National Library of Energy BETA

Sample records for atomic bomb survivors

  1. Radiation May Indirectly Impair Growth Resulting in Reduced Standing Height via Subclinical Inflammation in Atomic-Bomb Survivors Exposed at Young Ages

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nakashima, Eiji; Neriishi, Kazuo; Hsu, Wan-Ling

    2015-01-01

    For young atomic-bomb (A-bomb) survivors, A-bomb radiation’s (total) effect on standing height is thought to comprise the sum of direct effect and indirect effect via inflammation. With the data of five inflammatory markers—white blood cell count, sialic acid, corrected erythrocyte sedimentation rate (ESR), ? 1 globulin, and ? 2 globulin—obtained in adulthood during the period 1988 to 1992, a summary inflammatory index was constructed as a surrogate for the five subclinical inflammatory markers. For 3,327 A-bomb survivors exposed at ages of less than 25 years, a structural equation modelmore »was analyzed to measure direct radiation effects on adult height as well as mediating effect of radiation via inflammation on the height after adjustment for other risk factors, smoking, cancer, inflammatory disease, obesity, and diabetes mellitus. The mediation proportion of the radiation effect on height via inflammation was approximately 5% for both sexes for all ages, and indirect dose effects via inflammation were statistically significant for both sexes combined and for females exposed at ages 0 to 5 years. Indirect dose effects for all ages via sialic acid, corrected ESR, and ? 2 globulin were marginally significant for both sexes combined and for females. These proportions are likely underestimated. « less

  2. Biomarkers of Radiosensitivity in A-Bomb Survivors Pregnant at the Time of Bombings in Hiroshima and Nagasaki

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miles, Edward F.; Tatsukawa, Yoshimi; Funamoto, Sachiyo; Kamada, Naoko; Nakashima, Eiji; Kodama, Yoshiaki; Seed, Thomas; Kusonoki, Yoichiro; Nakachi, Kei; Fujiwara, Saeko; et al

    2011-01-01

    Purpose . There is evidence in the literature of increased maternal radiosensitivity during pregnancy. Materials and Methods . We tested this hypothesis using information from the atomic-bomb survivor cohort, that is, the Adult Health Study database at the Radiation Effects Research Foundation, which contains data from a cohort of women who were pregnant at the time of the bombings of Hiroshima and Nagasaki. Previous evaluation has demonstrated long-term radiation dose-response effects. Results/Conclusions . Data on approximately 250 women were available to assess dose-response rates for serum cholesterol, white blood cell count, erythrocyte sedimentation rate, and serum hemoglobin, and onmore »approximately 85 women for stable chromosome aberrations, glycophorin A locus mutations, and naïve CD4 T-cell counts. Although there is no statistically significant evidence of increased radiosensitivity in pregnant women, the increased slope of the linear trend line in the third trimester with respect to stable chromosome aberrations is suggestive of an increased radiosensitivity. « less

  3. Gosling, The Manhattan Project: Making the Atomic Bomb | Department...

    Energy Savers [EERE]

    Operational Management History Historical Resources History Publications Gosling, The Manhattan Project: Making the Atomic Bomb Gosling, The Manhattan Project: Making...

  4. The Manhattan Project: Making the atomic bomb

    SciTech Connect (OSTI)

    Gosling, F.G.

    1994-09-01

    This article is a short history of the origins and development of the American atomic bomb program during World War II. Beginning with the scientific developments of the pre-war years, the monograph details the role of US government in conducting a secret, nationwide enterprise that took science from the laboratory and into combat with an entirely new type of weapon. The monograph concludes with a discussion of the immediate postwar period, the debate over the Atomic Energy Act of 1946, and the founding of the Atomic Energy Commission.

  5. President Roosevelt Approves Production of Atomic Bomb | National...

    National Nuclear Security Administration (NNSA)

    Approves Production of Atomic Bomb | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  6. The Manhattan Project: Making the Atomic Bomb. 1999 edition.

    SciTech Connect (OSTI)

    Gosling, F.G.

    1999-01-01

    ``The Manhattan Project: Making the Atomic Bomb`` is a short history of the origins and development of the American atomic bomb program during World War II. Beginning with the scientific developments of the pre-war years, the monograph details the role of the United States government in conducting a secret, nationwide enterprise that took science from the laboratory and into combat with an entirely new type of weapon. The monograph concludes with a discussion of the immediate postwar period, the debate over the Atomic Energy Act of 1946, and the founding of the Atomic Energy Commission.

  7. Day After Trinity: Oppenheimer and the Atomic Bomb

    SciTech Connect (OSTI)

    Documentary

    2005-10-31

    On October 31st at 4:00 pm in Panofsky Auditorium SLAC’s Colloquium Series will present the exceptional Oscar-nominated documentary The Day After Trinity. The film offers invaluable insight into historic events which have forever changed the face of our world – this screening should not to be missed. After witnessing the tremendous destructive power of the atomic bomb, J. Robert Oppenheimer declared “I have become death”. Still topically relevant a quarter of a century since its release, Director Jon Else’s documentary uses interviews, archival footage, and narration to reveal the internal landscape of the man whose leadership at Los Alamos, New Mexico, defined the rise of the Manhattan Project and the beginning of the Atomic Age. The Day After Trinity traces the unexpected path of Oppenheimer’s career - from his formation of the Los Alamos colony and the first successful atomic bomb detonation at the Trinity test site in 1945, to his final years spent branded as a security risk and excluded from the atomic energy research he pioneered due to his opposition to the development of the Hydrogen bomb.

  8. Workshop Report on Atomic Bomb Dosimetry--Residual Radiation Exposure: Recent Research and Suggestions for Future Studies

    SciTech Connect (OSTI)

    2013-06-06

    There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewed at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.

  9. The development of the atomic bomb, Los Alamos

    SciTech Connect (OSTI)

    Seidel, R.W.

    1993-11-01

    The historical presentation begins with details of the selection of Los Alamos as the site of the Army installation. Wartime efforts of the Army Corps of Engineers, and scientists to include the leader of Los Alamos, Robert Oppenheimer are presented. The layout and construction of the facilities are discussed. The monumental design requirements of the bombs are discussed, including but not limited to the utilization of the second choice implosion method of detonation, and the production of bomb-grade nuclear explosives. The paper ends with a philosophical discussion on the use of nuclear weapons.

  10. Operation Greenhouse. Scientific Director's report of atomic-weapon tests at Eniwetok, 1951. Annex 2. 4. Experimental data obtained in the field. Part 1. Dosimetry using mice. Part 2. Depth dosimetry of unit-density materials. Part 3. Biological dosimetry of atomic bombs, using Tradescantia

    SciTech Connect (OSTI)

    Anderson, E.C.; Benson; Brennan, J.T.; Chambers, F.W.; Conger

    1985-09-01

    Topics include: The Biological Effectiveness of Neutron Radiation from an Atomic Bomb; Radiation Hazards Associated with Passage Through an Atomic Bomb Cloud.

  11. Plowshare Program - American Atomic Bomb Tests For Industrial Applications

    SciTech Connect (OSTI)

    2012-04-22

    The United States Atomic Energy Commission (AEC) established the Plowshare Program as a research and development activity to explore the technical and economic feasibility of using nuclear explosives for industrial applications. The reasoning was that the relatively inexpensive energy available from nuclear explosions could prove useful for a wide variety of peaceful purposes. The Plowshare Program began in 1958 and continued through 1975. Between December 1961 and May 1973, the United States conducted 27 Plowshare nuclear explosive tests comprising 35 individual detonations. Conceptually, industrial applications resulting from the use of nuclear explosives could be divided into two broad categories: 1) large-scale excavation and quarrying, where the energy from the explosion was used to break up and/or move rock; and 2) underground engineering, where the energy released from deeply buried nuclear explosives increased the permeability and porosity of the rock by massive breaking and fracturing. Possible excavation applications included: canals, harbors, highway and railroad cuts through mountains, open pit mining, construction of dams, and other quarry and construction-related projects. Underground nuclear explosion applications included: stimulation of natural gas production, preparation of leachable ore bodies for in situ leaching, creation of underground zones of fractured oil shale for in situ retorting, and formation of underground natural gas and petroleum storage reservoirs.

  12. Vietnam -- Bomb Crater Fish Ponds [Roots

    E-Print Network [OSTI]

    Campanella, Thomas J

    1995-01-01

    E T N A M Bomb Crater Fish Ponds Thomas J. Campanella One ofthe bomb craters into ponds for growing fish, a staple of

  13. arXiv:1210.5067v1[math.HO]18Oct2012 Of Bombs and Boats and Mice and Men

    E-Print Network [OSTI]

    Redner, Sidney

    World War Two, the US Atomic Energy Commission released a film of the 1945 Trinity atomic bomb test. The energy yield remained secret, having been estimated only with some difficulty. So the Americans were most. Figure 1: the Trinity atomic bomb test. The way the story is often told nowadays, his technique

  14. Atomic rivals

    SciTech Connect (OSTI)

    Goldschmidt, B.

    1990-01-01

    This book is a memoir of rivalries among the Allies over the bomb, by a participant and observer. Nuclear proliferation began in the uneasy wartime collaboration of the United States, England, Canada, and Free France to produce the atom bomb. Through the changes of history, a young French chemist had a role in almost every act of this international drama. This memoir is based on Goldschmidt's own recollections, interviews with other leading figures, and 3,000 pages of newly declassified documents in Allied archives. From his own start as Marie Curie's lab assistant, Goldschmidt's career was closely intertwined with Frances complicated rise to membership in the nuclear club. As a refugee from the Nazis, he became part of the wartime nuclear energy project in Canada and found himself the only French scientist to work (although briefly) on the American atom bomb project.

  15. Anticipating the atom: popular perceptions of atomic power before Hiroshima 

    E-Print Network [OSTI]

    d'Emal, Jacques-Andre Christian

    1994-01-01

    Before Hiroshima made the Bomb an object of popular concern, possible implications and applications of atomic physics had been discussed in the public forum. The new science of X-rays and radium promised the possibilities of unlimited energy...

  16. Early Bomb Radiocarbon Detected in Palau Archipelago Corals

    E-Print Network [OSTI]

    Glynn, Danielle; Druffel, Ellen; Griffin, Sheila; Dunbar, R. B.; Osbourne, M.; Sanchez-Cabeza, J.-A.

    2013-01-01

    bomb 14 C from surface thermonuclear weapons testing in theinjection of 14 C by thermonuclear bomb testing occurredwhere the largest US thermonuclear weapons test occurred on

  17.  EARLY BOMB RADIOCARBON DETECTED IN PALAU ARCHIPELAGO CORALS

    E-Print Network [OSTI]

    Glynn, Danielle S; Druffel, Ellen R.M.; Griffin, Sheila; Dunbar, Robert; Osborne, Michael; Sanchez-Cabeza, Joan Albert

    2013-01-01

    bomb 14 C from surface thermonuclear weapons testing in theinjection of 14 C by thermonuclear bomb testing occurredwhere the largest US thermonuclear weapons test occurred on

  18. UV spectra, bombs, and the solar atmosphere

    E-Print Network [OSTI]

    Judge, Philip G

    2015-01-01

    A recent analysis of UV data from the Interface Region Imaging Spectrograph {\\em IRIS} reports plasma "bombs" with temperatures near \\hot{} within the solar photosphere. This is a curious result, firstly because most bomb plasma pressures $p$ (the largest reported case exceeds $10^3$ dyn~cm$^{-2}$) fall well below photospheric pressures ($> 7\\times10^3$), and secondly, UV radiation cannot easily escape from the photosphere. In the present paper the {\\em IRIS} data is independently analyzed. I find that the bombs arise from plasma originally at pressures between $\\lta80$ and 800 dyne~cm$^{-2}$ before explosion, i.e. between $\\lta850$ and 550 km above $\\tau_{500}=1$. This places the phenomenon's origin in the low-mid chromosphere or above. I suggest that bomb spectra are more compatible with Alfv\\'enic turbulence than with bi-directional reconnection jets.

  19. For Immediate Release --Monday, March 30, 2015 Growing global phenomenon of atomic tourism sparks

    E-Print Network [OSTI]

    Morris, Joy

    was introduced to the devastating power of an atomic bomb, and as the anniversary phenomenon of atomic tourism sparks unique research project by U of L professor on a unique project that examines the growing global phenomenon of atomic tourism

  20. special focus Women war survivors Leadership training

    E-Print Network [OSTI]

    R SURVIVORS Overcoming the devastating effects of war in liberia 26 HOPE SPRINgS ETERNal a new programme

  1. DS02: A New Dosimetry System for A-Bomb Survivor Studies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153 METHODSDOE/LaborSeptemberEnergy DS02: A New

  2. 180 Degrees Out: The Change in US Strategic Bombing Applications 1935-1955

    E-Print Network [OSTI]

    Curatola, John

    2008-12-04

    in rail transportation, rifled guns, and the telegraph set important precedents for future battles. Along with the industrial revolution of the 19th century, machined weapons and materials became increasingly important to armies engaged in war... Day VHB Very Heavy Bomber VLR Very Long Range WSEG Weapons System Evaluation Group viii LIST OF ILLUSTRATIONS Figure Page 1. Second Atomic Bomb Crew……………………………….. 3 2. YB-17 in Flight...

  3. THE DECLINE OF PUBLIC CONCERN OVER THE ATOM BOMB

    E-Print Network [OSTI]

    Lowther, Mary P.

    1973-04-01

    sufficient preformulated opinions about nuclear technology to be complacent, and that nuc lear technology is no longer an issue....

  4. President Roosevelt Approves Production of Atomic Bomb | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPosterNational Nuclear

  5. Manhattan Project: The Atomic Bombing of Hiroshima, August 6, 1945

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy ofArticle)SciTechNorris Bradbury,Cubes of1945Glenn

  6. Manhattan Project: The Atomic Bombing of Nagasaki, August 9, 1945

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy ofArticle)SciTechNorris Bradbury,Cubes of1945GlennNagasaki,

  7. The Manhattan Project: Making the Atomic Bomb | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency MaineAutoSecurity | Departmenthistory of the

  8. Publication of New Atomic Bomb Radiation Dosimetry System | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget || Department ofDepartmentEnergy Policy Act August

  9. Gosling, The Manhattan Project: Making the Atomic Bomb | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services »Information1Department of Energy GoodyearGosling

  10. CS 3214, Spring 2012 Project 1: Defusing a Binary Bomb

    E-Print Network [OSTI]

    Butt, Ali R.

    your group's bomb, one (and only one) of the group members should point your Web browser to the bomb request daemon at http://cs3214.cs.vt.edu:15213 Fill out the HTML form with the CS SLO IDs of your team browser in a tar file called bombk.tar, where k is the unique number of your bomb. Save the bombk.tar file

  11. Statistical Analysis of Small Ellerman Bomb Events

    E-Print Network [OSTI]

    Nelson, C J; Erdelyi, R; Huang, Z; Madjarska, M; Mathioudakis, M; Mumford, S; Reardon, K; 10.1007/s11207-012-0222-3

    2013-01-01

    The properties of Ellerman bombs (EBs), small-scale brightenings in the H-alpha line wings, have proved difficult to establish due to their size being close to the spatial resolution of even the most advanced telescopes. Here, we aim to infer the size and lifetime of EBs using high-resolution data of an emerging active region collected using the Interferometric BIdimensional Spectrometer (IBIS) and Rapid Oscillations of the Solar Atmosphere (ROSA) instruments as well as the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We develop an algorithm to track EBs through their evolution, finding that EBs can often be much smaller (around 0.3") and shorter lived (less than 1 minute) than previous estimates. A correlation between G-band magnetic bright points and EBs is also found. Combining SDO/HMI and G-band data gives a good proxy of the polarity for the vertical magnetic field. It is found that EBs often occur both over regions of opposite polarity flux and strong unipolar fie...

  12. Global Warming Time Bomb:* Actions Needed to Avert Disaster

    E-Print Network [OSTI]

    Hansen, James E.

    Global Warming Time Bomb:* Actions Needed to Avert Disaster James Hansen 26 October 2009 Club statements relating to policy are personal opinion Global Warming Status 1. Knowledge Gap Between - What Benefits of Solution Despite the publicity that global warming has received, there is a large gap between

  13. Researchers seek to clean up hazardous legacy of bomb production

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    - braska Water Research Initiative Water Quality Research Team. More than 50 years ago, tho u- sands of workers produced more than 3 million bombs at the plant, which is located 30 miles north of Lincoln alternatives to incineration. Incineration is the most common treatment for munitions-contami- nated soil

  14. Department of public SafetyNovember 23, 2010 BOMB THREAT

    E-Print Network [OSTI]

    Oregon, University of

    at the Knight Library reported having found a threatening message on a chalkboard indicating that bombs were scheduled to explode on November 24, 2010 at 12:33 a.m., in both the Knight Library and Lillis Business for directions or other types of help, as this can be a ploy to get close for an attack. o If you feel you

  15. Method for cleaning bomb-reduced uranium derbies

    DOE Patents [OSTI]

    Banker, John G. (Boulder, CO); Wigginton, Hubert L. (Oak Ridge, TN); Beck, David E. (Knoxville, TN); Holcombe, Cressie E. (Knoxville, TN)

    1981-01-01

    The concentration of carbon in uranium metal ingots induction cast from derbies prepared by the bomb-reduction of uranium tetrafluoride in the presence of magnesium is effectively reduced to less than 100 ppm by removing residual magnesium fluoride from the surface of the derbies prior to casting. This magnesium fluoride is removed from the derbies by immersing them in an alkali metal salt bath which reacts with and decomposes the magnesium fluoride. A water quenching operation followed by a warm nitric acid bath and a water rinse removes the residual salt and reaction products from the derbies.

  16. Bomb squads saddle-up for Robot Rodeo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & InspectionsBerylliumBiomimetic(cousin -in-law toof EnergyBomb

  17. Operation Greenhouse. Scientific Director's report of atomic-weapon tests at Eniwetok, 1951. Annex 8. 3. Special radar, radio, and photographic studies of weapons effects. Part 1, 2, 3, and 4

    SciTech Connect (OSTI)

    Not Available

    1985-09-01

    Contents include: Part 1--radar-scope photography; Part 2--effects of atomic detonation on radio propagation; Part 3; photographic assessment of bomb damage; Part 4--film fogging studies.

  18. The energy density of jellyfish: Estimates from bomb-calorimetry and proximate-composition

    E-Print Network [OSTI]

    Hays, Graeme

    The energy density of jellyfish: Estimates from bomb-calorimetry and proximate-composition Thomas K techniques are described to calculate energy densities for the bell, gonad and oral arm tissues of three). These proximate data were subsequently converted to energy densities. The two techniques (bomb- calorimetry

  19. Potential for Cardiovascular Exercise Dosing to Improve Cardiorespiratory Fitness in Breast Cancer Survivors

    E-Print Network [OSTI]

    Burnett, Dave

    2013-05-31

    With an increase in early detection and curative treatment for breast cancer, there is a growing number of breast cancer survivors. Cancer survivors are at greater risk than their age matched peers for long-term health ...

  20. Quality of Life Concerns in Young Adult Survivors of Childhood Cancer: A Qualitative Research Investigation 

    E-Print Network [OSTI]

    Puckett, Stevie

    2013-06-13

    , while balancing the dual roles of young adult and survivor. Survivors revealed difficulties in essentially every area of their lives (school, work, friendships, family, romance, self-esteem, outlook and attitudes, etc.), and though many could identify...

  1. MEDICAL EFFECTS OF ATOMIC BOMBS THE REPORT OF THE JOINT COMMISSION...

    Office of Scientific and Technical Information (OSTI)

    service. Visit OSTI to utilize additional information resources in energy science and technology. A microfiche or paper copy of this document is also available for sale to the...

  2. Commemoration of the 60th Annniversary of The Atomic Bomb Casualty...

    Office of Environmental Management (EM)

    Publications Radiation Effects Research Foundation Links Past and Future Report of the Blue Ribbon Panel on the Review of the Radiation Effects Research Foundation Publication of...

  3. Sandia grew out of America's World War II atomic bomb development effort. Toda

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en NNSAReference toSample|

  4. Commemoration of the 60th Annniversary of The Atomic Bomb Casualty

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment of Energyof theActionDepartmentDepartment

  5. The Manhattan Project: Making of the Atomic Bomb | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutory Authority J-I-12 GeV CEBAFTheTheManagement ofManagement

  6. Atomic Bombs, Winning the War and Women in Pants: Voices of the Manhattan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | DepartmentPeer ReviewEfficiency |Project Speak of the

  7. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 6. 8. cloud radiation field

    SciTech Connect (OSTI)

    Koch, G.E.

    1985-04-01

    The object of this study was to measure the relationship between the spatial distribution of the radioactive fission products and the resultant radioactive field in an atomic-bomb cloud. Data obtained by the high-intensity rate meters and the jet impactors lead to the following conclusions: (1) There is a definite correlation between the particulate fission-particle density and the gamma-radiation intensity measured within the cloud; (2) The effective energy of the gamma radiation within the atomic bomb cloud is quite low, being of the order of 200 keV; (3) The structure of the atomic bomb cloud resembles a chimney with puffs of radioactive matter in the flue of the chimney; (4) The average roentgen dose accumulated by a plane passing through a cloud of the type tested in the Dog and Easy Shots 210 sec after bomb detonation is approximately 125 r. The average contamination on a plane after passing through a cloud is between 10 and 20 r/hr; no contamination could be detected within the plane; (5) The gamma-radiation effects extend beyond the limits of the particulate radioactive fission products; and, (6) The visible cloud adn the fission-product particulate cloud from the bomb do not coincide exactly; the visible cloud extended beyond the fission-product-cloud in those instances where data were obtained.

  8. Fluid-filled bomb-disrupting apparatus and method

    DOE Patents [OSTI]

    Cherry, Christopher R. (Albuquerque, NM)

    2001-01-01

    An apparatus and method for disarming improvised bombs are disclosed. The apparatus comprises a fluid-filled bottle or container made of plastic or another soft material which contains a fixed or adjustable, preferably sheet explosive. The charge is fired centrally at its apex and can be adjusted to propel a fluid projectile that is broad or narrow, depending upon how it is set up. In one embodiment, the sheet explosive is adjustable so as to correlate the performance of the fluid projectile to the disarming needs for the improvised explosive device (IED). Common materials such as plastic water bottles or larger containers can be used, with the sheet explosive or other explosive material configured in a general chevron-shape to target the projectile toward the target. In another embodiment, a thin disk of metal is conformably mounted with the exterior of the container and radially aligned with the direction of fire of the fluid projectile. Depending on the configuration and the amount of explosive and fluid used, a projectile is fired at the target that has sufficient energy to penetrate rigid enclosures from fairly long stand-off and yet is focused enough to be targeted to specific portions of the IED for disablement.

  9. Diagnostics of Ellerman Bombs with High-resolution Spectral Data

    E-Print Network [OSTI]

    Li, Z; Guo, Y; Chen, P F; Xu, Z; Cao, W

    2015-01-01

    Ellerman bombs (EBs) are tiny brightenings often observed near sunspots. The most impressive characteristic of the EB spectra is the two emission bumps in both wings of the H$\\alpha$ and \\ion{Ca}{II} 8542 {\\AA} lines. High-resolution spectral data of three small EBs were obtained on 2013 June 6 with the largest solar telescope, the 1.6 meter New Solar Telescope (NST), at the Big Bear Solar Observatory. The characteristics of these EBs are analyzed. The sizes of the EBs are in the range of 0.3\\arcsec\\--0.8\\arcsec\\ and their durations are only 3--5 minutes. Our semi-empirical atmospheric models indicate that the heating occurs around the temperature minimum region with a temperature increase of 2700--3000 K, which is surprisingly higher than previously thought. The radiative and kinetic energies are estimated to be as high as 5$\\times$10$^{25}$--3.0$\\times$10$^{26}$ ergs despite the small size of these EBs. Observations of the magnetic field show that the EBs appeared just in a parasitic region with mixed polar...

  10. www.yalecancercenter.org A Survivor's Perspective: Lung

    E-Print Network [OSTI]

    O'Hern, Corey S.

    www.yalecancercenter.org A Survivor's Perspective: Lung Cancer Guest Expert: Janet Brown www lung cancers and cutaneous lymphomas. If you would like to join the conversation, you can contact adenocarcinoma lung cancer. It started in my right lung and spread to 3 spots on my spine and to the pons area

  11. Application of Bomb Radiocarbon Chronologies to Shortfin Mako (Isurus oxyrinchus)

    SciTech Connect (OSTI)

    Ardizzone, D; Cailliet, G M; Natanson, L J; Andrews, A H; Kerr, L A; Brown, T A

    2007-07-16

    There is an ongoing disagreement regarding the aging of the shortfin mako due to a difference of interpretation in the periodic deposition of vertebral growth band pairs, especially for the larger size classes. Using analysis of length-month information, tagging data, and length-frequency analysis, concluded that two band pairs were formed in the vertebral centrum every year (biannual band-pair interpretation). Cailliet et al. (1983), however, presented growth parameters based on the common assumption that one band pair forms annually (annual band-pair interpretation). Therefore, growth rates obtained by Pratt & Casey (1983) were twice that of Cailliet et al. (1983) and could lead to age discrepancies of about 15 years for maximum estimated ages on the order of 30 from the annual band-pair interpretation. Serious consequences in the population dynamics could occur for this species if inputs are based on an invalid age interpretation. The latest Fishery Management Plan (FMP) for Highly Migratory Species (HMS), for example, adopted the biannual band pair deposition hypothesis because it apparently fit the observed growth patterns best (Pacific Fishery Management Council 2003). However, the ongoing uncertainty about the aging of the shortfin mako was acknowledged and it was recommended that an endeavor to resolve this issue be made. Since 1983, five additional studies on the age and growth of the shortfin mako have been conducted (Chan 2001, Campana et al. 2002, Hsu 2003, Ribot-Carballal et al. 2005, Bishop et al. 2006). Using Marginal Increment Ratio (MIR), Hsu (2003) indicated the formation of annual translucent bands from July to September in western North Pacific Ocean shortfin makos. Using Marginal Increment Analysis (MIA) Ribot-Carballal et al. (2005) supported the annual band-pair interpretation for 109 shortfin makos collected in the eastern Pacific Ocean. Although the study provided support for annual band-pair deposition, no statistical test was performed and the number of samples for MIA analysis was insufficient for some months. Hence, unequivocal validation of shortfin mako age estimates has yet to be accomplished. Atmospheric testing of thermonuclear devices in the 1950s and 1960s effectively doubled the natural atmospheric radiocarbon ({sup 14}C). The elevated {sup 14}C levels were first recorded in 1957-58, with a peak around 1963. As a consequence, {sup 14}C entered the ocean through gas exchange with the atmosphere at the ocean surface and in terrestrial runoff. Despite variable oceanographic conditions, a worldwide rise of the bomb {sup 14}C signal entered the ocean mixed layer as dissolved inorganic carbon (DIC) in 1957-58. The large amounts of {sup 14}C released from the bomb tests produced a signature that can be followed through time, throughout the marine food web, and into deeper waters. The marked increase of radiocarbon levels was first measured in the DIC of seawater and in biogenic marine carbonates of hermatypic corals in Florida. Subsequently, this record was documented in corals from other regions and in the thallus of rhodoliths. The accumulation of radiocarbon in the hard parts of most marine organisms in the mixed layer (such as fish otoliths and bivalves) was synchronous with the coral time-series. This technique has been used to validate age estimates and longevity of numerous bony fishes to date, as well as to establish bomb radiocarbon chronologies from different oceans. In the first application of this technique to lamnoid sharks, validated annual band-pair deposition in vertebral growth bands for the porbeagle (Lamna nasus) aged up to 26 years. Radiocarbon values from samples obtained from 15 porbeagle caught in the western North Atlantic Ocean (some of which were known-age) produced a chronology similar in magnitude to the reference carbonate chronology for that region. The observed phase shift of about 3 years was attributed to different sources of carbon between vertebrae and those for otoliths, bivalves and corals. In the same study by Campana et al. (2002), a single vertebra fro

  12. The Trauma Story: A Qualitative and Quantitative Exploration of Iraqi Survivors' Experiences 

    E-Print Network [OSTI]

    Shoeb, Marwa H

    2006-01-01

    Qualitative and Quantitative Exploration of Iraqi Survivors’ Experiences by Marwa Hossam fShoeb J B.S. (Brown University) 2002 A thesis

  13. Risk Factors Associated With Secondary Sarcomas in Childhood Cancer Survivors: A Report From the Childhood Cancer Survivor Study

    SciTech Connect (OSTI)

    Henderson, Tara O.; Rajaraman, Preetha; Stovall, Marilyn; Constine, Louis S.; Olive, Aliza; Smith, Susan A.; Mertens, Ann; Meadows, Anna; Neglia, Joseph P.; Hammond, Sue; Whitton, John; Inskip, Peter D.; Robison, Leslie L.; Diller, Lisa

    2012-09-01

    Purpose: Childhood cancer survivors have an increased risk of secondary sarcomas. To better identify those at risk, the relationship between therapeutic dose of chemotherapy and radiation and secondary sarcoma should be quantified. Methods and Materials: We conducted a nested case-control study of secondary sarcomas (105 cases, 422 matched controls) in a cohort of 14,372 childhood cancer survivors. Radiation dose at the second malignant neoplasm (SMN) site and use of chemotherapy were estimated from detailed review of medical records. Odds ratios (ORs) and 95% confidence intervals were estimated by conditional logistic regression. Excess odds ratio (EOR) was modeled as a function of radiation dose, chemotherapy, and host factors. Results: Sarcomas occurred a median of 11.8 years (range, 5.3-31.3 years) from original diagnosis. Any exposure to radiation was associated with increased risk of secondary sarcoma (OR = 4.1, 95% CI = 1.8-9.5). A dose-response relation was observed, with elevated risks at doses between 10 and 29.9 Gy (OR = 15.6, 95% CI = 4.5-53.9), 30-49.9 Gy (OR = 16.0, 95% CI 3.8-67.8) and >50 Gy (OR = 114.1, 95% CI 13.5-964.8). Anthracycline exposure was associated with sarcoma risk (OR = 3.5, 95% CI = 1.6-7.7) adjusting for radiation dose, other chemotherapy, and primary cancer. Adjusting for treatment, survivors with a first diagnosis of Hodgkin lymphoma (OR = 10.7, 95% CI = 3.1-37.4) or primary sarcoma (OR = 8.4, 95% CI = 3.2-22.3) were more likely to develop a sarcoma. Conclusions: Of the risk factors evaluated, radiation exposure was the most important for secondary sarcoma development in childhood cancer survivors; anthracycline chemotherapy exposure was also associated with increased risk.

  14. Revision of the stratospheric bomb 14CO2 inventory Hesshaimer, Vago and Levin, Ingeborg

    E-Print Network [OSTI]

    Gertz, Michael

    Nutzungsbedingungen: http://archiv.ub.uni-heidelberg.de/volltextserver/help/license_urhg.html #12;J O U R N A L tracing the global carbon cycle with bomb 14 C02. To oppose this criticism, we perform here in the northern poleward stratosphere. We are also able to clear away the reasons commonly advanced to call

  15. Separating natural and bomb-produced radiocarbon in the ocean: The potential alkalinity method

    E-Print Network [OSTI]

    the atmosphere to the ocean on a similar time scale and that they penetrate into the ocean in a similar mannerSeparating natural and bomb-produced radiocarbon in the ocean: The potential alkalinity method M. Key Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey, USA

  16. Changes in Body Image and Sexuality in Rural Breast Cancer Survivors During a Weight Loss and Weight Maintenance Intervention

    E-Print Network [OSTI]

    Hunter, Rebecca

    2015-08-31

    This study evaluated changes in body image dimensions in breast cancer survivors after a weight control trial and predictors of those changes. Postmenopausal rural breast cancer survivors enrolled in an 18-month phone-based weight loss and weight...

  17. Constraining the propagation of bomb-radiocarbon through the dissolved organic carbon (DOC) pool in the northeast Pacific Ocean

    E-Print Network [OSTI]

    Beaupré, Steven R; Druffel, Ellen R.M.

    2009-01-01

    dissolved organic carbon (DOC) pool in the northeast Paci?c14 C has penetrated the DOC pool to depths of Z450 m, thoughDIC) suggest that the DOC pool in the CNP contains bomb- 14

  18. Bomb-test 90Sr in Pacific and Indian Ocean surface water as recorded by banded corals

    E-Print Network [OSTI]

    Toggweiler, JR; Trumbore, S

    1985-01-01

    the eastern tropical Pacific Ocean, Geophys. Res. Lett. 8,Bomb tritium in the Pacific Ocean, J. Geophys. Res. 80,of tritium in the Pacific Ocean, J. Phys. Oceanogr. II, 3,

  19. Case Study: Iran, Islam, the NPT, and the Bomb

    SciTech Connect (OSTI)

    Saunders, E .

    2011-04-01

    The goals of this case study are: (1) To examine the correlation between Iran's nuclear program and clerical statements; (2) To evaluate the importance of these statements; (3) To understand the relationship between policy and fatwas (Islamic decrees); (4) To address the issue of a 'nuclear fatwa'; and (5) To examine how, if at all, Sharia (Islamic law) has influenced Iran's actions or inactions with respect to the Non-Proliferation Treaty (NPT), the International Atomic Energy Agency (IAEA), and Iran's adherence to its IAEA Safeguards Agreements and the Additional Protocol. The Islamic Republic of Iran (hereinafter Iran) is one of two theocracies in the world, the second being Vatican City. Iran's government derives its constitutional, moral, and political legitimacy from Islam. As a result of this theocratic culture, rules are set and interpreted with a much different calibrator than that of the Western world. Islam affects all aspects of Iranian life. This is further complicated by the fact that Islam is not a nationalistic faith, in that many people all over the world believe in and adhere to Islamic principles. As a result, a political system that derives much of its fervor from being nationalistic is caught between two worlds, one within the land boundaries of Iran and the other within a faith that transcends boundaries. Thus, any understanding of Islamic law must first be understood within this delicate balance of nationalism and transcendence. Iran has found itself on the international stage concerning its nuclear program. Because Iran is a theocratic state, it is imperative to examine its political moves, speeches, rights, and obligations through the lens of Islam. This study will examine how Islam plays a role in Iran's dealing with the International Atomic Energy Agency (IAEA), its understanding of the Nuclear Non-Proliferation Treaty (NPT), including parties obligations under Safeguards Agreements and the Additional Protocol, and also provide a recommendation on how to move forward in dealings with Iran based in part on an understanding of Islamic principles.

  20. Superradiance and black hole bomb in five-dimensional minimal ungauged supergravity

    SciTech Connect (OSTI)

    Aliev, Alikram N.

    2014-11-01

    We examine the black hole bomb model which consists of a rotating black hole of five-dimenensional minimal ungauged supergravity and a reflecting mirror around it. For low-frequency scalar perturbations, we find solutions to the Klein-Gordon equation in the near-horizon and far regions of the black hole spacetime. To avoid solutions with logarithmic terms, we assume that the orbital quantum number l takes on nearly, but not exactly, integer values and perform the matching of these solutions in an intermediate region. This allows us to calculate analytically the frequency spectrum of quasinormal modes, taking the limits as l approaches even or odd integers separately. We find that all l modes of scalar perturbations undergo negative damping in the regime of superradiance, resulting in exponential growth of their amplitudes. Thus, the model under consideration would exhibit the superradiant instability, eventually behaving as a black hole bomb in five dimensions.

  1. High-speed photography of the first hydrogen-bomb explosion

    SciTech Connect (OSTI)

    Brixner, B.

    1992-09-01

    Obtaining detailed photographs of the early stages of the first hydrogen bomb explosion in 1952 posed a number of problems. First, it was necessary to invent a continuous-access camera which could solve the problem that existing million-picture-per-second cameras were blind most of the time. The solution here was to alter an existing camera design so that two modified cameras could be mounted around a single high-speed rotating mirror. A second problem, acquiring the necessary lenses of precisely specified focal lengths, was solved by obtaining a large number of production lenses from war surplus salvage. A third hurdle to be overcome was to test the new camera at an A-bomb explosion. Finally, it was necessary to solve the almost impossible difficulty of building a safe camera shelter close to a megaton explosion. This paper describes the way these problems were solved. Unfortunately the successful pictures that were taken are sill classified.

  2. High-speed photography of the first hydrogen-bomb explosion

    SciTech Connect (OSTI)

    Brixner, B.

    1992-01-01

    Obtaining detailed photographs of the early stages of the first hydrogen bomb explosion in 1952 posed a number of problems. First, it was necessary to invent a continuous-access camera which could solve the problem that existing million-picture-per-second cameras were blind most of the time. The solution here was to alter an existing camera design so that two modified cameras could be mounted around a single high-speed rotating mirror. A second problem, acquiring the necessary lenses of precisely specified focal lengths, was solved by obtaining a large number of production lenses from war surplus salvage. A third hurdle to be overcome was to test the new camera at an A-bomb explosion. Finally, it was necessary to solve the almost impossible difficulty of building a safe camera shelter close to a megaton explosion. This paper describes the way these problems were solved. Unfortunately the successful pictures that were taken are sill classified.

