Powered by Deep Web Technologies
Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Radiological-dose assessments of atolls in the northern Marshall Islands  

Science Conference Proceedings (OSTI)

The Marshall Islands in the Equatorial Pacific, specifically Enewetak and Bikini Atolls, were the site of US nuclear testing from 1946 through 1958. In 1978, the Northern Marshall Islands Radiological Survey was conducted to evaluate the radiological conditions of two islands and ten atolls downwind of the proving grounds. The survey included aerial external gamma measurements and collection of soil, terrestrial, and marine samples for radionuclide analysis to determine the radiological dose from all exposure pathways. The methods and models used to estimate doses to a population in an environment where natural processes have acted on the source-term radionuclides for nearly 30 y, data bases developed for the models, and results of the radiological dose analyses are described.

Robison, W.L.

1983-04-01T23:59:59.000Z

2

Individual Radiation Protection Monitoring in the Marshall Islands: Enewetak Atoll (2002-2004)  

SciTech Connect

The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection monitoring programs for resettled and resettling populations in the northern Marshall Islands. Using the pooled resources of the U.S. DOE and local atoll governments, individual radiological surveillance programs have been developed in whole body counting and plutonium urinalysis in order to accurately assess radiation doses resulting from the ingestion and uptake of fallout radionuclides contained in locally grown foods. Permanent whole body counting facilities have been established at three separate locations in the Marshall Islands including Enewetak Island (Figure 1) (Bell et al., 2002). These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing on-going technical support services. Bioassay samples are collected under controlled conditions and analyzed for plutonium isotopes at the Center for Accelerator Mass Spectrometry at LLNL using state-of-the art measurement technologies. We also conduct an on-going environmental monitoring and characterization program at selected sites in the northern Marshall Islands. The aim of the environmental program is to determine the level and distribution of important fallout radionuclides in soil, water and local foods with a view towards providing more accurate and updated dose assessments, incorporating knowledge of the unique behaviors and exposure pathways of fallout radionuclides in coral atoll ecosystems. These scientific studies have also been essential in helping guide the development of remedial options used in support of island resettlement. Together, the individual and environmental radiological surveillance programs are helping meet the informational needs of the U.S. DOE and the Republic of the Marshall Islands. Our updated environmental assessments provide a strong scientific basis for predicting future change in exposure conditions especially in relation to changes in lifestyle, diet and/or land-use patterns. This information has important implications in addressing questions about existing (and future) radiological conditions on the islands, in determining the cost and estimating the effectiveness of potential remedial measures, and in general policy support considerations. Perhaps most importantly, the recently established individual radiological surveillance programs provide affected atoll communities with an unprecedented level of radiation protection monitoring where, for the first time, local resources are being made available to monitor resettled and resettling populations on a continuous basis. As a hard copy supplement to Marshall Islands Program website (http://eed.llnl.gov/mi/), this document provides an overview of the individual radiation protection monitoring program established for the Enewetak Atoll population group along with a full disclosure of all verified measurement data (2002-2004). Readers are advised that an additional feature of the associated web site is a provision where users are able calculate and track doses delivered to volunteers (de-identified information only) participating in the Marshall Islands Radiological Surveillance Program.

Hamilton, T F; Kehl, S; Hickman, D; Brown, T; Marchetti, A A; Martinelli, R; Johannes, K; Henry, D

2006-01-17T23:59:59.000Z

3

Radiation doses for Marshall Islands Atolls Affected by U.S. Nuclear Testing:All Exposure Pathways, Remedial Measures, and Environmental Loss of 137Cs  

SciTech Connect

The United States conducted 24 nuclear tests at Bikini Atoll with a total yield of 76.8 Megatons (MT). The Castle series produced about 60% of this total and included the Bravo test that was the primary source of contamination of Bikini Island and Rongelap and Utrok Atolls. One of three aerial drops missed the atoll and the second test of the Crossroads series, the Baker test, was an underwater detonation. Of the rest, 17 were on barges on water and 3 were on platforms on an island; they produced most of the contamination of islands at the atoll. There were 42 tests conducted at Enewetak Atoll with a total yield of 31.7 MT (Simon and Robison, 1997; UNSCEAR, 2000). Of these tests, 18 were on a barge over wateror reef, 7 were surface shots, 2 aerial drops, 2 under water detonations, and 13 tower shots on either land or reef. All produced some contamination of various atoll islands. Rongelap Atoll received radioactive fallout as a result of the Bravo test on March 1, 1954 that was part of the Castle series of tests. This deposition was the result of the Bravo test producing a yield of 15 MT, about a factor of three to four greater than the predicted yield that resulted in vaporization of more coral reef and island than expected and in the debris-cloud reaching a much higher altitude than anticipated. High-altitude winds were to the east at the time of detonation and carried the debris-cloud toward Rongelap Atoll. Utrok Atoll also received fallout from the Bravo test but at much lower air and ground-level concentrations than at Rongelap atoll. Other atolls received Bravo fallout at levels below that of Utrok [other common spellings of this island and atoll (Simon, et al., 2009)]. To avoid confusion in reading other literature, this atoll and island are spelled in a variety of ways (Utrik, Utirik, Uterik or Utrok). Dose assessments for Bikini Island at Bikini Atoll (Robison et al., 1997), Enjebi Island at Enewetak Atoll (Robison et al., 1987), Rongelap Island at Rongelap Atoll (Robison et al., 1994; Simon et al., 1997), and Utrok Island at Utrok Atoll (Robison, et al., 1999) indicate that about 95-99% of the total estimated dose to people who may return to live at the atolls today (Utrok Island is populated) is the result of exposure to {sup 137}Cs. External gamma exposure from {sup 137}Cs in the soil accounts for about 10 to 15% of the total dose and {sup 137}Cs ingested during consumption of local food crops such as drinking coconut meat and fluid (Cocos nucifera L.), copra meat and milk, Pandanus fruit, and breadfruit accounts for about 85 to 90%. The other 1 to 2% of the estimated dose is from {sup 90}Sr, {sup 239+240}Pu, and {sup 241}Am. The {sup 90}Sr exposure is primarily through the food chain while the exposure to {sup 239+240}Pu, and {sup 241}Am is primarily via the inhalation pathway as a result of breathing re-suspended soil particles.

Robison, W L; Hamilton, T F

2009-04-20T23:59:59.000Z

4

Technical Basis Document: A Statistical Basis for Interpreting Urinary Excretion of Plutonium Based on Accelerator Mass Spectrometry (AMS) for Selected Atoll Populations in the Marshall Islands  

Science Conference Proceedings (OSTI)

We have developed refined statistical and modeling techniques to assess low-level uptake and urinary excretion of plutonium from different population group in the northern Marshall Islands. Urinary excretion rates of plutonium from the resident population on Enewetak Atoll and from resettlement workers living on Rongelap Atoll range from fallout. Consequently, the age-related trends in urinary excretion of plutonium from Marshallese populations can be described by either a long-term component from residual systemic burdens acquired from previous exposures to worldwide fallout or a prompt (and eventual long-term) component acquired from low-level systemic intakes of plutonium associated with resettlement of the northern Marshall Islands, or some combination of both.

Bogen, K; Hamilton, T F; Brown, T A; Martinelli, R E; Marchetti, A A; Kehl, S R; Langston, R G

2007-05-01T23:59:59.000Z

5

Technical Basis Document: A Statistical Basis for Interpreting Urinary Excretion of Plutonium Based on Accelerator Mass Spectrometry (AMS) for Selected Atoll Populations in the Marshall Islands  

SciTech Connect

We have developed refined statistical and modeling techniques to assess low-level uptake and urinary excretion of plutonium from different population group in the northern Marshall Islands. Urinary excretion rates of plutonium from the resident population on Enewetak Atoll and from resettlement workers living on Rongelap Atoll range from <1 to 8 {micro}Bq per day and are well below action levels established under the latest Department regulation 10 CFR 835 in the United States for in vitro bioassay monitoring of {sup 239}Pu. However, our statistical analyses show that urinary excretion of plutonium-239 ({sup 239}Pu) from both cohort groups is significantly positively associated with volunteer age, especially for the resident population living on Enewetak Atoll. Urinary excretion of {sup 239}Pu from the Enewetak cohort was also found to be positively associated with estimates of cumulative exposure to worldwide fallout. Consequently, the age-related trends in urinary excretion of plutonium from Marshallese populations can be described by either a long-term component from residual systemic burdens acquired from previous exposures to worldwide fallout or a prompt (and eventual long-term) component acquired from low-level systemic intakes of plutonium associated with resettlement of the northern Marshall Islands, or some combination of both.

Bogen, K; Hamilton, T F; Brown, T A; Martinelli, R E; Marchetti, A A; Kehl, S R; Langston, R G

2007-05-01T23:59:59.000Z

6

EA-1951: Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmissio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmission Line, Benton and Yakima Counties, Washington EA-1951: Midway-Moxee Rebuild and Midway-Grandview Upgrade...

7

Uncharted Waters: Bivalves of Midway Atoll and Integrating Mathematics into Biology Education  

E-Print Network (OSTI)

National Academies Press. NRC (National Research Council). (Education Standards. Washington, D.C. NRC (National ResearchEngineering Education. NRC (National Research Council). (

McCully, Kristin M.

2013-01-01T23:59:59.000Z

8

Midway, Utah: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Midway, Utah: Energy Resources Midway, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.5121772°, -111.4743545° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5121772,"lon":-111.4743545,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

The Efficacy of Aerial Search During the Battle of Midway  

Science Conference Proceedings (OSTI)

The Battle of Midway (June 4-6, 1942) is considered one of the pivotal naval encounters of the Second World War. The battle has been examined in detail within both popular and scholarly literature, and a common opinion found in virtually all of these ... Keywords: Aerial Search, Battle of Midway, Monte Carlo Simulation, Viewsheds, World War II

Denis J. Dean

2011-10-01T23:59:59.000Z

10

Microsoft Word - Midway-Benton_FONSI_Final.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midway-Benton No. 1 Transmission Line Rebuild Project Midway-Benton No. 1 Transmission Line Rebuild Project U.S. Department of Energy Finding of No Significant Impact (FONSI) and Wetland and Floodplain Statement of Findings DOE/EA-1912 Summary Bonneville Power Administration (BPA), in coordination with the U.S. Department of Energy- Richland (DOE-RL), announces its environmental findings on the Midway-Benton No. 1 Transmission Line Rebuild Project (Proposed Action). The Proposed Action would replace the approximately 28.2-mile-long, 115-kilovolt (kV) Midway-Benton No. 1 transmission line and approximately 11 miles of the 115-kV Benton-Othello No. 1 transmission line between the existing Midway and Benton Substations. All of the Proposed Action would be located on the Hanford Site in Benton County, Washington.

11

Helix Atoll JV | Open Energy Information  

Open Energy Info (EERE)

energy Product California-based JV developing products and financing mechanisms for small wind turbines. References Helix & Atoll JV1 LinkedIn Connections CrunchBase Profile No...

12

Rigby Midway School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Midway School Wind Project Midway School Wind Project Jump to: navigation, search Name Rigby Midway School Wind Project Facility Rigby Midway School Sector Wind energy Facility Type Community Wind Location ID Coordinates 43.670433°, -111.967293° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.670433,"lon":-111.967293,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

13

EA-1951: Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmission Line, Benton and Yakima Counties, Washington  

Energy.gov (U.S. Department of Energy (DOE))

Bonneville Power Administration is preparing an EA to assess the potential environmental impacts of the proposed rebuild of the 34-mile Midway-Moxee transmission line in Benton and Yakima Counties, Washington.

14

An assessment of potential health impacts on Utrok Atoll from exposure to cesium-137 (137Cs) and plutonium  

SciTech Connect

Residual fallout contamination from the nuclear test program in the Marshall Islands is a concern to Marshall Islanders because of the potential health risks associated with exposure to residual fallout contamination in the environment. Scientists from Lawrence Livermore National Laboratory (LLNL) have been monitoring the amount of fallout radiation delivered to Utrok Atoll residents over the past 4 years. This briefing document gives an outline of our findings from the whole body counting and plutonium bioassay monitoring programs. Additional information can be found on the Marshall Islands web site (http://eed.lnl.gov/mi/). Cesium-137 is an important radioactive isotope produced in nuclear detonations and can be taken up from coral soils into locally grown food crop products that form an important part of the Marshallese diet. The Marshall Islands whole body counting program has clearly demonstrated that the majority of Utrok Atoll residents acquire a very small but measurable quantity of cesium-137 in their bodies (Hamilton et al., 2006; Hamilton et. al., 2007a; 2007b;). During 2006, a typical resident of Utrok Atoll received about 3 mrem of radiation from internally deposited cesium-137 (Hamilton et al., 2007a). The population-average dose contribution from cesium-137 is around 2% of the total radiation dose that people normally experience from naturally occurring radiation sources in the Marshall Islands and is thousands of times lower than the level where radiation exposure is known to produce measurable health effects. The existing dose estimates from the whole body counting and plutonium bioassay programs are also well below radiological protection standards for protection of the public as prescribed by U.S. regulators and international agencies including the Marshall Islands Nuclear Claim Tribunal (NCT). Similarly, the level of internally deposited plutonium found in Utrok Atoll residents is well within the range normally expected for people living in the Northern Hemisphere. In addition, the preliminary results of the bioassay program on Utrok Atoll (Hamilton et al., 2007b) provide clear evidence that residents of Utrok Atoll have never acquired a significant uptake of plutonium either through an acute exposure event or from long-term chronic exposure to plutonium in the environment. This information and data should provide a level of assurance to the Utrok Atoll population group and its leadership that the dose contribution from exposure to residual radioactive fallout contamination on Utrok Atoll is very low, and is not likely to have any discernible impact on human health. We also estimate that the dose contribution based on current radiological exposure conditions will not produce any additional cancer fatalities (or any other measurable health condition) above that normally expected to arise in a population group of similar size. The potential risks from any genetic illnesses caused by exposure to residual fallout contamination in the environment will be even lower still. In conclusion, the data and information developed from the radiological protection monitoring program on Utrok appear to support a consensus that it is safe to live on Utrok Atoll. The health risks from exposure to residual fallout contamination on the atoll are minimal when compared with other lifetime risks that people normally experience, and are very small when compared to the threshold where radiation health effects could be either medically diagnosed in an individual or epidemiologically discerned in a group of people.

Hamilton, T

2007-07-24T23:59:59.000Z

15

Microsoft Word - CX-Midway-Vantage-Fiber.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2011 2, 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Chad Hamel Project Manager - TEP-TPP-1 Proposed Action: Midway Area Fiber Project Budget Information: Work Order 00224734, Task 3 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.7 Adding fiber optic cable to transmission structures or burying fiber optic cable in existing transmission line rights-of-way. Location: Grant and Benton Counties, Washington Township 13 North, Range 24 East, Sections 2, 11, and 14 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to install about 1.5 miles of aerial fiber optic cable on the existing Midway-Rocky Ford No.1 230-kilovolt (kV) transmission line. The new fiber

16

An updated dose assessment for a U.S. Nuclear Test Site - Bikini Atoll  

Science Conference Proceedings (OSTI)

On March 1, 1954, a nuclear weapon test, code-named BRAVO, conducted at Bikini Atoll in the northern Marshall Islands contaminated the major residence island. There has been a continuing effort since 1977 to refine dose assessments for resettlement options at Bikini Atoll. Here we provide a radiological dose assessment for the main residence island, Bikini, using extensive radionuclide concentration data derived from analysis of food crops, ground water, cistern water, fish and other marine species, animals, air, and soil collected at Bikini Island as part of our continuing research and monitoring program that began in 1975. The unique composition of coral soil greatly alters the relative contribution of cesium-137 ({sup 137}Cs) and strontium-90 ({sup 90}Sr) to the total estimated dose relative to expectations based on North American and European soils. Without counter measures, cesium-137 produces 96% of the estimated dose for returning residents, mostly through uptake from the soil to terrestrial food crops but also from external gamma exposure. The doses are calculated assuming a resettlement date of 1999. The estimated maximum annual effective dose for current island conditions is 4.0 mSv when imported foods, which are now an established part of the diet, are available. The corresponding 30-, 50-, and 70-y integral effective doses are 9.1 cSv, 13 cSv, and 15 cSv, respectively. A corresponding uncertainty analysis showed that after about 5 y of residence, the 95% confidence limits on population-average dose would be {plus_minus}35% of its expected value. We have evaluated various countermeasures to reduce {sup 137}Cs in food crops. Treatment with potassium reduces the uptake of {sup 137}Cs into food crops, and therefore the ingestion dose, to about 5% of pretreatment levels and has essentially no negative environmental consequences.

Robison, W.L.; Bogen, K.T.; Conrado, C.L.

1995-10-01T23:59:59.000Z

17

EA-1912: Midway-Benton No. 1 Rebuild Project, near town of Desert Aire,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1912: Midway-Benton No. 1 Rebuild Project, near town of Desert 1912: Midway-Benton No. 1 Rebuild Project, near town of Desert Aire, Benton County, WA EA-1912: Midway-Benton No. 1 Rebuild Project, near town of Desert Aire, Benton County, WA Summary This EA evaluates the environmental impacts of a proposal by DOE's Bonneville Power Administration to rebuild its existing Midway-Benton No.1 transmission line in place, or to reroute a portion of the Midway-Benton No. 1 transmission line that currently crosses Gable Mountain and Gable Butte in order to avoid crossing these features. For more information, please see: http://efw.bpa.gov/environmental_services/Document_Library/MidwayBentonRebuild/ Public Comment Opportunities None available at this time. Documents Available for Download December 6, 2012 EA-1912: Finding of No Significant Impact

18

EA-1912: Midway-Benton No. 1 Rebuild Project, near town of Desert Aire,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midway-Benton No. 1 Rebuild Project, near town of Desert Midway-Benton No. 1 Rebuild Project, near town of Desert Aire, Benton County, WA EA-1912: Midway-Benton No. 1 Rebuild Project, near town of Desert Aire, Benton County, WA Midway-Benton No. 1 Rebuild Project, near town of Desert Aire, Benton County, WA This EA evaluates the environmental impacts of a proposal by DOE's Bonneville Power Administration to rebuild its existing Midway-Benton No.1 transmission line in place, or to reroute a portion of the Midway-Benton No. 1 transmission line that currently crosses Gable Mountain and Gable Butte in order to avoid crossing these features. Please note: Together, the Draft EA and the Revision to the Draft EA constitute the Final EA. EA-1912-DEA-2012.pdf EA-1912-RevisedDEA-2012.pdf More Documents & Publications EA-1912: Draft Environmental Assessment

19

GROSS BETA RADIOACTIVITY OF THE ALGAE AT ENIWETOK ATOLL, 1954-1956  

SciTech Connect

A study was made to determine the amounts of radioactivity in marine algae, water, and lagoon bottom sand collected at Eniwetok Atoll during the period April 1954 to April 1956. The highest levels of beta radioactivity of algae collected after the detonation of a nuclear device (Nectar) were in algae from those islands closest to the site of detonation and in the downwind path of the fallout. With time after detonation, the decline of radioactivity in the algae at Belle Island was faster than can be accounted for on the basis of physical decay alone. In March 1955, algae and bottom sand collected in the deeper waters (20 to 140 feet) of the lagoon, one half to two miles offshore, contained as much or more radioactivity than samples collected in the shallow water near shore. The radioactive decay rates of algae samples collected from Leroy and Henry Islands were greater than those of algae from other islands, indicating that there was less residual contamination from previous detonations at these two islands. Study of the radioactive decay rates of the algae at Belle Island showed that the radioactivity was decaying at a relatively low rate, which became slower with samples collected late in the survey. These observations indicate that the longer-lived isotopes were being taken up by the algae. (auth)

Palumbo, R.F.

1959-08-31T23:59:59.000Z

20

EA-1188: Chevron U.S.A., Inc. and Santa Fe Energy Resources, Inc. Midway  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

188: Chevron U.S.A., Inc. and Santa Fe Energy Resources, Inc. 188: Chevron U.S.A., Inc. and Santa Fe Energy Resources, Inc. Midway Valley 3D Seismic Project, Kern County, California EA-1188: Chevron U.S.A., Inc. and Santa Fe Energy Resources, Inc. Midway Valley 3D Seismic Project, Kern County, California SUMMARY This EA evaluates the environmental impacts for the proposed Midway Valley 3D Geophysical Exploration Project. Chevron U.S.A., Inc. and Santa Fe Energy Resources are proposing to conduct seismic investigations just southeast of the City of McKittrick and Derby Acres in the Buena Vista and Midway Valleys, Kern County, California. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD January 13, 1999 EA-1188: Finding of No Significant Impact Chevron U.S.A., Inc. and Santa Fe Energy Resources, Inc. Midway Valley 3D

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Microsoft Word - Midway Benton Draft_EA_Revision_Sheet_5Dec2012.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midway-Benton No. 1 Transmission Line Rebuild Project 1 Midway-Benton No. 1 Transmission Line Rebuild Project 1 Revision Sheet for Final Environmental Assessment Midway-Benton No. 1 Transmission Line Rebuild Project Department of Energy Bonneville Power Administration Revision Sheet DOE/EA-1912 December 6, 2012 Summary Bonneville Power Administration (BPA) released the Midway-Benton No. 1 Transmission Line Rebuild Project Preliminary Environmental Assessment (EA) in June 2012 for public comment. BPA sent the Preliminary EA to agencies and interested parties who requested a copy. Notification that the EA was available and instructions of how to request a copy was sent to the mailing list of potentially affected parties. BPA received four comments and have responded to these comments in this revision sheet.

22

Marshall Islands Program  

NLE Websites -- All DOE Office Websites (Extended Search)

the accidental exposure of people present on two atolls, Rongelap and Utrk, to fallout from the U.S. nuclear test at the Bikini atoll. The program has two components: A...

23

A dose assessment for a U.S. nuclear test site -- Bikini Atoll  

Science Conference Proceedings (OSTI)

On March 1, 1954, a nuclear weapon test, code-named BRAVO, conducted at Bikini Atoll in the northern Marshall Islands contaminated the major residence island. Here the authors provide a radiological dose assessment for the main residence island, Bikini, using extensive radionuclide concentration data derived from analysis of food crops, ground water, cistern water, fish and other marine species, animals, air, and soil collected at Bikini Island. The unique composition of coral soil greatly alters the relative contribution of cesium-137 and strontium-90 to the total estimated dose relative to expectations based on North American and European soils. Cesium-137 produces 96% of the estimated dose for returning residents, mostly through uptake from the soil to terrestrial food crops but also from external gamma exposure. The estimated maximum annual effective dose is 4.4 mSv y{sup {minus}1} when imported foods, which are now an established part of the diet, are available. The 30-, 50-, and 70-y integral effective doses are 10 cSv, 14 cSv, and 16 cSv, respectively. An analysis of interindividual variability in 0- to 30-y expected integral dose indicates that 95% of Bikini residents would have expected doses within a factor of 3.4 above and 4.8 below the population-average value. A corresponding uncertainty analysis showed that after about 5 y of residence, the 95% confidence limits on population-average dose would be {+-}35% of its expected value. The authors have evaluated various countermeasures to reduce {sup 137}Cs in food crops. Treatment with potassium reduces the uptake of {sup 137}Cs into food crops, and therefore the ingestion dose, to less than 10% of pretreatment levels and has essentially no negative environmental consequences.

Robison, W.L.; Bogen, K.T.; Conrado, C.L.

1993-07-01T23:59:59.000Z

24

Mountain Waves in the Tropical Pacific Atmosphere: A Comparison of Vertical Wind Fluctuations over Pohnpei and Christmas Island Using VHF Wind Profilers  

Science Conference Proceedings (OSTI)

We compare vertical wind fluctuations observed by VHF radar wind profilers in the tropical troposphere over a large, mountainous island (Pohnpei, at 7N, 158E) and a large, low-profile atoll (Christmas Island, at 2N, 157W). The major ...

Ben B. Balsley; David A. Carter

1989-09-01T23:59:59.000Z

25

Manhattan Project: Operation Crossroads, Bikini Atoll, July 1946  

Office of Scientific and Technical Information (OSTI)

Crossroads Baker, Bikini Atoll, July 25, 1946 OPERATION CROSSROADS Crossroads Baker, Bikini Atoll, July 25, 1946 OPERATION CROSSROADS (Bikini Atoll, July 1946) Events > Postscript -- The Nuclear Age, 1945-present Informing the Public, August 1945 The Manhattan Engineer District, 1945-1946 First Steps toward International Control, 1944-1945 Search for a Policy on International Control, 1945 Negotiating International Control, 1945-1946 Civilian Control of Atomic Energy, 1945-1946 Operation Crossroads, July 1946 The VENONA Intercepts, 1946-1980 The Cold War, 1945-1990 Nuclear Proliferation, 1949-present Even after the Trinity test and the bombings of Hiroshima and Nagasaki, military officials still knew far less than they would have liked about the effects, especially on naval targets, of nuclear weapons. Accordingly, the Joint Chiefs of Staff requested and received presidential approval to conduct a series of tests during summer 1946. Vice Admiral W. H. P. Blandy, head of the test series task force, proposed calling the series Operation "Crossroads." "It was apparent," he noted, "that warfare, perhaps civilization itself, had been brought to a turning point by this revolutionary weapon."

26

A comparison of independently conducted dose assessments to determine compliance and resettlement options for the people of Rongelap Atoll  

SciTech Connect

Rongelap Island was the home of Marshallese people numbering less than 120 in 1954; 67 were on the island and severely exposed to radioactive fallout from an atomic weapons test in March of that year. Those resident on Rongelap were evacuated 50 h after the test, returned 3 y later, then voluntarily left their home island in 1985 due to their ongoing fear of radiation exposure from residual radioactive contamination. Following international negotiations in 1991, a Memorandum of Understanding (NIOU) was signed in early 1992 between the Republic of the Marshall Islands Government, the Rongelap Atoll Local Government, the U.S. Department of Energy, and the U.S. Department of the Interior. In this MOU it was agreed that the Republic of the Marshall Islands, with the aid of the U.S. Department of Energy, would carry out independent dose assessments for the purpose of assisting and advising the Rongelap community on radiological issues related to a safe resettlement of Rongelap. In 1994, four independent assessments were reported, including one from each of the following entities: Marshall Islands Nationwide Radiological Study; Lawrence Livermore National Laboratory; an independent advisor from the United Kingdom (MCT); and a committee of the National Research Council. All four assessments concluded that possibly more than 25% of the adult population could exceed the 1 mSv y{sup -1} dose level based on strict utilization of a local food diet. The purpose of this report is to summarize the methodology, assumptions, and findings from each of four assessments; to summarize the recommendations related to mitigation and resettlement options; to discuss unique programmatic aspects of the study; and to consider the implications of the findings to the future of the Rongelap people. 63 refs., 5 figs., 3 tabs.

Simon, S.L.; Robison, W.L. [Lawrence Livermore National Lab., CA (United States); Thorne, M.C. [Electrowatt Engineering Services, Sussex (United Kingdom)] [and others

1997-07-01T23:59:59.000Z

27

Independent verification of plutonium decontamination on Johnston Atoll (1992--1996)  

Science Conference Proceedings (OSTI)

The Field Command, Defense Special Weapons Agency (FCDSWA) (formerly FCDNA) contracted Oak Ridge National Laboratory (ORNL) Environmental Technology Section (ETS) to conduct an independent verification (IV) of the Johnston Atoll (JA) Plutonium Decontamination Project by an interagency agreement with the US Department of Energy in 1992. The main island is contaminated with the transuranic elements plutonium and americium, and soil decontamination activities have been ongoing since 1984. FCDSWA has selected a remedy that employs a system of sorting contaminated particles from the coral/soil matrix, allowing uncontaminated soil to be reused. The objective of IV is to evaluate the effectiveness of remedial action. The IV contractor`s task is to determine whether the remedial action contractor has effectively reduced contamination to levels within established criteria and whether the supporting documentation describing the remedial action is adequate. ORNL conducted four interrelated tasks from 1992 through 1996 to accomplish the IV mission. This document is a compilation and summary of those activities, in addition to a comprehensive review of the history of the project.

Wilson-Nichols, M.J.; Wilson, J.E.; McDowell-Boyer, L.M.; Davidson, J.R.; Egidi, P.V.; Coleman, R.L.

1998-05-01T23:59:59.000Z

28

Individual Radiological Protection Monitoring of Utrok Atoll Residents Based on Whole Body Counting of Cesium-137 (137Cs) and Plutonium Bioassay  

SciTech Connect

This report contains individual radiological protection surveillance data developed during 2006 for adult members of a select group of families living on Utrok Atoll. These Group I volunteers all underwent a whole-body count to determine levels of internally deposited cesium-137 ({sup 137}Cs) and supplied a bioassay sample for analysis of plutonium isotopes. Measurement data were obtained and the results compared with an equivalent set of measurement data for {sup 137}Cs and plutonium isotopes from a second group of adult volunteers (Group II) who were long-term residents of Utrok Atoll. For the purposes of this comparison, Group II volunteers were considered representative of the general population on Utrok Atoll. The general aim of the study was to determine residual systemic burdens of fallout radionuclides in each volunteer group, develop data in response to addressing some specific concerns about the preferential uptake and potential health consequences of residual fallout radionuclides in Group I volunteers, and generally provide some perspective on the significance of radiation doses delivered to volunteers (and the general Utrok Atoll resident population) in terms of radiological protection standards and health risks. Based on dose estimates from measurements of internally deposited {sup 137}Cs and plutonium isotopes, the data and information developed in this report clearly show that neither volunteer group has acquired levels of internally deposited fallout radionuclides specific to nuclear weapons testing in the Marshall Islands that are likely to have any consequence on human health. Moreover, the dose estimates are well below radiological protection standards as prescribed by U.S. regulators and international agencies, and are very small when compared to doses from natural sources of radiation in the Marshall Islands and the threshold where radiation health effects could be either medically diagnosed in an individual or epidemiologically discerned in a group of people. In general, the results from the whole-body counting measurements of 137Cs are consistent with our knowledge that a key pathway for exposure to residual fallout contamination on Utrok Atoll is low-level chronic uptake of {sup 137}Cs from the consumption of locally grown produce (Robison et al., 1999). The error-weighted, average body burden of {sup 137}Cs measured in Group I and Group II volunteers was 0.31 kBq and 0.62 kBq, respectively. The associated average, annual committed effective dose equivalent (CEDE) delivered to Group I and Group II volunteers from {sup 137}Cs during the year of measurement was 2.1 and 4.0 mrem. For comparative purposes, the annual dose limit for members of the public as recommended by the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP) is 100 mrem. Consequently, specific concerns about elevated levels of {sup 137}Cs uptake and higher risks from radiation exposure to Group I volunteers would be considered unfounded. Moreover, the urinary excretion of plutonium-239 ({sup 239}Pu) from Group I and Group II volunteers is statistically indistinguishable. In this case, the error-weighted, average urinary excretion of {sup 239}Pu from Group I volunteers of 0.10 {mu}Bq per 24-h void with a range between -0.01 and 0.23 {mu}Bq per 24-h void compares with an error-weighted average from Group II volunteers of 0.11 {mu}Bq per 24-h void with a range between -0.20 and 0.47 {mu}Bq per 24-h void. The range in urinary excretion of {sup 239}Pu from Utrok Atoll residents is very similar to that observed for other population groups in the Marshall Islands (Bogen et al., 2006; Hamilton et al., 2006a; 2006b; 2006c, 2007a; 2007b; 2007c) and is generally considered representative of worldwide background.

