National Library of Energy BETA

Sample records for atmospheric sciences research

  1. 2010 Atmospheric System Research (ASR) Science Team Meeting Summary

    SciTech Connect (OSTI)

    Dupont, DL

    2011-05-04

    This document contains the summaries of papers presented in poster format at the March 2010 Atmospheric System Research Science Team Meeting held in Bethesda, Maryland. More than 260 posters were presented during the Science Team Meeting. Posters were sorted into the following subject areas: aerosol-cloud-radiation interactions, aerosol properties, atmospheric state and surface, cloud properties, field campaigns, infrastructure and outreach, instruments, modeling, and radiation. To put these posters in context, the status of ASR at the time of the meeting is provided here.

  2. Atmospheric Sciences Program summaries of research in FY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This document describes the activities and products of the Atmospheric Science Program of the Environmental Sciences Division, Office of Health and Environmental Research, Office of Energy Research, in FY 1993. Each description contains the project`s title; three-year funding history; the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date. Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states its goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used. This document has been indexed to aid the reader in locating research topics, participants, and research institutions in the text and the project descriptions. Comprehensive subject, principal investigator, and institution indexes are provided at the end of the text for this purpose. The comprehensive subject index includes keywords from the introduction and chapter texts in addition to those from the project descriptions.

  3. Atmospheric System Research (ASR) Program | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Atmospheric System Research (ASR) Program Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program

  4. Atmospheric Science Program. Summaries of research in FY 1994

    SciTech Connect (OSTI)

    1995-06-01

    This report provides descriptions for all projects funded by ESD under annual contracts in FY 1994. Each description contains the project`s title; three-year funding history (in thousands of dollars); the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date (for most projects older than one year). Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states it goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used.

  5. Atmospheric Radiation Measurement (ARM) Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) Science and Infrastructure Steering Committee CHARTER June 2012 DISCLAIMER ...

  6. W.-C. Wang X.-Z. Liang M. D. Dudek S. Cox Atmospheric Sciences Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wang X.-Z. Liang M. D. Dudek S. Cox Atmospheric Sciences Research Center State University of New York 100 Fuller Road Albany, NY 12205 We participate in the Atmospheric Radiation Measurement (ARM) program with two objectives: 1) to improve the general circulation model (GCM) cloud/radiation treatment with focus on cloud overlapping and the cloud optical properties and 2) to study the effects of cloud/radiation-climate interaction on climate simulations. The project includes three tasks: 1) GCM

  7. ORISE: Climate and Atmospheric Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge Institute for Science Education Climate and Atmospheric Research Conducting climate research focused on issues of national and global importance is one of the primary objectives of the Atmospheric Turbulence and Diffusion Division (ATDD)-a field division of the National Oceanic and Atmospheric Administration. ORAU partners with ATDD-and in collaboration with scientists and engineers from Oak Ridge National Laboratory (ORNL) as well as government agencies, universities, and private

  8. Atmospheric science and power production

    SciTech Connect (OSTI)

    Randerson, D.

    1984-07-01

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  9. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 3. Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1986-02-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1985, this research has examined the transport and diffusion of atmospheric contaminants in areas of complex terrain, summarized the field studies and analyses of dry deposition and resuspension conducted in past years, and begun participation in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' The description of atmospheric research at PNL is organized in terms of the following study areas: Atmospheric Studies in Complex Terrain; Dispersion, Deposition, and Resuspension of Atmospheric Contaminants; and Processing of Emissions by Clouds and Precipitation (PRECP).

  10. Atmospheric Radiation Measurement Program Science Plan. Current...

    Office of Scientific and Technical Information (OSTI)

    Program Science Plan. Current Status and Future Directions of the ARM Science Program Citation Details In-Document Search Title: Atmospheric Radiation Measurement Program Science ...

  11. Pacific Northwest Laboratory annual report for 1989 to the DOE (Department of Energy) Office of Energy Research - Part 3: Atmospheric Sciences

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This 1989 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment, safety, and health conducted during fiscal year 1989. The report again consists of five parts, each in a separate volume. This volume contains research in the atmospheric sciences. Currently, the broad goals of atmospheric research at PNL are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, continental, and global scales in the air, in clouds, and on the surface. The redistribution and long-range transport of transformed contaminants passing through clouds is recognized as a necessary extension of our research to even larger scales in the future. Eventually, large-scale experiments on cloud processing and redistribution of contaminants will be integrated into the national program on global change, investigating how energy pollutants affect aerosols and clouds and the transfer of radiant energy through them. As the significance of this effect becomes clear, its global impact on climate will be studied through experimental and modeling research. The description of ongoing atmospheric research at PNL is organized in terms of the following study areas: atmospheric studies in complex terrain, large-scale atmospheric transport and processing of emissions, and climate change. This report describes the progress in FY 1989 in each of these areas. A divider page summarizes the goals of each area and lists project titles that support research activities. 9 refs., 2 figs., 3 tabs.

  12. Atmospheric and Climate Science | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric and Climate Science Argonne research in aerosols, micro-meteorology, remote sensing, and atmospheric chemistry combined with our scalable, portable, high-performance climate and weather applications offer a unique look at the complexities of a dynamic planet. Changes in climate can affect biodiversity, the cost of food, our health, and even whole economies. Argonne is developing computational models and tools designed to shed light on complex biological processes and their economic,

  13. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1987-06-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1986, atmospheric research examined the transport and diffusion of atmospheric contaminants in areas of complex terrain and participated in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' In addition, during 1986, a special opportunity for measuring the transport and removal of radioactivity occurred after the Chernobyl reactor accident in April 1986. Separate abstracts were prepared for individual projects.

  14. Atmospheric Science: Solving Challenges of Climate Change

    SciTech Connect (OSTI)

    Geffen, Charlette

    2015-08-05

    PNNL’s atmospheric science research provides data required to make decisions about challenges presented by climate change: Where to site power plants, how to manage water resources, how to prepare for severe weather events and more. Our expertise in fundamental observations and modeling is recognized among the national labs and the world.

  15. Atmospheric Radiation Measurement Program Science Plan. Current...

    Office of Scientific and Technical Information (OSTI)

    Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program Citation Details In-Document Search Title: Atmospheric Radiation ...

  16. Pacific Northwest Laboratory annual report for 1987 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1988-08-01

    Currently, the broad goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales in the air, in clouds, and on the surface. For several years, studies of transport and diffusion have been extended to mesoscale areas of complex terrain. Atmospheric cleansing research has expanded to a regional scale, multilaboratory investigation of precipitation scavenging processes involving the transformation and wet deposition of chemicals composing ''acid rain.'' In addition, the redistribution and long-range transport of transformed contaminants passing through clouds is recognized as a necessary extension of our research to even larger scales in the future. A few long-range tracer experiments conducted in recent years and the special opportunity for measuring the transport and removal of radioactivity following the Chernobyl reactor accident of April 1986 offer important initial data bases for studying atmospheric processes at these super-regional scales.

  17. Atmospheric Science Program (ASP) Data Archive () | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Atmospheric Science Program (ASP) Data Archive Title: Atmospheric Science Program (ASP) Data Archive The Department of Energy's Atmospheric Science Program (ASP) originally ...

  18. Atmospheric Radiation Measurement Climate Research Facility | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Atmospheric Radiation Measurement Climate Research Facility Argonne scientists study climate change 1 of 22 Argonne scientists study climate change The U.S. Department of Energy's Office of Science provided $60 million in ARRA funding for climate research to the Atmospheric Radiation Measurement (ARM) Climate Research Facility, a DOE national user facility that has been operating climate observing sites around the world for nearly two decades. These sites help scientists

  19. Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program

    SciTech Connect (OSTI)

    SA Edgerton; LR Roeder

    2008-09-30

    The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

  20. Atmospheric Science Program (ASP) Data Archive

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Department of Energy's Atmospheric Science Program (ASP) originally consisted of an atmospheric chemistry program, an environmental meteorology program, a tropospheric aerosol program, and NARSTO activities. In 2004, the ASP was reconfigured to focus on aerosol radiative forcing of climate change: aerosol formation and evolution and aerosol properties that affect direct and indirect influences on climate and climate change. This included developing a comprehensive understanding of the atmospheric processes that control the transport, transformation, and fate of energy related trace chemicals and particulate matter. The current focus of the program is aerosol radiative forcing of climate. Effective October 1, 2009, The ASP merged with the Atmospheric Radiation Measurement Program (ARM), with the overall program now called Atmospheric System Research. The overall research goal is one that was shared in common, i.e. to further the understanding of how the climate, as a system works, and to represent the understanding in computer models. The Office of Science and Brookhaven announced, ôA major benefit of the merge is expected to be a strengthening of the aerosol- and cloud-related research components of the programs by bringing together the ARM capabilities of continuous remote sensing measurements of cloud properties and aerosol influences on radiation with the ASP capabilities for in-situ characterization of aerosol properties, evolution, and cloud interactions.ö [http://www.asp.bnl.gov/#New] The ASP data archive has now been moved to a new location in order to be maintained with ARM data. The new url is http://iop.archive.arm.gov/arm-iop/0special-data/ASP_Campaigns_past/. BNL continues to maintain an excellent list of ASP-publications at http://www.asp.bnl.gov/asp_pubs.html

  1. PNNL: Atmospheric Sciences & Global Change Search for Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Science & Global Change Search for Staff Search for an ASGC staff member (Last, First) Search Search for staff member by Group View Alphabetical List of all ASGC Staff (may take a moment to load) Atmospheric Sciences & Global Change ASGC Home Our Research Facilities Measurement Capabilities Modeling Expertise Staff & Organization Search Publications Job Opportunities Seminar Series Frontiers in Global Change Science at PNNL Home Journal Cover Gallery Search Site Search

  2. Atmospheric Radiation Measurement Program Science Plan

    SciTech Connect (OSTI)

    Ackerman, T

    2004-10-31

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years. Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at

  3. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites ...

  4. DOE Science Showcase - Atmospheric Radiation Measurement | OSTI...

    Office of Scientific and Technical Information (OSTI)

    program to collect and make available these data to the global climate science community. ... The ARM scientific infrastructure helps to advance Earth systems science. Related Research ...

  5. Science Research Connection

    Office of Scientific and Technical Information (OSTI)

    Science Research Connection Science Research Connection (SRC) offers to the DOE community research information integrated from various OSTI databases, including both unclassified/unlimited and statutorily controlled information. SRC requires either IP authentication and/or registration and access is free of charge. If you are a DOE Federal or DOE Contractor employee and wish to register for an SRC account, please accept the access agreement below and then select the register link. Access Notice

  6. What Makes Science, Science? Research, Shared Effort ... & A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Makes Science, Science? Research, Shared Effort ... & A New Office of Science Website What Makes Science, Science? Research, Shared Effort ... & A New Office of Science Website ...

  7. Atmospheric Research at BNL

    ScienceCinema (OSTI)

    Peter Daum

    2010-01-08

    Brookhaven researcher Peter Daum discusses an international field experiment designed to make observations of critical components of the climate system of the southeastern Pacific. Because elements of this system are poorly understood and poorly represent

  8. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-027 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  9. AUDIT REPORT Atmospheric Radiation Measurement Climate Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atmospheric Radiation Measurement Climate Research Facility OAI-M-16-10 May 2016 U.S. ... Audit Report on the "Atmospheric Radiation Measurement Climate Research Facility" ...

  10. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-037 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  11. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    01 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  12. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-069 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  13. Atmospheric Radiation Measurement Climate Research Facility Annual...

    Office of Scientific and Technical Information (OSTI)

    Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006 Citation Details In-Document Search Title: Atmospheric Radiation Measurement Climate Research ...