  3. A Novel Approach to Monitor Rehabilitation Outcomes in Stroke Survivors Using Wearable Technology

    E-Print Network [OSTI]

    Patel, Shyamal

    Quantitative assessment of motor abilities in stroke survivors can provide valuable feedback to guide clinical interventions. Numerous clinical scales were developed in the past to assess levels of impairment and functional ...

  4. Cancer survivors and survivorship care: Provider expectations, post-treatment health services, and patient reported outcomes

    E-Print Network [OSTI]

    Hahn, Erin Elizabeth

    2013-01-01

    2011) Long Term Effects and Cancer Survivorship in the OlderGanz (Eds. ), Management of Cancer for the Older Patient (the Quality of Care for Cancer Survivors. Psycho-Oncology (

  5. Atom Interferometry

    ScienceCinema (OSTI)

    Mark Kasevich

    2010-01-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton?s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  6. dirty bomb

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en46A NAME6/%2A/%2A en About

  7. nuclear bombs

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en46Afedkcp8/%2A en0/%2A en National8

  8. Impact of Preoperative Radiotherapy on General and Disease-Specific Health Status of Rectal Cancer Survivors: A Population-Based Study

    SciTech Connect (OSTI)

    Thong, Melissa S.Y., E-mail: M.Thong@uvt.nl [Center of Research on Psychology in Somatic Diseases (CoRPS), Tilburg University (Netherlands); Comprehensive Cancer Centre South, Eindhoven (Netherlands); Mols, Floortje [Center of Research on Psychology in Somatic Diseases (CoRPS), Tilburg University (Netherlands); Comprehensive Cancer Centre South, Eindhoven (Netherlands); Lemmens, Valery E.P.P. [Comprehensive Cancer Centre South, Eindhoven (Netherlands); Department of Public Health, Erasmus University Medical Centre, Rotterdam (Netherlands); Rutten, Harm J.T. [Department of Surgery, Catharina Hospital, Eindhoven (Netherlands); Roukema, Jan A. [Department of Surgery, St. Elisabeth Hospital, Tilburg (Netherlands); Martijn, Hendrik [Department of Radiotherapy, Catharina Hospital, Eindhoven (Netherlands); Poll-Franse, Lonneke V. van de [Center of Research on Psychology in Somatic Diseases (CoRPS), Tilburg University (Netherlands); Comprehensive Cancer Centre South, Eindhoven (Netherlands)

    2011-11-01

    Purpose: To date, few studies have evaluated the impact of preoperative radiotherapy (pRT) on long-term health status of rectal cancer survivors. Using a population-based sample, we assessed the impact of pRT on general and disease-specific health status of rectal cancer survivors up to 10 years postdiagnosis. The health status of older ({>=}75 years old at diagnosis) pRT survivors was also compared with that of younger survivors. Methods and Materials: Survivors identified from the Eindhoven Cancer Registry treated with surgery only (SU) or with pRT between 1998 and 2007 were included. Survivors completed the Short Form-36 (SF-36) health survey questionnaire and the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Colorectal 38 (EORTC QLQ-CR38) questionnaire. The SF-36 and EORTC QLQ-CR38 (sexuality subscale) scores of the survivors were compared to an age- and sex-matched Dutch normal population. Results: A total of 340 survivors (response, 85%; pRT survivors, 71%) were analyzed. Overall, survivors had similar general health status. Both short-term (<5 years) and long-term ({>=}5 years) pRT survivors had significantly poorer body image and more problems with gastrointestinal function, male sexual dysfunction, and defecation than SU survivors. Survivors had comparable general health status but greater sexual dysfunction than the normal population. Older pRT survivors had general and disease-specific health status comparable to that of younger pRT survivors. Conclusions: For better survivorship care, rectal cancer survivors could benefit from increased clinical and psychological focus on the possible long-term morbidity of treatment and its effects on health status.

  9. Measuring Atomic Properties with an Atom Interferometer

    E-Print Network [OSTI]

    Roberts, Tony David

    2006-06-28

    Two experiments are presented which measure atomic properties using an atom interferometer. The interferometer splits the sodium de Broglie wave into two paths,

  10. Atomic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass and BiofuelsPhysicist47JulyInnovationAtomic Layer

  11. Supratentorial Neurometabolic Alterations in Pediatric Survivors of Posterior Fossa Tumors

    SciTech Connect (OSTI)

    Rueckriegel, Stefan M., E-mail: rueckriegel.s@nch.uni-wuerzburg.de [Pediatric Neurooncology Program, Department of Pediatric Oncology and Hematology, Charite-Universitaetsmedizin Berlin, Berlin (Germany); Driever, Pablo Hernaiz [Pediatric Neurooncology Program, Department of Pediatric Oncology and Hematology, Charite-Universitaetsmedizin Berlin, Berlin (Germany); Bruhn, Harald [Department of Radiology, Charite-Universitaetsmedizin Berlin, Berlin (Germany); Department of Radiology, Klinikum der Friedrich-Schiller-Universitaet, Erlanger (Germany)

    2012-03-01

    Purpose: Therapy and tumor-related effects such as hypoperfusion, internal hydrocephalus, chemotherapy, and irradiation lead to significant motor and cognitive sequelae in pediatric posterior fossa tumor survivors. A distinct proportion of those factors related to the resulting late effects is hitherto poorly understood. This study aimed at separating the effects of neurotoxic factors on central nervous system metabolism by using H-1 MR spectroscopy to quantify cerebral metabolite concentrations in these patients in comparison to those in age-matched healthy peers. Methods and Materials: Fifteen patients with World Health Organization (WHO) I pilocytic astrocytoma (PA) treated by resection only, 24 patients with WHO IV medulloblastoma (MB), who additionally received chemotherapy and craniospinal irradiation, and 43 healthy peers were investigated using single-volume H-1 MR spectroscopy of parietal white matter and gray matter. Results: Concentrations of N-acetylaspartate (NAA) were significantly decreased in white matter (p < 0.0001) and gray matter (p < 0.0001) of MB patients and in gray matter (p = 0.005) of PA patients, compared to healthy peers. Decreased creatine concentrations in parietal gray matter correlated significantly with older age at diagnosis in both patient groups (MB patients, p = 0.009, r = 0.52; PA patients, p = 0.006, r = 0.7). Longer time periods since diagnosis were associated with lower NAA levels in white matter of PA patients (p = 0.008, r = 0.66). Conclusions: Differently decreased NAA concentrations were observed in both PA and MB groups of posterior fossa tumor patients. We conclude that this reflects a disturbance of the neurometabolic steady state of normal-appearing brain tissue due to the tumor itself and to the impact of surgery in both patient groups. Further incremental decreases of metabolite concentrations in MB patients may point to additional harm caused by irradiation and chemotherapy. The stronger decrease of NAA in MB patients may correspond to the additional damage of combined irradiation and chemotherapy on neuroaxonal cell viability and number.

  12. The socio-technical construction of precision bombing : a study of shared control and cognition by humans, machines, and doctrine during World War II

    E-Print Network [OSTI]

    O'Mara, Raymond P. (Raymond Patrick)

    2011-01-01

    This dissertation examines the creation and initial use of the precision bombing system employed by the United States Army Air Forces during World War II in the opening phase of the Combined Bomber Offensive against Germany. ...

  13. Operation Greenhouse. Scientific Director's report of atomic-weapon tests at Eniwetok, 1951. Annex 2. 7. Thermal radiation injury

    SciTech Connect (OSTI)

    Pearse, H.E.; Kingsley, H.D.; Schilling, J.A.; Hogg; Blakney, R.M.

    1985-09-01

    Information concerning the flash burn resulting from an atomic bomb explosion was necessary to understand the lesion, its systematic effects, and prevention and treatment of these effects. In order to reproduce similar sources in the laboratory, it was essential to know the characteristics of the energy producing the biological effect. In order to obtain this information, anesthetized experimental animals were placed in shielded positions at varying distances from bomb zero to cover a wide range of thermal-radiation intensities. Small areas of each animal's skin were exposed through aperture plates which were designed to analyze burn production as a function of time, intensity, and spectrum. Protection of the animal by fabrics covering the skin was also evaluated. Following exposure, animals were retrieved from the exposure stations and transported to a laboratory for analysis of the burn lesions by description, color photography, and microscopic study of biopsy materials.

  14. Atomic magnetometer

    DOE Patents [OSTI]

    Schwindt, Peter (Albuquerque, NM); Johnson, Cort N. (Albuquerque, NM)

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  15. Ellerman Bombs - Evidence for Magnetic Reconnection in the Lower Solar Atmosphere

    E-Print Network [OSTI]

    Nelson, C J; Mathioudakis, M; Doyle, J G; Madjarska, M S; Uitenbroek, H; Erdélyi, R

    2013-01-01

    The presence of photospheric magnetic reconnection has long been thought to give rise to short and impulsive events, such as Ellerman bombs (EBs) and Type II spicules. In this article, we combine high-resolution, high-cadence observations from the Interferometric BIdimensional Spectrometer (IBIS) and Rapid Oscillations in the Solar Atmosphere (ROSA) instruments at the Dunn Solar Telescope, National Solar Observatory, New Mexico with co-aligned Atmospheric Imaging Assembly (SDO/AIA) and Solar Optical Telescope (Hinode/SOT) data to observe small-scale events situated within an active region. These data are then compared with state-of-the-art numerical simulations of the lower atmosphere made using the MURaM code. It is found that brightenings, in both the observations and the simulations, of the wings of the H alpha line profile, interpreted as EBs, are often spatially correlated with increases in the intensity of the FeI 6302.5A line core. Bi-polar regions inferred from Hinode/SOT magnetic field data show evid...

  16. Ellerman bombs—evidence for magnetic reconnection in the lower solar atmosphere

    SciTech Connect (OSTI)

    Nelson, C. J.; Doyle, J. G.; Madjarska, M. S. [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Shelyag, S. [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Clayton, VIC 3800 (Australia); Mathioudakis, M. [Astrophysical Research Centre, School of Mathematics and Physics, Queen's University, Belfast BT7 1NN (United Kingdom); Uitenbroek, H. [National Solar Observatory, Sacramento Peak, P.O. Box 62, Sunpsot, NM 88349 (United States); Erdélyi, R. [Solar Physics and Space Plasma Research Centre, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2013-12-20

    The presence of photospheric magnetic reconnection has long been thought to give rise to short and impulsive events, such as Ellerman bombs (EBs) and Type II spicules. In this article, we combine high-resolution, high-cadence observations from the Interferometric BIdimensional Spectrometer and Rapid Oscillations in the Solar Atmosphere instruments at the Dunn Solar Telescope, National Solar Observatory, New Mexico, with co-aligned Solar Dynamics Observatory Atmospheric Imaging Assembly and Hinode Solar Optical Telescope (SOT) data to observe small-scale events situated within an active region. These data are then compared with state-of-the-art numerical simulations of the lower atmosphere made using the MURaM code. It is found that brightenings, in both the observations and the simulations, of the wings of the H? line profile, interpreted as EBs, are often spatially correlated with increases in the intensity of the Fe I ?6302.5 line core. Bipolar regions inferred from Hinode/SOT magnetic field data show evidence of flux cancellation associated, co-spatially, with these EBs, suggesting that magnetic reconnection could be a driver of these high-energy events. Through the analysis of similar events in the simulated lower atmosphere, we are able to infer that line profiles analogous to the observations occur co-spatially with regions of strong opposite-polarity magnetic flux. These observed events and their simulated counterparts are interpreted as evidence of photospheric magnetic reconnection at scales observable using current observational instrumentation.

  17. Pathway Analysis of Proteins with Disregulated Expression in Colonies from "Spacecraft Survivors" Relative to Ground Based Control

    E-Print Network [OSTI]

    Richardson, David

    are "spacecraft survivors" -Experimentally measure the degree of increased survivability (resistance) of bacteria understanding the resistance mechanisms of bacteria exposed to extraterrestrial environments, determine new controls and simulated exposure samples as well as additional known resistance phenotypes of Bacillus

  18. Cancer survivorship research: the challenge of recruiting adult long term cancer survivors from a cooperative clinical trials group

    E-Print Network [OSTI]

    2009-01-01

    quality of life among long-term survivors of breast cancer.Breast Cancer Res Treat. 1996;39(3):261–73. doi:B, Bower JE. Breast Cancer in Younger Women: Reproductive

  19. Risk of Salivary Gland Cancer After Childhood Cancer: A Report From the Childhood Cancer Survivor Study

    SciTech Connect (OSTI)

    Boukheris, Houda; Stovall, Marilyn; Gilbert, Ethel S.; Stratton, Kayla L.; Smith, Susan A.; Weathers, Rita; Hammond, Sue; Mertens, Ann C.; Donaldson, Sarah S.; Armstrong, Gregory T.; Robison, Leslie L.; Neglia, Joseph P.; Inskip, Peter D.

    2013-03-01

    Purpose: To evaluate effects of radiation therapy, chemotherapy, cigarette smoking, and alcohol consumption on the risk of second primary salivary gland cancer (SGC) in the Childhood Cancer Survivor Study (CCSS). Methods and Materials: Standardized incidence ratios (SIR) and excess absolute risks (EAR) of SGC in the CCSS were calculated using incidence rates from Surveillance, Epidemiology, and End Results population-based cancer registries. Radiation dose to the salivary glands was estimated based on medical records. Poisson regression was used to assess risks with respect to radiation dose, chemotherapy, smoking, and alcohol consumption. Results: During the time period of the study, 23 cases of SGC were diagnosed among 14,135 childhood cancer survivors. The mean age at diagnosis of the first primary cancer was 8.3 years, and the mean age at SGC diagnosis was 24.8 years. The incidence of SGC was 39-fold higher in the cohort than in the general population (SIR = 39.4; 95% CI = 25.4-57.8). The EAR was 9.8 per 100,000 person-years. Risk increased linearly with radiation dose (excess relative risk = 0.36/Gy; 95% CI = 0.06-2.5) and remained elevated after 20 years. There was no significant trend of increasing risk with increasing dose of chemotherapeutic agents, pack-years of cigarette smoking, or alcohol intake. Conclusion: Although the cumulative incidence of SGC was low, childhood cancer survivors treated with radiation experienced significantly increased risk for at least 2 decades after exposure, and risk was positively associated with radiation dose. Results underscore the importance of long-term follow up of childhood cancer survivors for the development of new malignancies.

  20. SMALL-SCALE STRUCTURING OF ELLERMAN BOMBS AT THE SOLAR LIMB

    SciTech Connect (OSTI)

    Nelson, C. J.; Doyle, J. G. [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Scullion, E. M. [Institute of Theoretical Astrophysics, University of Oslo, NO-0371 Oslo (Norway); Freij, N.; Erdélyi, R. [Solar Physics and Space Plasma Research Centre, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2015-01-01

    Ellerman bombs (EBs) have been widely studied in recent years due to their dynamic, explosive nature and apparent links to the underlying photospheric magnetic field implying that they may be formed by magnetic reconnection in the photosphere. Despite a plethora of researches discussing the morphologies of EBs, there has been a limited investigation of how these events appear at the limb, specifically, whether they manifest as vertical extensions away from the disk. In this article, we make use of high-resolution, high-cadence observations of an Active Region at the solar limb, collected by the CRisp Imaging SpectroPolarimeter (CRISP) instrument, to identify EBs and infer their physical properties. The upper atmosphere is also probed using the Solar Dynamic Observatory's Atmospheric Imaging Assembly (SDO/AIA). We analyze 22 EB events evident within these data, finding that 20 appear to follow a parabolic path away from the solar surface at an average speed of 9 km s{sup –1}, extending away from their source by 580 km, before retreating back at a similar speed. These results show strong evidence of vertical motions associated with EBs, possibly explaining the dynamical ''flaring'' (changing in area and intensity) observed in on-disk events. Two in-depth case studies are also presented that highlight the unique dynamical nature of EBs within the lower solar atmosphere. The viewing angle of these observations allows for a direct linkage between these EBs and other small-scale events in the H? line wings, including a potential flux emergence scenario. The findings presented here suggest that EBs could have a wider-reaching influence on the solar atmosphere than previously thought, as we reveal a direct linkage between EBs and an emerging small-scale loop, and other near-by small-scale explosive events. However, as previous research found, these extensions do not appear to impact upon the H? line core, and are not observed by the SDO/AIA EUV filters.

  1. Relationships Among Symptoms, Brain-Derived Neurotrophic Factor (BDNF), Daily Activities, Self-Care, and Quality of Life in Breast Cancer Survivors

    E-Print Network [OSTI]

    Heinze, Sylvia B.

    2012-08-31

    Background: Breast cancer survivors confront ongoing symptoms following diagnosis and treatment. Studies examining the relationship between biomarkers and symptoms are scarce. Purpose: To explore symptom occurrence and ...

  2. Titanium subhydride potassium perchlorate (TiH1.65/KClO4) burn rates from hybrid closed bomb-strand burner experiments.

    SciTech Connect (OSTI)

    Cooper, Marcia A.; Oliver, Michael S.

    2012-08-01

    A hybrid closed bomb-strand burner is used to measure the burning behavior of the titanium subhydride potassium perchlorate pyrotechnic with an equivalent hydrogen concentration of 1.65. This experimental facility allows for simultaneous measurement of the closed bomb pressure rise and pyrotechnic burn rate as detected by electrical break wires over a range of pressures. Strands were formed by pressing the pyrotechnic powders to bulk densities between 60% and 90% theoretical maximum density. The burn rate dependance on initial density and vessel pressure are measured. At all initial strand densities, the burn is observed to transition from conductive to convective burning within the strand. The measured vessel pressure history is further analyzed following the closed bomb analysis methods developed for solid propellants.

  3. Atomizing nozzle and process

    DOE Patents [OSTI]

    Anderson, Iver E. (Ames, IA); Figliola, Richard S. (Central, SC); Molnar, Holly M. (Palm Bay, FL)

    1992-06-30

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  4. Atomizing nozzle and process

    DOE Patents [OSTI]

    Anderson, I.E.; Figliola, R.S.; Molnar, H.M.

    1993-07-20

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  5. Dose-Effect Relationships for Adverse Events After Cranial Radiation Therapy in Long-term Childhood Cancer Survivors

    SciTech Connect (OSTI)

    Dijk, Irma W.E.M. van, E-mail: i.w.vandijk@amc.uva.nl [Department of Radiation Oncology, Academic Medical Center, Amsterdam (Netherlands); Cardous-Ubbink, Mathilde C. [Department of Medical Oncology, Academic Medical Center, Amsterdam (Netherlands)] [Department of Medical Oncology, Academic Medical Center, Amsterdam (Netherlands); Pal, Helena J.H. van der [Department of Medical Oncology, Academic Medical Center, Amsterdam (Netherlands); Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, Amsterdam (Netherlands); Heinen, Richard C. [Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, Amsterdam (Netherlands)] [Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, Amsterdam (Netherlands); Leeuwen, Flora E. van [Department of Epidemiology, Netherlands Cancer Institute, Amsterdam (Netherlands)] [Department of Epidemiology, Netherlands Cancer Institute, Amsterdam (Netherlands); Oldenburger, Foppe; Os, Rob M. van [Department of Radiation Oncology, Academic Medical Center, Amsterdam (Netherlands)] [Department of Radiation Oncology, Academic Medical Center, Amsterdam (Netherlands); Ronckers, Cécile M. [Dutch Childhood Oncology Group, Long-term Effects after Childhood Cancer, The Hague (Netherlands)] [Dutch Childhood Oncology Group, Long-term Effects after Childhood Cancer, The Hague (Netherlands); Schouten–van Meeteren, Antoinette Y.N. [Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, Amsterdam (Netherlands); Caron, Huib N. [Department of Medical Oncology, Academic Medical Center, Amsterdam (Netherlands) [Department of Medical Oncology, Academic Medical Center, Amsterdam (Netherlands); Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, Amsterdam (Netherlands); Koning, Caro C.E. [Department of Radiation Oncology, Academic Medical Center, Amsterdam (Netherlands)] [Department of Radiation Oncology, Academic Medical Center, Amsterdam (Netherlands); Kremer, Leontien C.M. [Department of Medical Oncology, Academic Medical Center, Amsterdam (Netherlands) [Department of Medical Oncology, Academic Medical Center, Amsterdam (Netherlands); Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, Amsterdam (Netherlands)

    2013-03-01

    Purpose: To evaluate the prevalence and severity of clinical adverse events (AEs) and treatment-related risk factors in childhood cancer survivors treated with cranial radiation therapy (CRT), with the aim of assessing dose-effect relationships. Methods and Materials: The retrospective study cohort consisted of 1362 Dutch childhood cancer survivors, of whom 285 were treated with CRT delivered as brain irradiation (BI), as part of craniospinal irradiation (CSI), and as total body irradiation (TBI). Individual CRT doses were converted into the equivalent dose in 2-Gy fractions (EQD{sub 2}). Survivors had received their diagnoses between 1966 and 1996 and survived at least 5 years after diagnosis. A complete inventory of Common Terminology Criteria for Adverse Events grade 3.0 AEs was available from our hospital-based late-effect follow-up program. We used multivariable logistic and Cox regression analyses to examine the EQD{sub 2} in relation to the prevalence and severity of AEs, correcting for sex, age at diagnosis, follow-up time, and the treatment-related risk factors surgery and chemotherapy. Results: There was a high prevalence of AEs in the CRT group; over 80% of survivors had more than 1 AE, and almost half had at least 5 AEs, both representing significant increases in number of AEs compared with survivors not treated with CRT. Additionally, the proportion of severe, life-threatening, or disabling AEs was significantly higher in the CRT group. The most frequent AEs were alopecia and cognitive, endocrine, metabolic, and neurologic events. Using the EQD{sub 2}, we found significant dose-effect relationships for these and other AEs. Conclusion: Our results confirm that CRT increases the prevalence and severity of AEs in childhood cancer survivors. Furthermore, analyzing dose-effect relationships with the cumulative EQD{sub 2} instead of total physical dose connects the knowledge from radiation therapy and radiobiology with the clinical experience.

  6. Bulletin of the Seismological Society of America, Vol. 92, No. 2, pp. 527542, March 2002 Empirical Scaling Laws for Truck Bomb Explosions Based

    E-Print Network [OSTI]

    Koper, Keith D.

    Empirical Scaling Laws for Truck Bomb Explosions Based on Seismic and Acoustic Data by Keith D. Koper,* Terry C. Wallace, Robert E. Reinke, and John A. Leverette Abstract We analyze seismic and acoustic data trinitrotoluene (TNT), and the receivers were placed at distances of 1­16 km, so the data mimic the data

  7. PARTICLE ACCELERATORS; 74 ATOMIC AND MOLECULAR PHYSICS; ATOMS...

    Office of Scientific and Technical Information (OSTI)

    74 ATOMIC AND MOLECULAR PHYSICS; ATOMS; ELECTRONS; HELIUM; LIGHT SOURCES; RADIATIONS; STORAGE RINGS; SYNCHROTRONS SYNCHROTRON RADIATION SYNCHROTRONLIGHT SOURCES QUANTUM CHAOS...

  8. Atomic Energy Commission : Atomic Power at Shippingport - 1958 Educational Film

    SciTech Connect (OSTI)

    2013-02-02

    The United States Atomic Energy Commission & Westinghouse Electric Company take us on a tour of an atomic power station.

  9. Single Atom Plasmonic Switch

    E-Print Network [OSTI]

    Emboras, Alexandros; Ma, Ping; Haffner, Christian; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2015-01-01

    The atom sets an ultimate scaling limit to Moores law in the electronics industry. And while electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling-similar to electronics-is only limited by the atom. More precisely, we introduce an electrically controlled single atom plasmonic switch. The switch allows for fast and reproducible switching by means of the relocation of an individual or at most - a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ration of 10 dB and operation at room temperature with femtojoule (fJ) power consumption for a single switch operation. This demonstration of a CMOS compatible, integrated quantum device allowing to control photons at the single-atom level opens intriguing perspectives for a fully i...

  10. Rotating analogue black holes: Quasinormal modes and tails, superresonance, and sonic bombs and plants in the draining bathtub acoustic hole

    E-Print Network [OSTI]

    José P. S. Lemos

    2013-12-27

    The analogy between sound wave propagation and light waves led to the study of acoustic holes, the acoustic analogues of black holes. Many black hole features have their counterparts in acoustic holes. The Kerr metric, the rotating metric for black holes in general relativity, has as analogue the draining bathtub metric, a metric for a rotating acoustic hole. Here we report on the progress that has been made in the understanding of features, such as quasinormal modes and tails, superresonance, and instabilities when the hole is surrounded by a reflected mirror, in the draining bathtub metric. Given then the right settings one can build up from these instabilities an apparatus that stores energy in the form of amplified sound waves. This can be put to wicked purposes as in a bomb, or to good profit as in a sonic plant.

  11. Explosion bomb measurements of ethanol-air laminar gaseous flame characteristics at pressures up to 1.4 MPa

    SciTech Connect (OSTI)

    Bradley, D.; Lawes, M.; Mansour, M.S. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2009-07-15

    The principal burning characteristics of a laminar flame comprise the fuel vapour pressure, the laminar burning velocity, ignition delay times, Markstein numbers for strain rate and curvature, the stretch rates for the onset of flame instabilities and of flame extinction for different mixtures. With the exception of ignition delay times, measurements of these are reported and discussed for ethanol-air mixtures. The measurements were in a spherical explosion bomb, with central ignition, in the regime of a developed stable, flame between that of an under or over-driven ignition and that of an unstable flame. Pressures ranged from 0.1 to 1.4 MPa, temperatures from 300 to 393 K, and equivalence ratios were between 0.7 and 1.5. It was important to ensure the relatively large volume of ethanol in rich mixtures at high pressures was fully evaporated. The maximum pressure for the measurements was the highest compatible with the maximum safe working pressure of the bomb. Many of the flames soon became unstable, due to Darrieus-Landau and thermo-diffusive instabilities. This effect increased with pressure and the flame wrinkling arising from the instabilities enhanced the flame speed. Both the critical Peclet number and the, more rational, associated critical Karlovitz stretch factor were evaluated at the onset of the instability. With increasing pressure, the onset of flame instability occurred earlier. The measured values of burning velocity are expressed in terms of their variations with temperature and pressure, and these are compared with those obtained by other researchers. Some comparisons are made with the corresponding properties for iso-octane-air mixtures. (author)

  12. Improved graphite furnace atomizer

    DOE Patents [OSTI]

    Siemer, D.D.

    1983-05-18

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  13. The Harnessed Atom

    Broader source: Energy.gov [DOE]

    The Harnessed Atom is a new middle school science, technology, engineering, and math (STEM) curriculum extension that focuses on nuclear science and energy. It offers teachers accurate, unbiased,...

  14. Atomic Collapse Observed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists Observe Atomic Collapse State Quantum Mechanics Prediction Confirmed in Graphene Using NERSC's Hopper April 26, 2013 | Tags: Hopper, Materials Science Contact: Linda...

  15. The Ghost of the Bomb : the Bravo Medical Program, scientific uncertainty, and the legacy of U.S. Cold War science, 1954-2005

    E-Print Network [OSTI]

    Harkewicz, Laura J.

    2010-01-01

    science: The Atomic Energy Commission’s laboratory system. ”J. Samuel. “The Atomic Energy Commission and the Politics ofUnited States Atomic Energy Commission Division of Biology

  16. Cataractogenic effects of proton radiation 

    E-Print Network [OSTI]

    Kyzar, James Ronald

    1972-01-01

    the cyclotron would induce cataracts in the exposed eye (1). In 1949 the National Research Council's Committee on Ophthalmology delegated an investigational team to Japan to study the occurrence of radiation cataracts among atom bomb survivors. This team... for the most part to ophthalmological circles arousing little interest in other elements of the scien- tific world (13) . In the decade of the 1940's conditions arose which were to vastly change research into the area of radiation damage. These conditions...

  17. 2/17/2014 Why We Should be Worried About the Rapid Growth in Global Households -Emily Badger -The Atlantic Cities http://www.theatlanticcities.com/housing/2014/02/worlds-ticking-household-bomb/8389/ 1/4

    E-Print Network [OSTI]

    the prospect of a population bomb, a scenario where so many people come to populate the planet that we exhaust twice as many resources to build and furnish them, to heat and cool them, to pave roads to their front

  18. Producing and Detecting Correlated atoms

    E-Print Network [OSTI]

    Christoph I. Westbrook; Martijn Schellekens; Aurélien Perrin; Valentina Krachmalnicoff; Jose Carlos Viana Gomes; Jean-Baptiste Trebbia; Jérôme Estève; Hong Chang; Isabelle Bouchoule; Denis Boiron; Alain Aspect; Tom Jeltes; John McNamara; Wim Hogervorst; Wim Vassen

    2006-09-04

    We discuss experiments to produce and detect atom correlations in a degenerate or nearly degenerate gas of neutral atoms. First we treat the atomic analog of the celebrated Hanbury Brown Twiss experiment, in which atom correlations result simply from interference effects without any atom interactions.We have performed this experiment for both bosons and fermions. Next we show how atom interactions produce correlated atoms using the atomic analog of spontaneous four-wavemixing. Finally, we briefly mention experiments on a one dimensional gas on an atom chip in which correlation effects due to both interference and interactions have been observed.

  19. Radiation Dose and Subsequent Risk for Stomach Cancer in Long-term Survivors of Cervical Cancer

    SciTech Connect (OSTI)

    Kleinerman, Ruth A.; Smith, Susan A.; Holowaty, Eric; Hall, Per; Pukkala, Eero; Vaalavirta, Leila; Stovall, Marilyn; Weathers, Rita; Gilbert, Ethel; Aleman, Berthe M.P.; Kaijser, Magnus; Andersson, Michael; Storm, Hans; Joensuu, Heikki; Lynch, Charles F.; and others

    2013-08-01

    Purpose: To assess the dose–response relationship for stomach cancer after radiation therapy for cervical cancer. Methods and Materials: We conducted a nested, matched case–control study of 201 cases and 378 controls among 53,547 5-year survivors of cervical cancer diagnosed from 1943 to 1995, from 5 international, population-based cancer registries. We estimated individual radiation doses to the site of the stomach cancer for all cases and to corresponding sites for the matched controls (overall mean stomach tumor dose, 2.56 Gy, range 0.03-46.1 and after parallel opposed pelvic fields, 1.63 Gy, range 0.12-6.3). Results: More than 90% of women received radiation therapy, mostly with external beam therapy in combination with brachytherapy. Stomach cancer risk was nonsignificantly increased (odds ratio 1.27-2.28) for women receiving between 0.5 and 4.9 Gy to the stomach cancer site and significantly increased at doses ?5 Gy (odds ratio 4.20, 95% confidence interval 1.41-13.4, P{sub trend}=.047) compared with nonirradiated women. A highly significant radiation dose–response relationship was evident when analyses were restricted to the 131 cases (251 controls) whose stomach cancer was located in the middle and lower portions of the stomach (P{sub trend}=.003), whereas there was no indication of increasing risk with increasing dose for 30 cases (57 controls) whose cancer was located in the upper stomach (P{sub trend}=.23). Conclusions: Our findings show for the first time a significant linear dose–response relationship for risk of stomach cancer in long-term survivors of cervical cancer.

  20. Optical atomic magnetometer

    DOE Patents [OSTI]

    Budker, Dmitry; Higbie, James; Corsini, Eric P.

    2013-11-19

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  1. Metal atomization spray nozzle

    DOE Patents [OSTI]

    Huxford, T.J.

    1993-11-16

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  2. Atomizing nozzle and method

    DOE Patents [OSTI]

    Ting, Jason (Ames, IA); Anderson, Iver E. (Ames, IA); Terpstra, Robert L. (Ames, IA)

    2000-03-16

    A high pressure close-coupled gas atomizing nozzle includes multiple discrete gas jet discharge orifices having aerodynamically designed convergent-divergent geometry with an first converging section communicated to a gas supply manifold and to a diverging section by a constricted throat section to increase atomizing gas velocity. The gas jet orifices are oriented at gas jet apex angle selected relative to the melt supply tip apex angle to establish a melt aspiration condition at the melt supply tip.

  3. Universal bosonic tetramers of dimer-atom-atom structure

    E-Print Network [OSTI]

    A. Deltuva

    2012-03-28

    Unstable four-boson states having an approximate dimer-atom-atom structure are studied using momentum-space integral equations for the four-particle transition operators. For a given Efimov trimer the universal properties of the lowest associated tetramer are determined. The impact of this tetramer on the atom-trimer and dimer-dimer collisions is analyzed. The reliability of the three-body dimer-atom-atom model is studied.

  4. Universal bosonic tetramers of dimer-atom-atom structure

    E-Print Network [OSTI]

    Deltuva, A

    2012-01-01

    Unstable four-boson states having an approximate dimer-atom-atom structure are studied using momentum-space integral equations for the four-particle transition operators. For a given Efimov trimer the universal properties of the lowest associated tetramer are determined. The impact of this tetramer on the atom-trimer and dimer-dimer collisions is analyzed. The reliability of the three-body dimer-atom-atom model is studied.

  5. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1986-08-15

    The atomic vapor laser isotope separation (AVLIS) process for the enrichment of uranium is evaluated. (AIP)

  6. Relative Importance of Hip and Sacral Pain Among Long-Term Gynecological Cancer Survivors Treated With Pelvic Radiotherapy and Their Relationships to Mean Absorbed Doses

    SciTech Connect (OSTI)

    Waldenstroem, Ann-Charlotte; Department of Oncology, Sahlgrenska University Hospital, Gothenburg ; Olsson, Caroline; Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg ; Wilderaeng, Ulrica; Dunberger, Gail; Lind, Helena; Alevronta, Eleftheria; Al-Abany, Massoud; Department of Hospital Physics, Karolinska University Hospital, Stockholm ; Tucker, Susan; Avall-Lundqvist, Elisabeth; Johansson, Karl-Axel; Steineck, Gunnar; Division of Clinical Cancer Epidemiology, Department of Oncology-Pathology, Karolinska Institute, Stockholm

    2012-10-01

    Purpose: To investigate the relative importance of patient-reported hip and sacral pain after pelvic radiotherapy (RT) for gynecological cancer and its relationship to the absorbed doses in these organs. Methods and Materials: We used data from a population-based study that included 650 long-term gynecological cancer survivors treated with pelvic RT in the Gothenburg and Stockholm areas in Sweden with a median follow-up of 6 years (range, 2-15) and 344 population controls. Symptoms were assessed through a study-specific postal questionnaire. We also analyzed the hip and sacral dose-volume histogram data for 358 of the survivors. Results: Of the survivors, one in three reported having or having had hip pain after completing RT. Daily pain when walking was four times as common among the survivors compared to controls. Symptoms increased in frequency with a mean absorbed dose >37.5 Gy. Also, two in five survivors reported pain in the sacrum. Sacral pain also affected their walking ability and tended to increase with a mean absorbed dose >42.5 Gy. Conclusions: Long-term survivors of gynecological cancer treated with pelvic RT experience hip and sacral pain when walking. The mean absorbed dose was significantly related to hip pain and was borderline significantly related to sacral pain. Keeping the total mean absorbed hip dose below 37.5 Gy during treatment might lower the occurrence of long-lasting pain. In relation to the controls, the survivors had a lower occurrence of pain and pain-related symptoms from the hips and sacrum compared with what has previously been reported for the pubic bone.

  7. Iowa Powder Atomization Technologies

    ScienceCinema (OSTI)

    None

    2013-03-01

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  8. Atomic Force Microscope

    SciTech Connect (OSTI)

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  9. Iowa Powder Atomization Technologies

    SciTech Connect (OSTI)

    2012-01-01

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  10. Closing the circle on the splitting of the atom: The environmental legacy of nuclear weapons production in the United States and what the Department of Energy is doing about it

    SciTech Connect (OSTI)

    1996-01-01

    In the grand scheme of things we are a little more than halfway through the cycle of splitting the atom for weapons purposes. If we visualize this historic cycle as the full sweep of a clockface, at zero hour we would find the first nuclear chain reaction by Enrico Fermi, followed immediately by the Manhattan Project and the explosion of the first atomic bombs. From two o`clock until five, the United States built and ran a massive industrial complex that produced tens of thousands of nuclear weapons. At half past, the Cold War ended, and the United States shut down most of its nuclear weapons factories. The second half of this cycle involves dealing with the waste and contamination from nuclear weapons production - a task that had, for the most part, been postponed into the indefinite future. That future is now upon us. Dealing with the environmental legacy of the Cold War is in many ways as big a challenge for us today as the building of the atomic bomb was for the Manhattan Project pioneers in the 1940s. Our challenges are political and social as well as technical, and we are meeting those challenges. We are reducing risks, treating wastes, developing new technologies, and building democratic institutions for a constructive debate on our future course.

  11. Ultracold Atoms: How Quantum Field Theory Invaded Atomic Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultracold Atoms: How Quantum Field Theory Invaded Atomic Physics Eric Braaten Ohio State University May 6, 2015 4:00 p.m. (coffee @ 3:30) The development of the technology for...

  12. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 6. 6. Evaluation of filter material

    SciTech Connect (OSTI)

    Engquist, E,H.