Hamilton, T; Kehl, S; Brown, T; Martinelli, R; Hickman, D; Jue, T; Tumey, S; Langston, R

2007-06-08T23:59:59.000Z

29

Microsoft Word - CX-NorthBonneville-MidwayInsulatorRep_FY13_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2013 6, 2013 REPLY TO ATTN OF: KEP-Celilo SUBJECT: Environmental Clearance Memorandum Scott Williams Line Foreman III - TFDF-The Dalles Proposed Action: Insulator replacement on Bonneville Power Administration's (BPA) North Bonneville-Midway No. 1 transmission line PP&A Project No.: 2705 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 Additions and modifications to transmission facilities Location: Skamania County, Washington Line Corridor Structures TRS County, State N. Bonneville - Midway No. 1 1/1 to 10/1 2N, 7E, Sections 3, 7, 9, 16, 39 3N, 7E, Sections 25, 35, 36 3N, 8E, Sections 28, 29, 30 Skamania, Washington Proposed by: BPA Description of the Proposed Action: In order to provide continued system reliability, BPA

30

Long-Term Reduction in 137Cs Concentration in Food Crops on Coral Atolls Resulting from Potassium Treatment  

SciTech Connect

Bikini Island was contaminated March 1, 1954 by the Bravo detonation (U.S nuclear test series, Castle) at Bikini Atoll. About 90% of the estimated dose from nuclear fallout to potential island residents is from cesium-137 ({sup 137}Cs) transferred from soil to plants that are consumed by residents. Thus, radioecology research efforts have been focused on removing {sup 137}Cs from soil and/or reducing its uptake into vegetation. Most effective was addition of potassium (K) to soil that reduces {sup 137}Cs concentration in fruits to 3-5% of pretreatment concentrations. Initial observations indicated this low concentration continued for some time after K was last applied. Long-term studies were designed to evaluate this persistence in more detail because it is very important to provide assurance to returning populations that {sup 137}Cs concentrations in food (and, therefore, radiation dose) will remain low for extended periods, even if K is not applied annually or biennially. Potassium applied at 300, 660, 1260, and 1970 kg ha{sup -1} lead to a {sup 137}Cs concentration in drinking coconut meat that is 34, 22, 10, and about 4 % of original concentration, respectively. Concentration of {sup 137}Cs remains low 8 to 10 y after K is last applied. An explanation for this unexpected result is discussed.

Robison, W; Stone, E; Hamilton, T; Conrado, C

2005-04-08T23:59:59.000Z

31

Midway-Sunset keeps producing oil with a little help from steam injection  

Science Conference Proceedings (OSTI)

The largest field in the lower 48 states runs on steam injection and well-honed maintenance. The glory days of the Midway-Sunset field had been gone for more than four decades by the beginning of the 1960s. Production had peaked in 1914 with an average of 94,140 bo/d. The field, except for an occasional spike, had been in decline until steam-injection began. The advent of steam injection to increase recovery of the field`s heavy crude began on a pilot basis in 1963. If anyone had predicted the dramatic effect steam would have on Midway-Sunset as well as other California heavy crude fields, the prediction would have been met with total disbelief. The first steam project in California had been initiated by Shell Oil Co. in the Yorba Linda field in the Los Angeles Basin in 1960. Other pilot projects followed in the Coalinga and Kern River fields. Today, Berry Petroleum Co. continues as one of the field`s most successful steamers. The company`s ongoing steam efforts have played a major role in making Berry the top California-based independent producer in the field. Steam contributed to the posting by Berry of a 32% increase in this year`s second quarter earnings.

Rintoul, B.

1995-10-01T23:59:59.000Z

32

Surface geology of the northern Midway-Sunset Field and adjacent Temblor Range, Kern County, California  

Science Conference Proceedings (OSTI)

New surface mapping at a 1:12000 scale adjacent to the 2 billion barrel Midway Sunset Field has revealed complex intraformational stratigraphy within the upper Miocene Santa Margarita Formation (Tms). Locally known as the Potter and Spellacy Formations in the subsurface, these sandstone and conglomerate heavy oil reservoirs produce the majority of Midway Sunset daily production of 164,000 barrels of oil via thermal EOR processes. The Tms consists mostly of conglomerate inserted into the Belridge Diatomite (Tmb) interval. The stratigraphically lower intervals of the Tms clearly fill deeply incised valleys or submarine canyons cut into Tmb and locally into the underlying Antelope Shale (Tma). The basal intervals of Tms; are very coarse grained, containing boulders of granitic and metamorphic rock as large as 4 meters that were derived from the Salinian block west of the San Andreas Fault. The upper intervals of Tms are more sheet-like and interbedded containing clasts less than 50 cm in length. The incised valleys have a spacing of about one mile in outcrop, with a gap located in the area of the older Republic Sandstone (Tmr). Paleocurrents from Tms regionally suggest sediment transport to the northeast. The sedimentary structures of Tms suggest deposition in deep-water conditions, probably a slope (bathyal) setting. Shelf environments should have been present to the southwest (now stripped away by erosion) and submarine-fan and basin-floor environments to the northeast.

Wylie, A.S. Jr.; Sturm, D.H.; Gardiner, R.L.; Mercer, M.F. (Santa Fe Energy Resources, Bakersfield, CA (United States)) (and others)

1996-01-01T23:59:59.000Z

33

Analysis of radiation exposure - service personnel on Rongerik Atoll: Operation Castle - Shot Bravo. Technical report, 12 March 1985-12 June 1987  

Science Conference Proceedings (OSTI)

External and internal doses are reconstructed for the 28 American servicemen stationed on Rongerik Atoll, Marshall Islands, who were exposed to fallout on 1-2 March 1954 from Shot Bravo of Operation CASTLE. External doses are determined from limited radiation survey and film-badge information. Internal-dose commitments are derived from urinalysis data. The magnitude of the calculated activity intake suggests the principal pathways. Reconstructed film-badge doses are approximately 40 rem, with adjustments from individual activity scenarios, as available. Internal dose commitments to the thyroid and large intestine (nearly all first-year dose) provide the only significant increments to the external dose. Total doses are approximately 230 rem to the thyroid, 115 rem to the lower large intestine, 85 rem to the upper large intestine, and about 40 to 50 rem to all other organs.

Goetz, J.; Klemm, J.; Phillips, J.; Thomas, C.

1987-07-09T23:59:59.000Z

34

An updated dose assessment for Rongelap Island  

Science Conference Proceedings (OSTI)

We have updated the radiological dose assessment for Rongelap Island at Rongelap Atoll using data generated from field trips to the atoll during 1986 through 1993. The data base used for this dose assessment is ten fold greater than that available for the 1982 assessment. Details of each data base are presented along with details about the methods used to calculate the dose from each exposure pathway. The doses are calculated for a resettlement date of January 1, 1995. The maximum annual effective dose is 0.26 mSv y{sup {minus}1} (26 mrem y{sup {minus}1}). The estimated 30-, 50-, and 70-y integral effective doses are 0.0059 Sv (0.59 rem), 0.0082 Sv (0.82 rem), and 0.0097 Sv (0.97 rem), respectively. More than 95% of these estimated doses are due to 137-Cesium ({sup 137}Cs). About 1.5% of the estimated dose is contributed by 90-Strontium ({sup 90}Sr), and about the same amount each by 239+240-Plutonium ({sup 239+240}PU), and 241-Americium ({sup 241}Am).

Robison, W.L.; Conrado, C.L.; Bogen, K.T.

1994-07-01T23:59:59.000Z

35

Characterization studies of actinide contamination on Johnston Atoll  

Science Conference Proceedings (OSTI)

This paper presents results that indicates that plutonium and americium contamination of Johnson Atoll soil and sludge from the cleanup plant settling pond is dispersed. The {sup 241}Am/{sup 239}Pu ratio was essentially identical for all analyzed material. Except for one ``hot particle,`` no discrete Pu particles were located in untreated coral soil by SEM even though our sample contained both {sup 241}Am and {sup 239}Pu activity measurable by gammaray spectrometry. Alpha particle spectrometry analysis of sequentially filtered sludge showed small that activity is associated with particles as 0.4 {mu}m in diameter. Thin section analysis revealed that the ``hot particle`` was a fragment of stainless steel with a layer of oxidized Pu, U, and other metals deposited on the outside. This Pu-containing layer was covered with a layer of coral soil that formed on the oxidized Pu/U phase during the process of weathering on JA. Analyses of all samples except the ``hot particle`` with SEM or TEM coupled with EDS did not reveal the presence of any distinct Pu phases, despite measurable activity in these samples. Together, these findings are consistent with the Pu and Am being highly dispersed throughout the contaminated soil and sludge. Direct evidence for association of Pu with coral was observed in the thin section of the ``hot particle.`` A possible mechanism for the dispersal of contamination is that weathering of fragments from the aborted missile leads to complexation of Pu with calcium carbonate followed by adsorption onto the coral soil surface. This process has not led to measurable fractionation of Am from its Pu parent.

Wolf, S.F.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Dietz, N.L.; Fortner, J.A.; Gong, Meiling

1994-07-01T23:59:59.000Z

36

Comparison of cracking kinetics for Kern River 650{degrees}F{sup +} residuum and Midway Sunset crude oil  

Science Conference Proceedings (OSTI)

Kern River 650{degrees}F{sup +} residuum and Midway Sunset crude oil were examined by micropyrolysis at several constant-heating rates to determine pyrolysis cracking kinetics. Determined by the discrete distribution method, both feeds exhibited principal activation energies of 50 kcal/mol and frequency factors {approximately} 10{sup 13} sec{sup -1}. Energy distributions were similar ranging from 45 to 57 kcal/mol. Determined by the shift-in-T{sub max} method, E{sub approx}, A{sub approx} for Kern River 650{degrees}F{sup +} and Midway Sunset were 48 kcal/mol, 1.3 X 10{sup 12} sec{sup -1}, and 46 kcal/mol, 4.6 X 10{sup 11} sec{sup -1}, respectively. These results are similar, but not identical to other kinetic parameters for heavy oils from type II source rocks.

Reynolds, J.

1995-05-01T23:59:59.000Z

37

Results of the Bonneville Power Administration weatherization and tightening projects at the Midway substation residential community  

Science Conference Proceedings (OSTI)

As part of a regional conservation program, the Bonneville Power Administration retrofitted 18 houses at its Midway substation in central Washington and monitored the results for a three year period. The 18 houses were divided into three groups, or cells. During the first year of the project, energy consumption was monitored but no changes were made to the houses. Prior to the second year of the project, Cell 2 received attic and crawlspace insulation, foundation sill caulking, and increased attic ventilation. Cell 3 received these retrofits plus storm windows and doors, and Cell 1 served as the control group. Before the beginning of the project's third year, each house in Cell 1 received 22 hours of infiltration reduction weatherization or house tightening. Each house in Cell 3 received 10 hours of this same type of weatherization. Cell 2 served as the control group for the house doctoring phase of the project. Energy consumption and weather data were monitored for the entire three year period. Before and after each set of retrofits, leakage area measurements were made using blower door fan pressurization, thereby allowing calculation of heating season infiltration rates. An energy use model correlating energy consumption with outside temperature was developed in order to determine improvements to the thermal conductance of the building envelope as a result of the retrofits. Energy savings were calculated based on the results of the energy use model and, as a check on these findings, the Computerized Instrumented Residential Analysis (CIRA) load calculation program developed at Lawrence Berkeley Laboratory provided a theoretical estimate of the savings resulting from the retrofits.

Dickinson, J.B.; Grimsrud, D.T.; Krinkel, D.L.; Lipschutz, R.D.

1982-02-01T23:59:59.000Z

38

Architecture and sedimentology of turbidite reservoirs from Miocene Moco T and Webster zones, Midway-Sunset field, California  

SciTech Connect

Thirty-five turbidite sandstone bodies from the Moco T and Webster reservoir zones were delineated for enhanced oil recovery projects in Mobil's MOCO FEE property, south Midway-Sunset field. The recognition of these sand bodies is based on mappable geometries determined from wireline log correlations, log character, core facies, reservoir characteristics, and comparison to nearby age-equivalent outcrops. These turbidite sands are composed of unconsolidated arkosic late Miocene sandstones (Stevens equivalent, Monterey Formation). They were deposited normal to paleoslope and trend southwest-northeast in an intraslope basin. Reservoir quality in the sandstone is very good, with average porosities of 33% and permeabilities of 1 darcy.

Link, M.H.; Hall, B.R.

1989-03-01T23:59:59.000Z

39

(DOE/EIS-0285/SA-63): Supplement Analysis for the Transmission System Vegetation Management Program FEIS, North Bonneville-Midway and Hanford-Ostrander 4/22/02  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2002 2, 2002 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS, North Bonneville-Midway and Hanvor-Ostrander (DOE/EIS-0285/SA-63) Elizabeth Johnson - TFR/The Dalles Natural Resource Specialist Proposed Action: Vegetation Management on the North Bonneville-Midway and Hanford- Ostrander transmission line right-of-way (approx. 702 acres). The project area begins at the North Bonneville Substation and terminates at structure 25/3+500. For most of the length of the right-of-way, the width is 300 feet wide on the North Bonneville-Midway Line and 150 feet wide for the Hanford- Ostrander Line. Location: The ROW is located in North Bonneville, Skamania County, OR, being in the

40

Geology, characteristics, and resource potential of the low-temperature geothermal system near Midway, Wasatch County, Utah. Report of Investigation No. 142  

DOE Green Energy (OSTI)

To evaluate the geothermal energy potential of the hot springs system near Midway, Wasatch Co., Utah, consideration was given to heat flow, water chemistry, and structural controls. Abnormal heat flow was indicated qualitatively by snow-melt patterns and quantitatively by heat-flow measurements that were obtained from two of four temperature-gradient wells drilled in the area. These measurements indicated that the area north of the town of Midway is characterized by heat flow equal to 321.75 MW/m/sup 2/, which is over four times the value generally considered as normal heat flow. Chemical analyses of water from six selected thermal springs and wells were used in conjunction with the silica and Na-K-Ca geothermometers to estimate the reservoir temperature of the thermal system. Because the calculated temperature was more than 25/sup 0/C above the maximum observed temperature, a mixing model calculation was used to project an upper limit for the reservoir temperature. Based on these calculations, the system has a reservoir temperature ranging from 46 to 125/sup 0/C. Structural information obtained from published geologic maps of the area and from an unpublished gravity survey, enabled two models to be developed for the system. The first model, based on geologic relationships in the mountains to the north and west of Midway, assumes that the heat for the thermal system comes from a relatively young intrusive or related hydrothermal convection system in the vicinity of the Mayflower mine. Meteoric waters would be heated as they approach the heat source and then move laterally to the south through faults and fractures in the rocks. These thermal waters then rise to the surface through fractures in the crest of an anticline underneath the Midway area. The second model, based on the gravity survey, assumes an igneous intrusion directly beneath Midway as the heat source.

Kohler, J.F.

1979-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Reservoir description is key to steamflood planning and implementation, Webster Reservoir, Midway-Sunset Field, Kern County, California  

SciTech Connect

The Webster reservoir at Midway-Sunset field, Kern County, California, is an unconsolidated sand reservoir of Miocene age (''Stevens equivalent,'' Monterey Formation). The Webster was discovered in 1910 but, due to poor heavy oil (14/sup 0/ API) economics, development for primary production and subsequent enhanced recovery were sporadic. Currently, the reservoir produces by cyclic steam stimulation in approximately 35 wells. Cumulative oil production for the Webster since 1910 is about 13 million bbl. The Webster is subdivided into two reservoirs - the Webster Intermediate and Webster Main. The Webster Intermediate directly overlies the Webster Main in one area but it is separated by up to 300 ft of shale elsewhere. The combined thickness of both Webster reservoirs averages 250 ft and is located at a drilling depth of 1,100-1,800 ft. From evaluation of modern core data and sand distribution maps, the Webster sands are interpreted to have been deposited by turbidity currents that flowed from southwest to northeast in this area. Oil is trapped in the Webster reservoir where these turbidites were subsequently folded on a northwest-southeast-trending anticline. Detailed recorrelation on wireline logs, stratigraphic zonation, detailed reservoir description by zone, and sedimentary facies identification in modern cores has led to development of a geologic model for the Webster. This model indicates that the Webster Intermediate was deposited predominately by strongly channelized turbidity currents, resulting in channel-fill sands, and that the Webster Main was deposited by less restricted flows, resulting in more lobate deposits.

Hall, B.R.; Link, M.H.

1988-01-01T23:59:59.000Z

42

Christina Snow, Compliance Office SUBJECT: Midway Sunset Cogeneration Company (85-AFC-3C) Staff Analysis of Proposed Modification  

E-Print Network (OSTI)

petition with the California Energy Commission requesting to modify the Midway Sunset Cogeneration Project. The 225-megawatt project was certified by the Energy Commission on May 14, 1987, and began commercial operation on May 1, 1989. The facility is located in Fellows in Kern County, California and uses cogeneration steam to aid in the enhanced oil recovery process. Air Quality technical staff reviewed the petition to amend and requested additional revisions for consistency with the San Joaquin Valley Air Pollution Control District (SJVAPCD) Authority to Construct (ATC) permit. A modification of the petition to amend was submitted and posted online and docketed on November 19, 2010. The proposed amendment requests administrative modifications to Units A, B and C and revision of unit Bs DLN9 Combustion System to a DLN1+ Combustion System. Energy Commission staff reviewed the petition and assessed the impacts of this proposal on environmental quality, public health and safety, and proposes the modifications to the Air Quality Conditions of Certification as noted in the attached analysis. It is staffs opinion that, with the implementation of the revised air quality condition, the project will remain in compliance with applicable laws, ordinances, regulations, and standards and that the proposed modifications will not result in a significant adverse direct or cumulative impact to the environment (Title 20, California Code of Regulations, Section 1769). The amendment petition and staffs analysis have been posted on the Energy Commissions webpage at:

unknown authors

2011-01-01T23:59:59.000Z

43

Independent Verification Survey of the Clean Coral Storage Pile at the Johnston Atoll Plutonium-Contaminated Soil Remediation Project  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL) Environmental Technology Section conducted an independent verification (IV) survey of the clean storage pile at the Johnston Atoll Plutonium Contaminated Soil Remediation Project (JAPCSRP) from January 18-25, 1999. The goal of the JAPCSRP is to restore a 24-acre area that was contaminated with plutonium oxide particles during nuclear testing in the 1960s. The selected remedy was a soil sorting operation that combined radiological measurements and mining processes to identify and sequester plutonium-contaminated soil. The soil sorter operated from about 1990 to 1998. The remaining clean soil is stored on-site for planned beneficial use on Johnston Island. The clean storage pile currently consists of approximately 120,000 m{sup 3} of coral. ORNL conducted the survey according to a Sampling and Analysis Plan, which proposed to provide an IV of the clean pile by collecting a minimum number (99) of samples. The goal was to ascertain with 95% confidence whether 97% of the processed soil is less than or equal to the accepted guideline (500-Bq/kg or 13.5-pCi/g) total transuranic (TRU) activity. In previous IV tasks, ORNL has (1) evaluated and tested the soil sorter system software and hardware and (2) evaluated the quality control (QC) program used at the soil sorter plant. The IV has found that the soil sorter decontamination was effective and significantly reduced plutonium contamination in the soil processed at the JA site. The Field Command Defense Threat Reduction Agency currently plans to re-use soil from the clean pile as a cover to remaining contamination in portions of the radiological control area. Therefore, ORNL was requested to provide an IV. The survey team collected samples from 103 random locations within the top 4 ft of the clean storage pile. The samples were analyzed in the on-site radioanalytical counting laboratory with an American Nuclear Systems (ANS) field instrument used for the detection of low-energy radiation. Nine results exceeded the JA soil screening guideline for distributed contamination of 13.5 pCi/g for total TRUs, ranging from 13.7 to 125.9 pCi/g. Because of these results, the goal of showing with 95% confidence that 97% of the processed soil is less than or equal to 13.5 pCi/g-TRU activity cannot be met. The value of 13.5 pCi/g represents the 88th percentile rather than the 95th percentile in a nonparametric one-sided upper 90% confidence limit. Therefore, at the 95% confidence level, 88% of the clean pile is projected to be below the 13.5-pCi/g goal. The Multi-Agency Radiation Survey and Site Investigation Manual recommends use of a nonparametric statistical ''Sign Test'' to demonstrate compliance with release criteria for TRU. Although this survey was not designed to use the sign test, the data herein would demonstrate that the median (50%) of the clean storage pile is below the l3.5-pCi/g derived concentration guideline level. In other words, with the caveat that additional investigation of elevated concentrations was not performed, the data pass the sign test at the 13.5-pCi/g level. Additionally, the lateral extent of the pile was gridded, and 10% of the grid blocks was scanned with field instruments for the detection of low-energy radiation coupled to ratemeter/scalers to screen for the presence of hot particles. No hot particles were detected in the top 1 cm of the grid blocks surveyed.

Wilson-Nichols, M.J.

2000-12-07T23:59:59.000Z

44

CO2 Emissions - Ryukyu Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania Ryukyu Islands Graphics CO2 Emissions from the Ryukyu Islands Data graphic Data CO2 Emissions from the Ryukyu Islands image...

45

CO2 Emissions - Leeward Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

Central America, South America, and the Caribbean Nations Leeward Islands Graphics CO2 Emissions from Leeward Islands Data graphic Data CO2 Emissions from Leeward Islands image...

46

Whole-body counting in the Marshall Islands  

SciTech Connect

In 1978 the Marshall Islands Radiological Safety Program was organized to perform radiation measurements and assess radiation doses for the people of the Bikini, Enewetak, Rongelap and Utirik Atolls. One of the major field components of this program is whole- body counting (WBC). WBC is used to monitor the quantity of gamma- emitting radionuclides present in individuals. A primary objective of the program was to establish {sup 137}Cesium body contents among the Enewetak, Rongelap and Utirik populations. {sup 137}Cs was the only gamma-emitting fission radionuclide detected in the 1,967 persons monitored. {sup 137}Cs body burdens tended to increase with age for both sexes, and were higher in males. The average {sup 137}Cs dose Annual Effective Dose for the three populations was as follows: For Enewetak, the dose was 22{+-}4 {mu}Sv. For Utirik, the dose was 33{+-} 3 {mu}Sv. Since 1985 the Rongelap people have been self-exiled to Mejatto. Biological elimination should have reduced their dose to virtually zero, and the measured dose was 2{+-}2 {mu}Sv. If they had remained on Rongelap Island, the calculated dose would have been 99 {mu}Sv, which is about one-third of the background dose. 7 refs., 1 tab. (MHB)

Sun, L.C.; Clinton, J.; Kaplan, E.; Meinhold, C.B.

1991-01-01T23:59:59.000Z

47

Arctic ice islands  

SciTech Connect

The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

1988-01-01T23:59:59.000Z

48

Bioremediation demonstration on Kwajalein Island: Site characterization and on-site biotreatability studies  

SciTech Connect

An environmental study was conducted during February 1991 on Kwajalein Island, a US Army Kwajalein Atoll (USAKA) Base in the Republic of the Marshall Islands (RMI). This study was undertaken for the US Department of Energy (DOE) Hazardous Waste Remedial Actions Program (HAZWRAP) acting in behalf of USAKA. The purpose of the study was to determine if selected locations for new construction on Kwajalein Island were contaminated by petroleum hydrocarbons as suspected and, if so, whether bioremediation appeared to be a feasible technology for environmental restoration. Two different sites were evaluated: (1) the site planned freshwater production facility and (2) a site adjacent to an aboveground diesel fuel storage tank. Within the proposed construction zone for the freshwater production facility (a.k.a desalination plant), total petroleum hydrocarbons (TPH) where either absent or at low levels. Characterization data for another potential construction site adjacent to an aboveground diesel fuel storage tank southeast of the old diesel power plant revealed high concentrations of diesel fuel in the soil and groundwater beneath the site. Results of this investigation indicate that there are petroleum-contaminated soils on Kwajalein Island and bioremediation appears to be a viable environmental restoration technique. Further experimentation and field demonstration are required to determine the design and operating conditions that provide for optimum biodegradation and restoration of the petroleum-contaminated soils. 17 refs., 7 figs., 26 figs.

Siegrist, R.L.; Korte, N.E.; Pickering, D.A. (Oak Ridge National Lab., TN (United States)); Phelps, T.J. (Tennessee Univ., Knoxville, TN (United States))

1991-09-01T23:59:59.000Z

49

MidwayUSA  

Science Conference Proceedings (OSTI)

... A refined model used for workforce planning as part of the strategic planning process is linked to financial ... Not only does this strategy create a ...

2013-01-03T23:59:59.000Z

50

Monitored plutonium aerosols at a soil cleanup site on Johnston Atoll  

Science Conference Proceedings (OSTI)

Suspended plutonium in air was monitored for four periods near the operation of a stationary sorting system used to {open_quotes}mine{close_quotes} contaminated soil on Johnston Atoll. The monitoring periods were 14 October-14 November 1992, 20 October-15 November 1993, 16 August-3 November 1994, and 17 February-27 February 1995. Pairs of high volume air samplers were located at each of four locations of the process stream: the {open_quotes}spoils pile{close_quotes} that was the feedstock, the {open_quotes}plant area{close_quotes} near the hot soil gate of the sorter, the {open_quotes}clean pile{close_quotes} conveyer area where sorted clean soil was moved, and the {open_quotes}oversize soil{close_quotes} crushing area. These locations were monitored only during the working hours, while air monitoring was also done at an upwind, {open_quotes}background{close_quotes} area 24-hours per day. The median concentrations of Pu in {open_quotes}workplace{close_quotes} air (combined spoils pile, plant area, and clean pile sites) in 1992 was 397 aCi/m{sup 3} (15 {mu}Bq/m{sup 3}), but increased to median values of 23000 aCi/m{sup 3} (852 {mu}Bq/m{sup 3}) in August-November 1994 and 29800 aCi/m{sup 3} (1100 {mu}Bq/m{sup 3}) in February 1995. The highest median value at the worksites (29800 aCi/m{sup 3}) was more than 200 times lower than the regulatory level. The highest observed value was 84200 aCi/m{sup 3} at the spoils pile site, and this was more than 70 times lower than the regulatory level. The conclusion was that, in spite of the dusty environment, and the increased level of specific activity, we did not find that the soil processing posed any significant risk to workers during the observation periods 1992-1995.

Shinn, J.H.; Fry, C.O.; Johnson, J.S.

1996-01-23T23:59:59.000Z

51

Suspended plutonium aerosols near a soil cleanup site on Johnston Atoll in 1992  

Science Conference Proceedings (OSTI)

Plutonium aerosol monitoring was conducted for one month near the 1992 operation of a stationary sorting system used to {open_quotes}mine{close_quotes} contaminated soil on Johnston Atoll. Pairs of high volume cascade impactors and a high volume air sampler were located at each of three locations of the process stream: the {open_quotes}spoils pile{close_quote} that was the feedstock, the {open_quotes}plant area{close_quotes} near the-hot soil gate of the sorter, and the {open_quotes}clean pile{close_quotes} conveyer area where sorted clean soil was moved. These locations were monitored only during the working hours, while air monitoring was also done at an upwind, uncontaminated {open_quotes}background{close_quotes} area 24-hours per day. The three monitoring locations were extremely dusty, even though there were frequent rains during the period of operation. Total suspended particulate mass loadings were 178 {mu}g/m{sup 3} at the spoils pile, 93 {mu}g/m{sup 3} at the plant area, and 79 {mu}g/m{sup 3} at the clean pile during this period, when background mass loadings were 41 {mu}g/m{sup 3}. There was no practical difference in the aerosol specific activity between the three locations, however, which had a median value of 3.64 pCi/g (135 Bq/kg). The aerosol specific activity is enhanced by a factor of 3 over the specific activity of the processed contaminant soil. This is about the same enhancement factor as found by other studies of road traffic, bulldozing, and agricultural operations. Specific activity of processed soil was 1.35 pCi/g (50 Bq/kg). The median mass-loading of the three downwind sites was 109 {mu}g/m{sup 3} (uncorrected for the sea spray contribution), so that the median concentrations in air using the median aerosol specific activity was calculated to be 397 aCi/m{sup 3} (15 {mu}Bq/m{sup 3}). Measured Pu concentrations ranged from 280 to 1508 aCi/m{sup 3} (10 to 56 {mu}Bq/m3).

Shinn, J.H.; Fry, C.F.; Johnson, J.S.

1994-02-01T23:59:59.000Z

52

CO2 Emissions - Wake Island  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel CO2 Emissions Regional Oceania Wake Island Graphics CO2 Emissions from Wake Island Data graphic Data CO2 Emissions from Wake Island image Per capita CO2...

53

Joint environmental assessment for Chevron USA, Inc. and Santa Fe Energy Resources, Inc.: Midway Valley 3D seismic project, Kern County, California  

Science Conference Proceedings (OSTI)

The proposed Midway Valley 3D Geophysical Exploration Project covers approximately 31,444 aces of private lands, 6,880 acres of Department of Energy (DOE) Lands within Naval Petroleum Reserve 2 (NPR2) and 3,840 acres of lands administered by the Bureau of Land Management (BLM), in western Kern County, California. This environmental assessment (EA) presents an overview of the affected environment within the project area using results of a literature review of biological field surveys previously conducted within or adjacent to a proposed 3D seismic project. The purpose is to provide background information to identify potential and known locations of sensitive wildlife and special status plant species within the proposed seismic project area. Biological field surveys, following agency approved survey protocols, will be conducted during October through November 1996 to acquire current resources data to provide avoidance as the project is being implemented in the field.

NONE

1996-10-01T23:59:59.000Z

54

Marshall Islands radiological followup  

SciTech Connect

In August, 1968, President Johnson announced that the people of Bikini Atoll would be able to return to their homeland. Thereafter, similar approval was given for the return of the peoples of Enewetak. These two regions, which comprised the Pacific Nuclear Testing Areas from 1946 to 1958, will probably be repopulated by the original inhabitants and their families within the next year. As part of its continuing responsibility to insure the public health and safety in connection with the nuclear programs under its sponsorship, ERDA (formerly AEC) has contracted Brookhaven National Laboratory to establish radiological safety and environmental monitoring programs for the returning Bikini and Enewetak peoples. These programs are described in the following paper. They are designed to define the external radiation environment, assess radiation doses from internal emitters in the human food chain, make long range predictions of total doses and dose commitments to individuals and to each population group, and to suggest actions which will minimize doses via the more significant pathways. (auth)

Greenhouse, N.A.; McCraw, T.F.

1976-04-30T23:59:59.000Z

55

Conservation Strategy for Sable Island  

E-Print Network (OSTI)

Towards a Conservation Strategy for Sable Island Environment Canada, Canadian Wildlife Service, Atlantic Region #12;SABLE ISLAND CONSERVATION STRATEGY page - i March, 1998 A CONSERVATION STRATEGY FOR SABLE ISLAND PREPARED BY This Conservation Strategy for Sable Island was prepared for Environment Canada

Jones, Ian L.

56

AMCHITICA ISLAND, ALASKA  

Office of Legacy Management (LM)

Environment o Environment o f AMCHITICA ISLAND, ALASKA hlelvin L. hlerritt Sandia Laboratories Albuquerque, New Mexico Editors R. Glen Fuller Battelle Colu~nbus Laboratories Columbus, Ohio Prepared for Division of Military Application Energy Research and Development Administration Published by Technical Infor~nation Center Energy Research and Development Administration Library of Congress Cataloging in Pt~blication Data hlain entry under title: The Environment of Amchitka Island, Alaska "TlD-26712." Bibliography: p. Includrs indcx. 1. Eeology-Alarka-Amchirka Island. 2. Underground nuclear explorions-lIsland. 3. Cannikin Projcct. I. hlerritt, hlelvin Leroy, 1921- 11. Fuiler, Rtxeben Glen, 1910- 111. United Stater. Energy Research and Development

57

Islands in Zonal Flow  

Science Conference Proceedings (OSTI)

The impact of a meridional gradient in sea surface temperature (warm toward the equator, cold toward the pole) on the circulation around an island is investigated. The upper-ocean eastward geostrophic flow that balances such a meridional gradient ...