  14. Pacific Northwest Laboratory annual report for 1988 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    Disposal of spent fuel or high level nuclear waste into marine sediments would create high temperature-high gamma radiation environments adjacent to waste canisters. Under these conditions sediments will react producing pore waters that differ significantly from those occurring naturally. These changes may enhance canister corrosion or facilitate transport of radionuclides through unreacted sediments beyond the heated zone. In addition, the term ''near field'' needs clarification, as it is used widely without having a precise meaning. Research in three areas was undertaken to improve our understanding of near field chemical processes. Initially, isothermal experiments were carried out in ''Dickson'' hydrothermal systems. These were followed by an experimental program directed at understanding the chemical effects of temperature-gradient induced transport. Finally, additional experimentation was done to study the combined effects of hydrothermal conditions and intense gamma radiation. Having completed this body of experimental work, it was concluded that near field conditions are not an obstacle to the safe use of abyssal marine sediments for the disposal of spent fuel or high level nuclear wastes. 41 refs., 6 figs., 17 tabs.

  15. Atmospheric sciences division. Annual report, fiscal year 1981

    SciTech Connect (OSTI)

    Raynor, G.S.

    1981-12-01

    The research activities of the Atmospheric Sciences Division of the Department of Energy and Environment for FY 1981 are presented. Facilities and major items of equipment are described. Research programs are summarized in three categories, modeling, field and laboratory experiments and data management and analysis. Each program is also described individually with title, principal investigator, sponsor and funding levels for FY 1981 and FY 1982. Future plans are summarized. Publications for FY 1981 are listed with abstracts. A list of personnel is included.

  16. Atmospheric Radiation Measurement Program Science Plan. Current Status and

    Office of Scientific and Technical Information (OSTI)

    Future Directions of the ARM Science Program (Technical Report) | SciTech Connect Technical Report: Atmospheric Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program Citation Details In-Document Search Title: Atmospheric Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate

  17. Materials Science Research | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Research For photovoltaics and other energy applications, NREL's primary research in materials science includes the following core competencies. A photo of laser light rays going in various directions atop a corrugated metal substrate Materials Physics Through materials growth and characterization, we seek to understand and control fundamental electronic and optical processes in semiconductors. An image of multiple, interconnecting red and blue particles Electronic Structure Theory We

  18. Science DMZ Fuels Fusion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Science DMZ Fuels Fusion Research General Atomics remote controls fusion experiments, bridges...

  19. Inspiring Careers in Science Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exposure to science areas across the Laboratory. Scientists who are interested in speaking at Lowell High School about their research can contact Elizabeth at...

  20. DOE Science Showcase - Neutron Science Research from DOE Databases...

    Office of Scientific and Technical Information (OSTI)

    Neutron Science Research from DOE Databases Additional neutron science research in DOE Databases Information Bridge Neutron scattering research was pioneered in 1946 by ORNL's ...

  1. Atmospheric Radiation Measurement Climate Research Facility Operations

    Office of Scientific and Technical Information (OSTI)

    Quarterly Report October 1-December 31, 2012 (Program Document) | SciTech Connect Program Document: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2012 Citation Details In-Document Search Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2012 Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility

  2. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... are collected and sent to the Data Management Facility (DMF) at Pacific Northwest ...

  3. Atmospheric Radiation Measurement Program Climate Research Facility...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Program Climate Research Facility Operations ... are collected and sent to the Data Management Facility (DMF) at Pacific Northwest ...

  4. Atmospheric sciences transfer between research advances and energy-policy assessments (ASTRAEA). Final report, 1 April 1996--31 December 1997

    SciTech Connect (OSTI)

    Slinn, W.G.N.

    1997-12-10

    Consistent with the prime goal of the ASTRAEA project, as given in its peer-reviewed proposal, this final report is an informal report to DOE managers about a perceived DOE management problem, specifically, lack of vision in DOE`s Atmospheric Chemistry Program (ACP). After presenting a review of relevant, current literature, the author suggests a framework for conceiving new visions for ACP, namely, multidisciplinary research for energy policy, tackling tough (e.g., nonlinear) problems as a team, ahead of political curves. Two example visions for ACP are then described, called herein the CITIES Project (the Comprehensive Inventory of Trace Inhalants from Energy Sources Project) and the OCEAN Project (the Ocean-Circulation Energy-Aerosol Nonlinearities Project). Finally, the author suggests methods for DOE to provide ACP with needed vision.

  5. Science DMZ National Oceanic and Atmospheric Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOAA Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU Science DMZ @ Penn & VTTI Science DMZ @ NOAA Science DMZ @ NERSC Science DMZ @ ALS Multi-facility Workflow Case Study Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web

  6. Sandia National Laboratories: Research: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Research Materials Processing Sandia research staff understand, characterize, model, and ultimately control materials fabrication technologies that are critical to component development and production. Plasma Spray

  7. Sandia National Laboratories: Research: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Materials Science Creating materials for energy applications and defense needs Aries Applying innovative characterization and diagnostic techniques Hongyou Fan Development of new materials to support national

  8. Airborne Instrumentation Needs for Climate and Atmospheric Research

    SciTech Connect (OSTI)

    McFarquhar, Greg; Schmid, Beat; Korolev, Alexei; Ogren, John A.; Russell, P. B.; Tomlinson, Jason M.; Turner, David D.; Wiscombe, Warren J.

    2011-10-06

    Observational data are of fundamental importance for advances in climate and atmospheric research. Advances in atmospheric science are being made not only through the use of ground-based and space-based observations, but also through the use of in-situ and remote sensing observations acquired on instrumented aircraft. In order for us to enhance our knowledge of atmospheric processes, it is imperative that efforts be made to improve our understanding of the operating characteristics of current instrumentation and of the caveats and uncertainties in data acquired by current probes, as well as to develop improved observing methodologies for acquisition of airborne data.

  9. ARM - Publications: Science Team Meeting Documents: Atmospheric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Modes of Drizzling Stratus at the ARM SGP Site Kollias, Pavlos RSMASUniversity of Miami Albrecht, Bruce University of Miami The representation of boundary layer clouds ...

  10. DOE Science Showcase - Atmospheric Radiation Measurement | OSTI...

    Office of Scientific and Technical Information (OSTI)

    ... Dr. William Watson (archive) First direct observation of carbon dioxide's ... National Laboratory YouTube Visit the Science Showcase Archive Last updated on Thursday ...

  11. ARM Climate Research Facility | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    ARM Climate Research Facility Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program Subsurface

  12. Sandia National Laboratories: Research: Materials Science: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Facilities Center for Integrated Nanotechnologies (CINT) CINT Ion Beam Laboratory Ion Beam Laboratory MESA High Performance Computing Processing and Environmental Technology Laboratory Processing and Environmental

  13. Style Guide Atmospheric Radiation Measurement (ARM) Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Style Guide Atmospheric Radiation Measurement (ARM) Climate Research Facility March 2013 Style Guide Atmospheric Radiation Measurement Climate Research Facility March 2013 Work ...

  14. DOE/SC-ARM-020 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-020 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  15. Nuclear Science Research facility at LANSCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron and Nuclear Science (WNR) Facility at LANSCE lansce facility at LANL Introduction ... Neutron Scattering Center (Target-1) and the Neutron and Nuclear Science Research facility ...

  16. Atmospheric Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program

    SciTech Connect (OSTI)

    Ackerman, Thomas P.; Del Genio, Anthony D.; Ellingson, Robert G.; Ferrare, Richard A.; Klein, Steve A.; McFarquhar, Gregory M.; Lamb, Peter J.; Long, Charles M.; Verlinde, Johannes

    2004-10-30

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years; Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square; Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds; Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations; Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites; Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale; and, Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote

  17. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    SciTech Connect (OSTI)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  18. DOE Science Showcase - Neutron Science Research from DOE Databases | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information Neutron Science Research from DOE Databases Additional neutron science research in DOE Databases Information Bridge Neutron scattering research was pioneered in 1946 by ORNL's Clifford G. Shull, winner of 1994 Nobel Prize in Physics. Access Shull's early research records in Energy Citations Database. Neutron scattering research was pioneered in 1946 by ORNL's Clifford G. Shull, winner of 1994 Nobel Prize in Physics. Access

  19. Sandia National Laboratories: Research: Materials Science: Image Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Image Gallery

  20. Sandia National Laboratories: Research: Materials Science: Video Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Video Gallery

  1. Basic Energy Sciences FY 2014 Research Summaries

    SciTech Connect (OSTI)

    2014-01-01

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  2. Basic Energy Sciences FY 2011 Research Summaries

    SciTech Connect (OSTI)

    2011-01-01

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  3. Basic Energy Sciences FY 2012 Research Summaries

    SciTech Connect (OSTI)

    2012-01-01

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  4. Research facility access & science education

    SciTech Connect (OSTI)

    Rosen, S.P.; Teplitz, V.L.

    1994-10-01

    As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

  5. Atmospheric and Geophysical Sciences Division Program Report, 1988--1989

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    In 1990, the Atmospheric and Geophysical Sciences Division begins its 17th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to decades and from local to global. Our modeling is now reaching out from its atmospheric focus to treat linkages with the oceans and the land. In this report, we describe the Division's goal and organizational structure. We also provide tables and appendices describing the Division's budget, personnel, models, and publications. 2 figs., 1 tab.

  6. Fusion materials science and technology research opportunities...

    Office of Scientific and Technical Information (OSTI)

    the ITER era Citation Details In-Document Search Title: Fusion materials science and technology research opportunities now and during the ITER era Several high-priority...

  7. Atmospheric Science Program Cumulus Humilis Aerosol Processing Study (CHAPS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Cumulus Humilis Aerosol Processing Study (CHAPS) General Description 'Cumulus humilis' is the scientific term used to describe the small fair weather clouds that dot the summer skies over Oklahoma. During the month of June, scientists sponsored by the U.S. Department of Energy's Atmospheric Science Program will use aircraft and ground based instruments to obtain information about the physical and chemical properties of these clouds and the small airborne particles - called aerosols -

  8. Sandia National Laboratories: Research: Materials Science: About Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research About Materials Science Xunhu Dai Sandia excels in innovative fundamental materials science research - developing and integrating the theoretical insights, computational simulation tools and deliberate

  9. Molecular Science Research Center annual report

    SciTech Connect (OSTI)

    Knotek, M.L.

    1991-01-01

    The Chemical Structure and Dynamics group is studying chemical kinetics and reactions dynamics of terrestrial and atmospheric processes as well as the chemistry of complex waste forms and waste storage media. Staff are using new laser systems and surface-mapping techniques in combination with molecular clusters that mimic adsorbate/surface interactions. The Macromolecular Structure and Dynamics group is determining biomolecular structure/function relationships for processes the control the biological transformation of contaminants and the health effects of toxic substances. The Materials and Interfaces program is generating information needed to design and synthesize advanced materials for the analysis and separation of mixed chemical waste, the long-term storage of concentrated hazardous materials, and the development of chemical sensors for environmental monitoring of various organic and inorganic species. The Theory, Modeling, and Simulation group is developing detailed molecular-level descriptions of the chemical, physical, and biological processes in natural and contaminated systems. Researchers are using the full spectrum of computational techniques. The Computer and Information Sciences group is developing new approaches to handle vast amounts of data and to perform calculations for complex natural systems. The EMSL will contain a high-performance computing facility, ancillary computing laboratories, and high-speed data acquisition systems for all major research instruments.