    1985-04-01

    Four types of standard and developmental filter materials used in individual and collective-protective devices and one type of developmental filter material used for sampling of air for particulate matter were evaluated against the contamination produced by the detonation of an atomic bomb and present in the resulting radioactive cloud. These filter materials were evaluated in multilayer pads at the standard flow-rate conditions used by the Chemical Corps in evaluation studies of filter materials. This permitted correlation of results of laboratory data. Analysis of the materials was made by counting the gross beta activity collected on successive layers of the same filter material and the efficiency of the materials was calculated from the data obtained.

  13. Environmental Performance Characterization of Atomic Layer Deposition

    E-Print Network [OSTI]

    Yuan, Chris; Dornfeld, David

    2008-01-01

    Rahtu and R. Gordon. “Atomic layer deposition of transitionoxide films grown by atomic layer deposition from iodide andand S. M. George. “Atomic layer deposition of ultrathin and

  14. A microfabricated atomic clock

    SciTech Connect (OSTI)

    Knappe, Svenja; Shah, Vishal; Schwindt, Peter D.D.; Hollberg, Leo; Kitching, John; Liew, Li-Anne; Moreland, John [Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305-3328 (United States); Electromagnetics Division, National Institute of Standards and Technology, Boulder, Colorado 80305-3328 (United States)

    2004-08-30

    Fabrication techniques usually applied to microelectromechanical systems (MEMS) are used to reduce the size and operating power of the core physics assembly of an atomic clock. With a volume of 9.5 mm{sup 3}, a fractional frequency instability of 2.5x10{sup -10} at 1 s of integration, and dissipating less than 75 mW of power, the device has the potential to bring atomically precise timing to hand-held, battery-operated devices. In addition, the design and fabrication process allows for wafer-level assembly of the structures, enabling low-cost mass-production of thousands of identical units with the same process sequence, and easy integration with other electronics.

  15. Buffer Bomb Lab Introduction

    E-Print Network [OSTI]

    values for printing characters. The program SENDSTRING can help you generate these raw strings. It takes statutes governing such activities. Logistics This is an individual assignment. The "hand will be unpacked in the directory: MAKECOOKIE: Generates a "cookie" based on your login name. BUFBOMB: The code you

  16. Optics and interferometry with atoms and molecules

    E-Print Network [OSTI]

    Cronin, Alexander D.

    Interference with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory fields technique used in atomic ...

  17. Ronald Reagan's Race to Space: American Atomic Diplomacy and SDI in the Age of Reykjavik

    E-Print Network [OSTI]

    Johnston, Bradford David

    2013-01-01

    of its airborne and submarine launched nuclear forces. Thenuclear explosive devices would be eliminated, including bombs, battlefield systems, cruise missiles, submarine

  18. 4. Machine Tr,ansUation Martin Kay, Chairperson

    E-Print Network [OSTI]

    Slocum, University of Texas A Manhattan project could produce an atomic bomb, and the heroic efforts

  19. Atomic Energy Commission Takes Over Responsibility for all Atomic...

    National Nuclear Security Administration (NNSA)

    Takes Over Responsibility for all Atomic Energy Programs | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  20. Quantum transport in ultracold atoms

    E-Print Network [OSTI]

    Chih-Chun Chien; Sebastiano Peotta; Massimiliano Di Ventra

    2015-04-11

    Ultracold atoms confined by engineered magnetic or optical potentials are ideal systems for studying phenomena otherwise difficult to realize or probe in the solid state because their atomic interaction strength, number of species, density, and geometry can be independently controlled. This review focuses on quantum transport phenomena in atomic gases that mirror and oftentimes either better elucidate or show fundamental differences with those observed in mesoscopic and nanoscopic systems. We discuss significant progress in performing transport experiments in atomic gases, contrast similarities and differences between transport in cold atoms and in condensed matter systems, and survey inspiring theoretical predictions that are difficult to verify in conventional setups. These results further demonstrate the versatility offered by atomic systems in the study of nonequilibrium phenomena and their promise for novel applications.

  1. The Ghost of the Bomb : the Bravo Medical Program, scientific uncertainty, and the legacy of U.S. Cold War science, 1954-2005

    E-Print Network [OSTI]

    Harkewicz, Laura J.

    2010-01-01

    impact of nuclear energy and atomic politics on the lives ofWar politics centered on national security through nuclear

  2. Einstein's Hydrogen Atom

    E-Print Network [OSTI]

    Y. S. Kim

    2011-12-02

    In 1905, Einstein formulated his special relativity for point particles. For those particles, his Lorentz covariance and energy-momentum relation are by now firmly established. How about the hydrogen atom? It is possible to perform Lorentz boosts on the proton assuming that it is a point particle. Then what happens to the electron orbit? The orbit could go through an elliptic deformation, but it is not possible to understand this problem without quantum mechanics, where the orbit is a standing wave leading to a localized probability distribution. Is this concept consistent with Einstein's Lorentz covariance? Dirac, Wigner, and Feynman contributed important building blocks for understanding this problem. The remaining problem is to assemble those blocks to construct a Lorentz-covariant picture of quantum bound states based on standing waves. It is shown possible to assemble those building blocks using harmonic oscillators.

  3. Atomic Scale Characterization of Compound Semiconductors Using Atom Probe Tomography

    SciTech Connect (OSTI)

    Gorman, B. P.; Norman, A. G.; Lawrence, D.; Prosa, T.; Guthrey, H.; Al-Jassim, M.

    2011-01-01

    Internal interfaces are critical in determining the performance of III-V multijunction solar cells. Studying these interfaces with atomic resolution using a combination of transmission electron microscopy (TEM), atom probe tomography (APT), and density functional calculations enables a more fundamental understanding of carrier dynamics in photovoltaic (PV) device structures. To achieve full atomic scale spatial and chemical resolution, data acquisition parameters in laser pulsed APT must be carefully studied to eliminate surface diffusion. Atom probe data with minimized group V ion clustering and expected stoichiometry can be achieved by adjusting laser pulse power, pulse repetition rate, and specimen preparation parameters such that heat flow away from the evaporating surface is maximized. Applying these improved analysis conditions to III-V based PV gives an atomic scale understanding of compositional and dopant profiles across interfaces and tunnel junctions and the initial stages of alloy clustering and dopant accumulation. Details on APT experimental methods and future in-situ instrumentation developments are illustrated.

  4. The Atomic City / The Magic of the Atom - 1950's Atomic Energy Commission Documentary

    SciTech Connect (OSTI)

    2012-06-04

    The story of American cities located near atomic power plants, and steps taken monitoring radiation to ensure the safety of the public who live nearby. .

  5. Spectral Emission of Moving Atom

    E-Print Network [OSTI]

    J. X. Zheng-Johansson

    2008-03-17

    A renewed analysis of the H.E. Ives and G.R. Stilwell's experiment on moving hydrogen canal rays (J. Opt. Soc. Am., 1938, v.28, 215) concludes that the spectral emission of a moving atom exhibits always a redshift which informs not the direction of the atom's motion. The conclusion is also evident from a simple energy relation: atomic spectral radiation is emitted as an orbiting electron consumes a portion of its internal energy on transiting to a lower-energy state which however has in a moving atom an additional energy gain; this results in a redshift in the emission frequency. Based on auxiliary experimental information and a scheme for de Broglie particle formation, we give a vigorous elucidation of the mechanism for deceleration radiation of atomic electron; the corresponding prediction of the redshift is in complete agreement with the Ives and Stilwell's experimental formula.

  6. In-situ control system for atomization

    DOE Patents [OSTI]

    Anderson, I.E.; Figliola, R.S.; Terpstra, R.L.

    1995-06-13

    Melt atomizing apparatus comprising a melt supply orifice for supplying the melt for atomization and gas supply orifices proximate the melt supply orifice for supplying atomizing gas to atomize the melt as an atomization spray is disclosed. The apparatus includes a sensor, such as an optical and/or audio sensor, for providing atomization spray data, and a control unit responsive to the sensed atomization spray data for controlling at least one of the atomizing gas pressure and an actuator to adjust the relative position of the gas supply orifice and melt supply in a manner to achieve a desired atomization spray. 3 figs.

  7. Supersonic coal water slurry fuel atomizer

    DOE Patents [OSTI]

    Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Balsavich, John (Foxborough, MA)

    1991-01-01

    A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

  8. Chemical factors influencing selenium atomization 

    E-Print Network [OSTI]

    Buren, Mary Sue

    1980-01-01

    Atomization. (August 1980) Mary Sue Buren, B, S. , Angelo State University Chairman of Advisory Comm1ttee: Dr. Thomas M. Vickrey Selenium in an acid1c matrix was analyzed using graphite furnace atom1c absorption with Zeeman-effect background correct1on.... Nickel(II} and lanthanum( III) were introduced as matrix modifiers to determine their effect on interferences 1n selenium atom1zation. In add1tion to matr1x mod1ficat1on, surface coating the graphite furnace with z1rconium and tantalum salts was also...

  9. LOS ALAMOS SCIENCE AND TECHNOLOGY MAGAZINE OCTOBER 2012 Plutonium's Magic Frequency

    E-Print Network [OSTI]

    a fusion-based "secondary" explosive unit, which produces most of the thermonuclear bomb's yield. A device, the thermonuclear bomb. Atomic bombs are fission devices: their explosive energy comes from splitting heavy nuclei apart. The energy of a thermonuclear bomb, also known as a hydrogen bomb, derives from both nuclear

  10. Imaging atoms in 3-D

    ScienceCinema (OSTI)

    Ercius, Peter

    2014-06-27

    Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

  11. Imaging atoms in 3-D

    SciTech Connect (OSTI)

    Ercius, Peter

    2013-10-31

    Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

  12. Theoretical studies of atomic transitions

    SciTech Connect (OSTI)

    Fischer, C.F.

    1990-10-01

    This paper discusses: lifetime of excited states; core-polarization studies; large relativistic calculations; Monte Carlo Hartree-Fock (MCHF) atomic structure package; and MCHF codes for the hypercube. (LSP)

  13. Efimov physics in cold atoms

    SciTech Connect (OSTI)

    Braaten, Eric . E-mail: braaten@mps.ohio-state.edu; Hammer, H.-W. . E-mail: hammer@itkp.uni-bonn.de

    2007-01-15

    Atoms with a large scattering length have universal low-energy properties that do not depend on the details of their structure or their interactions at short distances. In the 2-atom sector, the universal properties are familiar and depend only on the scattering length. In the 3-atom sector for identical bosons, the universal properties include the existence of a sequence of shallow triatomic molecules called Efimov trimers and log-periodic dependence of scattering observables on the energy and the scattering length. In this review, we summarize the universal results that are currently known. We also summarize the experimental information that is currently available with an emphasis on 3-atom loss processes.

  14. Efimov Physics in Cold Atoms

    E-Print Network [OSTI]

    Eric Braaten; H. -W. Hammer

    2006-12-05

    Atoms with a large scattering length have universal low-energy properties that do not depend on the details of their structure or their interactions at short distances. In the 2-atom sector, the universal properties are familiar and depend only on the scattering length. In the 3-atom sector for identical bosons, the universal properties include the existence of a sequence of shallow triatomic molecules called Efimov trimers and log-periodic dependence of scattering observables on the energy and the scattering length. In this review, we summarize the universal results that are currently known. We also summarize the experimental information that is currently available with an emphasis on 3-atom loss processes.

  15. The study of human mutation rates

    SciTech Connect (OSTI)

    Neel, J.V.

    1992-01-01

    We will describe recent developments regarding the question of induced mutations in the survivors of the atomic bombings of Hiroshima and Nagasaki. As part of that work we, describe some developments with respect to the Amerindian blood samples collected under DoE sponsorship between 1964 and 1982. Then developments regarding the application of two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) to the study of genetic variation and mutation affecting protein characteristics. In particular, we will report on the identification and isolation of genes of especial interest as reflected in the behavior of the proteins which they encode.

  16. The study of human mutation rates. Progress report, 1989--1992

    SciTech Connect (OSTI)

    Neel, J.V.

    1992-12-01

    We will describe recent developments regarding the question of induced mutations in the survivors of the atomic bombings of Hiroshima and Nagasaki. As part of that work we, describe some developments with respect to the Amerindian blood samples collected under DoE sponsorship between 1964 and 1982. Then developments regarding the application of two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) to the study of genetic variation and mutation affecting protein characteristics. In particular, we will report on the identification and isolation of genes of especial interest as reflected in the behavior of the proteins which they encode.

  17. Sudden transition from naked atom decay to dressed atom decay

    E-Print Network [OSTI]

    Wei Zhu; D. L. Zhou

    2015-07-09

    The studies on quantum open system play key roles not only in fundamental problems in quantum mechanics but also in quantum computing and information processes. Here we propose a scheme to use a one dimensional coupling cavity array (CCA) as an artificial electromagnetic environment of a two-level atom. For a finite length of CCA, we find that after a turning time the population of excited state deviates suddenly from the exponential decay. We show that physically this phenomena corresponds to a transition from a naked atom decay to a dressed state decay. We hope that our finding will promote the studies on quantum system with a finite size environment.

  18. Background report for the formerly utilized Manhattan Engineer District/Atomic Energy Commission sites program

    SciTech Connect (OSTI)

    1980-09-01

    The Department of Energy is conducting a program to determine radiological conditions at sites formerly used by the Army Corps of Engineers' Manhattan Engineer District and the Atomic Energy Commission in the early years of nuclear energy development. Also included in the program are sites used in the Los Alamos plutonium development program and the Trinity atomic bomb test site. Materials, equipment, buildings, and land became contaminated, primarily with naturally occurring radioactive nuclides. They were later decontaminated in accordance with the standards and survey methods in use at that time. Since then, however, radiological criteria, and proposed guidelines for release of such sites for unrestricted use have become more stringent as research on the effects of low-level radiation has progressed. In addition, records documenting some of these decontamination efforts cannot be found, and the final radiological conditions of the sites could not be adequately determined from the records. As a result, the Formerly Utilized Sites Program was initiated in 1974 to identify these formerly used sites and to reevaluate their radiological status. This report covers efforts through June 1980 to determine the radiological status of sites for which the existing conditions could not be clearly defined. Principal contractor facilities and associated properties have already been identified and activities are continuing to identify additional sites. Any new sites located will probably be subcontractor facilities and areas used for disposal of contractor waste or equipment; however, only limited information regarding this equipment and material has been collected to date. As additional information becomes available, supplemental reports will be published.

  19. Quantum Electrodynamics of Atomic Resonances

    E-Print Network [OSTI]

    Miguel Ballesteros; Jérémy Faupin; Jürg Fröhlich; Baptiste Schubnel

    2015-03-09

    A simple model of an atom interacting with the quantized electromagnetic field is studied. The atom has a finite mass $m$, finitely many excited states and an electric dipole moment, $\\vec{d}_0 = -\\lambda_{0} \\vec{d}$, where $\\| d^{i}\\| = 1,$ $ i=1,2,3,$ and $\\lambda_0$ is proportional to the elementary electric charge. The interaction of the atom with the radiation field is described with the help of the Ritz Hamiltonian, $-\\vec{d}_0\\cdot \\vec{E}$, where $\\vec{E}$ is the electric field, cut off at large frequencies. A mathematical study of the Lamb shift, the decay channels and the life times of the excited states of the atom is presented. It is rigorously proven that these quantities are analytic functions of the momentum $\\vec{p}$ of the atom and of the coupling constant $\\lambda_0$, provided $|\\vec{p}| maps' applied to a complex dilatation of the original Hamiltonian, which yields an algorithm for the calculation of resonance energies that converges super-exponentially fast.

  20. Atomic Layer DepositionAtomic Layer Deposition (ALD) Conformality in(ALD) Conformality in

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Atomic Layer DepositionAtomic Layer Deposition (ALD) Conformality in(ALD) Conformality in Nanopores, removal of template, and subsequent TEM analysis. Significance Atomic layer deposition (ALD) is widely in Nanopores Intellectual merit While atomic layer deposition (ALD) enables unprecedented control of atomic

  1. Atomizing, continuous, water monitoring module

    DOE Patents [OSTI]

    Thompson, C.V.; Wise, M.B.

    1997-07-08

    A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid. 3 figs.

  2. Ramsey interferometry with ultracold atoms

    E-Print Network [OSTI]

    D. Seidel; J. G. Muga

    2006-02-02

    We examine the passage of ultracold two-level atoms through two separated laser fields for the nonresonant case. We show that implications of the atomic quantized motion change dramatically the behavior of the interference fringes compared to the semiclassical description of this optical Ramsey interferometer. Using two-channel recurrence relations we are able to express the double-laser scattering amplitudes by means of the single-laser ones and to give explicit analytical results. When considering slower and slower atoms, the transmission probability of the system changes considerably from an interference behavior to a regime where scattering resonances prevail. This may be understood in terms of different families of trajectories that dominate the overall transmission probability in the weak field or in the strong field limit.

  3. Atomizing, continuous, water monitoring module

    DOE Patents [OSTI]

    Thompson, Cyril V. (Knoxville, TN); Wise, Marcus B. (Kingston, TN)

    1997-01-01

    A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid.

  4. Hot atom chemistry and radiopharmaceuticals

    SciTech Connect (OSTI)

    Krohn, Kenneth A.; Moerlein, Stephen M.; Link, Jeanne M.; Welch, Michael J.

    2012-12-19

    The chemical products made in a cyclotron target are a combined result of the chemical effects of the nuclear transformation that made the radioactive atom and the bulk radiolysis in the target. This review uses some well-known examples to understand how hot atom chemistry explains the primary products from a nuclear reaction and then how radiation chemistry is exploited to set up the optimal product for radiosynthesis. It also addresses the chemical effects of nuclear decay. There are important principles that are common to hot atom chemistry and radiopharmaceutical chemistry. Both emphasize short-lived radionuclides and manipulation of high specific activity nuclides. Furthermore, they both rely on radiochromatographic separation for identification of no-carrieradded products.

  5. Average-Atom Thomson Scattering

    E-Print Network [OSTI]

    Johnson, Walter R.

    -Atom Approximation W. R. Johnson, Notre Dame J. Nilsen & K. T. Cheng, LLNL The cross section for Thomson scattering Average-Atom Model Divide plasma into WS cells with a nucleus and Z electrons p2 2 - Z r + V a(r) = a a(r) V(r) = VKS(n(r), r) n(r) = nb(r) + nc(r) 4r2nb(r) = nl 2(2l+1) 1+exp[( nl -µ)/kBT] Pnl(r)2 Z = r

  6. Atomic CP-violating polarizability

    E-Print Network [OSTI]

    Ravaine, B; Derevianko, A; Ravaine, Boris; Derevianko, Andrei

    2005-01-01

    Searches for CP violating effects in atoms and molecules provide important constrains on competing extensions to the standard model of elementary particles. In particular, CP violation in an atom leads to the CP-odd (T,P-odd) polarizability $\\beta^\\mathrm{CP}$: a magnetic moment $\\mu^\\mathrm{CP}$ is induced by an electric field $\\mathcal{E}_0$ applied to an atom, $\\mu^\\mathrm{CP} = \\beta^\\mathrm{CP} \\mathcal{E}_0 $. We estimate the CP-violating polarizability for rare-gas (diamagnetic) atoms He through Rn. We relate betaCP to the permanent electric dipole moment (EDM) of the electron and to the scalar constant of the CP-odd electron-nucleus interaction. The analysis is carried out using the third-order perturbation theory and the Dirac-Hartree-Fock formalism. We find that, as a function of nuclear charge Z, betaCP scales steeply as Z^5 R(Z), where slowly-varying R(Z) is a relativistic enhancement factor. Finally, we evaluate a feasibility of setting a limit on electron EDM by measuring CP-violating magnetizat...

  7. Atomic vapor laser isotope separation process

    DOE Patents [OSTI]

    Wyeth, R.W.; Paisner, J.A.; Story, T.

    1990-08-21

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

  8. Towards a high-precision atomic gyroscope

    E-Print Network [OSTI]

    Van Camp, Mackenzie A. (Mackenzie Anne)

    2013-01-01

    In this thesis, I report on the design and construction of the Rubidium Atomic Gyroscope Experiment (RAGE) at Draper Lab.

  9. QUANTUM MECHANICS, GENERAL PHYSICS; 74 ATOMIC AND MOLECULAR PHYSICS...

    Office of Scientific and Technical Information (OSTI)

    of model atoms in fields Milonni, P.W. 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 74 ATOMIC AND MOLECULAR PHYSICS; ATOMS; OPTICAL MODELS; QUANTUM MECHANICS;...

  10. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1985-11-08

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

  11. Instead of splitting the atom --the

    E-Print Network [OSTI]

    Instead of splitting the atom - - the principle behind the 1940s Manhattan Project that build infinite. Instead of splitting the atom -- the principle behind the 1940s Manhattan Project that build gravitational forces ram hydrogen atoms together to produce helium, with solar energy the byproduct. On Earth

  12. Gauss Sum Factorization with Cold Atoms

    SciTech Connect (OSTI)

    Gilowski, M.; Wendrich, T.; Mueller, T.; Ertmer, W.; Rasel, E. M. [Institut fuer Quantenoptik, Leibniz Universitaet Hannover, Welfengarten 1, D-30167 Hannover (Germany); Jentsch, Ch. [Astrium GmbH-Satellites, 88039 Friedrichshafen (Germany); Schleich, W. P. [Institut fuer Quantenphysik, Universitaet Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany)

    2008-01-25

    We report the first implementation of a Gauss sum factorization algorithm by an internal state Ramsey interferometer using cold atoms. A sequence of appropriately designed light pulses interacts with an ensemble of cold rubidium atoms. The final population in the involved atomic levels determines a Gauss sum. With this technique we factor the number N=263193.

  13. Atomic Representations of Rank 2 Graph Algebras

    E-Print Network [OSTI]

    Davidson, Ken

    Atomic Representations of Rank 2 Graph Algebras Kenneth R. Davidson a , Stephen C. Power b , Dilian University, Lancaster LA1 4YF, U.K. Abstract We provide a detailed analysis of atomic -representations- posed into a direct sum or direct integral of irreducible atomic representations. The building blocks

  14. PRODUCTION OF EXOTIC ATOMS MARK ELLERMANN II

    E-Print Network [OSTI]

    Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

    #12;PRODUCTION OF EXOTIC ATOMS by MARK ELLERMANN II Submitted to the Faculty of the Graduate School OF SCIENCE December 2010 #12;PRODUCTION OF EXOTIC ATOMS Approved: Adviser Dean of the College of Arts & Science Dean of Graduate Studies and Research ii #12;ABSTRACT PRODUCTION OF EXOTIC ATOMS Mark Ellermann

  15. The Future of Atomic Energy

    DOE R&D Accomplishments [OSTI]

    Fermi, E.

    1946-05-27

    There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

  16. Cooling and Trapping Atoms Atoms are slowed and cooled by radiation pressure from laser light

    E-Print Network [OSTI]

    Johannesson, Henrik

    Cooling and Trapping Atoms Atoms are slowed and cooled by radiation pressure from laser light and then trapped in a bottle whose "walls" are magnetic fields. Cooled atoms are ideal for exploring basic. Atoms can now be cooled by shining laser light directly on them. The radiation pres sure exerted

  17. NAAP Hydrogen Atom 1/9 The Hydrogen Atom Student Guide

    E-Print Network [OSTI]

    Farritor, Shane

    Name: NAAP ­ Hydrogen Atom 1/9 The Hydrogen Atom ­ Student Guide Background Material Carefully read and the Quantum model represent the Hydrogen atom. In some cases they both describe things in the same way frequency, smaller energy, and the same velocity through space as a blue photon". #12;NAAP ­Hydrogen Atom 2

  18. Fast transport, atom sample splitting and single-atom qubit supply in two-dimensional arrays

    E-Print Network [OSTI]

    Birkl, Gerhard

    Fast transport, atom sample splitting and single-atom qubit supply in two-dimensional arrays architecture for neutral atom quantum information processing, quantum simulation and the manipulation of ultra-cold implemented functions. We introduce piezo-actuator-based transport of atom ensembles over distances of more

  19. Quantum search protocol for an atomic array 

    E-Print Network [OSTI]

    Scully, Marlan O.; Zubairy, M. Suhail

    2001-01-01

    of atoms, one atom at each (i , j) site. Each atom ~lattice site! is coupled via an optical fiber to a particular detector, so that spontaneously emitted radiation from an atom at site (i , j). causes a count in detector Di j @see Fig. 1~b... manifold of the so-called detector states indicated by ud&. A transition from u1,0& to u18,08& is forbidden, and this protects straw atoms from excitation, i.e., a dashed line is not allowed. ~c! One way of eliminating error counts. Even though z radiation...

  20. Low velocity limits of cold atom clocks

    E-Print Network [OSTI]

    J. Muñoz; I. Lizuain; J. G. Muga

    2009-09-08

    Fundamental low-energy limits to the accuracy of quantum clock and stopwatch models in which the clock hand motion is activated by the presence of a particle in a region of space have been studied in the past, but their relevance for actual atomic clocks had not been assessed. In this work we address the effect of slow atomic quantum motion on Rabi and Ramsey resonance fringe patterns, as a perturbation of the results based on classical atomic motion. We find the dependence of the fractional error of the corresponding atomic clocks on the atomic velocity and interaction parameters.

  1. The new prophet : Harold C. Urey, scientist, atheist, and defender of religion

    E-Print Network [OSTI]

    Shindell, Matthew Benjamin

    2011-01-01

    responsibilities concerning atomic power so that they couldnuclear weaponry, power, and atomic scientists themselves –that had “adequate powers to prohibit atomic bombs” and “to

  2. Engineering Atomic Quantum Reservoirs for Photons

    E-Print Network [OSTI]

    Susanne Pielawa; Luiz Davidovich; David Vitali; Giovanna Morigi

    2010-04-06

    We present protocols for creating entangled states of two modes of the electromagnetic field, by using a beam of atoms crossing microwave resonators. The atoms are driven by a transverse, classical field and pump correlated photons into (i) two modes of a cavity and (ii) the modes of two distant cavities. The protocols are based on a stochastic dynamics, characterized by random arrival times of the atoms and by random interaction times between atoms and cavity modes. The resulting effective model yields a master equation, whose steady state is an entangled state of the cavity modes. In this respect, the atoms act like a quantum reservoir, pulling the cavity modes into an entangled, Einstein-Podolski-Rosen (EPR) state, whose degree of entanglement is controlled by the intensity and the frequency of the transverse field. This scheme is robust against stochastic fluctuations in the atomic beam, and it does not require atomic detection nor velocity selection.

  3. Engineering Atomic Quantum Reservoirs for Photons

    E-Print Network [OSTI]

    Pielawa, Susanne; Vitali, David; Morigi, Giovanna

    2010-01-01

    We present protocols for creating entangled states of two modes of the electromagnetic field, by using a beam of atoms crossing microwave resonators. The atoms are driven by a transverse, classical field and pump correlated photons into (i) two modes of a cavity and (ii) the modes of two distant cavities. The protocols are based on a stochastic dynamics, characterized by random arrival times of the atoms and by random interaction times between atoms and cavity modes. The resulting effective model yields a master equation, whose steady state is an entangled state of the cavity modes. In this respect, the atoms act like a quantum reservoir, pulling the cavity modes into an entangled, Einstein-Podolski-Rosen (EPR) state, whose degree of entanglement is controlled by the intensity and the frequency of the transverse field. This scheme is robust against stochastic fluctuations in the atomic beam, and it does not require atomic detection nor velocity selection.

  4. Atomic Structure Calculations from the Los Alamos Atomic Physics Codes

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cowan, R. D.

    The well known Hartree-Fock method of R.D. Cowan, developed at Los Alamos National Laboratory, is used for the atomic structure calculations. Electron impact excitation cross sections are calculated using either the distorted wave approximation (DWA) or the first order many body theory (FOMBT). Electron impact ionization cross sections can be calculated using the scaled hydrogenic method developed by Sampson and co-workers, the binary encounter method or the distorted wave method. Photoionization cross sections and, where appropriate, autoionizations are also calculated. Original manuals for the atomic structure code, the collisional excitation code, and the ionization code, are available from this website. Using the specialized interface, you will be able to define the ionization stage of an element and pick the initial and final configurations. You will be led through a series of web pages ending with a display of results in the form of cross sections, collision strengths or rates coefficients. Results are available in tabular and graphic form.

  5. General Atomics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway Edit HistoryGearyAtomics Jump to:

  6. Mexico: swapping crude for atoms

    SciTech Connect (OSTI)

    Navarro, B.

    1982-06-24

    Mexico, considered the Saudi Arabia of the Western Hemisphere because of its proven and potential petroleum reserves, has surprised the world: it has embarked on the biggest nuclear-electric program in the Third World, only to postpone it days before scheduled approval of an international bidding (on which the atomic energy industry had pinned its hopes). A graph shows Mexican supplies of electricity by source with official projections to 1990. The point of entrance of the first nuclear reactor, originally scheduled for 1982, won't come onstream until 1983; and how nuclear-generated electricity grows close to 5% of the total in 1990. The big question is, will the future President of Mexico give the green light to the atomic megaproject. And if he does, how will Mexico deal with the serious logistics problems and grave ecological implications confronting the industry worldwide. In this issue, the author and Energy Detente touch on these questions and review the nuclear power status of Mexico, as well as addressing some of its global problems. Also presented in this issue is an update of the fuel price/tax series for the Western Hemisphere countries.

  7. Sensing mode atomic force microscope

    DOE Patents [OSTI]

    Hough, Paul V. C.; Wang, Chengpu

    2006-08-22

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  8. Sensing mode atomic force microscope

    DOE Patents [OSTI]

    Hough, Paul V.; Wang, Chengpu

    2004-11-16

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  9. Sensing mode atomic force microscope

    DOE Patents [OSTI]

    Hough, Paul V. C. (Port Jefferson, NY); Wang, Chengpu (Upton, NY)

    2003-01-01

    An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.

  10. BOMB THREAT CHECKLIST Date_______ Time_______

    E-Print Network [OSTI]

    Capogna, Luca

    Pitch _____ Soft _____ Pleasant _____ Raspy _____ Inoxicated _____ Deep _____ Other Speech _____ Fast _____ Slow

  11. Method for enhanced atomization of liquids

    DOE Patents [OSTI]

    Thompson, Richard E. (27121 Puerta del Oro, Mission Viejo, CA 92691); White, Jerome R. (44755 Wyandotte, Hemet, CA 92544)

    1993-01-01

    In a process for atomizing a slurry or liquid process stream in which a slurry or liquid is passed through a nozzle to provide a primary atomized process stream, an improvement which comprises subjecting the liquid or slurry process stream to microwave energy as the liquid or slurry process stream exits the nozzle, wherein sufficient microwave heating is provided to flash vaporize the primary atomized process stream.

  12. Optimizing Atomic Neighborhoods for Speedier Chemical Reactions...

    Office of Science (SC) Website

    processes involved in energy production and pollution control. Employing in-operation tools to atomic-level interactions in palladium-based catalysts enhances the discovery and...

  13. Classical and Quantum Chaos in Atom Optics

    E-Print Network [OSTI]

    Farhan Saif

    2006-04-10

    The interaction of an atom with an electromagnetic field is discussed in the presence of a time periodic external modulating force. It is explained that a control on atom by electromagnetic fields helps to design the quantum analog of classical optical systems. In these atom optical systems chaos may appear at the onset of external fields. The classical and quantum chaotic dynamics is discussed, in particular in an atom optics Fermi accelerator. It is found that the quantum dynamics exhibits dynamical localization and quantum recurrences.

  14. Atom-split it for nuclear energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adjustments were provided by the 'Calutron Girls' Seaborg-Chairman of the Atomic Energy Commission 1961-1971; discovered many elements Buckyball-Buckminsterfullerene; 60...

  15. Subwavelength Transportation of Light with Atomic Resonances

    E-Print Network [OSTI]

    Chui, Siu-Tat; Jo, Gyu-Boong

    2015-01-01

    We propose and investigate a new type of optical waveguide made by an array of atoms without involving conventional Bragg scattering or total internal reflection. A finite chain of atoms collectively coupled through their intrinsic resonance supports a propagating mode with minimal radiative loss when the array spacing $a$ is around 0.6$\\lambda_0/2\\pi$ where $\\lambda_0$ is the wavelength of the nearly resonant optical transition. We find that the transportation is robust with respect to position fluctuation and remains possible when the atoms are placed on a circle. Our result paves the way to implement the subwavelength transportation of light in integrated optical circuits with cold atoms.

  16. CARBON ATOM DISTRIBUTION IN A DUAL PHASE STEEL: AN ATOM PROBE STUDY

    E-Print Network [OSTI]

    Barnard, S.J.

    2014-01-01

    ATOM DISTRIBUTION IN A DUAL PHASE STEEL: AN ATOM PROBE STUDY~4720 1 U.S.A. IntroductioE. Dual Phase steels are currentlymartensite-austenite dual phase steel, although the results

  17. A new Embedded Atom Method potential for atomic-scale modeling of metal-silicon systems

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    A new Embedded Atom Method potential for atomic-scale modeling of metal-silicon systems Avinash M efficient interatomic potentials for metal-silicon systems. For metals, the Embedded Atom Method (EAM) [1 for the description of interatomic interactions in metal-silicon systems. The potential is based on reformulation

  18. Interaction of trapped ions with trapped atoms

    E-Print Network [OSTI]

    Grier, Andrew T. (Andrew Todd)

    2011-01-01

    In this thesis, I present results from two Paul-trap based ion traps carried out in the Vuleti? laboratory: the Atom-Ion trap for collision studies between cold atoms and cold ions, and the Cavity-Array trap for studying ...

  19. Spectroscopic measurement of an atomic wave function 

    E-Print Network [OSTI]

    Kapale, KT; Qamar, S.; Zubairy, M. Suhail.

    2003-01-01

    We present a simple spectroscopic method based on Autler-Townes spectroscopy to determine the center-of-mass atomic wave function. The detection of spontaneously emitted photons from a three-level atom, in which two upper levels are driven by a...

  20. Sagnac interferometry with a single atomic clock

    E-Print Network [OSTI]

    Stevenson, R; Bishop, T; Lesanovsky, I; Fernholz, T

    2015-01-01

    We theoretically discuss an implementation of a Sagnac interferometer with cold atoms. In contrast to currently existing schemes our protocol does not rely on any free propagation of atoms. Instead it is based on superpositions of fully confined atoms and state-dependent transport along a closed path. Using Ramsey sequences for an atomic clock, the accumulated Sagnac phase is encoded in the resulting population imbalance between two internal (clock) states. Using minimal models for the above protocol we analytically quantify limitations arising from atomic dynamics and finite temperature. We discuss an actual implementation of the interferometer with adiabatic radio-frequency potentials that is inherently robust against common mode noise as well as phase noise from the reference oscillator.

  1. Sagnac interferometry with a single atomic clock

    E-Print Network [OSTI]

    R. Stevenson; M. Hush; T. Bishop; I. Lesanovsky; T. Fernholz

    2015-04-21

    We theoretically discuss an implementation of a Sagnac interferometer with cold atoms. In contrast to currently existing schemes our protocol does not rely on any free propagation of atoms. Instead it is based on superpositions of fully confined atoms and state-dependent transport along a closed path. Using Ramsey sequences for an atomic clock, the accumulated Sagnac phase is encoded in the resulting population imbalance between two internal (clock) states. Using minimal models for the above protocol we analytically quantify limitations arising from atomic dynamics and finite temperature. We discuss an actual implementation of the interferometer with adiabatic radio-frequency potentials that is inherently robust against common mode noise as well as phase noise from the reference oscillator.

  2. Atom structures of relation algebras Ian Hodkinson \\Lambda

    E-Print Network [OSTI]

    Hodkinson, Ian

    Atom structures of relation algebras Ian Hodkinson \\Lambda October 24, 1995 Abstract We study atom structures of relation algebras. We prove that the class of atom structures that arise from representable is not determined by its atom structure, by exhibiting two (countable) relation algebras with the same atom

  3. On the energy of electric field in hydrogen atom

    E-Print Network [OSTI]

    Yuri Kornyushin

    2009-07-30

    It is shown that hydrogen atom is a unique object in physics having negative energy of electric field, which is present in the atom. This refers also to some hydrogen-type atoms: hydrogen anti-atom, atom composed of proton and antiproton, and positronium.

  4. Computing Energy Levels of the Confined Hydrogen Atom

    E-Print Network [OSTI]

    Vuik, Kees

    Computing Energy Levels of the Confined Hydrogen Atom Karl K¨astner 02/03/2012 Supervisors: Martin of the Unconfined Atom The Confined Hydrogen Atom Energy Levels of the Confined Two Dimensional Hydrogen Atom Thesis of the Free Hydrogen Atom principal quantum number n EineV 0 5 10 15 0 50 100 150 200 250 300 Energy Levels

  5. Towards new states of matter with atoms and photons

    E-Print Network [OSTI]

    Towards new states of matter with atoms and photons Jonas Larson Stockholm University-field coupling ~ 1 ( effective mode volume). Strong coupling regime , (/ atom/photon decay rates). 6Haroche Photon blockade 9 Jaynes-Cummings physics Kimble, Nature 436 (2005). #12;Cavity QED Atom-atom, atom

  6. Atomic magnetometer for human magnetoencephalograpy.

    SciTech Connect (OSTI)

    Schwindt, Peter; Johnson, Cort N.

