Conference Proceedings (OSTI)

These lectures present an introduction into the theory of nuclear forces. We focus mainly on the modern approach

2013-01-01T23:59:59.000Z

97

Atomic History  

Science Conference Proceedings (OSTI)

... These Data Centers, one on Atomic Energy Levels and one on Atomic Transition ... After a few years Kessler went on to higher management at NIST. ...

2010-10-05T23:59:59.000Z

98

Mapping Polymer Heterogeneity Using Atomic Force ...  

Science Conference Proceedings (OSTI)

... the total surface free energy of PB as a function of annealing time were estimated using the geometric means approach of Owens and Wendt.47 In ...

2001-04-03T23:59:59.000Z

99

Nanoscale Mechanics by Contact Resonance Atomic Force ...  

Science Conference Proceedings (OSTI)

... mechanical tests (eg tensile tests observed inside a ... CR-AFM requires no additional testing device or ... 109, 929, 2009), AlN NTs (Nanotechnology 20 ...

2013-07-08T23:59:59.000Z

100

Atomic Force Microscopy - Applications to Energy & Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

More Search Research & Development Batteries and Fuel Cells Li-Ion and Other Advanced Battery Technologies Buildings Energy Efficiency Applications Commercial Buildings Cool...

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

THE U.S. ATOM-RESOLVING MICROSCOPE PROJECT  

E-Print Network (OSTI)

as a user- oriented shareable facility. Emphasiswillapply to all potential users of the facility. All present

Gronsky, R.

2010-01-01T23:59:59.000Z

102

Scanning/Transmission Electron Microscopes  

NLE Websites -- All DOE Office Websites (Extended Search)

ScanningTransmission Electron Microscopes Nion UltraSTEM 60-100 dedicated aberration-corrected STEM for low- to mid-voltage operation and Enfina EELS Contact: Juan-Carlos Idrobo,...

103

On thermodynamic and microscopic reversibility  

SciTech Connect

The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa.

Crooks, Gavin E.

2011-07-12T23:59:59.000Z

104

HIGH TEMPERATURE MICROSCOPE AND FURNACE  

DOE Patents (OSTI)

A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

Olson, D.M.

1961-01-31T23:59:59.000Z

105

Attractive Optical Forces from Blackbody Radiation  

E-Print Network (OSTI)

Blackbody radiation around hot objects induces ac Stark shifts of the energy levels of nearby atoms and molecules. These shifts are roughly proportional to the fourth power of the temperature and induce a force decaying with the third power of the distance from the object. We explicitly calculate the resulting attractive blackbody optical dipole force for ground state hydrogen atoms. Surprisingly, this force can surpass the repulsive radiation pressure and actually pull the atoms against the radiation energy flow towards the surface with a force stronger than gravity. We exemplify the dominance of the "blackbody force" over gravity for hydrogen in a cloud of hot dust particles. This overlooked force appears relevant in various astrophysical scenarios, in particular, since analogous results hold for a wide class of other broadband radiation sources.

Matthias Sonnleitner; Monika Ritsch-Marte; Helmut Ritsch

2013-02-13T23:59:59.000Z

106

Sensing Current and Forces with SPM  

SciTech Connect

Atomic force microscopy (AFM) and scanning tunneling microscopy (STM) are well established techniques to image surfaces and to probe material properties at the atomic and molecular scale. In this review, we show hybrid combinations of AFM and STM that bring together the best of two worlds: the simultaneous detection of atomic scale forces and conduction properties. We illustrate with several examples how the detection of forces during STM and the detection of currents during AFM can give valuable additional information of the nanoscale material properties.

Park, Jeong Y.; Maier, Sabine; Hendriksen, Bas; Salmeron, Miquel

2010-07-02T23:59:59.000Z

107

Reading Comprehension - Dissecting and Compound Microscopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Dissecting and Compound Microscopes Two types of microscopes. _________ Dissecting and Compound Microscopes Two types of microscopes. _________ Dissecting Microscope Compound Microscope _________ eyepiece focus knob light light switch objective stage _________ eyepiece focus knob light light switch objective stage _________ eyepiece focus knob light light switch objective stage _________ eyepiece focus knob light light switch objective stage _________ eyepiece focus knob light light switch objective stage _________ eyepiece focus knob light light switch objective stage _________ Dissecting Microscope Compound Microscope _________ eyepieces focus knob light light switch objective stage _________ eyepieces focus knob light light switch objective stage _________ eyepieces focus knob light light switch objective stage _________ eyepieces focus knob light

108

Microscopic Derivation of an Isothermal Thermodynamic Transformation  

E-Print Network (OSTI)

We obtain macroscopic isothermal thermodynamic transformations by space-time scalings of a microscopic Hamiltonian dynamics in contact with a heat bath. The microscopic dynamics is given by a chain of anharmonic oscillators subject to a varying tension (external force) and the contact with the heat bath is modeled by independent Langevin dynamics acting on each particle. After a diffusive space-time scaling and cross-graining, the profile of volume converges to the solution of a deterministic diffusive equation with boundary conditions given by the applied tension. This defines an irreversible thermodynamic transformation from an initial equilibrium to a new equilibrium given by the final tension applied. Quasi static reversible isothermal transformations are then obtained by a further time scaling. Heat is defined as the total flux of energy exchanged between the system and the heat bath. Then we prove that the relation between the limit heat, work, free energy and thermodynamic entropy agree with the first and second principle of thermodynamics.

Stefano Olla

2013-10-02T23:59:59.000Z

109

Microscope and method of use  

SciTech Connect

A method and apparatus for electronically focusing and electronically scanning microscopic specimens are given. In the invention, visual images of even moving, living, opaque specimens can be acoustically obtained and viewed with virtually no time needed for processing (i.e., real time processing is used). And planar samples are not required. The specimens (if planar) need not be moved during scanning, although it will be desirable and possible to move or rotate nonplanar specimens (e.g., laser fusion targets) against the lens of the apparatus. No coupling fluid is needed, so specimens need not be wetted. A phase acoustic microscope is also made from the basic microscope components together with electronic mixers.

Bongianni, Wayne L. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

110

Magneto-Optical Cooling of Atoms  

E-Print Network (OSTI)

We propose an alternative method to laser cooling. Our approach utilizes the extreme brightness of a supersonic atomic beam, and the adiabatic atomic coilgun to slow atoms in the beam or to bring them to rest. We show how internal-state optical pumping and stimulated optical transitions, combined with magnetic forces can be used to cool the translational motion of atoms. This approach does not rely on momentum transfer from photons to atoms, as in laser cooling. We predict that our method can surpass laser cooling in terms of flux of ultra-cold atoms and phase-space density, with lower required laser power and reduced complexity.

Raizen, Mark G; Rochester, Simon; Narevicius, Julia; Narevicius, Edvardas

2013-01-01T23:59:59.000Z

111

The History of the Microscope  

NLE Websites -- All DOE Office Websites (Extended Search)

the Microscope the Microscope Nature Bulletin No. 506 November 9, 1957 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H. Thompson, Senior Naturalist THE HISTORY OF THE MICROSCOPE During that historic period known as the Renaissance, after the "dark" Middle Ages, there occurred the inventions of printing, gunpowder and the mariner's compass, followed by the discovery of America. Equally remarkable was the invention of the microscope: an instrument that enables the human eye, by means of a lens or combinations of lenses, to observe enlarged images of tiny objects. It made visible the fascinating details of worlds within worlds. Long before, in the hazy unrecorded past, someone picked up a piece of transparent crystal thicker in the middle than at the edges, looked through it, and discovered that it made things look larger. Someone also found that such a crystal would focus the sun's rays and set fire to a piece of parchment or cloth. Magnifiers and "burning glasses" are mentioned in the writings of Seneca and Pliny the Elder, Roman philosophers during the first century A. D., but apparently they were not used much until the invention of spectacles, toward the end of the 13th century. They were named lenses because they are shaped like the seeds of a lentil.

112

Atomic scale electron vortices for nanoresearch  

Science Conference Proceedings (OSTI)

Electron vortex beams were only recently discovered and their potential as a probe for magnetism in materials was shown. Here we demonstrate a method to produce electron vortex beams with a diameter of less than 1.2 Angst . This unique way to prepare free electrons to a state resembling atomic orbitals is fascinating from a fundamental physics point of view and opens the road for magnetic mapping with atomic resolution in an electron microscope.

Verbeeck, J.; Van Tendeloo, G. [EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Schattschneider, P.; Loeffler, S. [Institute for Solid State Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Wien (Austria); Lazar, S. [FEI Electron Optics, 5600 KA Eindhoven (Netherlands); Canadian Centre for Electron Microscopy and Department of Materials Science and Engineering, McMaster University, Main Street West, Hamilton Ontario, L8S4M1 (Canada); Stoeger-Pollach, M.; Steiger-Thirsfeld, A. [USTEM, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Wien (Austria)

2011-11-14T23:59:59.000Z

113

Overview of Electron Microscope Interference  

Science Conference Proceedings (OSTI)

Power frequency magnetic fields can interfere with proper operation of electronic imaging systems. Electron microscopes are susceptible to deflection of their electron beam by an external magnetic field. This unwanted deflection can cause blurring of the image. MRI equipment is susceptible to induced voltage in the sensing coil caused by changing magnetic fields. In either case the result is degradation of the image. Magnetic field strengths that impact the images are on the same order of magnitude as th...

2010-05-28T23:59:59.000Z

114

Nuclear forces from chiral EFT: The unfinished business  

E-Print Network (OSTI)

In spite of the great progress we have seen in recent years in the derivation of nuclear forces from chiral effective field theory (EFT), some important issues are still unresolved. In this contribution, we discuss the open problems which have particular relevance for microscopic nuclear structure, namely, the proper renormalization of chiral nuclear potentials and sub-leading many-body forces.

R. Machleidt; D. R. Entem

2010-01-06T23:59:59.000Z

115

The Particle Adventure | What holds it together? | Residual EM force  

NLE Websites -- All DOE Office Websites (Extended Search)

EM force EM force Residual EM force Atoms usually have the same numbers of protons and electrons. They are electrically neutral, therefore, because the positive protons cancel out the negative electrons. Since they are neutral, what causes them to stick together to form stable molecules? The answer is a bit strange: we've discovered that the charged parts of one atom can interact with the charged parts of another atom. This allows different atoms to bind together, an effect called the residual electromagnetic force. So the electromagnetic force is what allows atoms to bond and form molecules, allowing the world to stay together and create the matter you interact with all of the time. Amazing, isn't it? All the structures of the world exist simply because protons and electrons have opposite charges!

116

Measurement of Semiconductor Surface Potential using the Scanning Electron Microscope  

SciTech Connect

We calibrate the secondary electron signal from a standard scanning electron microscope to voltage, yielding an image of the surface or near-surface potential. Data on both atomically abrupt heterojunction GaInP/GaAs and diffused homojunction Si solar cell devices clearly show the expected variation in potential with position and applied bias, giving depletion widths and locating metallurgical junctions to an accuracy better than 10 nm. In some images, distortion near the p-n junction is observed, seemingly consistent with the effects of lateral electric fields (patch fields). Reducing the tube bias removes this distortion. This approach results in rapid and straightforward collection of near-surface potential data using a standard scanning electron microscope.

Heath, J. T.; Jiang, C. S.; Al-Jassim, M. M.

2012-02-15T23:59:59.000Z

117

Correlation between resistance-change effect in transition-metal oxides and secondary-electron contrast of scanning electron microscope images  

Science Conference Proceedings (OSTI)

Conductive atomic-force microscopy (C-AFM) writing is attracting attention as a technique for clarifying the switching mechanism of resistive random-access memory by providing a wide area filled with filaments, which can be regarded as one filament with large radius. The writing area on a nickel-oxide (NiO) film formed by conductive atomic-force microscopy was observed by scanning electron microscope, and a correlation between the contrast in a secondary-electron image (SEI) and the resistance written by C-AFM was revealed. In addition, the dependence of the SEI contrast on the beam accelerating voltage (V{sub accel}) suggests that the resistance-change effect occurs near the surface of the NiO film. As for the effects of electron irradiation and vacuum annealing on the C-AFM writing area, it was shown that the resistance-change effect is caused by exchange of oxygen with the atmosphere at the surface of the NiO film. This result suggests that the low-resistance and high-resistance areas are, respectively, p-type Ni{sub 1+{delta}}O ({delta} =} 0).

Kinoshita, K.; Kishida, S. [Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552 (Japan); Tottori University Electronic Display Research Center, 522-2 Koyama-Kita, Tottori 680-0941 (Japan); Yoda, T. [Department of Information and Electronics, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552 (Japan)

2011-09-15T23:59:59.000Z

118

Solid-state optical microscope  

DOE Patents (OSTI)

A solid state optical microscope is described wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. Means for scanning in one of two orthogonal directions are provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

Young, I.T.

1981-01-07T23:59:59.000Z

119

A molecular mechanics force field for lignin  

DOE Green Energy (OSTI)

A CHARMM molecular mechanics force field for lignin is derived. Parameterization is based on reproducing quantum mechanical data of model compounds. Partial atomic charges are derived using the RESP electrostatic potential fitting method supplemented by the examination of methoxybenzene:water interactions. Dihedral parameters are optimized by fitting to critical rotational potentials and bonded parameters are obtained by optimizing vibrational frequencies and normal modes. Finally, the force field is validated by performing a molecular dynamics simulation of a crystal of a lignin fragment molecule and comparing simulation-derived structural features with experimental results. Together with the existing force field for polysaccharides, this lignin force field will enable full simulations of lignocellulose.

Petridis, Loukas [ORNL; Smith, Jeremy C [ORNL

2009-02-01T23:59:59.000Z

120

What is Force  

Science Conference Proceedings (OSTI)

... force may be balanced by an opposing force so that no energy is expended ... The unit of force is the Newton (N). By definition, the newton is the force ...

2011-10-03T23:59:59.000Z

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Available Technologies: Transmission Electron Microscope Phase ...  

Robert Glaeser and Jian Jin have developed an apparatus that can be integrated into transmission electron microscopes (TEMs) to enable high contrast imaging of weak ...

122

NIST's New Scanning Probe Microscope is Supercool  

Science Conference Proceedings (OSTI)

... The microscope is mounted on a 6-ton granite table (4), also supported by pneumatic isolators. The cryostat (5) is mounted ...

2011-01-03T23:59:59.000Z

123

Nanomaterials Analysis using a Scanning Electron Microscope ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanomaterials Analysis using a Scanning Electron Microscope Technology available for licensing: Steradian X-ray detection system increases the detection capability of SEMs during...

124

NIST Physicists 'Entangle' Microscopic Drum's Beat with ...  

Science Conference Proceedings (OSTI)

... entangled” a microscopic mechanical drum with electrical signals ... Entanglement has technological uses. ... cooled" the drum to a very low energy level ...

2013-10-22T23:59:59.000Z

125

Glossary Term - Atomic Number  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Previous Term (Alpha Particle) Glossary Main Index Next Term (Avogadro's Number) Avogadro's Number Atomic Number Silver's atomic number is 47 The atomic number is equal to...

126

Scanning x-ray microscope  

Science Conference Proceedings (OSTI)

A scanning x-ray microscope is described including: an x-ray source capable of emitting a beam of x-rays; a collimator positioned to receive the beam of x-rays and to collimate this beam, a focusing cone means to focus the beam of x-rays, directed by the collimator, onto a focal plane, a specimen mount for supporting a specimen in the focal plane to receive the focused beam of x-rays, and x-ray beam scanning means to relatively move the specimen and the focusing cone means and collimator to scan the focused x-ray beam across the specimen. A detector is disposed adjacent the specimen to detect flourescent photons emitted by the specimen upon exposure to the focused beam of x-rays to provide an electrical output representative of this detection. Means are included for displaying and/or recording the information provided by the output from the detector, as are means for providing information to the recording and/or display means representative of the scan rate and position of the focused x-ray beam relative to the specimen whereby the recording and/or display means can correlate the information received to record and/or display quantitive and distributive information as to the quantity and distribution of elements detected in the specimen. Preferably there is provided an x-ray beam modulation means upstream, relative to the direction of emission of the xray beam, of the focusing cone means.

Wang, C.

1982-02-23T23:59:59.000Z

127

Disorder-Induced Microscopic Magnetic Memory  

NLE Websites -- All DOE Office Websites (Extended Search)

Disorder-Induced Microscopic Disorder-Induced Microscopic Magnetic Memory Disorder-Induced Microscopic Magnetic Memory Print Wednesday, 26 October 2005 00:00 The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired magnetic properties. But as the density of magnetic disks climbs, the size of the magnetic domains responsible for storage must decrease, posing new challenges. Beautiful theories based on random microscopic disorder have been developed over the past ten years. To directly compare these theories with precise experiments, an American-European team, led by researchers from the University of Washington, Seattle, first developed and then applied coherent x-ray speckle metrology to microscopic magnetic domains in a series of thin multilayer perpendicular magnetic materials of varying disorder. Their results, at odds with all previous theories, have set a new reference point for future theories.

128

Atomic Spectroscopy Data Center  

Science Conference Proceedings (OSTI)

Atomic Spectroscopy Data Center. Summary: ... Atomic Spectroscopy Data Webpage. End Date: ongoing. Lead Organizational Unit: physlab. Contact. ...

2013-06-06T23:59:59.000Z

129

Atomic magnetometer  

SciTech Connect

An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

Schwindt, Peter (Albuquerque, NM); Johnson, Cort N. (Albuquerque, NM)

2012-07-03T23:59:59.000Z

130

WETTABILITY AND IMBIBITION: MICROSCOPIC DISTRIBUTION OF WETTING AND ITS CONSEQUENCES AT THE CORE AND FIELD SCALES  

SciTech Connect

The questions of reservoir wettability have been approached in this project from three directions. First, we have studied the properties of crude oils that contribute to wetting alteration in a reservoir. A database of more than 150 different crude oil samples has been established to facilitate examination of the relationships between crude oil chemical and physical properties and their influence on reservoir wetting. In the course of this work an improved SARA analysis technique was developed and major advances were made in understanding asphaltene stability including development of a thermodynamic Asphaltene Solubility Model (ASM) and empirical methods for predicting the onset of instability. The CO-Wet database is a resource that will be used to guide wettability research in the future. The second approach is to study crude oil/brine/rock interactions on smooth surfaces. Contact angle measurements were made under controlled conditions on mica surfaces that had been exposed to many of the oils in the CO-Wet database. With this wealth of data, statistical tests can now be used to examine the relationships between crude oil properties and the tendencies of those oils to alter wetting. Traditionally, contact angles have been used as the primary wetting assessment tool on smooth surfaces. A new technique has been developed using an atomic forces microscope that adds a new dimension to the ability to characterize oil-treated surfaces. Ultimately we aim to understand wetting in porous media, the focus of the third approach taken in this project. Using oils from the CO-Wet database, experimental advances have been made in scaling the rate of imbibition, a sensitive measure of core wetting. Application of the scaling group to mixed-wet systems has been demonstrated for a range of core conditions. Investigations of imbibition in gas/liquid systems provided the motivation for theoretical advances as well. As a result of this project we have many new tools for studying wetting at microscopic and macroscopic scales and a library of well-characterized fluids for use in studies of crude oil/brine/rock interactions.

Jill S. Buckley; Norman R. Morrow; Chris Palmer; Purnendu K. Dasgupta

2003-02-01T23:59:59.000Z

131

Piezoresistive cantilever force-clamp system  

Science Conference Proceedings (OSTI)

We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or ''clamps'' the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of {mu}N force and nm up to tens of {mu}m displacement) in both air and water, and excellent dynamic response (fast response time, instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.

Park, Sung-Jin; Petzold, Bryan C.; Pruitt, Beth L. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Goodman, Miriam B. [Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305 (United States)

2011-04-15T23:59:59.000Z

132

Disorder-Induced Microscopic Magnetic Memory  

NLE Websites -- All DOE Office Websites (Extended Search)

Disorder-Induced Microscopic Magnetic Memory Print Disorder-Induced Microscopic Magnetic Memory Print The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired magnetic properties. But as the density of magnetic disks climbs, the size of the magnetic domains responsible for storage must decrease, posing new challenges. Beautiful theories based on random microscopic disorder have been developed over the past ten years. To directly compare these theories with precise experiments, an American-European team, led by researchers from the University of Washington, Seattle, first developed and then applied coherent x-ray speckle metrology to microscopic magnetic domains in a series of thin multilayer perpendicular magnetic materials of varying disorder. Their results, at odds with all previous theories, have set a new reference point for future theories.

133

Disorder-Induced Microscopic Magnetic Memory  

NLE Websites -- All DOE Office Websites (Extended Search)

Disorder-Induced Microscopic Magnetic Memory Print Disorder-Induced Microscopic Magnetic Memory Print The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired magnetic properties. But as the density of magnetic disks climbs, the size of the magnetic domains responsible for storage must decrease, posing new challenges. Beautiful theories based on random microscopic disorder have been developed over the past ten years. To directly compare these theories with precise experiments, an American-European team, led by researchers from the University of Washington, Seattle, first developed and then applied coherent x-ray speckle metrology to microscopic magnetic domains in a series of thin multilayer perpendicular magnetic materials of varying disorder. Their results, at odds with all previous theories, have set a new reference point for future theories.

134

Laser Scanning Two Photon and Confocal Microscope  

Science Conference Proceedings (OSTI)

... The SP5 is a laser scanning two-photon and confocal microscope equipped with ... nm HeNe, and tunable IR (680 nm - 1060 nm) lasers * 4 internal ...

2012-10-01T23:59:59.000Z

135

Soft x-ray laser microscope  

Science Conference Proceedings (OSTI)

The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL's 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si[sub 3]N[sub 4]) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

Suckewer, P.I.

1990-10-01T23:59:59.000Z

136

Highly charged ion based time of flight emission microscope  

DOE Patents (OSTI)

A highly charged ion based time-of-flight emission microscope has been designed, which improves the surface sensitivity of static SIMS measurements because of the higher ionization probability of highly charged ions. Slow, highly charged ions are produced in an electron beam ion trap and are directed to the sample surface. The sputtered secondary ions and electrons pass through a specially designed objective lens to a microchannel plate detector. This new instrument permits high surface sensitivity (10.sup.10 atoms/cm.sup.2), high spatial resolution (100 nm), and chemical structural information due to the high molecular ion yields. The high secondary ion yield permits coincidence counting, which can be used to enhance determination of chemical and topological structure and to correlate specific molecular species.

Barnes, Alan V. (Livermore, CA); Schenkel, Thomas (San Francisco, CA); Hamza, Alex V. (Livermore, CA); Schneider, Dieter H. (Livermore, CA); Doyle, Barney (Albuquerque, NM)

2001-01-01T23:59:59.000Z

137

A millikelvin scanning tunneling microscope with two independent scanning systems  

E-Print Network (OSTI)

We describe the design, construction and operation of a scanning tunneling microscope (STM) with two tips that can independently acquire simultaneous scans of a sample. The STM is mounted on a dilution refrigerator and the setup includes vibration isolation, rf-filtered wiring, an ultra high vacuum (UHV) sample preparation chamber and sample transfer mechanism. We present images and spectroscopy taken with superconducting Nb tips with the refrigerator at 35 mK that indicate that the effective temperature of our tips/sample is approximately 184 mK, corresponding to an energy resolution of 16 $\\mu$eV. Atomic resolution topographic images of an Au(100) surface taken with the inner and outer tips were found to have root mean square roughness of 1.75 $\\pm$ 0.01 pm and 3.55 $\\pm$ 0.03 pm respectively.

Roychowdhury, A; Anderson, J R; Lobb, C J; Wellstood, F C; Dreyer, M

2013-01-01T23:59:59.000Z

138

The Role of the Electrostatic Force in Spore Adhesion  

SciTech Connect

Electrostatic force is investigated as one of the components of the adhesion force between Bacillus thuringiensis (Bt) spores and planar surfaces. The surface potentials of a Bt spore and a mica surface are experimentally obtained using a combined atomic force microscopy (AFM)-scanning surface potential microscopy technique. On the basis of experimental information, the surface charge density of the spores is estimated at 0.03 {micro}C/cm{sup 2} at 20% relative humidity and decreases with increasing humidity. The Coulombic force is introduced for the spore-mica system (both charged, nonconductive surfaces), and an electrostatic image force is introduced to the spore-gold system because gold is electrically conductive. The Coulombic force for spore-mica is repulsive because the components are similarly charged, while the image force for the spore-gold system is attractive. The magnitude of both forces decreases with increasing humidity. The electrostatic forces are added to other force components, e.g., van der Waals and capillary forces, to obtain the adhesion force for each system. The adhesion forces measured by AFM are compared to the estimated values. It is shown that the electrostatic (Coulombic and image) forces play a significant role in the adhesion force between spores and planar surfaces.

Chung, Eunhyea [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Lee, Ida [University of Tennessee, Knoxville (UTK); Tsouris, Costas [ORNL

2010-01-01T23:59:59.000Z

139

Modifying the Casimir force between indium tin oxide film and Au sphere  

E-Print Network (OSTI)

We present complete results of the experiment on measuring the Casimir force between an Au-coated sphere and an untreated or, alternatively, UV-treated indium tin oxide film deposited on a quartz substrate. Measurements were performed using an atomic force microscope in a high vacuum chamber. The measurement system was calibrated electrostatically. Special analysis of the systematic deviations is performed, and respective corrections in the calibration parameters are introduced. The corrected parameters are free from anomalies discussed in the literature. The experimental data for the Casimir force from two measurement sets for both untreated and UV-treated samples are presented. The experimental errors are determined at a 95% confidence level. It is demonstrated that the UV treatment of an I TO plate results in a significant decrease in the magnitude of the Casimir force (from 21% to 35% depending on separation). However, ellipsometry measurements of the imaginary parts of dielectric permittivities of the untreated and UV-treated samples did not reveal any significant differences. The experimental data are compared with computations in the framework of the Lifshitz theory. It is found that the data for the untreated sample are in a very good agreement with theoretical results taking into account the free charge carriers in an ITO film. For the UV-treated sample the data exclude the theoretical results obtained with account of free charge carriers. These data are in a very good agreement with computations disregarding the contribution of free carriers. According to the explanation provided, this is caused by the phase transition of the ITO film from metallic to dielectric state caused by the UV treatment. Possible applications of the discovered phenomenon in nanotechnology are discussed.

A. A. Banishev; C. -C. Chang; R. Castillo-Garza; G. L. Klimchitskaya; V. M. Mostepanenko; U. Mohideen

2012-01-26T23:59:59.000Z

140

NCEM National Center for Electron Microscopy: Microscopes and...  

NLE Websites -- All DOE Office Websites (Extended Search)

I The TEAM I microscope is a double-aberration-corrected (scanning) transmission electron microscope (STEMTEM) capable of producing images with 50 pm resolution. The basic...

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The TEAM Project: What is the TEAM microscope?  

NLE Websites -- All DOE Office Websites (Extended Search)

What is the TEAM microscope? The TEAM project will construct a new generation electron microscope designed to incorporate aberration-correcting electron optics, to develop a common...

142

NIST Studies How New Helium Ion Microscope Measures Up  

Science Conference Proceedings (OSTI)

... are studying helium ion microscopes to improve ... analogous to the scanning electron microscope, which was ... are far larger than electrons, they can ...

2012-11-02T23:59:59.000Z

143

FEDERAL SMART GRID TASK FORCE - February 26, 2009 Task Force...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEDERAL SMART GRID TASK FORCE - February 26, 2009 Task Force Meeting Agenda FEDERAL SMART GRID TASK FORCE - February 26, 2009 Task Force Meeting Agenda February 26, 2009 Task Force...

144

Friction and Adhesion Forces of Bacillus thuringiensis Spores on Planar Surfaces in Atmospheric Systems  

SciTech Connect

The kinetic friction force and the adhesion force of Bacillus thuringiensis spores on planar surfaces in atmospheric systems were studied using atomic force microscopy. The influence of relative humidity (RH) on these forces varied for different surface properties including hydrophobicity, roughness, and surface charge. The friction force of the spore was greater on a rougher surface than on mica, which is atomically flat. As RH increases, the friction force of the spores decreases on mica whereas it increases on rough surfaces. The influence of RH on the interaction forces between hydrophobic surfaces is not as strong as for hydrophilic surfaces. The friction force of the spore is linear to the sum of the adhesion force and normal load on the hydrophobic surface. The poorly defined surface structure of the spore and the adsorption of contaminants from the surrounding atmosphere are believed to cause a discrepancy between the calculated and measured adhesion forces.

Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

2011-01-01T23:59:59.000Z

145

Method for imaging liquid and dielectric materials with scanning polarization force microscopy  

DOE Patents (OSTI)

The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged.

Hu, Jun (Berkeley, CA); Ogletree, D. Frank (El Cerrito, CA); Salmeron, Miguel (El Cerrito, CA); Xiao, Xudong (Kowloon, CN)

1999-01-01T23:59:59.000Z

146

Apparatus for imaging liquid and dielectric materials with scanning polarization force microscopy  

DOE Patents (OSTI)

The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged. 9 figs.

Hu, J.; Ogletree, D.F.; Salmeron, M.; Xiao, X.

1998-04-28T23:59:59.000Z

147

Apparatus for imaging liquid and dielectric materials with scanning polarization force microscopy  

SciTech Connect

The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged.

Hu, Jun (Berkeley, CA); Ogletree, D. Frank (El Cerrito, CA); Salmeron, Miguel (El Cerrito, CA); Xiao, Xudong (Kowloon, CN)

1998-01-01T23:59:59.000Z

148

Method for imaging liquid and dielectric materials with scanning polarization force microscopy  

DOE Patents (OSTI)

The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged. 9 figs.

Hu, J.; Ogletree, D.F.; Salmeron, M.; Xiao, X.

1999-03-09T23:59:59.000Z

149

Single atom identification by energy dispersive x-ray spectroscopy  

SciTech Connect

Using aberration-corrected scanning transmission electron microscope and energy dispersive x-ray spectroscopy, single, isolated impurity atoms of silicon and platinum in monolayer and multilayer graphene are identified. Simultaneously acquired electron energy loss spectra confirm the elemental identification. Contamination difficulties are overcome by employing near-UHV sample conditions. Signal intensities agree within a factor of two with standardless estimates.

Lovejoy, T. C.; Dellby, N.; Krivanek, O. L. [Nion, 1102 8th St., Kirkland, Washington 98033 (United States); Ramasse, Q. M. [SuperSTEM Laboratory, STFC Daresbury, Keckwick Lane, Daresbury WA4 4AD (United Kingdom); Falke, M.; Kaeppel, A.; Terborg, R. [Bruker Nano GmbH, Schwarzschildstr. 12, 12489 Berlin (Germany); Zan, R. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)

2012-04-09T23:59:59.000Z

150

Technology Commercialization and Partnerships | New Microscope ...  

... the atomic structure of a material. At present, the VPPEM has successfully imaged uncoated silk, magnetic steel wool, gold mesh, and micron-sized tungsten wires. ...