  10. ARM - Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team ...

  11. Science Plan for the Atmospheric Radiation Measurement Program (ARM)

    SciTech Connect (OSTI)

    1996-02-01

    The purpose of this Atmospheric Radiation Measurement (ARM) Science Plan is to articulate the scientific issues driving the ARM Program, and to relate them to DOE`s programmatic objectives for ARM, based on the experience and scientific progress gained over the past five years. ARM programmatic objectives are to: (1) Relate observed radiative fluxes and radiances in the atmosphere, spectrally resolved and as a function of position and time, to the temperature and composition of the atmosphere, specifically including water vapor and clouds, and to surface properties, and sample sufficient variety of situations so as to span a wide range of climatologically relevant possibilities; (2) develop and test parameterizations that can be used to accurately predict the radiative properties and to model the radiative interactions involving water vapor and clouds within the atmosphere, with the objective of incorporating these parameterizations into general circulation models. The primary observational methods remote sending and other observations at the surface, particularly remote sensing of clouds, water vapor and aerosols.

  12. Los Alamos researchers create 'map of science'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Map of science Los Alamos researchers create 'Map of Science' A high-resolution graphic depiction of the virtual trails scientists leave behind when they retrieve information from online services. March 11, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National

  13. X-Ray Microscopy and Imaging: Science and Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fields: Biology and Life Sciences Environmental Sciences Materials Science Nanoscience Optics and Fundamental Physics Our research often employs the following techniques: Coherent...

  14. Clear Skies S. A. Clough Atmospheric and Environmental Research, Inc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S. A. Clough Atmospheric and Environmental Research, Inc. Cambridge, MA 02139 The objective of this research effort is to develop radiative transfer models that are consistent with Atmospheric Radiation Measurement (ARM) Program spectral radiance measurements for clear and cloudy atmospheres. Our approach is to develop the model physics and related databases with a line-by-line model in the context of available spectral radiance measurements. The line-by- line mode! then functions as an

  15. The Development of New User Research Capabilities in Environmental Molecular Science: Workshop Report

    SciTech Connect (OSTI)

    Felmy, Andrew R.; Baer, Donald R.; Fredrickson, Jim K.; Gephart, Roy E.; Rosso, Kevin M.

    2006-10-31

    On August 1, and 2, 2006, 104 scientists representing 40 institutions including 24 Universities and 5 National Laboratories gathered at the W.R. Wiley Environmental Molecular Sciences Laboratory, a National scientific user facility, to outline important science challenges for the next decade and identify major capabilities needed to pursue advanced research in the environmental molecular sciences. EMSL’s four science themes served as the framework for the workshop. The four science themes are 1) Biological Interactions and Interfaces, 2) Geochemistry/Biogeochemistry and Surface Science, 3) Atmospheric Aerosol Chemistry, and 4) Science of Interfacial Phenomena.

  16. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research. Part 3, Atmospheric and climate research

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    Within the US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division Is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and Implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and quantitative links programs to form DOEs contribution to the US Global Change Research Program. Climate research in the ESD has the common goal of improving our understanding of the physical, chemical, biological, and social processes that influence the Earth system so that national and international policymaking relating to natural and human-induced changes in the Earth system can be given a firm scientific basis. This report describes the progress In FY 1991 in each of these areas.

  17. Nanoscale Science, Engineering and Technology Research Directions

    SciTech Connect (OSTI)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  18. Thermal Science Leaders Are Also Researchers | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Science Leaders Are Also Researchers Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) ...

  19. UK Biotechnology and Biological Sciences Research Council | Open...

    Open Energy Info (EERE)

    Biotechnology and Biological Sciences Research Council Jump to: navigation, search Name: UK Biotechnology and Biological Sciences Research Council Place: London, United Kingdom...

  20. DOE Office of Science Graduate Student Research (SCGSR) Program...

    Office of Science (SC) Website

    Home DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home ... DOE Office of Science Graduate Student Research Program Applications are now closed for ...

  1. DOE Science Showcase - "PECASE: Outstanding early career research...

    Office of Scientific and Technical Information (OSTI)

    Gavin E. Crooks and Trent R. Northen of Lawrence Berkeley National Laboratory Find Gavin Crooks research with the Science Accelerator Find Trent Northen's research with the Science ...

  2. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office...

    Office of Science (SC) Website

    Nanoscale Science Research Centers (NSRCs) User Facilities User Facilities Home User ... X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers ...

  3. Report of the Cyber Security Research Needs for Open Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Cyber Security Research Needs for Open Science Workshop Report of the Cyber Security Research Needs for Open Science Workshop Protecting systems and users, while maintaining ...

  4. Sandia National Labs: PCNSC: Research: Optical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Sciences The focus of the Optical Sciences thrust is to understand and exploit the elegant interaction between light and matter. Our research portfolio encompasses the generation, transmission, manipulation, and detection of light and the development of optical materials with user defined characteristics. We emphasize innovative work in laser and optical materials development, nonlinear optics, spectroscopy, remote sensing, and photon-material interactions. In partnership with our DOE,

  5. Global change research: Science and policy

    SciTech Connect (OSTI)

    Rayner, S.

    1993-05-01

    This report characterizes certain aspects of the Global Change Research Program of the US Government, and its relevance to the short and medium term needs of policy makers in the public and private sectors. It addresses some of the difficulties inherent in the science and policy interface on the issues of global change. Finally, this report offers some proposals for improving the science for policy process in the context of global environmental change.

  6. Molecular Science Research Center 1992 annual report

    SciTech Connect (OSTI)

    Knotek, M.L.

    1994-01-01

    The Molecular Science Research Center is a designated national user facility, available to scientists from universities, industry, and other national laboratories. After an opening section, which includes conferences hosted, appointments, and projects, this document presents progress in the following fields: chemical structure and dynamics; environmental dynamics and simulation; macromolecular structure and dynamics; materials and interfaces; theory, modeling, and simulation; and computing and information sciences. Appendices are included: MSRC staff and associates, 1992 publications and presentations, activities, and acronyms and abbreviations.

  7. DOE Science Showcase - Light-emitting Diode (LED) Lighting Research...

    Office of Scientific and Technical Information (OSTI)

    LED Research Information in DOE Databases SciTech Connect National Library of EnergyBeta Science.gov Ciencia.Science.gov WorldWideScience.org Visit the Science Showcase homepage. ...

  8. JGR-Atmospheres Papers from the RADAGAST Research Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JGR-Atmospheres Papers from the RADAGAST Research Team Bharmal, N.A., A. Slingo, G.J. Robinson, and J.J. Settle, 2009: Simulation of surface and top of atmosphere thermal fluxes and radiances from the RADAGAST experiment. Journal of Geophysical Research-Atmospheres, 114, doi:10.1029/2008JD010504, in press. Kollias, P., M.A. Miller, K.L. Johnson, M.P. Jensen, and D.T. Troyan, 2009: Cloud, thermodynamic, and precipitation observations in West Africa during 2006. Journal of Geophysical Research-

  9. Final Technical Report for earmark project "Atmospheric Science Program at the University of Louisville"

    SciTech Connect (OSTI)

    Dowling, Timothy Edward

    2014-02-11

    We have completed a 3-year project to enhance the atmospheric science program at the University of Louisville, KY (est. 2008). The goals were to complete an undergraduate atmospheric science laboratory (Year 1) and to hire and support an assistant professor (Years 2 and 3). Both these goals were met on schedule, and slightly under budget.

  10. GE Researcher Explores Science Behind Movie Chappie | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    When Will We Have Robot Best Friends? A GE Researcher Explores the Science Behind Movie Magic Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) When Will We Have Robot Best Friends? A GE Researcher Explores the Science Behind Movie Magic The film "Chappie" is the story of a Police droid, reprogrammed to become

  11. Experimental Physical Sciences Vistas: Los Alamos NPAC Research...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Experimental Physical Sciences Vistas: Los Alamos NPAC Research Citation Details In-Document Search Title: Experimental Physical Sciences Vistas: Los Alamos NPAC...

  12. DOE Science Showcase - Computing Research | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    DOE Science Showcase - Computing Research For the growing number of problems where ... of data, producing advances in areas of science and technology that are essential to DOE ...

  13. DOE Science Showcase - Solitons Research | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    DOE Science Showcase - Solitons Research juan.jpg Image credit: Sandia National ... of wave systems throughout science and have changed the course of applied mathematics. ...

  14. DOE Science Showcase - Cool roofs, cool research, at DOE | OSTI...

    Office of Scientific and Technical Information (OSTI)

    Cool roofs, cool research, at DOE Science Accelerator returns cool roof documents from 6 ... for Selecting Cool Roofs DOE Cool Roof Calculator Visit the Science Showcase homepage.

  15. NNSA's Cutting Edge Science and Research on Display at Annual...

    National Nuclear Security Administration (NNSA)

    NNSA's Cutting Edge Science and Research on Display at Annual AAAS Meeting February 17, ... newly elected fellows at the American Association for the Advancement of Science (AAAS). ...

  16. DOE Science Showcase - Fuel Cells Research | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    DOE Science Showcase - Fuel Cells Research Clean, Efficient, and Reliable Power for the ... DOE R&D Accomplishments DOepatents DOE Green Energy Energy Science and Technology Software ...

  17. DOE Science Showcase - Solitons Research | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    of wave systems throughout science and have changed the course of applied mathematics. ... SciTech Connect - soliton research results from DOE science, technology, and engineering ...

  18. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific ...

  19. Atmospheric gas supersaturation: educational and research needs

    SciTech Connect (OSTI)

    Bouck, G.R.; D'Aoust, B.; Ebel, W.J.; Rulifson, R.

    1980-11-01

    There still is need for research on gas supersaturation as it relates to gas bubble disease. Better methods are required for both measurement and treatment of gas-supersaturated water. We must understand more about physiological and ecosystem responses to high gas pressures if existing tolerance data for individual species are to be applied accurately to field or fish-cultural situations. A better training program is needed for scientists, engineers, and facility operators involved in the monitoring and mitigation of gas-supersaturated waters.

  20. Earth Sciences Division Research Summaries 2006-2007

    SciTech Connect (OSTI)

    DePaolo, Donald; DePaolo, Donald

    2008-07-21

    Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energy and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial ecology

  1. Science Olympiad | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Olympiad Science Olympiad PARC's outreach efforts helped fund students from KIPP Inspire Academy as they competed with other regional schools in the Science Olympiad 2013...

  2. DOE/SC-ARM-13-013 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-013 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  3. DOE/SC-ARM-14-025 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-025 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  4. DOE/SC-ARM-15-037 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-037 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  5. DOE/SC-ARM-12-021 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-021 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  6. DOE/SC-ARM-14-007 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-007 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  7. DOE/SC-ARM-15-018 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-018 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  8. DOE/SC-ARM-14-019 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-019 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  9. DOE/SC-ARM-15-001 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  10. DOE/SC-ARM-14-001 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  11. DOE/SC-ARM-13-007 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-007 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  12. DOE/SC-ARM-12-015 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-015 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  13. DOE/SC-ARM-13-001 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  14. DOE/SC-ARM-13-020 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-020 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  15. DOE Science Showcase - Atmospheric Radiation Measurement | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information Atmospheric Radiation Measurement A scanning cloud radar was one of the instruments taking measurements during GoAmazon 2014/2015. Image credit: ARM Program Atmospheric radiation measurements are fundamental data used to better understand the radiation budget of the earth, why climate is changing, and how climate change will affect our future. DOE's Atmospheric Radiation Measurement (ARM) Program was established as a comprehensive program

  16. Proceedings of the sixth Atmospheric Radiation Measurement (ARM) Science Team meeting

    SciTech Connect (OSTI)

    1997-06-01

    This document contains the summaries of papers presented at the 1996 Atmospheric Radiation Measurement (ARM) Science Team meeting held at San Antonio, Texas. The history and status of the ARM program at the time of the meeting helps to put these papers in context. The basic themes have not changed. First, from its beginning, the Program has attempted to respond to the most critical scientific issues facing the US Global Change Research Program. Second, the Program has been strongly coupled to other agency and international programs. More specifically, the Program reflects an unprecedented collaboration among agencies of the federal research community, among the US Department of Energy`s (DOE) national laboratories, and between DOE`s research program and related international programs, such as Global Energy and Water Experiment (GEWEX) and the Tropical Ocean Global Atmosphere (TOGA) program. Next, ARM has always attempted to make the most judicious use of its resources by collaborating and leveraging existing assets and has managed to maintain an aggressive schedule despite budgets that have been much smaller than planned. Finally, the Program has attracted some of the very best scientific talent in the climate research community and has, as a result, been productive scientifically.