Michael A. Spall

2003-12-01T23:59:59.000Z

58

Kodiak Island Wind Farm | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Kodiak Island Wind Farm Jump to: navigation, search Name Kodiak Island Wind Farm Facility Kodiak Island...

59

Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-147 (Big Eddy-Chenoweth NO. 1&2, Big Eddy - Midway & Chenoweth-Goldendale)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2003 1, 2003 REPLY TO ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-147 (Big Eddy-Chenoweth NO. 1 &2, Big Eddy - Midway & Chenoweth- Goldendale) Elizabeth Johnson Natural Resource Specialist - TFR/The Dalles Proposed Action: Vegetation Management for the Big Eddy-Chenoweth NO. 1 &2 Substation to Substation, Big Eddy - Midway Substation to 2/3) & Chenoweth-Goldendale (Substation to 2/3). Location: Project location is within Wasco County, Oregon & Klickitat County, Washington and is within the Redmond Region. Proposed by: Bonneville Power Administration (BPA). Description of the Proposal: BPA proposes to clear targeted vegetation within the right-of-way.

60

Temporal March of the Chicago Heat Island  

Science Conference Proceedings (OSTI)

Twenty years of records from Midway Airport, located within the City of Chicago, and Argonne National Laboratory, a rural site 23 km southwest of the airport, have been used to study the diurnal and seasonal variation in the Chicago urban heat ...

Bernice Ackerman

1985-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Long Island Solar Farm  

SciTech Connect

The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

Anders, R.

2013-05-01T23:59:59.000Z

62

The Effect of Islands on Surface Waves  

E-Print Network (OSTI)

offshore islands, e.g. , the Aleutian chain and the Orkneysare also noted in the Aleutian Island passages where "

Arthur, Robert S

1951-01-01T23:59:59.000Z

63

Renewable Energy Initiative (Prince Edward Island, Canada) |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Initiative (Prince Edward Island, Canada) Renewable Energy Initiative (Prince Edward Island, Canada) Eligibility Agricultural Savings For Buying & Making...

64

Biomass Guidelines (Prince Edward Island, Canada) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Guidelines (Prince Edward Island, Canada) Biomass Guidelines (Prince Edward Island, Canada) Eligibility Agricultural Construction Developer Industrial Investor-Owned...

65

GREEN HOMES LONG ISLAND  

E-Print Network (OSTI)

developed a program that enables residents to make improvements that will decrease their home energy usage energy bill, reduce your carbon footprint... at little or no cost to you. #12;A Message From Supervisor energy-efficient and reduce our community's carbon footprint. Why do we call it Long Island Green Homes

Kammen, Daniel M.

66

NUCLEAR ISLANDS International Leasing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ISLANDS ISLANDS International Leasing of Nuclear Fuel Cycle Sites to Provide Enduring Assurance of Peaceful Use Christopher E. Paine and Thomas B. Cochran Current International Atomic Energy Agency safeguards do not provide adequate protection against the diversion to military use of materials or technology from certain types of sensitive nuclear fuel cycle facilities. In view of highly enriched uranium's relatively greater ease of use as a nuclear explosive material than plutonium and the significant diseconomies of commercial spent fuel reprocessing, this article focuses on the need for improved international controls over uranium enrichment facilities as the proximate justification for creation of an International Nuclear Fuel Cycle Association (INFCA). In principle, the proposal is equally applicable to alleviating the proliferation concerns provoked by nuclear fuel

67

Rhode Island.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Rhode Island www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

68

Three Mile Island  

SciTech Connect

The Three Mile Island accident was the worst accident ever experienced by the nuclear power industry. Although the radiation exposures were extremely low, the potential for greater public exposure did exist. Fortunately, the health and safety of the public were not affected by radiation, nor was anyone killed or injured; however, thousand of lives were disrupted by fear and anxiety and by a limited evacuation. The events and actions contributing to the accident are described.

Buhl, A.R.

1980-09-01T23:59:59.000Z

69

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island June 1, 2003 ­ August 31, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

70

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

Massachusetts at Amherst, University of

71

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island June 1, 2004 ­ August 31, 2004 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

72

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island September 1, 2003 ­ November 30, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

73

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

Massachusetts at Amherst, University of

74

WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

Massachusetts at Amherst, University of

75

Minnesota Nuclear Profile - Prairie Island  

U.S. Energy Information Administration (EIA) Indexed Site

Prairie Island" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

76

Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) Facilities which compost putrescible waste andor leaf and yard waste are subject to these regulations. The...

77

Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island) The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and...

78

Cool Roofs and Heat Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

(510) 486-7494 Links Heat Island Group The Cool Colors Project Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and...

79

,"Rhode Island Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

80

CO2 Emissions - Pacific Islands (Palau)  

NLE Websites -- All DOE Office Websites (Extended Search)

Oceania Pacific Islands (Palau) Graphics CO2 Emissions from the Pacific Islands (Palau) Data graphic Data CO2 Emissions from the Pacific Islands (Palau) image Per capita CO2...

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Observations in Nonurban Heat Islands  

Science Conference Proceedings (OSTI)

The urban heat island is a well-known and well-described temperature anomaly, but other types of heat islands are also infrequently reported. A 10 km 30 km data field containing more than 100 individual winter morning air temperature ...

A. W. Hogan; M. G. Ferrick

1998-02-01T23:59:59.000Z

82

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region. In January 1997 the project entered its second and main phase with the purpose of demonstrating whether steamflood can be a more effective mode of production of the heavy, viscous oils from the Monarch Sand reservoir than the more conventional cyclic steaming. The objective is not just to produce the pilot site within the Pru Fee property south of Taft, but to test which production parameters optimize total oil recovery at economically acceptable rates of production and production costs.

Steven Schamel

1998-02-27T23:59:59.000Z

83

Offshore Islands Ltd | Open Energy Information  

Open Energy Info (EERE)

Islands Ltd Jump to: navigation, search Name Offshore Islands Ltd Sector Marine and Hydrokinetic Website http:http:www.offshoreisla Region United States LinkedIn Connections...

84

Hainan Green Islands Power | Open Energy Information  

Open Energy Info (EERE)

Islands Power Jump to: navigation, search Name Hainan Green Islands Power Place Hainan Province, China Sector Solar Product China-based JV developing on-grid solar projects....

85

US Virgin Islands Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The U.S. Virgin Islands has few conventional energy ... the Virgin Islands Water and Power Authority is exploring undersea cable links with Puerto Rico ... solar ...

86

NREL: Technology Deployment - Technical Assistance for Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

for Islands NREL provides technical assistance to help islands reduce dependence on fossil fuels and increase energy security by implementing energy efficiency measures and...

87

Small-Scale Solar Grants (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The Rhode Island Economic Development Corporation (RIEDC) provides incentives for renewable-energy projects. Incentive programs are funded by the Rhode Island Renewable Energy Fund (RIREF) and...

88

Renewable Portfolio Standard (Prince Edward Island, Canada) ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portfolio Standard (Prince Edward Island, Canada) Renewable Portfolio Standard (Prince Edward Island, Canada) Eligibility StateProvincial Govt Savings For Buying & Making...

89

Department of Energy - Prince Edward Island  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61223 en Renewable Portfolio Standard (Prince Edward Island, Canada) http:energy.govsavingsrenewable-portfolio-standard-prince-edward-island-canada

90

US Virgin Islands Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

US Virgin Islands Quick Facts. The U.S. Virgin Islands has few conventional energy resources and depends on imported crude oil for electricity ...

91

Rhode Island Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Rhode Island Quick Facts. Rhode Island had the lowest per capita total energy consumption, the third-lowest per capita petroleum consumption, and the ...

92

Videos for Wind-Driven Fires: Governors Island & Laboratory ...  

Science Conference Proceedings (OSTI)

Governors Island Experiments. Governor's Island test building. (Photo credit: NIST). Together with the Fire Department of ...

2013-04-24T23:59:59.000Z

93

Island Wide Management Corporation  

Office of Legacy Management (LM)

9 1986 9 1986 Island Wide Management Corporation 3000 Marcus Avenue Lake Success, New York 11042 Dear Sir or Madam: I am sending you this letter and the enclosed information as you have been identified by L. I. Trinin of Glick Construction Company as the representatives of the owners of the property that was formerly the site of the Sylvania-Corning Nuclear Corporation in Bayside, New York. The Department of Energy is evaluating the radiological condition of sites that were utilized under the Manhattan Engineer District and/or the Atomic Energy Commission in the early years of nuclear energy development to determine whether they need remedial action and whether the Department has authority to perform such action. As you may know, the former Sylvania-Corning Corporation Bayside site was identified as one such site.

94

Interconnection Guidelines (Rhode Island) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interconnection Guidelines (Rhode Island) Interconnection Guidelines (Rhode Island) Interconnection Guidelines (Rhode Island) < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State Rhode Island Program Type Interconnection Provider Rhode Island Public Utilities Commission Rhode Island enacted legislation (HB 6222) in June 2011 to standardize the application process for the interconnection of customer-sited renewable-energy systems to the state's distribution grid. Rhode Island's interconnection policy is not nearly as comprehensive as

95

Rhode Island/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Rhode Island Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Rhode Island No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Rhode Island No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Rhode Island No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Rhode Island Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

96

Better Buildings Neighborhood Program: Bainbridge Island, Washington  

NLE Websites -- All DOE Office Websites (Extended Search)

Bainbridge Bainbridge Island, Washington to someone by E-mail Share Better Buildings Neighborhood Program: Bainbridge Island, Washington on Facebook Tweet about Better Buildings Neighborhood Program: Bainbridge Island, Washington on Twitter Bookmark Better Buildings Neighborhood Program: Bainbridge Island, Washington on Google Bookmark Better Buildings Neighborhood Program: Bainbridge Island, Washington on Delicious Rank Better Buildings Neighborhood Program: Bainbridge Island, Washington on Digg Find More places to share Better Buildings Neighborhood Program: Bainbridge Island, Washington on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO

97

Climate Action Plan (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

In the fall of 2001, the Department of Environmental Management (DEM), the RI State Energy Office (SEO), and the Governor's office convened the Rhode Island Greenhouse Gas Stakeholder Project in...

98

Long Island | OpenEI  

Open Energy Info (EERE)

Long Island Long Island Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 79, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Electric Power Long Island projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Northeast Power Coordinating Council / Long Island- Reference Case (xls, 258.6 KiB)

99

Monhegan Island | Open Energy Information  

Open Energy Info (EERE)

Monhegan Island Monhegan Island Jump to: navigation, search Name Monhegan Island Facility Monhegan Island Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Maine State Dept of Conservation Developer DeepCWind Consortium Location Atlantic Ocean ME Coordinates 43.713°, -69.317° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.713,"lon":-69.317,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

100

Carribean Islands | OpenEI  

Open Energy Info (EERE)

Carribean Islands Carribean Islands Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal flat-plate collectors, for Mexico, Central America, and the Caribbean Islands. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. Source NREL Date Released January 31st, 2004 (10 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords Carribean Islands Central America GEF GHI GIS Mexico NREL solar SWERA UNEP Data text/csv icon Download Data (csv, 370.6 KiB) application/zip icon Download Shapefile (zip, 244 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island enacted legislation (H.B. 6104) in June 2011 establishing a feed-in tariff for new distributed renewable energy generators up to three megawatts (MW) in...

102

Rhode Island Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional...

103

Island Wakes in Deep Water  

Science Conference Proceedings (OSTI)

Density stratification and planetary rotation distinguish three-dimensional island wakes significantly from a classical fluid dynamical flow around an obstacle. A numerical model is used to study the formation and evolution of flow around an ...

Changming Dong; James C. McWilliams; Alexander F. Shchepetkin

2007-04-01T23:59:59.000Z

104

Alternative Fuels Data Center: Rhode Island Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rhode Island Rhode Island Information to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Information on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Information on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Information on Google Bookmark Alternative Fuels Data Center: Rhode Island Information on Delicious Rank Alternative Fuels Data Center: Rhode Island Information on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Information on AddThis.com... Rhode Island Information This state page compiles information related to alternative fuels and advanced vehicles in Rhode Island and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact.

105

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steam was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objective of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

Schamel, Steven

1999-07-08T23:59:59.000Z

106

State Energy Program Assurances - Virgin Islands Governor de...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virgin Islands Governor de Jongh State Energy Program Assurances - Virgin Islands Governor de Jongh Letter from Virgin Islands Governor de Jongh providing Secretary Chu with the...

107

Prehistoric Exploitation of Albatross on the Southern California Channel Islands  

E-Print Network (OSTI)

J. 1959 Fauna of the Aleutian Islands and Alaska Peninsula.398. Yesner, David R. 1976 Aleutian Island Albatrosses: Aor in the more northem Aleutian Islands (Yesner 1976), these

Porcasi, Judith F.

1999-01-01T23:59:59.000Z

108

Rhode Island - State Energy Profile Analysis - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Solar Energy in Brief. ... US Virgin Islands: Overview; Data; Economy; ... Rhode Islands energy resources include fuelwood in the south and wind power on and ...

109

US Virgin Islands-Energy Development in Island Nations (EDIN) Pilot Project  

Open Energy Info (EERE)

US Virgin Islands-Energy Development in Island Nations (EDIN) Pilot Project US Virgin Islands-Energy Development in Island Nations (EDIN) Pilot Project Jump to: navigation, search Logo: US Virgin Islands-Energy Development in Island Nations (EDIN) Pilot Project Name US Virgin Islands-Energy Development in Island Nations (EDIN) Pilot Project Agency/Company /Organization National Renewable Energy Laboratory, United States Department of Energy Partner EDIN Initiative Partners Sector Energy Focus Area Energy Efficiency Topics Background analysis, Low emission development planning Website http://www.edinenergy.org/usvi Country US Virgin Islands Latin America and the Caribbean References National Renewable Energy Laboratory, EERE Supported International Activities FY 2009 Annual Operating Plan (August 25, 2009 Abstract The purpose of the EDIN pilot is to have a meaningful impact in a short duration by developing clean energy technologies, policies, and financing mechanisms for the pilot island with projects whose elements can be repeated on other islands.

110

Long Island STEM Hub Summit  

NLE Websites -- All DOE Office Websites (Extended Search)

Questionnaire Questionnaire Event Information pulldown Registered Attendees Directions to Event Campus Map (pdf) Local Weather Visiting Brookhaven Disclaimer Event Date December 6, 2011 Event Location SUNY Farmingdale State College 2350 Broadhollow Road Farmingdale, NY 11735-1021 USA Roosevelt Hall Directions | Campus Map (pdf) Event Coordinator Ken White Bus: 631-344-7171 Fax: 631-344-5832 Email: stemhub@bnl.gov Long Island STEM Hub Summit Join us for the Launch of the Long Island Regional STEM Hub Motivation The LI Regional STEM Hub, one of ten forming in the Empire State STEM Learning Network, will focus on preparing students for the Long Island workforce through enhanced science, technology, engineering, and mathematics (STEM) experiences for students and teachers. Academic relevance will serve as the major theme by making it easy for

111

Long Island Solar Farm Project Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Island Solar Farm Island Solar Farm Project Overview The Long Island Solar Farm (LISF) is a 32-megawatt solar photovoltaic power plant built through a collaboration including BP Solar, the Long Island Power Authority (LIPA), and the Department of Energy. The LISF, located on the Brookhaven National Laboratory site, began delivering power to the LIPA grid in November 2011, and is currently the largest solar photovoltaic power plant in the Eastern United States. It is generating enough renewable

112

Rhode Island Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

... including hydroelectric power, municipal solid waste, and landfill gas. Rhode Island has potential wind energy generation from offshore wind farms.

113

Islands and Our Renewable Energy Future (Presentation)  

DOE Green Energy (OSTI)

Only US Laboratory Dedicated Solely to Energy Efficiency and Renewable Energy. High Contribution Renewables in Islanded Power Systems.

Baring-Gould, I.; Gevorgian, V.; Kelley, K.; Conrad, M.

2012-05-01T23:59:59.000Z

114

Water Quality Regulations (Rhode Island) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulations (Rhode Island) Water Quality Regulations (Rhode Island) Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public...

115

Fox Islands Wind Project | Open Energy Information  

Open Energy Info (EERE)

Fox Islands Wind Project Fox Islands Wind Project Facility Fox Islands Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Fox Islands Electric Cooperative Developer Fox Islands Electric Cooperative Energy Purchaser Fox Islands Electric Cooperative Location Vinalhaven Island ME Coordinates 44.088391°, -68.857802° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.088391,"lon":-68.857802,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

MWRA Deer Island Wind | Open Energy Information  

Open Energy Info (EERE)

MWRA Deer Island Wind MWRA Deer Island Wind Jump to: navigation, search Name MWRA Deer Island Wind Facility MWRA Deer Island Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MWRA Deer Island Energy Purchaser MWRA Deer Island Location Deer Island MA Coordinates 42.346751°, -70.957006° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.346751,"lon":-70.957006,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

117

Magnetic island evolution in hot ion plasmas  

SciTech Connect

Effects of finite ion temperature on magnetic island evolution are studied by means of numerical simulations of a reduced set of two-fluid equations which include ion as well as electron diamagnetism in slab geometry. The polarization current is found to be almost an order of magnitude larger in hot than in cold ion plasmas, due to the strong shear of ion velocity around the separatrix of the magnetic islands. As a function of the island width, the propagation speed decreases from the electron drift velocity (for islands thinner than the Larmor radius) to values close to the guiding-center velocity (for islands of order 10 times the Larmor radius). In the latter regime, the polarization current is destabilizing (i.e., it drives magnetic island growth). This is in contrast to cold ion plasmas, where the polarization current is generally found to have a healing effect on freely propagating magnetic island.

Ishizawa, A.; Nakajima, N. [National Institute for Fusion Science, Toki 509-5292 (Japan); Waelbroeck, F. L.; Fitzpatrick, R.; Horton, W. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)

2012-07-15T23:59:59.000Z

118

INTEGRAL spectral variability study of the atoll 4U 1820-30: first detection of hard X-ray emission  

E-Print Network (OSTI)

We study the 4-200 keV spectral and temporal behaviour of the low mass X-ray binary 4U 1820-30 with INTEGRAL during 2003-2005. This source as been observed in both the soft (banana) and hard (island) spectral states. A high energy tail, above 50 keV, in the hard state has been observed for the first time. This places the source in the category of X-ray bursters showing high-energy emission. The tail can be modeled as a soft power law component, with the photon index of ~2.4, on top of thermal Comptonization emission from a plasma with the electron temperature of kT_e~6 keV and optical depth of \\tau~4. Alternatively, but at a lower goodness of the fit, the hard-state broad band spectrum can be accounted for by emission from a hybrid, thermal-nonthermal, plasma. During this monitoring the source spent most of the time in the soft state, usual for this source, and the >~4 keV spectra are represented by thermal Comptonization with kT_e~3 keV and \\tau~6-7.

Antonella Tarana; Angela Bazzano; Pietro Ubertini; Andrzej A. Zdziarski

2006-08-28T23:59:59.000Z

119

TWP Island Cloud Trail Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Pacific Island Cloud Trail Studies Pacific Island Cloud Trail Studies W. M. Porch Los Alamos National Laboratory Los Alamos, New Mexico S. Winiecki University of Chicago Chicago, Illinois Introduction Images and surface temperature measurements from the U.S. Department of Energy (DOE) Multi- spectral Thermal Imaging (MTI) satellite are combined with geostationary meteorological satellite (GMS) images during 2000 and 2001 to better understand cloud trail formation characteristics from the Atmospheric Radiation Measurement (ARM) Tropical Western Pacific (TWP) site. Figure 1 shows a comparison on two consecutive days in December 2000. The day for which a cloud trail developed was more moist and cooler at the altitude the cloud developed (about 600 m) and there was very little

120

Pathogenicity island mobility and gene content.  

SciTech Connect

Key goals towards national biosecurity include methods for analyzing pathogens, predicting their emergence, and developing countermeasures. These goals are served by studying bacterial genes that promote pathogenicity and the pathogenicity islands that mobilize them. Cyberinfrastructure promoting an island database advances this field and enables deeper bioinformatic analysis that may identify novel pathogenicity genes. New automated methods and rich visualizations were developed for identifying pathogenicity islands, based on the principle that islands occur sporadically among closely related strains. The chromosomally-ordered pan-genome organizes all genes from a clade of strains; gaps in this visualization indicate islands, and decorations of the gene matrix facilitate exploration of island gene functions. A %E2%80%9Clearned phyloblocks%E2%80%9D method was developed for automated island identification, that trains on the phylogenetic patterns of islands identified by other methods. Learned phyloblocks better defined termini of previously identified islands in multidrug-resistant Klebsiella pneumoniae ATCC BAA-2146, and found its only antibiotic resistance island.

Williams, Kelly Porter

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Accelerator Mass Spectrometry Measurements of Plutonium in Sediment and Seawater from the Marshall Islands  

Science Conference Proceedings (OSTI)

During the summer 2000, I was given the opportunity to work for about three months as a technical trainee at Lawrence Livermore National Laboratory, or LLNL as I will refer to it hereafter. University of California runs this Department of Energy laboratory, which is located 70 km east of San Francisco, in the small city of Livermore. This master thesis in Radioecology is based on the work I did here. LLNL, as a second U.S.-facility for development of nuclear weapons, was built in Livermore in the beginning of the 1950's (Los Alamos in New Mexico was the other one). It has since then also become a 'science center' for a number of areas like magnetic and laser fusion energy, non-nuclear energy, biomedicine, and environmental science. The Laboratory's mission has changed over the years to meet new national needs. The following two statements were found on the homepage of LLNL (http://www.llnl.gov), at 2001-03-05, where also information about the laboratory and the scientific projects that takes place there, can be found. 'Our primary mission is to ensure that the nation's nuclear weapons remain safe, secure, and reliable and to prevent the spread and use of nuclear weapons worldwide'. 'Our goal is to apply the best science and technology to enhance the security and well-being of the nation and to make the world a safer place.' The Marshall Islands Dose Assessment and Radioecology group at the Health and Ecological Assessments division employed me, and I also worked to some extent with the Centre for Accelerator Mass Spectrometry (CAMS) group. The work I did at LLNL can be divided into two parts. In the first part Plutonium (Pu) measurements in sediments from the Rongelap atoll in Marshall Islands, using Accelerator Mass Spectrometry (AMS) were done. The method for measuring these kinds of samples is well understood at LLNL since soil samples have been measured with AMS for Pu in the past. Therefore it was the results that were of main interest and not the technique. The second part was to take advantage of AMS's very high sensitivity by measure the Pu-concentrations in small volumes (0.04-1 L) of seawater. The technique for using AMS at Pu-measurements in seawater is relatively new and the main task for me was to find out a method that could work in practice. The area where the sediment samples and the water samples were collected are high above background levels for many radionuclides, including Pu, because of the detonation of the nuclear bomb code-named Castle Bravo, in 1954.

Leisvik, M; Hamilton, T

2001-08-01T23:59:59.000Z

122

Fire Island Wind Project | Open Energy Information  

Open Energy Info (EERE)

Island Wind Project Island Wind Project Jump to: navigation, search Name Fire Island Wind Project Facility Fire Island Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner CIRI Developer Fire Island Wind LLC Energy Purchaser Chugach Location Fire Island AK Coordinates 61.144146°, -150.217652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.144146,"lon":-150.217652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

Case Closed on Nauru Island Effect  

NLE Websites -- All DOE Office Websites (Extended Search)

Closed on Nauru Island Effect Closed on Nauru Island Effect For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight The tiny 4-kilometer-by-6-kilometer island of Nauru is isolated in the equatorial Pacific Ocean with naught but a few small scattered islands for thousands of kilometers around. Thus, the ARM measurements made there are intended to represent the larger surrounding oceanic area. But decades of phosphate mining have left large barren karst fields as the predominant land surface over most of the center of the island, making it much more susceptible to solar heating than typical tropical vegetated surfaces. During the Nauru99 campaign, small cumulus clouds were observed at times forming over the center of the island, advecting over the ARM site

124

Long Island Solar Farm | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Long Island Solar Farm Long Island Solar Farm Project Overview The Long Island Solar Farm (LISF) is a 32-megawatt solar photovoltaic power plant built through a collaboration including BP Solar, the Long Island Power Authority (LIPA), and the Department of Energy. The LISF, located on the Brookhaven National Laboratory site, began delivering power to the LIPA grid in November 2011, and is currently the largest solar photovoltaic power plant in the Eastern United States. It is generating enough renewable energy to power approximately 4,500 homes, and is helping New York State meet its clean energy and carbon reduction goals. Project Developer/Owner/Operator: Long Island Solar Farm, LLC (BP Solar & MetLife) Purchaser of Power: Long Island Power Authority (LIPA) purchases 100

125

Rhode Island | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Rhode Island Last updated on 2013-11-05 Current News 2012 IECC adopted July 1, 2013 Commercial Residential Code Change Current Code 2012 IECC Amendments / Additional State Code Information The Rhode Island commercial code is the 2012 IECC with reference to ASHRAE 90.1-2010. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Rhode Island (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2012 IECC Effective Date 07/01/2013 Adoption Date 07/01/2013 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: Yes Rhode Island DOE Determination Letter, May 31, 2013 Rhode Island State Certification of Commercial and Residential Building Energy Codes

126

Aeromagnetic Survey And Interpretation, Ascention Island, South...  

Open Energy Info (EERE)

potential of the island, is described. The aeromagnetic map represents a basic data set useful for the interpretation of subsurface geology. An in situ magnetic...

127

Ecosystem dynamics of the Aleutian Islands.  

E-Print Network (OSTI)

??Located between Asia and America and extending over a 1,000 mi., the Aleutian Islands have commonly been studied in a partial or fragmented manner. This (more)

Ortiz, Ivonne

2007-01-01T23:59:59.000Z

128

WIND DATA REPORT Deer Island Outfall  

E-Print Network (OSTI)

WIND DATA REPORT Deer Island Outfall August 18, 2003 ­ December 4, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

Massachusetts at Amherst, University of

129

ANNUAL WIND DATA REPORT Thompson Island  

E-Print Network (OSTI)

ANNUAL WIND DATA REPORT Thompson Island March 1, 2002 ­ February 28, 2003 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

Massachusetts at Amherst, University of

130

WIND DATA REPORT Deer Island Parking Lot  

E-Print Network (OSTI)

WIND DATA REPORT Deer Island Parking Lot May 1, 2003 ­ July 15, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

Massachusetts at Amherst, University of

131

Appliance and Equipment Efficiency Standards (Rhode Island) ...  

Open Energy Info (EERE)

increased efficiency standards for the products currently covered may be adopted Test Methods Specified in standards or State Building Code of Rhode Island Date added to...

132

Pennsylvania Nuclear Profile - Three Mile Island  

U.S. Energy Information Administration (EIA) Indexed Site

Three Mile Island" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

133

Prince Edward Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Municipal Affairs under the Community Development Equity Tax Credit Act and its regulations. Its objective is to facilitate local investment in Prince Edward Island...

134

Prince Edward Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Portfolio Standard (Prince Edward Island, Canada) For the calendar year beginning on January 1, 2010 and for each calendar year thereafter, every public utility shall...

135

Microsoft Word - rhode_island.doc  

Gasoline and Diesel Fuel Update (EIA)

Rhode Island Rhode Island NERC Region(s) ....................................................................................................... NPCC Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 1,782 49 Electric Utilities ...................................................................................................... 7 50 Independent Power Producers & Combined Heat and Power ................................ 1,775 37 Net Generation (megawatthours) ........................................................................... 7,738,719 47

136

Biofuel Feedstock Inter-Island Transportation  

E-Print Network (OSTI)

Biofuel Feedstock Inter-Island Transportation Prepared for the U.S. Department of Energy Office agency thereof. #12;A Comparison of Hawaii's Inter-Island Maritime Transportation of Solid Versus Liquid of Honolulu Advertiser ISO Tank Container, courtesy of Hawaii Intermodal Tank Transport Petroleum products

137

Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations  

Open Energy Info (EERE)

Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations During And After The Volcanic Crisis Of Spring 1990, And Monitoring Prior To The May 2003 Eruption Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations During And After The Volcanic Crisis Of Spring 1990, And Monitoring Prior To The May 2003 Eruption Details Activities (0) Areas (0) Regions (0) Abstract: Anatahan island is 9.5 km east-west by 3.5 km north-south and truncated by an elongate caldera 5 km east-west by 2.5 km north-south. A steep-walled pit crater ~1 km across and ~200 m deep occupies the eastern part of the caldera. The island is the summit region of a mostly submarine stratovolcano. The oldest subaerial rocks (stage 1) are exposed low on the

138

Living on Long Island | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Careers at Brookhaven Careers at Brookhaven Home For Job Seekers Job List Life at Brookhaven Benefits Family Programs Recreation & Fitness Why Brookhaven? For New Hires For Employees Living on Long Island Stretching 118 miles from end to end and measuring no more than 20 miles at its widest point, Long Island was aptly named by Dutch traders who circum-navigated it in the early 1600s. Those early Dutchmen discovered what the native Indians had known for centuries: The temperate climate, the bountiful seas and the fertile land made Long Island a most hospitable home. Local Area Information Long Island Schools Parks Beaches Wineries New York City Today, Brookhaven National Laboratory sits in the geographical center of Long Island. To the west, New York City boasts Broadway shows, museums,

139

Paving materials for heat island mitigation  

NLE Websites -- All DOE Office Websites (Extended Search)

Paving materials for heat island mitigation Paving materials for heat island mitigation Title Paving materials for heat island mitigation Publication Type Report Year of Publication 1997 Authors Pomerantz, Melvin, Hashem Akbari, Allan Chen, Haider Taha, and Arthur H. Rosenfeld Keywords Cool Pavements, Heat Island Abstract This report summarizes paving materials suitable for urban streets, driveways, parking lots and walkways. The authors evaluate materials for their abilities to reflect sunlight, which will reduce their temperatures. This in turn reduces the excess air temperature of cities (the heat island effect). The report presents the compositions of the materials, their suitability for particular applications, and their approximate costs (in 1996). Both new and resurfacing are described. They conclude that, although light-colored materials may be more expensive than conventional black materials, a thin layer of light-colored pavement may produce energy savings and smog reductions whose long-term worth is greater than the extra cost.

140

Block Island Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Block Island Wind Farm Block Island Wind Farm Jump to: navigation, search Name Block Island Wind Farm Facility Block Island Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Deepwater Wind Location Offshore from Block Island RI Coordinates 41.1°, -71.53° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1,"lon":-71.53,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Electron energization during magnetic island coalescence  

SciTech Connect

Radio emission from colliding coronal mass ejection flux ropes in the interplanetary medium suggested the local generation of superthermal electrons. Inspired by those observations, a fully kinetic particle-in-cell simulation of magnetic island coalescence models the magnetic reconnection between islands as a source of energetic electrons. When the islands merge, stored magnetic energy is converted into electron kinetic energy. The simulation demonstrates that a mechanism for electron energization originally applied to open field line reconnection geometries also operates near the reconnection site of merging magnetic islands. The electron heating is highly anisotropic, and it results mainly from an electric field surrounding the reconnection site that accelerates electrons parallel to the magnetic field. A detailed theory predicts the maximum electron energies and how they depend on the plasma parameters. In addition, the global motion of the magnetic islands launches low-frequency waves in the surrounding plasma, which induce large-amplitude, anisotropic fluctuations in the electron temperature.