    2010-12-01

    We have developed a high sensitivity (<5 fTesla/{radical}Hz), fiber-optically coupled magnetometer to detect magnetic fields produced by the human brain. This is the first demonstration of a noncryogenic sensor that could replace cryogenic superconducting quantum interference device (SQUID) magnetometers in magnetoencephalography (MEG) and is an important advance in realizing cost-effective MEG. Within the sensor, a rubidium vapor is optically pumped with 795 laser light while field-induced optical rotations are measured with 780 nm laser light. Both beams share a single optical axis to maximize simplicity and compactness. In collaboration with neuroscientists at The Mind Research Network in Albuquerque, NM, the evoked responses resulting from median nerve and auditory stimulation were recorded with the atomic magnetometer and a commercial SQUID-based MEG system with signals comparing favorably. Multi-sensor operation has been demonstrated with two AMs placed on opposite sides of the head. Straightforward miniaturization would enable high-density sensor arrays for whole-head magnetoencephalography.

  7. Atomic imaging and modeling of passivation, functionalization, and atomic layer deposition nucleation of the SiGe(001) surface via

    E-Print Network [OSTI]

    Kummel, Andrew C.

    Atomic imaging and modeling of passivation, functionalization, and atomic layer deposition Atomic layer deposition X-ray photoelectron spectroscopy Passivation, functionalization, and atomic layer\\OH and Ge\\O bonds while annealing induces an atomic layer ex- change bringing Si to the surface to bond

  8. Scattering properties of dark atoms and molecules

    E-Print Network [OSTI]

    Cline, James M; Moore, Guy; Xue, Wei

    2013-01-01

    There has been renewed interest in the possibility that dark matter exists in the form of atoms, analogous to those of the visible world. An important input for understanding the cosmological consequences of dark atoms is their self-scattering. Making use of results from atomic physics for the potentials between hydrogen atoms, we compute the low-energy elastic scattering cross sections for dark atoms. We find an intricate dependence upon the ratio of the dark proton to electron mass, allowing for the possibility to "design" low-energy features in the cross section. Dependences upon other parameters, namely the gauge coupling and reduced mass, scale out of the problem by using atomic units. We derive constraints on the parameter space of dark atoms by demanding that their scattering cross section does not exceed bounds from dark matter halo shapes. We discuss the formation of molecular dark hydrogen in the universe, and determine the analogous constraints on the model when the dark matter is predominantly in ...

  9. Studying coherence in ultra-cold atomic gases

    E-Print Network [OSTI]

    Miller, Daniel E. (Daniel Edward)

    2007-01-01

    This thesis will discuss the study of coherence properties of ultra-cold atomic gases. The atomic systems investigated include a thermal cloud of atoms, a Bose-Einstein condensate and a fermion pair condensate. In each ...

  10. Integrated Sustainability Analysis of Atomic Layer Deposition for Microelectronics Manufacturing

    E-Print Network [OSTI]

    Yuan, Chris Yingchun; David Dornfeld

    2010-01-01

    E. , 2002, “Thin Film Atomic Layer Deposition Equipment forA. , 2000, “Atomic Layer Deposition of Titanium Oxide FromHarsta, A. , 2001, “Atomic Layer Deposition of Zirco- nium

  11. Atomic Layer Deposition Enabled Synthesis of Multiferroic Nanostructures

    E-Print Network [OSTI]

    Pham, Calvin Dinh-Tu

    2015-01-01

    Thin Films by Atomic Layer Deposition." Advanced FunctionalPlasma enhanced atomic layer deposition of HfO 2 and ZrO 2et al. (2003). "Atomic Layer Deposition (ALD) of Bismuth

  12. New analogies between extreme QCD and cold atoms

    SciTech Connect (OSTI)

    Nishida, Yusuke

    2012-08-15

    We discuss two new analogies between extreme QCD and cold atoms. One is the analogue of 'hard probes' in cold atoms. The other is the analogue of 'quark-hadron continuity' in cold atoms.

  13. Phase stabilization of laser beams in a cold atom accelerometer

    E-Print Network [OSTI]

    Byrne, Nicole (Nicole Malenie)

    2014-01-01

    A cold atom accelerometer measures the displacement of a proof mass of laser cooled atoms with respect to an instrument reference frame. The cold atom interferometer's reference frame is defined by a pair of specially ...

  14. Cold Light from Hot Atoms and Molecules

    SciTech Connect (OSTI)

    Lister, Graeme [OSRAM SYLVANIA, CRSL, 71 Cherry Hill Drive, Beverly, MA (United States); Curry, John J. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    2011-05-11

    The introduction of rare earth atoms and molecules into lighting discharges led to great advances in efficacy of these lamps. Atoms such as Dy, Ho and Ce provide excellent radiation sources for lighting applications, with rich visible spectra, such that a suitable combination of these elements can provide high quality white light. Rare earth molecules have also proved important in enhancing the radiation spectrum from phosphors in fluorescent lamps. This paper reviews some of the current aspects of lighting research, particularly rare earth chemistry and radiation, and the associated fundamental atomic and molecular data.

  15. Constraints on extra dimensions from atomic spectroscopy

    E-Print Network [OSTI]

    Dahia, F

    2015-01-01

    We consider a hydrogen atom confined in a thick brane embedded in a higher-dimensional space. Due to effects of the extra dimensions, the gravitational potential is amplified in distances smaller than the size of the supplementary space, in comparison with the Newtonian potential. Studying the influence of the gravitational interaction modified by the extra dimensions on the energy levels of the hydrogen atom, we find independent constraints for the higher-dimensional Planck mass in terms of the thickness of the brane by using accurate measurements of atomic transition frequencies. The constraints are very stringent for narrow branes.

  16. Constraints on extra dimensions from atomic spectroscopy

    E-Print Network [OSTI]

    F. Dahia; A. S. Lemos

    2015-09-23

    We consider a hydrogen atom confined in a thick brane embedded in a higher-dimensional space. Due to effects of the extra dimensions, the gravitational potential is amplified in distances smaller than the size of the supplementary space, in comparison with the Newtonian potential. Studying the influence of the gravitational interaction modified by the extra dimensions on the energy levels of the hydrogen atom, we find independent constraints for the higher-dimensional Planck mass in terms of the thickness of the brane by using accurate measurements of atomic transition frequencies. The constraints are very stringent for narrow branes.

  17. 1984 Bibliography of atomic and molecular processes

    SciTech Connect (OSTI)

    Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.; Griffin, P.M.; Havener, C.C.; Howard, A.M.; Kirkpatrick, M.I.; McDaniel, E.W.; Meyer, F.W.; Morgan, T.J. (comps.)

    1985-04-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1984. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  18. Gain narrowing in few-atom systems

    E-Print Network [OSTI]

    Tom Savels; Allard P. Mosk; Ad Lagendijk

    2006-05-31

    Using a density matrix approach, we study the simplest systems that display both gain and feedback: clusters of 2 to 5 atoms, one of which is pumped. The other atoms supply feedback through multiple scattering of light. We show that, if the atoms are in each other's near-field, the system exhibits large gain narrowing and spectral mode redistribution. The observed phenomena are more pronounced if the feedback is enhanced. Our system is to our knowledge the simplest exactly solvable microscopic system which shows the approach to laser oscillation.

  19. PPPL and General Atomics scientists make breakthrough in understanding...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shows a response that was ineffective. Simulation by General Atomics. Researchers from General Atomics and the U.S. Department of Energy's Princeton Plasma Physics Laboratory...

  20. Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions...

    National Nuclear Security Administration (NNSA)

    Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline Atomic Energy Commission Explores Peaceful Uses of ... Atomic Energy Commission Explores Peaceful...

  1. Atom transfer radical polymerization of ionic liquid monomer...

    Office of Scientific and Technical Information (OSTI)

    Atom transfer radical polymerization of ionic liquid monomer: The influence of saltcounterion on polymerization Citation Details In-Document Search Title: Atom transfer radical...

  2. General Atomics Compliance Order, October 6, 1995 Summary

    Office of Environmental Management (EM)

    General Atomics Agreement Name General Atomics Compliance Order, October 6, 1995 HWCA 9596-017 State California Agreement Type Compliance Agreement Legal Driver(s) FFCAct Scope...

  3. The Common Elements of Atomic and Hadronic Physics (Conference...

    Office of Scientific and Technical Information (OSTI)

    The Common Elements of Atomic and Hadronic Physics Citation Details In-Document Search Title: The Common Elements of Atomic and Hadronic Physics You are accessing a document...

  4. The Common Elements of Atomic and Hadronic Physics (Conference...

    Office of Scientific and Technical Information (OSTI)

    The Common Elements of Atomic and Hadronic Physics Citation Details In-Document Search Title: The Common Elements of Atomic and Hadronic Physics Authors: Brodsky, Stanley J. ;...

  5. Next-Generation Lithium Metal Anode Engineering via Atomic Layer...

    Office of Scientific and Technical Information (OSTI)

    Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition Citation Details In-Document Search Title: Next-Generation Lithium Metal Anode Engineering via Atomic...

  6. Atom-Probe Tomographic Measurement of Trapped Hydrogen Isotopes...

    Office of Environmental Management (EM)

    Atom-Probe Tomographic Measurement of Trapped Hydrogen Isotopes Atom-Probe Tomographic Measurement of Trapped Hydrogen Isotopes Presentation from the 34th Tritium Focus Group...

  7. Spatial atomic layer deposition on flexible substrates using...

    Office of Scientific and Technical Information (OSTI)

    Spatial atomic layer deposition on flexible substrates using a modular rotating cylinder reactor Citation Details In-Document Search Title: Spatial atomic layer deposition on...

  8. Electroless Atomic Layer Deposition: A Scalable Approach to Surface...

    Office of Scientific and Technical Information (OSTI)

    Electroless Atomic Layer Deposition: A Scalable Approach to Surface Modified Metal Powders. Citation Details In-Document Search Title: Electroless Atomic Layer Deposition: A...

  9. An electroless approach to atomic layer deposition on noble metal...

    Office of Scientific and Technical Information (OSTI)

    An electroless approach to atomic layer deposition on noble metal powders. Citation Details In-Document Search Title: An electroless approach to atomic layer deposition on noble...

  10. Materials, Modules, and Systems: An Atoms to Autos Approach to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials, Modules, and Systems: An Atoms to Autos Approach to Automotive Thermoelectric Systems Development Materials, Modules, and Systems: An Atoms to Autos Approach to...

  11. Atomically Thin Heterostructures based on Single-Layer Tungsten...

    Office of Scientific and Technical Information (OSTI)

    Atomically Thin Heterostructures based on Single-Layer Tungsten Diselenide and Graphene. Citation Details In-Document Search Title: Atomically Thin Heterostructures based on...

  12. Institute for Atom-Efficient Chemical Transformations Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Atom-Efficient Chemical Transformations - an Energy Frontier Research Center The Institute for Atom-Efficient Chemical Transformations (IACT) employs a...

  13. Institute for Atom-Efficient Chemical Transformations Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientific roadblocks to U.S. energy security. Institute for Atom-Efficient Chemical Transformations The Institute for Atom-Efficient Chemical Transformations (IACT)...

  14. A History of the Atomic Energy Commission

    SciTech Connect (OSTI)

    Buck, A.L.

    1983-07-01

    This pamphlet traces the history of the US Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946 to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations.

  15. Stout: Cloudy's Atomic and Molecular Database

    E-Print Network [OSTI]

    Lykins, M L; Kisielius, R; Chatzikos, M; Porter, R L; van Hoof, P A M; Williams, R J R; Keenan, F P; Stancil, P C

    2015-01-01

    We describe a new atomic and molecular database we developed for use in the spectral synthesis code Cloudy. The design of Stout is driven by the data needs of Cloudy, which simulates molecular, atomic, and ionized gas with kinetic temperatures 2.8 K data are stored in a format as close as possible to the original data sources. Few data sources include the full range of data we need. We describe how we fill in the gaps in the data or extrapolate rates beyond their tabulated range. We tabulate data sources both for the atomic spectroscopic parameters and for collision data for the next release of Cloudy. This is not intended as a review of the current status of atomic data, but rather a description of the features of the database which we will build ...

  16. Atomic physics: An almost lightless laser

    E-Print Network [OSTI]

    Vuletic, Vladan

    Lasers are often described in terms of a light field circulating in an optical resonator system. Now a laser has been demonstrated in which the field resides primarily in the atomic medium that is used to generate the light.

  17. Accurate capacitive metrology for atomic force microscopy

    E-Print Network [OSTI]

    Mazzeo, Aaron D. (Aaron David), 1979-

    2005-01-01

    This thesis presents accurate capacitive sensing metrology designed for a prototype atomic force microscope (AFM) originally developed in the MIT Precision Motion Control Lab. The capacitive measurements use a set of ...

  18. Electronic transport in atomically thin layered materials

    E-Print Network [OSTI]

    Baugher, Britton William Herbert

    2014-01-01

    Electronic transport in atomically thin layered materials has been a burgeoning field of study since the discovery of isolated single layer graphene in 2004. Graphene, a semi-metal, has a unique gapless Dirac-like band ...

  19. Fast atomic transport without vibrational heating

    E-Print Network [OSTI]

    E. Torrontegui; S. Ibáñez; Xi Chen; A. Ruschhaupt; D. Guéry-Odelin; J. G. Muga

    2010-10-15

    We use the dynamical invariants associated with the Hamiltonian of an atom in a one dimensional moving trap to inverse engineer the trap motion and perform fast atomic transport without final vibrational heating. The atom is driven non-adiabatically through a shortcut to the result of adiabatic, slow trap motion. For harmonic potentials this only requires designing appropriate trap trajectories, whereas perfect transport in anharmonic traps may be achieved by applying an extra field to compensate the forces in the rest frame of the trap. The results can be extended to atom stopping or launching. The limitations due to geometrical constraints, energies and accelerations involved are analyzed, as well as the relation to previous approaches (based on classical trajectories or "fast-forward" and "bang-bang" methods) which can be integrated in the invariant-based framework.

  20. International Atomic Energy Agency General Conference | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Let me congratulate you on your selection as President of this 51st General Conference of the International Atomic Energy Agency. I also wish to thank Dr. ElBaradei for...

  1. Testing Lorentz symmetry with atoms and Light

    E-Print Network [OSTI]

    Neil Russell

    2011-09-04

    This article reports on the Fifth Meeting on CPT and Lorentz Symmetry, CPT'10, held at the end of June 2010 in Bloomington, Indiana, USA. The focus is on recent tests of Lorentz symmetry using atomic and optical physics.

  2. Quantum micro-mechanics with ultracold atoms

    E-Print Network [OSTI]

    Thierry Botter; Daniel Brooks; Subhadeep Gupta; Zhao-Yuan Ma; Kevin L. Moore; Kater W. Murch; Tom P. Purdy; Dan M. Stamper-Kurn

    2008-10-21

    In many experiments isolated atoms and ions have been inserted into high-finesse optical resonators for the study of fundamental quantum optics and quantum information. Here, we introduce another application of such a system, as the realization of cavity optomechanics where the collective motion of an atomic ensemble serves the role of a moveable optical element in an optical resonator. Compared with other optomechanical systems, such as those incorporating nanofabricated cantilevers or the large cavity mirrors of gravitational observatories, our cold-atom realization offers direct access to the quantum regime. We describe experimental investigations of optomechanical effects, such as the bistability of collective atomic motion and the first quantification of measurement backaction for a macroscopic object, and discuss future directions for this nascent field.

  3. Atomic quantum memory for photon polarization

    E-Print Network [OSTI]

    Bloom, Benjamin Jacob, S.B. Massachusetts Institute of Technology

    2008-01-01

    Using an ensemble of ultracold Cesium atoms in an optical cavity we demonstrate the efficient storage and retrieval of quantum information in the form of single photons. We use a photon that has scattered into the cavity ...

  4. ac-driven atomic quantum motor

    E-Print Network [OSTI]

    A. V. Ponomarev; S. Denisov; P. Hanggi

    2009-06-09

    We invent an ac-driven quantum motor consisting of two different, interacting ultracold atoms placed into a ring-shaped optical lattice and submerged in a pulsating magnetic field. While the first atom carries a current, the second one serves as a quantum starter. For fixed zero-momentum initial conditions the asymptotic carrier velocity converges to a unique non-zero value. We also demonstrate that this quantum motor performs work against a constant load.

  5. Hydrogen atom in rotationally invariant noncommutative space

    E-Print Network [OSTI]

    Kh. P. Gnatenko; V. M. Tkachuk

    2014-11-03

    We consider the noncommutative algebra which is rotationally invariant. The hydrogen atom is studied in a rotationally invariant noncommutative space. We find the corrections to the energy levels of the hydrogen atom up to the second order in the parameter of noncommutativity. The upper bound of the parameter of noncommutativity is estimated on the basis of the experimental results for 1s-2s transition frequency.

  6. Atomic resolution images of graphite in air

    SciTech Connect (OSTI)

    Grigg, D.A.; Shedd, G.M.; Griffis, D.; Russell, P.E.

    1988-12-01

    One sample used for proof of operation for atomic resolution in STM is highly oriented pyrolytic graphite (HOPG). This sample has been imaged with many different STM`s obtaining similar results. Atomic resolution images of HOPG have now been obtained using an STM designed and built at the Precision Engineering Center. This paper discusses the theoretical predictions and experimental results obtained in imaging of HOPG.

  7. Dependences of the van der Waals atom-wall interaction on atomic and material properties

    E-Print Network [OSTI]

    A. O. Caride; G. L. Klimchitskaya; V. M. Mostepanenko; S. I. Zanette

    2005-03-03

    The 1%-accurate calculations of the van der Waals interaction between an atom and a cavity wall are performed in the separation region from 3 nm to 150 nm. The cases of metastable He${}^{\\ast}$ and Na atoms near the metal, semiconductor or dielectric walls are considered. Different approximations to the description of wall material and atomic dynamic polarizability are carefully compared. The smooth transition to the Casimir-Polder interaction is verified. It is shown that to obtain accurate results for the atom-wall van der Waals interaction at shortest separations with an error less than 1% one should use the complete optical tabulated data for the complex refraction index of the wall material and the accurate dynamic polarizability of an atom. The obtained results may be useful for the theoretical interpretation of recent experiments on quantum reflection and Bose-Einstein condensation of ultracold atoms on or near surfaces of different nature.

  8. From Lattice Gauge Theories to Hydrogen Atoms

    E-Print Network [OSTI]

    Manu Mathur; T. P. Sreeraj

    2014-10-13

    Using canonical transformations we obtain a complete and most economical realization of the loop or physical Hilbert space of pure $SU(2)_{2+1}$ lattice gauge theory in terms of Wigner coupled Hilbert spaces of hydrogen atoms. One hydrogen atom is assigned to every plaquette of the lattice. The SU(2) gauge theory loop basis states over a plaquette are the bound energy eigenstates $|n l m>$ of the corresponding hydrogen atom. The Wigner couplings of these hydrogen atom energy eigenstates on different plaquettes provide a complete SU(2) gauge theory loop basis on the entire lattice. The loop basis is invariant under simultaneous rotations of all hydrogen atoms. The dual description of this basis diagonalizes all Wilson loop operators and is given in terms of hyperspherical harmonics on the SU(2) group manifold $S^3$. The SU(2) loop dynamics is governed by a "SU(2) spin Hamiltonian" without any gauge fields. The relevance of the hydrogen atom basis and its dynamical symmetry group SO(4,2) in SU(2) loop dynamics in weak coupling continuum limit ($g^2\\rightarrow 0$) is emphasized.

  9. Atoms for peace and war, 1953-1961: Eisenhower and the Atomic Energy Commission

    SciTech Connect (OSTI)

    Hewlett, Richard G.; Holl, Jack M.

    1989-12-01

    This third volume in the official history of the U.S. Atomic Energy Commission covers the years of the Eisenhower Administration.

  10. Epidemiologic Study of One Million American Workers and Military Veterans Exposed to Ionizing Radiation

    SciTech Connect (OSTI)

    Boice, John D.

    2015-02-27

    A pilot study was completed demonstrating the feasibility of conducting an epidemiologic study assessing cancer and other disease mortality among nearly one million US veterans and workers exposed to ionizing radiation, a population 10 times larger than atomic bomb survivor study with high statistical power to evaluate low dose rate effects. Among the groups enumerated and/or studied were: (1) 194,000 Department of Energy Uranium Workers; (2) 6,700 Rocketdyne Radiation Workers; (3) 7,000 Mound Radiation Workers; (4) 156,000 DOE Plutonium Workers; (5) 212,000 Nuclear Power Plant Workers; (6) 130,000 Industrial Radiography Workers; (7) 1.7 million Medical Workers and (8) 135,000 Atomic Veterans.

  11. 29Counting Atoms in a Molecule The complex molecule Propanal

    E-Print Network [OSTI]

    29Counting Atoms in a Molecule The complex molecule Propanal was discovered in a dense interstellar is the ratio of carbon atoms to hydrogen atoms in propanal? Problem 4 - If the mass of a hydrogen atom of a propanal molecule in AMUs? Problem 5 - What is the complete chemical formula for propanal? C3 H __ O

  12. Atomic-level imaging, processing and characterization of semiconductor surfaces

    DOE Patents [OSTI]

    Kazmerski, Lawrence L. (Lakewood, CO)

    1995-01-01

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe.

  13. Atomic-level imaging, processing and characterization of semiconductor surfaces

    DOE Patents [OSTI]

    Kazmerski, L.L.

    1995-08-22

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe. 8 figs.

  14. Isolating and moving single atoms using silicon nanocrystals

    DOE Patents [OSTI]

    Carroll, Malcolm S. (Albuquerque, NM)

    2010-09-07

    A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.

  15. Photon-Atom Coupling with Parabolic Mirrors

    E-Print Network [OSTI]

    Markus Sondermann; Gerd Leuchs

    2015-07-23

    Efficient coupling of light to single atomic systems has gained considerable attention over the past decades. This development is driven by the continuous growth of quantum technologies. The efficient coupling of light and matter is an enabling technology for quantum information processing and quantum communication. And indeed, in recent years much progress has been made in this direction. But applications aside, the interaction of photons and atoms is a fundamental physics problem. There are various possibilities for making this interaction more efficient, among them the apparently 'natural' attempt of mode-matching the light field to the free-space emission pattern of the atomic system of interest. Here we will describe the necessary steps of implementing this mode-matching with the ultimate aim of reaching unit coupling efficiency. We describe the use of deep parabolic mirrors as the central optical element of a free-space coupling scheme, covering the preparation of suitable modes of the field incident onto these mirrors as well as the location of an atom at the mirror's focus. Furthermore, we establish a robust method for determining the efficiency of the photon-atom coupling.

  16. Hydrogen atom in de Sitter spaces

    E-Print Network [OSTI]

    O. V. Veko; K. V. Kazmerchuk; E. M. Ovsiyuk; V. M. Red'kov; A. M. Ishkhanyan

    2014-12-28

    The hydrogen atom theory is developed for the de Sitter and anti de Sitter spaces on the basis of the Klein-Gordon-Fock wave equation in static coordinates. In both models, after separation of the variables, the problem is reduced to the general Heun equation, a second order linear differential equation having four regular singular points. A qualitative examination shows that the energy spectrum for the hydrogen atom in the de Sitter space should be quasi-stationary, and the atom should be unstable. We derive an approximate expression for energy levels within the quasi-classical approach and estimate the probability of decay of the atom. A similar analysis shows that in the anti de Sitter model the hydrogen atom should be stable in the quantum-mechanical sense. Using the quasi-classical approach, we derive approximate formulas for energy levels for this case as well. Finally, we present the extension to the case of a spin 1/2 particle for both de Sitter models. This extension leads to complicated differential equations with 8 singular points.

  17. Efimov physics in {sup 6}Li atoms

    SciTech Connect (OSTI)

    Braaten, Eric; Hammer, H.-W.; Kang, Daekyoung; Platter, Lucas

    2010-01-15

    A new narrow three-atom loss resonance associated with an Efimov trimer crossing the three-atom threshold has recently been discovered in a many-body system of ultracold {sup 6}Li atoms in the three lowest hyperfine spin states at a magnetic field near 895 G. O'Hara and coworkers have used measurements of the three-body recombination rate in this region to determine the complex three-body parameter associated with Efimov physics. Using this parameter as the input, we calculate the universal predictions for the spectrum of Efimov states and for the three-body recombination rate in the universal region above 600 G where all three scattering lengths are large. We predict an atom-dimer loss resonance at 672+-2 G associated with an Efimov trimer disappearing through an atom-dimer threshold. We also predict an interference minimum in the three-body recombination rate at 759+-1 G where the three-spin mixture may be sufficiently stable to allow experimental study of the many-body system.

  18. Efimov Physics in 6Li Atoms

    E-Print Network [OSTI]

    Eric Braaten; H. -W. Hammer; Daekyoung Kang; Lucas Platter

    2010-07-26

    A new narrow 3-atom loss resonance associated with an Efimov trimer crossing the 3-atom threshold has recently been discovered in a many-body system of ultracold 6Li atoms in the three lowest hyperfine spin states at a magnetic field near 895 G. O'Hara and coworkers have used measurements of the 3-body recombination rate in this region to determine the complex 3-body parameter associated with Efimov physics. Using this parameter as the input, we calculate the universal predictions for the spectrum of Efimov states and for the 3-body recombination rate in the universal region above 600 G where all three scattering lengths are large. We predict an atom-dimer loss resonance at (672 +/- 2) G associated with an Efimov trimer disappearing through an atom-dimer threshold. We also predict an interference minimum in the 3-body recombination rate at (759 +/- 1) G where the 3-spin mixture may be sufficiently stable to allow experimental study of the many-body system.

  19. Method and apparatus for atomic imaging

    DOE Patents [OSTI]

    Saldin, Dilano K. (Milwaukee, WI); de Andres Rodriquez, Pedro L. (Madrid, ES)

    1993-01-01

    A method and apparatus for three dimensional imaging of the atomic environment of disordered adsorbate atoms are disclosed. The method includes detecting and measuring the intensity of a diffuse low energy electron diffraction pattern formed by directing a beam of low energy electrons against the surface of a crystal. Data corresponding to reconstructed amplitudes of a wave form is generated by operating on the intensity data. The data corresponding to the reconstructed amplitudes is capable of being displayed as a three dimensional image of an adsorbate atom. The apparatus includes a source of a beam of low energy electrons and a detector for detecting the intensity distribution of a DLEED pattern formed at the detector when the beam of low energy electrons is directed onto the surface of a crystal. A device responsive to the intensity distribution generates a signal corresponding to the distribution which represents a reconstructed amplitude of a wave form and is capable of being converted into a three dimensional image of the atomic environment of an adsorbate atom on the crystal surface.

  20. Atomically wired molecular junctions: Connecting a single organic molecule by chains of metal atoms

    E-Print Network [OSTI]

    Yelin, Tamar; Kuritz, Natalia; Korytár, Richard; Bagrets, Alexei; Evers, Ferdinand; Kronik, Leeor; Tal, Oren

    2015-01-01

    Using a break junction technique, we find a clear signature for the formation of conducting hybrid junctions composed of a single organic molecule (benzene, naphthalene or anthracene) connected to chains of platinum atoms. The hybrid junctions exhibit metallic-like conductance (~0.1-1G0), which is rather insensitive to further elongation by additional atoms. At low bias voltage the hybrid junctions can be elongated significantly beyond the length of the bare atomic chains. Ab initio calculations reveal that benzene based hybrid junctions have a significant binding energy and high structural flexibility that may contribute to the survival of the hybrid junction during the elongation process. The fabrication of hybrid junctions opens the way for combining the different properties of atomic chains and organic molecules to realize a new class of atomic scale interfaces.

  1. Atomic Scale Characterization of Compound Semiconductors using Atom Probe Tomography: Preprint

    SciTech Connect (OSTI)

    Gorman, B. P.; Guthrey, H.; Norman, A. G.; Al-Jassim, M.; Lawrence, D.; Prosa, T.

    2011-07-01

    Internal interfaces are critical in determining the performance of III-V multijunction solar cells. Studying these interfaces with atomic resolution using a combination of transmission electron microscopy (TEM), atom probe tomography (APT), and density functional calculations enables a more fundamental understanding of carrier dynamics in photovoltaic (PV) device structures. To achieve full atomic scale spatial and chemical resolution, data acquisition parameters in laser pulsed APT must be carefully studied to eliminate surface diffusion. Atom probe data with minimized group V ion clustering and expected stoichiometry can be achieved by adjusting laser pulse power, pulse repetition rate, and specimen preparation parameters such that heat flow away from the evaporating surface is maximized. Applying these improved analysis conditions to III-V based PV gives an atomic scale understanding of compositional and dopant profiles across interfaces and tunnel junctions and the initial stages of alloy clustering and dopant accumulation. Details on APT experimental methods and future in-situ instrumentation developments are illustrated.

  2. Dynamic polarizabilities of rare-earth-metal atoms and dispersion coefficients for their interaction with helium atoms

    E-Print Network [OSTI]

    Chu, Xi

    Dynamic polarizabilities of rare-earth-metal atoms and dispersion coefficients; published 29 March 2007 The dynamic scalar and tensor polarizabilities of the rare-earth-metal atoms coefficients for the interactions of the rare-earth-metal atoms with helium atoms. The static polarizabilities

  3. Atomic Rydberg Reservoirs for Polar Molecules

    E-Print Network [OSTI]

    Zhao, Bo; Pupillo, Guido; Zoller, Peter

    2011-01-01

    We discuss laser dressed dipolar and Van der Waals interactions between atoms and polar molecules, so that a cold atomic gas with laser admixed Rydberg levels acts as a designed reservoir for both elastic and inelastic collisional processes. The elastic scattering channel is characterized by large elastic scattering cross sections and repulsive shields to protect from close encounter collisions. In addition, we discuss a dissipative (inelastic) collision where a spontaneously emitted photon carries away (kinetic) energy of the collision partners, thus providing a significant energy loss in a single collision. This leads to the scenario of rapid thermalization and cooling of a molecule in the mK down to the \\mu K regime by cold atoms.

  4. Atomic Rydberg Reservoirs for Polar Molecules

    E-Print Network [OSTI]

    Bo Zhao; Alexander Glätzle; Guido Pupillo; Peter Zoller

    2011-12-18

    We discuss laser dressed dipolar and Van der Waals interactions between atoms and polar molecules, so that a cold atomic gas with laser admixed Rydberg levels acts as a designed reservoir for both elastic and inelastic collisional processes. The elastic scattering channel is characterized by large elastic scattering cross sections and repulsive shields to protect from close encounter collisions. In addition, we discuss a dissipative (inelastic) collision where a spontaneously emitted photon carries away (kinetic) energy of the collision partners, thus providing a significant energy loss in a single collision. This leads to the scenario of rapid thermalization and cooling of a molecule in the mK down to the \\mu K regime by cold atoms.

  5. Enhanced Magnetic Trap Loading for Atomic Strontium

    E-Print Network [OSTI]

    Barker, D S; Pisenti, N C; Campbell, G K

    2015-01-01

    We report on a technique to improve the continuous loading of atomic strontium into a magnetic trap from a Magneto-Optical Trap (MOT). This is achieved by adding a depumping laser tuned to the 3P1 to 3S1 (688-nm) transition. The depumping laser increases atom number in the magnetic trap and subsequent cooling stages by up to 65 % for the bosonic isotopes and up to 30 % for the fermionic isotope of strontium. We optimize this trap loading strategy with respect to the 688-nm laser detuning, intensity, and beam size. To understand the results, we develop a one-dimensional rate equation model of the system, which is in good agreement with the data. We discuss the use of other transitions in strontium for accelerated trap loading and the application of the technique to other alkaline-earth-like atoms.

  6. Two dipolar atoms in a harmonic trap

    E-Print Network [OSTI]

    O?dziejewski, Rafa?; Rz??ewski, Kazimierz

    2015-01-01

    Two identical dipolar atoms moving in a harmonic trap without an external magnetic field are investigated. Using the algebra of angular momentum a semi - analytical solutions are found. We show that the internal spin - spin interactions between the atoms couple to the orbital angular momentum causing an analogue of Einstein - de Haas effect. We show a possibility of adiabatically pumping our system from the s-wave to the d-wave relative motion. The effective spin-orbit coupling occurs at anti-crossings of the energy levels.

  7. Proton Mass Shift in Muonic Hydrogen Atom

    E-Print Network [OSTI]

    Aiichi Iwazaki

    2014-08-11

    We show that the value of the proton mass depends on each bound state of muonic or electronic hydrogen atom. The charged particle bound to the proton produces magnetic field inside the proton. This makes a change to the amount of chiral condensate inside the proton. The change gives rise to the shift in the value of the proton mass. Numerically, the shift in the $2S$ state of the muonic hydrogen atom can be of the order of $0.1$ meV. The effect may solve the puzzle of the proton radius.

  8. Raman subrecoil spectroscopy of cold cesium atoms

    E-Print Network [OSTI]

    J. Ringot; P. Szriftgiser; J. C. Garreau

    2001-07-28

    We describe and characterize a setup for subrecoil stimulated Raman spectroscopy of cold cesium atoms. We study in particular the performances of a method designed to active control and stabilization of the magnetic fields across a cold-atom cloud inside a small vacuum cell. The performance of the setup is monitored by {\\em copropagative-beam} stimulated Raman spectroscopy of a cold cesium sample. The root mean-square value of the residual magnetic field is 300 $\\mu G$, with a compensation bandwidth of 500 Hz. The shape of the observed spectra is theoretically interpreted and compares very well to numerically generated spectra.

  9. High data-rate atom interferometers through high recapture efficiency

    DOE Patents [OSTI]

    Biedermann, Grant; Rakholia, Akash Vrijal; McGuinness, Hayden

    2015-01-27

    An inertial sensing system includes a magneto-optical trap (MOT) that traps atoms within a specified trapping region. The system also includes a cooling laser that cools the trapped atoms so that the atoms remain within the specified region for a specified amount of time. The system further includes a light-pulse atom interferometer (LPAI) that performs an interferometric interrogation of the atoms to determine phase changes in the atoms. The system includes a controller that controls the timing of MOT and cooling laser operations, and controls the timing of interferometric operations to substantially recapture the atoms in the specified trapping region. The system includes a processor that determines the amount inertial movement of the inertial sensing system based on the determined phase changes in the atoms. Also, a method of inertial sensing using this inertial sensing system includes recapture of atoms within the MOT following interferometric interrogation by the LPAI.

  10. The New Element Curium (Atomic Number 96)

    DOE R&D Accomplishments [OSTI]

    Seaborg, G. T.; James, R. A.; Ghiorso, A.

    1948-00-00

    Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.

  11. Optomechanical Cavity Cooling of an Atomic Ensemble

    E-Print Network [OSTI]

    Schleier-Smith, Monika Helene

    We demonstrate cavity sideband cooling of a single collective motional mode of an atomic ensemble down to a mean phonon occupation number ?n?min?=2.0[subscript -0.3][superscript +0.9]. Both ?n?[subscript min]? and the ...

  12. LASER COOLING AND TRAPPING OF NEUTRAL ATOMS

    E-Print Network [OSTI]

    Orozco, Luis A.

    LASER COOLING AND TRAPPING OF NEUTRAL ATOMS Luis A. Orozco Department of Physics and Astronomy. Laser cooling and trapping is now an important tool for many spectroscopic studies. It enhances, 4]. In these notes I treat only very general aspects of laser cooling and trapping without

  13. Nonadiabatic quantum chaos in atom optics

    E-Print Network [OSTI]

    Prants, S V

    2012-01-01

    Coherent dynamics of atomic matter waves in a standing-wave laser field is studied. In the dressed-state picture, wave packets of ballistic two-level atoms propagate simultaneously in two optical potentials. The probability to make a transition from one potential to another one is maximal when centroids of wave packets cross the field nodes and is given by a simple formula with the single exponent, the Landau--Zener parameter $\\kappa$. If $\\kappa \\gg 1$, the motion is essentially adiabatic. If $\\kappa \\ll 1$, it is (almost) resonant and periodic. If $\\kappa \\simeq 1$, atom makes nonadiabatic transitions with a splitting of its wave packet at each node and strong complexification of the wave function as compared to the two other cases. This effect is referred as nonadiabatic quantum chaos. Proliferation of wave packets at $\\kappa \\simeq 1$ is shown to be connected closely with chaotic center-of-mass motion in the semiclassical theory of point-like atoms with positive values of the maximal Lyapunov exponent. Th...

  14. Theory of multiphoton ionization of atoms

    SciTech Connect (OSTI)

    Szoeke, A.

    1986-03-01

    A non-perturbative approach to the theory of multiphoton ionization is reviewed. Adiabatic Floquet theory is its first approximation. It explains qualitatively the energy and angular distribution of photoelectrons. In many-electron atoms it predicts collective and inner shell excitation. 14 refs.