  17. ARM - Key Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team ...

  18. STICKY FINGERS: How One Researcher is Improving the Science of...

    Office of Environmental Management (EM)

    STICKY FINGERS: How One Researcher is Improving the Science of Fingerprints STICKY FINGERS: How One Researcher is Improving the Science of Fingerprints May 1, 2015 - 3:42pm Addthis ...

  19. Interdisciplinary research in climate and energy sciences

    SciTech Connect (OSTI)

    Xu, Xiaofeng; Goswami, Santonu; Gulledge, Jay; Wullschleger, Stan D.; Thornton, Peter E.

    2015-09-12

    Due to the complex nature of climate change, interdisciplinary research approaches involving knowledge and skills from a broad range of disciplines have been adopted for studying changes in the climate system as well as strategies for mitigating climate change (i.e., greenhouse gas emissions reductions) and adapting to its impacts on society and natural systems. Harnessing of renewable energy sources to replace fossil fuels is widely regarded as a long-term mitigation strategy that requires the synthesis of knowledge from engineering, technology, and natural and social sciences. In this study, we examine how the adoption of interdisciplinary approaches has evolved over time and in different geographic regions. We conducted a comprehensive literature survey using an evaluation matrix of keywords, in combination with a word cloud analysis, to evaluate the spatiotemporal dynamics of scholarly discourse about interdisciplinary approaches to climate change and renewable energy research and development (R&D). Publications that discuss interdisciplinary approaches to climate change and renewable energy have substantially increased over the last 60 years; it appears, however, that the nature, timing, and focus of these publications vary across countries and through time. Over the most recent three decades, the country-level contribution to interdisciplinary research for climate change has become more evenly distributed, but this was not true for renewable energy research, which remained dominated by the United Sates and a few other major economies. The research topics have also evolved: Water resource management was emphasized from 1990s to 2000s, policy and adaptation were emphasized from the 2000s to 2010 – 2013, while vulnerability became prominent during the most recent years (2010 – 2013). Lastly, our analysis indicates that the rate of growth of interdisciplinary research for renewable energy lags behind that for climate change, possibly because knowledge

  20. Interdisciplinary research in climate and energy sciences

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Xiaofeng; Goswami, Santonu; Gulledge, Jay; Wullschleger, Stan D.; Thornton, Peter E.

    2015-09-12

    Due to the complex nature of climate change, interdisciplinary research approaches involving knowledge and skills from a broad range of disciplines have been adopted for studying changes in the climate system as well as strategies for mitigating climate change (i.e., greenhouse gas emissions reductions) and adapting to its impacts on society and natural systems. Harnessing of renewable energy sources to replace fossil fuels is widely regarded as a long-term mitigation strategy that requires the synthesis of knowledge from engineering, technology, and natural and social sciences. In this study, we examine how the adoption of interdisciplinary approaches has evolved over timemore » and in different geographic regions. We conducted a comprehensive literature survey using an evaluation matrix of keywords, in combination with a word cloud analysis, to evaluate the spatiotemporal dynamics of scholarly discourse about interdisciplinary approaches to climate change and renewable energy research and development (R&D). Publications that discuss interdisciplinary approaches to climate change and renewable energy have substantially increased over the last 60 years; it appears, however, that the nature, timing, and focus of these publications vary across countries and through time. Over the most recent three decades, the country-level contribution to interdisciplinary research for climate change has become more evenly distributed, but this was not true for renewable energy research, which remained dominated by the United Sates and a few other major economies. The research topics have also evolved: Water resource management was emphasized from 1990s to 2000s, policy and adaptation were emphasized from the 2000s to 2010 – 2013, while vulnerability became prominent during the most recent years (2010 – 2013). Lastly, our analysis indicates that the rate of growth of interdisciplinary research for renewable energy lags behind that for climate change, possibly because knowledge

  1. Responsible Science: Ensuring the Integrity of the Research Process

    SciTech Connect (OSTI)

    Arrison, Thomas Samuel

    2014-03-31

    This is the final technical report for DE-SC0005916 Responsible Science: Ensuring the Integrity of the Research Process.

  2. Earth Sciences Division Research Summaries 2002-2003

    SciTech Connect (OSTI)

    Bodvarsson, G.S.

    2003-11-01

    Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climate change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4) Environmental

  3. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  4. Nine receive DOE's Office of Science Graduate Student Research Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graduate Student Research Awards Nine receive DOE's Office of Science Graduate Student Research Awards The program prepares students for careers in science, technology, engineering and math. June 14, 2016 The goal of the SCGSR program is designed to prepare graduate students for science, technology, engineering and mathematics careers, which are critically important to the DOE Office of Science mission, by providing graduate thesis research opportunities at DOE laboratories. The goal of the

  5. Research | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Grand Challenges BES Reports Science Highlights News & Events Publications History Contact BES Home Research Print Text Size: A A A FeedbackShare Page The EFRC awards span the full range of energy research challenges described in the series of BES workshop reports while also addressing one or more of the science grand challenges described in the BESAC report, Directing Matter and Energy: Five Challenge for Science

  6. ARESE (ARM Enhanced Shortwave Experiment) Science Plan [Atmospheric Radiation Program

    SciTech Connect (OSTI)

    Valero, F.P.J.; Schwartz, S.E.; Cess, R.D.; Ramanathan, V.; Collins, W.D.; Minnis, P.; Ackerman, T.P.; Vitko, J.; Tooman, T.P.

    1995-09-27

    Several recent studies have indicated that cloudy atmospheres may absorb significantly more solar radiation than currently predicted by models. The magnitude of this excess atmospheric absorption, is about 50% more than currently predicted and would have major impact on our understanding of atmospheric heating. Incorporation of this excess heating into existing general circulation models also appears to ameliorate some significant shortcomings of these models, most notably a tendency to overpredict the amount of radiant energy going into the oceans and to underpredict the tropopause temperature. However, some earlier studies do not show this excess absorption and an underlying physical mechanism that would give rise to such absorption has yet to be defined. Given the importance of this issue, the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program is sponsoring the ARM Enhanced Shortwave Experiment (ARESE) to study the absorption of solar radiation by clear and cloudy atmospheres. The experimental results will be compared with model calculations. Measurements will be conducted using three aircraft platforms (ARM-UAV Egrett, NASA ER-2, and an instrumented Twin Otter), as well as satellites and the ARM central and extended facilities in North Central Oklahoma. The project will occur over a four week period beginning in late September, 1995. Spectral broadband, partial bandpass, and narrow bandpass (10nm) solar radiative fluxes will be measured at different altitudes and at the surface with the objective to determine directly the magnitude and spectral characteristics of the absorption of shortwave radiation by the atmosphere (clear and cloudy). Narrow spectral channels selected to coincide with absorption by liquid water and ice will help in identifying the process of absorption of radiation. Additionally, information such as water vapor profiles, aerosol optical depths, cloud structure and ozone profiles, needed to use as input in radiative

  7. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1-September 30, 2010 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  8. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1-December 31, 2010 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  9. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1-March 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  10. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1-June 30, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  11. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1-September 30, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  12. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  13. Atmospheric Radiation Measurement Program Climate Research Facility Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1-March 31, 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that

  14. NETL Researchers Chosen as Science & Engineering Ambassadors | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Chosen as Science & Engineering Ambassadors NETL Researchers Chosen as Science & Engineering Ambassadors November 6, 2012 - 12:00pm Addthis Washington, DC - Four researchers at the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL) have been chosen as Science & Engineering Ambassadors, with the goal of increasing public understanding and engagement with energy issues. Science and Engineering Ambassadors (left to right): George Guthrie, Bryan

  15. DOE Science Showcase - Fuel Cells Research | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    Fuel Cells Research Results in DOE Databases DOE R&D Accomplishments DOepatents DOE Green Energy Energy Science and Technology Software Center (ESTSC) Energy Citations Database and ...

  16. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation ... dispersion, and, further, that advanced lattice dynamics simulations ...

  17. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micronanofabricated environments for synthetic biology C. Patrick Collier and Michael L. Simpson Nanofabrication Research Laboratory, Center for Nanophase Materials Sciences Oak...

  18. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details ... of ab initio PDOS simulations. * Direct comparison between anharmonicity-smoothed ...

  19. University Research | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Research Universities Universities Home Interactive Grants Map SC In Your State University Science Highlights University Research News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 University Research Print Text Size: A A A Subscribe FeedbackShare Page GO 09.02.16University Research Subatomic Microscopy Key to Building New Classes of Materials External link Researchers at Penn State and the Molecular

  20. Research Areas | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Research Areas Print Text Size: A A A FeedbackShare Page To meet the challenge of supporting basic research programs that are also energy relevant, the Division manages portfolio components that consist of distinct Core Research Activities

  1. Atmospheric Research - Manaus Plume: GoAmazon T3 Ground Site...

    Office of Scientific and Technical Information (OSTI)

    Conference: Atmospheric Research - Manaus Plume: GoAmazon T3 Ground Site Citation Details In-Document Search Title: Atmospheric Research - Manaus Plume: GoAmazon T3 Ground Site ...

  2. Atmospheric Radiation Measurement Climate Research Facility (ARM) | U.S.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum

  3. Charter for the ARM Climate Research Facility Science Board

    SciTech Connect (OSTI)

    Ferrell, W

    2013-03-08

    The objective of the ARM Science Board is to promote the Nation’s scientific enterprise by ensuring that the best quality science is conducted at the DOE’s User Facility known as the ARM Climate Research Facility. The goal of the User Facility is to serve scientific researchers by providing unique data and tools to facilitate scientific applications for improving understanding and prediction of climate science.

  4. AUDIT REPORT Office of Science's Bioenergy Research Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Research Centers OAI-M-16-01 October 2015 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 October 22, 2015 MEMORANDUM FOR THE ACTING DIRECTOR, OFFICE OF SCIENCE FROM: April G. Stephenson Assistant Inspector General for Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report: "Office of Science's Bioenergy Research Centers" BACKGROUND In September 2007, Office of Science's

  5. Office of Science's Management of Research Misconduct Allegations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management of Research Misconduct Allegations OAS-M-14-09 August 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 August 12, 2014 MEMORANDUM FOR THE ACTING DIRECTOR, OFFICE OF SCIENCE FROM: George W. Collard Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Office of Science's Management of Research Misconduct Allegations" BACKGROUND Science and

  6. Postdoctoral Research Fellow for Plasma Sciences | Princeton Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Postdoctoral Research Fellow for Plasma Sciences Department: Research Supervisor(s): Hantao Ji Staff: RM 1 Requisition Number: 1600476 The Department of Astrophysical Science and the Princeton Plasma Physics Laboratory (PPPL) of Princeton University invites applications for a postdoctoral physicist position for the plasma physics in the international cooperation program NPC (NINS-Princeton Collaboration) between the National Institutes of Natural Sciences (NINS) in Japan and Princeton

  7. Advancing Climate Science with Global Research Facilities | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Climate Science with Global Research Facilities Advancing Climate Science with Global Research Facilities April 24, 2014 - 3:23pm Addthis This Gulfstream-1 research plane carries a payload of more than 30 scientific instruments to measure smoke from forest fires and other biomass burns. | Image courtesy of Pacific Northwest National Laboratory. This Gulfstream-1 research plane carries a payload of more than 30 scientific instruments to measure smoke from forest fires and other biomass

  8. Hearing Before the Science, Space, and Technology Subcommittee on Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Technology | Department of Energy Science, Space, and Technology Subcommittee on Research and Technology Hearing Before the Science, Space, and Technology Subcommittee on Research and Technology 6-16-16_Patricia_Dehmer FT HSST (52.98 KB) More Documents & Publications An Overview of the DOE's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Programs Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) CX-012664:

  9. Proceedings of the third Atmospheric Radiation Measurement (ARM) science team meeting

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This document contains the summaries of papers presented at the 1993 Atmospheric Radiation Measurement (ARM) Science Team meeting held in Morman, Oklahoma. To put these papers in context, it is useful to consider the history and status of the ARM Program at the time of the meeting. Individual papers have been cataloged separately.