151

Miniature self-contained vacuum compatible electronic imaging microscope  

DOE Patents (OSTI)

A vacuum compatible CCD-based microscopic camera with an integrated illuminator. The camera can provide video or still feed from the microscope contained within a vacuum chamber. Activation of an optional integral illuminator can provide light to illuminate the microscope subject. The microscope camera comprises a housing with a objective port, modified objective, beam-splitter, CCD camera, and LED illuminator.

Naulleau, Patrick P. (Oakland, CA); Batson, Phillip J. (Alameda, CA); Denham, Paul E. (Crockett, CA); Jones, Michael S. (San Francisco, CA)

2001-01-01T23:59:59.000Z

152

Forced Trench Waves  

Science Conference Proceedings (OSTI)

A general theory for forced barotropic long trench waves in the presence of linear bottom friction is presented. Two specific forcing mechanisms are considered: (i) transverse fluctuations in a western boundary current as it flows across a trench,...

Lawrence A. Mysak; Andrew J. Willmott

1981-11-01T23:59:59.000Z

153

Scanning magnetoresistance microscopy of atom chips  

Science Conference Proceedings (OSTI)

Surface based geometries of microfabricated wires or patterned magnetic films can be used to magnetically trap and manipulate ultracold neutral atoms or Bose-Einstein condensates. We investigate the magnetic properties of such atom chips using a scanning magnetoresistive (MR) microscope with high spatial resolution and high field sensitivity. By comparing MR scans of a permanent magnetic atom chip to field profiles obtained using ultracold atoms, we show that MR sensors are ideally suited to observe small variations of the magnetic field caused by imperfections in the wires or magnetic materials which ultimately lead to fragmentation of ultracold atom clouds. Measurements are also provided for the magnetic field produced by a thin current-carrying wire with small geometric modulations along the edge. Comparisons of our measurements with a full numeric calculation of the current flow in the wire and the subsequent magnetic field show excellent agreement. Our results highlight the use of scanning MR microscopy as a convenient and powerful technique for precisely characterizing the magnetic fields produced near the surface of atom chips.

Volk, M.; Whitlock, S.; Wolff, C. H.; Hall, B. V.; Sidorov, A. I. [ARC Centre of Excellence for Quantum-Atom Optics and Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)

2008-02-15T23:59:59.000Z

154

SERVOMECHANISMS WITH FORCE FEEDBACK  

SciTech Connect

A class of linear proportional servomechanisms is examined in which an electrical signal proportional to output force is used to improve performance. The effect of this "force feedback" on a positional servomechanism is analyzed as well as the effect on a special type of servomechanism which reflects load forces back to the input. This latter type of servomechanism is called "force reflecting." Laboratory models of these servormechanisms were designed and constructed, and experimental data are presented in support of the analysis. (auth)

Arzbaecher, R.C.

1960-05-01T23:59:59.000Z

155

Investigation of short-range surface forces to develop self-organizing devices by Steven M. Tobias.  

E-Print Network (OSTI)

Force spectra from atomic force microscopy were used to verify surface energy components of indium tin oxide and mesocarbon microbeads. These materials were selected based on spectroscopic and thermodynamic parameters to ...

Tobias, Steven M., 1980-

2005-01-01T23:59:59.000Z

156

New modes for subsurface atomic force microscopy through nanomechanica...  

NLE Websites -- All DOE Office Websites (Extended Search)

by studying the remaining problem of the cellular level compositional variations of poplar wood cross-sections (see Supplementary Section S5) 16 . MSAFM is based on exerting a...

157

Standard and High Speed Atomic Force Microscopy of Porous ...  

Science Conference Proceedings (OSTI)

Symposium, Frontiers of Materials Science: Fundamentals of Porous ... insight into material performance due to the nanoscale topographic and/or property mapping ... Separately, for human tooth cross sections measured in liquid, a range of ...

158

CHARTER, Price-Anderson Act Task Force | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CHARTER, Price-Anderson Act Task Force CHARTER, Price-Anderson Act Task Force CHARTER, Price-Anderson Act Task Force This charter establishes the responsibilities of the Price-Anderson Act Task Force (Task Force). The Secretary of Energy has approved formation of this Task Force to review the need for the continuation or modification of the Price-Anderson Act, section 170 of the Atomic Energy Act of 1954, as amended (AEA), and to prepare a detailed report for submission to Congress as required by section 170p. of the AEA by August 1, 1998. CHARTER, Price-Anderson Act Task Force More Documents & Publications MEMORANDUM FOR THE SECRETARY Report to Congress on the Price-Anderson Act Appendix A. Notice of Inquiry: Preparation of Report to Congress on Price-Anderson Act. 62 Federal Register 68,272 (December 31, 1997)

159

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Force Measurements Between Hydrophobic Surfaces Hydrophobic force measurements will be conducted using the colloidal probe technique with an atomic force microscope (AFM)...

160

Nano Positioning of Single Atoms in a Micro Cavity  

E-Print Network (OSTI)

The coupling of individual atoms to a high-finesse optical cavity is precisely controlled and adjusted using a standing-wave dipole-force trap, a challenge for strong atom-cavity coupling. Ultracold Rubidium atoms are first loaded into potential minima of the dipole trap in the center of the cavity. Then we use the trap as a conveyor belt that we set into motion perpendicular to the cavity axis. This allows us to repetitively move atoms out of and back into the cavity mode with a repositioning precision of 135 nm. This makes possible to either selectively address one atom of a string of atoms by the cavity, or to simultaneously couple two precisely separated atoms to a higher mode of the cavity.

Stefan Nussmann; Markus Hijlkema; Bernhard Weber; Felix Rohde; Gerhard Rempe; Axel Kuhn

2005-06-10T23:59:59.000Z

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A molecular mechanics force field for lignin  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Molecular Mechanics Force Field for Lignin LOUKAS PETRIDIS, JEREMY C. SMITH Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 Received 14 February 2008; Revised 8 May 2008; Accepted 12 June 2008 DOI 10.1002/jcc.21075 Published online 1 August 2008 in Wiley InterScience (www.interscience.wiley.com). Abstract: A CHARMM molecular mechanics force field for lignin is derived. Parameterization is based on reproducing quantum mechanical data of model compounds. Partial atomic charges are derived using the RESP electrostatic potential fitting method supplemented by the examination of methoxybenzene:water interactions. Dihedral parameters are optimized by fitting to critical rotational potentials and bonded parameters are obtained by optimizing vibrational frequencies and normal modes. Finally, the force field is validated

162

David J. Gross and the Strong Force  

NLE Websites -- All DOE Office Websites (Extended Search)

David J. Gross and the Strong Force David J. Gross and the Strong Force Resources with Additional Information The 2004 Nobel Prize in Physics was awarded to David Gross for "the discovery of asymptotic freedom in the theory of the strong interaction". 'Gross, who obtained his PhD in physics in 1966, currently is a professor of physics and director of the Kavli Institute for Theoretical Physics at UC Santa Barbara. ... David Gross Courtesy of UC Santa Barbara [When on the faculty at Princeton University,] he and then-graduate student Frank Wilczek came up with a way to describe the "strong force" that governs interactions between protons and neutrons in the nucleus of the atom. He and Wilczek published their proposal simultaneously with H. David Politzer, a graduate student [at Harvard University] who independently came up with the same idea. ...

163

Why measure force?  

Science Conference Proceedings (OSTI)

... Automated industrial processes such as rolling mills require accurate force measurement to control roll pressure on bar steel, sheet metal, paper ...

2011-10-03T23:59:59.000Z

164

NUCLEAR PROXIMITY FORCES  

E-Print Network (OSTI)

One might summarize of nuclear potential energy has beendegree of freedom) for the nuclear interaction between anyUniversity of California. Nuclear Proximity Forces 'I< at

Randrup, J.

2011-01-01T23:59:59.000Z

165

Superconducting qubit as a quantum transformer routing entanglement between a microscopic quantum memory and a macroscopic resonator  

Science Conference Proceedings (OSTI)

We demonstrate experimentally the creation and measurement of an entangled state between a microscopic two-level system (TLS), formed by a defect in an oxide layer, and a macroscopic superconducting resonator, where their indirect interaction is mediated by an artificial atom, a superconducting persistent current qubit (PCQB). Under appropriate conditions, we found the coherence time of the TLS, the resonator, and the entangled state of these two are significantly longer than the Ramsey dephasing time of PCQB itself. This demonstrates that a PCQB can be used as a quantum transformer to address high coherence microscopic quantum memories by connecting them to macroscopic quantum buses.

Kemp, Alexander; Saito, Shiro; Semba, Kouichi [NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya Atsugi-shi, Kanagawa 243-0198 (Japan); Munro, William J. [NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya Atsugi-shi, Kanagawa 243-0198 (Japan); National Institute of Informatics 2-1-2 Hitotsubashi, Chiyoda ku, Tokyo 101-8430 (Japan); Nemoto, Kae [National Institute of Informatics 2-1-2 Hitotsubashi, Chiyoda ku, Tokyo 101-8430 (Japan)

2011-09-01T23:59:59.000Z

166

Spin Modes in Nuclei and Nuclear Forces  

SciTech Connect

Spin modes in stable and unstable exotic nuclei are studied and important roles of tensor and three-body forces on nuclear structure are discussed. New shell model Hamiltonians, which have proper tensor components, are shown to explain shell evolutions toward drip-lines and spin properties of both stable and exotic nuclei, for example, Gamow-Teller transitions in {sup 12}C and {sup 14}C and an anomalous M1 transition in {sup 17}C. The importance and the necessity of the repulsive monopole corrections in isospin T = 1 channel to the microscopic two-body interactions are pointed out. The corrections are shown to lead to the proper shell evolutions in neutron-rich isotopes. The three-body force, in particular the Fujita-Miyazawa force induced by {Delta} excitations, is pointed out to be responsible for the repulsive corrections among the valence neutrons. The important roles of the three-body force on the energies and transitions in exotic oxygen and calcium isotopes are demonstrated.

Suzuki, Toshio [Department of Physics and Graduate School of Integrated Basic Sciences, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan) and Center for Nuclear Study, University of Tokyo, Hirosawa, Wako-shi, Saitama, 351-0198 (Japan); Otsuka, Takaharu [Department of Physics and Center for Nuclear Study, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

2011-05-06T23:59:59.000Z

167

A Microscopic Double-Slit Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

A Microscopic Double-Slit A Microscopic Double-Slit Experiment A Microscopic Double-Slit Experiment Print Wednesday, 29 February 2012 00:00 Two centuries ago, Thomas Young performed the classic demonstration of the wave nature of light. He placed a screen with two tiny slits in front of a single light source, effectively converting it into a two-centered source. On a second screen far away, he saw a pattern of light and dark diffraction fringes, a well-known hallmark of wave interference. Along with later studies using particles instead of light, the experiment played a crucial role in establishing the validity of wave-particle duality, a puzzling concept that has ultimately become central to the interpretation of complementarity in quantum mechnanics. In a new twist on this classic experiment, the double slit (with light waves) has been replaced by a diatomic molecule (with electron waves). At ALS Beamline 10.0.1, researchers have shown that diatomic molecules can serve as two-center emitters of electron waves and that traces of electron-wave interference can be directly observed in precise measurements of vibrationally resolved photoionization spectra.

168

The Universe Adventure - Atoms  

NLE Websites -- All DOE Office Websites (Extended Search)

Matter and Atoms Matter and Atoms Richard Feynman "If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed on to the next generations of creatures, what statement would contain the most information in the fewest words? I believe it is that...all things are made of atoms." -Richard P. Feynman, winner of the 1965 Nobel Prize in Physics All is atoms Matter is made of atoms, and atoms are comprised of protons, neutrons, and electrons. Everything in the Universe is made of matter. Though matter exists in many different forms, each form is made out of the same basic constituents: small particles called atoms. Atoms themselves are made of smaller particles: protons, neutrons, and electrons. Protons and neutrons are composed of even smaller particles called quarks.

169

Reading Comprehension - Atomic History  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic History Atomic History A Greek philosopher named Democritus said that all atoms are small, hard particles. He thought that atoms were made of a single material formed into different shapes and sizes. The word " _________ element compound mixture atom " is derived from the Greek word "atomos" which means "not able to be divided." In 1803, John Dalton, a school teacher, proposed his atomic theory. Dalton's theory states that elements (substances composed of only one type of _________ molecules ions atom ) combine in certain proportions to form _________ compounds atoms mixtures elements . In 1897, a British scientist named J. J. Thomson experimented with a cathode-ray tube which had a positively charged plate. The plate attracted negatively charged particles that we now call _________ protons neutrons

170

Differential force microscope for long time-scale biophysical measurements Jason L. Choy,a  

E-Print Network (OSTI)

PSDs . The cantilevers and sample can be illu- minated with a broadband light emitting diode source LS1

Bustamante, Carlos

171

Microscopic calculation of 240Pu scission with a finite-range effective force  

E-Print Network (OSTI)

Hartree-Fock-Bogoliubov calculations of hot fission in $^{240}\\textrm{Pu}$ have been performed with a newly-implemented code that uses the D1S finite-range effective interaction. The hot-scission line is identified in the quadrupole-octupole-moment coordinate space. Fission-fragment shapes are extracted from the calculations. A benchmark calculation for $^{226}\\textrm{Th}$ is obtained and compared to results in the literature. In addition, technical aspects of the use of HFB calculations for fission studies are examined in detail. In particular, the identification of scission configurations, the sensitivity of near-scission calculations to the choice of collective coordinates in the HFB iterations, and the formalism for the adjustment of collective-variable constraints are discussed. The power of the constraint-adjustment algorithm is illustrated with calculations near the critical scission configurations with up to seven simultaneous constraints.

W. Younes; D. Gogny

2009-10-07T23:59:59.000Z

172

Atomic and Molecular Physics  

Science Conference Proceedings (OSTI)

... DG, * SRD 105 Physic Laboratory's Elemental ... Nuclear Physics SRD 144 Atomic Weights & ... Physical Constants SRD 121 Fundamental Physical ...

2012-10-10T23:59:59.000Z

173

Atomizing nozzle and process  

DOE Patents (OSTI)

High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

Anderson, I.E.; Figliola, R.S.; Molnar, H.M.

1993-07-20T23:59:59.000Z

174

NCEM National Center for Electron Microscopy: Microscopes and...  

NLE Websites -- All DOE Office Websites (Extended Search)

OM The One-Angstrom Microscope (OM) is a mid-voltage transmission electron microscope (TEM) capable of producing images with sub-angstrom resolution. The basic instrument is a...

175

Microscopic linear liquid streams in vacuum: Injection of solvated biological samples into X-ray free electron lasers  

SciTech Connect

Microscopic linear liquid free-streams offer a means of gently delivering biological samples into a probe beam in vacuum while maintaining the sample species in a fully solvated state. By employing gas dynamic forces to form the microscopic liquid stream (as opposed to a conventional solid-walled convergent nozzle), liquid free-streams down to 300 nm diameter have been generated. Such 'Gas Dynamic Virtual Nozzles' (GDVN) are ideally suited to injecting complex biological species into an X-ray Free Electron Laser (XFEL) to determine the structure of the biological species via Serial Femtosecond Crystallography (SFX). GDVN injector technology developed for this purpose is described.

Doak, R. B.; DePonte, D. P.; Nelson, G.; Camacho-Alanis, F.; Ros, A.; Spence, J. C. H.; Weierstall, U. [Arizona State University, Tempe, AZ 85287-1504 (United States); Centre for Free-Electron Laser Science, DESY, D-22607 Hamburg (Germany); Arizona State University, Tempe, AZ 85287-1504 (United States)

2012-11-27T23:59:59.000Z

176

ILC Citizens' Task Force  

NLE Websites -- All DOE Office Websites (Extended Search)

the Fermilab ILC Citizens' Task Force June 2008 Report of the Fermilab ILC Citizens' Task Force 3 Contents 1 Executive Summary 3 Chapter 1 Purpose 7 Chapter 2 Origins and Purpose of the Fermilab Citizens' Task Force 15 Chapter 3 Setting the Stage 19 Chapter 4 Current Status of High Energy Physics Research 25 Chapter 5 Bringing the Next-Generation Accelerator to Fermilab 31 Chapter 6 Learning from Past Projects 37 Chapter 7 Location, Construction and Operation of Facilities Beyond Fermilab's Borders 45 Chapter 8 Health and Safety 49 Chapter 9 Environment 53 Chapter 10 Economics 59 Chapter 11 Political Considerations 65 Chapter 12 Community Engagement 77 Chapter 13 Summary 81 Appendices Appendix A. Task Force Members Appendix B. Task Force Meetings and Topics

177

Dilution and resonance-enhanced repulsion in nonequilibrium fluctuation forces  

SciTech Connect

In equilibrium, forces induced by fluctuations of the electromagnetic field between electrically polarizable objects (microscopic or macroscopic) in vacuum are generically attractive. The force may, however, become repulsive for microscopic particles coupled to thermal baths with different temperatures. We demonstrate that this nonequilibrium repulsion can be realized also between macroscopic objects, as planar slabs, if they are kept at different temperatures. It is shown that repulsion can be enhanced by (i) tuning of material resonances in the thermal region and by (ii) reducing the dielectric contrast due to ''dilution''. This can lead to stable equilibrium positions. We discuss the realization of these effects for aerogels, yielding repulsion down to submicron distances at realistic porosities.

Bimonte, Giuseppe [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Complesso Universitario MSA, Via Cintia, I-80126 Napoli (Italy); INFN Sezione di Napoli, I-80126 Napoli (Italy); Emig, Thorsten [Laboratoire de Physique Theorique et Modeles Statistiques, CNRS UMR 8626, Bat. 100, Universite Paris-Sud, F-91405 Orsay cedex (France); Krueger, Matthias; Kardar, Mehran [Massachusetts Institute of Technology, Department of Physics, Cambridge, Massachusetts 02139 (United States)

2011-10-15T23:59:59.000Z

178

Matthew Walker  

Science Conference Proceedings (OSTI)

... performing actual chemical etching of silicon, and learning how to use an atomic force microscope, a scanning electron microscope, and various ...

2010-10-05T23:59:59.000Z

179

Braking system for use with an arbor of a microscope  

DOE Patents (OSTI)

A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling device causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

Norgren, Duane U. (Orinda, CA)

1984-01-01T23:59:59.000Z

180

OOTW Force Design Tools  

Science Conference Proceedings (OSTI)

This report documents refined requirements for tools to aid the process of force design in Operations Other Than War (OOTWs). It recommends actions for the creation of one tool and work on other tools relating to mission planning. It also identifies the governmental agencies and commands with interests in each tool, from whom should come the user advisory groups overseeing the respective tool development activities. The understanding of OOTWs and their analytical support requirements has matured to the point where action can be taken in three areas: force design, collaborative analysis, and impact analysis. While the nature of the action and the length of time before complete results can be expected depends on the area, in each case the action should begin immediately. Force design for OOTWs is not a technically difficult process. Like force design for combat operations, it is a process of matching the capabilities of forces against the specified and implied tasks of the operation, considering the constraints of logistics, transport and force availabilities. However, there is a critical difference that restricts the usefulness of combat force design tools for OOTWs: the combat tools are built to infer non-combat capability requirements from combat capability requirements and cannot reverse the direction of the inference, as is required for OOTWs. Recently, OOTWs have played a larger role in force assessment, system effectiveness and tradeoff analysis, and concept and doctrine development and analysis. In the first Quadrennial Defense Review (QDR), each of the Services created its own OOTW force design tool. Unfortunately, the tools address different parts of the problem and do not coordinate the use of competing capabilities. These tools satisfied the immediate requirements of the QDR, but do not provide a long-term cost-effective solution.

Bell, R.E.; Hartley, D.S.III; Packard, S.L.

1999-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Scanning tip microwave near field microscope  

SciTech Connect

A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an endwall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity.

Xiang, Xiao-Dong (Alameda, CA); Schultz, Peter G. (Oakland, CA); Wei, Tao (Albany, CA)

1998-01-01T23:59:59.000Z

182

Acoustic microscope surface inspection system and method  

DOE Patents (OSTI)

An acoustic microscope surface inspection system and method in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respected to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations.

Khuri-Yakub, Butrus T. (Palo Alto, CA); Parent, Philippe (Chilly-Mazarin, FR); Reinholdtsen, Paul A. (Seattle, WA)

1991-01-01T23:59:59.000Z

183

Ponderomotive phase plate for transmission electron microscopes  

Science Conference Proceedings (OSTI)

A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.

Reed, Bryan W. (Livermore, CA)

2012-07-10T23:59:59.000Z

184

AFM Fluid Delivery/Liquid Extraction Surface Sampling ...  

Disclosure Number 201303009 . Technology Summary This invention is an Atomic Force Microscope (AFM) Fluid Delivery/Electrostatic ... The invention pro ...

185

Atomic Data for Mercury (Hg)  

Science Conference Proceedings (OSTI)

... Mercury (Hg) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Atomic Data for Mercury (Hg). ...

186

Atomic Data for Plutonium (Pu)  

Science Conference Proceedings (OSTI)

... Plutonium (Pu) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Atomic Data for Plutonium (Pu). ...

187

Atomic Data for Uranium (U )  

Science Conference Proceedings (OSTI)

... Uranium (U) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Atomic Data for Uranium (U). ...

188

Atomic Data for Thorium (Th)  

Science Conference Proceedings (OSTI)

... Thorium (Th) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Atomic Data for Thorium (Th). ...

189

Atomic Data for Hydrogen (H )  

Science Conference Proceedings (OSTI)

... Hydrogen (H) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Atomic Data for Hydrogen (H). ...

190

Atomic Data for Tungsten (W )  

Science Conference Proceedings (OSTI)

... Tungsten (W) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Atomic Data for Tungsten (W). ...

191

The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory  

Science Conference Proceedings (OSTI)

Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

Peterson, Randolph S. [Department of Physics and Astronomy, University of the South, 735 University Avenue, Sewanee TN 37383 (United States); Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge MA 01239 (United States); Berggren, Karl K.; Mondol, Mark [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 50 Vassar Street, Cambridge MA 01239 (United States)

2011-06-01T23:59:59.000Z

192

Kaonic Atom X?ray Spectra  

Science Conference Proceedings (OSTI)

In kaonic atoms energy displacement and broadening of states result from the strong interaction. The most simple kaonic atoms like kaonic hydrogen and deuterium open the possibility to measure this strong interaction induced shift and width by x?ray spectroscopy. In the SIDDHARTA experiment al LNF (Frascati) the DA?NE electron?positron collider delivers nearly mono?energetic negatively charged kaons from ? meson decay. This unique kaon source is used to form kaonic atoms. New high performance x?ray detectors (silicon drift detectors) arranged in an array allow x?ray spectroscopy with high energy resolution combined with timing capability. High precision x?ray measurements like SIDDHARTA at LNF will open the way to study the low energy regime of the strong force in the antikaon?nucleon interaction. The experiment and its current status is presented in this talk.

J. Marton; on behalf of the SIDDHARTA Collaboration

2009-01-01T23:59:59.000Z

193

A Microscopic Double-Slit Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

A Microscopic Double-Slit Experiment Print A Microscopic Double-Slit Experiment Print Two centuries ago, Thomas Young performed the classic demonstration of the wave nature of light. He placed a screen with two tiny slits in front of a single light source, effectively converting it into a two-centered source. On a second screen far away, he saw a pattern of light and dark diffraction fringes, a well-known hallmark of wave interference. Along with later studies using particles instead of light, the experiment played a crucial role in establishing the validity of wave-particle duality, a puzzling concept that has ultimately become central to the interpretation of complementarity in quantum mechnanics. In a new twist on this classic experiment, the double slit (with light waves) has been replaced by a diatomic molecule (with electron waves). At ALS Beamline 10.0.1, researchers have shown that diatomic molecules can serve as two-center emitters of electron waves and that traces of electron-wave interference can be directly observed in precise measurements of vibrationally resolved photoionization spectra.

194

A Microscopic Double-Slit Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

A Microscopic Double-Slit Experiment Print A Microscopic Double-Slit Experiment Print Two centuries ago, Thomas Young performed the classic demonstration of the wave nature of light. He placed a screen with two tiny slits in front of a single light source, effectively converting it into a two-centered source. On a second screen far away, he saw a pattern of light and dark diffraction fringes, a well-known hallmark of wave interference. Along with later studies using particles instead of light, the experiment played a crucial role in establishing the validity of wave-particle duality, a puzzling concept that has ultimately become central to the interpretation of complementarity in quantum mechnanics. In a new twist on this classic experiment, the double slit (with light waves) has been replaced by a diatomic molecule (with electron waves). At ALS Beamline 10.0.1, researchers have shown that diatomic molecules can serve as two-center emitters of electron waves and that traces of electron-wave interference can be directly observed in precise measurements of vibrationally resolved photoionization spectra.

195

Constraint and Restoring Force  

E-Print Network (OSTI)

Long-lived sensor network applications must be able to self-repair and adapt to changing demands. We introduce a new approach for doing so: Constraint and Restoring Force. CRF is a physics-inspired framework for computing ...

Beal, Jacob

2007-08-24T23:59:59.000Z

196

Optical Bernoulli forces  

E-Print Network (OSTI)

By Bernoulli's law, an increase in the relative speed of a fluid around a body is accompanied by a decrease in the pressure. Therefore, a rotating body in a fluid stream experiences a force perpendicular to the motion of ...

Movassagh, Ramis

197

Reduction-in-Force  

Energy.gov (U.S. Department of Energy (DOE))

Reduction in force (RIF) is a set of regulations and procedures that are used to determine whether an employee keeps his or her present position, or whether the employee has a right to another...

198

Weak nuclear forces cause the strong nuclear force  

E-Print Network (OSTI)

We determine the strength of the weak nuclear force which holds the lattices of the elementary particles together. We also determine the strength of the strong nuclear force which emanates from the sides of the nuclear lattices. The strong force is the sum of the unsaturated weak forces at the surface of the nuclear lattices. The strong force is then about ten to the power of 6 times stronger than the weak force between two lattice points.

E. L. Koschmieder

2007-12-11T23:59:59.000Z

199

ATOMS PEACE WAR Eisenhower  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ATOMS ATOMS PEACE WAR Eisenhower and the Atomic Energy Commission Richard G. Hewlett and lack M. Roll With a Foreword by Richard S. Kirkendall and an Essay on Sources by Roger M. Anders University of California Press Berkeley Los Angeles London Published 1989 by the University of California Press Berkeley and Los Angeles, California University of California Press, Ltd. London, England Prepared by the Atomic Energy Commission; work made for hire. Library of Congress Cataloging-in-Publication Data Hewlett, Richard G. Atoms for peace and war, 1953-1961. (California studies in the history of science) Bibliography: p. Includes index. 1. Nuclear energy-United States-History. 2. U.S. Atomic Energy Commission-History. 3. Eisenhower, Dwight D. (Dwight David), 1890-1969.

200

Metal atom oxidation laser  

DOE Patents (OSTI)

A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

Jensen, R.J.; Rice, W.W.; Beattie, W.H.

1975-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Metal atom oxidation laser  

DOE Patents (OSTI)

A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

Jensen, R.J.; Rice, W.W.; Beattie, W.H.

1975-10-28T23:59:59.000Z

202

Atomic Spectroscopy: An Introduction  

Science Conference Proceedings (OSTI)

... 60. A. de-Shalit and I. Talmi, Nuclear Shell Theory (Academic, New York, 1963). ... CE Moore, Atomic Energy Levels, Natl. Stand. Ref. ...

203

NIST Atomic Spectra Database  

Science Conference Proceedings (OSTI)

... Ground states and ionization energies of atoms ... the US Department of Energy, by the ... SRDP), and by NIST's Systems Integration for Manufacturing ...

2013-09-12T23:59:59.000Z

204

Cold Atoms News  

Science Conference Proceedings (OSTI)

... the first time caused a gas of atoms ... mysterious data in ultracold gases of rubidium ... Material May Demonstrate Long-Sought 'Liquid' Magnetic State ...

2010-10-20T23:59:59.000Z

205

The Harnessed Atom  

Energy.gov (U.S. Department of Energy (DOE))

The Harnessed Atom is a new middle school science, technology, engineering, and math (STEM) curriculum extension that focuses on nuclear science and energy. It offers teachers accurate, unbiased,...

206

Atomic Collapse Observed  

NLE Websites -- All DOE Office Websites (Extended Search)

Collapse State Observed Aided by Simulations, Scientists Observe Atomic Collapse State Quantum Mechanics Prediction Confirmed in Graphene Using NERSC's Hopper April 26, 2013 |...

207

A microscopic model of electronic field noise heating in ion traps  

E-Print Network (OSTI)

Motional heating of ions in micro-fabricated traps is a challenge hindering experimental realization of large-scale quantum processing devices. Recently a series of measurements of the heating rates in surface-electrode ion traps characterized their frequency, distance, and temperature dependencies, but our understanding of the microscopic origin of this noise is still vague. In this work we develop a theoretical model for the electric field noise which is associated with a random distribution of adsorbed atoms on the trap electrode surface. By using first principle calculations of the fluctuating dipole moments of the adsorbed atoms we evaluate the distance, frequency and temperature dependence of the resulting electric field fluctuation spectrum.Our theory calculates the noise spectrum beyond the standard scenario of two-level fluctuators, by incorporating all the relevant vibrational states. The $1/f$ noise is shown to commence at roughly the frequency of the fundamental phonon transition rate and the $d^{...

Safavi-Naini, A; Weck, P; Sadeghpour, H R

2011-01-01T23:59:59.000Z

208

Shape coexistence in atomic nuclei  

Science Conference Proceedings (OSTI)

Shape coexistence in nuclei appears to be unique in the realm of finite many-body quantum systems. It differs from the various geometrical arrangements that sometimes occur in a molecule in that in a molecule the various arrangements are of the widely separated atomic nuclei. In nuclei the various ''arrangements'' of nucleons involve (sets of) energy eigenstates with different electric quadrupole properties such as moments and transition rates, and different distributions of proton pairs and neutron pairs with respect to their Fermi energies. Sometimes two such structures will ''invert'' as a function of the nucleon number, resulting in a sudden and dramatic change in ground-state properties in neighboring isotopes and isotones. In the first part of this review the theoretical status of coexistence in nuclei is summarized. Two approaches, namely, microscopic shell-model descriptions and mean-field descriptions, are emphasized. The second part of this review presents systematic data, for both even- and odd-mass nuclei, selected to illustrate the various ways in which coexistence is observed in nuclei. The last part of this review looks to future developments and the issue of the universality of coexistence in nuclei. Surprises continue to be discovered. With the major advances in reaching to extremes of proton-neutron number, and the anticipated new ''rare isotope beam'' facilities, guidelines for search and discovery are discussed.