Le, A.; Egedal, J. [MIT, Cambridge, Massachusetts 02139 (United States); Karimabadi, H.; Roytershteyn, V. [University of California-San Diego, La Jolla, California 92093 (United States); Daughton, W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2012-07-15T23:59:59.000Z

142

Rhode Island Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

(Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com Rhode Island Gas Prices (Ciudades Selectas) - GasBuddy.com Rhode Island Gas Prices (Organizado por Condado) -...

143

Prince Edward Island/EZFeed Policies | Open Energy Information  

Open Energy Info (EERE)

Island, Canada) Prince Edward Island Environmental Regulations Yes BiomassBiogas Coal with CCS Natural Gas Nuclear StateProvince Companies that operate any of the...

144

Green Island Power Authority Transmission Voltage Support System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Island Power Authority Transmission Voltage Support System Project Green Island Power Authority Transmission Voltage Support System Project Power point presentation...

145

Price of Elba Island, GA Liquefied Natural Gas Total Imports...  

Annual Energy Outlook 2012 (EIA)

Elba Island, GA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet) Price of Elba Island, GA Liquefied Natural Gas Total Imports (Dollars per Thousand Cubic Feet)...

146

Rhode Island/EZ Policies | Open Energy Information  

Open Energy Info (EERE)

are included in National Grid's tariffs, which are accessible via the PUC's web site. Job Creation Guaranty Program (Rhode Island) Rhode Island Loan Program Yes StateProvince...

147

2013 Asian American & Pacific Islander Heritage Month Resources...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Asian American & Pacific Islander Heritage Month Resources and Theme 2013 Asian American & Pacific Islander Heritage Month Resources and Theme April 3, 2013 - 1:43pm Addthis...

148

Job Training Tax Credit (Rhode Island) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Job Training Tax Credit (Rhode Island) Job Training Tax Credit (Rhode Island) Eligibility Agricultural Commercial Construction Developer Industrial InstallerContractor Savings For...

149

Renewable Energy Act (Prince Edward Island, Canada) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Act (Prince Edward Island, Canada) Renewable Energy Act (Prince Edward Island, Canada) Eligibility Commercial Developer General PublicConsumer Industrial Installer...

150

Climate Action Plan (Prince Edward Island, Canada) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Climate Action Plan (Prince Edward Island, Canada) Climate Action Plan (Prince Edward Island, Canada) Eligibility Commercial Developer General PublicConsumer Industrial...

151

Mass Wasting in the Western Galapagos Islands  

E-Print Network (OSTI)

Oceanic island volcanoes such as those in the Hawaiian, Canary and Galapagos Islands are known to become unstable, causing failures of the subaerial and submarine slopes of the volcanic edifices. These mass wasting events appear to be the primary source of destruction and loss of volume of many oceanic islands, but our knowledge of mass wasting is still rudimentary in many seamount and island chains. To better understand mass wasting in the western Galapagos Islands, multi-beam bathymetry and backscatter sidescan sonar images were used to examine topography and acoustic backscatter signatures that are characteristic of mass wasting. Observations show that mass wasting plays an important role in the development of Galapagos volcanoes. While volcanic activity continues to conceal the submarine terrain, the data show that four forms of mass wasting are identified including debris flows, slumps sheets, chaotic slumps, and detached blocks. A total of 23 mass wasting features were found to exist in the western Galapagos Islands, including fourteen debris flows with one that incorporated a set of detached blocks, seven slump sheets, and one chaotic slump. Some of the indentified features have obvious origination zones while the sources of others are not clearly identifiable. Approximately 73 percent of the surveyed coastlines are affected by slumping on the steep upper slopes and ~64 percent are affected by debris flows on the lower slopes. Unlike the giant landslides documented by GLORIA imagery around the Hawaiian Islands, the western Galapagos Islands appear to be characterized by small slump sheets existing along the steep shallow submarine flanks of the island and by debris flows that are flanked by rift zones and extend off the platform. This study indicates that submarine mass wasting is widespread in the western Galapagos, suggesting that the production of small-scale downslope movement is part of the erosive nature of these oceanic volcanic islands.

Hall, Hillary

2011-08-01T23:59:59.000Z

152

Northern Mariana Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mariana Islands: Energy Resources Mariana Islands: Energy Resources Jump to: navigation, search Name Northern Mariana Islands 2-letter ISO code MP 3-letter ISO code MNP Numeric ISO code 580 Equivalent URI DBpedia GeoNames ID 4041468 Advanced Economy[1] No References CIA World Factbook, Appendix D[2] Wikipedia[3] Geonames[4] This article is a stub. You can help OpenEI by expanding it. The Northern Mariana Islands is a commonwealth in political union with the United States of America. Energy Incentives for Northern Mariana Islands N. Mariana Islands - Building Energy Code (N. Mariana Islands) N. Mariana Islands - Energy Star Rebate Program (N. Mariana Islands) N. Mariana Islands - Renewables Portfolio Standard (N. Mariana Islands) References ↑ IMF World Economic Outlook Database April 2009 -- WEO Groups and

153

Amchitka Island, Alaska, special sampling project 1997  

Science Conference Proceedings (OSTI)

This 1997 special sampling project represents a special radiobiological sampling effort to augment the 1996 Long-Term Hydrological Monitoring Program (LTHMP) for Amchitka Island in Alaska. Lying in the western portion of the Aleutian Islands arc, near the International Date Line, Amchitka Island is one of the southernmost islands of the Rat Island Chain. Between 1965 and 1971, the U.S. Atomic Energy Commission conducted three underground nuclear tests on Amchitka Island. In 1996, Greenpeace collected biota samples and speculated that several long-lived, man-made radionuclides detected (i.e., americium-241, plutonium-239 and -240, beryllium-7, and cesium-137) leaked into the surface environment from underground cavities created during the testing. The nuclides of interest are detected at extremely low concentrations throughout the environment. The objectives of this special sampling project were to scientifically refute the Greenpeace conclusions that the underground cavities were leaking contaminants to the surface. This was achieved by first confirming the presence of these radionuclides in the Amchitka Island surface environment and, second, if the radionuclides were present, determining if the source is the underground cavity or worldwide fallout. This special sampling and analysis determined that the only nonfallout-related radionuclide detected was a low level of tritium from the Long Shot test, which had been previously documented. The tritium contamination is monitored and continues a decreasing trend due to radioactive decay and dilution.

U.S. Department of Energy, Nevada Operations Office

2000-06-28T23:59:59.000Z

154

Northern Mariana Islands - Territory Energy Profile Overview - U.S ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... solar, wind, geothermal, biomass and ethanol. ... Puerto Rico US Virgin Islands: Overview; Data;

155

Northern Mariana Islands - Territory Energy Profile Analysis - U.S ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... solar, wind, geothermal, biomass and ethanol. ... Puerto Rico US Virgin Islands: Overview; Data;

156

Definition: Automated Islanding And Reconnection | Open Energy Information  

Open Energy Info (EERE)

Islanding And Reconnection Islanding And Reconnection Jump to: navigation, search Dictionary.png Automated Islanding And Reconnection Automated Islanding and Reconnection Automated islanding and reconnection is achieved by automated separation and subsequent reconnection (autonomous synchronization) of an independently operated portion of the T&D system (i.e., microgrid) from the interconnected electric grid. A microgrid is an integrated energy system consisting of interconnected loads and distributed energy resources which, as an integrated system, can operate in parallel with the grid or as an island.[1] View on Wikipedia Wikipedia Definition Islanding refers to the condition in which a distributed (DG) generator continues to power a location even though electrical grid power

157

Bluewater Wind Rhode Island | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search Name Bluewater Wind Rhode Island Facility Bluewater Wind Rhode Island Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner NRG Bluewater Wind Developer NRG Bluewater Wind Location Atlantic Ocean RI Coordinates 41.357°, -71.152° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.357,"lon":-71.152,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

158

University of Rhode Island | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Rhode Island Address Department of Ocean Engineering, Sheets Building, Bay Campus Place Narragansett, Rhode Island Zip 02882 Sector Hydro Phone number (401) 874-6139 Website http://www.oce.uri.edu/baycamp Coordinates 41.3983403°, -71.4893013° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3983403,"lon":-71.4893013,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

159

Island Energy Solutions | Open Energy Information  

Open Energy Info (EERE)

Island Energy Solutions Island Energy Solutions Jump to: navigation, search Name Island Energy Solutions Place Kailua, Hawaii Zip 96734 Product Island Energy Solutions, Inc. is an electrical contracting company, based out of Kailua, Oahu, Hawaii. Coordinates 21.396572°, -157.740068° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.396572,"lon":-157.740068,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

Recovery Act State Memos Mariana Islands  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the the Northern Mariana Islands to play an important role in the new energy economy of the future. EXAMPLES OF NORTHERN MARIANA ISLANDS FORMULA GRANTS Program Award State Energy Program Weatherization Assistance Program Energy Efficiency Conservation Block Grants Energy Efficiency Appliance Rebate Program $18.7 million $29.4 million $9.6 million $0.1 million The Commonwealth of the Northern Mariana Islands has received $18.7 million in State Energy Program funds to invest in state- and territory- level energy efficiency and renewable energy priorities. The Commonwealth of the Northern Mariana Islands has received over $29.4 million in Weatherization Assistance Program funds to scale-up existing weatherization efforts in the

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Metromorphosis : evolution on the urban island  

E-Print Network (OSTI)

Cities are very much alive. Like islands, they provide a natural testing ground for evolution. With more than half of the world's population living in urban areas now, the influence cities have on the planet's life is ...

Vezina, Kenrick (Kenrick Freitas)

2011-01-01T23:59:59.000Z

162

Extreme Rainfall Events in the Hawaiian Islands  

Science Conference Proceedings (OSTI)

Heavy rainfall and the associated floods occur frequently in the Hawaiian Islands and have caused huge economic losses as well as social problems. Extreme rainfall events in this study are defined by three different methods based on 1) the mean ...

Pao-Shin Chu; Xin Zhao; Ying Ruan; Melodie Grubbs

2009-03-01T23:59:59.000Z

163

A Numerical Investigation of Tropical Island Thunderstorms  

Science Conference Proceedings (OSTI)

A version of the United Kingdom Meteorological Office mesoscale weather prediction model is used to simulate cases of deep tropical convection from the Island Thunderstorm Experiment off the north coast of Australia. Selected cases contrast ...

B. W. Golding

1993-05-01T23:59:59.000Z

164

Interaction of Ekman Layers and Islands  

Science Conference Proceedings (OSTI)

The circulation induced by the interaction of surface Ekman transport with an island is considered using both numerical models and linear theory. The basic response is similar to that found for the interaction of Ekman layers and an infinite ...

Michael A. Spall; Joseph Pedlosky

2013-05-01T23:59:59.000Z

165

Urban Heat Island Assessment: Metadata Are Important  

Science Conference Proceedings (OSTI)

Urban heat island (UHI) analyses for the conterminous United States were performed using three different forms of metadata: nightlights-derived metadata, map-based metadata, and gridded U.S. Census Bureau population metadata. The results ...

Thomas C. Peterson; Timothy W. Owen

2005-07-01T23:59:59.000Z

166

Job Creation Guaranty Program (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

RIEDCs Job Creation Guaranty Program provides businesses looking to expand or relocate in Rhode Island with access to capital and credit. RIEDC guarantees loans by private lenders or guarantees...

167

commentary / book review: Island Biogeography: Paradigm Lost?  

E-Print Network (OSTI)

America. Areviewofthisbookwillappearinafuture1948?6596 commentary/bookreview IslandBiogeography:and Wilsons 1967 book, and the earlier but less

Heaney, Lawrence R.

2011-01-01T23:59:59.000Z

168

Pennsylvania Nuclear Profile - Three Mile Island  

U.S. Energy Information Administration (EIA)

snpt3pa8011 805 6,634 94.1 PWR Three Mile Island Unit Type Data for 2010 PWR = Pressurized Light Water Reactor. Note: Totals may not equal sum of ...

169

US Virgin Islands renewable energy future  

E-Print Network (OSTI)

The US Virgin Islands must face drastic changes to its electrical system. There are two problems with electricity production in the USVI-it's dirty and it's expensive. Nearly one hundred percent of the electricity in these ...

Oldfield, Brian (Brian K.)

2013-01-01T23:59:59.000Z

170

Southern California Channel Islands Bibliography, through 1992  

E-Print Network (OSTI)

Radiolarians in the Gulf of California; Deep Sea DrillingSanta Cruz Island, California. Howell DG, AFFL: U.S. Geol.of southern California continental borderland [abstract]. in

Channel Islands National Marine Sanctuary

1992-01-01T23:59:59.000Z

171

Alternative Fuels Data Center: Rhode Island Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rhode Island Points of Rhode Island Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Points of Contact on Google Bookmark Alternative Fuels Data Center: Rhode Island Points of Contact on Delicious Rank Alternative Fuels Data Center: Rhode Island Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Points of Contact The following people or agencies can help you find more information about Rhode Island's clean transportation laws, incentives, and funding

172

59TH STREET MIDWAY PLAISANCE NORTH  

E-Print Network (OSTI)

Blackstone Villa Astronomy/ Astrophysics Graham Toyota First Unitarian Church Unitarian Campus Ministry

173

Recovery Act State Memos Rhode Island  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Rhode Island For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

174

Block Island Power Co | Open Energy Information  

Open Energy Info (EERE)

Block Island Power Co Block Island Power Co Jump to: navigation, search Name Block Island Power Co Place Rhode Island Utility Id 1857 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.4450/kWh Commercial: $0.4670/kWh The following table contains monthly sales and revenue data for Block Island Power Co (Rhode Island). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

175

National Park Service - San Miguel Island, California | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Miguel Island, California San Miguel Island, California National Park Service - San Miguel Island, California October 7, 2013 - 10:00am Addthis Photo of Wind/Photovoltaic Power System at San Miguel Island San Miguel Island is one of five islands that make up Channel Islands National Park on the coast of southern California. The islands comprise 249,353 acres (100,910 hectares) of land and ocean that teems with terrestrial and marine life. The National Park Service (NPS) protects the pristine resources at Channel Islands National Park by conserving, recycling, using alternative fuel vehicles, applying renewable energy, and using resources wisely. It also seeks to replace conventional fuels with renewable energy wherever possible. This applies especially to diesel fuel and petroleum, which must

176

Alternative Fuels Data Center: Rhode Island Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rhode Island Laws and Rhode Island Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives Listed below are incentives, laws, and regulations related to alternative

177

Rhode Island Stormwater Design and Installation Standards Manual (Rhode  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Stormwater Design and Installation Standards Manual Rhode Island Stormwater Design and Installation Standards Manual (Rhode Island) Rhode Island Stormwater Design and Installation Standards Manual (Rhode Island) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Environmental Regulations

178

Community Redevelopment Case Study: Jekyll Island  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Redevelopment Community Redevelopment Case Study: Jekyll Island Jones Hooks, Executive Director Jekyll Island Authority April 12, 2012 Community & Neighborhood Development...  State and Local Programs  Stakeholders  Components  Agendas  Schedule  MONEY  Others... "Nothing Hard Is Ever Easy!" Island Visitation: Long steady decline since 1989 "We always go to Jekyll..." became "We used to go to Jekyll..." Loss of Georgia state association conventions Occupied Room Nights and Total JIA Amenity Revenue/Room Night: FY1988-2008 $- $5.00 $10.00 $15.00 $20.00 $25.00 $30.00 $35.00 $40.00 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 Revenue/Room Night - 50,000 100,000 150,000 200,000

179

Recovery Act State Memos Mariana Islands  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Florida to play an important role in the new energy economy of the future. EXAMPLES OF NORTHERN MARIANA ISLANDS FORMULA GRANTS Program Award State Energy Program Weatherization Assistance Program Energy Efficiency Conservation Block Grants Energy Efficiency Appliance Rebate Program $18.7 million $0.8 million $9.6 million $0.1 million The Commonwealth of the Northern Mariana Islands has received $18.7 million in State Energy Program funds to invest in state- and territory-level energy efficiency and renewable energy priorities. The Commonwealth of the Northern Mariana Islands has received over $790,000 in Weatherization Assistance Program funds to scale-up existing weatherization efforts in the

180

Kauai Island Utility Cooperative | Open Energy Information  

Open Energy Info (EERE)

Island Utility Cooperative Island Utility Cooperative Jump to: navigation, search Name Kauai Island Utility Cooperative Place Hawaii Utility Id 10071 Utility Location Yes Ownership C NERC Location HICC Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png D Residential Service Residential General Light and Power Service Schedule G Commercial General Light and Power Service Schedule J Commercial Large Power Secondary Schedule P Industrial Large Power Service Schedule L Industrial

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Rhode Island Statewide Lighting Program  

SciTech Connect

This report summarizes the implementation and initial evaluation of the nation's first statewide conservation and load management program, the Rhode Island Statewide Lighting Program (RISLP). Rhode Island's program is unique because it is a voluntary collaborative effort and because three utilities use a single delivery mechanism for their programs. The Rhode Island Statewide Lighting Program is a unique attempt to improve the efficiency of electricity use in the commercial/industrial sector on a statewide basis. The cooperative nature of program design and implementation has strengthened communication among the participants. The process evaluation showed that both the participants and the customers are satisfied with the program. The program has had a significant effect on customer behavior.

Pierce, B.; Bjoerkqvist, O.

1992-02-01T23:59:59.000Z

182

Estimation of Radiation Doses in the Marshall Islands Based on Whole Body Counting of Cesium-137 (137Cs) and Plutonium Urinalysis  

SciTech Connect

Under the auspices of the U.S. Department of Energy (USDOE), researchers from the Lawrence Livermore National Laboratory (LLNL) have recently implemented a series of initiatives to address long-term radiological surveillance needs at former nuclear test sites in the Republic of the Marshall Islands (RMI). The aim of this radiological surveillance monitoring program (RSMP) is to provide timely radiation protection for individuals in the Marshall Islands with respect to two of the most important internally deposited fallout radionuclides-cesium-137 ({sup 137}Cs) and long-lived isotopes 239 and 240 of plutonium ({sup 239+240}Pu) (Robison et al., 1997 and references therein). Therefore, whole-body counting for {sup 137}Cs and a sensitive bioassay for the presence of {sup 239+240}Pu excreted in urine were adopted as the two most applicable in vivo analytical methods to assess radiation doses for individuals in the RMI from internally deposited fallout radionuclides (see Hamilton et al., 2006a-c; Bell et al., 2002). Through 2005, the USDOE has established three permanent whole-body counting facilities in the Marshall Islands: the Enewetak Radiological Laboratory on Enewetak Atoll, the Utrok Whole-Body Counting Facility on Majuro Atoll, and the Rongelap Whole-Body Counting Facility on Rongelap Atoll. These whole-body counting facilities are operated and maintained by trained Marshallese technicians. Scientists from LLNL provide the technical support and training necessary for maintaining quality assurance for data acquisition and dose reporting. This technical basis document summarizes the methodologies used to calculate the annual total effective dose equivalent (TEDE; or dose for the calendar year of measurement) based on whole-body counting of internally deposited {sup 137}Cs and the measurement of {sup 239+240}Pu excreted in urine. Whole-body counting provides a direct measure of the total amount (or burden) of {sup 137}Cs present in the human body at the time of measurement. The amount of {sup 137}Cs detected is often reported in activity units of kilo-Becquerel (kBq), where 1 kBq equals 1000 Bq and 1 Bq = 1 nuclear transformation per second (t s{sup -1}). [However, in the United States the Curie (Ci) continues to be used as the unit of radioactivity; where 1 Ci = 3.7 x 10{sup 10} Bq.] The detection of {sup 239}Pu and {sup 240}Pu in bioassay (urine) samples indicates the presence of internally deposited (systemic) plutonium in the body. Urine samples that are collected in the Marshall Islands from volunteers participating in the RSMP are transported to LLNL, where measurements for {sup 239+240}Pu are performed using a state-of-the-art technology based on Accelerator Mass Spectrometry (AMS) (Hamilton et al., 2004, 2007; Brown et al., 2004). The urinary excretion of plutonium by RSMP volunteers is usually described in activity units, expressed as micro-Becquerel ({micro}Bq) of {sup 239+240}Pu (i.e., representing the sum of the {sup 239}Pu and {sup 240}Pu activity) excreted (lost) per day (d{sup -1}), where 1 {micro}Bq d{sup -1} = 10{sup -6} Bq d{sup -1} and 1 Bq = 1 t s{sup -1}. The systemic burden of plutonium is then estimated from biokinetic relationships as described by the International Commission on Radiological Protection (e.g., see ICRP, 1990). In general, nuclear transformations are accompanied by the emission of energy and/or particles in the form of gamma rays ({gamma}), beta particles ({beta}), and/or alpha particles ({alpha}). Tissues in the human body may adsorb these emissions, where there is a potential for any deposited energy to cause biological damage. The general term used to quantify the extent of any radiation exposure is referred to as the dose. The equivalent dose is defined by the average absorbed dose in an organ or tissue weighted by the average quality factor for the type and energy of the emission causing the dose. The effective dose equivalent (EDE; as applied to the whole body), is the sum of the average dose equivalent for each tissue weighted by each applicable tissue-specific weighing factor

Daniels, J; Hickman, D; Kehl, S; Hamilton, T

2007-06-11T23:59:59.000Z

183

Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world's largest no-take marine protected area  

E-Print Network (OSTI)

are standard error bars. Figure 6. Change in reef fish species richness across seven countries in the Indian out in 2006 in all atolls (Tamelander et al., 2009) based on standard port survey methods (Hewitt

Purkis, Sam

184

Solomon Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Solomon Islands: Energy Resources Solomon Islands: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-8,"lon":159,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

185

Recovery Act State Memos Virgin Islands  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virgin Virgin Islands For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 For total Recovery Act jobs numbers in the U.S. Virgin Islands go to www.recovery.gov

186

Cayman Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cayman Islands: Energy Resources Cayman Islands: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.5,"lon":-80.66667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island: Energy Resources Rhode Island: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5800945,"lon":-71.4774291,"alt":0,"address":"Rhode

188

Marshall Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Marshall Islands: Energy Resources Marshall Islands: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":10,"lon":167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

189

ARM - PI Product - Nauru Island Effect Detection Data Set  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsNauru Island Effect Detection Data Set Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Nauru Island Effect...

190

Alternative Fuels Data Center: Rhode Island Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives Listed below are the summaries of all current Rhode Island laws, incentives, regulations, funding opportunities, and other initiatives

191

Energy Office Grant Helps the Virgin Islands Environmental Resource Station  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office Grant Helps the Virgin Islands Environmental Resource Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% (Fact Sheet), Energy Development in Island Nations, U.S. Virgin Islands (EDIN) Energy Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% (Fact Sheet), Energy Development in Island Nations, U.S. Virgin Islands (EDIN) This fact sheet highlights the energy challenges faced by the Virgin Islands Environmental Resource Station, the renewable energy and energy efficiency solutions implemented, the resulting energy efficiency savings, and other project benefits. 54376.pdf More Documents & Publications USVI Energy Road Map: Charting the Course to a Clean Energy Future

192

Rhode Island Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Recovery Act State Memo Rhode Island Recovery Act State Memo Rhode Island Recovery Act State Memo Rhode Island has substantial natural resources, including wind and biomass. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Rhode Island are supporting a broad range of clean energy projects, from weatherization to smart grid workforce training. Through these investments, Rhode Island's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Rhode Island to play an important role in the new energy economy of the future. Rhode Island Recovery Act State Memo More Documents & Publications Slide 1 Guam Recovery Act State Memo

193

Virgin Islands Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virgin Islands Recovery Act State Memo Virgin Islands Recovery Act State Memo Virgin Islands Recovery Act State Memo The American Recovery & Reinvestment Act( ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in the U.S. Virgin Islands are supporting a broad range of clean energy projects from energy efficiency and the smart grid to solar power and biofuels. Through these investments, the U.S. Virgin Islands' businesses, universities, non-profits, and local governments are creating quality jobs today and positioning the U.S. Virgin Islands to play an important role in the new energy economy of the future. Virgin Islands Recovery Act State Memo More Documents & Publications Slide 1 MP_recovery_act_memo__updated.pdf Northern Mariana Islands

194

Rhode Island Renewable Energy Fund (RIREF) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Renewable Energy Fund (RIREF) Rhode Island Renewable Energy Fund (RIREF) Rhode Island Renewable Energy Fund (RIREF) < Back Eligibility Commercial Industrial Institutional Residential Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Wind Program Info State Rhode Island Program Type Public Benefits Fund Provider Rhode Island Economic Development Corporation Rhode Island's Public Utilities Restructuring Act of 1996 created the nation's first public benefits fund (PBF) for renewable energy and demand-side management (DSM). The Rhode Island Renewable Energy Fund's (RIREF) renewable-energy component is administered by the Rhode Island Economic Development Corporation (RIEDC), and the fund's demand-side

195

On the Dynamics of Hawaiian Cloud Bands: Island Forcing  

Science Conference Proceedings (OSTI)

This study focuses on basic island scale forcing mechanisms for the formation and evolution of a band cloud typically present upwind of the island of Hawaii. By means of numerical experiments and verification of our results against observations ...

Piotr K. Smolarkiewicz; Roy M. Rasmussen; Terry L. Clark

1988-07-01T23:59:59.000Z

196

CO2 Emissions - U.S. Virgin Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

Central America, South America, and the Caribbean Nations U.S. Virgin Islands Graphics CO2 Emissions from the U.S. Virgin Islands Data graphic Data CO2 Emissions from the U.S....

197

March 28, 1979: Three Mile Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1979: Three Mile Island March 28, 1979 A partial meltdown of the core occurs at one of the two reactors at the Three Mile Island nuclear power plant near Harrisburg, Pennsylvania...

198

Turks and Caicos Islands Climate and Its Impacts  

Science Conference Proceedings (OSTI)

The Turks and Caicos Islands (TCI) climate is described using mesoscale ocean and atmosphere datasets with a focus on thermodynamic versus kinematic controls, the influence of the nearby island of Hispaniola, and factors affecting early ...

Mark R. Jury

2013-09-01T23:59:59.000Z

199

Hess Retail Natural Gas and Elec. Acctg. (Rhode Island) | Open...  

Open Energy Info (EERE)

Rhode Island) Jump to: navigation, search Name Hess Retail Natural Gas and Elec. Acctg. Place Rhode Island Utility Id 22509 References EIA Form EIA-861 Final Data File for 2010 -...

200

Fossil-Fuel CO2 Emissions - Marshall Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Regional Oceania Marshall Islands Graphics Fossil-Fuel CO2 Emissions from the Marshall Islands Data graphic Data Fossil-Fuel CO2 Emissions from...

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Turks and Caicos Islands climate and its impacts  

Science Conference Proceedings (OSTI)

The Turks and Caicos Island (TCI) climate is described using mesoscale ocean and atmosphere datasets with a focus on thermodynamic vs kinematic controls, the influence of nearby Hispaniola island, and factors affecting early colonization and ...

Mark R. Jury

202

Community Economic Development Business Program (Prince Edward Island, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

The Community Economic Development Business (CEDB) program has been created as part of the Prince Edward Island Rural Action Plan to support local investment in innovative Prince Edward Island...

203

Long Island HTS Power Cable | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

demonstration of a hightemperature superconducting (HTS) power cable in the Long Island Power grid, spanning nearly half a mile and serving as a permanent link in the Long Island...

204

Northern Mariana Islands Profile - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Economy ; Population and Industry: Northern Mariana Islands: United States: Period: Population -- 310.2 million 2010 Energy Intensity

205

San Nicolas Island Bifaces: A Distinctive Stone Tool Manufacturing Technique  

E-Print Network (OSTI)

Middle Mio- cene Monterey Formation, which has interbed- dedsouthern California. Monterey Formation outcrops appearnorthern Channel Island Monterey Formation materials, but

Rosenthal, E. Jane

1996-01-01T23:59:59.000Z

206

Energy Crossroads: Utility Energy Efficiency Programs Rhode Island...  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing National Grid (formerly Narragansett Electric...

207

An integrative approach for genomic island prediction in Prokaryotic genomes  

Science Conference Proceedings (OSTI)

A genomic island (GI) is a segment of genomic sequence that is horizontally transferred from other genomes. The detection of genomic islands is extremely important to the medical research. Most of current computational approaches that use sequence composition ... Keywords: gene information, genomic islands, intergenic distance, sequence composition

Han Wang; John Fazekas; Matthew Booth; Qi Liu; Dongsheng Che

2011-05-01T23:59:59.000Z

208

Prediction and visualization for urban heat island simulation  

Science Conference Proceedings (OSTI)

The simulation and forecast of urban heat island effect was studied. Since the reason for the formation of urban heat island is complex, the current model cannot take all the influence factors into consideration. When a new influence factor is introduced, ... Keywords: genetic algorithm, information visual, neural network, urban air temperature simulation, urban heat island

Bin Shao; Mingmin Zhang; Qingfeng Mi; Nan Xiang

2011-01-01T23:59:59.000Z

209

Recommendations for Technologies for Microgrids on the Big Island  

E-Print Network (OSTI)

Recommendations for Technologies for Microgrids on the Big Island Prepared for U.S. Department Island microgrids By Sentech, Inc. Bethesda, Maryland And University of Hawaii Hawaii Natural Energy for technologies to be used in future installation of Big Island microgrids Subtask 2.2 Deliverable #4 Prepared By

210

Energy Audits on Prince Edward Island  

E-Print Network (OSTI)

High energy costs and uncertain supplies force industrial operators to seek out energy waste to keep costs down. The Enersave for Industry and Commerce program assists Prince Edward Island industries through an energy audit and grant program. A typical audit shows how one processor doubled his output with no increase in energy use.

Hall, N. G.; Gillis, D.

1980-01-01T23:59:59.000Z

211

Maximum Urban Heat Island Intensity in Seoul  

Science Conference Proceedings (OSTI)

The maximum urban heat island (UHI) intensity in Seoul, Korea, is investigated using data measured at two meteorological observatories (an urban site and a rural site) during the period of 197396. The average maximum UHI is weakest in summer and ...