  10. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Nanoscale Science Research Centers (NSRCs) User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Frequently Asked Questions User Facility Science Highlights User Facility News Contact

  11. NERSC Role in Fusion Energy Science Research Katherine Yelick

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Science Research Katherine Yelick NERSC Director Requirements Workshop NERSC Mission The mission of the National Energy Research Scientific Computing Center (NERSC) is to accelerate the pace of scientific discovery by providing high performance computing, information, data, and communications services for all DOE Office of Science (SC) research. New Type of Nonlinear Plasma Instability Discovered Objective: Study large periodic instabilities called Edge Localized Modes (ELMs) in

  12. NERSC, LBL Researchers Share Materials Science Advances at APS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC, LBL Researchers Highlight Materials Science at APS NERSC, LBL Researchers Share Materials Science Advances at APS March 3, 2014 APSlogo NERSC and Lawrence Berkeley National Laboratory (LBL) are well represented this week at the American Physical Society (APS) March meeting. Some 10,000 physicists, scientists, and students are expected to attend this year's meeting, which takes place March 3-7 in Denver, CO. Physicists and students will report on groundbreaking research from industry,

  13. Single-Column Modeling C. J. Walcek Atmospheric Sciences Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a is a function of height in the troposphere and represents the relative humidity depression from 100% at which cloud amount falls off to 37% (e-1): 0.2+a3 a <0.75 a -...

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cohn, S.A. (a), and Yoneyama, K. (b), National Center for Atmospheric Research (a), Japan Marine Science and Technology Center (b) Eleventh Atmospheric Radiation Measurement...

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence of Island Effects on Nauru Cole, H., and Miller, E., National Center for Atmospheric Research Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Nauru...

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D.A.(a) and Charlock, T.P.(b), Analytical Services & Materials Inc.(a), Atmospheric Sciences Competency, NASA Langley Research Center (b) Twelfth Atmospheric Radiation...

  17. ARM - Funded Research Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team ...

  18. ARM - Research Themes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team ...

  19. Research in the chemical sciences: Summaries of FY 1994

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This summary book is published annually on research supported by DOE`s Division of Chemical Sciences in the Office of Energy Research. Research in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced batteries is arranged according to national laboratories, offsite institutions, and small businesses. Goal is to add to the knowledge base on which existing and future efficient and safe energy technologies can evolve. The special facilities used in DOE laboratories are described. Indexes are provided (topics, institution, investigator).

  20. Sandia National Labs: PCNSC: Research: Compound Semiconductor Science and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Compound Semiconductor Science and Technology Thrust The Physical, Chemical, and Nano Sciences Center's vision for Compound Semiconductors is to develop the science of compound semiconductors that will enable us to invent integrated nano-technologies for the microsystems of the future. We will achieve this by advancing the frontiers of semiconductor research in areas such as quantum phenomena, defect physics, materials and device modeling, heteroepitaxy, and by discovering new

  1. Summaries of FY 1993 research in the chemical sciences

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The summaries in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced battery technology are arranged according to national laboratories and offsite institutions. Small business innovation research projects are also listed. Special facilities supported wholly or partly by the Division of Chemical Sciences are described. Indexes are provided for selected topics of general interest, institutions, and investigators.

  2. Summaries of FY 1980 research in the chemical sciences

    SciTech Connect (OSTI)

    1980-09-01

    Brief summaries are given of research programs being pursued by DOE laboratories and offsite facilities in the fields of photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations, analysis, and chemical engineering sciences. No actual data is given. Indexes of topics, offsite institutions, and investigators are included. (DLC)

  3. Researchers Are Getting Kids Excited About Science | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers Are Getting Kids Excited About Science Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new ...

  4. Science Day Offers Students STEM Activities | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and visited stations to learn about scientific concepts as diverse as the science of music, x-ray and ultrasound, and renewable energy. The event is part of Global Research's...

  5. GE Researcher Explores Science Behind Movie Chappie | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    When Will We Have Robot Best Friends? A GE Researcher Explores the Science Behind Movie Magic Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new...

  6. Research Conduct Policies | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Conduct Policies Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic

  7. Collaborative Research: Fundamental Science of Low Temperature...

    Office of Scientific and Technical Information (OSTI)

    ... Thus one major contributions of this research has been the establishment of methodologies to more systematically study the interaction of plasma with bio-molecules. In particular, ...

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Research in Environmental Sciences CMDL (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Data collected during the SHEBA (Surface Heat...

  9. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative,

  10. Los Alamos honors four for science leadership, research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos honors four for science leadership, research Los Alamos honors four for science leadership, research John Gordon, Geoffrey Reeves, Stephen Doorn and David Jablonski are honored for achievements. January 30, 2012 Left to right: David Jablonski, John Gordon, Stephen Doorn (seated), and Geoffrey Reeves Left to right: David Jablonski, John Gordon, Stephen Doorn (seated), and Geoffrey Reeves Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email Stars in hydrogen storage,

  11. Los Alamos research published in Public Library of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos research published in Public Library of Science Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Los Alamos research published in Public Library of Science Scientists can now monitor and forecast diseases around the globe more effectively by analyzing views of Wikipedia articles January 1, 2015 Wikipedia searches for disease symptoms can help forecast outbreaks around the world Wikipedia searches can help

  12. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Science Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Science Plan G de Boer B Argrow G Bland J Elston D Lawrence J Maslanik S Palo M Tschudi December 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of

  13. Computational Science Research in Support of Petascale Electromagnetic Modeling

    SciTech Connect (OSTI)

    Lee, L.-Q.; Akcelik, V; Ge, L; Chen, S; Schussman, G; Candel, A; Li, Z; Xiao, L; Kabel, A; Uplenchwar, R; Ng, C; Ko, K; /SLAC

    2008-06-20

    Computational science research components were vital parts of the SciDAC-1 accelerator project and are continuing to play a critical role in newly-funded SciDAC-2 accelerator project, the Community Petascale Project for Accelerator Science and Simulation (ComPASS). Recent advances and achievements in the area of computational science research in support of petascale electromagnetic modeling for accelerator design analysis are presented, which include shape determination of superconducting RF cavities, mesh-based multilevel preconditioner in solving highly-indefinite linear systems, moving window using h- or p- refinement for time-domain short-range wakefield calculations, and improved scalable application I/O.

  14. Strategic Environmental Research and Development Program: Atmospheric Remote Sensing and Assessment Program -- Final Report. Part 1: The lower atmosphere

    SciTech Connect (OSTI)

    Tooman, T.P.

    1997-01-01

    This report documents work done between FY91 and FY95 for the lower atmospheric portion of the joint Department of Defense (DoD) and Department of Energy (DOE) Atmospheric Remote Sensing and Assessment Program (ARSAP) within the Strategic Environmental Research and Development Program (SERDP). The work focused on (1) developing new measurement capabilities and (2) measuring atmospheric heating in a well-defined layer and then relating it to cloud properties an water vapor content. Seven new instruments were develop3ed for use with Unmanned Aerospace Vehicles (UAVs) as the host platform for flux, radiance, cloud, and water vapor measurements. Four major field campaigns were undertaken to use these new as well as existing instruments to make critically needed atmospheric measurements. Scientific results include the profiling of clear sky fluxes from near surface to 14 km and the strong indication of cloudy atmosphere absorption of solar radiation considerably greater than predicted by extant models.

  15. Research in the chemical sciences. Summaries of FY 1995

    SciTech Connect (OSTI)

    1995-09-01

    This summary book is published annually to provide information on research supported by the Department of Energy`s Division of Chemical Sciences, which is one of four Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries provide the scientific and technical public, as well as the legislative and executive branches of the Government, information, either generally or in some depth, about the Chemical Sciences program. Scientists interested in proposing research for support will find the publication useful for gauging the scope of the present basic research program and it`s relationship to their interests. Proposals that expand this scope may also be considered or directed to more appropriate offices. The primary goal of the research summarized here is to add significantly to the knowledge base in which existing and future efficient and safe energy technologies can evolve. As a result, scientific excellence is a major criterion applied in the selection of research supported by the Division of Chemical Sciences, but another important consideration is emphasis on science that is advancing in ways that will produce new information related to energy.

  16. MIT Plasma Science & Fusion Center: research>alcator>research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Plasma Technology Useful Links Collaborations at Alcator...

  17. Environmental Sciences Division: Summaries of research in FY 1996

    SciTech Connect (OSTI)

    1997-06-01

    This document describes the Fiscal Year 1996 activities and products of the Environmental Sciences Division, Office of Biological and Environmental Research, Office of Energy Research. The report is organized into four main sections. The introduction identifies the basic program structure, describes the programs of the Environmental Sciences Division, and provides the level of effort for each program area. The research areas and project descriptions section gives program contact information, and provides descriptions of individual research projects including: three-year funding history, research objective and approach used in each project, and results to date. Appendixes provide postal and e-mail addresses for principal investigators and define acronyms used in the text. The indexes provide indexes of principal investigators, research institutions, and keywords for easy reference. Research projects are related to climatic change and remedial action.

  18. Fermilab | Science | Particle Physics | Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research & Development VLPC wafer for DZero future detector To investigate the smallest bits of matter, some of which last only a fraction of a second before decaying, scientists need something more powerful than a microscope. To study particles, physicists use particle detectors. These devices sense and record information about particles such as their masses, energies, momenta or points of origin. Different particles and different experiments require different types of particle detectors.

  19. Biological Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear Science Share Your Research NERSC Citations Home Science at...

  20. Applied Science Division annual report, Environmental Research Program FY 1983

    SciTech Connect (OSTI)

    Cairns, E.J.; Novakov, T.

    1984-05-01

    The primary concern of the Environmental Research Program is the understanding of pollutant formation, transport, and transformation and the impacts of pollutants on the environment. These impacts include global, regional, and local effects on the atmosphere and hydrosphere, and on certain aspects of human health. This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. During FY 1983, research concentrated on atmospheric physics and chemistry, applied physics and laser spectroscopy, combustion theory and phenomena, environmental effects of oil shale processing, freshwater ecology and acid precipitation, trace element analysis for the investigation of present and historical environmental impacts, and a continuing survey of instrumentation for environmental monitoring.