Heyde, Kris; Wood, John L. [Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, B-9000 Gent (Belgium); School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430 (United States)

2011-10-01T23:59:59.000Z

209

Single-molecule force spectroscopy: Practical limitations beyond Bell's model  

E-Print Network (OSTI)

Single-molecule force spectroscopy experiments, as well as a number of other physical systems, are governed by thermally activated transitions out of a metastable state under the action of a steadily increasing external force. The main observable in such experiments is the distribution of the forces, at which the escape events occur. The challenge in interpreting the experimental data is to relate them to the microscopic system properties. We work out a maximum likelihood approach and show that it is the optimal method to tackle this problem. When fitting actual experimental data it is unavoidable to assume some functional form for the force-dependent escape rate. We consider a quite general and common such functional form and demonstrate by means of data from a realistic computer experiment that the maximum number of fit parameters that can be determined reliably is three. They are related to the force-free escape rate and the position and height of the activation barrier. Furthermore, the results for the first two of these fit parameters show little dependence on the assumption about the manner in which the barrier decreases with the applied force, while the last one, the barrier height in the absence of force, depends strongly on this assumption.

Sebastian Getfert; Mykhaylo Evstigneev; Peter Reimann

2008-05-19T23:59:59.000Z

210

Microscopic Description of Nuclear Fission Dynamics  

E-Print Network (OSTI)

We discuss possible avenues to study fission dynamics starting from a time-dependent mean-field approach. Previous attempts to study fission dynamics using the time-dependent Hartree-Fock (TDHF) theory are analyzed. We argue that different initial conditions may be needed to describe fission dynamics depending on the specifics of the fission phenomenon and propose various approaches towards this goal. In particular, we provide preliminary calculations for studying fission following a heavy-ion reaction using TDHF with a density contraint. Regarding prompt muon-induced fission, we also suggest a new approach for combining the time-evolution of the muonic wave function with a microscopic treatment of fission dynamics via TDHF.

A. S. Umar; V. E. Oberacker; J. A. Maruhn; P. -G. Reinhard

2010-03-22T23:59:59.000Z

211

Chemical Power for Microscopic Robots in Capillaries  

E-Print Network (OSTI)

The power available to microscopic robots (nanorobots) that oxidize bloodstream glucose while aggregated in circumferential rings on capillary walls is evaluated with a numerical model using axial symmetry and time-averaged release of oxygen from passing red blood cells. Robots about one micron in size can produce up to several tens of picowatts, in steady-state, if they fully use oxygen reaching their surface from the blood plasma. Robots with pumps and tanks for onboard oxygen storage could collect oxygen to support burst power demands two to three orders of magnitude larger. We evaluate effects of oxygen depletion and local heating on surrounding tissue. These results give the power constraints when robots rely entirely on ambient available oxygen and identify aspects of the robot design significantly affecting available power. More generally, our numerical model provides an approach to evaluating robot design choices for nanomedicine treatments in and near capillaries.

Hogg, Tad

2009-01-01T23:59:59.000Z

212

Long working distance incoherent interference microscope  

DOE Patents (OSTI)

A full-field imaging, long working distance, incoherent interference microscope suitable for three-dimensional imaging and metrology of MEMS devices and test structures on a standard microelectronics probe station. A long working distance greater than 10 mm allows standard probes or probe cards to be used. This enables nanometer-scale 3-dimensional height profiles of MEMS test structures to be acquired across an entire wafer while being actively probed, and, optionally, through a transparent window. An optically identical pair of sample and reference arm objectives is not required, which reduces the overall system cost, and also the cost and time required to change sample magnifications. Using a LED source, high magnification (e.g., 50.times.) can be obtained having excellent image quality, straight fringes, and high fringe contrast.

Sinclair, Michael B. (Albuquerque, NM); De Boer, Maarten P. (Albuquerque, NM)

2006-04-25T23:59:59.000Z

213

Radiative Forcing of Climate Change  

SciTech Connect

Chapter 6 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 6.1 Radiative Forcing 6.2 Forcing-Response Relationship 6.3 Well-Mixed Greenhouse Gases 6.4 Stratospheric Ozone 6.5 Radiative Forcing By Tropospheric Ozone 6.6 Indirect Forcings due to Chemistry 6.7 The Direct Radiative Forcing of Tropospheric Aerosols 6.8 The Indirect Radiative Forcing of Tropospheric Aerosols 6.9 Stratospheric Aerosols 6.10 Land-use Change (Surface Albedo Effect) 6.11 Solar Forcing of Climate 6.12 Global Warming Potentials hydrocarbons 6.13 Global Mean Radiative Forcings 6.14 The Geographical Distribution of the Radiative Forcings 6.15 Time Evolution of Radiative Forcings Appendix 6.1 Elements of Radiative Forcing Concept References.

Ramaswamy, V.; Boucher, Olivier; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myhre, G.; Nakajima, Takahito; Shi, Guangyu; Solomon, S.; Betts, Robert E.; Charlson, R.; Chuang, C. C.; Daniel, J. S.; Del Genio, Anthony D.; Feichter, J.; Fuglestvedt, J.; Forster, P. M.; Ghan, Steven J.; Jones, A.; Kiehl, J. T.; Koch, D.; Land, C.; Lean, J.; Lohmann, Ulrike; Minschwaner, K.; Penner, Joyce E.; Roberts, D. L.; Rodhe, H.; Roelofs, G.-J.; Rotstayn, Leon D.; Schneider, T. L.; Schumann, U.; Schwartz, Stephen E.; Schwartzkopf, M. D.; Shine, K. P.; Smith, Steven J.; Stevenson, D. S.; Stordal, F.; Tegen, I.; van Dorland, R.; Zhang, Y.; Srinivasan, J.; Joos, Fortunat

2001-10-01T23:59:59.000Z

214

Work Force Restructuring Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Force Restructuring Activities Force Restructuring Activities December 10, 2008 Note: Current updates are in bold # Planned Site/Contractor HQ Approved Separations Status General * LM has finalized the compilation of contractor management team separation data for the end of FY07 actuals and end of FY08 and FY09 projections. LM has submitted to Congress the FY 2007 Annual Report on contractor work force restructuring activities. The report has been posted to the LM website. *LM conducted a DOE complex-wide data call to the Field and Operations offices for DOE Contractor Management teams to provide, by program, actual contractor separation data for the end of FY 2008 and projections for the end of FY 2009 and FY 2010. The data will be used to keep senior management informed of upcoming large WFR actions.

215

Inelastic X-ray Scattering Reveals Microscopic Transport Properties...  

NLE Websites -- All DOE Office Websites (Extended Search)

Inelastic X-ray Scattering Reveals Microscopic Transport Properties of Molten Aluminum Oxide The transport properties of high-temperature oxide melts are of considerable interest...

216

Scanning Electron Microscope 1: Zeiss Ultra-60 FESEM  

Science Conference Proceedings (OSTI)

Scanning Electron Microscope 1: Zeiss Ultra-60 FESEM. ... Secondary and backscattered electron detectors; Images structures down to 10 nm in size; ...

2013-05-30T23:59:59.000Z

217

The TEAM Project: Who is building the TEAM microscope?  

NLE Websites -- All DOE Office Websites (Extended Search)

Who is building the TEAM microscope? Led by Lawrence Berkeley National Laboratory's National Center for Electron Microscopy, TEAM is an intensive collaborative project with...

218

Casimir forces in multilayer magnetodielectrics with both gain and loss  

Science Conference Proceedings (OSTI)

A path-integral approach to the quantization of the electromagnetic field in a linearly amplifying magnetodielectric medium is presented. Two continua of inverted harmonic oscillators are used to describe the polarizability and magnetizability of the amplifying medium. The causal susceptibilities of the amplifying medium, with negative imaginary parts in finite frequency intervals, are identified and their relationships to microscopic coupling functions are determined. By carefully relating the two-point functions of the field theory to the optical Green functions, we calculate the Casimir energy and Casimir forces for a multilayer magnetodielectric medium with both gain and loss. We point out the essential differences with a purely passive layered medium. For a single layer, we find different bounds on the Casimir force for fully amplifying and for lossy media. The force is attractive in both cases, even if the medium exhibits negative refraction. From our Lagrangian we also derive by canonical quantization the postulates of the phenomenological theory of amplifying magnetodielectrics.

Amooghorban, Ehsan [Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kongens. Lyngby (Denmark); Department of Physics, University of Isfahan, Hezar Jarib Avenue, Isfahan (Iran, Islamic Republic of); Wubs, Martijn; Mortensen, N. Asger [Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kongens. Lyngby (Denmark); Kheirandish, Fardin [Department of Physics, University of Isfahan, Hezar Jarib Avenue, Isfahan (Iran, Islamic Republic of)

2011-07-15T23:59:59.000Z

219

All Optical Formation of an Atomic Bose-Einstein Condensate  

E-Print Network (OSTI)

We have created a Bose-Einstein condensate of 87Rb atoms directly in an optical trap. We employ a quasi-electrostatic dipole force trap formed by two crossed CO_2 laser beams. Loading directly from a sub-doppler laser-cooled cloud of atoms results in initial phase space densities of ~1/200. Evaporatively cooling through the BEC transition is achieved by lowering the power in the trapping beams over ~ 2 s. The resulting condensates are F=1 spinors with 3.5 x 10^4 atoms distributed between the m_F = (-1,0,1) states.

M. D. Barrett; J. A. Sauer; M. S. Chapman

2001-06-04T23:59:59.000Z

220

Materials' Deformation Dynamics at Atomic Scale In situ Atomic ...  

Science Conference Proceedings (OSTI)

Presentation Title, Materials' Deformation Dynamics at Atomic Scale In situ Atomic .... What Can We Learn from Measurements of Li-ion Battery Single Particles?

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Shear Viscosity Coefficient from Microscopic Models  

E-Print Network (OSTI)

The transport coefficient of shear viscosity is studied for a hadron matter through microscopic transport model, the Ultra--relativistic Quantum Molecular Dynamics (UrQMD), using the Green--Kubo formulas. Molecular--dynamical simulations are performed for a system of light mesons in a box with periodic boundary conditions. Starting from an initial state composed of $\\pi, \\eta ,\\omega ,\\rho ,\\phi$ with a uniform phase--space distribution, the evolution takes place through elastic collisions, production and annihilation. The system approaches a stationary state of mesons and their resonances, which is characterized by common temperature. After equilibration, thermodynamic quantities such as the energy density, particle density, and pressure are calculated. From such an equilibrated state the shear viscosity coefficient is calculated from the fluctuations of stress tensor around equilibrium using Green--Kubo relations. We do our simulations here at zero net baryon density so that the equilibration times depend on the energy density. We do not include hadron strings as degrees of freedom so as to maintain detailed balance. Hence we do not get the saturation of temperature but this leads to longer equilibration times.

Azwinndini Muronga

2003-09-22T23:59:59.000Z

222

general_atomics.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

former former General Atomics Hot Cell Facility was constructed in 1959 and operated until 1991. The site encompassed approximately 7,400 square feet of laboratory and remote operations cells. Licensed operations at the facility included receipt, handling, and shipment of radioactive materials; remote handling, examination, and storage of previously irradiated nuclear fuel materials; pilot-scale tritium extraction operations; and development, fabrication, and inspection of uranium oxide-beryllium oxide fuel materials. General Atomics performed most of the work for the federal government. The General Atomics Hot Cell Facility was located in a 60-acre complex 13 miles northwest of downtown San Diego, 1 mile inland from the Pacific Ocean, and approximately 300 feet above sea level. The General Atomics site is in the center of Torrey Mesa Science Center, a 304-acre industrial

223

general_atomics.cdr  

Office of Legacy Management (LM)

from the U.S. Department of Energy (DOE). Discussions between DOE and General Atomics led to an agreed cost-sharing and no-fee arrangement for the decontamination and site...

224

Sharing the atom bomb  

Science Conference Proceedings (OSTI)

Shaken by the devastation of Hiroshima and Nagasaki and fearful that the American atomic monopoly would spark an arms race, Dean Acheson led a push in 1946 to place the bomb-indeed, all atomic energy-under international control. But as the memories of wartime collaboration faded, relations between the superpowers grew increasingly tense, and the confrontational atmosphere undid his proposal. Had Acheson succeeded, the Cold War might not have been. 2 figs.

Chace, J.

1996-01-01T23:59:59.000Z

225

Effects of atomic radiation  

SciTech Connect

This book focuses on the lifelong effects of atomic radiation exposure in language understandable by the concerned layperson or the specialist in another field. The base of knowledge used is the work of the Atomic Bomb Casualty Commission and its successor since 1975 the Radiation Effects Research Foundation. Within the range of Chronic effects on human health the book provides a thorough review, although effects of nonionizing radiation, effects on structures, effects on other living species, and acute effects are not discussed.

Schull, W.J.

1995-12-31T23:59:59.000Z

226

Atomizing nozzle and method  

DOE Patents (OSTI)

A high pressure close-coupled gas atomizing nozzle includes multiple discrete gas jet discharge orifices having aerodynamically designed convergent-divergent geometry with an first converging section communicated to a gas supply manifold and to a diverging section by a constricted throat section to increase atomizing gas velocity. The gas jet orifices are oriented at gas jet apex angle selected relative to the melt supply tip apex angle to establish a melt aspiration condition at the melt supply tip.

Ting, Jason (Ames, IA); Anderson, Iver E. (Ames, IA); Terpstra, Robert L. (Ames, IA)

2000-03-16T23:59:59.000Z

227

Pairing: from atomic nuclei to neutron-star crusts  

E-Print Network (OSTI)

Nuclear pairing is studied both in atomic nuclei and in neutron-star crusts in the unified framework of the energy-density functional theory using generalized Skyrme functionals complemented with a local pairing functional obtained from many-body calculations in homogeneous nuclear matter using realistic forces.

Chamel, N; Goriely, S

2013-01-01T23:59:59.000Z

228

Atomic Data for Americium (Am)  

Science Conference Proceedings (OSTI)

... Atomic Number = 95. Atomic Weight = (243). Reference E95. Isotope, Mass, Abundance, Spin, Mag Moment, 241 Am, 241.056823, 0, 5/2, +1.61. ...

229

Method and apparatus for differential spectroscopic atomic-imaging using scanning tunneling microscopy  

DOE Patents (OSTI)

A Method and apparatus for differential spectroscopic atomic-imaging is disclosed for spatial resolution and imaging for display not only individual atoms on a sample surface, but also bonding and the specific atomic species in such bond. The apparatus includes a scanning tunneling microscope (STM) that is modified to include photon biasing, preferably a tuneable laser, modulating electronic surface biasing for the sample, and temperature biasing, preferably a vibration-free refrigerated sample mounting stage. Computer control and data processing and visual display components are also included. The method includes modulating the electronic bias voltage with and without selected photon wavelengths and frequency biasing under a stabilizing (usually cold) bias temperature to detect bonding and specific atomic species in the bonds as the STM rasters the sample. This data is processed along with atomic spatial topography data obtained from the STM raster scan to create a real-time visual image of the atoms on the sample surface.

Kazmerski, Lawrence L. (Lakewood, CO)

1990-01-01T23:59:59.000Z

230

Force Modulator System  

SciTech Connect

Many metal parts manufacturers use large metal presses to shape sheet metal into finished products like car body parts, jet wing and fuselage surfaces, etc. These metal presses take sheet metal and - with enormous force - reshape the metal into a fully formed part in a manner of seconds. Although highly efficient, the forces involved in forming metal parts also damage the press itself, limit the metals used in part production, slow press operations and, when not properly controlled, cause the manufacture of large volumes of defective metal parts. To date, the metal-forming industry has not been able to develop a metal-holding technology that allows full control of press forces during the part forming process. This is of particular importance in the automotive lightweighting efforts under way in the US automotive manufacturing marketplace. Metalforming Controls Technology Inc. (MC2) has developed a patented press control system called the Force Modulator that has the ability to control these press forces, allowing a breakthrough in stamping process control. The technology includes a series of hydraulic cylinders that provide controlled tonnage at all points in the forming process. At the same time, the unique cylinder design allows for the generation of very high levels of clamping forces (very high tonnages) in very small spaces; a requirement for forming medium and large panels out of HSS and AHSS. Successful production application of these systems testing at multiple stamping operations - including Ford and Chrysler - has validated the capabilities and economic benefits of the system. Although this technology has been adopted in a number of stamping operations, one of the primary barriers to faster adoption and application of this technology in HSS projects is system cost. The cost issue has surfaced because the systems currently in use are built for each individual die as a custom application, thus driving higher tooling costs. This project proposed to better marry the die-specific Force Modulator technology with stamping presses in the form of a press cushion. This system would be designed to operate the binder ring for multiple parts, thus cutting the per-die cost of the technology. This study reports the results of technology field application. This project produced the following conclusions: (1) The Force Modulator system is capable of operating at very high tempos in the stamping environment; (2) The company can generate substantial, controlled holding tonnage (binder ring pressure) necessary to hold high strength steel parts for proper formation during draw operations; (3) A single system can be designed to operate with a family of parts, thus significantly reducing the per-die cost of a FM system; (4) High strength steel parts made with these systems appear to show significant quality improvements; (5) The amounts of steel required to make these parts is typically less than the amounts required with traditional blank-holding technologies; and (6) This technology will aid in the use of higher strength steels in auto and truck production, thus reducing weight and improving fuel efficiency.

Redmond Clark

2009-04-30T23:59:59.000Z

231

ARMY SERVICE FORCES  

Office of Legacy Management (LM)

ARMY SERVICE FORCES ARMY SERVICE FORCES ' -, 1 MANHATTAN ENGINEER DISTRICT --t 4 IN "LPLI RC,' LR io EIDM CIS INTELLIGENCE AND SECURITY DIVISION CHICAGO BRANCH OFFICE i ., -,* - P. 0. Box 6770-A I ' 1 .' CHICAGO 80. ILLINOIS /lvb 15 February 1945 Subject: shipment Security Survey at &Uinckrodt Chemical Works. MEMORANDUM to the Officer in Charge. 1. The Mallinckrodt Chemical Works, St. Louis, Missouri, was contacted by the undersigned on 16 November 1944, for the purpose of -king an investigation to determine security provided shipments of interest to the Manhattan Engineer District. The investigation in- cluded shipments of vital materials originating with the Mallinckrodt Company and those received by them. Particular attention has been given to the future production and shipment schedules of these materials.

232

Questions and Answers - How do atoms form?  

NLE Websites -- All DOE Office Websites (Extended Search)

(Biggest and smallest atom?) Questions and Answers Main Index Next Question (Does gravity affect atoms?) Does gravity affect atoms? How do atoms form? The current view is that...

233

Questions and Answers - Can you crush atoms?  

NLE Websites -- All DOE Office Websites (Extended Search)

Does gravity affect atoms? Previous Question (Does gravity affect atoms?) Questions and Answers Main Index Next Question (Parts and weights of atoms?) Parts and weights of atoms?...

234

Laser-Cooled Lithium Atoms: A New Source for Focused Ion Beams  

E-Print Network (OSTI)

Laser-Cooled Lithium Atoms: A New Source for Focused Ion Beams P R O J E C T L E A D E R : Jabez Mc E N T S Designed and constructed a laser-cooled, magneto-optical trap-based lithium ion source mounted on a commercial focused ion beam system, creating the world's first lithium ion microscope

Magee, Joseph W.

235

Parabolic laws of the surrounded-atom model from ab initio calculations on clusters  

E-Print Network (OSTI)

121 Parabolic laws of the surrounded-atom model from ab initio calculations on clusters A alloys, via parabolic laws which are functions of the local concentration. In this paper, using ab initio MO-CI calculations on clusters, we have shown that these parabolic laws have a microscopic electronic

Paris-Sud XI, Université de

236

Peaceful Uses of the Atom and Atoms for Peace  

Office of Scientific and Technical Information (OSTI)

Peaceful Uses of the Atom Peaceful Uses of the Atom Fermi and Atoms for Peace · Understanding the Atom · Seaborg · Teller Atoms for Peace Atoms for Peace + 50 - Conference, October 22, 2003 Celebrating the 50th anniversary of President Eisenhower's "Atoms for Peace" speech to the UN General Assembly Atoms for Peace (video 12:00 Minutes) Atoms for Peace Address given by Dwight D. Eisenhower before the General Assembly of the United Nations, New York City, December 8, 1953 Documents: Atomic Power in Space: A History A history of the Space Isotope Power Program of the United States from the mid-1950s through 1982; interplanetary space exploration successes and achievements have been made possible by this technology. Establishing Site X: Letter, Arthur H. Compton to Enrico Fermi, September 14, 1942

237

Dipole traps for neutral atoms formed by nonuniformly polarised Laguerre modes  

SciTech Connect

Field configurations of two counterpropagating nonuniformly polarised Laguerre modes forming three-dimensional dipole traps for neutral atoms are proposed. Peculiarities of the stochastic dynamics of atoms in such traps, associated with the anisotropy of dipole forces and manifestations of various radiative friction mechanisms are analysed. The problem of increasing the confinement time for atoms in such field configurations is studied. (laser applications and other topics in quantum electronics)

Bezverbny, Aleksandr V [Maritime State University, Vladivostok (Russian Federation); Niz'ev, Vladimir G [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation); Tumaikin, Anatolii M [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

2004-07-31T23:59:59.000Z

238

NIST Atomic Spectroscopy Data Center  

Science Conference Proceedings (OSTI)

Atomic Spectroscopy Data Center. ... Responds to user requests for data, literature references, and technical information. ...

2011-11-29T23:59:59.000Z

239

Lesson 3- Atoms and Isotopes  

Energy.gov (U.S. Department of Energy (DOE))

You’ve probably heard people refer to nuclear energy as “atomic energy.” Why? Nuclear energy is the energy that is stored in the bonds of atoms, inside the nucleus. Nuclear power plants are designed to capture this energy as heat and convert it to electricity. This lesson looks closely at what atoms are and how atoms store energy.

240

Miniature quartz resonator force transducer  

SciTech Connect

The invention relates to a piezoelectric quartz force transducer having the shape of a double-ended tuning fork.

Eer Nisse, Errol P. (Albuquerque, NM)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Simultaneous specimen and stage cleaning device for analytical electron microscope  

DOE Patents (OSTI)

An improved method and apparatus are provided for cleaning both a specimen stage, a specimen and an interior of an analytical electron microscope (AEM). The apparatus for cleaning a specimen stage and specimen comprising a plasma chamber for containing a gas plasma and an air lock coupled to the plasma chamber for permitting passage of the specimen stage and specimen into the plasma chamber and maintaining an airtight chamber. The specimen stage and specimen are subjected to a reactive plasma gas that is either DC or RF excited. The apparatus can be mounted on the analytical electron microscope (AEM) for cleaning the interior of the microscope.

Zaluzec, Nestor J. (Bolingbrook, IL)

1996-01-01T23:59:59.000Z

242

general_atomics.cdr  

Office of Legacy Management (LM)

former General former General Atomics Hot Cell Facility was constructed in 1959 and operated until 1991. The site encompassed approximately 7,400 square feet of laboratory and remote operations cells. Licensed operations at the facility included receipt, handling, and shipment of radioactive materials; remote handling, examination, and storage of previously irradiated nuclear fuel materials; pilot-scale tritium extraction operations; and development, fabrication, and inspection of uranium oxide-beryllium oxide fuel materials. General Atomics performed most of the work for the federal government. The General Atomics Hot Cell Facility was located in a 60-acre complex 13 miles northwest of downtown San Diego, 1 mile inland from the Pacific Ocean, and approximately 300 feet above sea level.

243

Strength of intermediate-range forces coupling to isospin  

Science Conference Proceedings (OSTI)

An experimental search for new forces coupling to nuclear isospin with a range of {ge}3 m was conducted using a torsion balance driven in resonance by a set of masses configured to generate a nearly pure isospin source field. The strength of any such coupling {xi} in units of gravity per atomic mass unit is found to be bounded by {minus}2.3{times}10{sup {minus}4}{le}{xi}{le}+2.7{times}10{sup {minus}5}, where the positive sign represents an attractive force between like isospin charges.

Cowsik, R.; Krishnan, N.; Tandon, S.N.; Unnikrishnan, S. (Tata Institute of Fundamental Research, Bombay 400005, India (IN))

1990-01-22T23:59:59.000Z

244

JILA Researchers Discover Atomic Clock Can Simulate ...  

Science Conference Proceedings (OSTI)

... Artist's conception of interactions among atoms in JILA's strontium atomic clock during a quantum simulation experiment. ...

2013-08-20T23:59:59.000Z

245

Electrostatic Potentials in Rhodopseudomonas Wiridis Reaction Centers: Implications for the Driving Force and Directionality of Electron Transfer  

E-Print Network (OSTI)

Force and Directionality of Electron Transfer M. R. Gunner* Department of Physics, City College of New membrane protein to have a structure solved to atomic resolu- tion.4,5 Since then a higher resolution

Gunner, Marilyn

246

NCEM National Center for Electron Microscopy: Microscopes and Facilities:  

NLE Websites -- All DOE Office Websites (Extended Search)

0.5 0.5 The TEAM 0.5 microscope is a double-aberration-corrected (scanning) transmission electron microscope (STEM/TEM) capable of producing images with 50 pm resolution. The basic instrument is a modified FEI Titan 80-300 microscope equipped with a special high-brightness Schottky-field emission electron source, a gun monochromator, a high-resolution GIF Tridiem energy-filter, and two CEOS hexapole-type spherical aberration correctors. The illumination aberration corrector corrects coherent axial aberrations up to 4th order, as well as 5th order spherical aberration and six-fold astigmatism. The imaging aberration corrector fully corrects for coherent axial aberrations up to 3rd order and partially compensates for 4th and 5th order aberrations. The microscope has two 2048x2048 slow-scan CCD

247

Microscopic Analysis of Agricultural Products, 4th Edition  

Science Conference Proceedings (OSTI)

Written for both production staff who need advice on specific problems and development personnel who seek directions. Microscopic Analysis of Agricultural Products, 4th Edition Methods and Analyses Methods - Analyses Books Soft Bound Books Methods - An

248

Geometry-driven visualization of microscopic structures in biology  

Science Conference Proceedings (OSTI)

At a microscopic resolution, biological structures are composed of cells, red blood corpuscles (RBCs), cytoplasm and other microstructural components. There is a natural pattern in terms of distribution, arrangement and packing density of these components ...

Kishore Mosaliganti; Raghu Machiraju; Kun Huang; Gustavo Leone

2008-05-01T23:59:59.000Z

249

Simulation and characterization of a miniaturized Scanning Electron Microscope  

Science Conference Proceedings (OSTI)

A miniaturized Scanning Electron Microscope (mini-SEM) for in-situ lunar investigations is being developed at NASA Marshall Space Flight Center with colleagues from the University of Alabama in Huntsville (UAH), Advanced Research Systems (ARS), and the ...

Jessica. A. Gaskin; Gregory A. Jerman; Stephanie Medley; Don Gregory; Terry O. Abbott; Allen R. Sampson

2011-03-01T23:59:59.000Z

250

Weak dispersive forces between glass-gold macroscopic surfaces in alcohols  

E-Print Network (OSTI)

In this work we concentrate on an experimental validation of the Lifshitz theory for van der Waals and Casimir forces in gold-alcohol-glass systems. From this theory weak dispersive forces are predicted when the dielectric properties of the intervening medium become comparable to one of the interacting surfaces. Using inverse colloid probe atomic force microscopy dispersive forces were measured occasionally and under controlled conditions by addition of salt to screen the electrostatic double layer force if present. The dispersive force was found to be attractive, and an order of magnitude weaker than that in air. Although the theoretical description of the forces becomes less precise for these systems even with full knowledge of the dielectric properties, we find still our results in reasonable agreement with Lifshitz theory.

P. J. van Zwol; G. Palasantzas; J. Th. M. DeHosson

2009-04-03T23:59:59.000Z

251

Steven Chu: Laser Cooling and Trapping of Atoms  

Office of Scientific and Technical Information (OSTI)

Steven Chu Steven Chu Laser Cooling and Trapping of Atoms Resources with Additional Information · Interviews, Speeches, and Presentations · Patents Steven Chu Photo Credit: Lawrence Berkeley National Laboratory Roy Kaltschmidt, Photographer Steven Chu was appointed by President Barack Obama to be the 12th Secretary of Energy and served in this capacity until April 22, 2013. He was previously Director of Lawrence Berkeley National Laboratory (LBNL), Professor in the Physics Department at the University of California, Berkeley, and 'the Theodore and Frances Geballe Professor of Physics and Applied Physics at Stanford University. Professor Chu's research is in atomic physics, polymer and biophysics. His thesis and postdoctoral work at Berkeley ... was the observation of parity non-conservation in atomic transitions in 1978. This experiment was one of the earliest atomic physics confirmations of the Weinberg-Salam-Glashow theory that unifies the weak and electromagnetic forces.

252

Steven Chu: Laser Cooling and Trapping of Atoms  

NLE Websites -- All DOE Office Websites (Extended Search)

Steven Chu Steven Chu Laser Cooling and Trapping of Atoms Resources with Additional Information · Interviews, Speeches, and Presentations · Patents Steven Chu Photo Credit: Lawrence Berkeley National Laboratory Roy Kaltschmidt, Photographer Steven Chu was appointed by President Barack Obama to be the 12th Secretary of Energy and served in this capacity until April 22, 2013. He was previously Director of Lawrence Berkeley National Laboratory (LBNL), Professor in the Physics Department at the University of California, Berkeley, and 'the Theodore and Frances Geballe Professor of Physics and Applied Physics at Stanford University. Professor Chu's research is in atomic physics, polymer and biophysics. His thesis and postdoctoral work at Berkeley ... was the observation of parity non-conservation in atomic transitions in 1978. This experiment was one of the earliest atomic physics confirmations of the Weinberg-Salam-Glashow theory that unifies the weak and electromagnetic forces.

253

Soft x-ray laser microscope. Final report  

Science Conference Proceedings (OSTI)

The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL`s 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si{sub 3}N{sub 4}) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

Suckewer, P.I.

1990-10-01T23:59:59.000Z

254

Nuclear Radiological Threat Task Force Established | National...  

National Nuclear Security Administration (NNSA)

Force Established Nuclear Radiological Threat Task Force Established November 03, 2003 Washington, DC Nuclear Radiological Threat Task Force Established NNSA's Administrator...

255

TEXT Pro Force Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basic Protective Basic Protective Force Training Program DOE/IG-0641 March 2004 * None of the 10 sites included instruction in rappelling even though it was part of the special response team core curriculum and continued to be offered by the Nonprolif- eration and National Security Institute; * Only one site conducted basic training on use of a shotgun, despite the fact that a num- ber of sites used the weapon for breaching exercises and other purposes; and, * Seven of the sites modified prescribed training techniques by reducing the intensity or delivery method for skills that some security experts characterized as critical, such as handcuffing, hand-to- hand combat, and vehicle assaults. We found that the Department's facilities were not required to report departures from the core

256

Following Ostwald ripening in nanoalloys by high-resolution imaging with single-atom chemical sensitivity  

Science Conference Proceedings (OSTI)

Several studies have shown that substantial compositional changes can occur during the coarsening of bimetallic nanoparticles (CoPt, AuPd). To explain this phenomenon that could dramatically impacts all the technologically relevant properties of nanoalloys, we have exploited the sensitivity of the latest generation of electron microscope to prove that during the beam-induced coarsening of CoPt nanoparticles, the dynamic of atom exchanges between the particles is different for Co and Pt. By distinguishing the chemical nature of individual atoms of Co and Pt, while they are diffusing on a carbon film, we have clearly shown that Co atoms have a higher mobility than Pt atoms because of their higher evaporation rate from the particles. These atomic-scale observations bring the experimental evidence on the origin of the compositional changes in nanoalloys induced by Ostwald ripening mechanisms.