Yeon-Hee Kim; Jong-Jin Baik

2002-06-01T23:59:59.000Z

212

N. Mariana Islands - Renewables Portfolio Standard | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

N. Mariana Islands - Renewables Portfolio Standard N. Mariana Islands - Renewables Portfolio Standard N. Mariana Islands - Renewables Portfolio Standard < Back Eligibility Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info Program Type Renewables Portfolio Standard The Commonwealth of the Northern Mariana Islands enacted its Renewables Portfolio Standard in September 2007, in which a certain percentage of its net electricity sales must come from renewable energy. Under the law, the Commonwealth Utilities Corporation (the Islands' only and semi-autonomous public utility provider) must meet the following benchmarks: * 10% of net electricity sales by December 31, 2008

213

Northern Mariana Islands - Search - U.S. Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Northern Mariana Islands Northern Mariana Islands Profile Northern Mariana Islands Northern Mariana Islands Profile Territory Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Reserves & Supply Imports & Exports

214

Asian American Pacific Islander Heritage Month | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Asian American Pacific Islander Heritage Month Asian American Pacific Islander Heritage Month Asian American Pacific Islander Heritage Month May 1, 2013 11:45AM EDT to May 31, 2013 5:45PM EDT nationwide Generations of Asian Americans and Pacific Islanders (AAPIs) have helped make America what it is today. Their histories recall bitter hardships and proud accomplishments -- from the laborers who connected our coasts one-and-a-half centuries ago, to the patriots who fought overseas while their families were interned at home, from those who endured the harsh conditions of Angel Island, to the innovators and entrepreneurs who are driving our Nation's economic growth in Silicon Valley and beyond. Asian American and Pacific Islander Heritage Month offers us an opportunity to celebrate the vast contributions Asian Americans and Pacific Islanders have

215

Alternative Fuels Data Center: Rhode Island Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel to someone by E-mail Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Biodiesel on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Biodiesel on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Biodiesel on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Biodiesel

216

Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York www.nrel.gov Baker and Belding installed a 10-kW Bergey Excel wind turbine in August 2011. Photo from Cross Island Farms, NREL/PIX 19923 Funding Summary * Total cost of wind turbine, including first developer: $82,000 * Total cost of wind turbine, excluding first developer: $73,000 * Total cost of solar: $40,000 * Propane generator: $8,000; including equipment, installation, and propane: $13,000 * USDA REAP grant: $20,506 (~25% of

217

Popponesset Island, Massachusetts: Energy Resources | Open Energy  

Open Energy Info (EERE)

Popponesset Island, Massachusetts: Energy Resources Popponesset Island, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.584277°, -70.4591932° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.584277,"lon":-70.4591932,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

218

Eastern Bering Sea/Aleutian Islands  

E-Print Network (OSTI)

INTRODUCTION Pacific ocean perch (POP), and four other associated species of rockfish (northern rockfish, S. polyspinis; rougheye rockfish, S. aleutianus; shortraker rockfish, S. borealis; and sharpchin rockfish, S. zacentrus) were managed as a complex in the eastern Bering Sea (EBS) and Aleutian Island (AI) management areas from 1979 to 1990. Known as the POP complex, these five species were managed as a single entity with a single TAC (total allowable catch) within each management area. In 1991, the North Pacific Fishery Management Council enacted new regulations that changed the species composition of the POP complex. For the eastern Bering Sea slope region, the POP complex was divided into two subgroups: 1) Pacific ocean perch, and 2) shortraker, rougheye, sharpchin, and northern rockfishes combined, also known as "other red rockfish" (ORR). For the Aleutian Islands region, the POP complex was divided into three subgroups: 1) Pacific ocean perch, 2) shortraker/rougheye rockfishes,

Npfmc Bering Sea; Paul D. Spencer; Rebecca F. Reuter

2002-01-01T23:59:59.000Z

219

Monomoscoy Island, Massachusetts: Energy Resources | Open Energy  

Open Energy Info (EERE)

Monomoscoy Island, Massachusetts: Energy Resources Monomoscoy Island, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5698322°, -70.505028° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5698322,"lon":-70.505028,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

Long Island Power Authority | Open Energy Information  

Open Energy Info (EERE)

Long Island Power Authority Long Island Power Authority Address 333 Earle Ovington Blvd Place Uniondale, New York Zip 11553 Sector Services Product Green Power Marketer Website www.lipower.org/ Coordinates 40.720549°, -73.593524° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.720549,"lon":-73.593524,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Cook Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cook Islands: Energy Resources Cook Islands: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-22.26876,"lon":-158.20312,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

222

Microsoft Word - RailroadIsland_CX.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Dorie Welch Project Manager - KEWM-4 Proposed Action: Railroad Island Property Funding. Fish and Wildlife Project No.: 2011-003-00, Contract # BPA-006468 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Real Property transfers for cultural protection, habitat preservation and wildlife management. Location: Monroe Quadrangle, in Lane County, Oregon (near Junction City, Oregon). Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: The BPA is proposing to fund The Mackenzie River Trust (the Trust) to acquire a 63-acre parcel that will be known as Railroad Island. The Trust will provide BPA a conservation easement over the entire 63-acre property that will prevent

223

Suggested guidelines for anti-islanding screening.  

DOE Green Energy (OSTI)

As increasing numbers of photovoltaic (PV) systems are connected to utility systems, distribution engineers are becoming increasingly concerned about the risk of formation of unintentional islands. Utilities desire to keep their systems secure, while not imposing unreasonable burdens on users wishing to connect PV. However, utility experience with these systems is still relatively sparse, so distribution engineers often are uncertain as to when additional protective measures, such as direct transfer trip, are needed to avoid unintentional island formation. In the absence of such certainty, utilities must err on the side of caution, which in some cases may lead to the unnecessary requirement of additional protection. The purpose of this document is to provide distribution engineers and decision makers with guidance on when additional measures or additional study may be prudent, and also on certain cases in which utilities may allow PV installations to proceed without additional study because the risk of an unintentional island is extremely low. The goal is to reduce the number of cases of unnecessary application of additional protection, while giving utilities a basis on which to request additional study in cases where it is warranted.

Ellis, Abraham; Ropp, Michael

2012-02-01T23:59:59.000Z

224

Categorical Exclusion Determinations: Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Rhode Island Categorical Exclusion Determinations: Rhode Island Location Categorical Exclusion Determinations issued for actions in Rhode Island. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2013 CX-010757: Categorical Exclusion Determination The New England Solar cost-Reduction Challenge Partnership CX(s) Applied: A9, A11 Date: 08/15/2013 Location(s): Vermont, New Hampshire, Rhode Island, Massachusetts, Connecticut Offices(s): Golden Field Office February 4, 2013 CX-010572: Categorical Exclusion Determination Brown University - Marine Hydro-Kinetic Energy Harvesting Using Cyber-Physical Systems CX(s) Applied: B3.6 Date: 02/04/2013 Location(s): Rhode Island Offices(s): Advanced Research Projects Agency-Energy October 18, 2012 CX-009518: Categorical Exclusion Determination

225

The Jobs Development Act (Rhode Island) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jobs Development Act (Rhode Island) Jobs Development Act (Rhode Island) The Jobs Development Act (Rhode Island) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Retail Supplier Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Corporate Tax Incentive Provider Rhode Island Economic Development Corporation The Jobs Development Act provides an incremental reduction in the corporate income tax rate (9%) to companies creating jobs in Rhode Island. For every ten new jobs created for companies with fewer than 100 employees, companies can reduce the tax by a quarter percentage point. For companies with more

226

Dominica Island-NREL Cooperation | Open Energy Information  

Open Energy Info (EERE)

Dominica Island-NREL Cooperation Dominica Island-NREL Cooperation Jump to: navigation, search Logo: Dominica Island-NREL Cooperation Name Dominica Island-NREL Cooperation Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Focus Area Wind Topics Background analysis Website http://www.nrel.gov/internatio Country Dominica Caribbean References NREL International Program[1] Abstract The National Renewable Energy Laboratory is cooperating with Dominica Island to develop small wind generation as part of the Low Carbon Communities of the Americas program The National Renewable Energy Laboratory is cooperating with Dominica Island to develop small wind generation as part of the Low Carbon Communities of the Americas program. References ↑ "NREL International Program"

227

US Virgin Islands EDIN Pilot Project | Open Energy Information  

Open Energy Info (EERE)

Islands EDIN Pilot Project Islands EDIN Pilot Project Jump to: navigation, search Logo: EDIN US Virgin Islands Pilot Project Name EDIN US Virgin Islands Pilot Project Agency/Company /Organization National Renewable Energy Laboratory, United States Department of Energy Partner EDIN Initiative Partners Sector Energy Focus Area Energy Efficiency Topics Low emission development planning, Background analysis Website http://www.edinenergy.org/usvi Country United States Northern America References National Renewable Energy Laboratory, EERE Supported International Activities FY 2009 Annual Operating Plan (August 25, 2009 Abstract The purpose of the EDIN pilot is to have a meaningful impact in a short duration by developing clean energy technologies, policies, and financing mechanisms for the pilot island with projects whose elements can be repeated on other islands.

228

Alternative Fuels Data Center: Rhode Island Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Producer to someone by E-mail Producer to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Alternative Fuel Producer on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Alternative Fuel Producer on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Alternative Fuel Producer on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Alternative Fuel Producer on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Alternative Fuel Producer on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Alternative Fuel Producer on AddThis.com... More in this section... Federal State

229

Alternative Fuels Data Center: Rhode Island Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Cells to someone by E-mail Hydrogen Fuel Cells to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Hydrogen Fuel Cells on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Hydrogen Fuel Cells on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Hydrogen Fuel Cells on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Hydrogen Fuel Cells on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Hydrogen Fuel Cells on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Hydrogen Fuel Cells on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

230

Alternative Fuels Data Center: Rhode Island Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State

231

A Presidential Proclamation - Asian American and Pacific Islander Heritage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Presidential Proclamation - Asian American and Pacific Islander A Presidential Proclamation - Asian American and Pacific Islander Heritage Month A Presidential Proclamation - Asian American and Pacific Islander Heritage Month May 1, 2013 - 9:25am Addthis A Presidential Proclamation - Asian American and Pacific Islander Heritage Month BY THE PRESIDENT OF THE UNITED STATES OF AMERICA A PROCLAMATION Each May, our Nation comes together to recount the ways Asian Americans and Pacific Islanders (AAPIs) helped forge our country. We remember a time 170 years ago, when Japanese immigrants first set foot on American shores and opened a path for millions more. We remember 1869, when Chinese workers laid the final ties of the transcontinental railroad after years of backbreaking labor. And we remember Asian Americans and Pacific Islanders

232

Precious Coral Fisheries of Hawaii and the U.S. Pacific Islands Introduction  

E-Print Network (OSTI)

,India,Kenya,LesserSunda Islands,Malaysia,NewCaledonia,New Guinea,Nicaragua,Philippines,Samoa. Solomon.Trop.Bot.Gard.(740137-001)from seedcollectedfromcultivatedplantson Kauai,parentplantfromMoorea,French Polynesia Andaman,MalukuIslands,MascareneIslands, NewCaledonia,NewGuinea,NicobarIslands, Philippines,RyukyuIslands,Seychelles, Sri

233

Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project This report provides an independent review included an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands. 50411.pdf More Documents & Publications Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory)

234

Climate Action Plan (Rhode Island) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island) Rhode Island) Climate Action Plan (Rhode Island) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Climate Policies Provider Department of Environmental Management In the fall of 2001, the Department of Environmental Management (DEM), the

235

Green Island Power Authority Transmission Voltage Support System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(2009?) Potential 2nd generation HTSC link to 100 MW hydro Control and quality Industrial load expansion requires high power quality Emergency islanding capability Transmission...

236

Air Quality Permits (Prince Edward Island, Canada) | Open Energy...  

Open Energy Info (EERE)

Sector StateProvince Program Administrator Prince Edward Island Department of Environment, Labour and Justice Primary Website http:www.gov.pe.caenvironment...

237

Bibliography on nekton from the Hawaiian Island Archipelago  

DOE Green Energy (OSTI)

A selected bibliography of nekton, principally fish, from the Hawaiian Island Archipelago was compiled in conjunction with environmental work associated with the Ocean Thermal Energy Conversion (OTEC) project.

Jones, A.T.; Hartwig, E.O.

238

Closing Event - Asian American and Pacific Islander Heritage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Invited speakers from Congress, the federal government, and DOE will speak about Asian American and Pacific Islander programs and policy at the Department, and their...

239

Commonwealth of Northern Mariana Islands Initial Technical Assessment  

SciTech Connect

This document is an initial energy assessment for the Commonwealth of the Northern Mariana Islands (CNMI), the first of many steps in developing a comprehensive energy strategy.

Baring-Gould, I.; Hunsberger, R.; Visser, C.; Voss, P.

2011-07-01T23:59:59.000Z

240

Rhode Island - State Energy Profile Overview - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, voluntary report- ing, electric power plant emissions. Highlights ... Puerto Rico US Virgin Islands: Overview; Data; Economy; Prices; Reserves ...

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Virgin Islands, British - Analysis - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Solar Energy in Brief. ... EIA data shows that the United States has been the primary destination, ... shut down its U.S. Virgin Islands refinery, ...

242

,"Rhode Island Natural Gas Industrial Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","72013" ,"Release...

243

,"Rhode Island Natural Gas Pipeline and Distribution Use Price...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005...

244

Virgin Islands, British - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Crude Oil Production: 0.0000 , 0.0000 , 0.0000 , 0.0000 , 0.0000 ... Central & South America World. Rank . Virgin Islands, British: Production

245

Rhode Island Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas into Underground Storage - All Operators Rhode Island Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage (Annual Supply &...

246

Rhode Island Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas from Underground Storage - All Operators Rhode Island Underground Natural Gas Storage - All Operators Net Withdrawals of Natural Gas from Underground Storage...

247

Rhode Island Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas from Underground Storage - All Operators Rhode Island Underground Natural Gas Storage - All Operators Natural Gas Withdrawals from Underground Storage (Annual Supply...

248

Validation in Genomics: CpG Island Methylation Revisited  

E-Print Network (OSTI)

analysis. In: Functional Genomics: Methods and Protocols, M.Segal: Validation in Genomics: CpG Island Methylationpackage and applications to genomics. Bioinformatics and

Segal, Mark R

2006-01-01T23:59:59.000Z

249

Fuel Mix and Emissions Disclosure (Rhode Island) | Open Energy...  

Open Energy Info (EERE)

DSIRE1 Summary Rhode Island requires all entities that sell electricity in the state to disclose details regarding the fuel mix and emissions of their electric generation...

250

Nonlinear self-sustainment of magnetic islands  

SciTech Connect

A mechanism is proposed for a nonlinear self-sustainment of magnetic islands which relies on the presence of a chaotic region. Particles diffusing in the stochastic magnetic field produce a local increase of current which in turn sustains the original perturbation if the equilibrium profile is concave. It is shown that the new equilibrium is stable. In a tokamak the mechanism is operative in the region outside the q=2 surface, in agreement with the observation of strong electron confinement degradation in this region. 14 refs., 3 figs.

White, R.B.; Romanelli, F.

1988-01-01T23:59:59.000Z

251

Solar School Program in Reunion Island  

E-Print Network (OSTI)

Because of its particular geographic situation and relatively high altitude (3069 meters), Reunion Island is composed of a very large amount of micro-climates which have a direct impact on buildings' comfort, energy consumptions and renewable energy system efficiency. In Runion Island, the industrial engineering laboratory is involved in the regional solar school program. Its aim is to gather some local construction actors (city technical offices, architects, civil engineers, specialized university team research, meteorological services), for a better knowledge transfer, and a better environment understanding. The main objective is to rehabilitate primary school in a bioclimatic and low energy consumption way, taking into account climatic conditions. Three primary schools corresponding to three particular micro-climates have been studied and simulated to evaluate main comfort targets (from a thermal, ventilation, humidity, lighting, and acoustic points of view). Architects then worked considering the technical prescriptions for renovation projects. An internal and external instrumentation was installed before and is planned to be reinforced after the renovation to validate these prescriptions. This program illustrates precisely what has to be done in each building project: - Meteorological data acquisition (hourly data for simulation software and for renewable energy options analysis and optimizations). - Thermal comfort simulations taking into account natural ventilation, heating or cooling needs, condensation or other pathologies risks. - And finally, an instrumentation campaign for all targets evaluation.

David, M.; Adelard, L.

2004-01-01T23:59:59.000Z

252

Wind resource assessment: San Nicolas Island, California  

DOE Green Energy (OSTI)

San Nicolas Island (SNI) is the site of the Navy Range Instrumentation Test Site which relies on an isolated diesel-powered grid for its energy needs. The island is located in the Pacific Ocean 85 miles southwest of Los Angeles, California and 65 miles south of the Naval Air Weapons Station (NAWS), Point Mugu, California. SNI is situated on the continental shelf at latitude N33{degree}14` and longitude W119{degree}27`. It is approximately 9 miles long and 3.6 miles wide and encompasses an area of 13,370 acres of land owned by the Navy in fee title. Winds on San Nicolas are prevailingly northwest and are strong most of the year. The average wind speed is 7.2 m/s (14 knots) and seasonal variation is small. The windiest months, March through July, have wind speeds averaging 8.2 m/s (16 knots). The least windy months, August through February, have wind speeds averaging 6.2 m/s (12 knots).

McKenna, E. [National Renewable Energy Lab., Golden, CO (United States); Olsen, T.L. [Timothy L. Olsen Consulting, (United States)

1996-01-01T23:59:59.000Z

253

An integrated passive islanding detection method for distributed generators  

Science Conference Proceedings (OSTI)

This study proposes a new islanding detection method for use of grid-interconnected distributed generators (DG). The method is based on two indices: the rate of change of frequency (ROCOF) and the rate of change of voltage (ROCOV). When a DG is grid-interconnected, ... Keywords: distributed generator, islanding detection, rate of change of frequency, rate of change of voltage

Wen-Yeau Chang; Hong-Tzer Yang

2009-11-01T23:59:59.000Z

254

The urban heat island Mitigation Impact Screening Tool (MIST)  

Science Conference Proceedings (OSTI)

A web-based software tool has been developed to assist urban planners and air quality management officials in assessing the potential of urban heat island mitigation strategies to affect the urban climate, air quality, and energy consumption within their ... Keywords: Air quality, Albedo, Atmospheric modeling, Urban climate, Urban forestry, Urban heat islands

David J. Sailor; Nikolaas Dietsch

2007-10-01T23:59:59.000Z

255

Hierarchical Control Scheme for Voltage Unbalance Compensation in Islanded Microgrids  

E-Print Network (OSTI)

Hierarchical Control Scheme for Voltage Unbalance Compensation in Islanded Microgrids Mehdi@et.aau.dk Abstract-- The concept of microgrid hierarchical control is presented, recently. In this paper, a hierarchical scheme which includes primary and secondary control levels is proposed for islanded microgrids

Vasquez, Juan Carlos

256

Asian American and Pacific Islander Heritage Month 2013 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Asian American and Pacific Islander Heritage Month 2013 Asian American and Pacific Islander Heritage Month 2013 Asian American and Pacific Islander Heritage Month 2013 May 21, 2013 11:00AM EDT Forrestal Main Auditorium, Washington DC Building Leadership: Embracing Cultural Values and Inclusion FORS Large Auditorium/Simulcast to Germantown RM A-410 All employees are invited to honor the remarkable contributions Asian Americans and Pacific Islanders have made to this Nation and DOE. President Obama stated, "Each May, our Nation comes together to recount the ways Asian Americans and Pacific Islanders (AAPIs) helped forge our country. We remember a time 170 years ago, when Japanese immigrants first set foot on American shores and opened a path for millions more. We remember 1869, when Chinese workers laid the final ties of the

257

Long Island Power Authority - Wind Energy Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long Island Power Authority - Wind Energy Rebate Program Long Island Power Authority - Wind Energy Rebate Program Long Island Power Authority - Wind Energy Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Maximum Rebate Lesser of 60% of installed cost or values below: Residential: $56,000 Commercial: $135,600 Gov't, School, Non-profit: $200,000 Program Info Funding Source LIPA Efficiency Long Island Program Start Date January 2009 State New York Program Type Utility Rebate Program Rebate Amount Varies by sector and system size Provider Long Island Power Authority '''''Note: The program web site listed above is for the residential wind energy program; however, LIPA also offers

258

Energy Strategy (Prince Edward Island, Canada) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Strategy (Prince Edward Island, Canada) Energy Strategy (Prince Edward Island, Canada) Energy Strategy (Prince Edward Island, Canada) < Back Eligibility Commercial Developer General Public/Consumer Industrial Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Schools State/Provincial Govt Utility Savings Category Buying & Making Electricity Solar Wind Program Info Start Date 2008 State Prince Edward Island Program Type Industry Recruitment/Support Renewables Portfolio Standards and Goals Solar/Wind Access Policy Without a local supply of natural gas and oil resources, Prince Edward Island is heavily reliant on imported sources of energy. Imported oil accounts for 76 percent of PEI's total energy supply, including transportation and heating. Wind

259

Qualifying RPS Market States (Prince Edward Island, Canada) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Prince Edward Island, Canada) Prince Edward Island, Canada) Qualifying RPS Market States (Prince Edward Island, Canada) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Prince Edward Island Program Type Renewables Portfolio Standards and Goals This entry lists the states with RPS policies that accept generation located in Prince Edward Island, Canada as eligible sources towards their Renewable Portfolio Standard targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an

260

Heat Island Research at the University of Athens  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Island Research at the University of Athens Heat Island Research at the University of Athens Speaker(s): Mattheos Santamouris Date: June 4, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Hashem Akbari Athens, as many other metropolitan areas, is experiencing a severe summer heat island. We will present measurements of urban canyon heat islands in Athens and discuss the effects on building energy use, urban environment, and air quality. Appropriate heat-island mitigation technologies include use of cool materials for urban surfaces (roofs and pavements) and shade trees. Advances in development of cool roofing and paving materials including traditional cool surfaces (white and light-colored materials), near-infrared cool colored materials, and experimental highly reflecting thermochromic coatings will be discussed. Finally, we will discuss the

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Aeromagnetic Survey And Interpretation, Ascention Island, South Atlantic  

Open Energy Info (EERE)

And Interpretation, Ascention Island, South Atlantic And Interpretation, Ascention Island, South Atlantic Ocean Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Aeromagnetic Survey And Interpretation, Ascention Island, South Atlantic Ocean Details Activities (0) Areas (0) Regions (0) Abstract: A detailed aeromagnetic survey of Ascension Island, which was completed in February and March of 1983 as part of an evaluation of the geothermal potential of the island, is described. The aeromagnetic map represents a basic data set useful for the interpretation of subsurface geology. An in situ magnetic susceptibility survey was also carried out to assist in understanding the magnetic properties of Ascension rocks and to aid in the interpretation of the aeromagnetic data. The aeromagnetic survey

262

Saint Paul Island Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Island Wind Farm Island Wind Farm Jump to: navigation, search Name Saint Paul Island Wind Farm Facility Saint Paul Island Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Tanadgusix Corp. Developer Tanadgusix Corp. Energy Purchaser Tanadgusix Corp. Location St. Paul Island AK Coordinates 57.1761°, -170.269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.1761,"lon":-170.269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

Mustang Island Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Mustang Island Offshore Wind Farm Mustang Island Offshore Wind Farm Jump to: navigation, search Name Mustang Island Offshore Wind Farm Facility Mustang Island Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Baryonyx Corporation Developer Baryonyx Corporation Location Offshore from Mustang Island TX Coordinates 27.66°, -97.01° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.66,"lon":-97.01,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

Clean Cities: Greater Long Island Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Greater Long Island Clean Cities Coalition Greater Long Island Clean Cities Coalition The Greater Long Island Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Greater Long Island Clean Cities coalition Contact Information Rita D. Ebert 631-504-5771 rebert@gliccc.org Coalition Website Clean Cities Coordinator Rita D. Ebert Photo of Rita D. Ebert Rita D. Ebert is the key staff member of the Greater Long Island Clean Cities Coalition since 2007, where she is the Program Coordinator. She administers all contractual and reporting duties for approximately $10 million dollars in federal Congestion Mitigation Air Quality (CMAQ) funding and close to $15 million dollars in DOE's Clean Cities American Recovery Reinvestment Act funding. As coordinator of one of the nation's largest

265

Long Island Power Authority - Residential Solar Water Heating Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long Island Power Authority - Residential Solar Water Heating Long Island Power Authority - Residential Solar Water Heating Rebate Program Long Island Power Authority - Residential Solar Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,500 or 50% of installed cost; $2,000 for systems purchased by 12/31/13 Program Info Funding Source LIPA Efficiency Long Island Program Start Date December 2010 State New York Program Type Utility Rebate Program Rebate Amount $20 per kBTU (based on SRCC collector rating) Bonus Incentive for systems purchased by 12/31/13: 2 Collector system: $500 bonus rebate 1 Collector system: $250 bonus rebate Provider Long Island Power Authority '''''Note: For system purchased by December 31, 2013, LIPA is providing a

266

Qualifying RPS State Export Markets (Rhode Island) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island) Rhode Island) Qualifying RPS State Export Markets (Rhode Island) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Rhode Island as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

267

FINAL ENVIRONMENTAL ASSESSMENT FOR THE RHODE ISLAND LFG GENCO, LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RHODE ISLAND LFG GENCO, LLC RHODE ISLAND LFG GENCO, LLC COMBINED CYCLE ELECTRICITY GENERATION PLANT FUELED BY LANDFILL GAS JOHNSTON, RHODE ISLAND U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1742 FINAL ENVIRONMENTAL ASSESSMENT FOR THE RHODE ISLAND LFG GENCO, LLC COMBINED CYCLE ELECTRICITY GENERATION PLANT FUELED BY LANDFILL GAS JOHNSTON, RHODE ISLAND U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1742 ACRONYMS AND ABBREVIATIONS CFR Code of Federal Regulations CHP combined heat and power dBA A-weighted decibel DOE U.S. Department of Energy (also called the Department) EA environmental assessment EPA U.S. Environmental Protection Agency MW megawatt NAAQS National Ambient Air Quality Standards

268

Nonlinear stability of magnetic islands in a rotating helical plasma  

Science Conference Proceedings (OSTI)

Coexistence of the forced magnetic reconnection by a resonant magnetic perturbation (RMP) and the curvature-driven tearing mode is investigated in a helical (stellarator) plasma rotated by helical trapped particle-induced neoclassical flows. A set of Rutherford-type equations of rotating magnetic islands and a poloidal flow evolution equation is revisited. Using the model, analytical expressions of criteria of spontaneous shrinkage (self-healing) of magnetic islands and sudden growth of locked magnetic islands (penetration of RMP) are obtained, where nonlinear saturation states of islands show bifurcation structures and hysteresis characteristics. Considering radial profile of poloidal flows across magnetic islands, it is found that the self-healing is driven by neoclassical viscosity even in the absence of micro-turbulence-induced anomalous viscosity. Effects of unfavorable curvature in stellarators are found to modify the critical values. The scalings of criteria are consistent with low-{beta} experiments in the large helical device.

Nishimura, S.; Toda, S.; Narushima, Y. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yagi, M. [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan)

2012-12-15T23:59:59.000Z

269

Subduction Controls of Hf and Nd Isotopes in Lavas of the Aleutian Island Arc  

E-Print Network (OSTI)

of the subducted slab on Aleutian Island Arc magma sources:2006. Revised age of Aleutian Island arc formation impliesCrustal recycling and the Aleutian arc. Geochim Cosmochim.

Yogodzinski, Gene

2011-01-01T23:59:59.000Z

270

Virgin Islands, U.S. - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

The U.S. Virgin Islands has few conventional energy resources and depends on ... The Virgin Islands' largest solar ... Annual Energy Outlook yearly US energy ...

271

Solar Water Heater Rebate Program (U.S. Virgin Islands) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heater Rebate Program (U.S. Virgin Islands) Solar Water Heater Rebate Program (U.S. Virgin Islands) Eligibility Residential Savings For Heating & Cooling Solar Water...

272

An Evolutionary Model of Parabolic Dune Development: Blowout to Mature Parabolic, Padre Island National Seashore, Texas.  

E-Print Network (OSTI)

??The Texas barrier islands have been studied and well documented in relation to barrier island evolution and morphology (Leatherman, 1979; Morton, 1994; White and Weise, (more)

McKenna, Winston

2007-01-01T23:59:59.000Z

273

Numerical Simulations of the Island-Induced Circulations over the Island of Hawaii during HaRP  

Science Conference Proceedings (OSTI)

The fifth-generation Pennsylvania State UniversityNCAR Mesoscale Model (MM5)/land surface model (LSM) is used to simulate the diurnal island-scale circulations over the island of Hawaii during the Hawaiian Rainband Project (HaRP, 11 July24 ...

Yang Yang; Yi-Leng Chen; Francis M. Fujioka

2005-12-01T23:59:59.000Z

274

Energy Development in Island Nations (EDIN), Partnering to Increase Island Energy Security Around the World (Fact Sheet)  

SciTech Connect

This fact sheet provides an overview of the international partnership for Energy Development in Island nations, including mission, goals, and organization. It also includes background on EDIN's three pilot projects: U.S. Virgin Islands, Iceland-Dominica Collaboration, and New Zealand-Geothermal Potential in the Pacific.

2010-06-01T23:59:59.000Z

275

Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York (Fact Sheet)  

DOE Green Energy (OSTI)

Installing a small wind turbine can sometimes be difficult due to economics, zoning issues, public perception, and other barriers. Persistence and innovation, however, can result in a successful installation. Dani Baker and David Belding own Cross Island Farms, a 102-acre certified organic farm on Wellesley Island in northern New York. In 2009, they took their interest in renewable energy to the next level by researching the logistics of a small wind installation on their land to make their farm even more sustainable. Their renewable energy system consists of one 10-kilowatt Bergey Excel wind turbine, a solar array, and a propane-powered generator. This case study describes funding for the project and the installation process.

Not Available

2012-04-01T23:59:59.000Z

276

US hydropower resource assessment for Rhode Island  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Rhode Island.

Francfort, J.E.; Rinehart, B.N.

1995-07-01T23:59:59.000Z

277

Experiments on hydrogen for Three Mile Island  

DOE Green Energy (OSTI)

Starting on April 1, 1979, Billings Energy Corporation under the direction of EG and G Idaho, Inc., undertook a series of tests for Nuclear Regulatory Commission to provide information regarding (1) potential amount of hydrogen in the primary coolant water in the Three Mile Island 2 Reactor; (2) methods of scavenging gaseous hydrogen from the reactor system; and (3) the determination of the most efficient and also the safest means of depressurization. Although only small amounts of hydrogen were later found in the system, this study produced information of interest for similar accidents in which hydrogen remains in the system. No investigations of radiochemical effects were made; the study focused on non-radiation solubility and chemical effects.

Wooley, R.L.; Ruckman, J.H.; Kimball, G.L.; Ayers, A.L. Jr.; Liebenthal, J.L.

1980-01-01T23:59:59.000Z

278

Subsidence at the Weeks Island SPR Facility  

E-Print Network (OSTI)

The elevation change data measured at the Weeks Island SPR site over the last 16+ years has been studied and analyzed. The subsidence rate is not constant with time and while the subsidence rate may have increased slightly during the past several years, recently the rate has increased more dramatically. The most recent increase comes at a time when the Strategic Petroleum Reserve (SPR) storage mine had been emptied of oil and was in the process of being refilled with brine. Damage to surface structures that has been observed during the past 12-18 months is attributed to the continued subsidence and differential subsidence across structures. The recent greater subsidence rates were unanticipated according to analysis results and will be used to aid further subsidence model development. 4 Acknowledgements A thorough appreciation and understanding of elevation surveying and data quality was obtained from Eloy Solis of Jacobik & Associates and Jim McHenry. The report benefited from the...

Stephen Bauer Underground; Stephen J. Bauer

1999-01-01T23:59:59.000Z

279

Subsidence at the Weeks Island SPR Facility  

Science Conference Proceedings (OSTI)

The elevation change data measured at the Weeks Island SPR site over the last 16+ years has been studied and analyzed. The subsidence rate is not constant with time and while the subsidence rate may have increased slightly during the past several years, recently the rate has increased more dramatically. The most recent increase comes at a time when the Strategic Petroleum Reserve (SPR) storage mine had been emptied of oil and was in the process of being refilled with brine. Damage to surface structures that has been observed during the past 12-18 months is attributed to the continued subsidence and dtierential subsidence across structures. The recent greater subsidence rates were unanticipated according to analysis results and will be used to aid further subsidence model development.

Bauer, S.J.

1999-01-01T23:59:59.000Z

280

Rhode Island to Build First Offshore Wind Farm | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island to Build First Offshore Wind Farm Rhode Island to Build First Offshore Wind Farm Rhode Island to Build First Offshore Wind Farm March 15, 2010 - 6:38pm Addthis Rhode Island’s first offshore wind farm will be built in Block Island. | File photo Rhode Island's first offshore wind farm will be built in Block Island. | File photo Block Island, a small town with only 1,000 full-time, residents, is the site for a big project, when it will become home to Rhode Island's first offshore wind farm. Powerful ocean winds lie right off Block Island's south shore. That's the benefit of offshore wind farms - they can take advantage of the harder, stronger winds found a few miles off the coast Deepwater Wind LLC is leading the effort with plans to construct up to eight wind turbines three miles off of Block Island's shore.