  1. Atmospheric Radiation Measurement Climate Research Facility - annual report 2004

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ER-ARM-0403 3 Table of Contents Program Overview ............................................................................................................................................................ 4 The Role of Clouds in Climate .................................................................................................................................... 4 ARM Science Goals

  2. DOE Science Showcase - Carbon Capture research in DOE Databases | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy Office of Scientific and Technical Information DOE Science Showcase - Carbon Capture research in DOE Databases Information Bridge : Natural materials for carbon capture. ... Realistic costs of carbon capture ... Technology and international climate policy Energy Citations Database : What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions ... Effects of warming on the structure and function of a boreal black spruce forest ... ScienceCinema

  3. Collaborative Research. Atmospheric Pressure Microplasma Chemistry-Photon Synergies

    SciTech Connect (OSTI)

    Park, Sung-Jin; Eden, James Gary

    2015-12-01

    Combining the effects of low temperature, atmospheric pressure microplasmas and microplasma photon sources offers the promise of greatly expanding the range of applications for each of them. The plasma sources create active chemical species and these can be activated further by the addition of photons and the associated photochemistry. There are many ways to combine the effects of plasma chemistry and photochemistry, especially if there are multiple phases present. This project combined the construction of appropriate test experimental systems, various spectroscopic diagnostics and mathematical modeling. Through a continuous discussion and co-design process with the UC-Berkeley Team, we have successfully completed the fabrication and testing of all components for a microplasma array-assisted system designed for photon-activated plasma chemistry research. Microcavity plasma lamps capable of generating more than 20 mW/cm2 at 172 nm (Xe dimer) were fabricated with a custom form factor to mate to the plasma chemistry setup, and a lamp was current being installed by the Berkeley team so as to investigate plasma chemistry-photon synergies at a higher photon energy (~7.2 eV) as compared to the UVA treatment that is afforded by UV LEDs operating at 365 nm. In particular, motivated by the promising results from the Berkeley team with UVA treatment, we also produced the first generation of lamps that can generate photons in the 300-370 nm wavelength range. Another set of experiments, conducted under the auspices of this grant, involved the use of plasma microjet arrays. The combination of the photons and excited radicals produced by the plasma column resulted in broad area deactivation of bacteria.

  4. Strategic Energy Science Plan for Research, Education, and Extension

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Agriculture Research, Education, and Economics Mission Area TRATEGIC ENERGY SCIENCE PLAN FOR RESEARCH, EDUCATION, AND EXTENSION March 2008 Role: Lead Research, Education, and Extension programs for sustainable production of agriculture-based and natural resource-based renewable energy and effi cient use and conservation of energy - for the benefit of rural communities and the Nation S Vision: "Growing a clean, efficient, sustainable energy future for America" We have a

  5. Sandia National Laboratories: Research: Research Foundations: Geoscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoscience Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Geoscience Geoscience photo The Geoscience Research Foundation performs recognized world-class earth and atmospheric sciences research and development to support Sandia's national security missions. Why our work matters Knowledge of the Earth's subsurface properties, structure and

  6. Summaries of FY 1979 research in the chemical sciences

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas.

  7. Advancing Research & Technology in the Sciences (ARTS) Forum | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Advancing Research & Technology in the Sciences (ARTS) Forum Advancing Research & Technology in the Sciences (ARTS) Forum January 28, 2016 - 4:11pm Addthis VE-Suite, a virtual engineering tool developed at Ames Laboratory, displayed on a six-sided virtual reality room which helps engineers build greener, next-generation power plants faster and less expensively than ever before. VE-Suite, a virtual engineering tool developed at Ames Laboratory, displayed on a six-sided

  8. Pavlos Kollias Associate Professor Department of Atmospheric and Oceanic Sciences, McGill

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pavlos Kollias Associate Professor Department of Atmospheric and Oceanic Sciences, McGill University Room 817, Burnside Hall, 805 Sherbrooke Street West, Montreal, Quebec, H3A 0B9 Tel.: (514) 398-1500 Fax: (514) 398-6115 Email: pavlos.kollias@mcgill.ca https://www.mcgill.ca/meteo/facultystaff/kollias http://radarscience.weebly.com Susanne Crewell Professor Institute of Geophysics and Meteorology, University of Cologne Pohligstr. 3, Raum 3.123, 50969 Köln, Germany Tel.: +49 (0)221 470-5286 Fax:

  9. Summaries of FY 1982 research in the chemical sciences

    SciTech Connect (OSTI)

    1982-09-01

    The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energy technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The table of contents lists the following: photochemical and radiation sciences; chemical physics; atomic physics; chemical energy; separation and analysis; chemical engineering sciences; offsite contracts; equipment funds; special facilities; topical index; institutional index for offsite contracts; investigator index.

  10. Atmospheric Research - Manaus Plume: GoAmazon T3 Ground Site...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Los Alamos National Laboratory (LANL) Sponsoring Org: DOELANL Country of Publication: United States Language: English Subject: Environmental Sciences(54) ARM MAOS ...

  11. Office of Science Priority Research Areas for SCGSR Program | U.S. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science (SC) Office of Science Priority Research Areas for SCGSR Program DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to Apply Identifying a Collaborating DOE Laboratory Scientist Research Proposal Guidelines Office of Science Priority Research Areas for SCGSR Program About the Office of Science Office of Science User Facilities Priority Areas For Past SCGSR Solicitations Letters of Support Graduate

  12. Retrieving 4-dimensional atmospheric boundary layer structure...

    Office of Scientific and Technical Information (OSTI)

    (BER) (SC-23) Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES Atmospheric System Research Word Cloud More Like This Full Text preview ...

  13. Research on the Science & Engineering of Signatures (ROSES)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research on the Science & Engineering of Signatures (ROSES) Research experiences for African-American students in STEM disciplines August 18, 2016 Michelle Lee (back row, center), program manager for ROSES, gathers at the entry to Los Alamos with some of the program's 2016 interns. Michelle B. Lee (back row, center), the Laboratory's program manager for ROSES, gathers at the entry to Los Alamos with some of the program's 2016 interns. Contacts Michelle B. Lee (505) 667-3624 Email Lab's

  14. ARM - Selected Science Team Applications - FY 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Selected Science Team Applications - FY 2008 The

  15. ARM - Selected Science Team Applications - FY 2009

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Selected Science Team Applications - FY 2009 The

  16. ARM - Selected Science Team Proposals - FY 1991

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Selected Science Team Proposals - FY 1991 Dr. Richard

  17. ARM - Selected Science Team Proposals - FY 1992

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Selected Science Team Proposals - FY 1992 Dr. R.

  18. ARM - Selected Science Team Proposals - FY 1994

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Selected Science Team Proposals - FY 1994 Dr. Thomas

  19. ARM - Selected Science Team Proposals - FY 1995

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Selected Science Team Proposals - FY 1995 Dr. R.

  20. ARM - Selected Science Team Proposals - FY 1997

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Selected Science Team Proposals - FY 1997 Dr. Thomas

  1. ARM - Selected Science Team Proposals - FY 1998

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Selected Science Team Proposals - FY 1998 Dr. Shepard

  2. ARM - Selected Science Team Proposals - FY 2000

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Selected Science Team Proposals - FY 2000 The Office

  3. ARM - Selected Science Team Proposals - FY 2002

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Selected Science Team Proposals - FY 2002 The Office

  4. ARM - Selected Science Team Proposals - FY 2003

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Selected Science Team Proposals - FY 2003 The Office

  5. ARM - Selected Science Team Proposals - FY 2005

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Selected Science Team Proposals - FY 2005 The Office

  6. ARM - Selected Science Team Proposals - FY 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Selected Science Team Proposals - FY 2006 The Office

  7. Atmospheric Radiation Measurement program climate research facility operations quarterly report.

    SciTech Connect (OSTI)

    Sisterson, D. L.; Decision and Information Sciences

    2006-09-06

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.60 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.40 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.80 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive

  8. SciTech Connect: Your connection to science, technology, and...

    Office of Scientific and Technical Information (OSTI)

    Connect Your connection to science, technology, and engineering research information from ... Office of Document Reviews DOE Office of Science Atmospheric Radiation Measurement (ARM) ...

  9. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Science & Technology Images of Lab scientists and researchers at work. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets PHOTOS BY TOPIC Careers Community Visitors Environment History Science The Lab Click thumbnails to enlarge. Photos arranged by most recent first, horizontal formats before vertical. See Flickr for more sizes and details. Astronomical simulation in the CAVE - 1 Astronomical simulation in the CAVE - 1 Scientist sees

  10. Hierarchical Diagnosis A. J. Heymsfield and J. L. Coen National Center for Atmospheric Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. J. Heymsfield and J. L. Coen National Center for Atmospheric Research Boulder, CO 80307-3000 dispersion of hydrometeors in a stratiform anvil cloud. Given the momentum, vapor, and ice fluxes into the stratiform region and the temperature and humidity structure in the anvil's environment, this model will suggest anvil properties and structure. We will be using microphysical measurements from Kwajalein and the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean Atmosphere Response Experiment

  11. Upper atmospheric effects of the hf active auroral research program ionospheric research instrument (HAARP IRI)

    SciTech Connect (OSTI)

    Eccles, V.; Armstrong, R.

    1993-05-01

    The earth's ozone layer occurs in the stratosphere, primarily between 10 and 30 miles altitude. The amount of ozone, O3, present is the result of a balance between production and destruction processes. Experiments have shown that natural processes such as auroras create molecules that destroy O. One family of such molecules is called odd nitrogen of which nitric oxide (NO) is an example. Because the HAARP (HF Active Auroral Research Program) facility is designed to mimic and investigate certain natural processes, a study of possible effects of HAARP on the ozone layer was conducted. The study used a detailed model of the thermal and chemical effects of the high power HF beam, which interacts with free electrons in the upper atmosphere above 50 miles altitude. It was found only a small fraction of the beam energy goes into the production of odd nitrogen molecules, whereas odd nitrogen is efficiently produced by auroras. Since the total energy emitted by HAARP in the year is some 200,000 times less than the energy deposited in the upper atmosphere by auroras, the study demonstrates that HAARP HF beam experiments will cause no measurable depletion of the earth's ozone layer.... Ozone, Ozone depletion, Ozone layer, Odd nitrogen, Nitric oxide, HAARP Emitter characteristics.

  12. DOE Office of Basic Sciences: An Overview of Basic Research Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Basic Sciences: An Overview of Basic Research Activities on Thermoelectrics DOE ... More Documents & Publications Basic Energy Sciences Overview Progress from DOE EF RC: ...

  13. Instrumentation Overview ARM Climate Research Facility 18th Annual ARM Science Team Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview ARM Climate Research Facility 18th Annual ARM Science Team Meeting Jimmy Voyles Voyles STM.2008 Presentation Outline Voyles STM.2008 Presentation Outline * Program Science Goals and Approach Voyles STM.2008 Presentation Outline * Program Science Goals and Approach * Research Sites Voyles STM.2008 Presentation Outline * Program Science Goals and Approach * Research Sites * Instrument Strategy Voyles STM.2008 Presentation Outline * Program Science Goals and Approach * Research Sites *

  14. Sandia National Laboratories: Z Pulsed Power Facility: Z Research: Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Sinars Studying matter at conditions found nowhere else on Earth Z provides the fastest, most accurate, and most affordable method to determine how materials will react under high pressures and temperatures, characteristics that can then be expressed in formulas called equations of state. Combining theoretical simulations with laboratory work, Sandia researchers are able to perform more precisely than ever before. Exposing targets to the high power levels of Z also allows scientists to

  15. Researcher, Los Alamos National Laboratory - Space Science and Applications

    National Nuclear Security Administration (NNSA)

    Group | National Nuclear Security Administration | (NNSA) Researcher, Los Alamos National Laboratory - Space Science and Applications Group Joaquin Birn Joaquin Birn November 2009 Los Alamos National Laboratory Fellow Six Los Alamos scientists have been designated 2009 Los Alamos National Laboratory Fellows in recognition of sustained, outstanding scientific contributions and exceptional promise for continued professional achievement. The title of Fellow is bestowed on only about 2 percent

  16. Computer Science Research Institute 2005 annual report of activities.

    SciTech Connect (OSTI)

    Watts, Bernadette M.; Collis, Samuel Scott; Ceballos, Deanna Rose; Womble, David Eugene

    2008-04-01

    This report summarizes the activities of the Computer Science Research Institute (CSRI) at Sandia National Laboratories during the period January 1, 2005 to December 31, 2005. During this period, the CSRI hosted 182 visitors representing 83 universities, companies and laboratories. Of these, 60 were summer students or faculty. The CSRI partially sponsored 2 workshops and also organized and was the primary host for 3 workshops. These 3 CSRI sponsored workshops had 105 participants, 78 from universities, companies and laboratories, and 27 from Sandia. Finally, the CSRI sponsored 12 long-term collaborative research projects and 3 Sabbaticals.