Alloyeau, D.; Nelayah, J.; Wang, G.; Ricolleau, C. [Laboratoire Materiaux et Phenomenes Quantiques, Universite Paris Diderot/CNRS, UMR 7162, Batiment Condorcet, 4 rue Elsa Morante, 75205 Paris Cedex 13 (France); Oikawa, T. [Laboratoire Materiaux et Phenomenes Quantiques, Universite Paris Diderot/CNRS, UMR 7162, Batiment Condorcet, 4 rue Elsa Morante, 75205 Paris Cedex 13 (France); JEOL Ltd, 1-2 Musashino 3-Chome, Akishima, Tokyo 196-8558 (Japan)

2012-09-17T23:59:59.000Z

257

Atomic-Resolution STEM at Low Primary Energies  

Science Conference Proceedings (OSTI)

Aberration-corrected scanning transmission electron microscopes (STEMs) can now produce electron probes as small as 1 {angstrom} at 60 keV. This level of performance allows individual light atoms to be imaged in various novel materials including graphene, monolayer boron nitride, and carbon nanotubes. Operation at 60 keV avoids direct knock-on damage in such materials, but some radiation damage often remains, and limits the maximum usable electron dose. Elemental identification by electron energy loss spectroscopy (EELS) is then usefully supplemented by annular dark-field (ADF) imaging, for which the signal is much larger and the spatial resolution significantly better. Because of its strong dependence on the atomic number Z, ADF can be used to identify the chemical type of individual atoms, both heavy and light. We review the instrumental requirements for atomic resolution imaging at 60 keV and lower energies, and we illustrate the kinds of studies that have now become possible by ADF images of graphene, monolayer BN, and single-wall carbon nanotubes, and by ADF images and EEL spectra of carbon nanotubes containing nanopods filled with single atoms of Er. We then discuss likely future developments.

Krivanek, Ondrej L. [Nion Co; Chisholm, Matthew F [ORNL; Dellby, N. [Nion Company, WA; Murfitt, M. F. [Nion Company, WA

2011-01-01T23:59:59.000Z

258

Relativistic Brownian motion: From a microscopic binary collision model to the Langevin equation  

E-Print Network (OSTI)

The Langevin equation (LE) for the one-dimensional relativistic Brownian motion is derived from a microscopic collision model. The model assumes that a heavy point-like Brownian particle interacts with the lighter heat bath particles via elastic hard-core collisions. First, the commonly known, non-relativistic LE is deduced from this model, by taking into account the non-relativistic conservation laws for momentum and kinetic energy. Subsequently, this procedure is generalized to the relativistic case. There, it is found that the relativistic stochastic force is still $\\gd$-correlated (white noise) but does \\emph{no} longer correspond to a Gaussian white noise process. Explicit results for the friction and momentum-space diffusion coefficients are presented and discussed.

Jörn Dunkel; Peter Hänggi

2006-07-04T23:59:59.000Z

259

In situ nanomechanical testing in focused ion beam and scanning electron microscopes  

Science Conference Proceedings (OSTI)

The recent interest in size-dependent deformation of micro- and nanoscale materials has paralleled both technological miniaturization and advancements in imaging and small-scale mechanical testing methods. Here we describe a quantitative in situ nanomechanical testing approach adapted to a dual-beam focused ion beam and scanning electron microscope. A transducer based on a three-plate capacitor system is used for high-fidelity force and displacement measurements. Specimen manipulation, transfer, and alignment are performed using a manipulator, independently controlled positioners, and the focused ion beam. Gripping of specimens is achieved using electron-beam assisted Pt-organic deposition. Local strain measurements are obtained using digital image correlation of electron images taken during testing. Examples showing results for tensile testing of single-crystalline metallic nanowires and compression of nanoporous Au pillars will be presented in the context of size effects on mechanical behavior and highlight some of the challenges of conducting nanomechanical testing in vacuum environments.

Gianola, D. S. [Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe (Germany); Sedlmayr, A.; Moenig, R.; Kraft, O. [Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe (Germany); Volkert, C. A. [Institute for Materials Physics, Georg-August University of Goettingen, Goettingen (Germany); Major, R. C.; Cyrankowski, E.; Asif, S. A. S.; Warren, O. L. [Hysitron, Inc., Minneapolis, Minnesota 55344 (United States)

2011-06-15T23:59:59.000Z

260

Ion and electron beam nanofabrication of the which-way double-slit experiment in a transmission electron microscope  

Science Conference Proceedings (OSTI)

We have realized a which-way experiment closely resembling the original Feynman's proposal exploiting focused ion beam milling to prepare two nanoslits and electron beam induced deposition to grow, selectively over one of them, electron transparent layers of low atomic number amorphous material to realize a which-way detector for high energy electrons. By carrying out the experiment in an electron microscope equipped with an energy filter, we show that the inelastic scattering of electron transmitted through amorphous layers of different thicknesses provides the control of the dissipative interaction process responsible for the localization phenomena which cancels out the interference effects.

Frabboni, Stefano [Department of Physics, University of Modena and Reggio Emilia and CNR-Institute of Nanoscience-S3, via G. Campi 213/a, 41100 Modena (Italy); Gazzadi, Gian Carlo [CNR-Institute of Nanoscience-S3, via G. Campi 213/a, 41100 Modena (Italy); Pozzi, Giulio [Department of Physics, University of Bologna, viale B. Pichat 6/2, 40127 Bologna (Italy)

2010-12-27T23:59:59.000Z

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The Dynamic Space of General Relativity in Second Atomization  

E-Print Network (OSTI)

The notion that the geometry of our space-time is not only a static background but can be physically dynamic is well established in general relativity. Geometry can be described as shaped by the presence of matter, where such shaping manifests itself as gravitational force. We consider here probabilistic or atomistic models of such space-time, in which the active geometry emerges from a statistical distribution of 'atoms'. Such atoms are not to be confused with their chemical counterparts, however the shift of perspective obtained in analyzing a gas via its molecules rather than its bulk properties is analogous to this "second atomization". In this atomization, space-time itself (i.e. the meter and the second) is effectively atomized, so the atoms themselves must exist in a 'subspace'. Here we build a simple model of such a space-time from the ground up, establishing a route for more complete theories, and enabling a review of recent work. We first introduce the motivation behind statistical interpretations and atomism, and look at applications to the realm of dynamic space-time theories. We then consider models of kinetic media in subspace compatible with our understanding of light. From the equations governing the propagation of light in subspace we can build a metric geometry, describing the dynamic and physical space-time of general relativity. Finally, implications of the theory on current frontiers of general relativity including cosmology, black holes, and quantum gravity are discussed.

Lukas A. Saul

2004-05-26T23:59:59.000Z

262

Laser Probing of Neutron-Rich Nuclei in Light Atoms  

E-Print Network (OSTI)

The neutron-rich 6He and 8He isotopes exhibit an exotic nuclear structure that consists of a tightly bound 4He-like core with additional neutrons orbiting at a relatively large distance, forming a halo. Recent experimental efforts have succeeded in laser trapping and cooling these short-lived, rare helium atoms, and have measured the atomic isotope shifts along the 4He-6He-8He chain by performing laser spectroscopy on individual trapped atoms. Meanwhile, the few-electron atomic structure theory, including relativistic and QED corrections, has reached a comparable degree of accuracy in the calculation of the isotope shifts. In parallel efforts, also by measuring atomic isotope shifts, the nuclear charge radii of lithium and beryllium isotopes have been studied. The techniques employed were resonance ionization spectroscopy on neutral, thermal lithium atoms and collinear laser spectroscopy on beryllium ions. Combining advances in both atomic theory and laser spectroscopy, the charge radii of these light halo nuclei have now been determined for the first time independent of nuclear structure models. The results are compared with the values predicted by a number of nuclear structure calculations, and are used to guide our understanding of the nuclear forces in the extremely neutron-rich environment.

Z. -T. Lu; P. Mueller; G. W. F. Drake; W. Noertershaeuser; Steven C. Pieper; Z. -C. Yan

2013-07-10T23:59:59.000Z

263

Imaging of quantum Hall states in ultracold atomic gases  

SciTech Connect

We examine off-resonant light scattering from ultracold atoms in the quantum Hall regime. When the light scattering is spin dependent, we show that images formed in the far field can be used to distinguish states of the system. The spatial dependence of the far-field images is determined by the two-particle spin-correlation functions, which the images are related to by a transformation. Quasiholes in the system appear in images of the density formed by collecting the scattered light with a microscope, where the quasihole statistics are revealed by the reduction in density at the quasihole position.

Douglas, James S.; Burnett, Keith [University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

2011-11-15T23:59:59.000Z

264

Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields  

E-Print Network (OSTI)

We describe the construction and performance of a scanning tunneling microscope (STM) capable of taking maps of the tunneling density of states with sub-atomic spatial resolution at dilution refrigerator temperatures and high (14 T) magnetic fields. The fully ultra-high vacuum system features visual access to a two-sample microscope stage at the end of a bottom-loading dilution refrigerator, which facilitates the transfer of in situ prepared tips and samples. The two-sample stage enables location of the best area of the sample under study and extends the experiment lifetime. The successful thermal anchoring of the microscope, described in detail, is confirmed through a base temperature reading of 20 mK, along with a measured electron temperature of 250 mK. Atomically-resolved images, along with complementary vibration measurements, are presented to confirm the effectiveness of the vibration isolation scheme in this instrument. Finally, we demonstrate that the microscope is capable of the same level of perform...

Misra, Shashank; Drozdov, Ilya K; Seo, Jungpil; Gyenis, Andras; Kingsley, Simon C J; Jones, Howard; Yazdani, Ali

2013-01-01T23:59:59.000Z

265

Protective Force Firearms Qualification Courses  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROTECTIVE FORCE PROTECTIVE FORCE FIREARMS QUALIFICATION COURSES U.S. DEPARTMENT OF ENERGY Office of Health, Safety and Security AVAILABLE ONLINE AT: INITIATED BY: http://www.hss.energy.gov Office of Health, Safety and Security Protective Force Firearms Qualification Courses July 2011 i TABLE OF CONTENTS SECTION A - APPROVED FIREARMS QUALIFICATION COURSES .......................... I-1 CHAPTER I . INTRODUCTION ................................................................................... I-1 1. Scope .................................................................................................................. I-1 2. Content ............................................................................................................... I-1

266

Tenth Atomic Physics Program workshop  

Science Conference Proceedings (OSTI)

This report contains short papers and abstracts on the following main topics: Ion-atom collision theory; laser physics; spectroscopy of atoms; spectroscopy of ions; and high velocity collisions.

Not Available

1989-10-01T23:59:59.000Z

267

Nuclear effects in atomic transitions  

E-Print Network (OSTI)

Atomic electrons are sensitive to the properties of the nucleus they are bound to, such as nuclear mass, charge distribution, spin, magnetization distribution, or even excited level scheme. These nuclear parameters are reflected in the atomic transition energies. A very precise determination of atomic spectra may thus reveal information about the nucleus, otherwise hardly accessible via nuclear physics experiments. This work reviews theoretical and experimental aspects of the nuclear effects that can be identified in atomic structure data. An introduction to the theory of isotope shifts and hyperfine splitting of atomic spectra is given, together with an overview of the typical experimental techniques used in high-precision atomic spectroscopy. More exotic effects at the borderline between atomic and nuclear physics, such as parity violation in atomic transitions due to the weak interaction, or nuclear polarization and nuclear excitation by electron capture, are also addressed.

Pálffy, Adriana

2011-01-01T23:59:59.000Z

268

EPRI Transformer Task Force Proceedings  

Science Conference Proceedings (OSTI)

The EPRI Transformer Task Force held a meeting on December 4, 2007, in San Antonio, Texas. This technical update contains the proceedings of the meeting.

2008-02-12T23:59:59.000Z

269

EPRI Transformer Task Force Proceedings  

Science Conference Proceedings (OSTI)

This report contains the proceedings from the EPRI Transformers Task Force, which was held in Montreal on October 26 and 27, 2006.

2006-12-12T23:59:59.000Z

270

Physics Out Loud - Electromagnetic Force  

NLE Websites -- All DOE Office Websites (Extended Search)

Detector Previous Video (Detector) Physics Out Loud Main Index Next Video (Electron Scattering) Electron Scattering Electromagnetic Force Cynthia Keppel, a nuclear physicist,...

271

Army Energy Initiatives Task Force  

Energy.gov (U.S. Department of Energy (DOE))

Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers the Army Energy Initiatives Task Force.

272

Atomic Devices and Instrumentation Group  

Science Conference Proceedings (OSTI)

... 2001 and 2005, demonstrated an atomic clock physics package with ... magnetometers for magnetic anomaly detection, nuclear magnetic resonance ...

2013-08-09T23:59:59.000Z

273

Atom-Based Dimensional Metrology  

Science Conference Proceedings (OSTI)

... Awarded a five year, three phase DARPA contract to conduct collaborative research in atomically precise positioning, patterning and metrology ...

2013-04-19T23:59:59.000Z

274

Does entropic force always imply the Newtonian force law?  

E-Print Network (OSTI)

We study the entropic force by introducing a bound between entropy and area of $S \\le A^{3/4}$ which was derived by imposing the non-gravitational collapse condition. In this case, applying a recent argument of Verlinde to this system does not lead to the Newtonian force law.

Myung, Yun Soo

2010-01-01T23:59:59.000Z

275

Quantum transport of bosonic cold atoms in double-well optical lattices  

Science Conference Proceedings (OSTI)

We numerically investigate, using the time evolving block decimation algorithm, the quantum transport of ultracold bosonic atoms in a double-well optical lattice through slow and periodic modulation of the lattice parameters (intra- and inter-well tunneling, chemical potential, etc.). The transport of atoms does not depend on the rate of change of the parameters (as along as the change is slow) and can distribute atoms in optical lattices at the quantized level without involving external forces. The transport of atoms depends on the atom filling in each double well and the interaction between atoms. In the strongly interacting region, the bosonic atoms share the same transport properties as noninteracting fermions with quantized transport at the half filling and no atom transport at the integer filling. In the weakly interacting region, the number of the transported atoms is proportional to the atom filling. We show the signature of the quantum transport from the momentum distribution of atoms that can be measured in the time-of-flight image. A semiclassical transport model is developed to explain the numerically observed transport of bosonic atoms in the noninteracting and strongly interacting limits. The scheme may serve as an quantized battery for atomtronics applications.

Qian Yinyin; Gong Ming; Zhang Chuanwei [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164 (United States)

2011-07-15T23:59:59.000Z

276

Why is hydrogen's atomic number 1?  

NLE Websites -- All DOE Office Websites (Extended Search)

the number of protons in an atom's nucleus. Hydrogen's atomic number is 1 because all hydrogen atoms contain exactly one proton. Author: Steve Gagnon, Science Education Specialist...

277

NIST: Phys. Lab. Brochure; Atomic Physics Div.  

Science Conference Proceedings (OSTI)

... ultra-cold atoms and investigate atom optics for innovative instrumentation. Measure and analyze spectra of highly ionized atoms for fusion energy ...

278

A microscopic model of electronic field noise heating in ion traps  

E-Print Network (OSTI)

Motional heating of ions in micro-fabricated traps is a challenge hindering experimental realization of large-scale quantum processing devices. Recently a series of measurements of the heating rates in surface-electrode ion traps characterized their frequency, distance, and temperature dependencies, but our understanding of the microscopic origin of this noise is still vague. In this work we develop a theoretical model for the electric field noise which is associated with a random distribution of adsorbed atoms on the trap electrode surface. By using first principle calculations of the fluctuating dipole moments of the adsorbed atoms we evaluate the distance, frequency and temperature dependence of the resulting electric field fluctuation spectrum.Our theory calculates the noise spectrum beyond the standard scenario of two-level fluctuators, by incorporating all the relevant vibrational states. The $1/f$ noise is shown to commence at roughly the frequency of the fundamental phonon transition rate and the $d^{-4}$ dependence with distance of the ion from the electrode surface is established.

A. Safavi-Naini; P. Rabl; P. Weck; H. R. Sadeghpour

2011-06-10T23:59:59.000Z

279

Air Force Renewable Energy Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Ken Gray P.E. HQ AFCESA /CENR Air Force Renewable Energy Programs April, 2011 FUPWG "Make Energy a Consideration in All We Do" I n t e g r i t y - S e r v i c e - E x c e l l e n c e THINK GREEN, BUILD GREEN, Topics  Air Force Energy Use  Air Force Facility Energy Center  Current RE Generation  Project Development System  Programmed RE Generation FY11-13  Goal Achievement 2 I n t e g r i t y - S e r v i c e - E x c e l l e n c e THINK GREEN, BUILD GREEN, Air Force 2010 Energy Use The Air Force spent approximately $8.2 billion for energy in 2010; an increase of 22% from 2009 Energy Cost and Consumption Trends Energy Cost Breakdown Aviation 79% Facilities 17% 3 Aviation 84% Facilities 12% Vehicles & Equipment

280

Cancer in atomic bomb survivors  

SciTech Connect

This book presents information on the following topics: sampling of atomic bomb survivors and method of cancer detection in Hiroshima and Nagasaki; atomic bomb dosimetry for epidemiological studies of survivors in Hiroshima and Nagasaki; tumor and tissue registries in Hiroshima and Nagasaki; the cancer registry in Nagasaki, with atomic bomb survivor data, 1973-1977; cancer mortality; methods for study of delayed health effects of a-bomb radiation; experimental radiation carcinogenesis in rodents; leukemia, multiple myeloma, and malignant lymphoma; cancer of the thyroid and salivary glands; malignant tumors in atomic bomb survivors with special reference to the pathology of stomach and lung cancer; colorectal cancer among atomic bomb survivors; breast cancer in atomic bomb survivors; and ovarian neoplasms in atomic bomb survirors.

Shigematsu, I.; Kagan, A.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Atomic data for fusion  

DOE Green Energy (OSTI)

This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A. (eds.) [eds.; Barnett, C.F.

1990-07-01T23:59:59.000Z

282

Point force manipulation and activated dynamics of polymers adsorbed on structured substrates  

E-Print Network (OSTI)

We study the activated motion of adsorbed polymers which are driven over a structured substrate by a localized point force.Our theory applies to experiments with single polymers using, for example, tips of scanning force microscopes to drag the polymer.We consider both flexible and semiflexible polymers,and the lateral surface structure is represented by double-well or periodic potentials. The dynamics is governed by kink-like excitations for which we calculate shapes, energies, and critical point forces. Thermally activated motion proceeds by the nucleation of a kink-antikink pair at the point where the force is applied and subsequent diffusive separation of kink and antikink. In the stationary state of the driven polymer, the collective kink dynamics can be described by an one-dimensional symmetric simple exclusion process.

P. Kraikivski; R. Lipowsky; J. Kierfeld

2005-12-19T23:59:59.000Z

283

Questions and Answers - Does gravity affect atoms?  

NLE Websites -- All DOE Office Websites (Extended Search)

and Answers Main Index Next Question (Can you crush atoms?) Can you crush atoms? Does gravity affect atoms? Gravity affects atoms the same way it affects all other matter. Every...

284

Optics and interferometry with atoms and molecules  

E-Print Network (OSTI)

Interference with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory fields technique used in atomic ...

Cronin, Alexander D.

285

Magnetometry with entangled atomic samples  

E-Print Network (OSTI)

We present a theory for the estimation of a scalar or a vector magnetic field by its influence on an ensemble of trapped spin polarized atoms. The atoms interact off-resonantly with a continuous laser field, and the measurement of the polarization rotation of the probe light, induced by the dispersive atom-light coupling, leads to spin-squeezing of the atomic sample which enables an estimate of the magnetic field which is more precise than that expected from standard counting statistics. For polarized light and polarized atoms, a description of the non-classical components of the collective spin angular momentum for the atoms and the collective Stokes vectors of the light-field in terms of effective gaussian position and momentum variables is practically exact. The gaussian formalism describes the dynamics of the system very effectively and accounts explicitly for the back-action on the atoms due to measurement and for the estimate of the magnetic field. Multi-component magnetic fields are estimated by the measurement of suitably chosen atomic observables and precision and efficiency is gained by dividing the atomic gas in two or more samples which are entangled by the dispersive atom-light interaction.

Vivi Petersen; Lars Bojer Madsen; Klaus Molmer

2004-09-28T23:59:59.000Z

286

Laser Cooling and Cold Atomic Matter  

Science Conference Proceedings (OSTI)

Laser Cooling and Cold Atomic Matter: to advance the understanding and applications of cold atomic matter, including ...

2012-05-30T23:59:59.000Z

287

NIST - Atomic Energy Levels and Spectra Bibliographic ...  

Science Conference Proceedings (OSTI)

... in this database are from Bibliography on Atomic Energy Levels and ... references to atomic transition probabilities, line intensities, or broadening. ...

288

Simulations of Kinetic Events at the Atomic Scale  

NLE Websites -- All DOE Office Websites (Extended Search)

of kinetic events at the atomic scale of kinetic events at the atomic scale Graeme Henkelman UT Austin Al / Al(100) B 3 I / Si Pd / MgO How can we simulate the dynamics of molecular systems over experimental time scales? Objective: To calculate dynamics of a surface over time scales which are much longer than can be calculated with direct classical dynamics. Problem: time scale gap fs ps ns ms ms s mins atomic dynamics thermally activated experimental vibrations simulations reaction dynamics time scales Most interesting transitions are rare 0.5 eV 1000/s events (much slower than vibrations) Simulating a transition for a typical rare event with classical dynamics can require ~10 12 force evaluations Transition state theory A statistical theory for calculating the rate of slow thermal processes

289

Laser excited confocal microscope fluorescence scanner and method  

DOE Patents (OSTI)

A fluorescent scanner for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier including a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from said volume to provide a display of the separated sample.

Mathies, Richard A. (Contra Costa, CA); Peck, Konan (Contra Costa, CA)

1992-01-01T23:59:59.000Z

290

NCEM National Center for Electron Microscopy: Microscope Driving...  

NLE Websites -- All DOE Office Websites (Extended Search)

Microscope Driving Tests 3010 test.pdf CM 200 test.pdf CM 300 test.pdf Libra test.pdf FIB test.pdf Tecnai test.pdf TEAM 0.5 test.pdf TEAM I test.pdf...

291

Malaria Parasite Detection: Automated Method Using Microscope Color Image  

Science Conference Proceedings (OSTI)

Healthcare Delivery Systems are becoming overloaded in developing countries like India and China. It is imperative that more efficient and cost effective processes are employed. One such requirement is the automatic detection of malaria parasites in ... Keywords: Hue-Saturation-Intensity-Histogram, Image Segmentation, Malaria Parasites, Microscopic Image Analysis, ROI

Anant R. Koppar; Venugopalachar Sridhar

2011-04-01T23:59:59.000Z

292

Dynamic microscopic theory of fusion using DC-TDHF  

Science Conference Proceedings (OSTI)

The density-constrained time-dependent Hartree-Fock (DC-TDHF) theory is a fully microscopic approach for calculating heavy-ion interaction potentials and fusion cross sections below and above the fusion barrier. We discuss recent applications of DC-TDHF method to fusion of light and heavy systems.

Umar, A. S.; Oberacker, V. E.; Keser, R.; Maruhn, J. A.; Reinhard, P.-G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); RTE University, Science and Arts Faculty, Department of Physics, 53100, Rize (Turkey); Institut fuer Theoretische Physik, Goethe-Universitaet, D-60438 Frankfurt am Main (Germany); Institut fur Theoretische Physik, Universitat Erlangen, D-91054 Erlangen (Germany)

2012-10-20T23:59:59.000Z

293

Microscopic Calculation of Fusion: Light to Heavy Systems  

E-Print Network (OSTI)

The density-constrained time-dependent Hartree-Fock (DC-TDHF) theory is a fully microscopic approach for calculating heavy-ion interaction potentials and fusion cross sections below and above the fusion barrier. We discuss recent applications of DC-TDHF method to fusion of light and heavy neutron-rich systems.

A. S. Umar; V. E. Oberacker; J. A. Maruhn; R. Keser

2013-10-02T23:59:59.000Z

294

Atomic Energy Commission Takes Over Responsibility for all Atomic...  

National Nuclear Security Administration (NNSA)

Takes Over Responsibility for all Atomic Energy Programs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

295

Atomic total energies: Atomic Ref.Data Elec Struc Cal  

Science Conference Proceedings (OSTI)

... These tables contain the atomic total energies and orbital eigenvalues, for the ground electronic configuration of the elements H ... Definition of format ...

296

Atomic total energies: Atomic Ref. Data Elec. Struc. Cal.  

Science Conference Proceedings (OSTI)

... These tables contain the atomic total energies and orbital eigenvalues, for the ground electronic configuration of the elements H ... Definition of format ...

297

Nuclear forces and chiral theories  

SciTech Connect

Recent successes in ab initio calculations of light nuclei (A=2-6) will be reviewed and correlated with the dynamical consequences of chiral symmetry. The tractability of nuclear physics evinced by these results is evidence for that symmetry. The relative importance of three-nucleon forces, four-nucleon forces, multi-pion exchanges, and relativistic corrections will be discussed in the context of effective field theories and dimensional power counting. Isospin violation in the nuclear force will also be discussed in this context.

Friar, J.L. [Los Alamos National Lab., NM (United States)]|[Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory

1995-09-01T23:59:59.000Z

298

Questions and Answers - What would you get if you combined one atom each  

NLE Websites -- All DOE Office Websites (Extended Search)

How do you separatetungsten from its ore? How do you separate<br>tungsten from its ore? Previous Question (How do you separate tungsten from its ore?) Questions and Answers Main Index Next Question (What type of charge is produced when...?) What type of charge isproduced when...? What would you get if you combined one atom each from all the elements in the periodic table? It wouldn't make anything really. If we combine one of each of the atoms from the periodic table, the result would be so small that we wouldn't notice it, even with the best electron microscopes. You see, some elements are very reactive and react immediately with whatever is next to it. Oxygen is a good example of that. Oxygen is extremely reactive, especially when it is in a rare single atom mode called atomic oxygen (oxygen at our level of

299

Investigation of the Interphase Region in Polymer Matrix - Glass Fiber Reinforced Composites Using the Interfacial Force Microscope  

SciTech Connect

The proposed research was to provide a critical vehicle to enhance South Dakota researchers' abilities to participate in nationally important energy related research while building and strengthening partnerships between the South Dakota School of Mines and Technology and Sandia National Laboratory.

Winter, R. M

2004-06-30T23:59:59.000Z

300

Nanomanipulation and nanofabrication with multi-probe STM: From individual atoms to nanowires  

SciTech Connect

The wide variety of nanoscale structures and devices demands novel tools for handling, assembly, and fabrication at nanoscopic positioning precision. The manipulation tools should allow for in situ characterization and testing of fundamental building blocks, such as nanotubes and nanowires, as they are built into functional devices. In this paper, a bottom-up technique for nanomanipulation and nanofabrication is reported by using a 4-probe scanning tunneling microscope (STM) combined with a scanning electron microscope (SEM). The applications of this technique are demonstrated in a variety of nanosystems, from manipulating individual atoms to bending, cutting, breaking carbon nanofibers, and constructing nanodevices for electrical characterizations. The combination of the wide field of view of SEM, the atomic position resolution of STM, and the flexibility of multiple scanning probes is expected to be a valuable tool for rapid prototyping in the nanoscience and nanotechnology.

Qin, Shengyong [ORNL; Kim, Tae Hwan [ORNL; Wang, Zhouhang [ORNL; Li, An-Ping [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ATOMIC ENERGY COMMISSION  

Office of Legacy Management (LM)

' ' ATOMIC ENERGY COMMISSION Frank K. Pittman, Director, bivisioa of Waste &&gement and s- portation, Headquarters j CONTAMItUTED RX-AEC-OWNED OR LEASED FACILITIES' This memorandum responds to your TWX certain information on the above subject. the documentation necessary to answer your available due to the records disposal vailing at the time of release or From records that are available and from disc&ions with most familiar with the transfer operations, &have the current radiological conditibn of transferred property is adequate under present standards. The following tabulations follow the format suggested in your TWX and are grouped to an operations or contract r+ponsibility. A,I Ex-AEC Storage Sites - I r:/ National Stockpile Site '(NSS) and OperatEonal

302

River-Forced Estuarine Plumes  

Science Conference Proceedings (OSTI)

The development, maintenance, and dissipation of river-forced estuarine plumes with and without seaward sloping bottom are studied by use of a three-dimensional, primitive-equation model. Inside the estuary, discussion is focused on how the ...

Shenn-Yu Chao

1988-01-01T23:59:59.000Z

303

Nuclear Forces and Chiral Symmetry  

SciTech Connect

We review the main achievements of the research program for the study of nuclear forces in the framework of chiral symmetry and discuss some problems which are still open.

Renato Higa; Manoel Robilotta; Carlos Antonio da Rocha

2005-07-26T23:59:59.000Z

304

NIST Atomic Spectra Bibliographic Databases  

Science Conference Proceedings (OSTI)

... The Atomic Energy Levels Data Center and Data Center on ... Reference Data Program (SRDP) and by NIST's Systems Integration for Manufacturing ...

2010-10-05T23:59:59.000Z

305

Atomic Devices and Instrumentation Group  

Science Conference Proceedings (OSTI)

... ten millionths of a second over the course of one day, and are paving the way for atomic-level timekeeping in portable, battery-operated systems ...

306

NIST: Atomic Spectroscopy Group - Homepage  

Science Conference Proceedings (OSTI)

... The program in atomic spectroscopy at NIST provides accurate reference data on spectral lines and energy levels for a wide variety of important ...

2013-07-31T23:59:59.000Z

307

Technical Highlights Atomic Physics Division  

Science Conference Proceedings (OSTI)

... Physics Division is to develop and apply atomic physics research methods ... community, and to produce and critically compile physical reference data ...

2013-06-04T23:59:59.000Z

308

Is Gravity an Entropic Force?  

E-Print Network (OSTI)

The remarkable connections between gravity and thermodynamics seem to imply that gravity is not fundamental but emergent, and in particular, as Verlinde suggested, gravity is probably an entropic force. In this paper, we will argue that the idea of gravity as an entropic force is debatable. It is shown that there is no convincing analogy between gravity and entropic force in Verlinde's example. Neither holographic screen nor test particle satisfies all requirements for the existence of entropic force in a thermodynamics system. Furthermore, we show that the entropy increase of the screen is not caused by its statistical tendency to increase entropy as required by the existence of entropic force, but in fact caused by gravity. Therefore, Verlinde's argument for the entropic origin of gravity is problematic. In addition, we argue that the existence of a minimum size of spacetime, together with the Heisenberg uncertainty principle in quantum theory, may imply the fundamental existence of gravity as a geometric property of spacetime. This may provide a further support for the conclusion that gravity is not an entropic force.