  15. Atomic physics with highly charged ions

    SciTech Connect (OSTI)

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  16. Quantum measurements of atoms using cavity QED

    SciTech Connect (OSTI)

    Dada, Adetunmise C.; Andersson, Erika [SUPA, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Jones, Martin L.; Kendon, Vivien M. [School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Everitt, Mark S. [School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda ku, Tokyo 101-8430 (Japan)

    2011-04-15

    Generalized quantum measurements are an important extension of projective or von Neumann measurements in that they can be used to describe any measurement that can be implemented on a quantum system. We describe how to realize two nonstandard quantum measurements using cavity QED. The first measurement optimally and unambiguously distinguishes between two nonorthogonal quantum states. The second example is a measurement that demonstrates superadditive quantum coding gain. The experimental tools used are single-atom unitary operations effected by Ramsey pulses and two-atom Tavis-Cummings interactions. We show how the superadditive quantum coding gain is affected by errors in the field-ionization detection of atoms and that even with rather high levels of experimental imperfections, a reasonable amount of superadditivity can still be seen. To date, these types of measurements have been realized only on photons. It would be of great interest to have realizations using other physical systems. This is for fundamental reasons but also since quantum coding gain in general increases with code word length, and a realization using atoms could be more easily scaled than existing realizations using photons.

  17. Atoms, photons, and Information Andrew Silberfarb

    E-Print Network [OSTI]

    Deutsch, Ivan H.

    small and can be predicted remarkably well using a closed system model. The results of this calculation. , and to my parents for their understanding iv #12;Acknowledgments I am deeply indebted to my advisor tool for the manipulation of atomic systems in modern physics labs. These lasers, however, do not only

  18. From Lattice Gauge Theories to Hydrogen Atoms

    E-Print Network [OSTI]

    Manu Mathur; T. P. Sreeraj

    2015-08-21

    We construct canonical transformations to obtain a complete and most economical realization of the physical Hilbert space ${\\cal H}^p$ of pure $SU(2)_{2+1}$ lattice gauge theory in terms of Wigner coupled Hilbert spaces of hydrogen atoms. One hydrogen atom is assigned to every plaquette of the lattice. A complete orthonormal description of the Wilson loop basis in ${\\cal H}^p$ is obtained by all possible angular momentum Wigner couplings of hydrogen atom energy eigenstates $\\vert n~l~m\\rangle$ describing electric fluxes on the loops. The SU(2) gauge invariance implies that the total angular momenta of all hydrogen atoms vanish. The canonical transformations also enable us to rewrite the Kogut-Susskind Hamiltonian in terms of fundamental Wilson loop operators and their conjugate electric fields. The resulting loop Hamiltonian has a global SU(2) invariance and a simple weak coupling ($g^2\\rightarrow 0$) continuum limit. The canonical transformations leading to the loop Hamiltonian are valid for any SU(N). The ideas and techniques can also be extended to higher dimension.

  19. INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR DATA SERVICES

    E-Print Network [OSTI]

    Cullen, Red

    INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR DATA SERVICES DOCUMENTATION SERIES OF THE IAEA NUCLEAR data is provided for elements, Z = 1 to 100, over the energy range 10 eV to 100 GeV; nuclear data 2014) by Dermott E. Cullen National Nuclear Data Center, BNL, alumnus Nuclear Data Section, IAEA

  20. Future directions in kaonic atom physics

    E-Print Network [OSTI]

    E. Friedman

    2011-11-30

    Recent progress and open problems in kaonic atom physics are presented. A connection between phenomenological deep potentials and the underlying $K^-N$ interaction is established as well as the need for a theory for multinucleon absorption of kaons. $K^-$ absorption at rest to specific $\\Lambda $ hypernuclei states is briefly discussed.

  1. Danish Atomic Energy Commission Research Establishment Riso

    E-Print Network [OSTI]

    roquott frem: Library of tho DmMi Atomic Enorgy Commlwton (AtornonorglkomrniMtonwM BtoHotok), RioA, DK, impregnated with four types of plastic, poly(methylmethacrylate), polyCstyrene/acrylonitril), polyester twice as much as conventional Danish face Btrip parquet flooring. Available on request from the Library

  2. Heavy Particle Atomic Collisions in Astrophysics

    E-Print Network [OSTI]

    Stancil, Phillip C.

    theoretical studies of electron capture for important collisions systems, involving molecular and atomic metal capture processes are presented. JOVIAN ATMOSPHERES Auroral x­ray emission from Jupiter was observed by the Voyager spacecrafts detected energetic oxygen and sulfur ions in the Jovian Mag­ netosphere. Their energy

  3. Nano-soldering to single atomic layer

    DOE Patents [OSTI]

    Girit, Caglar O. (Berkeley, CA); Zettl, Alexander K. (Kensington, CA)

    2011-10-11

    A simple technique to solder submicron sized, ohmic contacts to nanostructures has been disclosed. The technique has several advantages over standard electron beam lithography methods, which are complex, costly, and can contaminate samples. To demonstrate the soldering technique graphene, a single atomic layer of carbon, has been contacted, and low- and high-field electronic transport properties have been measured.

  4. Atomic power in space: A history

    SciTech Connect (OSTI)

    Not Available

    1987-03-01

    ''Atomic Power in Space,'' a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. 19 figs., 3 tabs.

  5. Distribution of bismuth atoms in epitaxial GaAsBi

    SciTech Connect (OSTI)

    Sales, David [Universidad de Cadiz, Spain; Guerreo, E. [Universidad de Cadiz, Spain; Rodrigo, J.F. [Universidad de Cadiz, Spain; Galindo, P.L. [Universidad de Cadiz, Spain; Yanez, A. [University of Cadiz, Spain; Shafi, M. [University of Nottingham, Nottingham UK; Khatab, A. [University of Nottingham, Nottingham UK; Mari, R.H. [University of Nottingham, Nottingham UK; Henini, M. [University of Nottingham, Nottingham UK; Novikov, S. [University of Nottingham, Nottingham UK; Chisholm, Matthew F [ORNL; Molina, S.I. [Universidad de Cadiz, Spain

    2011-01-01

    The distribution of Bi atoms in epitaxial GaAs{sub (1-x)}Bi{sub x} is analyzed through aberration-corrected Z-contrast images. The relation between the atomic number and the intensity of the images allows quantifying the distribution of Bi atoms in this material. A bidimensional map of Bi atoms is extracted showing areas where nanoclustering is possible and evidencing the location of Bi at As-substitutional positions in the lattice. The distribution of Bi atoms differs from a random spatial pattern of Bi atoms in the material.

  6. Novel Atomic Coherence and Interference Effects in Quantum Optics and Atomic Physics 

    E-Print Network [OSTI]

    Jha, Pankaj

    2012-10-19

    It is well known that the optical properties of multi-level atomic and molecular system can be controlled and manipulated efficiently using quantum coherence and interference, which has led to many new effects in quantum ...

  7. Quantization of Differences Between Atomic and Nuclear Rest Masses and Selforganization of Atoms and Nuclei

    E-Print Network [OSTI]

    F. A. Gareev; I. E. Zhidkova

    2006-11-15

    We come to the conclusion that all atomic models based on either the Newton equation and the Kepler laws, or the Maxwell equations, or the Schrodinger and Dirac equations are in reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principle(s) which is (are) not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system - nuclei+atoms+condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies than the corresponding ones on free constituents. We were able to quantize phenomenologically the first time the differences between atomic and nuclear rest masses by the formula (in MeV/$c^{2}$) $\\Delta M=\\frac{n_{1}}{n_{2}}*0.0076294, n_{i}=1,2,3,...$ Note that this quantization rule is justified for atoms and nuclei with different $A, N$ and $Z$ and the nuclei and atoms represent a coherent synchronized systems - a complex of coupled oscillators (resonators). The cooperative resonance synchronization mechanisms are responsible for explanation of how the electron volt world can influence the nuclear mega electron volt world. It means that we created new possibilities for inducing and controlling nuclear reactions by atomic processes.

  8. Design and analysis of a monolithic flexure atomic force microscope

    E-Print Network [OSTI]

    Ljubicic, Dean M

    2008-01-01

    This thesis details the design, manufacture, and testing of a sub-nanometer accuracy atomic force microscope. It was made to be integrated into the Sub-Atomic Measuring Machine (SAMM) in collaboration with the University ...

  9. Hybrid approaches to quantum information using ions, atoms and photons

    E-Print Network [OSTI]

    Cetina, Marko, Ph. D. Massachusetts Institute of Technology

    2011-01-01

    This thesis presents two hybrid systems for quantum information processing - one joining cold ions and cold atoms and another coupling linear chains of atomic ions with photons via an optical resonator. The first experimental ...

  10. Electromagnetic Light in Medium of Polarized Atoms $^3$He

    E-Print Network [OSTI]

    V. N. Minasyan

    2009-04-01

    First, it is predicted that polarized atoms $^3$He increase a value of speed electromagnetic waves. This reasoning implies that the velocity of electromagnetic waves into gas consisting of polarized atoms $^3$He is rather than one in vacuum.

  11. Superradiance for atoms trapped along a photonic crystal waveguide

    E-Print Network [OSTI]

    Goban, A; Hood, J D; Yu, S -P; Muniz, J A; Painter, O; Kimble, H J

    2015-01-01

    We report observations of superradiance for atoms trapped in the near field of a photonic crystal waveguide (PCW). By fabricating the PCW with a band edge near the D$_1$ transition of atomic cesium, strong interaction is achieved between trapped atoms and guided-mode photons. Following short-pulse excitation, we record the decay of guided-mode emission and find a superradiant emission rate scaling as $\\bar{\\Gamma}_{\\rm SR}\\propto\\bar{N}\\cdot\\Gamma_{\\rm 1D}$ for average atom number $0.19 \\lesssim \\bar{N} \\lesssim 2.6$ atoms, where $\\Gamma_{\\rm 1D}/\\Gamma_0 =1.1\\pm0.1$ is the peak single-atom radiative decay rate into the PCW guided mode and $\\Gamma_{0}$ is the Einstein-$A$ coefficient for free space. These advances provide new tools for investigations of photon-mediated atom-atom interactions in the many-body regime.

  12. Loading rubidium atoms into a hollow core fiber

    E-Print Network [OSTI]

    Chu, Yiwen

    2007-01-01

    We demonstrate a procedure for cooling, trapping, and transferring rubidium atoms into a hollow core photonic band gap fiber. The atoms are first collected in a magneto-optical trap (MOT) and then cooled using polarization ...

  13. Construction of a quantum gas microscope for fermionic atoms

    E-Print Network [OSTI]

    Ramasesh, Vinay (Vinay V.)

    2013-01-01

    This thesis reports the construction of a novel apparatus for experiments with ultracold atoms in optical lattices: the Fermi gas microscope. Improving upon similar designs for bosonic atoms, our Fermi gas microscope has ...

  14. Quantum teleportation of an arbitrary superposition of atomic Dicke states 

    E-Print Network [OSTI]

    Di, TG; Muthukrishnan, A.; Scully, Marlan O.; Zubairy, M. Suhail

    2005-01-01

    We propose a scheme for teleporting an arbitrary superposition of entangled Dicke states of any number of atoms (qubits) between two distant cavities. Our method relies on adiabatic passage using multi-atom dark states in each cavity, and a...

  15. Atom-light interactions in ultracold anisotropic media

    E-Print Network [OSTI]

    Vengalattore, Mukund T., 1977-

    2005-01-01

    A series of studies on atom-light interactions in ultracold anisotropic media were conducted. Methods to trap ultracold neutral atoms in novel traps with widely tunable trap frequencies and anisotropies were investigated. ...

  16. Nitride semiconductors studied by atom probe tomography and correlative techniques

    E-Print Network [OSTI]

    Bennett, Samantha

    2011-02-08

    , as well as atom probe tomography (APT), a technique more usually applied to metals that provides three-dimensional (3D) compositional information at the atomic scale. By using both APT and correlative microscopy techniques, a more complete understanding...

  17. 8.422 Atomic and Optical Physics II, Spring 2005

    E-Print Network [OSTI]

    Chuang, Isaac

    This is the second of a two-semester subject sequence beginning with Atomic and Optical Physics I (8.421) that provides the foundations for contemporary research in selected areas of atomic and optical physics. Topics ...

  18. A Vital Legacy - Biological and Environmental Research in the Atomic Age

    E-Print Network [OSTI]

    Vaughan editor, Douglas

    2010-01-01

    it created the Atomic Energy Commission. For the ensuingcivilian agency, the Atomic Energy Commission. O n Januarywithin the U.S. Atomic Energy Commission. The boundaries of

  19. Surface Preparation of Gallium Nitride for Atomic Layer Deposition of Aluminum Oxide /

    E-Print Network [OSTI]

    Kerr, Amanda J.

    2014-01-01

    Nitride for Atomic Layer Deposition of Aluminum Oxide AForce Microscopy Atomic Layer Deposition Capacitance-VoltageSurfaces for Atomic Layer Deposition of Aluminum Oxide” x

  20. Selective Chemistry of Metal Oxide Atomic Layer Deposition on Si Based Substrate Surfaces

    E-Print Network [OSTI]

    Guo, Lei

    2015-01-01

    Kolanek, K. , et al. , Atomic layer deposition reactor forconcepts for atomic layer deposition on agitated particles:W.M.M. Kessels, Atomic layer deposition for photovoltaics:

  1. Surface Reactivity of Copper Precursors for Atomic Layer Deposition (ALD) on Metal Surfaces

    E-Print Network [OSTI]

    MA, QIANG

    2010-01-01

    1 1.2. Atomic layer deposition………………………………………………..…. …2cell for atomic layer deposition……………………………26 2.8.Scheme process of atomic layer deposition (ALD) of copper(

  2. Synergistic experimental and theoretical approach to atomic-level surface and interface science

    E-Print Network [OSTI]

    Grassman, Tyler J.

    2007-01-01

    usually grown by atomic layer deposition (ALD). Theseusually grown by atomic layer deposition (ALD). Theseconfiguration models atomic layer deposition (ALD) growth in

  3. Atom addition reactions in interstellar ice analogues

    E-Print Network [OSTI]

    Linnartz, Harold; Fedoseev, Gleb

    2015-01-01

    This review paper summarizes the state-of-the-art in laboratory based interstellar ice chemistry. The focus is on atom addition reactions, illustrating how water, carbon dioxide and methanol can form in the solid state at astronomically relevant temperatures, and also the formation of more complex species such as hydroxylamine, an important prebiotic molecule, and glycolaldehyde, the smallest sugar, is discussed. These reactions are particularly relevant during the dark ages of star and planet formation, i.e., when the role of UV light is restricted. A quantitative characterization of such processes is only possible through dedicated laboratory studies, i.e., under full control of a large set of parameters such as temperature, atom-flux, and ice morphology. The resulting numbers, physical and chemical constants, e.g., barrier heights, reaction rates and branching ratios, provide information on the molecular processes at work and are needed as input for astrochemical models, in order to bridge the timescales t...

  4. Chiral meta-atoms rotated by light

    SciTech Connect (OSTI)

    Liu Mingkai; Powell, David A.; Shadrivov, Ilya V.

    2012-07-16

    We study the opto-mechanical properties of coupled chiral meta-atoms based on a pair of twisted split-ring resonators. By using a simple analytical model in conjunction with the Maxwell stress tensor, we capture insight into the mechanism and find that this structure can be used as a general prototype of subwavelength light-driven actuators over a wide range of frequencies. This coupled structure can provide a strong and tunable torque, and can support different opto-mechanical modes, including uniform rotation, periodically variable rotation and damped oscillations. Our results suggest that chiral meta-atoms are good candidates for creating sub-wavelength motors or wrenches controlled by light.

  5. Hydrogen atom in Palatini theories of gravity

    E-Print Network [OSTI]

    Gonzalo J. Olmo

    2008-06-03

    We study the effects that the gravitational interaction of $f(R)$ theories of gravity in Palatini formalism has on the stationary states of the Hydrogen atom. We show that the role of gravity in this system is very important for lagrangians $f(R)$ with terms that grow at low curvatures, which have been proposed to explain the accelerated expansion rate of the universe. We find that new gravitationally induced terms in the atomic Hamiltonian generate a strong backreaction that is incompatible with the very existence of bound states. In fact, in the 1/R model, Hydrogen disintegrates in less than two hours. The universe that we observe is, therefore, incompatible with that kind of gravitational interaction. Lagrangians with high curvature corrections do not lead to such instabilities.

  6. Bosonization approach for "atomic collapse" in graphene

    E-Print Network [OSTI]

    Aya Kagimura; Tetsuya Onogi

    2015-08-26

    We study quantum electrodynamics with 2+1 dimensional massless Dirac fermion around a Coulomb impurity. Around a large charge with atomic number Z > 137, the QED vacuum is expected to collapse due to the strong Coulombic force. While the relativistic quantum mechanics fails to make reliable predictions for the fate of the vacuum, the heavy ion collision experiment also does not give clear understanding of this system. Recently, the "atomic collapse" resonances were observed on graphene where an artificial nuclei can be made. In this paper, we present our nonperturbative study of the vacuum structure of the quasiparticles in graphene with a charge impurity which contains multi-body effect using bosonization method.

  7. Bosonization approach for "atomic collapse" in graphene

    E-Print Network [OSTI]

    Aya Kagimura; Tetsuya Onogi

    2015-08-02

    We study quantum electrodynamics with 2+1 dimensional massless Dirac fermion around a Coulomb impurity. Around a large charge with atomic number Z > 137, the QED vacuum is expected to collapse due to the strong Coulombic force. While the relativistic quantum mechanics fails to make reliable predictions for the fate of the vacuum, the heavy ion collision experiment also does not give clear understanding of this system. Recently,the "atomic collapse" resonances were observed on graphene where an artificial nuclei can be made. In this paper, we present our non-perturbative study of the vacuum strucuture of the quasiparticles in graphene with a charge impurity which contains multi-body effect using bosonization method.

  8. Steering random walks with kicked ultracold atoms

    E-Print Network [OSTI]

    Marcel Weiß; Caspar Groiseau; W. K. Lam; Raffaella Burioni; Alessandro Vezzani; Gil S. Summy; Sandro Wimberger

    2015-06-27

    A kicking sequence of the atom optics kicked rotor at quantum resonance can be interpreted as a quantum random walk in momentum space. We show how to steer such a random walk by applying a random sequence of intensities and phases of the kicking lattice chosen according to a probability distribution. This distribution converts on average into the final momentum distribution of the kicked atoms. In particular, it is shown that a power-law distribution for the kicking strengths results in a L\\'evy walk in momentum space and in a power-law with the same exponent in the averaged momentum distribution. Furthermore, we investigate the stability of our predictions in the context of a realistic experiment with Bose-Einstein condensates.

  9. Steering random walks with kicked ultracold atoms

    E-Print Network [OSTI]

    Weiß, Marcel; Lam, W K; Burioni, Raffaella; Vezzani, Alessandro; Summy, Gil S; Wimberger, Sandro

    2015-01-01

    A kicking sequence of the atom optics kicked rotor at quantum resonance can be interpreted as a quantum random walk in momentum space. We show how to steer such a random walk by applying a random sequence of intensities and phases of the kicking lattice chosen according to a probability distribution. This distribution converts on average into the final momentum distribution of the kicked atoms. In particular, it is shown that a power-law distribution for the kicking strengths results in a L\\'evy walk in momentum space and in a power-law with the same exponent in the averaged momentum distribution. Furthermore, we investigate the stability of our predictions in the context of a realistic experiment with Bose-Einstein condensates.

  10. Friction forces on atoms after acceleration

    E-Print Network [OSTI]

    Francesco Intravaia; Vanik E. Mkrtchian; Stefan Buhmann; Stefan Scheel; Diego A. R. Dalvit; Carsten Henkel

    2015-02-04

    The aim of this paper is to revisit the calculation of atom-surface quantum friction in the quantum field theory formulation put forward by Barton [New J. Phys. 12 (2010) 113045]. We show that the power dissipated into field excitations and the associated friction force depend on how the atom is boosted from being initially at rest to a configuration in which it is moving at constant velocity (v) parallel to the planar interface. In addition, we point out that there is a subtle cancellation between the one-photon and part of the two-photon dissipating power, resulting in a leading order contribution to the frictional power which goes as v^4. These results are also confirmed by an alternative calculation of the average radiation force, which scales as v^3.

  11. A single-atom heat engine

    E-Print Network [OSTI]

    Roßnagel, Johannes; Tolazzi, Karl Nicolas; Abah, Obinna; Lutz, Eric; Schmidt-Kaler, Ferdinand; Singer, Kilian

    2015-01-01

    We report the experimental realization of a single-atom heat engine. An ion is confined in a linear Paul trap with tapered geometry and driven thermally by coupling it alternately to hot and cold reservoirs. The output power of the engine is used to drive a harmonic oscillation. From direct measurements of the ion dynamics, we determine the thermodynamic cycles for various temperature differences of the reservoirs. We use these cycles to evaluate power $P$ and efficiency $\\eta$ of the engine, obtaining up to $P=342\\,$yJ and $\\eta=0.28 \\,\\%$, consistent with analytical estimations. Our results demonstrate that thermal machines can be reduced to the ultimate limit of single atoms.

  12. A single-atom heat engine

    E-Print Network [OSTI]

    Johannes Roßnagel; Samuel Thomas Dawkins; Karl Nicolas Tolazzi; Obinna Abah; Eric Lutz; Ferdinand Schmidt-Kaler; Kilian Singer

    2015-10-13

    We report the experimental realization of a single-atom heat engine. An ion is confined in a linear Paul trap with tapered geometry and driven thermally by coupling it alternately to hot and cold reservoirs. The output power of the engine is used to drive a harmonic oscillation. From direct measurements of the ion dynamics, we determine the thermodynamic cycles for various temperature differences of the reservoirs. We use these cycles to evaluate power $P$ and efficiency $\\eta$ of the engine, obtaining up to $P=342\\,$yJ and $\\eta=0.28 \\,\\%$, consistent with analytical estimations. Our results demonstrate that thermal machines can be reduced to the ultimate limit of single atoms.

  13. Bosonization approach for "atomic collapse" in graphene

    E-Print Network [OSTI]

    Kagimura, Aya

    2015-01-01

    We study quantum electrodynamics with 2+1 dimensional massless Dirac fermion around a Coulomb impurity. Around a large charge with atomic number Z > 137, the QED vacuum is expected to collapse due to the strong Coulombic force. While the relativistic quantum mechanics fails to make reliable predictions for the fate of the vacuum, the heavy ion collision experiment also does not give clear understanding of this system. Recently,the "atomic collapse" resonances were observed on graphene where an artificial nuclei can be made. In this paper, we present our non-perturbative study of the vacuum strucuture of the quasiparticles in graphene with a charge impurity which contains multi-body effect using bosonization method.

  14. Accuracy of an Atomic Microwave Power Standard (Conference digest)

    E-Print Network [OSTI]

    Paulusse, D C; Michaud, A; Paulusse, David C.; Rowell, Nelson L.; Michaud, Alain

    2004-01-01

    We have studied the accuracy of the atomic microwave power standard. The atoms are cooled and kept in a Magneto-Optical Trap (MOT), then dropped through a terminated transmission line (a rectangular, R-70 type, waveguide). The measurement of the internal atomic state allows an accurate determination of the transmitted microwave power.

  15. The Hydrogen Atom with a Finite Sized Nucleus Frank Rioux

    E-Print Network [OSTI]

    Rioux, Frank

    The Hydrogen Atom with a Finite Sized Nucleus Frank Rioux This exercise explores the impact of nuclear size on the ground state energy of the hydrogen atom's electron. The traditional approach assumes that the proton is a dimensionless point charge, which is a very good approximation for the hydrogen atom. However

  16. Determination of Atomic Data Pertinent to the Fusion Energy Program

    SciTech Connect (OSTI)

    Reader, J.

    2013-06-11

    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra.

  17. Optical Spectroscopy of Hydrogenic Atoms MIT Department of Physics

    E-Print Network [OSTI]

    Seager, Sara

    Optical Spectroscopy of Hydrogenic Atoms MIT Department of Physics (Dated: September 1, 2013) This experiment is an exercise in optical spectroscopy in a study of the spectra of "hydrogenic" atoms, i.e. atoms with one "optical" electron outside a closed shell of other electrons. Measurements include finding

  18. Metallic adhesion and tunnelling at the atomic A Schirmeisen1

    E-Print Network [OSTI]

    Grütter, Peter

    Metallic adhesion and tunnelling at the atomic scale A Schirmeisen1 , G Cross1 , A Stalder1 , P Gr scaling parameter of = 0.2 nm. We conclude that not only the apex atoms contribute to the adhesion forces are discussed. The study of metallic adhesion on the atomic scale lays the foundation for the understanding

  19. Method of performing MRI with an atomic magnetometer

    SciTech Connect (OSTI)

    Savukov, Igor Mykhaylovich; Matlashov, Andrei Nikolaevich; Espy, Michelle A; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry; Zotev, Vadim Sergeyevich

    2013-08-27

    A method and apparatus are provided for performing an in-situ magnetic resonance imaging of an object. The method includes the steps of providing an atomic magnetometer, coupling a magnetic field generated by magnetically resonating samples of the object through a flux transformer to the atomic magnetometer and measuring a magnetic resonance of the atomic magnetometer.

  20. Method of performing MRI with an atomic magnetometer

    SciTech Connect (OSTI)

    Savukov, Igor Mykhaylovich; Matlashov, Andrei Nikolaevich; Espy, Michelle A.; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry; Zotev, Vadim Sergeyevich

    2012-11-06

    A method and apparatus are provided for performing an in-situ magnetic resonance imaging of an object. The method includes the steps of providing an atomic magnetometer, coupling a magnetic field generated by magnetically resonating samples of the object through a flux transformer to the atomic magnetometer and measuring a magnetic resonance of the atomic magnetometer.

  1. Component-Level Demonstration of a Microfabricated Atomic Frequency Reference

    E-Print Network [OSTI]

    Popovic, Zoya

    size and lower power dissipation. In particular, atomic clocks based on coherent population trappingComponent-Level Demonstration of a Microfabricated Atomic Frequency Reference V. Gerginov, S component-level functionality of the three critical subsystems for a miniature atomic clock based

  2. Relativistic and QED corrections for the Beryllium atom Krzysztof Pachucki

    E-Print Network [OSTI]

    Pachucki, Krzysztof

    Relativistic and QED corrections for the Beryllium atom Krzysztof Pachucki #3; Institute are calculated for the ground state of the beryllium atom and its positive ion. A basis set of correlated of high precision theoretical predictions for energy levels of the beryllium atom and light ions. Our

  3. Radiation trapping in a cold atomic gas Guillaume Labeyrie,1

    E-Print Network [OSTI]

    field of study deals with the transport of near resonant light in such media. Using cold atoms, one can at the end of the 20th century that studies of light transport in optically thick clouds of cold atomsRadiation trapping in a cold atomic gas Guillaume Labeyrie,1 Robin Kaiser,1, and Dominique Delande

  4. Do triatomic molecules echo atomic periodicity?

    SciTech Connect (OSTI)

    Hefferlin, R. Barrow, J.

    2015-03-30

    Demonstrations of periodicity among triatomic-molecular spectroscopic constants underscore the role of the periodic law as a foundation of chemistry. The objective of this work is to prepare for another test using vibration frequencies ?{sub 1} of free, ground-state, main-group triatomic molecules. Using data from four data bases and from computation, we have collected ?{sub 1} data for molecules formed from second period atoms.

  5. Classical and quantum chaos in atomic systems

    SciTech Connect (OSTI)

    Delande, D.; Buchleitner, A. [Universite Pierre et Marie Curie, Paris (France)

    1994-12-31

    Atomic systems played a major role in the birth and growth of quantum mechanics. One central idea was to relate the well-known classical motion of the electron of a hydrogen atom--an ellipsis around the nucleus--to the experimentally observed quantization of the energy levels. This is the aim of the Bohr and Bohr-Sommerfeld models. These simple semiclassical models were unable to make any reliable prediction on the energy spectrum of the next simplest atom, helium. Because of the great success of quantum mechanics, the problem of correspondence between the classical and the quantal dynamics has not received much attention in the last 60 years. The fundamental question is (Gutzwiller, 1990). How can classical mechanics be understood as a limiting case within quantum mechanics? For systems with time-independent one-dimensional dynamics like the harmonic oscillator and the hydrogen atom, the correspondence is well understood. The restriction to such simple cases creates the erroneous impression that the classical behavior of simple systems is entirely comprehensible and easily described. During the last 20 years it has been recognized that this in not true and that a complex behavior can be obtained from simple equations of motion. This usually happens when the motion is chaotic, that is, unpredictable on a long time scale although perfectly deterministic (Henon, 1983). A major problem is that of understanding how the regular or chaotic behavior of the classical system is manifest in its quantum properties, especially in the semiclassical limit. 53 refs., 15 figs., 1 tab.

  6. First principle thousand atom quantum dot calculations

    SciTech Connect (OSTI)

    Wang, Lin-Wang; Li, Jingbo

    2004-03-30

    A charge patching method and an idealized surface passivation are used to calculate the single electronic states of IV-IV, III-V, II-VI semiconductor quantum dots up to a thousand atoms. This approach scales linearly and has a 1000 fold speed-up compared to direct first principle methods with a cost of eigen energy error of about 20 meV. The calculated quantum dot band gaps are parametrized for future references.

  7. Dickson algebras are atomic at $p$

    E-Print Network [OSTI]

    Kechagias, Nondas E

    2011-01-01

    The notion of atomicity defined by Cohen, Moore and Neisendorfer is studied for the Dickson algebras. Not any ring of invariants respects this property. It depends on the property of the Dickson algebra that given any monomial $d$ there exists a sequence of Steenrod operations $P(\\Gamma, d) $ such that $P(\\Gamma, d) d$ becomes a $p$-th power of the top Dickson algebra generator.

  8. Collinear laser spectroscopy of atomic cadmium

    E-Print Network [OSTI]

    Nadja Frömmgen; Dimiter L. Balabanski; Mark L. Bissell; Jacek Biero?; Klaus Blaum; Bradley Cheal; Kieran Flanagan; Stephan Fritzsche; Christopher Geppert; Michael Hammen; Magdalena Kowalska; Kim Kreim; Andreas Krieger; Rainer Neugart; Gerda Neyens; Mustafa M. Rajabali; Wilfried Nörtershäuser; Jasna Papuga; Deyan T. Yordanov

    2015-07-14

    Hyperfine structure $A$ and $B$ factors of the atomic $5s\\,5p\\,\\; ^3\\rm{P}_2 \\rightarrow 5s\\,6s\\,\\; ^3\\rm{S}_1$ transition are determined from collinear laser spectroscopy data of $^{107-123}$Cd and $^{111m-123m}$Cd. Nuclear magnetic moments and electric quadrupole moments are extracted using reference dipole moments and calculated electric field gradients, respectively. The hyperfine structure anomaly for isotopes with $s_{1/2}$ and $d_{5/2}$ nuclear ground states and isomeric $h_{11/2}$ states is evaluated and a linear relationship is observed for all nuclear states except $s_{1/2}$. This corresponds to the Moskowitz-Lombardi rule that was established in the mercury region of the nuclear chart but in the case of cadmium the slope is distinctively smaller than for mercury. In total four atomic and ionic levels were analyzed and all of them exhibit a similar behaviour. The electric field gradient for the atomic $5s\\,5p\\,\\; ^3\\mathrm{P}_2$ level is derived from multi-configuration Dirac-Hartree-Fock calculations in order to evaluate the spectroscopic nuclear quadrupole moments. The results are consistent with those obtained in an ionic transition and based on a similar calculation.

  9. Scattering of twisted relativistic electrons by atoms

    E-Print Network [OSTI]

    V. Serbo; I. P. Ivanov; S. Fritzsche; D. Seipt; A. Surzhykov

    2015-05-11

    The Mott scattering of high-energetic twisted electrons by atoms is investigated within the framework of the first Born approximation and Dirac's relativistic equation. Special emphasis is placed on the angular distribution and longitudinal polarization of the scattered electrons. In order to evaluate these angular and polarization properties we consider two experimental setups in which the twisted electron beam collides with either a single well-localized atom or macroscopic atomic target. Detailed relativistic calculations have been performed for both setups and for the electrons with kinetic energy from 10 keV to 1000 keV. The results of these calculations indicate that the emission pattern and polarization of outgoing electrons differ significantly from the scattering of plane-wave electrons and can be very sensitive to the parameters of the incident twisted beam. In particular, it is shown that the angular- and polarization-sensitive Mott measurements may reveal valuable information about, both the transverse and longitudinal components of the linear momentum and the projection of the total angular momentum of twisted electron states. Thus, the Mott scattering emerges as a diagnostic tool for the relativistic vortex beams.

  10. First AID (Atom counting for Isotopic Determination).

    SciTech Connect (OSTI)

    Roach, J. L. (Jeffrey L.); Israel, K. M. (Kimberly M.); Steiner, R. E. (Robert E.); Duffy, C. J. (Clarence J.); Roench, F. R. (Fred R.)

    2002-01-01

    Los Alamos National Laboratory (LANL) has established an in vitro bioassay monitoring program in compliance with the requirements in the Code of Federal Regulations, 10 CFR 835, Occupational Radiation Protection. One aspect of this program involves monitoring plutonium levels in at-risk workers. High-risk workers are monitored using the ultra-sensitive Therrnal Ionization Mass Spectrometry (TIMS) technique to ensure compliance with DOE standards. TIMS is used to measure atom ratios of 239Pua nd 240Puw ith respect to a tracer isotope ('Pu). These ratios are then used to calculate the amount of 239Pu and 240Pup resent. This low-level atom counting technique allows the calculation of the concentration levels of 239Pu and 240Pu in urine for at risk workers. From these concentration levels, dose assessments can be made and worker exposure levels can be monitored. Detection limits for TIMS analysis are on the order of millions of atoms, which translates to activity levels of 150 aCi 239Pua nd 500 aCi for 240Pu. pCi for Our poster presentation will discuss the ultra-sensitive, low-level analytical technique used to measure plutonium isotopes and the data verification methods used for validating isotopic measurements.

  11. C. R. Acad. Sci. Paris, t. 2, Srie IV, p. 445477, 2001 Atomes, molcules/Atoms, molecules

    E-Print Network [OSTI]

    Cohen-Tannoudj, Claude

    CONDENSATS DE BOSE­EINSTEIN ET LASERS À ATOMES BOSE­EINSTEIN CONDENSATES AND ATOM LASERS Wave functions, relative phase and interference for atomic Bose­Einstein condensates Claude COHEN-TANNOUDJIa , Cécile discussion of the coherence properties of Bose­Einstein condensates. We use a formalism which is similar

  12. Atomic imaging of the monolayer nucleation and unpinning of a compound semiconductor surface during atomic layer deposition

    E-Print Network [OSTI]

    Kummel, Andrew C.

    atomic layer deposition Jonathon B. Clemens,1 Evgueni A. Chagarov,1 Martin Holland,2 Ravi Droopad,3 Jian American Institute of Physics. doi:10.1063/1.3487737 Atomic layer deposition ALD has received attention dueAtomic imaging of the monolayer nucleation and unpinning of a compound semiconductor surface during

  13. Atomic Motion in an Optical Standing Wave 40 Chapter 2. Atomic Motion in an Optical Standing Wave

    E-Print Network [OSTI]

    Steck, Daniel A.

    Chapter 2 Atomic Motion in an Optical Standing Wave 39 #12;40 Chapter 2. Atomic Motion in an Optical Standing Wave 2.1 Overview In this chapter we will motivate the experiments in this dissertation by considering the basic setup common to all of the experiments: the motion of an atom in a standing wave of far

  14. Quantization of Differences Between Atomic and Nuclear Rest Masses and Selforganization of Atoms and Nuclei

    E-Print Network [OSTI]

    Gareev, F A

    2006-01-01

    We come to conclusion that the all atomic models based either on the Newton equation and the Kepler laws or on the Maxwell equations or on the Schrodinger and Dirac equations achieved reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principle(s) which is(are) not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in whole system - nuclei+atoms+condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies then corresponding ones on free constituents.We were able to quantize phenomenologically (numerology) the first time the differences between atomic and nuclear rest masses according to the formula (in MeV/$c^{2}$) $\\Delta M=0.0076294*n_{1}*2^{n_{2}}, n_{1}=1,2,3,..., n_{2}=1,\\pm2,\\pm4,\\pm8,... $. Note that this quantization rule is justified for atoms and nuclei with different $A, N$ and $Z$ and the nuclei and atoms represent a coherent synch...

  15. Atomic Structure of Benzene Which Accounts for Resonance Energy

    E-Print Network [OSTI]

    Raji Heyrovska

    2008-07-09

    Benzene is a hexagonal molecule of six carbon atoms, each of which is bound to six hydrogen atoms. The equality of all six CC bond lengths, despite the alternating double and single bonds, and the surplus (resonance) energy, led to the suggestion of two resonanting structures. Here, the new atomic structure shows that the bond length equality is due to three carbon atoms with double bond radii bound to three other carbon atoms with resonance bond radii (as in graphene). Consequently, there are two kinds of CH bonds of slightly different lengths. The bond energies account for the resonance energy.