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Barrier island evolution and reworking by inlet migration along the Mississippi-Alabama gulf coast  

SciTech Connect

The five barrier islands along the Mississippi-Alabama coast are located 10 to 14 mi (16 to 23 km) offshore and separate Mississippi Sound from the Gulf of Mexico. The barrier islands in the chain are, from east to west: Dauphin Island, Petit Bois Island, Horn Island, Ship Island, and Cat Island. The islands are low sand bodies situated on a relatively broad Holocene sand platform that extends 70 mi (113 km) from Dauphin Island on the east to Cat Island on the west. The platform varies in thickness from 25 to 75 ft (7.6 to 23 m) and rests on Holocene marine clays or on Pleistocene sediments. The barrier island chain predates the St. Bernard lobe of the Mississippi delta complex, which began to prograde about 3,000 years ago, and continued until it was abandoned approximately 1,500 years ago. In contrast to the other islands, Cat Island at the western down-drift end of the Mississippi-Alabama barrier island chain is characterized by more than 12 prominent east west-oriented progradational linear ridges. The ridge system of Cat Island is interpreted as a relict of an earlier stage in the life cycle of the barrier platform when there was a more robust littoral drift system and an abundant sediment supply During the Pre-St. Bernard Delta period of vigorous sedimentation, all of the islands in the barrier chain probably exhibited progradational ridges similar to those now found only on Cat Island. Presently, only vestigial traces of these progradational features remain on the islands to the east of Cat Island. Unlike Cat Island, which has been protected and preserved by the St. Bernard Delta, the other barrier islands have been modified and reworked during the past 1,500 years by processes of island and tidal inlet migration, accompanied by a general weakening of the littoral drift and a reduction of the available sediment supply.

Rucker, J.B.; Snowden, J.O. (Univ. of New Orleans, LA (USA))

1990-09-01T23:59:59.000Z

282

USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

USVI Energy Road Map Charting the Course to a Clean Energy Future EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations EDIN Energy Development in Island Nations 1 USVI Energy Road Map Energy transformation. It's an enormous undertaking. One that has been discussed for decades. Debated hotly. Pursued intermittently. And supported halfheartedly in response to various short-lived crises. Until now. Today, the need to move beyond the status quo is driven not by "doom-and-gloom" predictions but by realities on the ground. The global economy is under constant threat as

283

USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

USVI Energy Road Map Charting the Course to a Clean Energy Future EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations EDIN Energy Development in Island Nations 1 USVI Energy Road Map Energy transformation. It's an enormous undertaking. One that has been discussed for decades. Debated hotly. Pursued intermittently. And supported halfheartedly in response to various short-lived crises. Until now. Today, the need to move beyond the status quo is driven not by "doom-and-gloom" predictions but by realities on the ground. The global economy is under constant threat as

284

Marsh Island (PortersvIlle Bay) restoratIon Project General Project DescriPtion  

E-Print Network (OSTI)

spill. Total estimated Offsets for the Marsh Island Project are 540 DSAYs. estiMated cost: Construction of the Marsh Island Project would cost approximately $11,280,000. (Estimated costs for some of the projectsMarsh Island (PortersvIlle Bay) restoratIon Project General Project DescriPtion The Marsh Island

285

U.S. Virgin Islands - Territory Energy Profile Data - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... solar, wind, geothermal, biomass and ethanol. ... Puerto Rico US Virgin Islands: Overview; Data;

286

Aleutian Pribilof Islands Wind Energy Feasibility Study  

DOE Green Energy (OSTI)

Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education and training opportunities for regional participants. This DOE project began 09/01/2005. We completed the economic and technical feasibility studies for Adak. These were funded by the Alaska Energy Authority. Both wind and hydro appear to be viable renewable energy options for Adak. In False Pass the wind resource is generally good but the site has high turbulence. This would require special care with turbine selection and operations. False Pass may be more suitable for a tidal project. APIA is funded to complete a False Pass tidal feasibility study in 2012. Nikolski has superb potential for wind power development with Class 7 wind power density, moderate wind shear, bi-directional winds and low turbulence. APIA secured nearly $1M from the United States Department of Agriculture Rural Utilities Service Assistance to Rural Communities with Extremely High Energy Costs to install a 65kW wind turbine. The measured average power density and wind speed at Sand Point measured at 20m (66ft), are 424 W/m2 and 6.7 m/s (14.9 mph) respectively. Two 500kW Vestas turbines were installed and when fully integrated in 2012 are expected to provide a cost effective and clean source of electricity, reduce overall diesel fuel consumption estimated at 130,000 gallons/year and decrease air emissions associated with the consumption of diesel fuel. St. George Island has a Class 7 wind resource, which is superior for wind power development. The current strategy, led by Alaska Energy Authority, is to upgrade the St. George electrical distribution system and power plant. Avian studies in Nikolski and Sand Point have allowed for proper wind turbine siting without killing birds, especially endangered species and bald eagles. APIA continues coordinating and looking for funding opportunities for regional renewable energy projects. An important goal for APIA has been, and will continue to be, to involve community members with renewable energy projects and energy conservation efforts.

Bruce A. Wright

2012-03-27T23:59:59.000Z

287

ISO New England Forward Capacity Market (Rhode Island) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ISO New England Forward Capacity Market (Rhode Island) ISO New England Forward Capacity Market (Rhode Island) ISO New England Forward Capacity Market (Rhode Island) < Back Eligibility Developer Industrial State/Provincial Govt Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Generating Facility Rate-Making Under the Forward Capacity Market (FCM), ISO New England projects the capacity needs of the region's power system three years in advance and then holds an annual auction to purchase the power resources that will satisfy those future regional requirements. Resources that clear in the auction are obligated to provide power or curtail demand when called upon by the ISO. The Forward Capacity Market was developed by ISO New England, the six New

288

American Samoa's Rebate Program Brings ENERGY STAR to Island | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Samoa's Rebate Program Brings ENERGY STAR to Island American Samoa's Rebate Program Brings ENERGY STAR to Island American Samoa's Rebate Program Brings ENERGY STAR to Island August 13, 2010 - 12:00pm Addthis American Samoa is located in the South Pacific Ocean, with temperature around 80 degrees year round. | Photo courtesy of Maleleg American Samoa is located in the South Pacific Ocean, with temperature around 80 degrees year round. | Photo courtesy of Maleleg Lindsay Gsell American Samoa, a small island of 66,000 residents in the Pacific Ocean, is a warm 80 degrees almost year round, but during the summer, the humidity can make it feel downright hot. Because of its remote location, appliances and electricity are costly - and until recently, home air conditioning units were fairly rare. Now thanks to a $100,000 grant through the American Recovery and

289

FUPWG Meeting Agenda - Providence, Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Providence, Rhode Island Providence, Rhode Island FUPWG Meeting Agenda - Providence, Rhode Island October 7, 2013 - 2:51pm Addthis Image of the FUPWG logo which displays an illustration of a sailboat on water. The logo reads Efficiency Promotion by the Ocean; FUPWG April 14-15, 2010; Providence, Rhode Island. April 14-15, 2010 Hosted by National Grid The following outlines sessions and presentations held during the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Tuesday, April 13, 2010 FUPWG held a utility energy service contract (UESC) workshop prior to the Spring 2010 meeting. The workshop materials are available (PDF 5.0 MB) Wednesday, April 14, 2010 8:30 am Welcome

290

Elba Island, GA Liquefied Natural Gas Imports from Qatar (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Elba Island, GA Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep...

291

Islands of Reliability for Hybrid Topological-Metric Mapping  

E-Print Network (OSTI)

Islands of Reliability for Hybrid Topological-Metric Mapping Shlomo Saul Simhon TR-CIM-99-6319 Telex: 05 268510 FAX: (514) 398-7348 Email: cim@cim.mcgill.ca #12;ABSTRACT This thesis describes

Dudek, Gregory

292

Rhode Island/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island/Wind Resources Rhode Island/Wind Resources < Rhode Island Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Rhode Island Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid?

293

Rhode Island Offshore Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Island Offshore Wind Farm Island Offshore Wind Farm Jump to: navigation, search Name Rhode Island Offshore Wind Farm Facility Rhode Island Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Developer Deepwater Wind Location Offshore from Sakonnet RI Coordinates 40.96°, -71.44° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.96,"lon":-71.44,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

United States Virgin Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Islands: Energy Resources Islands: Energy Resources (Redirected from Virgin Islands) Jump to: navigation, search Name United States Virgin Islands 2-letter ISO code VI 3-letter ISO code VIR Numeric ISO code 850 Equivalent URI DBpedia GeoNames ID 4796775 UN Region[1] Latin America and the Caribbean Coordinates 18.34829°, -64.98348° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":18.34829,"lon":-64.98348,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

295

DOE - Office of Legacy Management -- Rock Island Arsenal - IL 09  

NLE Websites -- All DOE Office Websites (Extended Search)

Rock Island Arsenal - IL 09 Rock Island Arsenal - IL 09 FUSRAP Considered Sites Site: ROCK ISLAND ARSENAL ( IL.09 ) Eliminated from consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Rock Island , Illinois IL.09-1 Evaluation Year: 1987 IL.09-2 Site Operations: Site located on a DOD facility and operated under AEC control. Exact nature or time period of operations not clear. No indication that radioactive materials were involved. Contract work with Albuquerque Operations office performed. IL.09-1 IL.09-2 Site Disposition: Eliminated - No Authority - Referred to DOD IL.09-2 Radioactive Materials Handled: None Indicated IL.09-2 Primary Radioactive Materials Handled: None Indicated Radiological Survey(s): None Indicated

296

Energy Incentive Programs, Rhode Island | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Rhode Island Energy Incentive Programs, Rhode Island October 29, 2013 - 1:19pm Addthis Updated October 2012 What public-purpose-funded energy efficiency programs are available in my state? Rhode Island's restructuring law includes a system benefits charge of 2 mill/kWh for energy efficiency programs, and 0.3 mills/kWh for renewable energy programs, through 2012. Over $35 million was budgeted for energy efficiency across all program types (including low-income and residential) in 2010; figures for 2011 are not available. The programs are administered by the local utilities. Rebates are available state-wide through the Cool Choice program, which provides rebates for high-efficiency HVAC equipment, including split system and single packaged air conditions and heat pumps. Dual enthalpy economizer

297

N. Mariana Islands - Building Energy Code | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

N. Mariana Islands - Building Energy Code N. Mariana Islands - Building Energy Code N. Mariana Islands - Building Energy Code < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info Program Type Building Energy Code Provider Department of Public Works ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] web sites.'' Building codes for the Commonwealth of the Northern Mariana Islands (CNMI)

298

DOE - Office of Legacy Management -- Staten Island Warehouse - NY 22  

Office of Legacy Management (LM)

Staten Island Warehouse - NY 22 Staten Island Warehouse - NY 22 FUSRAP Considered Sites Staten Island Warehouse, NY Alternate Name(s): Archer-Daniels Midland Company NY.22-3 Location: 2393 Richmond Terrace, Port Richmond, New York NY.22-2 Historical Operations: Stored pitchblende (high-grade uranium ore), which was purchased by the MED for the first atomic bomb. NY.22-3 Eligibility Determination: Eligible Radiological Survey(s): Assessment Survey NY.22-5 Site Status: Referred by DOE, evaluation in progess by U.S. Army Corps of Engineers. USACE Website Long-term Care Requirements: To be determined upon completion. Also see Documents Related to Staten Island Warehouse, NY NY.22-1 - MED Trip Report Summary; Authors: Ruhoff (Corps of Engineers) and Geddes (Stone & Webster); Subject: Trip to New York;

299

An Audio-Magnetotelluric Investigation In Terceira Island (Azores) | Open  

Open Energy Info (EERE)

Audio-Magnetotelluric Investigation In Terceira Island (Azores) Audio-Magnetotelluric Investigation In Terceira Island (Azores) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Audio-Magnetotelluric Investigation In Terceira Island (Azores) Details Activities (0) Areas (0) Regions (0) Abstract: Ten audio-magnetotelluric soundings have been carried out along a profile crossing the Serra do Cume caldera in the eastern part of the Terceira Island (Azores). The main objectives of this investigation were to detect geoelectrical features related with tectonic structures and to characterize regional hydrological and hydrothermal aspects mainly those related to geothermal fluid dynamics. Three-dimensional numerical investigation showed that the data acquired at periods shorter than 1 s are not significantly affected by ocean effect. The data was analysed using the

300

U.S. Virgin Islands - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Virgin Islands - Net Metering U.S. Virgin Islands - Net Metering U.S. Virgin Islands - Net Metering < Back Eligibility Commercial Fed. Government Institutional Local Government Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Wind Program Info Program Type Net Metering In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energy system up to 10 kilowatts (kW) in capacity. In July 2009, the legislature passed Act 7075 that raised the capacity limits to 20 kW for residential systems, 100 kW for commercial systems, and 500 kW for public (which includes government, schools, hospitals). The aggregate capacity limit of all net-metered systems is five megawatts

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Long Island Power Authority Solar Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search Name Long Island Power Authority Solar Project Facility Long Island Power Authority Solar Project Sector Solar Facility Type Roof-mount Owner EnXco Developer EnXco Energy Purchaser Long Island Power Authority Location Long Island, New York Coordinates 40.8168025°, -73.0661493° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8168025,"lon":-73.0661493,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

Cool Roofs and Heat Islands | Open Energy Information  

Open Energy Info (EERE)

Cool Roofs and Heat Islands Cool Roofs and Heat Islands Jump to: navigation, search Tool Summary Name: Cool Roofs Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Energy Efficiency Topics: Resource assessment Website: eetd.lbl.gov/r-bldgsee-crhi.html References: [1] Logo: Cool Roofs "On warm summer days, a city can be 6 to 8°F warmer than its surrounding areas. This effect is called the urban heat island. Cool roof materials, pavements, and vegetation can reduce the heat island effect, save energy and reduce smog formation. The goal of this research is to develop cool materials to save energy and money." [1] The Cool Roof Calculator developed at the Oak Ridge National Laboratory is a useful tool for exploring the benefits of cool materials.

303

The Rhode Island Statewide Lighting Program. Summary report  

SciTech Connect

This report summarizes the implementation and initial evaluation of the nation`s first statewide conservation and load management program, the Rhode Island Statewide Lighting Program (RISLP). Rhode Island`s program is unique because it is a voluntary collaborative effort and because three utilities use a single delivery mechanism for their programs. The Rhode Island Statewide Lighting Program is a unique attempt to improve the efficiency of electricity use in the commercial/industrial sector on a statewide basis. The cooperative nature of program design and implementation has strengthened communication among the participants. The process evaluation showed that both the participants and the customers are satisfied with the program. The program has had a significant effect on customer behavior.

Pierce, B.; Bjoerkqvist, O.

1992-02-01T23:59:59.000Z

304

Rhode Island Natural Gas LNG Storage Additions (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Additions (Million Cubic Feet) Rhode Island Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

305

Rhode Island Natural Gas LNG Storage Net Withdrawals (Million...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Rhode Island Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

306

Power system islands, autonomous microgrids and relevant instrumentation  

Science Conference Proceedings (OSTI)

Unplanned power system islanding is usually seen as a major risky operating condition and specific countermeasures are applied in order to avoid it. However the capability of voluntary disconnection from the external grid and autonomous operation is ...

A. Borghetti; L. Peretto

2012-01-01T23:59:59.000Z

307

NPP Tropical Forest: Cinnamon Bay, U.S. Virgin Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

situated about 90 km east of Puerto Rico. The island was dominated by plantation agriculture in the 18th and 19th centuries, much of which was abandoned after the abolition of...

308

Aeromagnetic study of the Island of Hawaii | Open Energy Information  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Aeromagnetic study of the Island of Hawaii Citation T.G. Hildenbrand,J. G....

309

Additional Current Measurements in the Alaskan Stream near Kodiak Island  

Science Conference Proceedings (OSTI)

Long-term records from four current meters in the Alaskan Stream off Kodiak Island are presented. The net flows decreases with depth and appeared to be in approximate geostrophic equilibrium. Large fluctuations were not common, and the flow was ...

R. K. Reed; J. D. Schumacher

1984-07-01T23:59:59.000Z

310

Spatial and Temporal Characteristics of Beijing Urban Heat Island Intensity  

Science Conference Proceedings (OSTI)

An hourly dataset of automatic weather stations over Beijing Municipality in China is developed and is employed to analyze the spatial and temporal characteristics of urban heat island intensity (UHII) over the built-up areas. A total of 56 ...

Ping Yang; Guoyu Ren; Weidong Liu

2013-08-01T23:59:59.000Z

311

Elba Island, GA Natural Gas Liquefied Natural Gas Imports from...  

Gasoline and Diesel Fuel Update (EIA)

Trinidad and Tobago (Million Cubic Feet) Elba Island, GA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

312

Elba Island, GA Natural Gas Liquefied Natural Gas Imports from...  

Gasoline and Diesel Fuel Update (EIA)

Egypt (Million Cubic Feet) Elba Island, GA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 5,780...

313

Elba Island, GA Liquefied Natural Gas Total Imports (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Liquefied Natural Gas Total Imports (Million Cubic Feet) Elba Island, GA Liquefied Natural Gas Total Imports (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

314

Rules and Regulations for Sewage Sludge Management (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of these rules and regulations is to ensure that sewage sludge that is treated, land applied, disposed, distributed, stockpiled or transported in the State of Rhode Island is done so in...

315

Rules and Regulations for Groundwater Quality (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations provide standards for groundwater quality in the state of Rhode Island. The rules are intended to protect and restore the quality of the state's groundwater resources for use as...

316

Flow over Small Heat Islands: A Numerical Sensitivity Study  

Science Conference Proceedings (OSTI)

A two-dimensional nonlinear model with physical parameterizations was applied to simulate the observed diurnal variation on the 5-km-wide flat tropical island of Nauru in the trade wind zone. Both the model and Atmospheric Radiation Measurement (...

Hannu Savijrvi; Stuart Matthews

2004-04-01T23:59:59.000Z

317

Surface Winds from Tropical Pacific IslandsClimatological Statistics  

Science Conference Proceedings (OSTI)

Multidecadal time series of surface wind observations from tropical Pacific islands have been examined in order to investigate the space and time scales of variability. Climatological monthly means and variances are compared with comparable means ...

D. E. Harrison; D. S. Luther

1990-02-01T23:59:59.000Z

318

Green Power Purchase Commitment (Rhode Island) | Open Energy...  

Open Energy Info (EERE)

commitment will begin in the first quarter of 2005. The incremental cost of green power for the State House will be covered by the Rhode Island Renewable Energy Fund....

319

Quantification of the Impact of Nauru Island on ARM Measurements  

Science Conference Proceedings (OSTI)

Nauru Island at times generates low clouds that impact low-level cloud statistics and downwelling shortwave radiation measurements made at the Atmospheric Radiation Measurement Program (ARM) site. This study uses five years of Nauru data to ...

Charles N. Long; Sally A. McFarlane

2012-03-01T23:59:59.000Z

320

Renewable Energy and Inter-Island Power Transmission (Presentation)  

Science Conference Proceedings (OSTI)

This presentation summarizes recent findings pertaining to inter-island connection of renewable and other energy sources, in particular, as these findings relate cable options, routing, specifications, and pros and cons.

Gevorgian, V.

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Bristol County, Rhode Island: Energy Resources | Open Energy...  

Open Energy Info (EERE)

County is a county in Rhode Island. Its FIPS County Code is 001. It is classified as ASHRAE 169-2006 Climate Zone Number 5 Climate Zone Subtype A. Registered Energy Companies in...

322

Quantitative analysis of forest island pattern in selected Ohio landscapes  

Science Conference Proceedings (OSTI)

The purpose of this study was to quantitatively describe the various aspects of regional distribution patterns of forest islands and relate those patterns to other landscape features. Several maps showing the forest cover of various counties in Ohio were selected as representative examples of forest patterns to be quantified. Ten thousand hectare study areas (landscapes) were delineated on each map. A total of 15 landscapes representing a wide variety of forest island patterns was chosen. Data were converted into a series of continuous variables which contained information pertinent to the sizes, shape, numbers, and spacing of woodlots within a landscape. The continuous variables were used in a factor analysis to describe the variation among landscapes in terms of forest island pattern. The results showed that forest island patterns are related to topography and other environmental features correlated with topography.

Bowen, G.W.; Burgess, R.L.

1981-07-01T23:59:59.000Z

323

Visual Modeling for Aqua Ventus I off Monhegan Island, ME  

Science Conference Proceedings (OSTI)

To assist the University of Maine in demonstrating a clear pathway to project completion, PNNL has developed visualization models of the Aqua Ventus I project that accurately depict the Aqua Ventus I turbines from various points on Monhegain Island, ME and the surrounding area. With a hub height of 100 meters, the Aqua Ventus I turbines are large and may be seen from many areas on Monhegan Island, potentially disrupting important viewsheds. By developing these visualization models, which consist of actual photographs taken from Monhegan Island and the surrounding area with the Aqua Ventus I turbines superimposed within each photograph, PNNL intends to support the projects siting and permitting process by providing the Monhegan Island community and various other stakeholders with a probable glimpse of how the Aqua Ventus I project will appear.

Hanna, Luke A.; Whiting, Jonathan M.; Copping, Andrea E.

2013-11-27T23:59:59.000Z

324

Spider Diversity Patterns on the Island of Moorea  

E-Print Network (OSTI)

2005. Species and Functional Diversity of Native and Human-ecology of arthropods. I. Diversity, niches, and resourcesSPIDER DIVERSITY PATTERNS ON THE ISLAND OF MOOREA A PRIL Y

Yang, April

2008-01-01T23:59:59.000Z

325

Rhode Island Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2012 (EIA)

(Million Cubic Feet) Rhode Island Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

326

Eigenmodes of quasi-static magnetic islands in current sheet  

Science Conference Proceedings (OSTI)

As observation have shown, magnetic islands often appear before and/or after the onset of magnetic reconnections in the current sheets, and they also appear in the current sheets in the solar corona, Earth's magnetotail, and Earth's magnetopause. Thus, the existence of magnetic islands can affect the initial conditions in magnetic reconnection. In this paper, we propose a model of quasi-static magnetic island eigenmodes in the current sheet. This model analytically describes the magnetic field structures in the quasi-static case, which will provide a possible approach to reconstructing the magnetic structures in the current sheet via observation data. This model is self-consistent in the kinetic theory. Also, the distribution function of charged particles in the magnetic island can be calculated.

Li Yi; Cai Xiaohui; Chai Lihui; Wang Shui [CAS Key Laboratory of Basic Plasma Physics, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng Huinan [CAS Key Laboratory of Basic Plasma Physics, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China Hefei (China); Shen Chao [State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100080 (China)

2011-12-15T23:59:59.000Z

327

A Simple Technique for Islanding Detection with Negligible Nondetection Zone  

E-Print Network (OSTI)

Although active islanding detection techniques have smaller nondetection zones than passive techniques, active methods could degrade the system power quality and are not as simple and easy to implement as passive methods. ...

Kirtley Jr, James L.

328

Elba Island, GA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Equatorial Guinea (Million Cubic Feet) Elba Island, GA Natural Gas Liquefied Natural Gas Imports from Equatorial Guinea (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

329

Elba Island, GA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Nigeria (Million Cubic Feet) Elba Island, GA Natural Gas Liquefied Natural Gas Imports from Nigeria (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

330

Cooperative operation and optimal design for islanded microgrid  

Science Conference Proceedings (OSTI)

Considering the operation constraints of main equipments, this paper addresses an optimization design and coordinated operation control strategy for an islanded microgrid including wind generator, photovoltaic, diesel generator and energy storage (Wind-PV-DG-ESS). ...

Chengshan Wang; Mengxuan Liu; Li Guo

2012-01-01T23:59:59.000Z

331

Time-Extrapolated Rainfall Normals for Central Equatorial Pacific Islands  

Science Conference Proceedings (OSTI)

Normal annual rainfalls (means and medians) for the period 191075 are estimated for islands in the central equatorial Pacific. Ridge regression, with an empirically determined bias constant, is used to establish the relationships among the ...

Bernard N. Meisner

1983-03-01T23:59:59.000Z

332

Amchitka Island, Alaska, Biological Monitoring Report 2011 Sampling Results  

SciTech Connect

The Long-Term Surveillance and Maintenance (LTS&M) Plan for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Amchitka Island sites describes how LM plans to conduct its mission to protect human health and the environment at the three nuclear test sites located on Amchitka Island, Alaska. Amchitka Island, near the western end of the Aleutian Islands, is approximately 1,340 miles west-southwest of Anchorage, Alaska. Amchitka is part of the Aleutian Island Unit of the Alaska Maritime National Wildlife Refuge, which is administered by the U.S. Fish and Wildlife Service (USFWS). Since World War II, Amchitka has been used by multiple U.S. government agencies for various military and research activities. From 1943 to 1950, it was used as a forward air base for the U.S. Armed Forces. During the middle 1960s and early 1970s, the U.S. Department of Defense (DOD) and the U.S. Atomic Energy Commission (AEC) used a portion of the island as a site for underground nuclear tests. During the late 1980s and early 1990s, the U.S. Navy constructed and operated a radar station on the island. Three underground nuclear tests were conducted on Amchitka Island. DOD, in conjunction with AEC, conducted the first nuclear test (named Long Shot) in 1965 to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third nuclear test on Amchitka, was a weapons-related test detonated on November 6, 1971. With the exception of small concentrations of tritium detected in surface water shortly after the Long Shot test, radioactive fission products from the tests remain in the subsurface at each test location As a continuation of the environmental monitoring that has taken place on Amchitka Island since before 1965, LM in the summer of 2011 collected biological and seawater samples from the marine and terrestrial environment of Amchitka Island adjacent to the three detonation sites and at a background or reference site, Adak Island, 180 miles to the east. Consistent with the goals of the Amchitka LTS&M Plan, four data quality objectives (DQOs) were developed for the 2011 sampling event.

None

2013-09-01T23:59:59.000Z

333

Energy Design Guidelines for High Performance Schools: Tropical Island Climates  

SciTech Connect

The Energy Design Guidelines for High Performance Schools--Tropical Island Climates provides school boards, administrators, and design staff with guidance to help them make informed decisions about energy and environmental issues important to school systems and communities. These design guidelines outline high performance principles for the new or retrofit design of your K-12 school in tropical island climates. By incorporating energy improvements into their construction or renovation plans, schools can significantly reduce energy consumption and costs.

Not Available

2004-11-01T23:59:59.000Z

334

Tokamak magnetic islands in the presence of nonaxisymmetric perturbations  

SciTech Connect

The effects of a small, externally imposed, nonaxisymmetric magnetic field perturbation on magnetic islands are studied analytically, assuming zero {beta}, tokamak ordering, and narrow islands. For the tearing stable case, the conditions under which the self-consistent plasma response is self-healing or amplifying are elucidated. For the tearing unstable case, the quasilinear theory of tearing modes is extended to a description of locked modes. 16 refs., 12 figs.

Reiman, A.H.

1991-07-01T23:59:59.000Z

335

Sea water intrusion model of Amchitka Island, Alaska  

SciTech Connect

During the 1960s and 1970s, Amchitka Island, Alaska, was the site of three underground nuclear tests, referred to as Milrow, Long Shot and Cannikin. Amchitka Island is located in the western part of the Aleutian Island chain, Alaska. The groundwater systems affected by the three underground nuclear tests at Amchitka Island are essentially unmonitored because all of the current monitoring wells are too shallow and not appropriately placed to detect migration from the cavities. The dynamics of the island`s fresh water-sea water hydrologic system will control contaminant migration from the three event cavities, with migration expected in the direction of the Bering Sea from Long shot and Cannikin and the Pacific Ocean from Milrow. The hydrogeologic setting (actively flowing groundwater system to maintain a freshwater lens) suggests a significant possibility for relatively rapid contaminant migration from these sites, but also presents an opportunity to use projected flowpaths to a monitoring advantage. The purpose of this investigation is to develop a conceptual model of the Amchitka groundwater system and to produce computer model simulations that reflect the boundary conditions and hydraulic properties of the groundwater system. The simulations will be used to assess the validity of the proposed conceptual model and highlight the uncertainties in hydraulic properties of the aquifer. The uncertainties will be quantified by sensitivity analyses on various model parameters. Within the limitations of the conceptual model and the computer simulations, conclusions will be drawn regarding potential radionuclide migration from the three underground nuclear tests.

Wheatcraft, S.W. [Nevada Univ., Reno, NV (United States). Hydrology/Hydrogeology Dept., Environmental and Resource Science

1995-09-01T23:59:59.000Z

336

Geology and geochemistry of the Geyser Bight Geothermal Area, Umnak Island, Aleutian Islands, Alaska  

DOE Green Energy (OSTI)

The Geyser Bight geothermal area is located on Umnak Island in the central Aleutian Islands. It contains one of the hottest and most extensive areas of thermal springs and fumaroles in Alaska, and is only documented site in Alaska with geysers. The zone of hot springs and fumaroles lies at the head of Geyser Creek, 5 km up a broad, flat, alluvial valley from Geyser Bight. At present central Umnak is remote and undeveloped. This report describes results of a combined program of geologic mapping, K-Ar dating, detailed description of hot springs, petrology and geochemistry of volcanic and plutonic rock units, and chemistry of geothermal fluids. Our mapping documents the presence of plutonic rock much closer to the area of hotsprings and fumaroles than previously known, thus increasing the probability that plutonic rock may host the geothermal system. K-Ar dating of 23 samples provides a time framework for the eruptive history of volcanic rocks as well as a plutonic cooling age.

Nye, C.J. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst. Alaska Dept. of Natural Resources, Fairbanks, AK (USA). Div. of Geological and Geophysical Surveys); Motyka, R.J. (Alaska Dept. of Natural Resources, Juneau, AK (USA). Div. of Geological and Geophysical Surveys); Turner, D.L. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst.); Liss, S.A. (Alaska Dept. of Natural Resources, Fairba

1990-10-01T23:59:59.000Z

337

Energy Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% (Fact Sheet), Energy Development in Island Nations, U.S. Virgin Islands (EDIN)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office Grant Helps the Virgin Islands Environmental Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% Organization Virgin Islands Energy Office www.vienergy.org Industry/Sector Government/Nonprofit Deployment Location St. John, U.S. Virgin Islands This project is such a great learning tool, and I am excited about its progress and being able to show students visiting either VIERS or our website the impact of solar energy. -Randy Brown VIERS Administrator The Virgin Islands Environmental Resource Station developed a solar classroom to educate young people in the U.S. Virgin Islands about renewable energy technologies and their energy and environmental impacts. Photo from Don Buchanan, Virgin Islands Energy Office,

338

Harbour Island: The Comparative Archaeology of a Maritime Community  

E-Print Network (OSTI)

Archaeological research at Harbour Island, Bahamas, was designed to help explore and develop the concept of maritimity, or identity grounded in perceived (or imagined) shared traits deriving from a communitys relationship with the maritime environment. Maritimity can best be identified by using three broad and overlapping categories of Landscape, Maritime Resources and Maritime Material Culture. Historical documents and maritime cultural landscape elements establish the maritimity of Harbour Island in the context of these categories. Artifacts, procured through archaeological survey of nine properties inhabited since at least the eighteenth century, are analyzed to investigate whether there any notable differences in the archaeological assemblages of maritime communities that indicate maritimity. Analysis relies on Stanley South's artifact classification system and his Carolina Artifact pattern. The nine properties are compared among themselves as well as with four other sites from the western British Atlantic region. Comparisons between the Harbour Island sites reveal a strong homogeneity of ceramic types at all households and a low representation of personal and clothing artifacts that indicate the relative poverty of the community. Maritime activities are not strongly represented in the archaeological record. When compared to four other sites from Jamaica, South Carolina, North Carolina, and Delaware, the assemblage from the Harbour Island community is relatively comparable to other sites influenced by British colonial culture. Although the domestic artifacts contain little maritime material culture, the development of the island's built environment demonstrates maritimity in both the categories of Landscape and Maritime Material Culture. Faunal remains from Harbour Island, consisting primarily of fish and shellfish, provide archaeological evidence of the importance of the Maritime Resources category. Only when the evidence from all three categories of maritimity is considered together can Harbour Island be identified archaeologically as a community that strongly identified with both the maritime environment and the dominant British Colonial Atlantic culture.