Shan Gao

2010-02-13T23:59:59.000Z

309

Atomic-Layer Engineering of Oxide Superconductors  

SciTech Connect

Molecular beam epitaxy technique has enabled synthesis of atomically smooth thin films, multilayers, and superlattices of cuprates and other complex oxides. Such heterostructures show high temperature superconductivity and enable novel experiments that probe the basic physics of this phenomenon. For example, it was established that high temperature superconductivity and anti-ferromagnetic phases separate on Angstrom scale, while the pseudo-gap state apparently mixes with high temperature superconductivity over an anomalously large length scale (the 'Giant Proximity Effect'). We review some recent experiments on such films and superlattices, including X-ray diffraction, atomic force microscopy, angle-resolved time of flight ion scattering and recoil spectroscopy, transport measurements, high resolution transmission electron microscopy, resonant X-ray scattering, low-energy muon spin resonance, and ultrafast photo-induced reflection high energy electron diffraction. The results include an unambiguous demonstration of strong coupling of in-plane charge excitations to out-of-plane lattice vibrations, a discovery of interface high temperature superconductivity that occurs in a single CuO{sub 2} plane, evidence for local pairs, and establishing tight limits on the temperature range of superconducting fluctuations.

Bozovic I.; Bollinger, A.T.; Eckstein, J.N.; Dubuis, G.; Pavuna, D.

2012-03-01T23:59:59.000Z

310

String model of the Hydrogen Atom  

E-Print Network (OSTI)

A non-moving electron hydrogen model is proposed, resolving a long standing contradiction (94 years) in the hydrogen atom. This, however, forces to not use the "in an orbit point particle kinetic energy" as the phenomenon responsible for the atom stability. The repulsion between the masses of the electron and proton is what is responsible of such stability. The mass of the electron is a field fully described by the uncertainty principle through the confinement of the particle, which is also consistent with the general theory of relativity that states: "mass-energy tells the space how to bend". Ergo, mass exerts a tension on its surrounding space and the lighter the mass the larger the space it will occupy. Based on this concept it is proposed that the orbital is the electron. The electron's orbitals are just the electron's different ways of intersecting the space; with different magnetic momenta. The coupling of this momenta with the magnetic moment of the proton finally explains the hyperfine structure of the hydrogen spectrum with an overwhelming simplicity

Omar Yepez

2007-01-31T23:59:59.000Z

311

Casimir forces beyond the proximity approximation  

E-Print Network (OSTI)

The proximity force approximation (PFA) relates the interaction between closely spaced, smoothly curved objects to the force between parallel plates. Precision experiments on Casimir forces necessitate, and spur research ...

Bimonte, G.

312

Atomic Energy for Military Purposes  

E-Print Network (OSTI)

Atomic Energy for Military Purposes: The Official Report on the Development of the Atomic Bomb member of the project, to draft a report about its activities. Smyth completed the report in the summer, in a censored version. On August 11, 1945, five days after the Allies dropped the first nuclear bomb on Japan

Landweber, Laura

313

THE DEVELOPMENT OF ATOMIC LAW  

SciTech Connect

Since a uniform federal statute hss not been passed in the German Federal Republic, the development of atomic law has centered around the formation of the Federal Ministry for Atomic Affairs, appeal to the German Commission, and the enactment of temporary laws in several of the states. (J.S.R.)

Fischerhof, H.

1958-08-01T23:59:59.000Z

314

Task Force Approach | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Task Force Approach Task Force Approach Task Force Approach Task Force Approach Results of the ARI Task Force: The purpose of the ARI Task Force is to 1) identify, prioritize, and resolve issues to enable sites and programs to implement revitalization efforts more effectively and 2) to facilitate programmatic incorporation of revitalization concepts into DOE's programmatic business environments. The Task Force must do this through coordinating and facilitating communication and connections, sharing lessons learned, broadening the general knowledge base, facilitating, analyzing problems, developing implementable solutions, and considering and incorporating broader perspectives and knowledge. The success of the Task Force can be evaluated by impacts to the Department upon its completion. These impacts

315

Attribution of climate forcing to economic sectors  

NLE Websites -- All DOE Office Websites (Extended Search)

Attribution of climate forcing to economic sectors Title Attribution of climate forcing to economic sectors Publication Type Journal Article Year of Publication 2010 Authors Unger,...

316

Fast Computation of Optimal Contact Forces  

E-Print Network (OSTI)

requirement, i.e., the ability of the contact forces to resist a specified external .... does not exceed the friction coefficient times the normal force. (In particular, it ...

317

Web Force-Field (WebFF)  

Science Conference Proceedings (OSTI)

Web Force-Field (WebFF). Summary: ... WebFF - A web hosted, extensible force field repository with integrated assignment engine. Description: ...

2013-07-19T23:59:59.000Z

318

Integration of contractile forces during tissue invagination  

E-Print Network (OSTI)

Contractile forces generated by the actomyosin cytoskeleton within individual cells collectively generate tissue-level force during epithelial morphogenesis. During Drosophila mesoderm invagination, pulsed actomyosin ...

Martin, Adam C.

319

NCEM National Center for Electron Microscopy: Microscopes and Facilities:  

NLE Websites -- All DOE Office Websites (Extended Search)

LIBRA LIBRA The 200kV Zeiss monochromated LIBRA 200MC is designed to produce high contrast imaging for TEM and STEM and either convergent beam or parallel beam diffraction using Koehler illumination.In addition, the incorporation of a monochromator into the field emission gun enables energy resolution of ~0.15eV for electron energy loss spectroscopy. The dedicated in-column Omega Filter implemented in this microscope also can be used for both spectroscopic analysis and energy-filtered imaging with a 2048x2048 CCD camera. The high tilt capability of the stage and pole piece accepts various types of analytical holders.This microscope is optimized for soft materials applications that require either the high contrast imaging performance or analytical methods such as EF-TEM and STEM.( Instrument

320

NCEM National Center for Electron Microscopy: Microscopes and Facilities:  

NLE Websites -- All DOE Office Websites (Extended Search)

AEM AEM AEME The Analytical Electron Microscope is optimized for elemental microanalysis. The basic instrument is a JEOL 200CX microscope with a side-entry double-tilt goniometer stage and an assortment of specimen holders. This machine can be operated at between 80 and 200 kV in the TEM or STEM mode. Electron energy loss and x-ray signals for elemental microanalysis or spectral imaging can be collected either separately or simultaneously using probe diameters from 6nm to 100nm. Diffraction modes include convergent beam diffraction for three-dimensional structure information and micro-diffraction with a minimum probe size of 20nm. For updates or details, contact Zonghoon Lee or Velimir Radmilovic. The instrument is equipped with two Kevex EDXS detectors and a Gatan PEELS

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory  

E-Print Network (OSTI)

of the previous noble gas and group III atom. Fur- thermore, the dispersion energy, Edisp, is scaled according range dispersion interaction with the underlying exchange or XC functionals. A. Gas phase clustersPerspective: Advances and challenges in treating van der Waals dispersion forces in density

Alavi, Ali

322

AtomicNuclear Properties  

NLE Websites -- All DOE Office Websites (Extended Search)

HTML_PAGES HTML_PAGES This AtomicNuclearProperties page is under intermittent development. Suggestions and comments are welcome. Please report errors. Chemical elements: For entries in red, a pull-down menu permits selection of the physical state. Cryogenic liquid densties are at the boiling point at 1 atm. 0n 1Ps 1H 2He 3Li 4Be 5B 6C 7N 8O 9F 10Ne 11Na 12Mg 13Al 14Si 15P 16S 17Cl 18Ar 19K 20Ca 21Sc 22Ti 23V 24Cr 25Mn 26Fe 27Co 28Ni 29Cu 30Zn 31Ga 32Ge 33As 34Se 35Br 36Kr 37Rb 38Sr 39Y 40Zr 41Nb 42Mo 43Tc 44Ru 45Rh 46Pd 47Ag 48Cd 49In 50Sn 51Sb 52Te 53I 54Xe 55Cs 56Ba 57La 72Hf 73Ta 74W 75Re 76Os 77Ir 78Pt 79Au 80Hg 81Tl 82Pb 83Bi 84Po 85At 86Rn 87Fr 88Ra 89Ac 104Rf 105Db 106Sg 107Bh 108Hs 109Mt 110Ds 111Rg 112 113 114 115 116 mt 118

323

Regular Scanning Tunneling Microscope Tips can be Intrinsically Chiral  

Science Conference Proceedings (OSTI)

We report our discovery that regular scanning tunneling microscope tips can themselves be chiral. This chirality leads to differences in electron tunneling efficiencies through left- and right-handed molecules, and, when using the tip to electrically excite molecular rotation, large differences in rotation rate were observed which correlated with molecular chirality. As scanning tunneling microscopy is a widely used technique, this result may have unforeseen consequences for the measurement of asymmetric surface phenomena in a variety of important fields.

Tierney, Heather L.; Murphy, Colin J.; Sykes, E. Charles H. [Department of Chemistry, Tufts University, Medford, Massachusetts 02155-5813 (United States)

2011-01-07T23:59:59.000Z

324

Atomic, Molecular & Optical Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic, Molecular and Optical Sciences Atomic, Molecular and Optical Sciences The goal of the program is to understand the structure and dynamics of atoms and molecules using photons and ions as probes. The current program is focussed on studying inner-shell photo-ionization and photo-excitation of atoms and molecules, molecular orientation effects in slow collisions, slowing and cooling molecules, and X-ray photo-excitation of laser-dressed atoms. The experimental and theoretical efforts are designed to break new ground and to provide basic knowledge that is central to the programmatic goals of the Department of Energy (DOE). Unique LBNL facilities such as the Advanced Light Source (ALS), the ECR ion sources at the 88-inch cyclotron, and the National Energy Research Scientific Computing Center (NERSC) are

325

Spectral Emission of Moving Atom  

E-Print Network (OSTI)

A renewed analysis of the H.E. Ives and G.R. Stilwell's experiment on moving hydrogen canal rays (J. Opt. Soc. Am., 1938, v.28, 215) concludes that the spectral emission of a moving atom exhibits always a redshift which informs not the direction of the atom's motion. The conclusion is also evident from a simple energy relation: atomic spectral radiation is emitted as an orbiting electron consumes a portion of its internal energy on transiting to a lower-energy state which however has in a moving atom an additional energy gain; this results in a redshift in the emission frequency. Based on auxiliary experimental information and a scheme for de Broglie particle formation, we give a vigorous elucidation of the mechanism for deceleration radiation of atomic electron; the corresponding prediction of the redshift is in complete agreement with the Ives and Stilwell's experimental formula.

J. X. Zheng-Johansson

2006-06-17T23:59:59.000Z

326

High-Resolution Imaging and Optical Control of Bose-Einstein Condensates in an Atom Chip Magnetic Trap  

E-Print Network (OSTI)

A high-resolution projection and imaging system for ultracold atoms is implemented using a compound silicon and glass atom chip. The atom chip is metalized to enable magnetic trapping while glass regions enable high numerical aperture optical access to atoms residing in the magnetic trap about 100 microns below the chip surface. The atom chip serves as a wall of the vacuum system, which enables the use of commercial microscope components for projection and imaging. Holographically generated light patterns are used to optically slice a cigar-shaped magnetic trap into separate regions; this has been used to simultaneously generate up to four Bose-condensates. Using fluorescence techniques we have demonstrated in-trap imaging resolution down to 2.5 microns

Evan A. Salim; Seth C. Caliga; Jonathan B. Pfeiffer; Dana Z. Anderson

2012-08-24T23:59:59.000Z

327

Mechanochromism, Shear Force Anisotropy, and Molecular Mechanics in Polydiacetylene Monolayers  

SciTech Connect

The authors use scanning probe microscopy to actuate and characterize the nanoscale mechanochromism of polydiacetylene monolayer on atomically-flat silicon oxide substrates. They find explicit evidence that the irreversible blue-to-red transformation is caused by shear forces exerted normal to the polydiacetylene polymer backbone. The anisotropic probe-induced transformation is characterized by a significant change in the tilt orientation of the side chains with respect to the surface normal. They also describe a new technique, based on shear force microscopy, that allows them to image friction anisotropy of polydiacetylene monolayer independent of scan direction. Finally, they discuss preliminary molecular mechanics modeling and electronic structure calculations that allow them to understand the correlation of mechanochromism with bond-angle changes in the conjugated polymer backbone.

BURNS,ALAN R.; CARPICK,R.W.; SASAKI,DARRYL Y.; SHELNUTT,JOHN A.; HADDAD,R.

2000-08-14T23:59:59.000Z

328

Training program to prepare the U.S. DOE laboratories for the entry into force of the protocol additional to the agreement between the United States of America and the International Atomic Energy Agency for the application of safeguards in the United  

Science Conference Proceedings (OSTI)

In 2008, a joint team from Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL) consisting of specialists in training IAEA inspectors in the use of complementary access activities formulated a training program to prepare the U.S DOE laboratories for the entry into force of the U.S. Additional Protocol. Since the U.S. Additional Protocol would allow for IAEA access to the DOE laboratories under the aegis of complementary access activities, the DOE laboratories would need to prepare for such visits. The goal of the training was to ensure that the DOE laboratories would successfully host an IAEA complementary access. In doing so, the labs must be able to provide the IAEA with the information that the IAEA would need to resolve its questions about the U.S. Declaration and declared activities at the lab, and also protect certain equities, as provided under the U.S. Additional Protocol Article 1.b and c. which set forth a 'National Security Exclusion.' This 'NSE' states that the AP provisions apply within the United States 'excluding only instances where its application would result in access by the Agency to activities with direct national security significance to the United States or to location or information associated with such activities.' These activities are referred to collectively as DNSS-direct national security significance. Furthermore, the U.S. has a specific right to employ managed access, without prejudice to the right under Article 1.b, in connection with activities of DNSS. The provisions in Articles 1.b and 1.c are unique to the U.S. AP, and are additional to the more general right, under Article 7, to use managed access to protect from disclosure proprietary and/or proliferation-sensitive information, and to meet safety and security requirements, that is incorporated directly from the Model Additional Protocol. The BNL-LANL team performed training at Lawrence Livermore National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory to cover the situations that these labs, which respectively represent nuclear weapons labs, nuclear energy labs, and science labs and environmental management sites, would encounter during a complementary access. Each of the three labs hosted a mock complementary access activity, which included mock inspectors from the BNL-LANL team. In addition to reviewing the draft declarations from each of the host labs, the BNL-LANL team conducted open source research in a manner similar to what IAEA inspectors would do to research the activities at a location and prepare questions for the location to answer and that would be the focus of a complementary access. The host labs and other labs attending the training found the training to be extremely useful and helpful in making sure that each lab's Additional Protocol team had made correct declarations of nuclear activities, had properly trained staff ready to host and answer IAEA inquiries, and would implement managed access during a complementary access that would provide access by the IAEA team to resolve questions or inconsistencies about a particular declaration and still protect the information addressed by Articles 1 and 7 of the U.S. AP.

Boyer, Brian David [Los Alamos National Laboratory; Stevens, Rebecca C [Los Alamos National Laboratory; Uribe, Eva C [Los Alamos National Laboratory; Sandoval, M Analisa [Los Alamos National Laboratory; Valente, John N [Los Alamos National Laboratory; Valente, John U [BNL; Jo, Jae H [BNL; Sellen, Joana [U.S. DOE/NNSA; Wonder, Edward [QINETIQ-NORTH AMERICA

2009-01-01T23:59:59.000Z

329

Anticipating the atom: popular perceptions of atomic power before Hiroshima  

E-Print Network (OSTI)

Before Hiroshima made the Bomb an object of popular concern, possible implications and applications of atomic physics had been discussed in the public forum. The new science of X-rays and radium promised the possibilities of unlimited energy and the transmutation of elements in the two decades leading up to World War 1. During the twenties, as scientific method struggled to keep pace with atomic theory, discussion centered on the feasibility of atomic disintegration as an energy source and the many uses of radium. The 1927 case of the New Jersey Radium Dial Painters, who sued their employers for compensation after contracting radium poisoning, revealed a dark side to the new science, that, along with the development of artificial radioactive isotopes by the Jollot-Curies in Paris, and, in Italy, Enrico Fenni's neutron bombardment experiments, sobered attitudes toward the ever-increasing probability of atomic power. When Otto Hahn finally split the atom in 1938, it opened the way to the practical industrial use of atomic fission, and stimulated a flurry of newspaper and magazine articles before World War 11 brought about censorship. Popular entertainment through 1945 reflects the extent to which atomic power had entered the public awareness. Atomic themes and motifs appeared in English language fiction as early as 1895, as did discussions of the social implications of the new science. Such popular culture imagery, including motion pictures and comic book superheroes, that presented the atom to mass audiences provide insight into the popular perceptions at the time, and to the shaping of attitudes toward the Bomb after Hiroshima.

d'Emal, Jacques-Andre Christian

1994-01-01T23:59:59.000Z

330

Manhattan Project: Adventures Inside the Atom  

Office of Scientific and Technical Information (OSTI)

ADVENTURES INSIDE THE ATOM ADVENTURES INSIDE THE ATOM General Electric, National Archives (1948) Resources > Library Below is Adventures Inside the Atom, a comic book history of nuclear energy that was produced in 1948 by the General Electric Company. Scroll down to view the full-size images of each page. This publication was produced at the request of the the Assistant Manager for Public Education, Oak Ridge Operations Office, Atomic Energy Commission. It is reproduced here via the National Archives. Adventures Inside the Atom, p. 1 Adventures Inside the Atom, p. 2 Adventures Inside the Atom, p. 3 Adventures Inside the Atom, p. 4 Adventures Inside the Atom, p. 5 Adventures Inside the Atom, p. 6 Adventures Inside the Atom, p. 7 Adventures Inside the Atom, p. 8 Adventures Inside the Atom, p. 9

331

Nuclear Forces and Nuclear Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Forces and Nuclear Systems Forces and Nuclear Systems Our goal is to achieve a description of nuclear systems ranging in size from the deuteron to nuclear matter and neutron stars using a single parameterization of the nuclear forces. Our work includes both the construction of two- and three-nucleon potentials and the development of many-body techniques for computing nuclear properties with these interactions. Detailed quantitative, computationally intense studies are essential parts of this work. In the last decade we have constructed several realistic two- and three-nucleon potential models. The NN potential, Argonne v18, has a dominant charge-independent piece plus additional charge-dependent and charge-symmetry-breaking terms, including a complete electromagnetic interaction. It fits 4301 pp and np elastic scattering data with a chi**2

332

Nuclear force in Lattice QCD  

E-Print Network (OSTI)

We perform the quenched lattice QCD analysis on the nuclear force (baryon-baryon interactions). We employ $20^3\\times 24$ lattice at $\\beta=5.7$ ($a\\simeq 0.19$ fm) with the standard gauge action and the Wilson quark action with the hopping parameters $\\kappa=0.1600, 0.1625, 0.1650$, and generate about 200 gauge configurations. We measure the temporal correlators of the two-baryon system which consists of heavy-light-light quarks. We extract the inter-baryon force as a function of the relative distance $r$. We also evaluate the contribution to the nuclear force from each ``Feynman diagram'' such as the quark-exchange diagram individually, and single out the roles of Pauli-blocking effects or quark exchanges in the inter-baryon interactions.

T. T. Takahashi; T. Doi; H. Suganuma

2006-01-05T23:59:59.000Z

333

In-situ control system for atomization  

DOE Patents (OSTI)

Melt atomizing apparatus comprising a melt supply orifice for supplying the melt for atomization and gas supply orifices proximate the melt supply orifice for supplying atomizing gas to atomize the melt as an atomization spray is disclosed. The apparatus includes a sensor, such as an optical and/or audio sensor, for providing atomization spray data, and a control unit responsive to the sensed atomization spray data for controlling at least one of the atomizing gas pressure and an actuator to adjust the relative position of the gas supply orifice and melt supply in a manner to achieve a desired atomization spray. 3 figs.

Anderson, I.E.; Figliola, R.S.; Terpstra, R.L.

1995-06-13T23:59:59.000Z

334

In-situ control system for atomization  

DOE Patents (OSTI)

Melt atomizing apparatus comprising a melt supply orifice for supplying the melt for atomization and gas supply orifices proximate the melt supply orifice for supplying atomizing gas to atomize the melt as an atomization spray. The apparatus includes a sensor, such as an optical and/or audio sensor, for providing atomization spray data, and a control unit responsive to the sensed atomization spray data for controlling at least one of the atomizing gas pressure and an actuator to adjust the relative position of the gas supply orifice and melt supply in a manner to achieve a desired atomization spray.

Anderson, Iver E. (Ames, IA); Figliola, Richard S. (Central, SC); Terpstra, Robert L. (Ames, IA)

1995-06-13T23:59:59.000Z

335

Feeling molecular forces: tactile feedback to enhance drug design  

E-Print Network (OSTI)

Molecular modeling is a vital component for structure-based drug design. Currently implemented technology combines data and graphics to give the user visual capabilities to assist in discovering possible binding arrangements. Visual modeling has become a tremendous help to scientists in reducing the amount of time needed to create new inhibitory compounds. However, the visual medium used for modeling lacks the ability to convey the forces between the molecules to the user. Potentially, tactile feedback can provide this missing information. SensAble Devices has developed a device capable of producing force feedback to a user-defined environment called the PHANToM, The PHANToM is a 6 dimensional (3 translational and 3 rotational) haptic device that can return force and torque to the user through a hand held stylus. The system configuration for molecular modeling consists of integrating the haptic device with a high-end PC running Windows NT and developing code to model the intermolecular forces. The programming language used was C with some C++ constructs and the OpenGL graphics library for the graphics implementation. The optimized code running with the system has proven capable of calculating and relaying tactile feedback between a 100-atom active site of a protein and a small 15-atom inhibitor in real time (ca. 1 millisecond). Trials are now underway on the system to evaluate accuracy and explore other forms of useful output. Once this is accomplished, modeling will be done on an active site and an untested inhibitor to evaluate novel binding modes.

Williams, Jocylin Amber

2000-01-01T23:59:59.000Z

336

The use of atomic level stress to characterize the structure of irradiated iron  

SciTech Connect

The behaviour of irradiated material near a primary knock on atom immediately after impact is of great importance for designing reactor materials. Currently, molecular dynamics simulations with classical force fields provide the foundation for understanding the resulting cascade. However, modern density functional calculations can now treat large enough numbers of atoms that they can provide additional details of the magnetic and electronic nature of irradiated samples. In this paper we calculate from first principles the atomic level stresses for an instantaneous configuration following the initiation of a low energy cascade in iron.

Egami, Takeshi [ORNL; Ojha, Madhusudan [University of Tennessee, Knoxville (UTK); Nicholson, Donald M. [Oak Ridge National Laboratory (ORNL); Odbadrakh, Khorgolkhuu [ORNL; Radhakrishnan, Bala [ORNL; Stoller, Roger E [ORNL

2012-01-01T23:59:59.000Z

337

Atomic transport at liquid metal/Al{sub 2}O{sub 3} interfaces  

SciTech Connect

In this work, atomic force microscopy (AFM) has been used to identify the controlling transport mechanisms at metal/oxide interfaces and measure the corresponding diffusivities. Interfacial transport rates in our experiments are two to four orders of magnitude faster than any previously reported rates for the oxide surface. The interfacial diffusivities and the degree of interfacial anisotropy depend on the oxygen activity of the system. Atomic transport at metal/oxide interfaces plays a defining role in many technological processes, and these experiments provide fundamental data for the formulation of the atomic theory needed to explain many of the observed phenomena.

Saiz, Eduardo; Cannon, Rowland M.; Tomsia, Antoni P.

2000-10-12T23:59:59.000Z

338

Supersonic coal water slurry fuel atomizer  

DOE Patents (OSTI)

A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Balsavich, John (Foxborough, MA)

1991-01-01T23:59:59.000Z

339

Automatic HTS force measurement instrument  

DOE Patents (OSTI)

A device is disclosed for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed. 3 figs.

Sanders, S.T.; Niemann, R.C.

1999-03-30T23:59:59.000Z

340

Nano-mechanics of Tunable Adhesion using Non Covalent Forces  

SciTech Connect

The objective of this program was to examine, via experiment and atomistic and continuum analysis, coordinated noncovalent bonding over a range of length scales with a view to obtaining modulated, patterned and reversible bonding at the molecular level. The first step in this project was to develop processes for depositing self-assembled monolayers (SAMs) bearing carboxylic acid and amine moieties on Si (111) surfaces and probe tips of an interfacial force microscope (IFM). This allowed the adhesive portion of the interactions between functionalized surfaces to be fully captured in the force-displacement response (force profiles) that are measured by the IFM. The interactionswere extracted in the form of traction-separation laws using combined molecular and continuum stress analyses. In this approach, the results of molecular dynamics analyses of SAMs subjected to simple stress states are used to inform continuum models of their stress-strain behavior. Continuum analyses of the IFM experiment were then conducted, which incorporate the stress-strain behavior of the SAMs and traction-separation relations that represent the interactions between the tip and functionalized Si surface. Agreement between predicted and measured force profiles was taken to imply that the traction-separation relations have been properly extracted. Scale up to larger contact areas was considered by forming Si/SAM/Si sandwiches and then separating them via fracture experiments. The mode 1 traction-separation relations have been extracted using fracture mechanics concepts under mode 1 and mixed-mode conditions. Interesting differences were noted between the three sets of traction-separation relations.

Kenneth Liechti

2012-09-08T23:59:59.000Z

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Atomic resolution of Lithium Ions in LiCoO  

SciTech Connect

LiCoO2 is the most common lithium storage material for lithium rechargeable batteries, used widely to power portable electronic devices such as laptop computers. Lithium arrangements in the CoO2 framework have a profound effect on the structural stability and electrochemical properties of LixCoO2 (0 < x < 1), however, probing lithium ions has been difficult using traditional X-ray and neutron diffraction techniques. Here we have succeeded in simultaneously resolving columns of cobalt, oxygen, and lithium atoms in layered LiCoO2 battery material using experimental focal series of LiCoO2 images obtained at sub-Angstrom resolution in a mid-voltage transmission electron microscope. Lithium atoms are the smallest and lightest metal atoms, and scatter electrons only very weakly. We believe our observations of lithium to be the first by electron microscopy, and that they show promise to direct visualization of the ordering of lithium and vacancy in LixCoO2.

Shao-Horn, Yang; Croguennec, Laurence; Delmas, Claude; Nelson, Chris; O' Keefe, Michael A.

2003-03-18T23:59:59.000Z

342

Questions and Answers - Does an atom smasher really smash atoms?  

NLE Websites -- All DOE Office Websites (Extended Search)

is an accelerator? is an accelerator? Previous Question (What is an accelerator?) Questions and Answers Main Index Next Question (Where and how do you get your electrons for your accelerator?) Where and how do you get yourelectrons for your accelerator? Does an atom smasher really smash atoms? Well, yes, they do, but we now prefer to call them by their less aggression-centered name, "particle harmony disrupters." Of course some atom smashers do much more smashing than others. We use electrons in our accelerator to study the nucleus of an atom. Remember that electrons are negative, as are the electrons surrounding the target. Since like charged particles repel each other, our particles have to have enough energy to blast through that electron cloud to get to the nucleus. The electrons then

343

The Effect Of Low Earth Orbit Atomic Oxygen Exposure On Phenylphosphine Oxide-Containing Polymers  

E-Print Network (OSTI)

Thin films of phenylphosphine oxide-containing polymers were exposed to low Earth orbit aboard a space shuttle flight (STS-85) as part of flight experiment designated Evaluation of Space Environment and Effects on Materials (ESEM). This flight experiment was a cooperative effort between the NASA Langley Research Center (LaRC) and the National Space Development Agency of Japan (NASDA). The thin film samples described herein were part of an atomic oxygen exposure experiment (AOE) and were exposed to primarily atomic oxygen (~1 X 10 19 atoms/cm 2 ). The thin film samples consisted of three phosphine oxide containing polymers (arylene ether, benzimidazole and imide). Based on post-flight analyses using atomic force microscopy, X-ray photoelectron spectroscopy, and weight loss data, it was found that atomic oxygen exposure of these materials efficiently produces a phosphate layer at the surface of the samples. This layer provides a barrier towards further attack by AO. Consequently, th...

John Connell National; John W. Connell

1999-01-01T23:59:59.000Z

344

Underwater microscope for measuring spatial and temporal changes in bed-sediment grain size  

E-Print Network (OSTI)

Underwater microscope for measuring spatial and temporal changes in bed-sediment grain size David M by Elsevier B.V. Keywords: Underwater microscope; Bed sediment; Grain size; In situ measurement; Colorado counts on a small subset of processed images. 2.3. Underwater microscope hardware Digital images of bed

345

Raqs Media Collective Flash Force  

E-Print Network (OSTI)

extended only to a couple of inches. With the invention of light bulbs, scientists started detonatingRaqs Media Collective Flash Force: A Visual History of Might, Right and Light Perhaps the greatest of light and divorcing these from the potent explosions that initially produced them. It is a history

Canales, Jimena

346

Alternative Fuels Data Center: Energy Task Force  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Energy Task Force to Energy Task Force to someone by E-mail Share Alternative Fuels Data Center: Energy Task Force on Facebook Tweet about Alternative Fuels Data Center: Energy Task Force on Twitter Bookmark Alternative Fuels Data Center: Energy Task Force on Google Bookmark Alternative Fuels Data Center: Energy Task Force on Delicious Rank Alternative Fuels Data Center: Energy Task Force on Digg Find More places to share Alternative Fuels Data Center: Energy Task Force on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Energy Task Force The Governor's Task Force on Energy Policy is developing a state energy plan to facilitate energy efficiency and the use of alternative and renewable fuels in Tennessee. The energy plan will include a summary of

347

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Title: Graphene. Description: NIST software simulates the tip of an atomic force microscope moving left across a stack of four sheets of graphene. ...

348

Force Field Development and Molecular Dynamics of [NiFe] Hydrogenase  

Science Conference Proceedings (OSTI)

Classical molecular force-field parameters describing the structure and motion of metal clusters in [NiFe] hydrogenase enzymes can be used to compare the dynamics and thermodynamics of [NiFe] under different oxidation, protonation, and ligation circumstances. Using density functional theory (DFT) calculations of small model clusters representative of the active site and the proximal, medial, and distal Fe/S metal centers and their attached protein side chains, we have calculated classical force-field parameters for [NiFe] in reduced and oxidized states, including internal coordinates, force constants, and atom-centered charges. Derived force constants revealed that cysteinate ligands bound to the metal ions are more flexible in the Ni-B active site, which has a bridging hydroxide ligand, than in the Ni-C active site, which has a bridging hydride. Ten nanosecond all-atom, explicit-solvent MD simulations of [NiFe] hydrogenase in oxidized and reduced catalytic states established the stability of the derived force-field parameters in terms of C{alpha} and metal cluster fluctuations. Average active site structures from the protein MD simulations are consistent with [NiFe] structures from the Protein Data Bank, suggesting that the derived force-field parameters are transferrable to other hydrogenases beyond the structure used for testing. A comparison of experimental H{sub 2}-production rates demonstrated a relationship between cysteinate side chain rotation and activity, justifying the use of a fully dynamic model of [NiFe] metal cluster motion.

Smith, Dayle MA; Xiong, Yijia; Straatsma, TP; Rosso, Kevin M.; Squier, Thomas C.