  16. Observation of elastic collisions between lithium atoms and calcium ions

    E-Print Network [OSTI]

    Haze, Shinsuke; Fujinaga, Munekazu; Mukaiyama, Takashi

    2013-01-01

    We observed elastic collisions between laser-cooled fermionic lithium atoms and calcium ions at the energy range from 100 mK to 3 K. Lithium atoms in an optical-dipole trap were transported to the center of the ion trap using an optical tweezer technique, and a spatial overlap of the atoms and ions was realized in order to observe the atom-ion interactions. The elastic scattering rate was determined from the decay of atoms due to elastic collisions with ions. The collision-energy dependence of the elastic scattering cross-section was consistent with semi-classical collision theory.

  17. Atomizing apparatus for making polymer and metal powders and whiskers

    DOE Patents [OSTI]

    Otaigbe, Joshua U. (Ames, IA); McAvoy, Jon M. (Moline, IL); Anderson, Iver E. (Ames, IA); Ting, Jason (Ames, IA); Mi, Jia (Pittsburgh, PA); Terpstra, Robert (Ames, IA)

    2003-03-18

    Method for making polymer particulates, such as spherical powder and whiskers, by melting a polymer material under conditions to avoid thermal degradation of the polymer material, atomizing the melt using gas jet means in a manner to form atomized droplets, and cooling the droplets to form polymer particulates, which are collected for further processing. Atomization parameters can be controlled to produce polymer particulates with controlled particle shape, particle size, and particle size distribution. For example, atomization parameters can be controlled to produce spherical polymer powders, polymer whiskers, and combinations of spherical powders and whiskers. Atomizing apparatus also is provided for atoomizing polymer and metallic materials.

  18. Force on a neutral atom near conducting microstructures

    E-Print Network [OSTI]

    Claudia Eberlein; Robert Zietal

    2006-11-09

    We derive the non-retarded energy shift of a neutral atom for two different geometries. For an atom close to a cylindrical wire we find an integral representation for the energy shift, give asymptotic expressions, and interpolate numerically. For an atom close to a semi-infinite halfplane we determine the exact Green's function of the Laplace equation and use it derive the exact energy shift for an arbitrary position of the atom. These results can be used to estimate the energy shift of an atom close to etched microstructures that protrude from substrates.

  19. Protecting Privacy of Shared Epidemiologic Data without Compromising Analysis Potential

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cologne, John; Grant, Eric J.; Nakashima, Eiji; Chen, Yun; Funamoto, Sachiyo; Katayama, Hiroaki

    2012-01-01

    Objective . Ensuring privacy of research subjects when epidemiologic data are shared with outside collaborators involves masking (modifying) the data, but overmasking can compromise utility (analysis potential). Methods of statistical disclosure control for protecting privacy may be impractical for individual researchers involved in small-scale collaborations. Methods . We investigated a simple approach based on measures of disclosure risk and analytical utility that are straightforward for epidemiologic researchers to derive. The method is illustrated using data from the Japanese Atomic-bomb Survivor population. Results . Masking by modest rounding did not adequately enhance security but rounding to remove several digits ofmore »relative accuracy effectively reduced the risk of identification without substantially reducing utility. Grouping or adding random noise led to noticeable bias. Conclusions . When sharing epidemiologic data, it is recommended that masking be performed using rounding. Specific treatment should be determined separately in individual situations after consideration of the disclosure risks and analysis needs. « less

  20. BREN Tower: A Monument to the Material Culture of Radiation Dosimetry Research

    SciTech Connect (OSTI)

    Susan Edwards

    2008-05-30

    With a height of more than 1,500 feet, the BREN (Bare Reactor Experiment, Nevada) Tower dominates the surrounding desert landscape of the Nevada Test Site. Associated with the nuclear research and atmospheric testing programs carried out during the 1950s and 1960s, the tower was a vital component in a series of experiments aimed at characterizing radiation fields from nuclear detonations. Research programs conducted at the tower provided the data for the baseline dosimetry studies crucial to determining the radiation dose rates received by the atomic bomb survivors of Hiroshima and Nagasaki, Japan. Today, BREN Tower stands as a monument to early dosimetry research and one of the legacies of the Cold War.

  1. Forecast of Standard Atomic Weights for the Mononuclidic Elements – 2011

    SciTech Connect (OSTI)

    Holden, N.E.; Holden, N.; Holden,N.E.

    2011-07-27

    In this short report, I will provide an early warning about potential changes to the standard atomic weight values for the twenty mononuclidic and the so-called pseudo-mononuclidic ({sup 232}Th and {sup 231}Pa) chemical elements due to the estimated changes in the mass values to be published in the next Atomic Mass Tables within the next two years. There have been many new measurements of atomic masses, since the last published Atomic Mass Table. The Atomic Mass Data Center has released an unpublished version of the present status of the atomic mass values as a private communication. We can not update the Standard Atomic Weight Table at this time based on these unpublished values but we can anticipate how many changes are probably going to be expected in the next few years on the basis of the forthcoming publication of the Atomic Mass Table. I will briefly discuss the procedures that the Atomic Weights Commission used in deriving the recommended Standard Atomic Weight values and their uncertainties from the atomic mass values. I will also discuss some concern raised about a proposed change in the definition of the mole. The definition of the mole is now connected directly to the mass of a {sup 12}C isotope (which is defined as 12 exactly) and to the kilogram. A change in the definition of the mole will probably impact the mass of {sup 12}C.

  2. Cooling trapped atoms in optical resonators

    E-Print Network [OSTI]

    Stefano Zippilli; Giovanna Morigi

    2007-03-20

    We derive an equation for the cooling dynamics of the quantum motion of an atom trapped by an external potential inside an optical resonator. This equation has broad validity and allows us to identify novel regimes where the motion can be efficiently cooled to the potential ground state. Our result shows that the motion is critically affected by quantum correlations induced by the mechanical coupling with the resonator, which may lead to selective suppression of certain transitions for the appropriate parameters regimes, thereby increasing the cooling efficiency.

  3. Efficiency optimization for Atomic Frequency Comb storage

    E-Print Network [OSTI]

    M. Bonarota; J. Ruggiero; J. -L. Le Gouët; T. Chanelière

    2009-11-23

    We study the efficiency of the Atomic Frequency Comb storage protocol. We show that for a given optical depth, the preparation procedure can be optimize to significantly improve the retrieval. Our prediction is well supported by the experimental implementation of the protocol in a \\TMYAG crystal. We observe a net gain in efficiency from 10% to 17% by applying the optimized preparation procedure. In the perspective of high bandwidth storage, we investigate the protocol under different magnetic fields. We analyze the effect of the Zeeman and superhyperfine interaction.

  4. Electric quadrupole transition probabilities for atomic lithium

    SciTech Connect (OSTI)

    Çelik, Gültekin; Gökçe, Yasin; Y?ld?z, Murat

    2014-05-15

    Electric quadrupole transition probabilities for atomic lithium have been calculated using the weakest bound electron potential model theory (WBEPMT). We have employed numerical non-relativistic Hartree–Fock wavefunctions for expectation values of radii and the necessary energy values have been taken from the compilation at NIST. The results obtained with the present method agree very well with the Coulomb approximation results given by Caves (1975). Moreover, electric quadrupole transition probability values not existing in the literature for some highly excited levels have been obtained using the WBEPMT.

  5. Microwave meta-atom enhanced spintronic rectification

    SciTech Connect (OSTI)

    Gou, Peng; Xi, Fuchun; Qian, Qinbai; Xu, Jie; Gui, Y. S.; Hu, C.-M.; An, Zhenghua

    2015-04-06

    An artificial meta-atom (MA), or alternatively, a plasmonic antenna, has been demonstrated to significantly enhance the microwave spin rectifying photovoltage by more than two orders in magnitude (?280) in the ferromagnetic resonance regime. The large enhancement is attributed to the unique structure of the MA which magnifies both microwave electric (?5) and magnetic (?56) fields in the same near-field spatial region. Our work develops the interdisciplinary direction with artificial and natural magnetism and may find promising applications in high-frequency or opto-spintronic devices and wireless microwave energy harvesting.

  6. Quantum Sticking of Atoms on Membranes

    E-Print Network [OSTI]

    Dennis P. Clougherty

    2014-12-05

    A continuum model for low-energy physisorption on a membrane under tension is proposed and studied with variational mean-field theory. A discontinuous change in the energy-dependent sticking coefficient is predicted under certain conditions. This singularity is a result of the bosonic orthogonality catastrophe of the vibrational states of the membrane. The energy-dependent sticking coefficient is predicted to have exponential scaling in 1/E above the singularity. The application of this model to the quantum sticking of cold hydrogen to suspended graphene is discussed. The model predicts that a beam of atomic hydrogen can be completely reflected by suspended graphene at ultralow energies.

  7. Confinement induced binding of noble gas atoms

    SciTech Connect (OSTI)

    Khatua, Munmun; Pan, Sudip; Chattaraj, Pratim K., E-mail: pkc@chem.iitkgp.ernet.in [Department of Chemistry and Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302 (India)

    2014-04-28

    The stability of Ng{sub n}@B{sub 12}N{sub 12} and Ng{sub n}@B{sub 16}N{sub 16} systems is assessed through a density functional study and ab initio simulation. Although they are found to be thermodynamically unstable with respect to the dissociation of individual Ng atoms and parent cages, ab initio simulation reveals that except Ne{sub 2}@B{sub 12}N{sub 12} they are kinetically stable to retain their structures intact throughout the simulation time (500 fs) at 298 K. The Ne{sub 2}@B{sub 12}N{sub 12} cage dissociates and the Ne atoms get separated as the simulation proceeds at this temperature but at a lower temperature (77 K) it is also found to be kinetically stable. He-He unit undergoes translation, rotation and vibration inside the cavity of B{sub 12}N{sub 12} and B{sub 16}N{sub 16} cages. Electron density analysis shows that the He-He interaction in He{sub 2}@B{sub 16}N{sub 16} is of closed-shell type whereas for the same in He{sub 2}@B{sub 12}N{sub 12} there may have some degree of covalent character. In few cases, especially for the heavier Ng atoms, the Ng-N/B bonds are also found to have some degree of covalent character. But the Wiberg bond indices show zero bond order in He-He bond and very low bond order in cases of Ng-N/B bonds. The energy decomposition analysis further shows that the ?E{sub orb} term contributes 40.9% and 37.3% towards the total attraction in the He{sub 2} dimers having the same distances as in He{sub 2}@B{sub 12}N{sub 12} and He{sub 2}@B{sub 16}N{sub 16}, respectively. Therefore, confinement causes some type of orbital interaction between two He atoms, which akins to some degree of covalent character.

  8. Ruthenium / aerogel nanocomposits via Atomic Layer Deposition

    SciTech Connect (OSTI)

    Biener, J; Baumann, T F; Wang, Y; Nelson, E J; Kucheyev, S O; Hamza, A V; Kemell, M; Ritala, M; Leskela, M

    2006-08-28

    We present a general approach to prepare metal/aerogel nanocomposites via template directed atomic layer deposition (ALD). In particular, we used a Ru ALD process consisting of alternating exposures to bis(cyclopentadienyl)ruthenium (RuCp{sub 2}) and air at 350 C to deposit metallic Ru nanoparticles on the internal surfaces of carbon and silica aerogels. The process does not affect the morphology of the aerogel template and offers excellent control over metal loading by simply adjusting the number of ALD cycles. We also discuss the limitations of our ALD approach, and suggest ways to overcome these.

  9. ATOMIC HYDROGEN IN A GALACTIC CENTER OUTFLOW

    SciTech Connect (OSTI)

    McClure-Griffiths, N. M.; Green, J. A.; Hill, A. S. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Marsfield, NSW 2122 (Australia); Lockman, F. J. [National Radio Astronomy Observatory, Green Bank, WV 24944 (United States); Dickey, J. M. [School of Physics and Mathematics, University of Tasmania, TAS 7001 (Australia); Gaensler, B. M.; Green, A. J., E-mail: naomi.mcclure-griffiths@csiro.au [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia)

    2013-06-10

    We describe a population of small, high-velocity, atomic hydrogen clouds, loops, and filaments found above and below the disk near the Galactic center. The objects have a mean radius of 15 pc, velocity widths of {approx}14 km s{sup -1}, and are observed at |z| heights up to 700 pc. The velocity distribution of the clouds shows no signature of Galactic rotation. We propose a scenario where the clouds are associated with an outflow from a central star-forming region at the Galactic center. We discuss the clouds as entrained material traveling at {approx}200 km s{sup -1} in a Galactic wind.

  10. Atomic Layer Deposition | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass and BiofuelsPhysicist47JulyInnovationAtomic Layer

  11. Atomic Structure Chapter 1 Delmar's/Electricity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass and BiofuelsPhysicist47JulyInnovationAtomic Layer

  12. Atomically Thin Metallic Boron | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass and BiofuelsPhysicist47JulyInnovationAtomicNews

  13. AtomsPeace_Dec2003.qxd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass andAtoms for Peace after 50 Years: The New

  14. SECTION IV: ATOMIC AND MOLECULAR SCIENCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein1-0845* Storage SystemsLightIV: ATOMIC AND MOLECULAR

  15. SECTION IV: ATOMIC, MOLECULAR AND MATERIALS SCIENCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein1-0845* Storage SystemsLightIV: ATOMIC AND

  16. SECTION IV: ATOMIC, MOLECULAR AND MATERIALS SCIENCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein1-0845* Storage SystemsLightIV: ATOMIC AND Systematics

  17. How Atomic Vibrations Transform Vanadium Dioxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.Food Drive HolidayHours UsedFire 1 inHow Atomic

  18. Sixteenth International Conference on the physics of electronic and atomic collisions

    SciTech Connect (OSTI)

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B.

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  19. Innershell Photoionization Studies of Neutral Atomic Nitrogen

    E-Print Network [OSTI]

    Stolte, W C; Lindle, D W; Sant'Anna, M M; Savin, D W

    2014-01-01

    Innershell ionization of a $1s$ electron by either photons or electrons is important for X-ray photoionized objects such as active galactic nuclei and electron-ionized sources such as supernova remnants. Modeling and interpreting observations of such objects requires accurate predictions for the charge state distribution (CSD) which results as the $1s$-hole system stabilizes. Due to the complexity of the complete stabilization process, few modern calculations exist and the community currently relies on 40-year-old atomic data. Here, we present a combined experimental and theoretical study for innershell photoionization of neutral atomic nitrogen for photon energies of $403-475$~eV. Results are reported for the total ion yield cross section, for the branching ratios for formation of N$^+$, N$^{2+}$, and N$^{3+}$, and for the average charge state. We find significant differences when comparing to the data currently available to the astrophysics community. For example, while the branching ratio to N$^{2+}$ is so...

  20. String model of the Hydrogen Atom

    E-Print Network [OSTI]

    Omar Yepez

    2007-01-31

    A non-moving electron hydrogen model is proposed, resolving a long standing contradiction (94 years) in the hydrogen atom. This, however, forces to not use the "in an orbit point particle kinetic energy" as the phenomenon responsible for the atom stability. The repulsion between the masses of the electron and proton is what is responsible of such stability. The mass of the electron is a field fully described by the uncertainty principle through the confinement of the particle, which is also consistent with the general theory of relativity that states: "mass-energy tells the space how to bend". Ergo, mass exerts a tension on its surrounding space and the lighter the mass the larger the space it will occupy. Based on this concept it is proposed that the orbital is the electron. The electron's orbitals are just the electron's different ways of intersecting the space; with different magnetic momenta. The coupling of this momenta with the magnetic moment of the proton finally explains the hyperfine structure of the hydrogen spectrum with an overwhelming simplicity

  1. Force Density Balance inside the Hydrogen Atom

    E-Print Network [OSTI]

    Himpsel, F J

    2015-01-01

    Motivated by the long-debated question about the internal stability of the electron, the force densities acting on the charge density of the 1s electron in the H atom are investigated. The problem is mapped onto the canonical formalism for a classical Dirac field coupled to the electric field of an external point charge. An explicit calculation shows that the attractive Coulomb force density is balanced exactly at every point in space by the repulsive confinement force density. The latter requires evaluating the divergence of the stress tensor for the 1s solution of the Dirac equation. Such a local force balance goes beyond the global stability criteria that are usually given for the H atom. This concept is extended to the internal stability of any charged particle by investigating the force densities acting on its surrounding vacuum polarization. At large distances one has to consider only the charge density of virtual electrons and positrons, induced by a point charge in the vacuum of quantum electrodynamic...

  2. Low energy neutral atoms from the heliosheath

    SciTech Connect (OSTI)

    Fuselier, S. A.; Allegrini, F.; Dayeh, M. A.; Desai, M.; Lewis, W.; Livadiotis, G.; McComas, D. J. E-mail: fallegrini@swri.edu E-mail: mdesai@swri.edu E-mail: george.livadiotis@swri.org; and others

    2014-04-01

    In the heliosheath beyond the termination shock, low energy (<0.5 keV) neutral atoms are created by charge exchange with interstellar neutrals. Detecting these neutrals from Earth's orbit is difficult because their flux is reduced substantially by ionization losses as they propagate from about 100 to 1 AU and because there are a variety of other signals and backgrounds that compete with this weak signal. Observations from IBEX-Lo and -Hi from two opposing vantage points in Earth's orbit established a lower energy limit of about 0.1 keV on measurements of energetic neutral atoms (ENAs) from the heliosphere and the form of the energy spectrum from about 0.1 to 6 keV in two directions in the sky. Below 0.1 keV, the detailed ENA spectrum is not known, and IBEX provides only upper limits on the fluxes. However, using some assumptions and taking constraints on the spectrum into account, we find indications that the spectrum turns over at an energy between 0.1 and 0.2 keV.

  3. Cold and dense clouds of atoms in a Holographic Atom Trap

    E-Print Network [OSTI]

    Walker, Thad G.

    for the encouragement and support he has provided throughout my graduate career. Since my arrival in Madison I have all invested their time in teaching me the nuts and bolts of atom trapping. Ian Nelson and Bien Chann members of the group, Earl Babcock, Erich Urban, and Jason Day have all provided support and companionship

  4. Haiti earthquake survivor to speak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunitiesNERSCGrid-based29Hai Ah Nam Hai Ah Nam-The power

  5. “Hard probes” of strongly-interacting atomic gases

    SciTech Connect (OSTI)

    Nishida, Yusuke

    2012-06-18

    We investigate properties of an energetic atom propagating through strongly interacting atomic gases. The operator product expansion is used to systematically compute a quasiparticle energy and its scattering rate both in a spin-1/2 Fermi gas and in a spinless Bose gas. Reasonable agreement with recent quantum Monte Carlo simulations even at a relatively small momentum k/kF > 1.5 indicates that our large-momentum expansions are valid in a wide range of momentum. We also study a differential scattering rate when a probe atom is shot into atomic gases. Because the number density and current density of the target atomic gas contribute to the forward scattering only, its contact density (measure of short-range pair correlation) gives the leading contribution to the backward scattering. Therefore, such an experiment can be used to measure the contact density and thus provides a new local probe of strongly interacting atomic gases.

  6. Thirteenth International Conference on Atomic Physics(IGAP-13)

    SciTech Connect (OSTI)

    Walther, H.; Haensch, T.W.; Neizert, B. (eds.) (Max PlanckInstitute for Quantum Optics, Garching (Germany) Ludwig MaximilianUniversity, Munich (Germany))

    1993-01-01

    This conference proceeding contains invited papers on recentprogress in many subfields of atomic physics. Major advances inspectroscopy, laser cooling and trapping, atom interferometry,cavity quantum electrodynamics are discussed in many of thepresented papers. Quantum chaos is explored as well as novelexperiments with atoms in intense laser fields are discussed. Atotal of forty two papers are given in this proceedings, out ofthese, eleven have been abstracted for database. (AIP)

  7. Light transport in cold atoms and thermal decoherence

    E-Print Network [OSTI]

    Guillaume Labeyrie; Dominique Delande; Robin Kaiser; Christian Miniatura

    2006-03-17

    By using the coherent backscattering interference effect, we investigate experimentally and theoretically how coherent transport of light inside a cold atomic vapour is affected by the residual motion of atomic scatterers. As the temperature of the atomic cloud increases, the interference contrast dramatically decreases emphazising the role of motion-induced decoherence for resonant scatterers even in the sub-Doppler regime of temperature. We derive analytical expressions for the corresponding coherence time.

  8. Electromagnetically Induced Transparency in a Double Well Atomic Josephson Junction

    E-Print Network [OSTI]

    Weatherall, J. O.; Search, C. P.

    2009-01-01

    a weakly interacting Bose–Einstein condensate of N atomstransparency in an atomic Bose–Einstein condensate trappedwell coherence of the Bose–Einstein condensate wave function

  9. Big, Deep, and Smart Data in Energy Materials Research: Atomic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big, Deep, and Smart Data in Energy Materials Research: Atomic View on Materials Functionalities Event Sponsor: Computing, Environment, and Life Sciences Seminar Start Date: Sep 22...

  10. FOHI-D: An iterative Hirshfeld procedure including atomic dipoles

    SciTech Connect (OSTI)

    Geldof, D.; Blockhuys, F.; Van Alsenoy, C. [Department of Chemistry, University of Antwerp, Universiteitsplein 1, B2610 Antwerp (Belgium)] [Department of Chemistry, University of Antwerp, Universiteitsplein 1, B2610 Antwerp (Belgium); Krishtal, A. [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin Schrödinger Straße, D-67663 Kaiserslautern (Germany)] [Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin Schrödinger Straße, D-67663 Kaiserslautern (Germany)

    2014-04-14

    In this work, a new partitioning method based on the FOHI method (fractional occupation Hirshfeld-I method) will be discussed. The new FOHI-D method uses an iterative scheme in which both the atomic charge and atomic dipole are calculated self-consistently. In order to induce the dipole moment on the atom, an electric field is applied during the atomic SCF calculations. Based on two sets of molecules, the atomic charge and intrinsic atomic dipole moment of hydrogen and chlorine atoms are compared using the iterative Hirshfeld (HI) method, the iterative Stockholder atoms (ISA) method, the FOHI method, and the FOHI-D method. The results obtained are further analyzed as a function of the group electronegativity of Boyd et al. [J. Am. Chem. Soc. 110, 4182 (1988); Boyd et al., J. Am. Chem. Soc. 114, 1652 (1992)] and De Proft et al. [J. Phys. Chem. 97, 1826 (1993)]. The molecular electrostatic potential (ESP) based on the HI, ISA, FOHI, and FOHI-D charges is compared with the ab initio ESP. Finally, the effect of adding HI, ISA, FOHI, and FOHI-D atomic dipoles to the multipole expansion as a function of the precision of the ESP is analyzed.

  11. Atomic Layer Deposition for Stabilization of Amorphous Silicon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Nanostructured Metal Oxide Anodes Atomic Layer Deposition for Stabilization of Silicon Anodes Development of Industrially Viable Battery Electrode Coatings...

  12. Chaotic transport in phase space with applications to atomic physics

    E-Print Network [OSTI]

    Burke, Korana

    2011-01-01

    Reinhardt. Chaos in Atomic Physics. Cambridge University uabsorption. Chemical Physics Letters, 86(3):235 – 241,theory with experiment. Physics Reports, 201(1):1 – 56,

  13. Connecting Three Atomic Layers Puts Semiconducting Science on...

    Office of Science (SC) Website

    the linear junction region along the triangular interface produces enhanced light emission (red region). The Science A new semiconducting material that is only three atomic...

  14. Big, Deep, and Smart Data in Energy Materials Research: Atomic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by STM. Finally, I explore the opportunities for atomically resolved imaging and property data mining of functional oxides extending beyond classical order parameter descriptions,...

  15. Hydrogen transport diagnostics by atomic and molecular emission...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen transport diagnostics by atomic and molecular emission line profiles simultaneously measured for large helical device Citation Details In-Document Search Title: Hydrogen...

  16. Fe Atomic Data for Non-equilibrium Ionization Plasmas Eriksen...

    Office of Scientific and Technical Information (OSTI)

    Fe Atomic Data for Non-equilibrium Ionization Plasmas Eriksen, Kristoffer A. Los Alamos National Laboratory; Fontes, Christopher J. Los Alamos National Laboratory; Colgan,...

  17. Excitation of two atoms by a propagating single photon pulse

    E-Print Network [OSTI]

    Navneeth Ramakrishnan; Yimin Wang; Valerio Scarani

    2014-11-13

    We describe the interaction of two two-level atoms in free space with propagating modes of the quantized electromagnetic field, using the time-dependent Heisenberg-Langevin method. For single- photon pulses, we consider the effect of the pulse's spatial and temporal profiles on the atomic excitation. In particular, we find the ideal shape for a pulse to put exactly one excitation in any desired state of the bi-atomic system. Furthermore, we analyze the differences in the atomic dynamics between the cases of Fock state pulses and coherent state pulses.

  18. The Evolution in Pu Nanocluster Electronic Structure: from Atomicity...

    Office of Scientific and Technical Information (OSTI)

    The Evolution in Pu Nanocluster Electronic Structure: from Atomicity to Three Dimensionality Citation Details In-Document Search Title: The Evolution in Pu Nanocluster Electronic...

  19. Thermal effects on the stability of excited atoms in cavities

    SciTech Connect (OSTI)

    Khanna, F. C.; Malbouisson, A. P. C.; Malbouisson, J. M. C.; Santana, A. E. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada) and TRIUMF, Vancouver, British Columbia V6T 2A3 (Canada); Centro Brasileiro de Pesquisas Fisicas/MCT, 22290-180 Rio de Janeiro, Rio de Janeiro (Brazil); Instituto de Fisica, Universidade Federal da Bahia, 40.210-310 Salvador, Bahia (Brazil); Instituto de Fisica, Universidade de Brasilia, 70910-900 Brasilia, Distrito Federal (Brazil) and Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada)

    2010-03-15

    An atom, coupled linearly to an environment, is considered in a harmonic approximation in thermal equilibrium inside a cavity. The environment is modeled by an infinite set of harmonic oscillators. We employ the notion of dressed states to investigate the time evolution of the atom initially in the first excited level. In a very large cavity (free space) for a long elapsed time, the atom decays and the value of its occupation number is the physically expected one at a given temperature. For a small cavity the excited atom never completely decays and the stability rate depends on temperature.

  20. Atomic and nuclear interference phenomena and their applications 

    E-Print Network [OSTI]

    Kuznetsova, Yelena Anatolyevna

    2005-08-29

    In this work, interference and coherence phenomena, appearing in atomic and molecular ensembles interacting with coherent light sources, as electromagnetically induced transparency (EIT), coherent population trapping (CPT), ...

  1. Institute for Atom-Efficient Chemical Transformations - Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of which are crucial for evaluating performance in the proverbial vacuum. Using atomic layer deposition (ALD), researchers can create highly specific nanobowls, controlling...

  2. Exploiting Universality in Atoms with Large Scattering Lengths

    SciTech Connect (OSTI)

    Braaten, Eric

    2012-05-31

    The focus of this research project was atoms with scattering lengths that are large compared to the range of their interactions and which therefore exhibit universal behavior at sufficiently low energies. Recent dramatic advances in cooling atoms and in manipulating their scattering lengths have made this phenomenon of practical importance for controlling ultracold atoms and molecules. This research project was aimed at developing a systematically improvable method for calculating few-body observables for atoms with large scattering lengths starting from the universal results as a first approximation. Significant progress towards this goal was made during the five years of the project.

  3. Clifford G. Shull, Neutron Diffraction, Hydrogen Atoms, and Neutron...

    Office of Scientific and Technical Information (OSTI)

    atoms are within a material like ricocheting bullets reveal where obstacles are in the dark. Clifford Shull Photo Courtesy of Oak Ridge National Laboratory When a beam of...

  4. SYMMETRY OF THE IBEX RIBBON OF ENHANCED ENERGETIC NEUTRAL ATOM...

    Office of Scientific and Technical Information (OSTI)

    HELIOSPHERE; INTERSTELLAR SPACE; KEV RANGE; MAGNETIC FIELDS; PLASMA; REFLECTION; SUN; SYMMETRY The circular ribbon of enhanced energetic neutral atom (ENA) emission...

  5. Albert Einstein Alerts President Roosevelt of German Atomic Energy...

    National Nuclear Security Administration (NNSA)

    Albert Einstein Alerts President Roosevelt of German Atomic Energy Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing...

  6. Discovery of novel hydrogen storage materials: an atomic scale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery of novel hydrogen storage materials: an atomic scale computational approach Home Author: C. Wolverton, D. J. Siegel, A. R. Akbarzadeh, V. Ozolins Year: 2008 Abstract:...

  7. Unlocking Life's Mysteries (One Atom at a Time)

    Broader source: Energy.gov [DOE]

    The Linac Coherent Light Source (LSCLS) at SLAC National Accelerator Laboratory will allow us to make "molecular movies" and answer many questions surrounding atoms.

  8. ATOMIC BEAM STUDIES IN THE RHIC H-JET POLARIMETER.

    SciTech Connect (OSTI)

    MAKDISI,Y.; ZELENSKI,A.; GRAHAM,D.; KOKHANOVSKI,S.; MAHLER,G.; NASS,A.; RITTER,J.; ZUBETS,V.; ET AL.

    2005-01-28

    The results of atomic beam production studies are presented. Improved cooling of the atoms before jet formation in the dissociator cold nozzle apparently reduces the atomic beam velocity spread and improves beam focusing conditions. A carefully designed sextupole separating (and focusing) magnet system takes advantage of the high brightness source. As a result a record beam intensity of a 12.4 {center_dot} 10{sup 16} atoms/s was obtained within 10 mm acceptance at the collision point. The results of the polarization dilution factor measurements (by the hydrogen molecules at the collision point) are also presented.

  9. The Harnessed Atom - Student Edition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Edition The Harnessed Atom is a middle school science, technology, engineering, and math (STEM) curriculum extension that focuses on nuclear science and energy. It is designed...

  10. Chaotic scattering of atoms at a standing laser wave

    E-Print Network [OSTI]

    S. V. Prants

    2012-05-20

    Atoms, propagating across a detuned standing laser wave, can be scattered in a chaotic way even in the absence of spontaneous emission and any modulation of the laser field. Spontaneous emission masks the effect in some degree, but the Monte Carlo simulation shows that it can be observed in real experiments by the absorption imaging method or depositing atoms on a substrate. The effect of chaotic scattering is explained by a specific behavior of the dipole moments of atoms crossing the field nodes and is shown to depend strongly on the value of the atom-laser detuning.

  11. US Energy Secretary Samuel Bodman and Russian Atomic Energy Director...

    Energy Savers [EERE]

    Bratislava Agreement May 24, 2005 - 12:51pm Addthis US Energy Secretary Samuel Bodman (right) and Russian Atomic Energy Director Alexander Rumyantsev discuss progress in...

  12. Method of trivalent chromium concentration determination by atomic spectrometry

    DOE Patents [OSTI]

    Reheulishvili, Aleksandre N. (Tbilisi, 0183, GE); Tsibakhashvili, Neli Ya. (Tbilisi, 0101, GE)

    2006-12-12

    A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.

  13. Harmonic oscillator model for the helium atom

    E-Print Network [OSTI]

    Carlsen, Martin

    2015-01-01

    A harmonic oscillator model in four dimensions is presented for the helium atom to estimate the distance to the inner and outer electron from the nucleus, the angle between electrons and the energy levels. The method is algebraic and is not based on the choice of correct trial wave function. Three harmonic oscillators and thus three quantum numbers are sufficient to describe the two-electron system. We derive a simple formula for the energy in the general case and in the special case of the Wannier Ridge. For a set of quantum numbers the distance to the electrons and the angle between the electrons are uniquely determined as the intersection between three surfaces. We show that the excited states converge either towards ionization thresholds or towards extreme parallel or antiparallel states and provide an estimate of the ground state energy.

  14. Vibrational mode multiplexing of ultracold atoms

    E-Print Network [OSTI]

    S. Martínez-Garaot; E. Torrontegui; Xi Chen; M. Modugno; D. Guéry-Odelin; Shuo-Yen Tseng; J. G. Muga

    2015-09-08

    Sending multiple messages on qubits encoded in different vibrational modes of cold atoms or ions along a transmission waveguide requires to merge first and then separate the modes at input and output ends. Similarly, different qubits can be stored in the modes of a trap and be separated later. We design the fast splitting of a harmonic trap into an asymmetric double well so that the initial ground vibrational state becomes the ground state of one of two final wells, and the initial first excited state becomes the ground state of the other well. This might be done adiabatically by slowly deforming the trap. We speed up the process by inverse engineering a double-function trap using dynamical invariants. The separation (demultiplexing) followed by an inversion of the asymmetric bias and then by the reverse process (multiplexing) provides a population inversion protocol based solely on trap reshaping.

  15. Atom-interferometry constraints on dark energy

    E-Print Network [OSTI]

    Hamilton, Paul; Haslinger, Philipp; Simmons, Quinn; Müller, Holger; Khoury, Justin

    2015-01-01

    If dark energy---which drives the accelerated expansion of the universe---consists of a new light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. There has, however, been much theoretical progress in developing theories with screening mechanisms, which can evade detection by suppressing forces in regions of high density, such as the laboratory. One prominent example is the chameleon field. We reduce the effect of this screening mechanism by probing the chameleon with individual atoms rather than bulk matter. Using a cesium matter-wave interferometer near a spherical mass in an ultra-high vacuum chamber, we constrain a wide class of dynamical dark energy theories. Our experiment excludes a range of chameleon theories that reproduce the observed cosmic acceleration.

  16. Atom-interferometry constraints on dark energy

    E-Print Network [OSTI]

    Paul Hamilton; Matt Jaffe; Philipp Haslinger; Quinn Simmons; Holger Müller; Justin Khoury

    2015-07-02

    If dark energy --- which drives the accelerated expansion of the universe --- consists of a light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms, however, can evade these tests by suppressing the forces in regions of high density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical mass in an ultra-high vacuum chamber, we reduce the screening mechanism by probing the field with individual atoms rather than bulk matter. Thus, we constrain a wide class of dark energy theories, including a range of chameleon and other theories that reproduce the observed cosmic acceleration.

  17. Alpha Cluster Model of Atomic Nuclei

    E-Print Network [OSTI]

    Sosin, Zbigniew; Kallunkathariyil, Jinesh; ?ukasik, Jerzy; Paw?owski, Piotr

    2015-01-01

    The description of the nuclear system in its ground state and at low excitations based on the equation of state (EoS) around the saturation density is presented. In the expansion of the EoS around the saturation point additional spin polarization terms are taken into account. In addition for atomic nuclei a correction of the average nucleonic energy for the surface energy is introduced. The ground state configurations for the N=Z even-even nuclei, obtained with the proposed EoS, exhibit a clear cluster structure. At the nuclear surface these clusters can be identified as alpha particles. Taking into account an additional interaction between clusters the binding energy and sizes of the considered nuclei are very accurately described. From properties of the {\\alpha} particle, 3He and t limits of the EoS parameters are established.

  18. Resonance ionization spectroscopy of zirconium atoms

    SciTech Connect (OSTI)

    Page, R.H.; Dropinski, S.C.; Worden, E.F. Jr.; Stockdale, J.A.D.

    1992-05-01

    We have examined the stepwise-resonant three-photon-ionization spectrum of neutral zirconium atoms using three separately-tunable pulsed visible dye lasers. Lifetimes of even-parity levels (measured with delayed-photoionization technique) range from 10 to 100 nsec. Direct ionization cross sections appear to be less than 10{sup {minus}17} cm{sup 2}; newly-detected autoionizing levels give peak ionization cross sections (inferred from saturation fluences) up to 10{sup {minus}15} cm{sup 2}. Members of Rydberg series converging to the 315 and 1323 cm{sup {minus}1} levels of Zr{sup +} were identified. ``Clumps`` of autoionizing levels are thought to be due to Rydberg-valence mixing.

  19. Hydrogen atom on curved noncommutative space

    E-Print Network [OSTI]

    V. G. Kupriyanov

    2013-06-05

    We have calculated the hydrogen atom spectrum on curved noncommutative space defined by the commutation relations $\\left[ \\hat {x}^{i},\\hat{x}^{j}\\right] =i\\theta\\hat{\\omega}^{ij}\\left( \\hat {x}\\right) $, where $\\theta$ is the parameter of noncommutativity. The external antisymmetric field which determines the noncommutativity is chosen as $\\omega^{ij}(x) =\\varepsilon^{ijk}{x}_{k}f\\left( {x_i}x^{i}\\right) $. In this case the rotational symmetry of the system is conserved, preserving the degeneracy of the energy spectrum. The contribution of the noncommutativity appears as a correction to the fine structure. The corresponding nonlocality is calculated: $\\Delta x\\Delta y \\geq \\frac{\\theta^2}{4} |m\\langle f^2\\rangle| $, where $m$ is a magnetic quantum number.

  20. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1993-01-01

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  1. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-03-30

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  2. Atomic line emission analyzer for hydrogen isotopes

    DOE Patents [OSTI]

    Kronberg, J.W.