  17. Computer Science Research Institute 2003 annual report of activities.

    SciTech Connect (OSTI)

    DeLap, Barbara J.; Womble, David Eugene; Ceballos, Deanna Rose

    2006-03-01

    This report summarizes the activities of the Computer Science Research Institute (CSRI) at Sandia National Laboratories during the period January 1, 2003 to December 31, 2003. During this period the CSRI hosted 164 visitors representing 78 universities, companies and laboratories. Of these 78 were summer students or faculty members. The CSRI partially sponsored 5 workshops and also organized and was the primary host for 3 workshops. These 3 CSRI sponsored workshops had 178 participants--137 from universities, companies and laboratories, and 41 from Sandia. Finally, the CSRI sponsored 18 long-term collaborative research projects and 5 Sabbaticals.

  18. Computer Science Research Institute 2004 annual report of activities.

    SciTech Connect (OSTI)

    DeLap, Barbara J.; Womble, David Eugene; Ceballos, Deanna Rose

    2006-03-01

    This report summarizes the activities of the Computer Science Research Institute (CSRI) at Sandia National Laboratories during the period January 1, 2004 to December 31, 2004. During this period the CSRI hosted 166 visitors representing 81 universities, companies and laboratories. Of these 65 were summer students or faculty. The CSRI partially sponsored 2 workshops and also organized and was the primary host for 4 workshops. These 4 CSRI sponsored workshops had 140 participants--74 from universities, companies and laboratories, and 66 from Sandia. Finally, the CSRI sponsored 14 long-term collaborative research projects and 5 Sabbaticals.

  19. DOE Science Showcase - DOE's Smart Grid Research | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    OSTI invites you to visit DOE's Science Accelerator where you can do a single search ... DOE Technology Transfer E-print Network Science Conference Proceedings Science Open ...

  20. Pacific Northwest Laboratory annual report for 1994 to the DOE Office of Energy Research. Part 2: Atmospheric and climate research

    SciTech Connect (OSTI)

    1995-04-01

    Atmospheric research at Pacific Northwest Laboratory (PNL) occurs in conjunction with the Atmospheric Chemistry Program (ACP) and with the Atmospheric Studies in Complex Terrain (ASCOT) Program. Solicitations for proposals and peer review were used to select research projects for funding in FY 1995. Nearly all ongoing projects were brought to a close in FY 1994. Therefore, the articles in this volume include a summary of the long-term accomplishments as well as the FY 1994 progress made on these projects. The following articles present summaries of the progress in FY 1994 under these research tasks: continental and oceanic fate of pollutants; research aircraft operations; ASCOT program management; coupling/decoupling of synoptic and valley circulations; interactions between surface exchange processes and atmospheric circulations; and direct simulations of atmospheric turbulence. Climate change research at PNL is aimed at reducing uncertainties in the fundamental processes that control climate systems that currently prevent accurate predictions of climate change and its effects. PNL is responsible for coordinating and integrating the field and laboratory measurement programs, modeling studies, and data analysis activities of the Atmospheric Radiation Measurements (ARM) program. In FY 1994, PNL scientists conducted 3 research projects under the ARM program. In the first project, the sensitivity of GCM grid-ad meteorological properties to subgrid-scale variations in surface fluxes and subgrid-scale circulation patterns is being tested in a single column model. In the second project, a new and computationally efficient scheme has been developed for parameterizing stratus cloud microphysics in general circulation models. In the last project, a balloon-borne instrument package is being developed for making research-quality measurements of radiative flux divergence profiles in the lowest 1,500 meters of the Earth`s atmosphere.

  1. 2004 research briefs :Materials and Process Sciences Center.

    SciTech Connect (OSTI)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  2. Basic Science Research to Support the Nuclear Materials Focus Area

    SciTech Connect (OSTI)

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  3. Basic science research to support the nuclear material focus area

    SciTech Connect (OSTI)

    Boak, J. M.; Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area

  4. ScienceLive chat page: on the future of fusion research | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab ScienceLive chat page: on the future of fusion research American Fusion News Category: U.S. Universities Link: ScienceLive chat page: on the future of fusion research

  5. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research. Part 2, Environmental sciences

    SciTech Connect (OSTI)

    Grove, L.K.; Wildung, R.E.

    1993-03-01

    The 1992 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment and health conducted during fiscal year 1992. This report consists of four volumes oriented to particular segments of the PNL program, describing research performed for the DOE Office of Health and Environmental Research in the Office of Energy Research. The parts of the 1992 Annual Report are: Biomedical Sciences; Environmental Sciences; Atmospheric Sciences; and Physical Sciences. This Report is Part 2: Environmental Sciences. Included in this report are developments in Subsurface Science, Terrestrial Science, Laboratory-Directed Research and Development, Interactions with Educational Institutions, Technology Transfer, Publications, and Presentations. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. The Technology Transfer section of this report describes a number of examples in which fundamental research is laying the groundwork for the technology needed to resolve important environmental problems. The Interactions with Educational Institutions section of the report illustrates the results of a long-term, proactive program to make PNL facilities available for university and preuniversity education and to involve educational institutions in research programs. The areas under investigation include the effect of geochemical and physical phenomena on the diversity and function of microorganisms in deep subsurface environments, ways to address subsurface heterogeneity, and ways to determine the key biochemical and physiological pathways (and DNA markers) that control nutrient, water, and energy dynamics in arid ecosystems and the response of these systems to disturbance and climatic change.

  6. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    banner Home | People | Site Index Atmospheric Radiation Measurement Climate Research Facility US Department of Energy About Science Campaigns Sites Instruments Measurements Data News Publications Education Become a User Recovery Act Mission FAQ Outreach Displays History Organization Participants Facility Statistics Forms Contacts Research Themes LES ARM Symbiotic Simulation and Observation Workflow Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science

  7. Atmospheric Radiation Measurement program climate research facility operations quarterly report January 1 - March 31, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-05-22

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period January 1 - March 31, 2008, for the fixed sites. The AMF is being deployed to China and is not in operation this quarter. The second quarter comprises a total of 2,184 hours. The average as well as the individual site values exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the research accounts are located at the Barrow

  8. Core Research Activities and Studies of the Computer Science and Telecommunications Board

    SciTech Connect (OSTI)

    Eisenberg, Jon K.

    2015-02-11

    Lists activities of the Computer Science and Telecommunications Board and summarizes research results partly enabled by this award.

  9. Neutrino Research Supported by the DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Supported by the DOE Office of Science Raymond Davis Jr., a chemist at the U.S. Department of Energy's Brookhaven National Laboratory, will be awarded a quarter share of the 2002 Nobel Prize in Physics for detecting solar neutrinos, ghostlike particles produced in nuclear reactions that power the sun. Davis shares the prize with Masatoshi Koshiba of Japan, and Riccardo Giaconni of the U.S. Ray Davis Jr. Ray Davis Jr. December 10, 2002-The award of a share of the 2002 Nobel Prize for

  10. Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)

    SciTech Connect (OSTI)

    JW Voyles

    2008-01-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  11. Terrestrial Ecosystem Science | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Terrestrial Ecosystem Science Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program Subsurface

  12. Data Assimilation J. S. Van Baelen(a) National Center for Atmospheric Research(b)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S. Van Baelen(a) National Center for Atmospheric Research(b) Boulder, CO 80307-3000 Introduction of wind profilers to provide accurate estimates of the momentum and heat fluxes might be their most important contribution yet to the field of atmospheric dynamic studies, especially when those measurements can be ingested into circulation models. In particular, flux measurements in the planetary boundary layer can provide critically needed information on the pel turbulent structures and their effect

  13. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2007.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-01-24

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1 - December 31, 2007, for the fixed sites and the mobile site. The AMF has been deployed to Germany and this was the final operational quarter. The first quarter comprises a total of 2,208 hours. Although the average exceeded our goal this quarter, a series of severe weather events (i.e., widespread ice storms) disrupted utility services, which affected the SGP performance measures. Some instruments were covered in ice and power and data communication lines were down for more than 10 days in some areas of Oklahoma and Kansas, which resulted in lost data at the SGP site. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. The AMF completed its mission at the end of this quarter in Haselback, Germany (FKB designation). NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE

  14. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological and Environmental Research U.S. Department of energy atmospheric radiation measurement program ARM ARM The Importance of Radiation and Clouds for Climate Change The Earth's surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce signifcant climate change. Global climate

  15. DOE Science Showcase - DOE Plasma Research | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    PPPL presentation, SciTech Connect Plasmas are Hot and Fusion is Cool, DOE PPPL, ScienceCinema video US ITER Moving Forward, USDOE Office of Science, ORNL, ScienceCinema video ...

  16. DOE Science Showcase - Exciting Higgs Boson Research | OSTI,...

    Office of Scientific and Technical Information (OSTI)

    Unraveling the Higgs Boson Discovery - Rik Yoshida, ScienceCinema National Library of EnergyBeta DOE R&D Accomplishments SciTech Connect Database Science.gov Ciencia.Science.gov ...

  17. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    ... Synthesis and Processing Science .pdf file (32KB) Atomic, Molecular, and Optical Science ... Science .pdf file (34KB) Neutron and X-Ray Scattering X-Ray Scattering .pdf file ...

  18. Science in STL | Dr. Gerald Hayes | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science in STL | Dr. Gerald Hayes August 24, 2016 Science in STL | Dr. Gerald Hayes Beelogics: Monsanto's Commitment to Honey Bee Health News/Media Videos

  19. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 2-Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 3-Physics Department,...

  20. Charter for the ARM Climate Research Facility Science Board ...

    Office of Scientific and Technical Information (OSTI)

    The objective of the ARM Science Board is to promote the Nation's scientific enterprise by ... scientific applications for improving understanding and prediction of climate science. ...

  1. DOE Science Showcase - DOE's Smart Grid Research | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    DOE Technology Transfer E-print Network Science Conference Proceedings Science Open Access Journals DOE Green Energy Related links of interest DOE Office of Electricity Delivery & ...

  2. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Link to the ASCR Computer Science Web Page APPLIED MATHEMATICS The Applied Mathematics ... Link to the ASCR Applied Mathematics Web Page NEXT GENERATION NETWORKING FOR SCIENCE ...

  3. Data Science Makes Trains More Efficient | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Science Makes Trains More Efficient Click to email this to a friend (Opens in new ... Data Science Makes Trains More Efficient In this Special Report, GE's ...