2012-05-09T23:59:59.000Z

349

AIR FORCE SPECIAL WEAPONS CENTER  

Office of Legacy Management (LM)

HEADQUARTERS aII?y HEADQUARTERS aII?y 9 AIR FORCE SPECIAL WEAPONS CENTER 1 AIR FORCE SYSTEMS COMMAND . - KlRTlAND AIR FORCE BASE, NEW MEXICO - k FINAL REPORT O N AIR FORCE PARTICIPATION PROJECT RULISON .1 O c t o b e r 1969 P r e p a r e d by : CONT INENTAL TEST D I V I S ION DIRECTORATE OF NUCLEAR FIELD OPERATIONS This page intentionally left blank INDEX AIR FORCE PARTICIPATION I N PROJECT RULISON FINAL REPORT PARAGRAPH BASIC REPORT SUBJECT R e f e r e n c e s PAGE 2 G e n e r a l 1 3 P l a n n i n g 3 4 Command a n d C o n t r o l 5 O p e r a t i o n s , G r a n d ' J u n c t i o n M u n i c i p a l A i r p o r t . . ' A i r O p e r a t i o n s C e n t e r , He1 i c o p t e r P a d / ' 7.. - . M a t e r i e l : ' 8 M e d i c a l 1 9 R a d - S a f e C r a s h - R e s c u e S e c u r i t y 2 1 C o m m u n i c a t i o n s ~ d m i n i s t r a t ' i o n Summary ATTACHMENTS ATTACHMENT SUBJECI' 1 F r a g O r d e r 69-1 ( ~ r o j ' e c t RULISON) , AFSWC D

350

UNITED STATES ATOMIC ENERGY COMMISSION  

Office of Legacy Management (LM)

producing uranium for the Mo"hz,t,a, Projec, can best be qwtcd Irom the Smyth official report - Atomic Energy - . ' .: CCL, + NaCl - ."-l Figure 6. apparatus used in electrcdytic...

351

Single artificial-atom lasing  

E-Print Network (OSTI)

Solid-state superconducting circuits are versatile systems in which quantum states can be engineered and controlled. Recent progress in this area has opened up exciting possibilities for exploring fundamental physics as well as applications in quantum information technology; in a series of experiments it was shown that such circuits can be exploited to generate quantum optical phenomena, by designing superconducting elements as artificial atoms that are coupled coherently to the photon field of a resonator. Here we demonstrate a lasing effect with a single artificial atom - a Josephson-junction charge qubit - embedded in a superconducting resonator. We make use of one of the properties of solid-state artificial atoms, namely that they are strongly and controllably coupled to the resonator modes. The device is essentially different from existing lasers and masers; one and the same artificial atom excited by current injection produces many photons.

O. Astafiev; K. Inomata; A. O. Niskanen; T. Yamamoto; Yu. A. Pashkin; Y. Nakamura; J. S. Tsai

2007-10-04T23:59:59.000Z

352

u. S. Atomic Energy Commission  

Office of Legacy Management (LM)

October 31, 1949 Manager of Operations u. S. Atomic Energy Commission R. 0. Box 30, Ansonia Station New York ES, N. Y. MATERIALS 5+k& hJf Reference: SK:BL Attention: Mr. R. J....

353

Exotic atoms and leptonic conservations  

DOE Green Energy (OSTI)

The major 1989 efforts have been on two aspects of experiments at TRIUMF. One effort was production of muonic hydrogen and muonic deuterium into a vacuum. We study rates relevant to muonic catalyzed fusion, and if there are found an adequate number of muons in the 2s state then we plan to measure precision energies. The second effort was to develop plans for kaonic atoms at the kaon factory. We also completed analyses from the experiments with pionic atoms at LAMPF.

Kunselman, R.

1990-01-01T23:59:59.000Z

354

Effects of size, shape, crystal plane and atomic discrete structure on interactions between carbon nanoparticles  

Science Conference Proceedings (OSTI)

Understanding various interaction forces between building blocks is of great importance to their selfassembly. In this paper, the effects of size, crystal plane, shape and atomic discrete structure on interaction potentials between carbon nanoparticles ... Keywords: Hamaker approach, carbon, interaction, molecular dynamics simulation, nanoparticle

Weifu Sun; Qinghua Zeng; Aibing Yu

2012-02-01T23:59:59.000Z

355

Transition from LEDCOP to ATOMIC  

SciTech Connect

This paper discusses the development of the ATOMIC code, a new low to mid Z opacity code, which will replace the current Los Alamos low Z opacity code LEDCOP. The ATOMIC code is based on the FINE code, long used by the Los Alamos group for spectral comparisons in local thermodynamic equilibrium (LTE) and for non-LTE calculations, both utilizing the extensive databases from the atomic physics suite of codes based on the work of R.D. Cowan. Many of the plasma physics packages in LEDCOP, such as line broadening and free-free absorption, are being transferred to the new ATOMIC code. A new equation of state (EOS) model is being developed to allow higher density calculations than were possible with either the FINE or LEDCOP codes. Extensive modernization for both ATOMIC and the atomic physics code suites, including conversion to Fortran 90 and parallelization, are underway to speed up the calculations and to allow the use of expanded databases for both the LTE opacity tables and the non-LTE calculations. Future plans for the code will be outlined, including considerations for new generation opacity tables.

Magee, N. H. (Norman H.); Abdallah, J. (Joseph); Colgan, J. (James); Hakel, P. (Peter); Kilcrease, D. P. (David P.); Mazevet, S. (Stephane); Sherrill, M. E. (Manolo E.); Fontes, C. J. (Christopher J.); Zhang, H. (Honglin)

2004-01-01T23:59:59.000Z

356

Foucault imaging by using non-dedicated transmission electron microscope  

Science Conference Proceedings (OSTI)

An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

Taniguchi, Yoshifumi [Science and Medical Systems Business Group, Hitachi High-Technologies Corp., Ichige, Hitachinaka, Ibaraki 312-8504 (Japan); Matsumoto, Hiroaki [Corporate Manufacturing Strategy Group, Hitachi High-Technologies Corp., Ishikawa-cho, Hitachinaka, Ibaraki 312-1991 (Japan); Harada, Ken [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama 350-0395 (Japan)

2012-08-27T23:59:59.000Z

357

Atomic Physics Division 1999 - Future Directions  

Science Conference Proceedings (OSTI)

... lying Rydberg states constitute a "frozen" Rydberg gas. ... of atom interactions in cold atomic gases and Bose ... or optical fields and tight confinement of ...

358

Cavity Quantum Electrodynamics with Ultracold Atoms.  

E-Print Network (OSTI)

??Die vorliegende Arbeit befasst sich mit der Wechselwirkung ultrakalter Atome mit der Mode eines optischen Resonators hoher Gu?te. Die Atome sind dabei in einem periodischen… (more)

Habibian, Hessam

2013-01-01T23:59:59.000Z

359

The Casimir Forces in a Single Conducting Cylindrical Cavity  

E-Print Network (OSTI)

We want to study the Casimir effect for a single conducting microscopic cylindrical cavity. The mathematical technique is based on the Green function of the geometry of the inside of the cavity, and the integral regularization is based on the plasma frequency cutoff for real conductors. Using the symmetric electromagnetic energy-momentum tensor, in terms of four potential, the total Casimir energy for the inside of the Cavity is calculated. Considering the fundamental cutoff applied by the uncertainty relations' limit on virtual particles' frequency in the quantum vacuum, it is shown that the contribution of the external (outside of the cavity) Casimir energy is negligible. Finally, the forces experienced by the lateral surface of the cavity and its circular bases are calculated. The resulting expressions show that these forces are repulsive. The numerical computation is done for the real problem of a cavity with a basis of a radius in the same order of its height at the scale of 100 nanometers made of the best conducting materials already known.

H. Razmi; S. M. Shirazi

2013-07-30T23:59:59.000Z

360

Manhattan Project: Order to Drop the Atomic Bomb  

Office of Scientific and Technical Information (OSTI)

ORDER TO DROP THE ATOMIC BOMB Handy to Spaatz, National Archives (July 25, 1945) Resources > Library The document below is the order to attack Japanese cities with atomic bombs. In it, the Acting Army Chief of Staff, Thomas Handy, orders Commanding General Carl Spaatz, Army Strategic Air Forces, to "deliver [the] first special bomb as soon as weather will permit . . . after about 3 August 1945." The target list: "Hiroshima, Kokura, Niigata, and Nagasaki." Further attacks were also authorized: "additional bombs will be delivered on the above targets as soon as made ready." Handy was the acting chief of staff because George Marshall was with President Harry S. Truman at the Potsdam Conference. The letter explicitly notes that this order was approved by Marshall and Secretary of War Henry Stimson. Truman, of course, provided the ultimate authorization for dropping the bomb.

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Regularized perturbative series for the ionization potential of atomic ions  

E-Print Network (OSTI)

We study N-electron atoms with nuclear charge Z. It is well known that, in the cationic (Z > N) high-Z region, the atom behaves as a weakly interacting system. The anionic (Z < N) regime, on the other hand, is characterized by an instability threshold at $Z \\lesssim N-1$ below which the atom spontaneously emits an electron. We construct a regularized perturbative series (RPS) for the ionization potential of ions in an isoelectronic sequence that exactly reproduces both, the large Z and the Z near $Z_c$ limits. The large-Z expansion coefficients are analytically computed from perturbation theory, whereas the slope of the energy curve at Z=N-1 is computed from a kind of zero-range forces theory that uses as input the electron affinity and the covalent radius of the neutral atom with N-1 electrons. Relativistic effects at the level of first-order perturbation theory in the one-particle Hamiltonian are considered. Our RPS results are compared with numbers from the NIST database.

Gil, G

2013-01-01T23:59:59.000Z

362

Material Science for Quantum Computing with Atom Chips  

E-Print Network (OSTI)

In its most general form, the atom chip is a device in which neutral or charged particles are positioned in an isolating environment such as vacuum (or even a carbon solid state lattice) near the chip surface. The chip may then be used to interact in a highly controlled manner with the quantum state. I outline the importance of material science to quantum computing (QC) with atom chips, where the latter may be utilized for many, if not all, suggested implementations of QC. Material science is important both for enhancing the control coupling to the quantum system for preparation and manipulation as well as measurement, and for suppressing the uncontrolled coupling giving rise to low fidelity through static and dynamic effects such as potential corrugations and noise. As a case study, atom chips for neutral ground state atoms are analyzed and it is shown that nanofabricated wires will allow for more than $10^4$ gate operations when considering spin-flips and decoherence. The effects of fabrication imperfections and the Casimir-Polder force are also analyzed. In addition, alternative approaches to current-carrying wires are briefly described. Finally, an outlook of what materials and geometries may be required is presented, as well as an outline of directions for further study.

Ron Folman

2011-08-18T23:59:59.000Z

363

Pulsed Power for a Dynamic Transmission Electron Microscope  

Science Conference Proceedings (OSTI)

Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM.

dehope, w j; browning, n; campbell, g; cook, e; king, w; lagrange, t; reed, b; stuart, b; Shuttlesworth, R; Pyke, B

2009-06-25T23:59:59.000Z

364

Three-body Force Effects on the Properties of Neutron-rich Nuclear Matter  

E-Print Network (OSTI)

We review our research work on the single-particle properties and the equation of state (EOS) of isospin asymmetric nuclear matter within the framework of the Brueckner-Hartree-Fock (BHF) approach extended by including a microscopic three-body force (TBF). The TBF is shown to affect significantly the nuclear matter EOS and the density dependence of nuclear symmetry energy at high densities above the normal nuclear matter density, and it is necessary for reproducing the empirical saturation property of symmetric nuclear matter in a nonrelativistic microscopic framework. The TBF-induced rearrangement effect and the ground state (g.s.) correlation effect on the s.p. properties in neutron-rich nuclear matter are investigated. Both effects turn out to be crucial for predicting reliably the s.p. properties within the Brueckner framework. The TBF effect on nucleon superfluidity in neutron star matter and neutron stars has also been discussed.

Zuo, Wei

2013-01-01T23:59:59.000Z

365

BEAM TRANSPORT AND STORAGE WITH COLD NEUTRAL ATOMS AND MOLECULES  

SciTech Connect

A large class of cold neutral atoms and molecules is subject to magnetic field-gradient forces. In the presence of a field, hyperfine atomic states are split into several Zeeman levels. The slopes of these curves vs. field are the effective magnetic moments. By means of optical pumping in a field, Zeeman states of neutral lithium atoms and CaH molecules with effective magnetic moments of nearly {+-} one Bohr magneton can be selected. Particles in Zeeman states for which the energy increases with field are repelled by increasing fields; particles in states for which the energy decreases with field are attracted to increasing fields. For stable magnetic confinement, field-repelled states are required. Neutral-particle velocities in the present study are on the order of tens to hundreds of m/s and the magnetic fields needed for transport and injection are on the order of in the range of 0.01-1T. Many of the general concepts of charged-particle beam transport carry over into neutral particle spin-force optics, but with important differences. In general, the role of bending dipoles in charged particle optics is played by quadrupoles in neutral particle optics; the role of quadrupoles is played by sextupoles. The neutralparticle analog of charge-exchange injection into storage rings is the use of lasers to flip the state of particles from field-seeking to field-repelled. Preliminary tracking results for two neutral atom/molecule storage ring configurations are presented. It was found that orbit instabilities limit the confinment time in a racetrack-shaped ring with discrete magnetic elements with drift spaces between them; stable behavior was observed in a toroidal ring with a continuous sextupole field. An alternative concept using a linear sextupole or octupole channel with solenoids on the ends is presently being considered.

Walstrom, Peter L. [Los Alamos National Laboratory

2012-05-15T23:59:59.000Z

366

Casimir force for absorbing media in an open quantum system framework: Scalar model  

SciTech Connect

In this article we compute the Casimir force between two finite-width mirrors at finite temperature, working in a simplified model in 1+1 dimensions. The mirrors, considered as dissipative media, are modeled by a continuous set of harmonic oscillators which in turn are coupled to an external environment at thermal equilibrium. The calculation of the Casimir force is performed in the framework of the theory of open quantum systems. It is shown that the Casimir interaction has two different contributions: the usual radiation pressure from the vacuum, which is obtained for ideal mirrors without dissipation or losses, and a Langevin force associated with the noise induced by the interaction between dielectric atoms in the slabs and the thermal bath. Both contributions to the Casimir force are needed in order to reproduce the analogous Lifshitz formula in 1+1 dimensions. We also discuss the relationship between the electromagnetic properties of the mirrors and the spectral density of the environment.

Lombardo, Fernando C.; Rubio Lopez, Adrian E. [Departamento de Fisica Juan Jose Giambiagi, FCEyN UBA and IFIBA CONICET, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Mazzitelli, Francisco D. [Departamento de Fisica Juan Jose Giambiagi, FCEyN UBA and IFIBA CONICET, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Centro Atomico Bariloche Comision Nacional de Energia Atomica, R8402AGP Bariloche (Argentina)

2011-11-15T23:59:59.000Z

367

Casimir-Lifshitz force out of thermal equilibrium and heat transfer between arbitrary bodies  

E-Print Network (OSTI)

We study the Casimir-Lifshitz force and the radiative heat transfer occurring between two arbitrary bodies, each one held at a given temperature, surrounded by environmental radiation at a third temperature. The system, in stationary configuration out of thermal equilibrium, is characterized by a force and a heat transfer depending on the three temperatures, and explicitly expressed in terms of the scattering operators of each body. We find a closed-form analytic expression valid for bodies of any geometry and dielectric properties. As an example, the force between two parallel slabs of finite thickness is calculated, showing the importance of the environmental temperature as well as the occurrence of a repulsive interaction. An analytic expression is also provided for the force acting on an atom in front of a slab. Our predictions can be relevant for experimental and technological purposes.

Riccardo Messina; Mauro Antezza

2010-12-23T23:59:59.000Z

368

Observation of relativistic antihydrogen atoms  

DOE Green Energy (OSTI)

An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 < p < 9 GeV/c) antiprotons and a jet of molecular hydrogen gas. Since the neutral antihydrogen does not bend in the antiproton source magnets, the detectors could be located far from the interaction point on a beamline tangent to the storage ring. The detection of the antihydrogen is accomplished by ionizing the atoms far from the interaction point. The positron is deflected by a magnetic spectrometer and detected, as are the back to back photons resulting from its annihilation. The antiproton travels a distance long enough for its momentum and time of flight to be measured accurately. A statistically significant sample of 101 antihydrogen atoms has been observed. A measurement of the cross section for {bar H}{sup 0} production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e{sup +} e{sup -} pair creation near a nucleus with the e{sup +} being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.

Blanford, Glenn DelFosse

1998-01-01T23:59:59.000Z

369

NIST: Atomic Spectros. - Spectral Continuum Radiation  

Science Conference Proceedings (OSTI)

Atomic Spectroscopy: home page. 21. Spectral Continuum Radiation. Hydrogenic Species. Precise quantum-mechanical ...

370

SCHROEDINGER'S CAT IN AN ATOMIC CAGE  

Science Conference Proceedings (OSTI)

... gov SCHROEDINGER'S CAT IN AN ATOMIC CAGE. They ... conditions. Schroedinger cat states are extremely fragile. Any ...

371

Cancer in atomic bomb survivors  

SciTech Connect

Radiation carcinogenesis was first noted in studies of individuals with occupational or therapeutic exposure to radiation. Data from long-term follow-up studies of atomic bomb survivors in Hiroshima and Nagasaki have greatly enhanced our knowledge of radiation carcinogenesis. This book presents current results obtained from epidemiological studies and pathological studies on cancer among atomic bomb survivors. It includes a description of the dosimetry system which is currently being revised. Although many of the details about radiation carcinogenesis remain unknown or uncertain, it is clear that the incidence of radiation-induced cancer among atomic bomb survivors continues unabated 40 years after exposure. Recent increases in occupational and environmental exposure to radiation together with the need for a thorough review of radiation protection standards have led to increased recognition of the importance of research on radiation carcinogenesis and risk assessment.

Shigematsu, I.; Kagan, A.

1986-01-01T23:59:59.000Z

372

Hot atom chemistry and radiopharmaceuticals  

Science Conference Proceedings (OSTI)

The chemical products made in a cyclotron target are a combined result of the chemical effects of the nuclear transformation that made the radioactive atom and the bulk radiolysis in the target. This review uses some well-known examples to understand how hot atom chemistry explains the primary products from a nuclear reaction and then how radiation chemistry is exploited to set up the optimal product for radiosynthesis. It also addresses the chemical effects of nuclear decay. There are important principles that are common to hot atom chemistry and radiopharmaceutical chemistry. Both emphasize short-lived radionuclides and manipulation of high specific activity nuclides. Furthermore, they both rely on radiochromatographic separation for identification of no-carrieradded products.

Krohn, Kenneth A.; Moerlein, Stephen M.; Link, Jeanne M.; Welch, Michael J. [University of Washington, Department of Radiology, Molecular Imaging Center, 1959 NE Pacific St., Box 356004, Seattle, WA 98195-6004 (United States); Washington University, Department of Radiology, Division of Radiological Sciences, 510 South Kingshighway, St. Louis, MO 63110 (United States); University of Washington, Department of Radiology, Molecular Imaging Center, 1959 NE Pacific St., Box 356004, Seattle, WA 98195-6004 (United States); Washington University, Department of Radiology, Division of Radiological Sciences, 510 South Kingshighway, St. Louis, MO 63110 (United States)

2012-12-19T23:59:59.000Z

373

Degeneracy Breaking of Hydrogen Atom  

E-Print Network (OSTI)

The three dimensional rotation group, SO(3), is a symmetry group of the normal hydrogen atom. Each reducible representation of this group can be associated with a degenerate energy level. If this atom is placed in an external magnetic field, the interaction between the orbital magnetic moment with this field will lead to a symmetry breaking where the symmetry group of the atom is a new group distinct from the SO(3) group. This phenomenon describes the normal Zeeman effect, where a degenerate energy level splits into several new energy levels. It is explicitly shown that each of the new energy levels can be associated with an irreducible representation of the new symmetry group.

Agung Trisetyarso; Pantur Silaban

2008-12-22T23:59:59.000Z

374

Session BB: Quantum Effect Materials: Quantum Dots I - TMS  

Science Conference Proceedings (OSTI)

The structure of InP was observed by atomic force microscope(AFM) and transmission electron microscope(TEM). InP was grown two-dimensionally at least to ...

375

Vacuum fluctuations and moving atoms/detectors: From Casimir-Polder to Unruh effect  

E-Print Network (OSTI)

In this note we report on some new results \\cite{SHP} on corrections to the Casimir-Polder \\cite{caspol} retardation force due to atomic motion and present a preliminary (unpublished) critique on one recently proposed cavity QED detection scheme of Unruh effect \\cite{Unr76}. These two well-known effects arise from the interaction between a moving atom or detector with a quantum field under some boundary conditions introduced by a conducting mirror/cavity or dielectric wall. The Casimir-Polder force is a retardation force on the atom due to the dressing of the atomic ground state by the vacuum electromagnetic field in the presence of a conducting mirror or dielectric wall. We have recently provided an improved calculation by treating the mutual influence of the atom and the (constrained) field in a self-consistent way. For an atom moving adiabatically, perpendicular to a mirror, our result finds a coherent retardation correction up to twice the stationary value. Unruh effect refers loosely to the fact that a uniformly accelerated detector feels hot. Two prior schemes have been proposed for the detection of `Unruh radiation', based on charged particles in linear accelerators and storage rings. Here we are interested in a third scheme proposed recently by Scully {\\it et al} \\cite{Scully03} involving the injection of accelerated atoms into a microwave or optical cavity. We analyze two main factors instrumental to the purported success in this scheme, the cavity factor and the sudden switch-on factor. We conclude that the effects engendered from these factors are unrelated to the Unruh effect.

B. L. Hu; A. Roura; S. Shresta

2004-01-30T23:59:59.000Z

376

Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy  

E-Print Network (OSTI)

was supported by the Danish Medical Research Council (22-02-National Health and Medical Research Council of Australia. 7National Institute for Medical Research, Mill Hill, Lon-

Pelling, A E; Li, Y N; Shi, W Y; Gimzewski, J K

2005-01-01T23:59:59.000Z

377

Methods for Estimating Climate Anomaly Forcing Patterns  

Science Conference Proceedings (OSTI)

Inverse methods for determining the anomalous mean forcing functions responsible for climate change are investigated. First, an iterative method is considered, and it is shown to successfully reproduce forcing functions for various idealized and ...

Meelis J. Zidikheri; Jorgen S. Frederiksen

2013-08-01T23:59:59.000Z

378

Development of a light force accelerometer  

E-Print Network (OSTI)

In this work, the feasibility of a light force accelerometer was experimentally demonstrated. The light force accelerometer is an optical inertial sensor which uses focused laser light to levitate and trap glass microspheres ...

Butts, David LaGrange

2008-01-01T23:59:59.000Z

379

Registration, Force Protection Equipment Demonstration - May 2009 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Registration, Force Protection Equipment Demonstration - May 2009 Registration, Force Protection Equipment Demonstration - May 2009 Registration, Force Protection Equipment Demonstration - May 2009 May 2009 Demonstrating commercially availale physical security/force protection soultions around the world The bombing of Khobar Towers in Saudi Arabia on 25 June 1996 revealed the need for continal vigilance and protection againist terrorist forces intent on harming US personnel and interests. The Chairman if the Joint Chiefs of Staff directed the Services to investigate COTS equipments solutions for physical security/force protection needs. The Office of the Under Secretary of Defense for Acquistion, Technology, and Logistics (OUSD {at&l}) tasked the Office of the US Army Product Manager, force Protection Systems (PM-FPS), to coordiante and facilitate a Force Protection Equipment

380

Methods for estimating climate anomaly forcing patterns  

Science Conference Proceedings (OSTI)

Inverse methods for determining the anomalous mean forcing functions responsible for climate change are investigated. Firstly, an iterative method is considered, and it is shown to successfully reproduce forcing functions for various idealised and ...

Meelis J. Zidikheri; Jorgen S. Frederiksen

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Supercomputers and atomic physics data  

SciTech Connect

The advent of the supercomputer has dramatically increased the possibilities for generating and using massive amounts of detailed fine structure atomic physics data. Size, speed, and software have made calculations which were impossible just a few years ago into a reality. Further technological advances make future possibilities seem endless. The cornerstone atomic structure codes of R.D. Cowan have been adapted into a single code CATS for use on Los Alamos supercomputers. We provide a brief overview of the problem; and report a sample CATS calculation using configuration interaction to calculate collision and oscillator strengths for over 300,000 transitions in neutral nitrogen. We also discuss future supercomputer needs. 2 refs.

Abdallah, J. Jr.; Clark, R.E.H.

1988-01-01T23:59:59.000Z

382

Supersonic coal water slurry fuel atomizer  

DOE Patents (OSTI)

A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities. 3 figs.

Becker, F.E.; Smolensky, L.S.; Balsavich, J.

1989-11-01T23:59:59.000Z

383

Nuclear Radiological Threat Task Force Established | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiological Threat Task Force Established | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

384

NCEM National Center for Electron Microscopy: Microscopes and Facilities:  

NLE Websites -- All DOE Office Websites (Extended Search)

Specimen Preparation Specimen Preparation Preparation of samples with large transparent areas and flat surfaces is a key element of electron microscopy. In particular, the interpretation of lattice or holographic images is often limited by the sample's geometry and surface roughness. These parameters are largely determined by a particular sample preparation procedure. The increasing demand for microscopes with a spatial resolution of better than 1Å increases the need for improved sample preparation techniques. A substantial effort at NCEM is devoted to the development of reliable and specialized thinning techniques. Current programs explore the application of chemicals to shape the surfaces of thin films, the use of nanospheres for observation of small particles, and the

385

Analytical scanning evanescent microwave microscope and control stage  

DOE Patents (OSTI)

A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

2013-01-22T23:59:59.000Z

386

Microscopic characterization of radionuclide contaminated soils to assist remediation efforts  

Science Conference Proceedings (OSTI)

A combination of optical, scanning, and analytical electron microscopies have been used to describe the nature of radionuclide contamination at several sites. These investigations were conducted to provide information for remediation efforts. This technique has been used successfully with uranium-contaminated soils from Fernald, OH, and Portsmouth, OH, thorium-contaminated soil from a plant in Tennessee, plutonium-contamination sand from Johnston Island in the Pacific Ocean, and incinerator ash from Los Alamos, NM. Selecting the most suitable method for cleaning a particular site is difficult if the nature of the contamination is not understood. Microscopic characterization allows the most appropriate method to be selected for removing the contamination and can show the effect a particular method is having on the soil. A method of sample preparation has been developed that allows direct comparison of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images, enabling characterization of TEM samples to be more representative of the bulk sample.

Buck, E.C.; Brown, N.R.; Dietz, N.L.; Fortner, J.A.; Bates, J.K.

1994-11-01T23:59:59.000Z

387

Analytical scanning evanescent microwave microscope and control stage  

DOE Patents (OSTI)

A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

Xiang, Xiao-Dong (Danville, CA); Gao, Chen (Anhui, CN); Duewer, Fred (Albany, CA); Yang, Hai Tao (Albany, CA); Lu, Yalin (Chelmsford, MA)

2009-06-23T23:59:59.000Z

388

In situ laser processing in a scanning electron microscope  

Science Conference Proceedings (OSTI)

Laser delivery probes using multimode fiber optic delivery and bulk focusing optics have been constructed and used for performing materials processing experiments within scanning electron microscope/focused ion beam instruments. Controlling the current driving a 915-nm semiconductor diode laser module enables continuous or pulsed operation down to sub-microsecond durations, and with spot sizes on the order of 50 {micro}m diameter, achieving irradiances at a sample surface exceeding 1 MW/cm{sup 2}. Localized laser heating has been used to demonstrate laser chemical vapor deposition of Pt, surface melting of silicon, enhanced purity, and resistivity via laser annealing of Au deposits formed by electron beam induced deposition, and in situ secondary electron imaging of laser induced dewetting of Au metal films on SiO{sub x}.

Roberts, Nicholas [University of Tennessee, Knoxville (UTK); Fowlkes, Jason Davidson [ORNL; Rack, Prof. Philip [University of Tennessee, Knoxville (UTK); Moore, Tom [OmniProbe, Inc.; Magel, Greg [OmniProbe, Inc.; Hartfield, Cheryl [OmniProbe, Inc.

2012-01-01T23:59:59.000Z

389

Transmission electron microscope sample holder with optical features  

DOE Patents (OSTI)

A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.

Milas, Mirko (Port Jefferson, NY); Zhu, Yimei (Stony Brook, NY); Rameau, Jonathan David (Coram, NY)

2012-03-27T23:59:59.000Z

390

In situ laser processing in a scanning electron microscope  

SciTech Connect

Laser delivery probes using multimode fiber optic delivery and bulk focusing optics have been constructed and used for performing materials processing experiments within scanning electron microscope/focused ion beam instruments. Controlling the current driving a 915-nm semiconductor diode laser module enables continuous or pulsed operation down to sub-microsecond durations, and with spot sizes on the order of 50 {mu}m diameter, achieving irradiances at a sample surface exceeding 1 MW/cm{sup 2}. Localized laser heating has been used to demonstrate laser chemical vapor deposition of Pt, surface melting of silicon, enhanced purity, and resistivity via laser annealing of Au deposits formed by electron beam induced deposition, and in situ secondary electron imaging of laser induced dewetting of Au metal films on SiO{sub x}.

Roberts, Nicholas A.; Magel, Gregory A.; Hartfield, Cheryl D.; Moore, Thomas M.; Fowlkes, Jason D.; Rack, Philip D. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States) and Omniprobe, Inc., an Oxford Instruments Company, 10410 Miller Rd., Dallas, Texas 75238 (United States); Omniprobe, Inc., an Oxford Instruments Company, 10410 Miller Rd., Dallas, Texas 75238 (United States); Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States) and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2012-07-15T23:59:59.000Z

391

Level densities of nickel isotopes: microscopic theory versus experiment  

E-Print Network (OSTI)

We apply a spin-projection method to calculate microscopically the level densities of a family of nickel isotopes $^{59-64}$Ni using the shell model Monte Carlo approach in the complete $pfg_{9/2}$ shell. Accurate ground-state energies of the odd-mass nickel isotopes, required for the determination of excitation energies, are determined using the Green's function method recently introduced to circumvent the odd particle-number sign problem. Our results are in excellent agreement with recent measurements based on proton evaporation spectra and with level counting data at low excitation energies. We also compare our results with neutron resonance data, assuming equilibration of parity and a spin-cutoff model for the spin distribution at the neutron binding energy, and find good agreement with the exception of $^{63}$Ni.

M. Bonett-Matiz; Abhishek Mukherjee; Y. Alhassid

2013-05-01T23:59:59.000Z

392

Neutron scattering analysis with microscopic optical model potentials  

Science Conference Proceedings (OSTI)

A review of microscopic optical model potentials used in the analysis of neutron scattering and analyzing power data below 100 MeV (5 {le}E{sub n}{le}100 MeV) is presented. The quality of the fits to the data over a wide massd ({sup 6}Li-{sup 239}Pu) and energy range is discussed. It is shown that reasonably good agreement with the data is obtained with only three parameters, {lambda}{sub V}, {lambda}{sub W}, and {lambda}{sub SO}, which show a smooth mass and energy dependence. These parameters are normalizing constants to the real (V), and imaginary (W) central potentials and the real spin-orbit (V{sub SO}) potential. 14 refs., 7 figs.