Hatch, Heather E

2013-08-01T23:59:59.000Z

339

U.S. Navy - San Clemente Island, California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Clemente Island, California San Clemente Island, California U.S. Navy - San Clemente Island, California October 7, 2013 - 10:12am Addthis Photo of Wind Turbine on San Clemente Island, California San Clemente Island is one of the Channel Islands off the southern coast of California. The U.S. Navy owns the 21-mile long island, making it one of the Navy's largest real estate assets. The Navy uses the island for research, development, testing, evaluation, and training. Originally, the electrical needs of the island were provided by four diesel generators. In 1998 two wind turbines were installed through a joint project of the Department of Defense, the Department of Energy, and the Environmental Protection Agency working through the Federal Energy Management Program (FEMP). A third turbine was installed in 1999, allowing

340

San Clemente Island Wind Farm | Open Energy Information  

Open Energy Info (EERE)

San Clemente Island Wind Farm San Clemente Island Wind Farm Jump to: navigation, search Name San Clemente Island Wind Farm Facility San Clemente Island Sector Wind energy Facility Type Community Wind Facility Status In Service Owner U.S. Navy Developer Pacific Industrial Electric Energy Purchaser U.S. Navy Location San Clemente Island CA Coordinates 32.986095°, -118.552138° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.986095,"lon":-118.552138,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Impacts of Standard 90.1-2007 for Commercial Buildings at State Level - Rhode Island  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhode Island Rhode Island September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN RHODE ISLAND BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN RHODE ISLAND Rhode Island Summary Standard 90.1-2007 contains improvements in energy efficiency over the current state code, the 2006 International Energy Conservation Code (IECC) with amendments. Standard 90.1-2007 would improve energy efficiency in commercial buildings in Rhode Island. The analysis of the impact of Standard 90.1-2007 resulted

342

A Miocene Island-Arc Volcanic Seamount- The Takashibiyama Formation,  

Open Energy Info (EERE)

Island-Arc Volcanic Seamount- The Takashibiyama Formation, Island-Arc Volcanic Seamount- The Takashibiyama Formation, Shimane Peninsula, Sw Japan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Miocene Island-Arc Volcanic Seamount- The Takashibiyama Formation, Shimane Peninsula, Sw Japan Details Activities (0) Areas (0) Regions (0) Abstract: The Miocene volcanic complex of the Takashibiyama Formation consists largely of subalkali, subaqueous basalt to andesite lavas and andesite to dacite subaqueous volcaniclastic flow deposits. Most of subaqueous lavas are moderately to intensely brecciated with rugged rough surfaces and ramp structures similar to subaerial block lava. Volcaniclastic flow deposits commonly include basalt to andesite lava fragments and/or pyroclastic materials, and are similar in internal

343

Air Pollution Control Regulations: No. 5 - Fugitive Dust (Rhode Island) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 - Fugitive Dust (Rhode 5 - Fugitive Dust (Rhode Island) Air Pollution Control Regulations: No. 5 - Fugitive Dust (Rhode Island) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Wind Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations aim to prevent the release of fugitive dust by forbidding

344

The Geyser Bight Geothermal Area, Umnak Island, Alaska | Open Energy  

Open Energy Info (EERE)

Geyser Bight Geothermal Area, Umnak Island, Alaska Geyser Bight Geothermal Area, Umnak Island, Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The Geyser Bight Geothermal Area, Umnak Island, Alaska Details Activities (2) Areas (1) Regions (0) Abstract: The Geyser Bight geothermal area contains one of the hottest and most extensive areas of thermal springs in Alaska, and is the only site in the state with geysers. Heat for the geothermal system is derived from crustal magma associated with Mt. Recheshnoi volcano. Successive injections of magma have probably heated the crust to near its minimum melting point and produced the only high-SiO2 rhyolites in the oceanic part of the Aleutian arc. At least two hydrothermal reservoirs are postulated to underlie the geothermal area and have temperatures of 165° and 200°C,

345

Washington Island El Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Washington Island El Coop, Inc Washington Island El Coop, Inc Place Wisconsin Utility Id 20153 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Heat Residential General Service Commercial General Service Seasonal Commercial Average Rates Residential: $0.1820/kWh Commercial: $0.1330/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Washington_Island_El_Coop,_Inc&oldid=412150

346

Project Fact Sheet Long Island HTS Power Cable Superconducting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long Long Island HTS Power Cable Superconducting Power Equipment www.oe.energy.gov Phone: 202-586-1411 Office of Electricity Delivery and Energy Reliability, OE-1 U.S. Department of Energy - 1000 Independence Avenue, SW - Washington, DC 20585 Plugging America Into the Future of Power What is the status of the Project? The cable was energized April 22, 2008 and serves the equivalent of 300,000 homes. It is the first HTS power cable to operate at transmission voltage in the grid. LIPA plans to retain the superconductor as a permanent part of it's grid. This project involves the demonstration of a high- temperature superconducting (HTS) power cable in the Long Island Power grid, spanning nearly half a mile and serving as a permanent link in the Long Island Power

347

Long Island Power Authority - Renewable Electricity Goal | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Electricity Goal Renewable Electricity Goal Long Island Power Authority - Renewable Electricity Goal < Back Eligibility Municipal Utility Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Buying & Making Electricity Solar Wind Program Info State New York Program Type Renewables Portfolio Standard Provider Long Island Power Authority As a municipal utility, the Long Island Power Authority (LIPA) is not obligated to comply with the [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=N... New York Renewable Portfolio Standard (RPS)]. The LIPA Board of Trustees has nevertheless decided to make their own renewable energy commitment mirroring the requirements for New York's investor owned utilities. The initiative is outlined in LIPA's 2004-2013 Energy Plan, approved in June

348

Village of Green Island, New York (Utility Company) | Open Energy  

Open Energy Info (EERE)

Green Island Green Island Place New York Utility Id 7600 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NY Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial -- Non-Demand Rate Commercial Commercial with Demand Rate Commercial Residential and Religious Rate Residential Average Rates Residential: $0.0999/kWh Commercial: $0.1000/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Village_of_Green_Island,_New_York_(Utility_Company)&oldid=411997

349

Designing and Communicating Low Carbon Energy Roadmaps for Small Island  

Open Energy Info (EERE)

Designing and Communicating Low Carbon Energy Roadmaps for Small Island Designing and Communicating Low Carbon Energy Roadmaps for Small Island States of the Caribbean Jump to: navigation, search Name Designing and Communicating Low Carbon Energy Roadmaps for Small Island States of the Caribbean Agency/Company /Organization World Watch Institute Partner International Climate Initiative Sector Climate, Energy Focus Area Renewable Energy, Buildings, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, People and Policy, Solar, Wind Topics Co-benefits assessment, - Macroeconomic, Finance, GHG inventory, Low emission development planning, -LEDS, -Roadmap, Policies/deployment programs, Resource assessment Website http://www.worldwatch.org/ener Program Start 2011 Program End 2013 Country Dominican Republic, Haiti, Jamaica

350

Adventive Hydrothermal Circulation On Stromboli Volcano (Aeolian Islands,  

Open Energy Info (EERE)

Adventive Hydrothermal Circulation On Stromboli Volcano (Aeolian Islands, Adventive Hydrothermal Circulation On Stromboli Volcano (Aeolian Islands, Italy) Revealed By Geophysical And Geochemical Approaches- Implications For General Fluid Flow Models On Volcanoes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Adventive Hydrothermal Circulation On Stromboli Volcano (Aeolian Islands, Italy) Revealed By Geophysical And Geochemical Approaches- Implications For General Fluid Flow Models On Volcanoes Details Activities (0) Areas (0) Regions (0) Abstract: On March 15th 2007 a paroxysmal explosion occurred at the Stromboli volcano. This event generated a large amount of products, mostly lithic blocks, some of which impacted the ground as far as down to 200 m a.s.l., about 1.5 km far away from the active vents. Two days after the

351

Long Island Power Authority - Commercial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long Island Power Authority - Commercial Energy Efficiency Rebate Long Island Power Authority - Commercial Energy Efficiency Rebate Program Long Island Power Authority - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Institutional Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Maximum Rebate Whole Building: $400,000 per building annually ($500,000 for LEED-certified) Commissioning Incentive: Up to 100% of cost, up to $100,000 LEED Certification: Up to $25,000 Energy Modeling: 100% of cost of energy modeling, up to $50,000 Custom and Whole Building Additional Incentive: technical assistance up to

352

Biomass Guidelines (Prince Edward Island, Canada) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Biomass Guidelines (Prince Edward Island, Canada) Biomass Guidelines (Prince Edward Island, Canada) < Back Eligibility Agricultural Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Prince Edward Island Program Type Environmental Regulations PEI Biomass Guidelines identify two major pathways that biomass projects may follow: No Public Investment, and Public Investment. Projects with Public Investment include any project that has: * Grants or loans for start-up, capital, or operating costs; * Silvicultural or other land management incentives provided through Departmental programs (e.g. Forest Enhancement Program, ALUS); or * Green credits or certification from Government. Guidelines for No Public Investment projects must only comply with existing

353

Local Option - Property-Assessed Clean Energy Financing (Rhode Island) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property-Assessed Clean Energy Financing (Rhode Property-Assessed Clean Energy Financing (Rhode Island) Local Option - Property-Assessed Clean Energy Financing (Rhode Island) < Back Eligibility Residential Savings Category Other Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Program Info State Rhode Island Program Type PACE Financing '''''Note: The Federal Housing Financing Agency (FHFA) issued a statement in July 2010 concerning the senior lien status associated with most PACE programs. In response to the FHFA statement, most local PACE programs have been suspended until further clarification is provided. ''''' Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessment on the property over a period

354

Prince Edward Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Island: Energy Resources Island: Energy Resources Jump to: navigation, search Name Prince Edward Island, Canada Equivalent URI DBpedia GeoNames ID 6113358 Coordinates 46.333333°, -63.5° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.333333,"lon":-63.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

355

Women @ Energy: Asian American and Pacific Islander Heritage Month 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Women @ Energy: Asian American and Pacific Islander Heritage Month Women @ Energy: Asian American and Pacific Islander Heritage Month 2013 Women @ Energy: Asian American and Pacific Islander Heritage Month 2013 Addthis Xin Sun 1 of 12 Xin Sun Creativity, insight, and application are the hallmarks of Dr. Xin Sun's applied mechanics and computational materials research at Pacific Northwest National Laboratory. Her advances in lightweight and high-strength materials (including steels) and modeling are vital to energy efficiency and renewable energy and have led to notable weight savings in the U.S. automotive industry. Xin is developing simulation and modeling capabilities for solid oxide fuel cells. Her modeling of physics properties are included as part of the solid oxide fuel cell multiphysics modeling code, or SOFC-MP, a commercial software tool, developed at PNNL, used by fuel cell

356

Asian American and Pacific Islander Heritage Women @ Energy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Asian American and Pacific Islander Heritage Women @ Energy Asian American and Pacific Islander Heritage Women @ Energy Asian American and Pacific Islander Heritage Women @ Energy May 3, 2013 - 11:49am Addthis Xin Sun 1 of 12 Xin Sun Creativity, insight, and application are the hallmarks of Dr. Xin Sun's applied mechanics and computational materials research at Pacific Northwest National Laboratory. Her advances in lightweight and high-strength materials (including steels) and modeling are vital to energy efficiency and renewable energy and have led to notable weight savings in the U.S. automotive industry. Xin is developing simulation and modeling capabilities for solid oxide fuel cells. Her modeling of physics properties are included as part of the solid oxide fuel cell multiphysics modeling code, or SOFC-MP, a commercial software tool, developed at PNNL, used by fuel cell

357

United States Virgin Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Virgin Islands: Energy Resources Virgin Islands: Energy Resources Jump to: navigation, search Name United States Virgin Islands 2-letter ISO code VI 3-letter ISO code VIR Numeric ISO code 850 Equivalent URI DBpedia GeoNames ID 4796775 UN Region[1] Latin America and the Caribbean Coordinates 18.34829°, -64.98348° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":18.34829,"lon":-64.98348,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

State of Rhode Island and Providence Plantations State House  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island and Providence Plantations Rhode Island and Providence Plantations State House Providence, Rhode Island 02903-1 196 401 -222-2080 Donald L. Carcieri Governor February 26,2009 The Honorable Steven Chu Secretary U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585 Re: State Energy Program Assurances Dear Secretary Chu: As a condition of receiving our State's share of the 53.1 billion funding for the State Energy Program (SEP) under the American Recovery and Renewal Act of 2009 (H.R.l) (ARRA), 1 am providing the following assurances. I have written to our public utilities commission and requested that they consider additional actions to promote energy efficiency, consistent with the Federal statutory language contained in H.R. 1 and their obligations to maintain just and reasonable

359

Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Island) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Island) Air Pollution Control Regulations: No. 22 - Air Toxics (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Siting and Permitting Provider Department of Environmental Management Permits are required to construct, install, or modify any stationary source which has the potential to increase emissions of a listed toxic air contaminant by an amount greater than the minimum quantity for that contaminant. Minimum quantities are specified in Table III of these regulations. Permits will be granted based in part on the impact of the projected emissions of the stationary source on acceptable ambient levels

360

FUPWG Meeting Agenda - Jekyll Island, Georgia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jekyll Island, Georgia Jekyll Island, Georgia FUPWG Meeting Agenda - Jekyll Island, Georgia October 7, 2013 - 2:42pm Addthis Logo for the FUPWG Spring 2012 meeting showing a crane, a lake, and wind turbines. The logo reads: Preserving our future with energy efficiency. April 11-12, 2012 Hosted by AGL Resources Wednesday, April 11, 2012 8:30 am Welcome Hank Linginfelter, EVP Distribution Operations - AGL Resources 8:45 am Chairman's Corner David McAndrew, FEMP 9:00 am Washington Update Tim Unruh, FEMP 9:30 am UESC Data Collection Update Evan Fuka, Energetics 9:45 am Networking Break 10:05 am Effective Use of Appropriations and Alternative Finance to Fund Energy Efficiency Projects John Shonder, Oak Ridge National Laboratory 10:45 am DOD Approaches to Utility Partnerships and UESCs Mike Rits, AFCESA

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Geology and geothermics of the Island of Milos (Greece)  

DOE Green Energy (OSTI)

Geothermal research which has been conducted on the island of Milos is reviewed and the island's geology is discussed in terms of the geodynamics of the eastern Mediterranean. The rock formations which outcrop at Milos are described in detail, including the crystalline basement, Neogene transgressive conglomerates and limestones, and the Quaternary volcanics and volcano-sedimentary series. The recent disjunctive tectonics and volcano-tectonics affecting Milos and the neighboring islands are reviewed. Thermal manifestations and their attendant mineralizations and hydrothermal alterations are described. The geophysical methods utilized in exploration and for the siting of production wells are described. Exploration work involved the drilling of 55 wells for thermometric determinations and a full scale electrical survey. Preliminary data from two production wells with bottom-hole temperatures in excess of 300/sup 0/C are reported. Fifty-four references are provided.

Fytikas, M.; Marinelli, G.

1976-01-01T23:59:59.000Z

362

Geology and geothermics of the Island of Milos (Greece)  

SciTech Connect

Geothermal research which has been conducted on the island of Milos is reviewed and the island's geology is discussed in terms of the geodynamics of the eastern Mediterranean. The rock formations which outcrop at Milos are described in detail, including the crystalline basement, Neogene transgressive conglomerates and limestones, and the Quaternary volcanics and volcano-sedimentary series. The recent disjunctive tectonics and volcano-tectonics affecting Milos and the neighboring islands are reviewed. Thermal manifestations and their attendant mineralizations and hydrothermal alterations are described. The geophysical methods utilized in exploration and for the siting of production wells are described. Exploration work involved the drilling of 55 wells for thermometric determinations and a full scale electrical survey. Preliminary data from two production wells with bottom-hole temperatures in excess of 300/sup 0/C are reported. Fifty-four references are provided.

Fytikas, M.; Marinelli, G.

1976-01-01T23:59:59.000Z

363

Remedial Action Work Plan Amchitka Island Mud Pit Closures  

Science Conference Proceedings (OSTI)

This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

DOE /NV

2001-04-05T23:59:59.000Z

364

MHK Projects/Vidal Island | Open Energy Information  

Open Energy Info (EERE)

Vidal Island Vidal Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

365

Energy Department Helps Advance Island Clean Energy Goals (Fact Sheet)  

SciTech Connect

This U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) fact sheet highlights a June 2012 solar power purchase agreement between the Virgin Islands Water and Power Authority and three corporations. The fact sheet describes how financial support from DOE and technical assistance from DOE's National Renewable Energy Laboratory enabled the U.S. Virgin Islands to realistically assess its clean energy resources and identify the most viable and cost-effective solutions to its energy challenges--resulting in a $65 million investment in solar energy in the territory.

Not Available

2012-10-01T23:59:59.000Z

366

Energy Department Helps Advance Island Clean Energy Goals (Fact Sheet)  

SciTech Connect

This U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) fact sheet highlights a June 2012 solar power purchase agreement between the Virgin Islands Water and Power Authority and three corporations. The fact sheet describes how financial support from DOE and technical assistance from DOE's National Renewable Energy Laboratory enabled the U.S. Virgin Islands to realistically assess its clean energy resources and identify the most viable and cost-effective solutions to its energy challenges--resulting in a $65 million investment in solar energy in the territory.

2012-10-01T23:59:59.000Z

367

Terrain-Induced Turbulence over Lantau Island: 7 June 1994 Tropical Storm Russ Case Study  

Science Conference Proceedings (OSTI)

Numerical simulations of terrain-induced turbulence associated with airflow over Lantau Island of Hong Kong are presented. Lantau is a relatively small island with three narrow peaks rising to between 700 and 950 m above mean sea level. This ...

Terry L. Clark; Teddie Keller; Janice Coen; Peter Neilley; Hsiao-ming Hsu; William D. Hall

1997-07-01T23:59:59.000Z

368

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Ethanol The list below contains summaries of all Rhode Island laws and incentives

369

Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for EVs The list below contains summaries of all Rhode Island laws and incentives

370

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Other The list below contains summaries of all Rhode Island laws and incentives

371

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Other The list below contains summaries of all Rhode Island laws and incentives

372

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Other The list below contains summaries of all Rhode Island laws and incentives

373

DOE - Office of Legacy Management -- Amchitka Island Test Center - AK 01  

NLE Websites -- All DOE Office Websites (Extended Search)

Amchitka Island Test Center - AK 01 Amchitka Island Test Center - AK 01 FUSRAP Considered Sites Site: Amchitka Island Test Center (AK.01) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Amchitka Island Test Center Documents Related to Amchitka Island Test Center Draft Long-Term Surveillance Plan for the Amchitka Island, Alaska, Project Site (September 2013) An Assessment of the Reported Leakage of Anthropogenic Radionuclides From the Underground Nuclear Test Sites at Amchitka Island, Alaska, USA to the Surface Environment. Conceptual Site Models as a Tool in Evaluation Ecological health; The Case of the Department of Energys Amchitka Island Nuclear Test Site.

374

Federal Energy Management Program: U.S. Navy - San Clemente Island...  

NLE Websites -- All DOE Office Websites (Extended Search)

- San Clemente Island, California to someone by E-mail Share Federal Energy Management Program: U.S. Navy - San Clemente Island, California on Facebook Tweet about Federal Energy...

375

Cross-Shore Internal Waves in Zanpa Coastal Region of Okinawa Island  

E-Print Network (OSTI)

Cross-Shore Internal Waves in Zanpa Coastal Region of Okinawa Island Eizo Nakaza1 ; S. M. B- welling are assumed to contribute to these renowned fishing grounds in the Okinawa Island. Water

Pawlak, Geno

376

Modification of the Atmospheric Boundary Layer by a Small Island: Observations from Nauru  

Science Conference Proceedings (OSTI)

Nauru, a small island in the tropical Pacific, generates cloud plumes that may grow to over 100-km lengths. This study uses observations to examine the mesoscale disturbance of the marine atmospheric boundary layer by the island that produces ...

Stuart Matthews; Jrg M. Hacker; Jason Cole; Jeffrey Hare; Charles N. Long; R. Michael Reynolds

2007-03-01T23:59:59.000Z

377

A Locational Analysis of Generation Benefits on Long Island, New York  

E-Print Network (OSTI)

Hour-Ahead, and Real-Time Integrated prices are availableBased Marginal Prices Day-Ahead LBMP, Real-Time Market LBMP,Price Long Island Power Authority Long Island Real Time

Wang, Juan; Cohen, Jesse; Edwards, Jennifer; Marnay, Chris

2005-01-01T23:59:59.000Z

378

The Island Thunderstorm Experiment (ITEX)A Study of Tropical Thunderstorms in the Maritime Continent  

Science Conference Proceedings (OSTI)

The Island Thunderstorm Experiment (ITEX) is a field and modeling study of the tropical thunderstorms that form regularly over Bathurst and Melville Islands north of Darwin, Northern Territory, Australia, during the transition season and breaks ...

Tom D. Keenan; Michael J. Manton; Greg J. Holland; Bruce R. Morton

1989-02-01T23:59:59.000Z

379

Dynamical Interpretation of Satellite-Sensed Thermal Features off Vancouver Island  

Science Conference Proceedings (OSTI)

Two series of very high resolution thermal infrared satellite images, off Vancouver Island, are examined for evidence of baroclinic waves. A 1979 winter sequence of three images exhibits cold tongues, extending seaward from Vancouver Island, ...

William J. Emery; Lawrence A. Mysak

1980-06-01T23:59:59.000Z

380

U.S. Virgin Islands - Territory Energy Profile Analysis - U.S ...  

U.S. Energy Information Administration (EIA)

The U.S. Virgin Islands (USVI), part of the Leeward Islands of the Lesser Antilles, is a U.S. territory located in the Caribbean Sea, about 600 miles ...

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Long Island Smart Metering Pilot Project  

SciTech Connect

The Long Island Power Authority (LIPA) Smart Meter Pilots provided invaluable information and experience for future deployments of Advanced Metering Infrastructure (AMI), including the deployment planned as part of LIPA??s Smart Grid Demonstration Project (DE-OE0000220). LIPA will incorporate lessons learned from this pilot in future deployments, including lessons relating to equipment performance specifications and testing, as well as equipment deployment and tracking issues. LIPA ultimately deployed three AMI technologies instead of the two that were originally contemplated. This enabled LIPA to evaluate multiple systems in field conditions with a relatively small number of meter installations. LIPA experienced a number of equipment and software issues that it did not anticipate, including issues relating to equipment integration, ability to upgrade firmware and software ??over the air? (as opposed to physically interacting with every meter), and logistical challenges associated with tracking inventory and upgrade status of deployed meters. In addition to evaluating the technology, LIPA also piloted new Time-of-Use (TOU) rates to assess customer acceptance of time-differentiated pricing and to evaluate whether customers would respond by adjusting their activities from peak to non-peak periods. LIPA developed a marketing program to educate customers who received AMI in the pilot areas and to seek voluntary participation in TOU pricing. LIPA also guaranteed participating customers that, for their initial year on the rates, their electricity costs under the TOU rate would not exceed the amount they would have paid under the flat rates they would otherwise enjoy. 62 residential customers chose to participate in the TOU rates, and every one of them saved money during the first year. 61 of them also elected to stay on the TOU rate ?? without the cost guarantee ?? at the end of that year. The customer who chose not to continue on the rate was also the one who achieved the greatest savings. However, after the first year, the customer in question installed equipment that would have made TOU rates a more costly option than the residential flat rate. During the second year, all but one customer saved money. That customer increased usage during peak hours, and as a result saw an increase in annual costs (as compared to the flat rate) of $24.17. The results were less clear for commercial customers, which LIPA attributes to rate design issues that it will take into account for future deployments. LIPA views this pilot as a complete success. Not only is LIPA better prepared for a larger deployment of AMI, but it is confident that residential customers will accept AMI and TOU rates and shift their energy consumption from peak to non-peak periods in response to pricing. On a larger scale, this will benefit LIPA and all of its customers by potentially lowering peak demand when energy costs are highest.

None

2012-03-30T23:59:59.000Z

382

Kauai Island Utility Cooperative energy storage study.  

DOE Green Energy (OSTI)

Sandia National Laboratories performed an assessment of the benefits of energy storage for the Kauai Island Utility Cooperative. This report documents the methodology and results of this study from a generation and production-side benefits perspective only. The KIUC energy storage study focused on the economic impact of using energy storage to shave the system peak, which reduces generator run time and consequently reduces fuel and operation and maintenance (O&M) costs. It was determined that a 16-MWh energy storage system would suit KIUC's needs, taking into account the size of the 13 individual generation units in the KIUC system and a system peak of 78 MW. The analysis shows that an energy storage system substantially reduces the run time of Units D1, D2, D3, and D5 - the four smallest and oldest diesel generators at the Port Allen generating plant. The availability of stored energy also evens the diurnal variability of the remaining generation units during the off- and on-peak periods. However, the net economic benefit is insufficient to justify a load-leveling type of energy storage system at this time. While the presence of storage helps reduce the run time of the smaller and older units, the economic dispatch changes and the largest most efficient unit in the KIUC system, the 27.5-MW steam-injected combustion turbine at Kapaia, is run for extra hours to provide the recharge energy for the storage system. The economic benefits of the storage is significantly reduced because the charging energy for the storage is derived from the same fuel source as the peak generation source it displaces. This situation would be substantially different if there were a renewable energy source available to charge the storage. Especially, if there is a wind generation resource introduced in the KIUC system, there may be a potential of capturing the load-leveling benefits as well as using the storage to dampen the dynamic instability that the wind generation could introduce into the KIUC grid. General Electric is presently conducting such a study and results of this study will be available in the near future. Another study conducted by Electric Power Systems, Inc. (EPS) in May 2006 took a broader approach to determine the causes of KIUC system outages. This study concluded that energy storage with batteries will provide stability benefits and possibly eliminate the load shedding while also providing positive voltage control. Due to the lack of fuel diversity in the KIUC generation mix, SNL recommends that KIUC continue its efforts to quantify the dynamic benefits of storage. The value of the dynamic benefits, especially as an enabler of renewable generation such as wind energy, may be far greater than the production cost benefits alone. A combination of these benefits may provide KIUC sufficient positive economic and operational benefits to implement an energy storage project that will contribute to the overall enhancement of the KIUC system.

Akhil, Abbas Ali; Yamane, Mike (Kauai Island Utility Cooperative, Lihu'e, HI); Murray, Aaron T.

2009-06-01T23:59:59.000Z

383

Update on SAFARI 2000 at the midway point  

NLE Websites -- All DOE Office Websites (Extended Search)

Greetings Greetings Tim, Harold and I are reporting on the activities of the August-September Intensive Flying Campaign of SAFARI 2000. First official science flights began on August 15. To date there have been 9 ER2 science flights; 17 CV-580 flights; with approximately 20 science flights each for JRA and JRB. You can access this data, as well as more detailed information, through the www.safari2000.org. This site is based here in Pietersburg and is supported by SAFARI 2000 operations. We are pleased to say that the SAFARI 2000 Project data server has worked well. For those of you using a MacIntosh, please be advised that you will need to use Internet Explorer 5 to be able to utilize the Geospatial Database. On that database you will find many types of detailed information

384

California Midway-Sunset First Purchase Price (Dollars per ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 11.23: 9.94: 8.17: 1994: 8.20: 8.90: 9.29: 10.22: 11.50: 12.49: 12.92: 13.11: 12.79: ...

385

Independent Verification Survey Report for the Long Island Solar Farm, Brookhaven National Laboratory, Upton, New York  

DOE Green Energy (OSTI)

5119-SR-01-0 INDEPENDENT VERIFICATION SURVEY REPORT FOR THE LONG ISLAND SOLAR FARM, BROOKHAVEN NATIONAL LABORATORY

E.M. Harpenau

2010-11-15T23:59:59.000Z

386

Grid-connectivity of remote isolated islandsA proposition in Indian context  

Science Conference Proceedings (OSTI)

This paper has analyzed the cases of Moushuni Island at Sundarban of 24 Parganas South of West Bengal

Aurobi Das; V. Balakrishnan

2012-01-01T23:59:59.000Z

387

Structural characteristics of genomic islands associated with GMP synthases as integration hotspot among sequenced microbial genomes  

Science Conference Proceedings (OSTI)

tRNA, tmRNA and some small RNA genes are recognized as general integration hotspots of genomic islands (GIs). The GMP synthase gene (guaA) has been firstly identified as one insertion hotspot of foreign DNA fragments. Thirty four islands integrated into ... Keywords: AlpA, GMP synthase gene (guaA), Genomic island (GI), Integration hotspot, P4 integrase

Lei Song; Yuting Pan; Sihong Chen; Xuehong Zhang

2012-02-01T23:59:59.000Z

388

An active islanding detection method for small-scale distributed generators  

Science Conference Proceedings (OSTI)

This paper proposes a new islanding detection method for use in a small-scale, grid-interconnected distributed generator system. The proposed islanding detection method is based on voltage fluctuation injection, which can be obtained through high-impedance ... Keywords: correlation factor, distributed generator, islanding detection, voltage fluctuation injection

Wen-Yeau Chang

2008-06-01T23:59:59.000Z

389

Relationships between Snow and the Wintertime Minneapolis Urban Heat Island  

Science Conference Proceedings (OSTI)

Urban heat islands (UHIs) are one of the best-recorded incidences of anthropogenic climate change. Studies from across the globe have examined this phenomenon, but relatively few have focused on cold-winter cities and the effects of snow cover and ...

Steven B. Malevich; Katherine Klink

2011-09-01T23:59:59.000Z

390

A REPORTER AT LARGE THE ISLAND IN THE WIND  

E-Print Network (OSTI)

. The turbine loomed up in front of us. When we reached it, Tranberg stubbed out his cigarette and opened to arrive, they weren't much interested in it. Most Samsingers heated their houses with oil, which. By 2003, instead of importing electricity, the island was exporting it, and by 2005 it was producing from

Bensel, Terrence G.

391

THE BRACHYURA AND MACRURA OF THE HAWAIIAN ISLANDS.  

E-Print Network (OSTI)

species. Plate 92. Type, 309 mm. long, from station 3989, vicinity of Kauai, depth 385 to 500 fathoms specimen, 465 mm. in total length, was taken at stati n 4185, ill the vicinity of Kauai, at a depth of 1. 256. 'I'ype, 273 mm. long, from station 4028, vicinity of Kauai Island, depth 444 to 478 fathoms; type

392

Barotropic Zonal Jets Induced by Islands in the Southwest Pacific  

Science Conference Proceedings (OSTI)

The oceanic circulation entering the tropical southwest Pacific (SWP) is dominated by the broad westward flow of the South Equatorial Current (SEC), which is forced by the trade winds. It has been argued that the numerous islands of the SWP are ...