    1991-05-08

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using, a metal hydride.

  3. Probing thermoelectric transport with cold atoms

    E-Print Network [OSTI]

    Charles Grenier; Corinna Kollath; Antoine Georges

    2013-11-10

    We propose experimental protocols to reveal thermoelectric and thermal effects in the transport properties of ultracold fermionic atoms, using the two-terminal setup recently realized at ETH. We show in particular that, for two reservoirs having equal particle numbers but different temperatures initially, the observation of a transient particle number imbalance during equilibration is a direct evidence of thermoelectric (off-diagonal) transport coefficients. This is a time-dependent analogue of the Seebeck effect, and a corresponding analogue of the Peltier effect can be proposed. We reveal that in addition to the thermoelectric coupling of the constriction a thermoelectric coupling also arises due to the finite dilatation coefficient of the reservoirs. We present a theoretical analysis of the protocols, and assess their feasibility by estimating the corresponding temperature and particle number imbalances in realistic current experimental conditions.

  4. Carbon-14 Bomb-Pulse Dating

    SciTech Connect (OSTI)

    Buchholz, B A

    2007-12-16

    Atmospheric testing of nuclear weapons during the 1950s and early 1960s doubled the concentration of carbon-14 atmosphere and created a pulse that labeled everything alive in the past 50 years as carbon moved up the food chain. The variation in carbon-14 concentration in time is well-documented and can be used to chronologically date all biological materials since the mid-1950s.

  5. 14C "Bomb Pulse" Pulse Forensics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concentration of 14C becomes the fingerprint of this radioisotope in a given year's food supply. Herbivores lag the atmosphere slightly because their primary carbon source is...

  6. Bomb tests attack the food chain

    SciTech Connect (OSTI)

    Ruff, T. )

    1990-03-01

    Ciguatera poisoning, the most common type of fish poisoning in the world, has become a major public health problem in some parts of the South Pacific. This area has always been the site of periodic outbreaks, especially after severe storms or natural disasters that damage core reefs. But since World War II it has become evident that military activities and major construction projects that wreak havoc on corals also lead to ciguatera outbreaks. Extraordinarily high rates of ciguatera poisoning have occurred on the small Pacific islands that have been used for nuclear tests and on the islands that host the military infrastructures and activities that accompany the tests. This is true for both the Marshall Islands near Bikini and Eniwetok, where U.S. tests took place, and in French Polynesia, in the area around Moruroa Atoll where the French government continues to test. Ciguatera poisoning has a disastrous effect on people who depend on fishing as a way of life and on fish as the major source of protein. 10 refs.

  7. Y-12 and the Hydrogen Bomb

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single and the history of When2 Bob3

  8. dirty bomb | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulationdetonation detection | National

  9. nuclear bombs | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryMIII:National1-2130nsc | National Updatedbombs

  10. Atoms 2014, 2, 157-177; doi:10.3390/atoms2020157 OPEN ACCESS

    E-Print Network [OSTI]

    , in principle, also, the shift. This contribution will depend not only on the proximity of #12;Atoms 2014, 2 158]: = ne2 ¯h2 - dt1 t1 - dt2E(t1)·E(t2)ei (t1-t2) (3) where E(t1)·E(t2) = 2 3 0 vf(v)dv max 0 dE(t1

  11. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    08252008 Keywords: B,Reactor,Designated,Historic,Landmark,08252008,nuclear,World War II,atomic,bomb Description: Acting Deputy Secretary of Energy Jeffrey F. Kupfer, left,...

  12. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    08252008 Keywords: B,Reactor,Designated,Historic,Landmark,08252008,nuclear,World War II,atomic,bomb Description: Acting Deputy Secretary of Energy Jeffrey F. Kupfer...

  13. Award-winning film director to discuss technical photography...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Bomb Photography and the EG&G Film Project Award-winning film director to discuss technical photography during atmospheric testing years Peter Kuran will discuss Edgerton,...

  14. The Children's Milk Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Children's Milk Fund Clever accounting hid the funds needed to develop America's top secret atomic bombs. December 1, 2014 The Children's Milk Fund Milk money was critical...

  15. Post-Industrial Engineering: Computer Science and the Organization of White-Collar Work, 1945-1975

    E-Print Network [OSTI]

    Mamo, Andrew Benedict

    2011-01-01

    an atomic bomb in the Manhattan Project forged ties betweenof research: the Manhattan Project brought together nearlybottleneck of the Manhattan Project. By contrast, the field

  16. The Collaborative Divide: Crafting Architectural Identity, Authority, and Authorship in the Twentieth Century

    E-Print Network [OSTI]

    Doctors, Steven I.

    2010-01-01

    of the atomic bomb with the Manhattan Project. 484 Given theinvolved in the Manhattan Project launched the Bulletin ofthe university” within the Manhattan Project. 555 Roosevelt

  17. Nano-Punk For Tomorrow's People

    E-Print Network [OSTI]

    Newfield, Chris

    2006-01-01

    not revolved around the Manhattan Project and the atom bomb?if, in 1945, the “Manhattan Project for the social sciences”

  18. Risd-M-1591 jo Danish Atomic Energy Commission

    E-Print Network [OSTI]

    March 1973 R-5-73 Available on raqvaat from: Library of the Danish Atomic Enorgy Commission (Aton on request from the Library of the Danish Atomic Energy Commission (Atomenergikommissionens Bibliotek), Risø Section I Situation Today Section II Important Trends and Developments 13 Section III Developments

  19. Stochastic cooling of atoms using lasers M. G. Raizen,1

    E-Print Network [OSTI]

    Stochastic cooling of atoms using lasers M. G. Raizen,1 J. Koga, 2 B. Sundaram,3 Y. Kishimoto,2 H 1998 We propose a method to laser-cool atoms based on stochastic cooling, first developed at CERN to cool antiprotons. Fluctuations in the momentum distribution will be detected in a pump

  20. Magneto-optical cooling of atoms Mark G. Raizen,1,

    E-Print Network [OSTI]

    Raizen, Mark G.

    Magneto-optical cooling of atoms Mark G. Raizen,1, * Dmitry Budker,2,3 Simon M. Rochester,3 Julia propose an alternative method to laser cooling. Our approach utilizes the extreme brightness forces, can be used to cool the translational motion of atoms. This approach does not rely on momentum

  1. Vacuum - induced stationary entanglement in radiatively coupled three - level atoms

    E-Print Network [OSTI]

    L. Derkacz; L. Jakobczyk

    2008-05-05

    We consider a pair of three - level atoms interacting with a common vacuum and analyze the process of entanglement production due to spontaneous emission. We show that in the case of closely separated atoms, collective damping can generate robust entanglement of the asymptotic states.

  2. Critical Nuclear Charges for N-Electron Atoms

    E-Print Network [OSTI]

    Kais, Sabre

    Critical Nuclear Charges for N-Electron Atoms ALEXEI V. SERGEEV, SABRE KAIS Department of Chemistry is proposed to describe the motion of a loosely bound electron in a multielectron atom when the nuclear charge, which is treated as a continuous parameter, approaches its critical value. The critical nuclear charge

  3. One Nanometer Resolution Electrical Probe via Atomic Metal Filament Formation

    E-Print Network [OSTI]

    Cui, Yi

    One Nanometer Resolution Electrical Probe via Atomic Metal Filament Formation Seung Sae Hong, Judy an atomic-size metallic filament on a commercial C-AFM tip. We demonstrate 1 nm lateral resolution in C-AFM using the metal filament tip. The filament tip is mechanically robust and electrically stable

  4. Efimov physics in bosonic atom-trimer scattering

    SciTech Connect (OSTI)

    Deltuva, A. [Centro de Fisica Nuclear da Universidade de Lisboa, P-1649-003 Lisboa (Portugal)

    2010-10-15

    Bosonic atom-trimer scattering is studied in the unitary limit using momentum-space equations for four-particle transition operators. The impact of the Efimov effect on the atom-trimer scattering observables is explored, and a number of universal relations is established. Positions and widths of tetramer resonances are determined. The trimer relaxation rate constant is calculated.

  5. SQUARE: Scalable Quorum-Based Atomic Memory with Local Reconfiguration

    E-Print Network [OSTI]

    Gramoli, Vincent

    composition. To guarantee atomic consistency in message-passing model, mutually intersect- ing sets (a.k.a replicas (a.k.a. quorums) are a classical mean to achieve consistent data access limiting the overall real-time precedence. Atomicity (a.k.a linearizability) preserves an important property, called

  6. Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model

    E-Print Network [OSTI]

    Ponder, Jay

    Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model Marie L. Laury,, Lee for the AMOEBA polarizable atomic multipole water model is developed. An automated procedure, Force. With advances in computing power, calibration data, and optimization techniques, we recommend the use

  7. Contact stiffness of layered materials for ultrasonic atomic force microscopy

    E-Print Network [OSTI]

    Contact stiffness of layered materials for ultrasonic atomic force microscopy G. G. Yaralioglu,a) F the contact stiffness between a layered material and an ultrasonic atomic force microscope UAFM tip of the method for modeling defects and power loss due to radiation in layered materials. © 2000 American

  8. Surface characterization of silica glass substrates treated by atomic hydrogen

    SciTech Connect (OSTI)

    Inoue, Hiroyuki [Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505 (Japan); Masuno, Atsunobu, E-mail: masuno@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505 (Japan); Ishibashi, Keiji [Canon ANELVA Corporation, Asao-ku, Kawasaki, Kanagawa 215-8550 (Japan); Tawarayama, Hiromasa [Kawazoe Frontier Technologies Corporation, Kuden 931-113, Sakae-ku, Yokohama, Kanagawa 247-0014 (Japan); Zhang, Yingjiu; Utsuno, Futoshi [Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505 (Japan); Koya, Kazuo; Fujinoki, Akira [Shin Etsu Quartz Prod. Co., Ltd., Res and Applicat Lab, Fukushima 963-0725 (Japan); Kawazoe, Hiroshi [Kawazoe Frontier Technologies Corporation, Kuden 931-113, Sakae-ku, Yokohama, Kanagawa 247-0014 (Japan)

    2013-12-15

    Silica glass substrates with very flat surfaces were exposed to atomic hydrogen at different temperatures and durations. An atomic force microscope was used to measure root-mean-square (RMS) roughness and two-dimensional power spectral density (PSD). In the treatment with atomic hydrogen up to 900 °C, there was no significant change in the surface. By the treatment at 1000 °C, the changes in the RMS roughness and the PSD curves were observed. It was suggested that these changes were caused by etching due to reactions of atomic hydrogen with surface silica. By analysis based on the k-correlation model, it was found that the spatial frequency of the asperities became higher with an increase of the treatment time. Furthermore, the data showed that atomic hydrogen can flatten silica glass surfaces by controlling heat-treatment conditions. - Highlights: • Silica glass surface was treated by atomic hydrogen at various temperatures. • Surface roughness was measured by an atomic force microscope. • Roughness data were analyzed by two-dimensional power spectral density. • Atomic hydrogen can flatten silica glass surfaces.

  9. Coherent control of atomic spin currents in a double well

    E-Print Network [OSTI]

    Chu, Shih-I; Ng, H. T.

    2012-02-27

    We propose a method for controlling the atomic currents of a two-component Bose-Einstein condensate in a double well by applying an external field to the atoms in one of the potential wells. We study the ground-state properties of the system...

  10. On shielding of nuclear electric dipole moments in atoms

    E-Print Network [OSTI]

    V. F. Dmitriev; I. B. Khriplovich; R. A. Sen'kov

    2005-04-08

    We demonstrate explicitly that some recent calculations of atomic electric dipole moments (EDM) are incomplete. A contribution overlooked therein is pointed out. When included, it cancels exactly the result of those calculations, and thus restores the standard conclusions for nuclear EDM in atoms.

  11. Atomic Layer Deposition of Insulating Hafnium and Zirconium Nitrides

    E-Print Network [OSTI]

    Atomic Layer Deposition of Insulating Hafnium and Zirconium Nitrides Jill S. Becker, Esther Kim, and conformal coatings of higher nitrides of hafnium and zirconium were produced by atomic layer deposition from-colored, and highly conducting. I. Introduction The mononitrides of hafnium and zirconium of stoi- chiometry MN (M

  12. Atomic CP-violating polarizability Boris Ravaine,1

    E-Print Network [OSTI]

    Titov, Anatoly

    Atomic CP-violating polarizability Boris Ravaine,1 M. G. Kozlov,2, * and Andrei Derevianko1, 1, Gatchina 188300, Russia Received 22 March 2005; published 1 July 2005 Searches for CP-violating effects of elementary particles. In particular, CP violation in an atom leads to the CP-odd T,P-odd polarizability CP

  13. Theoretical investigation of energy-trapping mechanism by atomic systems

    E-Print Network [OSTI]

    Srivastava, Rajendra P.

    1978-06-01

    The theoretical results are presented here in detail for the atomic device proposed earlier by the author. This device absorbs energy from a continuous radiation source and stores some of it with atoms in metastable states for a long time without...

  14. Efficient detection of photons emitted from fast moving atoms

    SciTech Connect (OSTI)

    Lehmann, Bernhard; Quintel, Harald; Ludin, Andrea; Tschannen, Thomas

    1997-01-15

    Metastable atoms of krypton and photons from a tunable cw infrared diode laser at 812 nm meet in counterpropagating beams. A photomultiplier mounted perpendicular to the beams detects photons reemitted from the passing atoms. Multiple diffuse reflections from a thermoplastics tube are used to achieve the high collection efficiency necessary for photon burst detection.

  15. Atomic displacements due to spinspin repulsion in conjugated alternant hydrocarbons

    E-Print Network [OSTI]

    Benzi, Michele

    Atomic displacements due to spin­spin repulsion in conjugated alternant hydrocarbons Ernesto-induced atomic displacements in conjugated alt- ernant hydrocarbons. It appears to be responsible alternant hydrocarbons (CAHs) have played a fun- damental role in the development of theoretical chemistry

  16. Atom-interferometric measurement of Stark level splittings

    E-Print Network [OSTI]

    Wang, Limei; Zhang, Linjie; Raithel, Georg; Zhao, Jianming; Jia, Suotang

    2015-01-01

    Multiple adiabatic/diabatic passages through avoided crossings in the Stark map of cesium Rydberg atoms are employed as beam splitters and recombiners in an atom-interferometric measurement of energy-level splittings. We subject cold cesium atoms to laser-excitation, electric-field and detection sequences that constitute an (internal-state) atom interferometer. For the read-out of the interferometer we utilize state-dependent collisions, which selectively remove atoms of one kind from the detected signal. We investigate the dependence of the interferometric signal on timing and field parameters, and find good agreement with time-dependent quantum simulations of the interferometer. Fourier analysis of the interferometric signals yield coherence frequencies that agree with corresponding energy-level differences in calculated Stark maps. The method enables spectroscopy of states that are inaccessible to direct laser-spectroscopic observation, due to selection rules, and has applications in field metrology.

  17. Velocity tuning of friction with two trapped atoms

    E-Print Network [OSTI]

    Gangloff, Dorian; Counts, Ian; Jhe, Wonho; Vuleti?, Vladan

    2015-01-01

    Friction is the basic, ubiquitous mechanical interaction between two surfaces that results in resistance to motion and energy dissipation. In spite of its technological and economic significance, our ability to control friction remains modest, and our understanding of the microscopic processes incomplete. At the atomic scale, mismatch between the two contacting crystal lattices can lead to a reduction of stick-slip friction (structural lubricity), while thermally activated atomic motion can give rise to a complex velocity dependence, and nearly vanishing friction at sufficiently low velocities (thermal lubricity). Atomic force microscopy has provided a wealth of experimental results, but limitations in the dynamic range, time resolution, and control at the single-atom level have hampered a full quantitative description from first principles. Here, using an ion-crystal friction emulator with single-atom, single substrate-site spatial resolution and single-slip temporal resolution, we measure the friction force...

  18. Laser-Ranging Long Baseline Differential Atom Interferometers for Space

    E-Print Network [OSTI]

    Chiow, Sheng-wey; Yu, Nan

    2015-01-01

    High sensitivity differential atom interferometers are promising for precision measurements in science frontiers in space, including gravity field mapping for Earth science studies and gravitational wave detection. We propose a new configuration of twin atom interferometers connected by a laser ranging interferometer (LRI-AI) to provide precise information of the displacements between the two AI reference mirrors and a means to phase-lock the two independent interferometer lasers over long distances, thereby further enhancing the feasibility of long baseline differential atom interferometers. We show that a properly implemented LRI-AI can achieve equivalent functionality to the conventional differential atom interferometer measurement system. LRI-AI isolates the laser requirements for atom interferometers and for optical phase readout between distant locations, thus enabling optimized allocation of available laser power within a limited physical size and resource budget. A unique aspect of LRI-AI also enables...

  19. Carrier-free Raman manipulation of trapped neutral atoms

    E-Print Network [OSTI]

    René Reimann; Wolfgang Alt; Tobias Macha; Dieter Meschede; Natalie Thau; Seokchan Yoon; Lothar Ratschbacher

    2014-12-02

    We experimentally realize an enhanced Raman control scheme for neutral atoms that features an intrinsic suppression of the two-photon carrier transition, but retains the sidebands which couple to the external degrees of freedom of the trapped atoms. This is achieved by trapping the atom at the node of a blue detuned standing wave dipole trap, that acts as one field for the two-photon Raman coupling. The improved ratio between cooling and heating processes in this configuration enables a five times lower fundamental temperature limit for resolved sideband cooling. We apply this method to perform Raman cooling to the two-dimensional vibrational ground state and to coherently manipulate the atomic motion. The presented scheme requires minimal additional resources and can be applied to experiments with challenging optical access, as we demonstrate by our implementation for atoms strongly coupled to an optical cavity.

  20. Conduction in alumina with atomic scale copper filaments

    SciTech Connect (OSTI)

    Xu, Xu; Liu, Jie; Anantram, M. P.

    2014-10-28

    The conductance of atomic scale filaments with three and seven Cu atoms in ?-alumina are calculated using ab initio density functional theory. We find that the filament with 3 Cu atoms is sufficient to increase the conductance of 1.3?nm thick alumina film by more than 10{sup 3} times in linear response. As the applied voltage increases, the current quickly saturates and differential resistance becomes negative. Compared to the filament with three Cu atoms, while the conductance of the filament with seven Cu atoms is comparable in linear response, they carry as much as twenty times larger current at large biases. The electron transport is analyzed based on local density of states, and the negative differential resistance in the seven Cu filaments occurs due to their narrow bandwidth.

  1. A Nanofiber-Based Optical Conveyor Belt for Cold Atoms

    E-Print Network [OSTI]

    Philipp Schneeweiss; Samuel T. Dawkins; Rudolf Mitsch; Daniel Reitz; Eugen Vetsch; Arno Rauschenbeutel

    2012-12-17

    We demonstrate optical transport of cold cesium atoms over millimeter-scale distances along an optical nanofiber. The atoms are trapped in a one-dimensional optical lattice formed by a two-color evanescent field surrounding the nanofiber, far red- and blue-detuned with respect to the atomic transition. The blue-detuned field is a propagating nanofiber-guided mode while the red-detuned field is a standing-wave mode which leads to the periodic axial confinement of the atoms. Here, this standing wave is used for transporting the atoms along the nanofiber by mutually detuning the two counter-propagating fields which form the standing wave. The performance and limitations of the nanofiber-based transport are evaluated and possible applications are discussed.

  2. PA 1140 Waves and Quanta Unit 4: Atoms and Nuclei Waves and Quanta

    E-Print Network [OSTI]

    Burleigh, Matt

    PA 1140 Waves and Quanta Unit 4: Atoms and Nuclei PA1140 Waves and Quanta Unit 4: Atoms and Nuclei Dr Matt Burleigh (S4) Tipler, Chapters 36 & 40 #12;PA 1140 Waves and Quanta Unit 4: Atoms · Radioactivity, fission and fusion · Atomic size and shape · Mass and binding energy Unit 4 Atoms and Nuclei

  3. C. R. Acad. Sci. Paris, t. 2, Srie IV, p. 339380, 2001 Atomes, molcules/Atoms, molecules

    E-Print Network [OSTI]

    CONDENSATS DE BOSE­EINSTEIN ET LASERS À ATOMES BOSE­EINSTEIN CONDENSATES AND ATOM LASERS Collective enhancement and suppression in Bose­Einstein condensates Wolfgang KETTERLE, Shin INOUYE Department of Physics 2001) Abstract. The coherent and collective nature of a Bose­Einstein condensate can enhance

  4. The New Element Californium (Atomic Number 98)

    DOE R&D Accomplishments [OSTI]

    Seaborg, G. T.; Thompson, S. G.; Street, K. Jr.; Ghiroso, A.

    1950-06-19

    Definite identification has been made of an isotope of the element with atomic number 98 through the irradiation of Cm{sup 242} with about 35-Mev helium ions in the Berkeley Crocker Laboratory 60-inch cyclotron. The isotope which has been identified has an observed half-life of about 45 minutes and is thought to have the mass number 244. The observed mode of decay of 98{sup 244} is through the emission of alpha-particles, with energy of about 7.1 Mev, which agrees with predictions. Other considerations involving the systematics of radioactivity in this region indicate that it should also be unstable toward decay by electron capture. The chemical separation and identification of the new element was accomplished through the use of ion exchange adsorption methods employing the resin Dowex-50. The element 98 isotope appears in the eka-dysprosium position on elution curves containing berkelium and curium as reference points--that is, it precedes berkelium and curium off the column in like manner that dysprosium precedes terbium and gadolinium. The experiments so far have revealed only the tripositive oxidation state of eka-dysprosium character and suggest either that higher oxidation states are not stable in aqueous solutions or that the rates of oxidation are slow. The successful identification of so small an amount of an isotope of element 98 was possible only through having made accurate predictions of the chemical and radioactive properties.

  5. Atomic Classification of 6D SCFTs

    E-Print Network [OSTI]

    Jonathan J. Heckman; David R. Morrison; Tom Rudelius; Cumrun Vafa

    2015-07-11

    We use F-theory to classify possibly all six-dimensional superconformal field theories (SCFTs). This involves a two step process: We first classify all possible tensor branches allowed in F-theory (which correspond to allowed collections of contractible spheres) and then classify all possible configurations of seven-branes wrapped over them. We describe the first step in terms of "atoms" joined into "radicals" and "molecules," using an analogy from chemistry. The second step has an interpretation via quiver-type gauge theories constrained by anomaly cancellation. A very surprising outcome of our analysis is that all of these tensor branches have the structure of a linear chain of intersecting spheres with a small amount of possible decoration at the two ends. The resulting structure of these SCFTs takes the form of a generalized quiver consisting of ADE-type nodes joined by conformal matter. A collection of highly non-trivial examples involving E8 small instantons probing an ADE singularity is shown to have an F-theory realization. This yields a classification of homomorphisms from ADE subgroups of SU(2) into E8 in purely geometric terms, largely matching results obtained in the mathematics literature from an intricate group theory analysis.

  6. Atomic Classification of 6D SCFTs

    E-Print Network [OSTI]

    Heckman, Jonathan J; Rudelius, Tom; Vafa, Cumrun

    2015-01-01

    We use F-theory to classify possibly all six-dimensional superconformal field theories (SCFTs). This involves a two step process: We first classify all possible tensor branches allowed in F-theory (which correspond to allowed collections of contractible spheres) and then classify all possible configurations of seven-branes wrapped over them. We describe the first step in terms of "atoms" joined into "radicals" and "molecules," using an analogy from chemistry. The second step has an interpretation via quiver-type gauge theories constrained by anomaly cancellation. A very surprising outcome of our analysis is that all of these tensor branches have the structure of a linear chain of intersecting spheres with a small amount of possible decoration at the two ends. The resulting structure of these SCFTs takes the form of a generalized quiver consisting of ADE-type nodes joined by conformal matter. A collection of highly non-trivial examples involving E8 small instantons probing an ADE singularity is shown to have a...

  7. 2010 Atomic & Molecular Interactions Gordon Research Conference

    SciTech Connect (OSTI)

    Todd Martinez

    2010-07-23

    The Atomic and Molecular Interactions Gordon Conferences is justifiably recognized for its broad scope, touching on areas ranging from fundamental gas phase and gas-condensed matter collision dynamics, to laser-molecule interactions, photophysics, and unimolecular decay processes. The meeting has traditionally involved scientists engaged in fundamental research in gas and condensed phases and those who apply these concepts to systems of practical chemical and physical interest. A key tradition in this meeting is the strong mixing of theory and experiment throughout. The program for 2010 conference continues these traditions. At the 2010 AMI GRC, there will be talks in 5 broadly defined and partially overlapping areas of intermolecular interactions and chemical dynamics: (1) Photoionization and Photoelectron Dynamics; (2) Quantum Control and Molecules in Strong Fields; (3) Photochemical Dynamics; (4) Complex Molecules and Condensed Phases; and (5) Clusters and Reaction Dynamics. These areas encompass many of the most productive and exciting areas of chemical physics, including both reactive and nonreactive processes, intermolecular and intramolecular energy transfer, and photodissociation and unimolecular processes. Gas phase dynamics, van der Waals and cluster studies, laser-matter interactions and multiple potential energy surface phenomena will all be discussed.

  8. Atomic Oxygen in the Comae of Comets

    E-Print Network [OSTI]

    Anita L. Cochran

    2008-07-03

    We report on the detection of atomic oxygen lines in the spectra of 8 comets. These forbidden lines are a result of the photodissociation of the parent oxygen-bearing species directly into an excited state. We used high resolution spectra obtained at the McDonald Observatory 2.7m telescope to resolve the cometary oxygen lines from the telluric oxygen lines and from other cometary emissions. We find that the relative intensities of the two red lines (6300.304 and 6363.776A) are consistent with theory. The green line (5577.339A) has an intensity which is about 10% of the sum of the intensities of the two red lines. We show that collisional quenching may be important in the inner coma. If we assume the relative excitation rates of potential parents which have appeared in the literature, then H2O would be the parent of the cometary green oxygen line. However, those rates have been questioned. We measured the width of the three oxygen lines and find that the green line is wider than either of the two red lines. The finding of a wider line could imply a different parent for the green and red lines. However, the constancy of the green to red line flux ratio suggests the parent is the same for these lines but that the exciting photons have different energies.

  9. Atomic Models for Motional Stark Effects Diagnostics

    SciTech Connect (OSTI)

    Gu, M F; Holcomb, C; Jayakuma, J; Allen, S; Pablant, N A; Burrell, K

    2007-07-26

    We present detailed atomic physics models for motional Stark effects (MSE) diagnostic on magnetic fusion devices. Excitation and ionization cross sections of the hydrogen or deuterium beam traveling in a magnetic field in collisions with electrons, ions, and neutral gas are calculated in the first Born approximation. The density matrices and polarization states of individual Stark-Zeeman components of the Balmer {alpha} line are obtained for both beam into plasma and beam into gas models. A detailed comparison of the model calculations and the MSE polarimetry and spectral intensity measurements obtained at the DIII-D tokamak is carried out. Although our beam into gas models provide a qualitative explanation for the larger {pi}/{sigma} intensity ratios and represent significant improvements over the statistical population models, empirical adjustment factors ranging from 1.0-2.0 must still be applied to individual line intensities to bring the calculations into full agreement with the observations. Nevertheless, we demonstrate that beam into gas measurements can be used successfully as calibration procedures for measuring the magnetic pitch angle through {pi}/{sigma} intensity ratios. The analyses of the filter-scan polarization spectra from the DIII-D MSE polarimetry system indicate unknown channel and time dependent light contaminations in the beam into gas measurements. Such contaminations may be the main reason for the failure of beam into gas calibration on MSE polarimetry systems.

  10. Carbon based thirty six atom spheres

    DOE Patents [OSTI]

    Piskoti, Charles R.; Zettl, Alex K.; Cohen, Marvin L.; Cote, Michel; Grossman, Jeffrey C.; Louie, Steven G.

    2005-09-06

    A solid phase or form of carbon is based on fullerenes with thirty six carbon atoms (C.sub.36). The C.sub.36 structure with D.sub.6h symmetry is one of the two most energetically favorable, and is conducive to forming a periodic system. The lowest energy crystal is a highly bonded network of hexagonal planes of C.sub.36 subunits with AB stacking. The C.sub.36 solid is not a purely van der Waals solid, but has covalent-like bonding, leading to a solid with enhanced structural rigidity. The solid C.sub.36 material is made by synthesizing and selecting out C.sub.36 fullerenes in relatively large quantities. A C.sub.36 rich fullerene soot is produced in a helium environment arc discharge chamber by operating at an optimum helium pressure (400 torr). The C.sub.36 is separated from the soot by a two step process. The soot is first treated with a first solvent, e.g. toluene, to remove the higher order fullerenes but leave the C.sub.36. The soot is then treated with a second solvent, e.g. pyridine, which is more polarizable than the first solvent used for the larger fullerenes. The second solvent extracts the C.sub.36 from the soot. Thin films and powders can then be produced from the extracted C.sub.36. Other materials are based on C.sub.36 fullerenes, providing for different properties.

  11. Hydrogen-like atoms in relativistic QED

    E-Print Network [OSTI]

    Martin Könenberg; Oliver Matte; Edgardo Stockmeyer

    2012-07-21

    In this review we consider two different models of a hydrogenic atom in a quantized electromagnetic field that treat the electron relativistically. The first one is a no-pair model in the free picture, the second one is given by the semi-relativistic Pauli-Fierz Hamiltonian. For both models we discuss the semi-boundedness of the Hamiltonian, the strict positivity of the ionization energy, and the exponential localization in position space of spectral subspaces corresponding to energies below the ionization threshold. Moreover, we prove the existence of degenerate ground state eigenvalues at the bottom of the spectrum of the Hamiltonian in both models. All these results hold true, for arbitrary values of the fine-structure constant and the ultra-violet cut-off, and for a general class of electrostatic potentials including the Coulomb potential with nuclear charges less than (sometimes including) the critical charges without radiation field. Apart from a detailed discussion of diamagnetic inequalities in QED (which are applied to study the semi-boundedness) all results stem from earlier articles written by the authors. While a few proofs are merely sketched, we streamline earlier proofs or present alternative arguments at many places.

  12. Teleportation of an atomic momentum state 

    E-Print Network [OSTI]

    Qamar, S.; Zhu, S. Y.; Zubairy, M. Suhail.

    2003-01-01

    be extended in terms of the Bell basis uC6&5 1A2 ~ u1p0&u0&16u2p0&u1&1), ~4! uF6&5 1A2 ~ u1p0&u1&16u2p0&u0&1), ~5! and is given by the following: uC&5 12 @ uC1&~cau1&21cbu0&2)1uC2&~cau1&22cbu0&2) 1uF1&~cau0&21cbu1&2)1uF2&~cau0&22cbu1&2)]. ~6! The next...-NOT logic gates, the Bell states defined by Eqs. ~4! and ~5! evolve in the following way: uC6&? 1A2 ~ u0&16u1&1)u1p0&, ~10! and uF6&? 1A2 ~ u1&16u0&1)u2p0&. ~11! Now the Bell states are disentangled and the atoms can be detected in the two directions...

  13. Atomic Classification of 6D SCFTs

    E-Print Network [OSTI]

    Jonathan J. Heckman; David R. Morrison; Tom Rudelius; Cumrun Vafa

    2015-05-04

    We use F-theory to classify possibly all six-dimensional superconformal field theories (SCFTs). This involves a two step process: We first classify all possible tensor branches allowed in F-theory (which correspond to allowed collections of contractible spheres) and then classify all possible configurations of seven-branes wrapped over them. We describe the first step in terms of "atoms" joined into "radicals" and "molecules," using an analogy from chemistry. The second step has an interpretation via quiver-type gauge theories constrained by anomaly cancellation. A very surprising outcome of our analysis is that all of these tensor branches have the structure of a linear chain of intersecting spheres with a small amount of possible decoration at the two ends. The resulting structure of these SCFTs takes the form of a generalized quiver consisting of ADE-type nodes joined by conformal matter. A collection of highly non-trivial examples involving E8 small instantons probing an ADE singularity is shown to have an F-theory realization. This yields a classification of homomorphisms from ADE subgroups of SU(2) into E8 in purely geometric terms, largely matching results obtained in the mathematics literature from an intricate group theory analysis.

  14. The Atomic Vapor Laser Isotope Separation Program

    SciTech Connect (OSTI)

    Not Available

    1992-11-09

    This report provides the finding and recommendations on the audit of the Atomic Vapor Laser Isotope Separation (AVLIS) program. The status of the program was assessed to determine whether the Department was achieving objectives stated in its January 1990 Plan for the Demonstration, Transition and Deployment of AVLIS Technology. Through Fiscal Year 1991, the Department had spent about $1.1 billion to develop AVLIS technology. The January 1990 plan provided for AVLIS to be far enough along by September to enable the Department to make a determination of the technical and economic feasibility of deployment. However, the milestones needed to support that determination were not met. An estimated $550 million would be needed to complete AVLIS engineering development and related testing prior to deployment. The earliest possible deployment date has slipped to beyond the year 2000. It is recommended that the Department reassess the requirement for AVLIS in light of program delays and changes that have taken place in the enrichment market since January 1990. Following the reassessment, a decision should be made to either fully support and promote the actions needed to complete AVLIS development or discontinue support for the program entirely. Management`s position is that the Department will successfully complete the AVLIS technology demonstration and that the program should continue until it can be transferred to a Government corporation. Although the auditors recognize that AVLIS may be transferred, there are enough technical and financial uncertainties that a thorough assessment is warranted.

  15. Dependences of the Casimir-Polder interaction between an atom and a cavity wall on atomic and material properties

    E-Print Network [OSTI]

    V. M. Mostepanenko; J. F. Babb; A. O. Caride; G. L. Klimchitskaya; S. I. Zanette

    2006-01-05

    The Casimir-Polder and van der Waals interactions between an atom and a flat cavity wall are investigated under the influence of real conditions including the dynamic polarizability of the atom, actual conductivity of the wall material and nonzero temperature of the wall. The cases of different atoms near metal and dielectric walls are considered. It is shown that to obtain accurate results for the atom-wall interaction at short separations, one should use the complete tabulated optical data for the complex refractive index of the wall material and the accurate dynamic polarizability of an atom. At relatively large separations in the case of a metal wall, one may use the plasma model dielectric function to describe the dielectric properties of wall material. The obtained results are important for the theoretical interpretation of experiments on quantum reflection and Bose-Einstein condensation.

  16. The Chemi-Ionization Processes in Slow Collisions of Rydberg Atoms with Ground State Atoms: Mechanism and Applications

    E-Print Network [OSTI]

    Mihajlov, A A; Ignjatovic, Lj M; Klyucharev, A N; 10.1007/s10876-011-0438-7

    2012-01-01

    In this article the history and the current state of research of the chemiionization processes in atom-Rydberg atom collisions is presented. The principal assumptions of the model of such processes based on the dipole resonance mechanism, as well as the problems of stochastic ionization in atom-Rydberg atom collisions, are exposed. The properties of the collision kinetics in atom beams of various types used in contemporary experimentations are briefly described. Results of the calculation of the chemi-ionization rate coefficients are given and discussed for the range of the principal quantum number values 5 chemi-ionization processes in astrophysical and laboratory low-temperature plasmas, and the contemporary methods of their investigation are described. Also the directions of further research of chemi-ionization processes are discussed in this article.

  17. Radioactive Elements in the Standard Atomic Weights Table.

    SciTech Connect (OSTI)

    Holden,N.E.

    2007-08-04

    In the 1949 Report of the Atomic Weights Commission, a series of new elements were added to the Atomic Weights Table. Since these elements had been produced in the laboratory and were not discovered in nature, the atomic weight value of these artificial products would depend upon the production method. Since atomic weight is a property of an element as it occurs in nature, it would be incorrect to assign an atomic weight value to that element. As a result of that discussion, the Commission decided to provide only the mass number of the most stable (or longest-lived) known isotope as the number to be associated with these entries in the Atomic Weights Table. As a function of time, the mass number associated with various elements has changed as longer-lived isotopes of a particular element has been found in nature, or as improved half-life values of an element's isotopes might cause a shift in the longest-lived isotope from one mass to another. In the 1957 Report of the Atomic Weights Commission, it was decided to discontinue the listing of the mass number in the Atomic Weights Table on the grounds that the kind of information supplied by the mass number is inconsistent with the primary purpose of the Table, i.e., to provide accurate values of 'these constants' for use in various chemical calculations. In addition to the Table of Atomic Weights, the Commission included an auxiliary Table of Radioactive Elements for the first time, where the entry would be the isotope of that element which was the most stable, i.e., the one with the longest known half-life. In their 1973 Report, the Commission noted that the users of the main Table of Atomic Weights were dissatisfied with the omission of values for some elements in that Table and it was decided to reintroduce the mass number for the radioactive elements into the main Table. In their 1983 Report, the Commission decided that radioactive elements were considered to lack a characteristic terrestrial isotopic composition, from which an atomic weight value could be calculated to five or more figure accuracy, without prior knowledge of the sample involved. These elements were again listed in the Atomic Weights Table with no further information, i.e., with no mass number or atomic weight value.