Hansen, L.F.

1991-09-03T23:59:59.000Z

393

Nuclear Three-body Force Effect on a Kaon Condensate in Neutron Star Matter  

E-Print Network (OSTI)

We explore the effects of a microscopic nuclear three-body force on the threshold baryon density for kaon condensation in chemical equilibrium neutron star matter and on the composition of the kaon condensed phase in the framework of the Brueckner-Hartree-Fock approach. Our results show that the nuclear three-body force affects strongly the high-density behavior of nuclear symmetry energy and consequently reduces considerably the critical density for kaon condensation provided that the proton strangeness content is not very large. The dependence of the threshold density on the symmetry energy becomes weaker as the proton strangeness content increases. The kaon condensed phase of neutron star matter turns out to be proton-rich instead of neutron-rich. The three-body force has an important influence on the composition of the kaon condensed phase. Inclusion of the three-body force contribution in the nuclear symmetry energy results in a significant reduction of the proton and kaon fractions in the kaon condensed phase which is more proton-rich in the case of no three-body force. Our results are compared to other theoretical predictions by adopting different models for the nuclear symmetry energy. The possible implications of our results for the neutron star structure are also briefly discussed.

W. Zuo; A. Li; Z. H. Li; U. Lombardo

2004-12-27T23:59:59.000Z

394

Growth mechanism and surface atomic structure of AgInSe{sub 2}  

Science Conference Proceedings (OSTI)

The growth of (112)A-oriented AgInSe{sub 2} on GaAs (111)A and its surface reconstruction were studied by scanning tunneling microscopy, atomic force microscopy, and other techniques. Films were grown by a sputtering and evaporation method. Topographic STM images reveal that the film grew by atomic incorporation into surface steps resulting from screw dislocations on the surface. The screw dislocation density was {approx}10{sup 10} cm{sup 2}. Atomically resolved images also show that the surface atomic arrangement appears to be similar to that of the bulk, with a spacing of 0.35-0.41 nm. There is no observable reconstruction, which is unexpected for a polar semiconductor surface.

Pena Martin, Pamela; Rockett, Angus A.; Lyding, Joseph [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, Illinois 61801 (United States); Department of Electrical and Computer Engineering and the Beckman Institute, University of Illinois at Urbana-Champaign, 405 N. Matthews St., Urbana, Illinois 61801 (United States)

2012-07-15T23:59:59.000Z

395

Dynamical polarization in pionic atoms  

SciTech Connect

Dynamical nuclear polarization occurs in pionic atoms when a nuclear excitation of appropriate multipolarity is nearly degenerate with de-excitation of a pion atomic level. This phenomenon has been studied in several nuclei, one goal being to test the pion optical potential for pion atomic states normally ''hidden'' because of pion absorption. We find that, in addition to Coulomb mixing of the atomic and nuclear levels, strong interaction mixing and nuclear excitations above the lowest collective quadrupole mode are important for understanding the experimental results. All cases except /sup 110/Pd can then be understood. For /sup 110/Pd, additional nuclear structure information is needed to determine whether or not the conventional pion optical potential will suffice again. We discuss the sensitivity of dynamical polarization measurements to the parameters of the optical potential and to various aspects of nuclear structure. In particular, we find that pionic /sup 150/Sm provides a test of the interacting boson model and that the difference in neutron and proton radii predicted by Hartree-Fock calculations affects the mixing appreciably.

Dubach, J.F.; Moniz, E.J.; Nixon, G.D.

1979-08-01T23:59:59.000Z

396

Lesson 6- Atoms to Electricity  

Energy.gov (U.S. Department of Energy (DOE))

Most power plants make electricity by boiling water to make steam that turns a turbine. A nuclear power plant works this way, too. At a nuclear power plant, splitting atoms produce the heat to boil the water. This lesson covers inside the reactor, fission control and electricity generation.

397

Air Force Enhanced Use Lease  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Air Force Enhanced Use Lease Mr. Brian Brown 16 Oct. 12 I n t e g r i t y - S e r v i c e - E x c e l l e n c e 2 Agenda  Brian Brown  Enhanced Use Lease (EUL) Overview  Energy EULs  EUL Goals  David Swanson  Energy EUL Market Drivers  Current EUL Projects  Partnering with the Air Force  Contact Information I n t e g r i t y - S e r v i c e - E x c e l l e n c e 3 Overview  Authority 10 USC 2667  An EUL is a lease  By the government  Of "non-excess" property  Under the control of the government  To a public or private sector lessee  In exchange for fair market value rental payments in cash and/or in kind consideration I n t e g r i t y - S e r v i c e - E x c e l l e n c e

398

Microscopic Study on the Interface Reaction between Ti and Al-Zn ...  

Science Conference Proceedings (OSTI)

Presentation Title, Microscopic Study on the Interface Reaction between Ti and Al -Zn Alloy during Ultra-Fast Heat Treatment. Author(s), Yue Zhao, David Nolan, ...

399

MICROSCOPIC CALCULATIONS OF FISSION BARRIERS AND CRITICAL ANGULAR MOMENTA FOR EXCITED HEAVY NUCLEAR SYSTEMS  

E-Print Network (OSTI)

Physics and Chemistry of Fission, Vienna 1969 (IAEA, ViennaDeformation energies along the fission path plotted againstMICROSCOPIC CALCULATIONS OF FISSION BARRIERS AND CRITICAL

Diebel, Michael

2013-01-01T23:59:59.000Z

400

Microscopic Characterization of Carbonaceous Aerosol Particle Aging in the Outflow from Mexico City  

E-Print Network (OSTI)

Northwest National Laboratory. PNNL is operated by the U.S.Northwest National Laboratory (PNNL). Detailed experimentalelectron microscope at EMSL/PNNL was used for computer

Moffet, R. C.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Gas-grain chemistry in cold interstellar cloud cores with a microscopic Monte Carlo approach to surface chemistry  

E-Print Network (OSTI)

AIM: We have recently developed a microscopic Monte Carlo approach to study surface chemistry on interstellar grains and the morphology of ice mantles. The method is designed to eliminate the problems inherent in the rate-equation formalism to surface chemistry. Here we report the first use of this method in a chemical model of cold interstellar cloud cores that includes both gas-phase and surface chemistry. The surface chemical network consists of a small number of diffusive reactions that can produce molecular oxygen, water, carbon dioxide, formaldehyde, methanol and assorted radicals. METHOD: The simulation is started by running a gas-phase model including accretion onto grains but no surface chemistry or evaporation. The starting surface consists of either flat or rough olivine. We introduce the surface chemistry of the three species H, O and CO in an iterative manner using our stochastic technique. Under the conditions of the simulation, only atomic hydrogen can evaporate to a significant extent. Although it has little effect on other gas-phase species, the evaporation of atomic hydrogen changes its gas-phase abundance, which in turn changes the flux of atomic hydrogen onto grains. The effect on the surface chemistry is treated until convergence occurs. We neglect all non-thermal desorptive processes. RESULTS: We determine the mantle abundances of assorted molecules as a function of time through 2x10^5 yr. Our method also allows determination of the abundance of each molecule in specific monolayers. The mantle results can be compared with observations of water, carbon dioxide, carbon monoxide, and methanol ices in the sources W33A and Elias 16. Other than a slight underproduction of mantle CO, our results are in very good agreement with observations.

Q. Chang; H. M. Cuppen; E. Herbst

2007-04-20T23:59:59.000Z

402

Atomic physics and non-equilibrium plasmas  

DOE Green Energy (OSTI)

Three lectures comprise the report. The lecture, Atomic Structure, is primarily theoretical and covers four topics: (1) Non-relativistic one-electron atom, (2) Relativistic one-electron atom, (3) Non-relativistic many-electron atom, and (4) Relativistic many-electron atom. The lecture, Radiative and Collisional Transitions, considers the problem of transitions between atomic states caused by interactions with radiation or other particles. The lecture, Ionization Balance: Spectral Line Shapes, discusses collisional and radiative transitions when ionization and recombination processes are included. 24 figs., 11 tabs.

Weisheit, J.C.

1986-04-25T23:59:59.000Z

403

Smart Grid Task Force Presentations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Technology Development Smart Grid Federal Smart Grid Task Force Smart Grid Task Force Presentations Smart Grid Task Force Presentations Presentations about the...

404

Smart Grid Task Force Presentations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Grid Federal Smart Grid Task Force Smart Grid Task Force Presentations Smart Grid Task Force Presentations Electricity Advisory Committee Technology Development...

405

Army Energy Initiatives Task Force  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNCLASSIFIED UNCLASSIFIED Army Energy Initiatives Task Force Kathy Ahsing Director, Planning and Development UNCLASSIFIED 2 Perfect Storm UNCLASSIFIED 3 U.S. Army Energy Consumption, 2010 23% 77% 42% 58%  Facilities  Vehicles & Equipment (Tactical and Non-tactical) Sources: Energy Information Agency, 2010 Annual Energy Review; Agency Annual Energy Management Data Reports submitted to DOE's Federal Energy Management Program (Preliminary FY 2010) 32% 68% DoD 80% Army 21% Federal Gov 1% Federal Government United States Department of Defense U.S. = 98,079 Trillion Btu DoD = 889 Trillion Btu Fed Gov = 1,108 Trillion Btu U.S. Army = 189 Trillion Btu FY10 Highlights - $2.5+B Operational Energy Costs - $1.2 B Facility Energy Costs

406

Nuclear forces from lattice QCD  

SciTech Connect

Lattice QCD construction of nuclear forces is reviewed. In this method, the nuclear potentials are constructed by solving the Schroedinger equation, where equal-time Nambu-Bethe-Salpeter (NBS) wave functions are regarded as quantum mechanical wave functions. Since the long distance behavior of equal-time NBS wave functions is controlled by the scattering phase, which is in exactly the same way as scattering wave functions in quantum mechanics, the resulting potentials are faithful to the NN scattering data. The derivative expansion of this potential leads to the central and the tensor potentials at the leading order. Some of numerical results of these two potentials are shown based on the quenched QCD.

Ishii, Noriyoshi [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

2011-05-06T23:59:59.000Z

407

Stability of atoms in the anionic domain (Z  

E-Print Network (OSTI)

We study the stability and universal behaviour of the ionization energy of N-electron atoms with nuclear charge Z in the anionic domain (Zatom region to the anionic instability threshold. As testing systems we choose inert gases (He-like, Ne-like and Ar-like isoelectronic sequences) and alkali metals (Li-like, Na-like, K-like sequences). From the results, it is apparent that, for inert gases case, the stability relation with N is completely inverted in the singly-charged anion region (Z=N-1) with respect to the neutral atom region (Z=N), i.e. larger systems are more stable than the smaller ones. We devised a semi-analytical model (inspired by the zero-range forces theory) which lead us to establish the ionization energy dependence on the nuclear charge n...

Gil, G

2013-01-01T23:59:59.000Z

408

Contribution of radiation damage to the study of basic atomic motion in solids  

SciTech Connect

Radiation damage is a powerful tool for the study of point-defect interactions in solids. The large numbers of point defects produced during irradiation and subsequent annealing aggregate to form planar and linear defects. A study of the nature of these defects provides basic understanding of the mechanics of defect formation in solids. Defects in ion-bombarded silicon are studied using the transmission electron microscope. A mechanism for the formation of the observed defects is proposed. The utility of radiation damage studies in the understanding of atom motion in solids is demonstrated. (auth)

Seshan, K.

1973-02-01T23:59:59.000Z

409

Atomic resolution of lithium ions in LiCoO{sub 2}  

SciTech Connect

LiCoO{sub 2} is the most common lithium storage material used as positive electrode in lithium rechargeable batteries. Ordering of lithium and vacancies has a profound effect on the physical properties of Li{sub x}CoO{sub 2} and the electrochemical performances of lithium batteries. An exit surface wave (ESW) phase image reconstructed from experimental images obtained on the LBNL One-Angstrom Microscope (OAM) shows all three types of atoms in LiCoO{sub 2}.

Shao-Horn, Yang; Croguennec, Laurence; Delmas, Claude; Nelson, E. Chris; O' Keefe, Michael A.

2003-06-05T23:59:59.000Z

410

UNITED STATES ATOMIC ENERGY COMMISSION  

Office of Legacy Management (LM)

I(S.0 -01: I(S.0 -01: SPECIAL NUCLEAR MATERIAL LlCEWSE Pursuant to the Atomic Energy Act of 1954 and Title 10, Code of Federal Regulations, Chapter 1, Part 70, "Special Nuclear Material Regulations," o. license is hereby issued authorizing the licensee to receive and possess the special nuclear material designated below; to use such special nuclear material for the purpose(s) and at the place(s) designated below; and to transfer such material to persons' authorized to receive it in accordance with the regulations in said Port. This license shall be deemed to contain the conditions specified in Section 70.32(a) of said regulations, and is subject to all applicable rules, regtdations, and orders of the Atomic Energy Commission now or hereafter in

411

Atomic vapor laser isotope separation  

SciTech Connect

Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

Stern, R.C.; Paisner, J.A.

1985-11-08T23:59:59.000Z

412

Microscopic scattering theory for interacting bosons in weak random potentials  

E-Print Network (OSTI)

We develop a diagrammatic scattering theory for interacting bosons in a three-dimensional, weakly disordered potential. Based on a microscopic N-body scattering theory, we identify the relevant diagrams including elastic and inelastic collision processes that are sufficient to describe diffusive quantum transport. By taking advantage of the statistical properties of the weak disorder potential, we demonstrate how the N-body dynamics can be reduced to a nonlinear integral equation of Boltzmann type for the single-particle diffusive flux. Our theory reduces to the Gross-Pitaevskii mean field description in the limit where only elastic collisions are taken into account. However, even at weak interaction strength, inelastic collisions lead to energy redistribution between the bosons - initially prepared all at the same single-particle energy - and thereby induce thermalization of the single-particle current. In addition, we include also weak localization effects and determine the coherent corrections to the incoherent transport in terms of the coherent backscattering signal. We find that inelastic collisions lead to an enhancement of the backscattered cone in a narrow spectral window for increasing interaction strength.

Tobias Geiger; Andreas Buchleitner; Thomas Wellens

2013-07-18T23:59:59.000Z

413

Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report  

SciTech Connect

The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and the team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.

Ellis, P; Flom, Z; Heinselman, K; Nguyen, T; Tung, S; Haskell, R; Reed, B W; LaGrange, T

2011-08-04T23:59:59.000Z

414

Towards a Microscopic Reaction Description Based on Energy Density Functionals  

SciTech Connect

A microscopic calculation of reaction cross sections for nucleon-nucleus scattering has been performed by explicitly coupling the elastic channel to all particle-hole excitations in the target and one-nucleon pickup channels. The particle-hole states may be regarded as doorway states through which the flux flows to more complicated configurations, and subsequently to long-lived compound nucleus resonances. Target excitations for {sup 40,48}Ca, {sup 58}Ni, {sup 90}Zr and {sup 144}Sm were described in a random-phase framework using a Skyrme functional. Reaction cross sections obtained agree very well with experimental data and predictions of a state-of-the-art fitted optical potential. Couplings between inelastic states were found to be negligible, while the pickup channels contribute significantly. The effect of resonances from higher-order channels was assessed. Elastic angular distributions were also calculated within the same method, achieving good agreement with experimental data. For the first time observed absorptions are completely accounted for by explicit channel coupling, for incident energies between 10 and 70 MeV, with consistent angular distribution results.

Nobre, G A; DIetrich, F S; Escher, J E; Thompson, I J; Dupuis, M; Terasaki, J; Engel, J

2011-09-26T23:59:59.000Z

415

Microscopic track structure of equal-LET heavy ions  

SciTech Connect

The spatial distributions of ionization and energy deposition produced by heavy (HZE) ions are crucial to an understanding of their radiation quality as exhibited eg., in track segment experiments of cell survival and chromosome aberrations of mammalian cells. The stopping power (or LET) of a high velocity ion is proportional to the ratio Z**2/v**2, apart from a slowly varying logarithmic factor. The maximum delta-ray energy that an ion can produce is proportional to v**2 (non-relativistically). Therefore, two HZE ions having the same LET, but in general differing Z and v will have different maximum delta-ray energies and consequently will produce different spatial patterns of energy deposition along their paths. To begin to explore the implications of this fact for the microscopic dosimetry of heavy ions, we have calculated radial distributions in energy imparted and ionization for iron and neon ions of approximately equal LET in order to make a direct comparison of their delta-ray track structure. Monte Carlo techniques are used for the charged particle radiation transport simulation. 10 refs., 8 figs.

Wilson, W.E.; Criswell, T.L.

1986-07-01T23:59:59.000Z

416

The Microscopic Approach to Nuclear Matter and Neutron Star Matter  

E-Print Network (OSTI)

We review a variety of theoretical and experimental investigations aimed at improving our knowledge of the nuclear matter equation of state. Of particular interest are nuclear matter extreme states in terms of density and/or isospin asymmetry. The equation of state of matter with unequal concentrations of protons and neutrons has numerous applications. These include heavy-ion collisions, the physics of rare, short-lived nuclei and, on a dramatically different scale, the physics of neutron stars. The "common denominator" among these (seemingly) very different systems is the symmetry energy, which plays a crucial role in both the formation of the neutron skin in neutron-rich nuclei and the radius of a neutron star (a system 18 orders of magnitude larger and 55 orders of magnitude heavier). The details of the density dependence of the symmetry energy are not yet sufficiently constrained. Throughout this article, our emphasis will be on the importance of adopting a microscopic approach to the many-body problem, which we believe to be the one with true predictive power.

Francesca Sammarruca

2010-01-31T23:59:59.000Z

417

The Future of Atomic Energy  

DOE R&D Accomplishments (OSTI)

There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

Fermi, E.

1946-05-27T23:59:59.000Z

418

Role of atomic collisions in fusion  

SciTech Connect

Atomic physics issues have played a large role in controlled fusion research. A general discussion of the present role of atomic processes in both magnetic and inertial controlled fusion work is presented.

Post, D.E.

1982-04-01T23:59:59.000Z

419

NIST Atomic Form Factors: Summary of uncertainties  

Science Conference Proceedings (OSTI)

... element. This "H92 - 3/5CL" value is 1.09 e/atom for uranium or 0.002 e/atom for Z = 6 (ie, 40 % of the dipole correction). ...

420

Laser cooling and trapping of neutral atoms*  

Science Conference Proceedings (OSTI)

... 1 m/s, any gas in equilibrium (other than spin-polarized atomic hydro- ... lattice-trapped atoms, a physical picture with the simplicity and power of the ...

2010-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Atomic vapor laser isotope separation process  

DOE Patents (OSTI)

A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

Wyeth, R.W.; Paisner, J.A.; Story, T.

1990-08-21T23:59:59.000Z

422

STAR FORMATION IN ATOMIC GAS  

SciTech Connect

Observations of nearby galaxies have firmly established, over a broad range of galactic environments and metallicities, that star formation occurs exclusively in the molecular phase of the interstellar medium (ISM). Theoretical models show that this association results from the correlation between chemical phase, shielding, and temperature. Interstellar gas converts from atomic to molecular only in regions that are well shielded from interstellar ultraviolet (UV) photons, and since UV photons are also the dominant source of interstellar heating, only in these shielded regions does the gas become cold enough to be subject to Jeans instability. However, while the equilibrium temperature and chemical state of interstellar gas are well correlated, the timescale required to reach chemical equilibrium is much longer than that required to reach thermal equilibrium, and both timescales are metallicity-dependent. Here I show that the difference in timescales implies that, at metallicities below a few percent of the solar value, well shielded gas will reach low temperatures and proceed to star formation before the bulk of it is able to convert from atomic to molecular. As a result, at extremely low metallicities, star formation will occur in a cold atomic phase of the ISM rather than a molecular phase. I calculate the observable consequences of this result for star formation in low-metallicity galaxies, and I discuss how some current numerical models for H{sub 2}-regulated star formation may need to be modified.

Krumholz, Mark R., E-mail: krumholz@ucolick.org [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

2012-11-01T23:59:59.000Z

423

Biological applications of an LCoS-BASED PROGRAMMABLE ARRAY MICROSCOPE (PAM)  

E-Print Network (OSTI)

fluorescence microscope (PAM) for rapid, light efficient 3D imaging of living specimens. The stand-alone module fluorescence microscope. The prototype system currently operated at the Max Planck Institute incorporates a 6-position high-intensity LED illuminator, modulated laser and lamp light sources, and an Andor iXon em

Rieger, Bernd

424

NIST: Atomic Spectroscopy Group - Past News  

Science Conference Proceedings (OSTI)

... of Atomic, Molecular, and Optical Physics of the American Physical Society (DAMOP) in ... and Determination of Relative Nuclear Charge Radius.". ...

2013-06-06T23:59:59.000Z

425

Towards a high-precision atomic gyroscope  

E-Print Network (OSTI)

In this thesis, I report on the design and construction of the Rubidium Atomic Gyroscope Experiment (RAGE) at Draper Lab.

Van Camp, Mackenzie A. (Mackenzie Anne)

2013-01-01T23:59:59.000Z

426

Argonne Chemical Sciences & Engineering - Institute for Atom...  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysis & Energy Conversion Electrochemical Energy Storage Nuclear & Environmental Processes National Security Institute for Atom-Efficient Chemical Transformations Center for...

427

Atomic Scale Deformation Mechanisms of Amorphous Polyethylene ...  

Science Conference Proceedings (OSTI)

Atomic Scale Deformation Mechanisms of Amorphous Polyethylene under Tensile Loading · Atomistic Predictions of Age Hardening in Al-Cu Alloys.

428

NIST: Atomic Spectroscopy Group - John Curry  

Science Conference Proceedings (OSTI)

... chemical equilibrium and deviations from thermodynamic equilibrium. I am also interested in the acquisition and compilation of basic atomic data. ...

2011-02-09T23:59:59.000Z

429

NIST Atomic Physics Division 2000 - Technical Highlights  

Science Conference Proceedings (OSTI)

... Astrophysical Quantities," a handbook widely used ... and single-atom chemistry, where controlled ... understanding of fundamental processes occurring ...

430

Stability of alert survivable forces during reductions  

Science Conference Proceedings (OSTI)

The stability of current and projected strategic forces are discussed within a framework that contains elements of current US and Russian analyses. For current force levels and high alert, stability levels are high, as are the levels of potential strikes, due to the large forces deployed. As force levels drop towards those of current value target sets, the analysis becomes linear, concern shifts from stability to reconstitution, and survivable forces drop out. Adverse marginal costs generally provide disincentives for the reduction of vulnerable weapons, but the exchange of vulnerable for survivable weapons could reduce cost while increasing stability even for aggressive participants. Exchanges between effective vulnerable and survivable missile forces are studied with an aggregated, probabilistic model, which optimizes each sides` first and determines each sides` second strikes and costs by minimizing first strike costs.

Canavan, G.H.

1998-01-01T23:59:59.000Z

431

Frictional forces in helical buckling of tubing  

SciTech Connect

Previous analyses of helical buckling of tubing have not considered frictional forces. This paper describes the modifications to helical buckling theory necessary to include friction. The first need is a relationship between the buckling force and the casing to tubing contact force. This contact force is determined through use of the principle of virtual work. The next need is the relationship between the friction forces, the buckling force, and the geometry of the tubing helix. Differential equations are derived and solved for two cases of interest: buckling during the landing of the tubing and thermal and differential pressure loading subsequent to landing. Several example problems are examined to evaluate the relative importance of friction.

Mitchell, R.F.

1984-09-01T23:59:59.000Z

432

Collisionally Induced Atomic Clock Shifts and Correlations  

E-Print Network (OSTI)

We develop a formalism to incorporate exchange symmetry considerations into the calculation of collisional frequency shifts and blackbody radiation effects for atomic clock transitions using a density matrix formalism. The formalism is developed for both fermionic and bosonic atomic clocks. Results for a finite temperature ${}^{87}$Sr ${}^1S_0$ ($F = 9/2$) atomic clock in a magic wavelength optical lattice are presented.

Y. B. Band; I. Osherov

2010-11-15T23:59:59.000Z

433

Elastic actuator for precise force control  

DOE Patents (OSTI)

The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section.

Pratt, Gill A. (Lexington, MA); Williamson, Matthew M. (Boston, MA)

1997-07-22T23:59:59.000Z

434

Internet Engineering Task Force KK Ramakrishnan ...  

Science Conference Proceedings (OSTI)

... Engineering Task Force KK Ramakrishnan INTERNET DRAFT AT&T Labs Research draft-kksjf-ecn-00.txt Sally Floyd LBNL November 1997 ...

2009-08-19T23:59:59.000Z

435

Reduction of the Casimir force using aerogels  

E-Print Network (OSTI)

By using silicon oxide based aerogels we show numerically that the Casimir force can be reduced several orders of magnitude, making its effect negligible in nanodevices. This decrease in the Casimir force is also present even when the aerogels are deposited on metallic substrates. To calculate the Casimir force we model the dielectric function of silicon oxide aerogels using an effective medium dielectric function such as the Clausius-Mossotti approximation. The results show that both the porosity of the aerogel and its thickness can be use as control parameters to reduce the magnitude of the Casimir force.

R. Esquivel-Sirvent

2007-08-02T23:59:59.000Z

436

Reduction of the Casimir force using aerogels  

E-Print Network (OSTI)

By using silicon oxide based aerogels we show numerically that the Casimir force can be reduced several orders of magnitude, making its effect negligible in nanodevices. This decrease in the Casimir force is also present even when the aerogels are deposited on metallic substrates. To calculate the Casimir force we model the dielectric function of silicon oxide aerogels using an effective medium dielectric function such as the Clausius-Mossotti approximation. The results show that both the porosity of the aerogel and its thickness can be use as control parameters to reduce the magnitude of the Casimir force.

Esquivel-Sirvent, R

2007-01-01T23:59:59.000Z

437

Weardale Task Force | Open Energy Information  

Open Energy Info (EERE)

search Name Weardale Task Force Place England, United Kingdom Sector Biomass, Geothermal energy, Hydro, Solar, Wind energy Product Durham based project consortium that is...

438

Air Force Announces Funding for Alternative Energy Research ...  

Air Force Announces Funding for Alternative Energy Research & Development. December 16, 2013. The Air Force Research Laboratory (AFRL) has ...

439

NCEM National Center for Electron Microscopy: Microscopes and Facilities:  

NLE Websites -- All DOE Office Websites (Extended Search)

SPLEEM SPLEEM Publications Imaging Spin Reorientation Transitions in Consecutive Atomic Co layers, Farid El Gabaly, Silvia Gallego, M. Carmen Munoz, Laszlo Szunyogh, Peter Weinberger, Kevin F. McCarty, Christof Klein, Andreas K. Schmid, Juan de la Figuera, submitted Direct imaging of spin-reorientation transitions in ultra-thin Ni films by spin-polarized low-energy electron microscopy, C. Klein, A. K. Schmid, R. Ramchal, and M. Farle, submitted Controlling the kinetic order of spin-reorientation transitions in Ni/Cu(100) films by tuning the substrate step-structure, C. Klein, R. Ramchal, A.K. Schmid, M. Farle, submitted Self-organization and magnetic domain microstructure of Fe nanowire arrays, N. Rougemaille and A.K. Schmid, submitted Self-Assembled Nanofold Network Formation on Layered Crystal Surfaces

440

General Atomics (GA) Fusion News: A New Spin on Understanding...  

NLE Websites -- All DOE Office Websites (Extended Search)

General Atomics (GA) Fusion News: A New Spin on Understanding Plasma Confinement American Fusion News Category: General Atomics (GA) Link: General Atomics (GA) Fusion News: A New...

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Pages that link to "Atomic City, Idaho" | Open Energy Information  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Pages that link to "Atomic City, Idaho" Atomic City, Idaho Jump to: navigation, search What links here Page: Atomic City,...

442

Chapter 2 Suggested Problems: Final Answer Key Atomic mass: mass of an individual atom  

E-Print Network (OSTI)

Chapter 2 Suggested Problems: Final Answer Key 2.1 Atomic mass: mass of an individual atom Atomic;Chapter 3 Suggested Problems: Final Answer Key 3.1 Atomic Structure: relates the # of protons and neutrons of intercepts 2 2 1 Reduction not necessary Enclosure (221) #12;Chapter 12 Suggested Problems: Final Answer Key

Grunlan, Melissa A.

443

Nuclear Force from Lattice QCD  

E-Print Network (OSTI)

The first lattice QCD result on the nuclear force (the NN potential) is presented in the quenched level. The standard Wilson gauge action and the standard Wilson quark action are employed on the lattice of the size 16^3\\times 24 with the gauge coupling beta=5.7 and the hopping parameter kappa=0.1665. To obtain the NN potential, we adopt a method recently proposed by CP-PACS collaboration to study the pi pi scattering phase shift. It turns out that this method provides the NN potentials which are faithful to those obtained in the analysis of NN scattering data. By identifying the equal-time Bethe-Salpeter wave function with the Schroedinger wave function for the two nucleon system, the NN potential is reconstructed so that the wave function satisfies the time-independent Schroedinger equation. In this report, we restrict ourselves to the J^P=0^+ and I=1 channel, which enables us to pick up unambiguously the ``central'' NN potential V_{central}(r). The resulting potential is seen to posses a clear repulsive core of about 500 MeV at short distance (r < 0.5 fm). Although the attraction in the intermediate and long distance regions is still missing in the present lattice set-up, our method is appeared to be quite promising in reconstructing the NN potential with lattice QCD.

Noriyoshi ISHII; Sinya AOKI; Tetsuo HATSUDA

2006-09-30T23:59:59.000Z

444

The Atomic Energy Commission By Alice Buck  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atomic Energy Atomic Energy Commission By Alice Buck July 1983 U.S. Department of Energy Office of Management Office of the Executive Secretariat Office of History and Heritage Resources 1 Introduction Almost a year after World War II ended, Congress established the United States Atomic Energy Commission to foster and control the peacetime development of atomic science and technology. Reflecting America's postwar optimism, Congress declared that atomic energy should be employed not only in the Nation's defense, but also to promote world peace, improve the public welfare, and strengthen free competition in private

445

CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT  

Office of Legacy Management (LM)

WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT EAST PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects ..-.. --__- _".-.-l--_--l -_._ _- --- ~~~. . ..~ CONTENTS Page - - I NTRODUCTI ON 1 Purpose 1 Docket Contents 1 Exhibit I: Summary of Activities at Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania I-l Exhibit II: Documents Supporting the Certification of Westinghouse Atomic Power Development Plant, East Pittsburgh Plant, Forest Hills, Pittsburgh, Pennsylvania iii II-1 . . .- .__.^ I ^_... _.-__^-____-. - CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT

446

Princeton Plasma Physics Lab - General Atomics (GA)  

NLE Websites -- All DOE Office Websites (Extended Search)

general-atomics-ga General general-atomics-ga General Atomics en The Scorpion's Strategy: "Catch and Subdue" http://www.pppl.gov/node/1132

American Fusion News Category: 
atomics-ga">General Atomics (GA)
447

Precision spectroscopy of the helium atom.  