Xavier Couvelard; Patrick Marchesiello; Lionel Gourdeau; Jerome Lefvre

2008-10-01T23:59:59.000Z

393

The Tuna Industry in the Pacific Islands Region  

E-Print Network (OSTI)

The Tuna Industry in the Pacific Islands Region: Opportunities for Foreign Investment DAVID J. DOULMAN Introduction The international tuna industry is in a state of flux. Since the early 1980's (and to improve economic conditions in the tuna fishing industry), 2) declaration and formaliza- tion of 2oo

394

renewable energy from waste 1730 RHODE ISLAND AVENUE, NW  

E-Print Network (OSTI)

renewable energy from waste 1730 RHODE ISLAND AVENUE, NW SUITE 700 WASHINGTON, DC 20036 WWW on Energy and Commerce Committee on Energy and Commerce U.S. House of Representatives U.S. House of Representatives Washington, DC 20515 Washington, DC 20515 Dear Chairman Waxman and Ranking Member Barton

395

1730 RHODE ISLAND AVENUE, NW WASHINGTON, DC 20036  

E-Print Network (OSTI)

1730 RHODE ISLAND AVENUE, NW SUITE 700 WASHINGTON, DC 20036 WWW.ENERGYRECOVERYCOUNCIL.ORG renewable energy from waste Testimony of Ted Michaels President, Energy Recovery Council Before the Connecticut the reclassification of trash-to-energy facilities as Class 1 renewable energy sources. Chairman Meyer, Chairman Roy

Columbia University

396

Moire Superstructures of Graphene on Faceted Nickel Islands  

E-Print Network (OSTI)

-dimensional nickel islands on highly oriented pyrolytic graphite substrate. We observed graphene domains exhibiting-standing graphene (red thin lines). (C) Calculated projected density of states (PDOS) corresponding to carbon atoms-Area Synthesis of High Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312­1314. 14. Li

Ciobanu, Cristian

397

Health effects of the nuclear accident at Three Mile Island  

SciTech Connect

Between March 28 and April 15, 1979 the collective dose resulting from the radioactivity released to the population living within a 50-mile radius of the Three Mile Island nuclear plant was about 2000 person-rems, less than 1% of the annual natural background level. The average dose to a person living within 5 miles of the nuclear plant was less than 10% of annual background radiation. The maximum estimated radiation dose received by any one individual in the general population (excluding the nuclear plant workers) during the accident was 70 mrem. The doses received by the general population as a result of the accident were so small that there will be no detectable additional cases of cancer, developmental abnormalities, or genetic ill-health. Three Three Mile Island nuclear workers received radiation doses of about 3 to 4 rem, exceeding maximum permissible quarterly dose of 3 rem. The major health effect of the accident at Three Mile Island was that of a pronounced demoralizing effect on the general population in the Three Mile Island area, including teenagers and mothers of preschool children and the nuclear plant workers. However, this effect proved transient in all groups studied except the nuclear workers.

Fabrikant, J.I.

1980-05-01T23:59:59.000Z

398

Secondary Control for Voltage Unbalance Compensation in an Islanded Microgrid  

E-Print Network (OSTI)

Secondary Control for Voltage Unbalance Compensation in an Islanded Microgrid Mehdi Savaghebi1 microgrid. The aim of the proposed control approach is to enhance the voltage quality at the point of common unbalance. Keywords-distributed generation; microgrid; secondary control; voltage unbalance compensation I

Vasquez, Juan Carlos

399

Indications of the Urban Heat Island in Athens, Greece  

Science Conference Proceedings (OSTI)

The analysis of air temperature data for a period of 22 years in the meteorological network stations in the greater Athens area shows clearly the effect of the urban heat island due to the city. This effect appears with different intensity ...

B. D. Katsoulis; G. A. Theoharatos

1985-12-01T23:59:59.000Z

400

Numerical Simulations of Island Effects on Airflow and Weather during the Summer over the Island of Oahu  

Science Conference Proceedings (OSTI)

The high-resolution (1.5 km) nonhydrostatic fifth-generation Pennsylvania State UniversityNational Center for Atmospheric Research (PSUNCAR) Mesoscale Model (MM5) and an advanced land surface model (LSM) are used to study the island-induced ...

Hiep Van Nguyen; Yi-Leng Chen; Francis Fujioka

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Field verification program for small wind turbines, Block Island, Rhode Island. Quarterly report for the period October to December 1999  

SciTech Connect

The proposal is to install and monitor five 10-kW residential wind turbines on 25-meter towers on Block Island, which has excellent wind resources and high electricity costs. The harsh environment will provide an opportunity for accelerated reliability testing of an enhanced wind turbine and other equipment.

Henry G. duPont

2000-01-01T23:59:59.000Z

402

Textural transformations in islands on free standing Smectic C* liquid crystal films  

E-Print Network (OSTI)

We report on and analyze the textural transformations in islands, thicker circular domains, floating in very thin free standing chiral Smectic C* liquid crystal films. As an island is growing, an initial pure bend texture of the c-director changes into a reversing spiral at a critical size. Another distinct spiral texture is induced by changing the boundary condition at the central point defect in the island. To understand these transformations from a pure bend island, a linear stability analysis of the c-director free energy is developed, which predicts a state diagram for the island. Our observations are consistent with the theoretical phase diagram.

Jong-Bong Lee; Dmitri Konovalov; Robert B. Meyer

2006-02-08T23:59:59.000Z

403

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Propane (LPG)

404

Publications on the U.S. Virgin Islands | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Publications on the U.S. Virgin Islands Publications on the U.S. Virgin Islands Publications on the U.S. Virgin Islands Find publications on deploying energy efficiency and renewable energy in the U.S. Virgin Islands (USVI) as part of an Energy Development in Island Nations (EDIN) pilot project. EDIN-USVI Clean Energy Quarterly This newsletter highlights progress the EDIN-USVI working groups are making in the areas of energy efficiency, renewable energy, transportation, community education and outreach, and energy policy to advance the territory's clean energy goals. Energy Department Helps Advance Island Clean Energy Goals This fact sheet highlights a June 2012 solar power purchase agreement between the Virgin Islands Water and Power Authority and three corporations. It describes how financial support from DOE and technical

405

U.S. Virgin Islands - Renewables Portfolio Targets | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Virgin Islands - Renewables Portfolio Targets U.S. Virgin Islands - Renewables Portfolio Targets U.S. Virgin Islands - Renewables Portfolio Targets < Back Eligibility Utility Program Info Program Type Renewables Portfolio Standard In July 2009, the Virgin Islands passed Act 7075. Among other provisions, the legislation establishes that the "peak demanded generating capacity" of the Virgin Islands Water and Power Authority* must be from renewables according to the following schedule: * 20% by January 1, 2015 * 25% by January 1, 2020 * 30% by January 1, 2025 It further establishes that a "majority" of this generating capacity must come from renewables or alternative technologies beyond 2025. Joint rulemaking is to be undertaken by the Virgin Islands Energy Office and the Virgin Islands Water and Power Authority, although the rules are not yet

406

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Natural  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas to someone by E-mail Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Natural Gas on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Natural Gas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Natural Gas

407

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Idle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction to someone by E-mail Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Idle Reduction on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Idle Reduction on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Idle Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Idle Reduction

408

Commercial-Scale Renewable-Energy Grants (Rhode Island) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial-Scale Renewable-Energy Grants (Rhode Island) Commercial-Scale Renewable-Energy Grants (Rhode Island) Commercial-Scale Renewable-Energy Grants (Rhode Island) < Back Eligibility Commercial Institutional Local Government Low-Income Residential Nonprofit Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Solar Home Weatherization Water Maximum Rebate $75,000 Program Info Funding Source Rhode Island Renewable Energy Fund (RIREF); Alternative Compliance Payments (ACPs) Start Date 01/01/2013 Expiration Date 12/31/2013 State Rhode Island Program Type State Grant Program Rebate Amount 20% of project funding Provider Rhode Island Economic Development Corporation The Rhode Island Economic Development Corporation (RIEDC) provides

409

U.S. Virgin Islands - Search - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

US Virgin Islands US Virgin Islands Profile US Virgin Islands US Virgin Islands Profile Territory Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming U.S. Territories American Samoa Guam Northern Mariana Islands Puerto Rico US Virgin Islands Overview Data State Profiles Economy Reserves & Supply Imports & Exports

410

Frye Island, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Frye Island, Maine: Energy Resources Frye Island, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8472979°, -70.5189444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8472979,"lon":-70.5189444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

411

Turks and Caicos Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Turks and Caicos Islands: Energy Resources Turks and Caicos Islands: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.73333,"lon":-71.58333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

Long Island Power Authority - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Rebate Program PV Rebate Program Long Island Power Authority - PV Rebate Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential (general customer-owned): Lesser of 50% of installed cost or $18,600; Residential (third-party owned): Lesser of 50% of installed cost or $17,200; Residential (non-profit owned): Lesser of 50% of installed costs or $22,500; Commercial: Lesser of 50% of installed cost or $145,000; Gov't, Schools, Nonprofits: Lesser of 65% of installed cost or $225,000 Program Info Funding Source LIPA Efficiency Long Island Program Start Date 2000 State New York Program Type Utility Rebate Program Rebate Amount

413

Penobscot Indian Island, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Indian Island, Maine: Energy Resources Indian Island, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1218285°, -68.6290394° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1218285,"lon":-68.6290394,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

414

MHK Projects/Cat Island Project | Open Energy Information  

Open Energy Info (EERE)

Cat Island Project Cat Island Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.9431,"lon":-91.0932,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

415

Pascoag, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pascoag, Rhode Island: Energy Resources Pascoag, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9556539°, -71.7022899° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9556539,"lon":-71.7022899,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

Seconsett Island, Massachusetts: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Seconsett Island, Massachusetts: Energy Resources Seconsett Island, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5662211°, -70.5116948° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5662211,"lon":-70.5116948,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

417

Tiverton, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tiverton, Rhode Island: Energy Resources Tiverton, Rhode Island: Energy Resources (Redirected from Tiverton, RI) Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.6259357°, -71.2133801° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6259357,"lon":-71.2133801,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

Glocester, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Glocester, Rhode Island: Energy Resources Glocester, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9043113°, -71.691066° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9043113,"lon":-71.691066,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

419

Central Falls, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island: Energy Resources Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8906553°, -71.3922785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8906553,"lon":-71.3922785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

COMMONWEALTH OF THE NORTHERN MARIANA ISLANDS Benigno R. Fitial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THE NORTHERN MARIANA ISLANDS THE NORTHERN MARIANA ISLANDS Benigno R. Fitial Governor The Honorable Steven Chu Secretary U.S. Department of Energy 1 000 Independence Avenue, S. W. Washington, D.C. 20585 Re: State Energy Program Assurances Timothy P. Villagomez Lieutenant Governor MAR 1 0 2009 Dear Secretary Chu: As a condition of receiving our State's share of the $3.1 billion funding for the State Energy Program (SEP) under the American Recovery and Renewal Act of 2009 (H.R. l)(ARRA), I am providing the following assurances. I have written to our public utility commission and requested that they consider additional actions to promote energy efficiency, consistent with the Federal statutory language contained in H.R. 1 and their obligations to maintain just and reasonable rates, while

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Fox Islands Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Fox Islands Electric Coop, Inc Fox Islands Electric Coop, Inc Place Maine Utility Id 8780 Utility Location Yes Ownership C NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Commercial Large Commercial Service Commercial Large Power Service Commercial Outdoor Lighting Service Lighting Residential Peak Period Service Residential Residential Service Residential Small Power Service Commercial Street Light Service 100HP sodium Lighting Street Light Service 175 Mercury Lighting Average Rates

422

Tiki Island, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tiki Island, Texas: Energy Resources Tiki Island, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.2957768°, -94.9169196° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.2957768,"lon":-94.9169196,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

MHK Projects/Pike Island | Open Energy Information  

Open Energy Info (EERE)

Island Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.3555,"lon":-81.7479,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

424

Mercer Island, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Island, Washington: Energy Resources Island, Washington: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.5706548°, -122.2220673° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.5706548,"lon":-122.2220673,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

East Providence, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Providence, Rhode Island: Energy Resources Providence, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8137116°, -71.3700545° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8137116,"lon":-71.3700545,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Fishers Island Utility Co Inc | Open Energy Information  

Open Energy Info (EERE)

Utility Co Inc Utility Co Inc Jump to: navigation, search Name Fishers Island Utility Co Inc Place New York Utility Id 6369 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Class 5 Commercial Residential Class 1 Residential Residential Class 2 Residential Residential Class 7 Residential Average Rates Residential: $0.3290/kWh Commercial: $0.2550/kWh The following table contains monthly sales and revenue data for Fishers Island Utility Co Inc (New York).

427

Woonsocket, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Woonsocket, Rhode Island: Energy Resources Woonsocket, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.0028761°, -71.5147839° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.0028761,"lon":-71.5147839,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

Kelleys Island, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kelleys Island, Ohio: Energy Resources Kelleys Island, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.5969932°, -82.7101823° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5969932,"lon":-82.7101823,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

429

Valley Falls, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island: Energy Resources Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9067663°, -71.3906119° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9067663,"lon":-71.3906119,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

Pawtucket, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pawtucket, Rhode Island: Energy Resources Pawtucket, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.878711°, -71.3825558° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.878711,"lon":-71.3825558,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Shelter Island, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Shelter Island, NY) (Redirected from Shelter Island, NY) Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.0681549°, -72.3386939° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0681549,"lon":-72.3386939,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

City of Bainbridge Island - (Re)Power Bainbridge Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » City of Bainbridge Island - (Re)Power Bainbridge Rebate Program (Washington) City of Bainbridge Island - (Re)Power Bainbridge Rebate Program (Washington) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Water Heating Program Info State District of Columbia Program Type Local Rebate Program Rebate Amount Attic Insulation: $.25 per sq/ft up to $400 Wall Insulation: $.25 per sq/ft up to $400 Floor Insulation: $.25 per sq/ft up to $400 Duct Insulation: $.25 per sq/ft up to $400 Whole House Air Sealing: $300 Hot Water Boiler: $300 Steam Boiler: $300 Furnace: $200 Furnace with EMC: $300

433

Bay Harbor Islands, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Harbor Islands, Florida: Energy Resources Harbor Islands, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.8875948°, -80.1311564° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.8875948,"lon":-80.1311564,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

434

Bell Island Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Bell Island Space Heating Low Temperature Geothermal Facility Facility Bell Island Sector Geothermal energy Type Space Heating Location Ketchikan, Alaska Coordinates 55.3422222°, -131.6461111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

435

Cranston, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cranston, Rhode Island: Energy Resources Cranston, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7798226°, -71.4372796° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7798226,"lon":-71.4372796,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

436

Long Island Power Authority - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering Net Metering Long Island Power Authority - Net Metering < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Wind Solar Program Info State New York Program Type Net Metering Provider Long Island Power Authority : Note: In October 2012 the LIPA Board of Trustees adopted changes to the utility's net metering tariff that permit remote net metering for non-residential solar and wind energy systems, and farm-based biogas and wind energy systems. It also adopted a measure to increase the aggregate net metering cap for solar, agricultural biogas, residential micro-CHP and

437

MHK Projects/Cow Island Bend | Open Energy Information  

Open Energy Info (EERE)

Island Bend Island Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.0269,"lon":-90.2792,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

438

Fremd Village-Padgett Island, Florida: Energy Resources | Open Energy  

Open Energy Info (EERE)

Fremd Village-Padgett Island, Florida: Energy Resources Fremd Village-Padgett Island, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.8026363°, -80.6576623° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.8026363,"lon":-80.6576623,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

MHK Projects/Claiborne Island Project | Open Energy Information  

Open Energy Info (EERE)

Claiborne Island Project Claiborne Island Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2055,"lon":-91.0732,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

440

MHK Projects/Turnbull Island | Open Energy Information  

Open Energy Info (EERE)

Turnbull Island Turnbull Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.0652,"lon":-91.711,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

MHK Projects/Davis Island Bend | Open Energy Information  

Open Energy Info (EERE)

Island Bend Island Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.1299,"lon":-91.0636,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

442

Narragansett, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Narragansett, Rhode Island: Energy Resources Narragansett, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4501021°, -71.4495005° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4501021,"lon":-71.4495005,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

443

Chebeague Island, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Chebeague Island, Maine: Energy Resources Chebeague Island, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7409154°, -70.1081034° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7409154,"lon":-70.1081034,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

444

Providence County, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Providence County, Rhode Island: Energy Resources Providence County, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8881582°, -71.4774291° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8881582,"lon":-71.4774291,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

445

Waste-to-Energy Evaluation: U.S. Virgin Islands  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste-to-Energy Evaluation: U.S. Virgin Islands Jerry Davis, Scott Haase, and Adam Warren Technical Report NREL/TP-7A20-52308 August 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Waste-to-Energy Evaluation: U.S. Virgin Islands Jerry Davis, Scott Haase, and Adam Warren Prepared under Task No(s). IDVI.0000 and IDVI.0032 Technical Report NREL/TP-7A20-52308 August 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

446

Cumberland Hill, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rhode Island: Energy Resources Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9745431°, -71.4670043° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9745431,"lon":-71.4670043,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

Waste-to-Energy Evaluation: U.S. Virgin Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste-to-Energy Evaluation: Waste-to-Energy Evaluation: U.S. Virgin Islands Jerry Davis, Scott Haase, and Adam Warren Technical Report NREL/TP-7A20-52308 August 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Waste-to-Energy Evaluation: U.S. Virgin Islands Jerry Davis, Scott Haase, and Adam Warren Prepared under Task No(s). IDVI.0000 and IDVI.0032 Technical Report NREL/TP-7A20-52308 August 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

448

City of Grand Island, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Grand Island City of Grand Island City of Place Nebraska Utility Id 40606 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Flood Lighting Lighting Commercial Rate- Single Phase Commercial Commercial Rate- Three Phase Commercial Residential Rate Residential Three Phase Power Service Industrial

449

Burrillville, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Burrillville, Rhode Island: Energy Resources Burrillville, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9810947°, -71.691066° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9810947,"lon":-71.691066,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

Rhode Island Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Rhode Island Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 257 951 718 594 102 130 182 109 391 219 1990's 51 92 155 126 0 27 42 18 1 1 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Rhode Island Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

451

Rock Island County, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Island County, Illinois: Energy Resources Island County, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.3998209°, -90.563609° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3998209,"lon":-90.563609,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

MHK Projects/Willow Island | Open Energy Information  

Open Energy Info (EERE)

Island Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3584,"lon":-81.3082,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

453

Fire Island, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Island, New York: Energy Resources Island, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.6475997°, -73.1459474° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.6475997,"lon":-73.1459474,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

454

Turks and Caicos Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Turks and Caicos Islands: Energy Resources (Redirected from Turks & Caicos Islands) Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.73333,"lon":-71.58333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

455

MHK Projects/Turkey Island | Open Energy Information  

Open Energy Info (EERE)

Island Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.8081,"lon":-91.3778,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

456

Long Island Power Authority LIPA | Open Energy Information  

Open Energy Info (EERE)

LIPA LIPA Jump to: navigation, search Name Long Island Power Authority (LIPA) Place Uniondale, New York Zip NY 11553 Product Long Island is a non-profit electric utility company. Coordinates 40.717935°, -73.593544° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.717935,"lon":-73.593544,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

MHK Projects/Tiger Island | Open Energy Information  

Open Energy Info (EERE)

Tiger Island Tiger Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.0297,"lon":-91.4933,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

458

Bethel Island, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Island, California: Energy Resources Island, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.0149216°, -121.6405085° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.0149216,"lon":-121.6405085,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

459

Harrisville, Rhode Island: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Harrisville, Rhode Island: Energy Resources Harrisville, Rhode Island: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9656539°, -71.6745112° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.9656539,"lon":-71.6745112,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

MHK Projects/Island 14 Bend | Open Energy Information  

Open Energy Info (EERE)

Island 14 Bend Island 14 Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.2837,"lon":-89.576,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "atoll midway islands" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Fisher Island, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fisher Island, Florida: Energy Resources Fisher Island, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 25.7609329°, -80.1400459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.7609329,"lon":-80.1400459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

462

MHK Projects/Treat Island Tidal | Open Energy Information  

Open Energy Info (EERE)

Treat Island Tidal Treat Island Tidal < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0234,"lon":-67.0672,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

463

MHK Projects/Stradbroke Island | Open Energy Information  

Open Energy Info (EERE)

Stradbroke Island Stradbroke Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-27.8883,"lon":153.421,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

464

MHK Projects/Raccourci Island | Open Energy Information  

Open Energy Info (EERE)

Island Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.9122,"lon":-91.5645,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

465

MHK Projects/Island 35 Bend | Open Energy Information  

Open Energy Info (EERE)

MHK Projects/Island 35 Bend MHK Projects/Island 35 Bend < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.5435,"lon":-89.9079,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

466

MHK Projects/CETO3 Garden Island | Open Energy Information  

Open Energy Info (EERE)

CETO3 Garden Island CETO3 Garden Island < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-32.2509,"lon":115.651,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

467

Case study of slope failures at Spilmans Island  

SciTech Connect

This paper presents a case study for a dredge disposal site called Spilmans Island, located along the Houston-Galveston Ship Channel, east of Houston. Initially classified as a sand bar in the San Jacinto River, Spilmans Island evolved in recent years with the construction of perimeter levees to contain the flow of materials produced from dredging operations. These levees were often constructed on soft dredged sediments, and as the levees were raised, occasionally slope failures occurred. The objectives of this paper are to illustrate the importance of reconstructing the history of a site as a basis for geotechnical analyses, and to demonstrate the significance of keeping accurate records of past investigations, construction activities, slope failures and subsequent remedial measures. The results of the geotechnical investigation described in this paper offer a clear example of how such data can be used to provide reliable predictions on the stability conditions of raised levees.

Kayyal, M.K. [Damascus Univ. (Syrian Arab Republic). Faculty of Civil Engineering; Hasen, M. [HVJ Association, Inc., Houston, TX (United States)

1998-11-01T23:59:59.000Z

468

Rainforest composition and succession on a South Pacific island  

E-Print Network (OSTI)

Interest in the dynamics and ecology of tropical forests has increased in recent years. However, the vast majority of studies undertaken by researchers in tropical environments have focused on neotropical forests and ignored old-world paleotropical forests. The rainforest on the Island of Tutuila, American Samoa, is a mixed-species paleotropical rainforest. Because much of the island is still covered by mature, native tropical rainforest, Tutuila represents one of the best locations to study paleotropical rainforest in the South Pacific. This thesis reports on the tree composition of different forest communities on Tutuila and employs indirect ordination tools such as detrended correspondence analysis (DCA) to describe two previously unidentified forest communities. This thesis also identifies the successional pathway followed by the rainforest on Tutuila as it regenerates in abandoned agricultural sites and reverts into mature forest stands.

Heggie, Travis Wade

2001-01-01T23:59:59.000Z

469

Gilbert M. Smith, master boatbuilder of Long Island, New York  

E-Print Network (OSTI)

The second half of the 19th century in maritime America was an era marked by a rich variety of vernacular watercraft types adapted to a wide range of local needs and traditions. The Great South Bay, located off Long Island, New York, was home to several variants of small work and pleasure craft. This thesis is an examination of Long Island boatbuilding via a study of the career of the most prolific and best known local boatbuilder, Gilbert Monroe Smith (1843-1940). It is estimated that Gil Smith built four hundred vessels from the 1860s through the 1930s, the twilight of wooden boat- and shipbuilding in coastal southern New England. Smith's work represents the culmination of decades of traditional boatbuilding. This tradition, along with environmental and economic constraints, helped to shape Smith's hulls.

Merwin, Daria Elizabeth

2000-01-01T23:59:59.000Z

470

Rationalization of the Bering Sea and Aleutian Islands crab fisheries  

E-Print Network (OSTI)

In recent years, overcapacity in Bering Sea and Aleutian Islands crab fisheries has resulted in a dangerous race for crab. This paper examines a unique management program developed by the North Pacific Fishery Management Council intended to alleviate these problems, while accommodating a variety of stakeholders dependent on the fisheries. The discussion concludes by identifying some of the most substantial hurdles that the program must overcome to succeed and some characteristics of the fisheries that contribute to the potential to overcome these obstacles.

Mark Fina

2004-01-01T23:59:59.000Z

471

Rock Island Dam Smolt Monitoring; 1994-1995 Annual Report.  

DOE Green Energy (OSTI)

Downstream migrating salmon and steelhead trout (Oncorhynchus spp.) smolts were monitored at the Rock Island Dam bypass trap from April 1 - August 31, 1954. This was the tenth consecutive year that the bypass trap was monitored. Data collected included: (1) number of fish caught by species, (2) number of adipose clipped and/or Passive Integrated Transponder (PIT) tagged fish caught by species, (3) daily average riverflow, (4) daily average powerhouse No. 1 and No. 2 flows and daily average spill. These data were transmitted to the Fish Passage Center, which manages the Smolt Monitoring Program throughout the Columbia River Basin. The Smolt Monitoring Program is used to manage the {open_quotes}water budget{close_quotes}, releasing upstream reservoir water storage allocated to supplement river flows to enhance survival of downstream migrating juvenile salmonids. The Rock Island Dam trapping facility collected 37,795 downstream migrating salmonids in 1994. Collected fish included 4 yearling and 4 sub-yearling chinook salmon (O. tshawytscha) that had been previously PIT tagged to help determine migration rates. Additionally, 1,132 sub-yearling chinook, 4,185 yearling chinook, 6,627 steelhead, (O. mykiss) and 422 sockeye (O. nerka) with clipped adipose fins were collected. The middle 80% of the 1994 spring migration (excluding sub-yearling chinooks) passed Rock Island Dam during a 34 day period, April 25 - May 28. Passage rates of chinook and steelhead smolts released from hatcheries and the downstream migration timing of all salmonids are presented. The spring migration timing of juvenile salmonids is strongly influenced by hatchery releases above Rock Island Dam.

Truscott, Keith B.; Fielder, Paul C. (Chelan County Public Utility District No. 1, Power Operations Department, Wenatchee, WA)

1995-10-01T23:59:59.000Z

472

Tectonic Setting of the Wooded Island Earthquake Swarm, Eastern Washington  

SciTech Connect

Magnetic anomalies provide insights into the tectonic implications of a swarm of ?1500 shallow (?1 km deep) earthquakes that occurred in 2009 on the Hanford site,Washington. Epicenters were concentrated in a 2 km2 area nearWooded Island in the Columbia River. The largest earthquake (M 3.0) had first motions consistent with slip on a northwest-striking reverse fault. The swarm was accompanied by 35 mm of vertical surface deformation, seen in satellite interferometry (InSAR), interpreted to be caused by ?50 mm of slip on a northwest-striking reverse fault and associated bedding-plane fault in the underlying Columbia River Basalt Group (CRBG). A magnetic anomaly over exposed CRBG at Yakima Ridge 40 km northwest of Wooded Island extends southeastward beyond the ridge to the Columbia River, suggesting that the Yakima Ridge anticline and its associated thrust fault extend southeastward in the subsurface. In map view, the concealed anticline passes through the earthquake swarm and lies parallel to reverse faults determined from first motions and InSAR data. A forward model of the magnetic anomaly near Wooded Island is consistent with uplift of concealed CRBG, with the top surface <200 m below the surface. The earthquake swarm and the thrust and bedding-plane faults modeled from interferometry all fall within the northeastern limb of the faulted anticline. Although fluids may be responsible for triggering the Wooded Island earthquake swarm, the seismic and aseismic deformation are consistent with regional-scale tectonic compression across the concealed Yakima Ridge anticline.

Blakely, Richard J.; Sherrod, Brian; Weaver, Craig; Rohay, Alan C.; Wells, Ray E.

2012-08-02T23:59:59.000Z

473

Kluichef - Atka Island Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kluichef - Atka Island Geothermal Area Kluichef - Atka Island Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kluichef - Atka Island Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.3217,"lon":-174.1861,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

474

Bering Sea and Aleutian Islands crab fisheries ii Executive Summary  

E-Print Network (OSTI)

In August of 2005, fishing in the Bering Sea and Aleutian Island crab fisheries began under a new sharebased management program (the program or rationalization program). The program is unique in several ways, including the allocation of processing shares corresponding to a portion of the harvest share pool. Under the program, 90 percent of the annual catcher vessel owner harvest share allocation is issued as Class A individual fishing quota (IFQ), which must be delivered in a designated region and may only be delivered to a processor holding unused individual processing quota (IPQ). The program also includes an arbitration system that may be used to resolve ex vessel price and other delivery term disputes for landings of harvests using Class A IFQ. In the first two years of the program certain technical aspects of the arbitration system have limited the effectiveness of that system. This action includes alternatives that would modify three aspects of the arbitration system to improve it effectiveness. Action to revise market reports and non-binding price formulas for fisheries unlikely to open Under the current regulations, arbitration organizations representing holders of harvest shares and processing shares are required to contract for market reports and non-binding price formulas annually for each fishery regardless of whether the fishery opens. In the first two years of the program, the St. Matthew Island blue king crab, Pribilof red and blue king crab, and the Western Aleutian Island red king

S King; Tanner Crabs

2008-01-01T23:59:59.000Z

475

Bering Sea and Aleutian Islands crab fisheries ii Executive Summary  

E-Print Network (OSTI)

In August of 2005, fishing in the Bering Sea and Aleutian Island crab fisheries began under a new sharebased management program (the program or rationalization program). The program is unique in several ways, including the allocation of processing shares corresponding to a portion of the harvest share pool. Under the program, 90 percent of the annual catcher vessel owner harvest share allocation is issued as Class A individual fishing quota (IFQ), which must be delivered in a designated region and may only be delivered to a processor holding unused individual processing quota. The program also includes an arbitration system that may be used to resolve ex vessel price and other delivery term disputes for landings of harvests using Class A IFQ. In the first two years of the program certain technical aspects of the arbitration system have limited the effectiveness of that system. This action includes alternatives that would modify four aspects of the arbitration system to improve its effectiveness. Action to revise market reports and non-binding price formulas for fisheries unlikely to open Under the current regulations, arbitration organizations representing holders of harvest shares and processing shares are required to contract for market reports and non-binding price formulas annually for each fishery regardless of whether the fishery opens. In the first two years of the program, the St. Matthew Island blue king crab, Pribilof red and blue king crab, and the Western Aleutian Islands red king

Aleutian Isl; S King; Tanner Crabs

2011-01-01T23:59:59.000Z

476

Bell Island Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Island Hot Springs Geothermal Area Island Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Bell Island Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.9321,"lon":-131.5672,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

477

Great Sitkin Island Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Sitkin Island Geothermal Area Sitkin Island Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Great Sitkin Island Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.06666667,"lon":-176.0833333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

478

Korovin - Atka Island Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Korovin - Atka Island Geothermal Area Korovin - Atka Island Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Korovin - Atka Island Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.3494,"lon":-174.2472,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

479

Hot Spring On Umnak Island Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Spring On Umnak Island Geothermal Area Hot Spring On Umnak Island Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Spring On Umnak Island Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.2283,"lon":-168.308,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

480

Erosion of rocky carbonate coastlines: Andros Island, Bahamas  

SciTech Connect

Erosion of rocky carbonate coastlines has been monitored at intertidal and supratidal locations on Andros Island, Bahamas. The monitoring method involves periodic direct measurement of over 1000 points on a 0.25 square meter surface of rock. Comparisons are made between initial surface morphology and subsequent surface morphologies in order to measure rates and patterns of erosion. Rates of intertidal erosion vary from 2.5 meters/1000 years to 5.0 meters/1000 years, with an average of 3.1 meters/1000 years. The lack of wave action, combined with an absence of bioeroding organisms such as gastropods, chitons, sponges, worms and barnacles, which exist in the intertidal zone, causes the supratidal rate of erosion to be much lower than the rate of intertidal erosion. Degradation of rocky coastlines results in island retreat as well as the production of a large amount of sediment which is deposited in adjacent lagoons. Much of the sediment produced by bioerosion of these peloidal limestones exists as fecal pellets and sponge chips which are calcite. The erosion of rocky intertidal escarpments creates terraces and notches which lie near low-tide level. The width of the intertidal terraces of Andros Island aids our understanding of the duration of the most recent stillstand of sea level. Terraces and notches at other elevations indicate former stillstands.

Donn, T.F.; Boardman, M.R.

1985-01-01T23:59:59.000Z