  18. The Atom and the Apple, Princeton University Press, "The Atom and the Apple is a delightful ramble through many areas of science as well as

    E-Print Network [OSTI]

    Balibar, Sébastien

    The Atom and the Apple, Princeton University Press, Reviews: "The Atom and the Apple and stimulating, and it frequently challenges political correctness. . . . The Atom and the Apple provides." --Publishers Weekly (Starred Review) #12;Science Teacher Association recommends : The Atom and the Apple

  19. Thermalization of fast cesium 5D3/2 atoms in collisions with ground-state cesium atoms A. P. Hickman,1

    E-Print Network [OSTI]

    Huennekens, John

    Thermalization of fast cesium 5D3/2 atoms in collisions with ground-state cesium atoms A. Marks,1 A atoms. Photodissociation of Cs2 molecules into ground- and excited-state cesium atoms has been observed + is the ground state of the cesium molecule and Cs2 * represents an excited state or states that can be reached

  20. Atomic layer structure of manganese atoms on wurtzite gallium nitride Abhijit Chinchore, Kangkang Wang, Wenzhi Lin, Jeongihm Pak, and Arthur R. Smitha

    E-Print Network [OSTI]

    This surface forms the starting point for Mn deposition. The Mn atomic layer was prepared by depositing MnAtomic layer structure of manganese atoms on wurtzite gallium nitride ,,0001¯... Abhijit Chinchore stage of growth. Certainly, a thin well-ordered layer of Mn atoms on GaN could be of great interest

  1. Laser Probing of Neutron-Rich Nuclei in Light Atoms

    E-Print Network [OSTI]

    Z. -T. Lu; P. Mueller; G. W. F. Drake; W. Noertershaeuser; Steven C. Pieper; Z. -C. Yan

    2013-07-10

    The neutron-rich 6He and 8He isotopes exhibit an exotic nuclear structure that consists of a tightly bound 4He-like core with additional neutrons orbiting at a relatively large distance, forming a halo. Recent experimental efforts have succeeded in laser trapping and cooling these short-lived, rare helium atoms, and have measured the atomic isotope shifts along the 4He-6He-8He chain by performing laser spectroscopy on individual trapped atoms. Meanwhile, the few-electron atomic structure theory, including relativistic and QED corrections, has reached a comparable degree of accuracy in the calculation of the isotope shifts. In parallel efforts, also by measuring atomic isotope shifts, the nuclear charge radii of lithium and beryllium isotopes have been studied. The techniques employed were resonance ionization spectroscopy on neutral, thermal lithium atoms and collinear laser spectroscopy on beryllium ions. Combining advances in both atomic theory and laser spectroscopy, the charge radii of these light halo nuclei have now been determined for the first time independent of nuclear structure models. The results are compared with the values predicted by a number of nuclear structure calculations, and are used to guide our understanding of the nuclear forces in the extremely neutron-rich environment.

  2. Generation and Detection of Atomic Spin Entanglement in Optical Lattices

    E-Print Network [OSTI]

    Han-Ning Dai; Bing Yang; Andreas Reingruber; Xiao-Fan Xu; Xiao Jiang; Yu-Ao Chen; Zhen-Sheng Yuan; Jian-Wei Pan

    2015-07-21

    Ultracold atoms in optical lattices offer a great promise to generate entangled states for scalable quantum information processing owing to the inherited long coherence time and controllability over a large number of particles. We report on the generation, manipulation and detection of atomic spin entanglement in an optical superlattice. Employing a spin-dependent superlattice, atomic spins in the left or right sites can be individually addressed and coherently manipulated by microwave pulses with near unitary fidelities. Spin entanglement of the two atoms in the double wells of the superlattice is generated via dynamical evolution governed by spin superexchange. By observing collisional atom loss with in-situ absorption imaging we measure spin correlations of atoms inside the double wells and obtain the lower boundary of entanglement fidelity as $0.79\\pm0.06$, and the violation of a Bell's inequality with $S=2.21\\pm 0.08$. The above results represent an essential step towards scalable quantum computation with ultracold atoms in optical lattices.

  3. Atoms.inp Archive: Crystallographic Data from GSECARS

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Newville, Matthew

    The Atoms.inp Archive is a collection of crystallographic data for use in XAFS analysis. The crystallographic data is stored as atoms.inp files, which contain all the information necessary to describe the crystal, and can be used by the program ATOMS to generate feff.inp files. These files can then be used by the FEFF program [See http://leonardo.phys.washington.edu/feff/] to calculate a theoretical XAFS spectrum for the crystal. This archive exists because it can take a considerable amount of time to locate a suitable reference for a model structure to use for making theoretical XAFS standards. Even then, references sometimes give non-standard or incomplete crystallographic notation that ATOMS has difficulty interpreting. All of this means that getting a reliable atoms.inp file can take quite a bit of effort. It is hoped that this collection of well-documented and well-tested atoms.inp files will eliminate much of the work in creating theoretical XAFS standards from FEFF. [Taken from http://cars9.uchicago.edu/~newville/adb/]. The collection currently has more than 200 crystal structures, 2748 data files, and it continues to expand. The collection is related to the UWXAFS Project [http://depts.washington.edu/uwxafs/] and to the work of the Consortium for Advanced Radiation Sources (CARS). After searching the Archive, a user may also choose to run the web version of ATOMS software.

  4. Cavity-Modified Collective Rayleigh Scattering of Two Atoms

    E-Print Network [OSTI]

    René Reimann; Wolfgang Alt; Tobias Kampschulte; Tobias Macha; Lothar Ratschbacher; Natalie Thau; Seokchan Yoon; Dieter Meschede

    2015-01-15

    We report on the observation of cooperative radiation of exactly two neutral atoms strongly coupled to the single mode field of an optical cavity, which is close to the lossless-cavity limit. Monitoring the cavity output power, we observe constructive and destructive interference of collective Rayleigh scattering for certain relative distances between the two atoms. Because of cavity backaction onto the atoms, the cavity output power for the constructive two-atom case ($N=2$) is almost equal to the single-emitter case ($N=1$), which is in contrast to free-space where one would expect an $N^2$ scaling of the power. These effects are quantitatively explained by a classical model as well as by a quantum mechanical model based on Dicke states. We extract information on the relative phases of the light fields at the atom positions and employ advanced cooling to reduce the jump rate between the constructive and destructive atom configurations. Thereby we improve the control over the system to a level where the implementation of two-atom entanglement schemes involving optical cavities becomes realistic.

  5. Ultracold-atom collisions in atomic waveguides : A two-channel analysis

    E-Print Network [OSTI]

    Tom Kristensen; Ludovic Pricoupenko

    2015-04-16

    Low dimensional behavior of two ultra-cold atoms trapped in two-and one-dimensional waveguides is investigated in the vicinity of a magnetic Feshbach resonance. A quantitative two-channel model for the Feshbach mechanism is used allowing an exhaustive analysis of low-dimensional resonant scattering behavior and of the confinement induced bound states. The role of the different parameters of the resonance is depicted in this context. Results are compared with the ones of the zero-range approach. The relevance of the effective range approximation in low dimensions is studied. Examples of known resonances are used to illustrate the bound state properties.

  6. Computing Energy Levels of the Confined Hydrogen Atom Literature Study in Preparation for the Master Thesis

    E-Print Network [OSTI]

    Vuik, Kees

    Computing Energy Levels of the Confined Hydrogen Atom Literature Study in Preparation.2 Motivation: The Divergence of the Partition Function for the Unconfined Hydrogen Atom . 8 1.3 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.8 Solution of the Unconfined Hydrogen Atom

  7. Atomic scale studies of interface formation between oxides and III-V semiconductor surfaces

    E-Print Network [OSTI]

    Clemens, Jonathon Boyd

    2010-01-01

    precursors for atomic layer deposition on InAs(0 0 1)-(4 ×surface during atomic layer deposition, Physical Reviewprecursors for atomic layer deposition on InAs(0 0 1)-(4 ×

  8. Subwavelength atom localization via amplitude and phase control of the absorption spectrum. II 

    E-Print Network [OSTI]

    Kapale, KT; Zubairy, M. Suhail.

    2006-01-01

    Interaction of the internal states of an atom with spatially dependent standing-wave cavity field can impart position information of the atom passing through it leading to subwavelength atom localization. We recently demonstrated a different regime...

  9. Light pulse atom interferometry at short interrogation times for inertial navigation

    E-Print Network [OSTI]

    Butts, David LaGrange

    2012-01-01

    Light pulse atom interferometry with cold atoms is a promising inertial sensing technology for high accuracy navigation. At present, laboratory atom interferometers match or surpass state of the art mechanical and optical ...

  10. USE OF ATOMIC LAYER DEPOSITION OF FUNCTIONALIZATION OF NANOPOROUS BIOMATERIALS

    SciTech Connect (OSTI)

    Brigmon, R.; Narayan, R.; Adiga, S.; Pellin, M.; Curtiss, L.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N.; Elam, J.

    2010-02-08

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials.

  11. Boron nitride nanosheets as oxygen-atom corrosion protective coatings

    SciTech Connect (OSTI)

    Yi, Min; Shen, Zhigang; Zhao, Xiaohu; Liang, Shuaishuai; Liu, Lei

    2014-04-07

    The research of two-dimensional nanomaterials for anticorrosion applications is just recently burgeoning. Herein, we demonstrate the boron nitride nanosheets (BNNSs) coatings for protecting polymer from oxygen-atom corrosion. High-quality BNNSs, which are produced by an effective fluid dynamics method with multiple exfoliation mechanisms, can be assembled into coatings with controlled thickness by vacuum filtration. After exposed in atom oxygen, the naked polymer is severely corroded with remarkable mass loss, while the BNNSs-coated polymer remains intact. Barrier and bonding effects of the BNNSs are responsible for the coating's protective performance. These preliminary yet reproducible results pave a way for resisting oxygen-atom corrosion.

  12. 1979 bibliography of atomic and molecular processes. [Bibliography

    SciTech Connect (OSTI)

    1980-08-01

    This annotated bibliography lists 2146 works on atomic and molecular processes reported in publications dated 1979. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors.

  13. 1978 bibliography of atomic and molecular processes. [Bibliography

    SciTech Connect (OSTI)

    Not Available

    1980-03-01

    This annotated bibliography lists 2557 works on atomic and molecular processes reported in publications dated 1978. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors.

  14. Body-assisted van der Waals interaction between excited atoms

    E-Print Network [OSTI]

    Hassan Safari; Mohammad Reza Karimpour

    2014-12-12

    We present a formula for the body-assisted van der Waals interaction potential between two atoms, one or both being prepared in an excited energy eigenstate. The presence of arbitrary arrangement for material environment is taken into account via the Green function. The resulting formula supports one of two conflicting findings recorded. The consistency of our formula is investigated by applying it for the case of two atoms in free space and comparing the resulting expression with the one found from the limiting Casimir-Polder potential between an excited atom and a small dielectric sphere.

  15. Electromagnetically induced absorption in metastable 83Kr atoms

    E-Print Network [OSTI]

    Kale, Y B; Mishra, S R; Singh, S; Rawat, H S

    2015-01-01

    We report electromagnetically induced absorption (EIA) resonances of sub-natural linewidth (FWHM) in metastable noble gas 83Kr* atoms using degenerate two level schemes (DTLSs). This is the first observation of EIA effect in a metastable noble gas atoms. Using these spectrally narrow EIA signals obtained corresponding to the closed hyperfine transition from 4p55s[3/2]2 to 4p55p[5/2]3 hyperfine manifolds of 83Kr* atoms, we have measured the Lande's g-factor (gF) for the lower level (F = 13/2) of the closed transition accurately with small applied magnetic fields of few Gauss.

  16. Collective cavity quantum electrodynamics with multiple atomic levels

    E-Print Network [OSTI]

    K. J. Arnold; M. P. Baden; M. D. Barrett

    2011-09-21

    We study the transmission spectra of ultracold rubidium atoms coupled to a high-finesse optical cavity. Under weak probing with pi-polarized light, the linear response of the system is that of a collective spin with multiple levels coupled to a single mode of the cavity. By varying the atom number, we change the collective coupling of the system. We observe the change in transmission spectra when going from a regime where the collective coupling is much smaller than the separation of the atomic levels to a regime where both are of comparable size. The observations are in good agreement with a reduced model we developed for our system.

  17. Modeling and optimizing of the random atomic spin gyroscope drift based on the atomic spin gyroscope

    SciTech Connect (OSTI)

    Quan, Wei; Lv, Lin Liu, Baiqi

    2014-11-15

    In order to improve the atom spin gyroscope's operational accuracy and compensate the random error caused by the nonlinear and weak-stability characteristic of the random atomic spin gyroscope (ASG) drift, the hybrid random drift error model based on autoregressive (AR) and genetic programming (GP) + genetic algorithm (GA) technique is established. The time series of random ASG drift is taken as the study object. The time series of random ASG drift is acquired by analyzing and preprocessing the measured data of ASG. The linear section model is established based on AR technique. After that, the nonlinear section model is built based on GP technique and GA is used to optimize the coefficients of the mathematic expression acquired by GP in order to obtain a more accurate model. The simulation result indicates that this hybrid model can effectively reflect the characteristics of the ASG's random drift. The square error of the ASG's random drift is reduced by 92.40%. Comparing with the AR technique and the GP + GA technique, the random drift is reduced by 9.34% and 5.06%, respectively. The hybrid modeling method can effectively compensate the ASG's random drift and improve the stability of the system.

  18. Positron impact excitations of hydrogen atom embedded in weakly coupled plasmas: Formation of Rydberg atoms

    SciTech Connect (OSTI)

    Rej, Pramit; Ghoshal, Arijit

    2014-09-15

    Formation of Rydberg atoms due to 1s?nlm excitations of hydrogen, for arbitrary n, l, m, by positron impact in weakly coupled plasma has been investigated using a distorted-wave theory in the momentum space. The interactions among the charged particles in the plasma have been represented by Debye-Huckel potentials. Making use of a simple variationally determined wave function for the hydrogen atom, it has been possible to obtain the distorted-wave scattering amplitude in a closed analytical form. A detailed study has been made on the effects of plasma screening on the differential and total cross sections in the energy range 20–300?eV of incident positron. For the unscreened case, our results agree nicely with some of the most accurate results available in the literature. To the best of our knowledge, such a study on the differential and total cross sections for 1s?nlm inelastic positron-hydrogen collisions for arbitrary n, l, m in weakly coupled plasmas is the first reported in the literature.

  19. Creation and recovery of a W(111) single atom gas field ion source

    SciTech Connect (OSTI)

    Pitters, Jason L. [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9 (Canada); Urban, Radovan [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2G7 (Canada); Wolkow, Robert A. [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9 (Canada); Department of Physics, University of Alberta, Edmonton, Alberta T6G 2G7 (Canada)

    2012-04-21

    Tungsten single atom tips have been prepared from a single crystal W(111) oriented wire using the chemical assisted field evaporation and etching method. Etching to a single atom tip occurs through a symmetric structure and leads to a predictable last atom unlike etching with polycrystalline tips. The single atom tip formation procedure is shown in an atom by atom removal process. Rebuilds of single atom tips occur on the same crystalline axis as the original tip such that ion emission emanates along a fixed direction for all tip rebuilds. This preparation method could be utilized and developed to prepare single atom tips for ion source development.

  20. Operation Greenhouse. Scientific Director's report of atomic-weapon tests at Eniwetok, 1951. Annex 1. 9. Air-drop instrumentation. Part 2. Teller-alpha

    SciTech Connect (OSTI)

    Grier, H.E.

    1985-09-01

    It was the purpose of the Teller-Alpha experiment to measure the coefficient alpha by means of detectors placed a long distance from the bomb. The detectors are photoelectric devices that respond to visible light produced in the air surrounding the bomb by the absorbed gamma rays. A measurement of this sort was proposed by Edward Teller prior to the Sandstone Operation. The main components of the Teller-Alpha equipment were the photohead, the 200-Mc timing oscillator, and the high-speed-sensitivity recoding oscilloscope. A complete discussion of the experiment is provided.

  1. Atomic Structures of Riboflavin (Vitamin B2) and its Reduced Form with Bond Lengths Based on Additivity of Atomic Radii

    E-Print Network [OSTI]

    Raji Heyrovska

    2008-06-21

    It has been shown recently that chemical bond lengths, in general, like those in the components of nucleic acids, caffeine related compounds, all essential amino acids, methane, benzene, graphene and fullerene are sums of the radii of adjacent atoms constituting the bond. Earlier, the crystal ionic distances in all alkali halides and lengths of many partially ionic bonds were also accounted for by the additivity of ionic as well as covalent radii. Here, the atomic structures of riboflavin and its reduced form are presented based on the additivity of the same set of atomic radii as for other biological molecules.

  2. Atomic Structures of Riboflavin (Vitamin B2) and its Reduced Form with Bond Lengths Based on Additivity of Atomic Radii

    E-Print Network [OSTI]

    Heyrovska, Raji

    2008-01-01

    It has been shown recently that chemical bond lengths, in general, like those in the components of nucleic acids, caffeine related compounds, all essential amino acids, methane, benzene, graphene and fullerene are sums of the radii of adjacent atoms constituting the bond. Earlier, the crystal ionic distances in all alkali halides and lengths of many partially ionic bonds were also accounted for by the additivity of ionic as well as covalent radii. Here, the atomic structures of riboflavin and its reduced form are presented based on the additivity of the same set of atomic radii as for other biological molecules.

  3. oo Ris Report No. 308 J* Danish Atomic Energy Commission

    E-Print Network [OSTI]

    on exchange from: Library, Danish Atomic Energy Commission, Risø, DK-4000 Roskilde, Denmark #12;if ay 1974 together with similar results obtained from the liquids A, He, and Rb sup- port the classification

  4. RisB Report No. 248 Danish Atomic Energy Commission

    E-Print Network [OSTI]

    . Gjellerup, 87, SSIvgade, DK-1307 Copenhagen K, Denmark Awrilable on exchange from: Library, Danish Atomic of the Boundary Layer Analysis in 2. 2.1 28 2.4. 2. Classification of Vortex Tubes According to Flow Type 29 3

  5. PPPL and General Atomics scientists make breakthrough in understanding...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plus One Share on Facebook Carlos Paz-Soldan, left, and Raffi Nazikian at the DIII-D tokamak. (Photo by Lisa PetrilloGeneral Atomics) Carlos Paz-Soldan, left, and Raffi Nazikian...

  6. Coherent backscattering of light by resonant atomic dipole transitions

    E-Print Network [OSTI]

    Jonckheere, Thibaut

    systems to insulating systems. In both cases the degree of dimension of the system has a strong influence, electronic, electromagnetic, seismic, and neutral-atom matter waves.5 However, differences appear when one

  7. High-speed quantum memory with thermal motion of atoms

    E-Print Network [OSTI]

    K. Tikhonov; T. Golubeva; Yu. Golubev

    2015-02-26

    We discuss the influence of atomic thermal motion on the efficiency of multimode quantum memory in two configurations: over the free expand of atoms cooled beforehand in a magneto-optical trap, and over complete mixing of atoms in a closed cell at room temperature. We consider the high-speed quantum memory, and assume that writing and retrieval are short enough, and the displacements of atoms during these stages are negligibly small. At the same time we take in account thermal motion during the storage time, which, as well known, must be much longer than durations of all the other memory processes for successful application of memory cell in communication and computation. We will analyze this influence in terms of eigenmodes of the full memory cycle and show that distortion of the eigenmodes, caused by thermal motion, leads to the efficiency reduction. We will demonstrate, that in the multimode memory this interconnection has complicated character.

  8. Realization of Bose-Einstein condensation with Lithium-7 atoms

    E-Print Network [OSTI]

    Yu, Yichao

    2014-01-01

    This thesis presents our work on developing and improving the techniques of trapping and cooling an ultra-cold cloud of Lithium-7 atoms and the realization of the Bose- Einstein condensate as a first step to study quantum ...

  9. Towards a quantum gas microscope for fermionic atoms

    E-Print Network [OSTI]

    Ramasesh, Vinay (Vinay V.)

    2012-01-01

    This thesis reports the achievement of a two-species apparatus for use in an upcoming experiment with fermionic ultracold atomic gases. First, we describe the construction of a laser system capable of cooling and trapping ...

  10. Lensless Imaging of Atomic Surface Structures via Ptychography...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Atomic Surface Structures via Ptychography Monday, August 12, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Chenhui Zhu Materials Science Division,...

  11. Entangling Atomic Spins with a Strong Rydberg-Dressed Interaction

    E-Print Network [OSTI]

    Jau, Y -Y; Keating, Tyler; Deutsch, I H; Biedermann, G W

    2015-01-01

    Controlling quantum entanglement between parts of a many-body system is the key to unlocking the power of quantum information processing for applications such as quantum computation, highprecision sensing, and simulation of many-body physics. Spin degrees of freedom of ultracold neutral atoms in their ground electronic state provide a natural platform given their long coherence times and our ability to control them with magneto-optical fields, but creating strong coherent coupling between spins has been challenging. We demonstrate a Rydberg-dressed ground-state blockade that provides a strong tunable interaction energy (~1 MHz in units of Planck's constant) between spins of individually trapped cesium atoms. With this interaction we directly produce Bell-state entanglement between two atoms with a fidelity >= 81(2)%, excluding atom loss events, and >= 60(3)% when loss is included.

  12. Entangling Atomic Spins with a Strong Rydberg-Dressed Interaction

    E-Print Network [OSTI]

    Y. -Y. Jau; A. M. Hankin; Tyler Keating; I. H. Deutsch; G. W. Biedermann

    2015-01-16

    Controlling quantum entanglement between parts of a many-body system is the key to unlocking the power of quantum information processing for applications such as quantum computation, highprecision sensing, and simulation of many-body physics. Spin degrees of freedom of ultracold neutral atoms in their ground electronic state provide a natural platform given their long coherence times and our ability to control them with magneto-optical fields, but creating strong coherent coupling between spins has been challenging. We demonstrate a Rydberg-dressed ground-state blockade that provides a strong tunable interaction energy (~1 MHz in units of Planck's constant) between spins of individually trapped cesium atoms. With this interaction we directly produce Bell-state entanglement between two atoms with a fidelity >= 81(2)%, excluding atom loss events, and >= 60(3)% when loss is included.

  13. Intrinsic Electric Dipole Moments of Paramagnetic Atoms: Rubidium and Cesium

    E-Print Network [OSTI]

    H. S. Nataraj; B. K. Sahoo; B. P. Das; D. Mukherjee

    2008-04-07

    The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar--pseudo-scalar (S-PS) electron-nucleus interactions. The electron EDM and the S-PS EDM contribution to atomic EDM scales as Z^3. Thus, the heavy paramagnetic atomic systems will exhibit large enhancement factors. However, the nature of the coupling is so small that it becomes an interest of high precision atomic experiments. In this work, we have computed the EDM enhancement factors of the ground states of Rb and Cs due to both the electron EDM and the S-PS EDM using the relativistic coupled-cluster (RCC) theory. The importance of obtaining the precise enhancement factors and the experimental results in deducing a reliable limit on the electron EDM is emphasized.

  14. Atomic-Scale Observations Aid Mesoscale Catalyst Design | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Characterization Atomic-Scale Observations Aid Mesoscale Catalyst Design April 08, 2015 Fig.1. Z-contrast STEM image shows the Mo-V-Te-Ta oxide catalyst. (a) "M1-like"...

  15. Diffuse Atomic and Molecular Theodore P. Snow1

    E-Print Network [OSTI]

    McCall, Benjamin J.

    Diffuse Atomic and Molecular Clouds Theodore P. Snow1 and Benjamin J. McCall2 1 Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, Colorado 80309; email: theodore.snow

  16. Evolution of quantum correlations in a two-atom system

    E-Print Network [OSTI]

    Ryszard Tana?

    2012-10-22

    We discuss the evolution of quantum correlations for a system of two two-level atoms interacting with a common reservoir. The Markovian master equation is used to describe the evolution of various measures of quantum correlations.

  17. Nanoscale structure and transport : from atoms to devices

    E-Print Network [OSTI]

    Evans, Matthew Hiram

    2005-01-01

    Nanoscale structures present both unique physics and unique theoretical challenges. Atomic-scale simulations can find novel nanostructures with desirable properties, but the search can be difficult if the wide range of ...

  18. Modeling and control of undesirable dynamics in atomic force microscopes

    E-Print Network [OSTI]

    El Rifai, Osamah M

    2002-01-01

    The phenomenal resolution and versatility of the atomic force microscope (AFM), has made it a widely-used instrument in nanotechnology. In this thesis, a detailed model of AFM dynamics has been developed. It includes a new ...

  19. Atom-based coherent quantum-noise cancellation in optomechanics

    E-Print Network [OSTI]

    F. Bariani; H. Seok; S. Singh; M. Vengalattore; P. Meystre

    2015-08-24

    We analyze a quantum force sensor that uses coherent quantum noise cancellation (CQNC) to beat the Standard Quantum Limit (SQL). This sensor, which allows for the continuous, broad-band detection of feeble forces, is a hybrid dual-cavity system comprised of a mesoscopic mechanical resonator optically coupled to an ensemble of ultracold atoms. In contrast to the stringent constraints on dissipation typically associated with purely optical schemes of CQNC, the dissipation rate of the mechanical resonator only needs to be matched to the decoherence rate of the atomic ensemble -- a condition that is experimentally achievable even for the technologically relevant regime of low frequency mechanical resonators with large quality factors. The modular nature of the system further allows the atomic ensemble to aid in the cooling of the mechanical resonator, thereby combining atom-mediated state preparation with sensing deep in the quantum regime.

  20. Atom-based coherent quantum-noise cancellation in optomechanics

    E-Print Network [OSTI]

    Bariani, F; Singh, S; Vengalattore, M; Meystre, P

    2015-01-01

    We analyze a quantum force sensor that uses coherent quantum noise cancellation (CQNC) to beat the Standard Quantum Limit (SQL). This sensor, which allows for the continuous, broad-band detection of feeble forces, is a hybrid dual-cavity system comprised of a mesoscopic mechanical resonator optically coupled to an ensemble of ultracold atoms. In contrast to the stringent constraints on dissipation typically associated with purely optical schemes of CQNC, the dissipation rate of the mechanical resonator only needs to be matched to the decoherence rate of the atomic ensemble -- a condition that is experimentally achievable even for the technologically relevant regime of low frequency mechanical resonators with large quality factors. The modular nature of the system further allows the atomic ensemble to aid in the cooling of the mechanical resonator, thereby combining atom-mediated state preparation with sensing deep in the quantum regime.

  1. Adsorption configurations of two nitrogen atoms on graphene

    SciTech Connect (OSTI)

    Rani, Babita, E-mail: babitabaghla15@gmail.com [Department of Physics, Punjabi University, Patiala- 147 002 and Department of Physics, Panjab University, Chandigarh- 160 014 (India); Jindal, V. K.; Dharamvir, Keya [Department of Physics, Panjab University, Chandigarh- 160 014 (India)

    2014-04-24

    We present calculations for different possible configurations of two nitrogen adatoms on graphene using the code VASP, based on Density Functional Theory (DFT). Two N atoms adsorbed on the graphene sheet can share a bond in two ways. They take positions either just above two adjacent carbon atoms or they form a bridge across opposite bonds of a hexagon in the graphene sheet. Both these configurations result into structural distortion of the sheet. Another stable configuration involving two N atoms consists of an N{sub 2} molecule which is physisorbed at a distance 3.69 Å on the graphene sheet. Two N atoms can also be adsorbed on alternate bridge sites of neighbouring hexagons of graphene. This configuration again leads to distortion of the sheet in perpendicular direction.

  2. Workshop on Atomic Force Microscopy, Nanometrology and More ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Swarna Addepalli 2012.12.17 One of my colleagues from our global research center in India, K.G. V. Siva Kumar (Sivakumar), recently attended a workshop on Atomic Force...

  3. 2nd conference on Intense field- Short Wavelength Atomic and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nd conference on Intense field- Short Wavelength Atomic and Molecular Processes - ISWAMP2 http:iswamp2.jlu.edu.cn July 20-22, 2013; Xi'an, China...

  4. Attosecond electron interferometry in atoms and molecules | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soifer, SIMES Program Description The interaction between an intense ultrafast laser pulse with a gas of atoms and molecules can lead to the emission of attosecond-duration XUV...

  5. One Nanocrystal, Many Faces: Connecting the Atomic Surface Structures...

    Office of Science (SC) Website

    Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information May 2015 One Nanocrystal, Many Faces: Connecting the Atomic Surface...

  6. Numerical simulation of a single wafer atomic layer deposition process

    E-Print Network [OSTI]

    Jones, A. Andrew D., III (Akhenaton-Andrew Dhafir)

    2010-01-01

    Atomic Layer Deposition (ALD) is a process used to deposit nanometer scale films for use in nano electronics. A typical experimental reactor consist of a warm wall horizontal flow tube, a single disc mounted halfway down ...

  7. Optical system for high-speed Atomic Force Microscope

    E-Print Network [OSTI]

    Lim, Kwang Yong, S.M. Massachusetts Institute of Technology

    2010-01-01

    This thesis presents the design and development of an optical cantilever deflection sensor for a high speed Atomic Force Microscope (AFM). This optical sensing system is able to track a small cantilever while the X-Y scanner ...

  8. Atomic Calligraphy: The Direct Writing of Nanoscale Structures using MEMS

    E-Print Network [OSTI]

    Matthias Imboden; Han Han; Jackson Chang; Flavio Pardo; Cristian A. Bolle; Evan Lowell; David J. Bishop

    2013-04-04

    We present a micro-electromechanical system (MEMS) based method for the resist free patterning of nano-structures. Using a focused ion beam (FIB) to customize larger MEMS machines, we fabricate apertures as small as 50 nm on plates that can be moved with nanometer precision over an area greater than 20x20 {\\mu}m^2. Depositing thermally evaporated gold atoms though the apertures while moving the plate results in the deposition of nanoscale metal patterns. Adding a shutter only microns above the aperture, enables high speed control of not only where but also when atoms are deposited. Using a shutter, different sized apertures can be selectively opened and closed for nano-structure fabrication with features ranging from nano- to micrometers in scale. The ability to evaporate materials with high precision, and thereby fabricate circuits and structures in situ, enables new kinds of experiments based on the interactions of a small number of atoms and eventually even single atoms.

  9. International Atomic Energy Agency (IAEA) | Open Energy Information

    Open Energy Info (EERE)

    Programs 4 References About "The IAEA is the worlds center of cooperation in the nuclear field. It was set up as the worlds "Atoms for Peace" organization in 1957 within...

  10. Tomographic study of atomic-scale redistribution of platinum...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tomographic study of atomic-scale redistribution of platinum during the silicidation of Ni0.95Pt0.05Si(100) thin films Home Author: P. Adusumilli, L. J. Lauhon, D. N. Seidman, C....

  11. A Study on the Coherent Atomic Effects and Their Applications 

    E-Print Network [OSTI]

    Sun, Qingqing

    2010-07-14

    Coherent atomic states prepared by laser field can have quantum interference between the different transition amplitudes. Therefore, the medium susceptibility and optical response can be engineered, leading to many interesting ...

  12. Radio-frequency spectroscopy of ultracold atomic Fermi gases

    E-Print Network [OSTI]

    Schirotzek, Andre

    2010-01-01

    This thesis presents experiments investigating the phase diagram of ultracold atomic Fermi gases using radio-frequency spectroscopy. The tunability of many experimental parameters including the temperature, the interparticle ...

  13. Atomic Scale Details of Defect-Boundary Interactions 

    E-Print Network [OSTI]

    Chen, Di

    2014-12-18

    The study is aimed to understand atomic scale details of defect-boundary interactions, which are critical to develop radiation tolerant fuel cladding materials for harsher neutron environments. By means of molecular dynamics simulations, we...

  14. Long-distance quantum communication with neutral atoms

    E-Print Network [OSTI]

    Razavi, Mohsen

    2006-01-01

    In this thesis, we develop quantitative performance analyses for a variety of quantum communication/computation systems that have the common feature of employing neutral atoms for storage/processing and photons for qubit ...

  15. Loschmidt cooling by time reversal of atomic matter waves

    E-Print Network [OSTI]

    J. Martin; B. Georgeot; D. L. Shepelyansky

    2007-11-28

    We propose an experimental scheme which allows to realize approximate time reversal of matter waves for ultracold atoms in the regime of quantum chaos. We show that a significant fraction of the atoms return back to their original state, being at the same time cooled down by several orders of magnitude. We give a theoretical description of this effect supported by extensive numerical simulations. The proposed scheme can be implemented with existing experimental setups.

  16. Cooling by Time Reversal of Atomic Matter Waves

    SciTech Connect (OSTI)

    Martin, J.; Georgeot, B.; Shepelyansky, D. L. [Laboratoire de Physique Theorique, Universite de Toulouse III, CNRS, 31062 Toulouse (France)

    2008-02-01

    We propose an experimental scheme which allows us to realized approximate time reversal of matter waves for ultracold atoms in the regime of quantum chaos. We show that a significant fraction of the atoms return back to their original state, being at the same time cooled down by several orders of magnitude. We give a theoretical description of this effect supported by extensive numerical simulations. The proposed scheme can be implemented with existing experimental setups.

  17. Laser-induced nonresonant nuclear excitation in muonic atoms

    E-Print Network [OSTI]

    A. Shahbaz; C. Müller; T. J. Buervenich; C. H. Keitel

    2008-12-13

    Coherent nuclear excitation in strongly laser-driven muonic atoms is calculated. The nuclear transition is caused by the time-dependent Coulomb field of the oscillating charge density of the bound muon. A closed-form analytical expression for electric multipole transitions is derived and applied to various isotopes; the excitation probabilities are in general very small. We compare the process with other nuclear excitation mechanisms through coupling with atomic shells and discuss the prospects to observe it in experiment.

  18. Rydberg Atoms Ionisation by Microwave Field and Electromagnetic Pulses

    E-Print Network [OSTI]

    B. Kaulakys; G. Vilutis

    1995-04-10

    A simple theory of the Rydberg atoms ionisation by electromagnetic pulses and microwave field is presented. The analysis is based on the scale transformation which reduces the number of parameters and reveals the functional dependencies of the processes. It is shown that the observed ionisation of Rydberg atoms by subpicosecond electromagnetic pulses scale classically. The threshold electric field required to ionise a Rydberg state may be simply evaluated in the photonic basis approach for the quantum dynamics or from the multiphoton ionisation theory.

  19. Radio-frequency dressed state potentials for neutral atoms

    E-Print Network [OSTI]

    S. Hofferberth; I. Lesanovsky; B. Fischer; J. Verdu; J. Schmiedmayer

    2006-08-29

    Potentials for atoms can be created by external fields acting on properties like magnetic moment, charge, polarizability, or by oscillating fields which couple internal states. The most prominent realization of the latter is the optical dipole potential formed by coupling ground and electronically excited states of an atom with light. Here we present an experimental investigation of the remarkable properties of potentials derived from radio-frequency (RF) coupling between electronic ground states. The coupling is magnetic and the vector character allows to design state dependent potential landscapes. On atom chips this enables robust coherent atom manipulation on much smaller spatial scales than possible with static fields alone. We find no additional heating or collisional loss up to densities approaching $10^{15}$ atoms / cm$^3$ compared to static magnetic traps. We demonstrate the creation of Bose-Einstein condensates in RF potentials and investigate the difference in the interference between two independently created and two coherently split condensates in identical traps. All together this makes RF dressing a powerful new tool for micro manipulation of atomic and molecular systems.

  20. A high-flux BEC source for mobile atom interferometers

    E-Print Network [OSTI]

    Jan Rudolph; Waldemar Herr; Christoph Grzeschik; Tammo Sternke; Alexander Grote; Manuel Popp; Dennis Becker; Hauke Müntinga; Holger Ahlers; Achim Peters; Claus Lämmerzahl; Klaus Sengstock; Naceur Gaaloul; Wolfgang Ertmer; Ernst M. Rasel

    2015-06-16

    Quantum sensors based on coherent matter-waves are precise measurement devices whose ultimate accuracy is achieved with Bose-Einstein condensates (BEC) in extended free fall. This is ideally realized in microgravity environments such as drop towers, ballistic rockets and space platforms. However, the transition from lab-based BEC machines to robust and mobile sources with comparable performance is a challenging endeavor. Here we report on the realization of a miniaturized setup, generating a flux of $4 \\times 10^5$ quantum degenerate $^{87}$Rb atoms every 1.6$\\,$s. Ensembles of $1 \\times 10^5$ atoms can be produced at a 1$\\,$Hz rate. This is achieved by loading a cold atomic beam directly into a multi-layer atom chip that is designed for efficient transfer from laser-cooled to magnetically trapped clouds. The attained flux of degenerate atoms is on par with current lab-based BEC experiments while offering significantly higher repetition rates. Additionally, the flux is approaching those of current interferometers employing Raman-type velocity selection of laser-cooled atoms. The compact and robust design allows for mobile operation in a variety of demanding environments and paves the way for transportable high-precision quantum sensors.