SciTech Connect

Persistent efforts in both theory and experiment have yielded increasingly precise understanding of the helium atom. Because of its simplicity, the helium atom has long been a testing ground for relativistic and quantum electrodynamic effects in few-body atomic systems theoretically and experimentally. Comparison between theory and experiment of the helium spectroscopy in 1s2p{sup 3}P{sub J} can potentially extract a very precise value of the fine structure constant a. The helium atom can also be used to explore exotic nuclear structures. In this paper, we provide a brief review of the recent advances in precision calculations and measurements of the helium atom.

Hu, S.-M.; Lu, Z.-T.; Yan, Z.-C.; Physics; Univ. of Science and Technology of China; Univ. of Chicago; Univ. of New Brunswick

2009-06-01T23:59:59.000Z

448

Test of the quantumness of atom-atom correlations in a bosonic gas  

E-Print Network (OSTI)

It is shown how the quantumness of atom-atom correlations in a trapped bosonic gas can be made observable. Application of continuous feedback control of the center of mass of the atomic cloud is shown to generate oscillations of the spatial extension of the cloud, whose amplitude can be directly used as a characterization of atom-atom correlations. Feedback parameters can be chosen such that the violation of a Schwarz inequality for atom-atom correlations can be tested at noise levels much higher than the standard quantum limit.

D. Ivanov; S. Wallentowitz

2006-03-16T23:59:59.000Z

449

Narrow-line magneto-optical cooling and trapping of strongly magnetic atoms  

E-Print Network (OSTI)

Laser cooling on weak transitions is a useful technique for reaching ultracold temperatures in atoms with multiple valence electrons. However, for strongly magnetic atoms a conventional narrow-line magneto-optical trap (MOT) is destabilized by competition between optical and magnetic forces. We overcome this difficulty in Er by developing an unusual narrow-line MOT that balances optical and magnetic forces using laser light tuned to the blue side of a narrow (8 kHz) transition. The trap population is spin-polarized with temperatures reaching below 2 microkelvin. Our results constitute an alternative method for laser cooling on weak transitions, applicable to rare-earth-metal and metastable alkaline earth elements.

Berglund, Andrew J; McClelland, Jabez J

2008-01-01T23:59:59.000Z

450

Narrow-line magneto-optical cooling and trapping of strongly magnetic atoms  

E-Print Network (OSTI)

Laser cooling on weak transitions is a useful technique for reaching ultracold temperatures in atoms with multiple valence electrons. However, for strongly magnetic atoms a conventional narrow-line magneto-optical trap (MOT) is destabilized by competition between optical and magnetic forces. We overcome this difficulty in Er by developing an unusual narrow-line MOT that balances optical and magnetic forces using laser light tuned to the blue side of a narrow (8 kHz) transition. The trap population is spin-polarized with temperatures reaching below 2 microkelvin. Our results constitute an alternative method for laser cooling on weak transitions, applicable to rare-earth-metal and metastable alkaline earth elements.

Andrew J. Berglund; James L. Hanssen; Jabez J. McClelland

2008-02-06T23:59:59.000Z

451

Monitoring atom-atom entanglement and decoherence in a solvable tripartite open system in cavity QED  

E-Print Network (OSTI)

We solve exactly the dynamics of two strongly-driven two-level atoms resonantly coupled to a dissipative cavity field mode. Starting with the cavity field vacuum state, we show that the entanglement of the atom-atom subsystem cannot be created or increased. On the other hand, when the atoms are initially entangled the atomic Hilbert space divides into two subspaces. One of them is decoherence free so that the initial atomic entanglement remains available for applications, even in presence of a low enough atomic decay rate. In the other subspace a measure of entanglement, decoherence, and also purity, are described by a similar functional behavior that can be monitored by joint atomic measurements. Furthermore, we show the possible generation of Schr\\"odinger-cat-like states for the whole system in the transient regime, as well as of entanglement for the cavity field and the atom-atom subsystems conditioned by measurements on the complementary subsystem.

Bina, Matteo; Lulli, Alfredo; Solano, Enrique

2007-01-01T23:59:59.000Z

452

FEDERAL SMART GRID TASK FORCE - February 26, 2009 Task Force Meeting Agenda  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEDERAL SMART GRID TASK FORCE - February 26, 2009 Task Force FEDERAL SMART GRID TASK FORCE - February 26, 2009 Task Force Meeting Agenda FEDERAL SMART GRID TASK FORCE - February 26, 2009 Task Force Meeting Agenda February 26, 2009 Task Force Meeting Agenda - CONFERENCE CALL Agenda FEDERAL SMART GRID TASK FORCE CONFERENCE CALL February 26, 2009 10:00-11:00 AM 10:00 Opening and Introduction - Eric Lightner, DOE * Call the meeting to order, around-the-table introductions, review of the agenda, additions to agenda 10:05 Update from DOE - Eric Lightner * Stimulus update * E-Forum * Fact sheet - discussion 10:30 Update from FERC - Ray Palmer, David Andrejcak * NARUC-FERC Smart Grid Collaborative meeting update 10:40 Update from NIST - William Anderson, Jerry FitzPatrick * Interoperability Standards Framework report to Congress

453

Einstein's Dream of Unified Forces - forces | U.S. DOE Office of Science  

Office of Science (SC) Website

Do all the forces become one? Do all the forces become one? The International Linear Collider The U.S. is pushing superconducting technology forward for use in future accelerators like the proposed International Linear Collider. (Credit: Fermilab) At the most fundamental level, particles and forces may converge, either through hidden principles like grand unification, or through radical physics like superstring. We already know that remarkably similar mathematical laws and principles describe all the known forces except gravity. Perhaps all forces are different manifestations of a single grand unified force, a force that would relate quarks to leptons and predict new ways of converting one kind of particle into another. Such a force might eventually make protons decay, rendering ordinary matter unstable.

454

The Response of a Stochastically Forced ENSO Model to Observed Off-Equatorial Wind Stress Forcing  

Science Conference Proceedings (OSTI)

This study investigates the response of a stochastically forced coupled atmosphere–ocean model of the equatorial Pacific to off-equatorial wind stress anomaly forcing. The intermediate-complexity coupled ENSO model comprises a linear, first ...

Shayne McGregor; Neil J. Holbrook; Scott B. Power

2009-05-01T23:59:59.000Z

455

Manhattan Project: Atomic Discoveries, 1890s-1939  

Office of Scientific and Technical Information (OSTI)

Excerpt from the comic book "Adventures Inside the Atom." Click on this image or visit the "Library" to view the whole comic book. ATOMIC DISCOVERIES Excerpt from the comic book "Adventures Inside the Atom." Click on this image or visit the "Library" to view the whole comic book. ATOMIC DISCOVERIES (1890s-1939) Events A Miniature Solar System, 1890s-1919 Exploring the Atom, 1919-1932 Atomic Bombardment, 1932-1938 The Discovery of Fission, 1938-1939 Fission Comes to America, 1939 Philosophers of Ancient Greece reasoned that all matter in the universe must be composed of fundamental, unchangeable, and indivisible objects, which they called "atoma" ("ατoµα"). The exact nature of these atoms remained elusive, however, despite centuries of attempts by alchemists to create a "philosopher's stone" that could transmute atoms of lead to gold, prove the Greeks wrong, and make its inventors Modern model of an atom very rich. It was only in the late 1890s and the early twentieth-century that this view of a solid atom, bouncing around the universe like a billiard ball, was replaced by an atom that resembled more a miniature solar system, its electrons orbiting around a small nucleus. Explorations into the nature of the atom from 1919 to 1932 confirmed this new model, especially with Ernest Rutherford's 1919 success in finally transmuting an atom of one substance into another and with James Chadwick's 1932 discovery of the elusive final basic particle of the atom, the neutron. From 1932 to 1938, scientists around the world learned a great deal more about atoms, primarily by bombarding the nuclei of atoms and using a variety of particle accelerators. In 1938, word came from Berlin of the most startling result of them all: the nucleus of an atom could actually be split in two, or "fissioned." This breakthrough was quickly confirmed in the United States and elsewhere. According to the theories of Albert Einstein, the fission of an atom should result in a release of energy. An "atomic bomb" was now no longer just science fiction -- it was a distinct possibility.

456

Nonlinear Response to Anomalous Tropical Forcing  

Science Conference Proceedings (OSTI)

We have investigated the nonlinear steady-state response of a barotropic model to an estimate of the observed anomalous tropical divergence forcing for the El Niño winter of 1982/83. The 400 mb climatological flow was made a forced solution of ...

R. J. Haarsma; J. D. Opsteegh

1989-11-01T23:59:59.000Z

457

Quantifying cellular traction forces in three dimensions  

E-Print Network (OSTI)

of the gels. Analysis of the normal displacement profiles suggests that normal forces play important roles-dimensional (2-D) analysis and interpretation of cell-matrix interactions. Furthermore, these approaches cal allows a more complete analysis of cellular forces than does consideration of only in-plane (2-D

Stein, Derek

458

Work Force Retention Work Group Charter  

Energy.gov (U.S. Department of Energy (DOE))

The Work force Retention Work Group is established to support the Department’s critical focus on maintaining a high-performing work force at a time when a significant number of the workers needed to support DOE’s national security mission are reaching retirement age.

459

Regular Article THE EUROPEAN PHYSICAL JOURNAL D Light-pulse atom interferometry in microgravity  

E-Print Network (OSTI)

Abstract. We describe the operation of a light pulse interferometer using cold 87 Rb atoms in reduced gravity. Using a series of two Raman transitions induced by light pulses, we have obtained Ramsey fringes in the low gravity environment achieved during parabolic flights. With our compact apparatus, we have operated in a regime which is not accessible on ground. In the much lower gravity environment and lower vibration level of a satellite, our cold atom interferometer could measure accelerations with a sensitivity orders of magnitude better than the best ground based accelerometers and close to proven spaced-based ones. PACS. 37.25.+k Atom interferometry techniques – 03.75.Dg Atom and neutron interferometry Atom interferometry is one of the most promising candidates for ultra-accurate measurements of gravito-inertial forces [1], with both fundamental [2–5] and practical (navigation or geodesy) applications. Atom interferometry is most often performed by applying successive coherent beam-splitting and-recombining processes separated by an interrogation time T to a set of particles [6]. Understanding

G. Stern; B. Battelier; R. Geiger; G. Varoquaux; A. Villing; F. Moron; O. Carraz; N. Zahzam; Y. Bidel; W. Chaibi; F. Pereiradossantos; A. Bresson; P. Bouyer

2009-01-01T23:59:59.000Z

460

ARM - PI Product - Direct Aerosol Forcing Uncertainty  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsDirect Aerosol Forcing Uncertainty ProductsDirect Aerosol Forcing Uncertainty Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Direct Aerosol Forcing Uncertainty Site(s) NSA SGP TWP General Description Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Zero forcing parameters and minimum rank problems  

E-Print Network (OSTI)

The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a graph G, is used to study the maximum nullity / minimum rank of the family of symmetric matrices described by G. It is shown that for a connected graph of order at least two, no vertex is in every zero forcing set. The positive semidefinite zero forcing number Z_+(G) is introduced, and shown to be equal to |G|-OS(G), where OS(G) is the recently defined ordered set number that is a lower bound for minimum positive semidefinite rank. The positive semidefinite zero forcing number is applied to the computation of positive semidefinite minimum rank of certain graphs. An example of a graph for which the real positive symmetric semidefinite minimum rank is greater than the complex Hermitian positive semidefinite minimum rank is presented.

Barioli, Francesco; Fallat, Shaun M; Hall, H Tracy; Hogben, Leslie; Shader, Bryan; Driessche, P van den; van der Holst, Hein

2010-01-01T23:59:59.000Z

462

U.S. Air Force Fact Sheet Air Force Reserve Officer Training Corps  

E-Print Network (OSTI)

merged under the newly created parent organization, HQ Air Force Officer and Accession Training School-to-day operations of either organization. In June 2008, HQ AFOATS was redesignated as the Jeanne M. Holm Center,796 new Second Lieutenants who entered active duty in the United States Air Force. Organization Air Force

Su, Xiao

463

Hydrogen Atom in Relativistic Motion  

E-Print Network (OSTI)

The Lorentz contraction of bound states in field theory is often appealed to in qualitative descriptions of high energy particle collisions. Surprisingly, the contraction has not been demonstrated explicitly even in simple cases such as the hydrogen atom. It requires a calculation of wave functions evaluated at equal (ordinary) time for bound states in motion. Such wave functions are not obtained by kinematic boosts from the rest frame. Starting from the exact Bethe-Salpeter equation we derive the equal-time wave function of a fermion-antifermion bound state in QED, i.e., positronium or the hydrogen atom, in any frame to leading order in alpha. We show explicitly that the bound state energy transforms as the fourth component of a vector and that the wave function of the fermion-antifermion Fock state contracts as expected. Transverse photon exchange contributes at leading order to the binding energy of the bound state in motion. We study the general features of the corresponding fermion-antifermion-photon Fock states, and show that they do not transform by simply contracting. We verify that the wave function reduces to the light-front one in the infinite momentum frame.

M. Jarvinen

2004-11-16T23:59:59.000Z

464

CTrigger: Exposing Atomicity Violation Bugs from Their Hiding Places  

E-Print Network (OSTI)

of the two molecules, broken down by atom, helps the user to understand which atoms of the drug and protein

Lu, Shan

465

Monitoring atom-atom entanglement and decoherence in a solvable tripartite open system in cavity QED  

E-Print Network (OSTI)

We present a fully analytical solution of the dynamics of two strongly-driven atoms resonantly coupled to a dissipative cavity field mode. We show that an initial atom-atom entanglement cannot be increased. In fact, the atomic Hilbert space divides into two subspaces, one of which is decoherence free so that the initial atomic entanglement remains available for applications, even in presence of a low enough atomic decay rate. In the other subspace a measure of entanglement, decoherence, and also purity, are described by a similar functional behavior that can be monitored by joint atomic measurements. Furthermore, we show the possible generation of Schr\\"odinger-cat-like states for the whole system in the transient regime, as well as of entanglement for the cavity field and the atom-atom subsystems conditioned by measurements on the complementary subsystem.

Matteo Bina; Federico Casagrande; Alfredo Lulli; Enrique Solano

2007-11-08T23:59:59.000Z

466

The Harnessed Atom | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » The Harnessed Atom Services » The Harnessed Atom The Harnessed Atom The Harnessed Atom The Harnessed Atom is a new middle school science, technology, engineering, and math (STEM) curriculum extension that focuses on nuclear science and energy. It offers teachers accurate, unbiased, and up-to-date information on the roles that energy and nuclear science play in our lives. The curriculum includes essential principles and fundamental concepts of energy science. This teacher's kit is an updated and expanded edition of the acclaimed 1985 Harnessed Atom curriculum from the U.S. Department of Energy. It was developed with extensive input from classroom teachers across the country in pilot test reviews and workshops, as well as technical reviews from scientists and experts at universities, professional societies, and

467

Cavity cooling of a single atom  

E-Print Network (OSTI)

All conventional methods to laser-cool atoms rely on repeated cycles of optical pumping and spontaneous emission of a photon by the atom. Spontaneous emission in a random direction is the dissipative mechanism required to remove entropy from the atom. However, alternative cooling methods have been proposed for a single atom strongly coupled to a high-finesse cavity; the role of spontaneous emission is replaced by the escape of a photon from the cavity. Application of such cooling schemes would improve the performance of atom cavity systems for quantum information processing. Furthermore, as cavity cooling does not rely on spontaneous emission, it can be applied to systems that cannot be laser-cooled by conventional methods; these include molecules (which do not have a closed transition) and collective excitations of Bose condensates, which are destroyed by randomly directed recoil kicks. Here we demonstrate cavity cooling of single rubidium atoms stored in an intracavity dipole trap. The cooling mechanism res...

Maunz, P; Schuster, I; Syassen, N; Pinkse, P W H; Rempe, G

2004-01-01T23:59:59.000Z

468

Particles from Comet 81P/Wild 2 Viewed by ALS Microscopes  

NLE Websites -- All DOE Office Websites (Extended Search)

and Beamline 11.0.2, it was possible to combine this technique with the scanning transmission x-ray microscope (STXM) to image the spatial distribution of the compounds. Some...

469

Particles from Comet 81P/Wild 2 Viewed by ALS Microscopes  

NLE Websites -- All DOE Office Websites (Extended Search)

5.3.2 and Beamline 11.0.2, it was possible to combine this technique with the scanning transmission x-ray microscope (STXM) to image the spatial distribution of the compounds....

470

Microscopic Analysis of Agriculture Products, 4th EditionChapter 3 Feed Ingredients of Animal Origin  

Science Conference Proceedings (OSTI)

Microscopic Analysis of Agriculture Products, 4th Edition Chapter 3 Feed Ingredients of Animal Origin Methods and Analyses eChapters Methods - Analyses Books Downloadable pdf of Chapter 3 Feed Ingredients of Animal Or

471

Microscopic Analysis of Agriculture Products, 4th EditionChapter 4 Feed Ingredients of Marine Origin  

Science Conference Proceedings (OSTI)

Microscopic Analysis of Agriculture Products, 4th Edition Chapter 4 Feed Ingredients of Marine Origin Methods and Analyses eChapters Methods - Analyses Books Press Downloadable pdf of Chapter 4 Feed Ingredients of

472

Microscopic Analysis of Agriculture Products, 4th EditionChapter 7 Weed Seeds of Agricultural Importance  

Science Conference Proceedings (OSTI)

Microscopic Analysis of Agriculture Products, 4th Edition Chapter 7 Weed Seeds of Agricultural Importance Methods and Analyses eChapters Methods - Analyses Books Press Downloadable pdf of Chapter 7 Weed Seeds of A

473

Microscopic Analysis of Agriculture Products, 4th EditionChapter 8 Minerals of Agricultural Importance  

Science Conference Proceedings (OSTI)

Microscopic Analysis of Agriculture Products, 4th Edition Chapter 8 Minerals of Agricultural Importance Methods and Analyses eChapters Methods - Analyses Books Press Downloadable pdf of Chapter 8 Minerals of Agric

474

Telecontrol of Ultra-High Voltage Electron Microscope over Global IPv6 Network  

Science Conference Proceedings (OSTI)

Osaka University has an Ultra-High VoltageElectron Microscope (UHVEM) which can provide highquality specimen images for worldwide researchers. Forusability improvements, we have worked on thetelecontrol of the UHVEM. In this paper, we would liketo introduce ...

Toyokazu Akiyama; Shinji Shimojo; Shojiro Nishio; Yoshinori Kitatsuji; Steven Peltier; Thomas Hutton; Fang-Pang Lin

2003-01-01T23:59:59.000Z

475

Progress on PEEM3 - An Aberration Corrected X-Ray Photoemission Electron Microscope at the ALS  

E-Print Network (OSTI)

Electron Microscope at the ALS A.A.MacDowell 1 , J.Feng 1 ,the Advanced Light Source (ALS). An electron mirror combinedat the Advanced Light Source (ALS). This limit is due to the

2006-01-01T23:59:59.000Z

476

Microscopic Analysis of Agriculture Products, 4th EditionChapter 2 Feed Ingredients of Plant Origin  

Science Conference Proceedings (OSTI)

Microscopic Analysis of Agriculture Products, 4th Edition Chapter 2 Feed Ingredients of Plant Origin Methods and Analyses eChapters Methods - Analyses Books Press Downloadable pdf of Chapter 2 Feed Ingredients of

477

Manhattan Project: Atomic Bombardment, 1932-1938  

Office of Scientific and Technical Information (OSTI)

Solvay Physics Conference, Brussels, October 1933 ATOMIC BOMBARDMENT Solvay Physics Conference, Brussels, October 1933 ATOMIC BOMBARDMENT (1932-1938) Events > Atomic Discoveries, 1890s-1939 A Miniature Solar System, 1890s-1919 Exploring the Atom, 1919-1932 Atomic Bombardment, 1932-1938 The Discovery of Fission, 1938-1939 Fission Comes to America, 1939 M. Stanley Livingston and Ernest O. Lawrence in front of a 27-inch cyclotron, Rad Lab, University of California, Berkeley, 1934. In the 1930s, scientists learned a tremendous amount about the structure of the atom by bombarding it with sub-atomic particles. Ernest O. Lawrence's cyclotron, the Cockroft-Walton machine, and the Van de Graaff generator, developed by Robert J. Van de Graaff at Princeton University, were particle accelerators designed to bombard the nuclei of various elements to disintegrate atoms. Attempts of the early 1930s to split atoms, however, required huge amounts of energy because the first accelerators used proton beams and alpha particles as sources of energy. Since protons and alpha particles are positively charged, they Albert Einstein met substantial resistance from the positively charged target nucleus when they attempted to penetrate atoms. Even high-speed protons and alpha particles scored direct hits on a nucleus only approximately once in a million tries. Most simply passed by the target nucleus. Not surprisingly, Ernest Rutherford, Albert Einstein (right), and Niels Bohr regarded particle bombardment as useful in furthering knowledge of nuclear physics but believed it unlikely to meet public expectations of harnessing the power of the atom for practical purposes anytime in the near future. In a 1933 interview, Rutherford called such expectations "moonshine." Einstein compared particle bombardment with shooting in the dark at scarce birds, while Bohr, the Danish Nobel laureate, agreed that the chances of taming atomic energy were remote.

478

Theory of atomic motion in resonant radiation  

SciTech Connect

Atomic motion in resonant and near resonant electromagnetic radiation is investigated theoretically. The exposition begins with a study of atomic motion in a resonant standing light wave, with a view toward isotope separation by selective photodeflection, and proceeds to the investigation of more general problems of atomic motion in resonant radiation. The body of the work consists of six chapters, each of which was prepared as a manuscript for publication in the open literature.

Cook, R.J.

1980-03-01T23:59:59.000Z

479

Method for enhanced atomization of liquids  

DOE Patents (OSTI)

In a process for atomizing a slurry or liquid process stream in which a slurry or liquid is passed through a nozzle to provide a primary atomized process stream, an improvement which comprises subjecting the liquid or slurry process stream to microwave energy as the liquid or slurry process stream exits the nozzle, wherein sufficient microwave heating is provided to flash vaporize the primary atomized process stream.

Thompson, Richard E. (27121 Puerta del Oro, Mission Viejo, CA 92691); White, Jerome R. (44755 Wyandotte, Hemet, CA 92544)

1993-01-01T23:59:59.000Z

480

Response function and optimum configuration of semiconductor backscattered-electron detectors for scanning electron microscopes  

Science Conference Proceedings (OSTI)

A new highly efficient design for semiconductor detectors of intermediate-energy electrons (1-50 keV) for application in scanning electron microscopes is proposed. Calculations of the response function of advanced detectors and control experiments show that the efficiency of the developed devices increases on average twofold, which is a significant positive factor in the operation of modern electron microscopes in the mode of low currents and at low primary electron energies.

Rau, E. I. [Moscow State University (Russian Federation); Orlikovskiy, N. A. [Russian Academy of Sciences, Physical Technological Institute (Russian Federation); Ivanova, E. S. [Moscow State University (Russian Federation)

2012-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "atomic force microscope" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NIST Handbook of Basic Atomic Spectroscopic Data  

Science Conference Proceedings (OSTI)

... The compilation includes data for the neutral and singly-ionized atoms of all elements hydrogen through einsteinium (Z = 1-99). ... Access the Data. ...

2011-12-09T23:59:59.000Z

482

NIST Atomic Form Factors: Concerns with standard ...  

Science Conference Proceedings (OSTI)

... pair production cross-section in the nuclear field (? n ... upon angle (in f 0 ) and energy (in f ... All general theories make the isolated atom approximation ...

483

A History of the Atomic Energy Commission  

Energy.gov (U.S. Department of Energy (DOE))

A History of the Atomic Energy Commission - written by Alice L. BuckWashington, D.C.: U.S. Department of Energy, July 1983. 41 pp. 

484

Atom Probe Tomography and Transmission Electron Microscopy ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Atom probe tomography (APT) and analytical transmission .... of a Leaking Type 316 Socket Weld in a Boron Injection Tank Sampling Line.

485

Quantization of Atomic and Nuclear Rest Masses  

E-Print Network (OSTI)

We were able to quantize phenomenologically the first time the atomic and nuclear rest masses. Note that this quantization rule is justified for atoms and nuclei with different A, N and Z and the nuclei and atoms represent a coherent synchronized systems - a complex of coupled oscillators (resonators). The cooperative resonance synchronization mechanisms are responsible for explanation of how the electron volt world can influence the nuclear mega electron volt world. It means that we created new possibilities for inducing and controlling nuclear reactions by atomic processes.

F. A. Gareev; G. F. Gareeva; I. E. Zhidkova

2007-08-02T23:59:59.000Z

486

Prospects for Atomic-Scale Tomography  

Science Conference Proceedings (OSTI)

Abstract Scope, Atomic-scale tomography (AST) may be defined as any technique that ... Initial Age Hardening and Nanostructural Evolution in a Cu-Ni-P Alloy.

487

Materials Synthesis from Atoms to Systems | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

to produce unique single crystals and epitaxial structures that are deposited with atomic-level precision is critical for many applications, such as thermoelectrics,...

488

NIST Unveils Chip-Scale Atomic Clock  

Science Conference Proceedings (OSTI)

... 100 times smaller than any other atomic clock—has ... precise timekeeping in portable, battery-powered devices ... to be operated on batteries) and are ...

2012-12-20T23:59:59.000Z

489

Schroedinger's Cat in an Atomic Cage  

Science Conference Proceedings (OSTI)

... Schroedinger's Cat in an Atomic Cage. ... ``Schroedinger's cat'' soon became a shorthand way to refer to a whole class of superposed states. ...

490

Primary Atomic Frequency Standards at NIST  

Science Conference Proceedings (OSTI)

... a set of four quartz oscillators calibrated against the mean solar second [4 ... The cesium oven, operated near 100 C, creates a vapor of atoms that are ...

2001-02-04T23:59:59.000Z

491

NIST Atomic Physics Division 2000 - Current Directions  

Science Conference Proceedings (OSTI)

... Although these data are needed for magnetic fusion research, astronomy, and industry, there is ... Physics of Cold, Trapped Gases of Neutral Atoms. ...

492

Handbook of Basic Atomic Spectroscopic Data  

Science Conference Proceedings (OSTI)

... FW96 JR Fuhr and WL Wiese, NIST Atomic Transition Probability Tables, CRC Handbook of Chemistry and Physics, 77th ed., DR Lide, ed. CRC ...

2008-06-09T23:59:59.000Z

493

Critically Evaluated Atomic Transition Probabilities for Sulfur ...  

Science Conference Proceedings (OSTI)

... In this new work all ionization stages (except for hydro- genic) are covered. The data are presented in separate tables for each atom and ion. ...

2013-04-16T23:59:59.000Z

494

Atomic Resolution Coherent Diffractive Imaging and Ultrafast Science  

Science Conference Proceedings (OSTI)

A major scientific challenge is determining the 3-D atomic structure of small nanostructures, including single molecules. Coherent diffractive imaging (CDI) is a promising approach. Recent progress has demonstrated coherent diffraction patterns can be recorded from individual nanostructures and phased to reconstruct their structure. However, overcoming the dose limit imposed by radiation damage is a major obstacle toward the full potential of CDI. One approach is to use ultrafast x-ray or electron pulses. In electron diffraction, amplitudes recorded in a diffraction pattern are unperturbed by lens aberrations, defocus, and other microscope resolution-limiting factors. Sub-A signals are available beyond the information limit of direct imaging. Significant contrast improvement is obtained compared to high-resolution electron micrographs. progress has also been made in developing time-resolved electron diffraction and imaging for the study of ultrafast dynamic processes in materials. This talk will cover these crosscutting issues and the convergence of electron and x-ray diffraction techniques toward structure determination of single molecules.

Zuo, Jian-min [University of Illinois

2011-01-12T23:59:59.000Z

495

Kirland Air Force Base wins Robot Rodeo  

NLE Websites -- All DOE Office Websites (Extended Search)

Kirland Air Force Base wins Robot Rodeo Kirland Air Force Base wins Robot Rodeo Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Kirland Air Force Base wins Robot Rodeo Hazardous devices teams test their maneuvering skills July 1, 2013 Students from Valarde Middle School won the video competition in the Best in Show and Middle School categories. They are shown here with sixth-grade teacher Jimmy Lara. During the Robot Rodeo, an unseen operator attempts to conduct reconnaissance and rescue injured personnel Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Kirland Air Force Base wins Robot Rodeo Police and public safety teams from as far away as New Jersey recently convened in Albuquerque to test their ability to remotely deploy robots

496

Casimir force at a knife's edge  

E-Print Network (OSTI)

The Casimir force has been computed exactly for only a few simple geometries, such as infinite plates, cylinders, and spheres. We show that a parabolic cylinder, for which analytic solutions to the Helmholtz equation are ...

Graham, Noah

497

Definition: Forced Outage | Open Energy Information  

Open Energy Info (EERE)

Forced Outage Forced Outage Jump to: navigation, search Dictionary.png Forced Outage The removal from service availability of a generating unit, transmission line, or other facility for emergency reasons., The condition in which the equipment is unavailable due to unanticipated failure.[1] Related Terms transmission lines, transmission line References ↑ Glossary of Terms Used in Reliability Standards An i LikeLike UnlikeLike You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Forced_Outage&oldid=480310" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data

498

Halving the Casimir force with conductive oxides  

E-Print Network (OSTI)

The possibility to modify the strength of the Casimir effect by tailoring the dielectric functions of the interacting surfaces is regarded as a unique opportunity in the development of Micro- and NanoElectroMechanical Systems. In air, however, one expects that, unless noble metals are used, the electrostatic force arising from trapped charges overcomes the Casimir attraction, leaving no room for exploitation of Casimir force engineering at ambient conditions. Here we show that, in the presence of a conductive oxide, the Casimir force can be the dominant interaction even in air, and that the use of conductive oxides allows one to reduce the Casimir force up to a factor of 2 when compared to noble metals.

S. de Man; K. Heeck; R. J. Wijngaarden; D. Iannuzzi

2009-01-23T23:59:59.000Z

499

Scattering theory approach to electrodynamic Casimir forces  

E-Print Network (OSTI)

We give a comprehensive presentation of methods for calculating the Casimir force to arbitrary accuracy, for any number of objects, arbitrary shapes, susceptibility functions, and separations. The technique is applicable ...

Rahi, Sahand Jamal

2010-01-01T23:59:59.000Z

500

Weather Noise Forcing of Surface Climate Variability  

Science Conference Proceedings (OSTI)

A model-based method to evaluate the role of weather noise forcing of low-frequency variability of surface properties, including SST, surface currents, land surface temperature, and soil moisture, is presented. In this procedure, an “interactive ...

Edwin K. Schneider; Meizhu Fan

2007-09-01T23:59:59.000Z