  4. Connecting Lab-Based Attosecond Science with FEL research

    ScienceCinema (OSTI)

    None

    2011-10-06

    In the last few years laboratory-scale femtosecond laser-based research using XUV light has developed dramatically following the successful development of attosecond laser pulses by means of high-harmonic generation. Using attosecond laser pulses, studies of electron dynamics on the natural timescale that electronic processes occur in atoms, molecules and solids can be contemplated, providing unprecedented insight into the fundamental role that electrons play in photo-induced processes. In my talk I will briefly review the present status of the attosecond science research field in terms of present and foreseen capabilities, and discuss a few recent applications, including a first example of the use of attosecond laser pulses in molecular science. In addition, I will discuss very recent results of experiments where photoionization of dynamically aligned molecules is investigated using a high-harmonics XUV source. Photoionization of aligned molecules becomes all the more interesting if the experiment is performed using x-ray photons. Following the absorption of x-rays, ejected photoelectrons can be used as a probe of the (time-evolving) molecular structure, making use of intra-molecular electron diffraction. This amounts, as some have stated, to ?illuminating the molecule from within?. I will present the present status of our experiments on this topic making use of the FLASH free electron laser in Hamburg. Future progress in this research field not only depends on the availability of better and more powerful light sources, but also requires sophisticated detector strategies. In my talk I will explain how we are trying to meet some of the experimental challenges by using the Medipix family of detectors, which we have already used for time- and space-resolved imaging of electrons and ions.

  5. Climate Science for a Sustainable Energy Future Atmospheric Radiation Measurement Best Estimate (CSSEFARMBE)

    SciTech Connect (OSTI)

    Riihimaki, Laura D.; Gaustad, Krista L.; McFarlane, Sally A.

    2012-09-28

    The Climate Science for a Sustainable Energy Future (CSSEF) project is working to improve the representation of the hydrological cycle in global climate models, critical information necessary for decision-makers to respond appropriately to predictions of future climate. In order to accomplish this objective, CSSEF is building testbeds to implement uncertainty quantification (UQ) techniques to objectively calibrate and diagnose climate model parameterizations and predictions with respect to local, process-scale observations. In order to quantify the agreement between models and observations accurately, uncertainty estimates on these observations are needed. The DOE Atmospheric Radiation Measurement (ARM) program takes atmospheric and climate related measurements at three permanent locations worldwide. The ARM VAP called the ARM Best Estimate (ARMBE) [Xie et al., 2010] collects a subset of ARM observations, performs quality control checks, averages them to one hour temporal resolution, and puts them in a standard format for ease of use by climate modelers. ARMBE has been widely used by the climate modeling community as a summary product of many of the ARM observations. However, the ARMBE product does not include uncertainty estimates on the data values. Thus, to meet the objectives of the CSSEF project and enable better use of this data with UQ techniques, we created the CSSEFARMBE data set. Only a subset of the variables contained in ARMBE is included in CSSEFARMBE. Currently only surface meteorological observations are included, though this may be expanded to include other variables in the future. The CSSEFARMBE VAP is produced for all extended facilities at the ARM Southern Great Plains (SGP) site that contain surface meteorological equipment. This extension of the ARMBE data set to multiple facilities at SGP allows for better comparison between model grid boxes and the ARM point observations. In the future, CSSEFARMBE may also be created for other ARM sites. As

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research, Inc. (a) University of Wisconsin - Madison (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting For the first time since its inception, a...

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research (d), Pacific Northwest National Laboratory (e), NOAA ETL (f), Naval Postgraduate School (g) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM...

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algorithms for GRAMS Fisk, M., Moore, S., Sowle, D., and Terry, D., Mission Research Corporation Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Automated data...

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis for the Shortwave Spectrometer Fisk, M., Moore, S., Sowle, D., and Terry, D., Mission Research Corporation Ninth Atmospheric Radiation Measurement (ARM) Science Team...

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minnis, P., and Young, D.F., NASA Langley Research Center Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting Current retrievals of cloud properties at night...

  11. Research Proposal Guidelines | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Proposal Guidelines DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to Apply Identifying a Collaborating DOE Laboratory Scientist Research Proposal Guidelines Office of Science Priority Research Areas for SCGSR Program Letters of Support Graduate Transcripts for Current Graduate Institution Application Evaluation and Selection Participating DOE Laboratories and Points of Contact Information for Laboratory

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On Problems in Simulating Boundary-layer Cumulus Clouds with Third-Order Turbulence Closure Models Cheng, A.(a) and Xu, K.-M.(b), Atmospheric Sciences, NASA Langley Research Center (a), Center for Atmospheric Sciences, Hampton University (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A hierarchy of third-order turbulence closure models are used to simulate boundary-layer cumulus clouds from the Atmospheric Radiation Measurement in this study. A moist spurious

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spurious Oscillation in Simulating Boundary-Layer Cumulus Clouds with Third-Order Turbulence Closure Models Cheng, A.(a) and Xu, K.-M.(b), Center for Atmospheric Sciences, Hampton University, Hampton, VA (a), Atmospheric Sciences, NASA Langley Research Center (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A hierarchy of third-order turbulence closure models are used to simulate boundary-layer cumulus clouds from the Atmospheric Radiation Measurement in this study. A

  14. DOE Science Showcase - Oil Shale Research | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    U.S. Agency oil shale information in Science.gov International oil shale information ... Oil Shale Calculator, the U.S. Geological Survey Visit the Science Showcase homepage.

  15. Research Communications Laboratory, Museum of Science Immersion Internship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | MIT-Harvard Center for Excitonics 21 | December 5, 2015 at 9-4 pm/ Museum of Science

  16. AmeriFlux Measurement Network: Science Team Research

    SciTech Connect (OSTI)

    Law, B E

    2012-12-12

    Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.

  17. X-Stack Software Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    X-Stack Software Research Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC)

  18. HIV genetic research to be discussed at Bradbury Science Museum lecture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feb. 12 HIV genetic research to be discussed Feb. 12 HIV genetic research to be discussed at Bradbury Science Museum lecture Feb. 12 Tanmoy Bhattacharya will talk about the Lab's research in HIV genetics and how the deluge of new data is going to impact its future. February 7, 2014 Bradbury Science Museum Bradbury Science Museum Contact Steve Sandoval Communications Office (505) 665-9206 Email "In biology, access to large amounts of genetic information about organisms revolutionized the

  19. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2013-01-11

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  20. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2012-10-10

    Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile research sites are collected and routed to the Data Management Facility (DMF) for processing in near-real-time. Instrument and processed data are then delivered approximately daily to the ARM Data Archive, where they are made freely available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  1. Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97

    SciTech Connect (OSTI)

    Newkirk, L.

    1997-12-01

    This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

  2. Climate and Environmental Sciences Division (CESD) | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Climate and Environmental Sciences Division (CESD) Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate

  3. STICKY FINGERS: How One Researcher is Improving the Science of...

    Energy Savers [EERE]

    Buchanan Through the Looking Glass: The Art and Science of Hand-Polishing Precision Optics Sally Dawson is an award-winning theoretical physicist seeking to better understand...

  4. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 4-Department of Physics and Department of Electrical Engineering and Computer...

  5. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge, TN 37831 2-University of Heidelberg, Heidelberg, Germany 3-National Academy of Science of Ukraine, Kiev, Ukraine Achievement Here we report direct measurements of oxygen...

  6. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    di Fisica "A. Volta", Universita degli Studi di Pavia, via Bassi 6, 27100 Pavia, Italy Department of Physics and Institute for Optical Sciences, University of Toronto, 60 St. ...

  7. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    di Fisica "A. Volta", Universita degli Studi di Pavia, via Bassi 6, 27100 Pavia, Italy Department of Physics and Institute for Optical Sciences, University of Toronto, 60 St. ...

  8. Nine receive DOE's Office of Science Graduate Student Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The program prepares students for careers in science, technology, engineering and math. ... technology, engineering and mathematics careers, which are critically important to the ...

  9. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AL 35487 (USA) 2-Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA) 3-Department of Chemistry, University of Kentucky,...

  10. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Energy for the Future How to Make a Star Discovery Science Photon Science HAPLS

  11. DOE Office of Science Releases Journal of Undergraduate Research Volume VII

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | U.S. DOE Office of Science (SC) DOE Office of Science Releases Journal of Undergraduate Research Volume VII News News Home Featured Articles Science Headlines 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 11.20.07 DOE Office of Science Releases Journal

  12. Computation Directorate and Science& Technology Review Computational Science and Research Featured in 2002

    SciTech Connect (OSTI)

    Alchorn, A L

    2003-04-04

    Thank you for your interest in the activities of the Lawrence Livermore National Laboratory Computation Directorate. This collection of articles from the Laboratory's Science & Technology Review highlights the most significant computational projects, achievements, and contributions during 2002. In 2002, LLNL marked the 50th anniversary of its founding. Scientific advancement in support of our national security mission has always been the core of the Laboratory. So that researchers could better under and predict complex physical phenomena, the Laboratory has pushed the limits of the largest, fastest, most powerful computers in the world. In the late 1950's, Edward Teller--one of the LLNL founders--proposed that the Laboratory commission a Livermore Advanced Research Computer (LARC) built to Livermore's specifications. He tells the story of being in Washington, DC, when John Von Neumann asked to talk about the LARC. He thought Teller wanted too much memory in the machine. (The specifications called for 20-30,000 words.) Teller was too smart to argue with him. Later Teller invited Von Neumann to the Laboratory and showed him one of the design codes being prepared for the LARC. He asked Von Neumann for suggestions on fitting the code into 10,000 words of memory, and flattered him about ''Labbies'' not being smart enough to figure it out. Von Neumann dropped his objections, and the LARC arrived with 30,000 words of memory. Memory, and how close memory is to the processor, is still of interest to us today. Livermore's first supercomputer was the Remington-Rand Univac-1. It had 5600 vacuum tubes and was 2 meters wide by 4 meters long. This machine was commonly referred to as a 1 KFlop machine [E+3]. Skip ahead 50 years. The ASCI White machine at the Laboratory today, produced by IBM, is rated at a peak performance of 12.3 TFlops or E+13. We've improved computer processing power by 10 orders of magnitude in 50 years, and I do not believe there's any reason to think we won

  13. Chemistry, Life, and Earth Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADCLES Chemistry, Life, and Earth Sciences The CLES Directorate is home to world class capabilities in chemistry, bioscience, and earth and environmental sciences. Structural protein research Structural protein research A wide range of protein folding research Field Instrument Deployments and Operations (FIDO) Field Instrument Deployments and Operations (FIDO) Atmospheric science research Quantum Dots Quantum Dots Quantum dot research for energy and light Contact Us Associate Director Nan Sauer

  14. Technical Sessions J.-F. Louis Atmospheric and Environment Research, Inc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -F. Louis Atmospheric and Environment Research, Inc. Cambridge, MA 02139 curve fitting and statistical interpolation.lrl fitting techniques, the fields are represented locally by analytical spline functions whose coefficients are determined by a least square method. Somewhat simpler malthematically, and more often used, statistical interpolation defines the value of the field at each grid point as the weighted average of nearby data. The Cressman and the Barnes techniques are two examples of

  15. Opportunities for Materials Science and Biological Research at the OPAL Research Reactor

    SciTech Connect (OSTI)

    Kennedy, S. J.

    2008-03-17

    Neutron scattering techniques have evolved over more than 1/2 century into a powerful set of tools for determination of atomic and molecular structures. Modern facilities offer the possibility to determine complex structures over length scales from {approx}0.1 nm to {approx}500 nm. They can also provide information on atomic and molecular dynamics, on magnetic interactions and on the location and behaviour of hydrogen in a variety of materials. The OPAL Research Reactor is a 20 megawatt pool type reactor using low enriched uranium fuel, and cooled by water. OPAL is a multipurpose neutron factory with modern facilities for neutron beam research, radioisotope production and irradiation services. The neutron beam facility has been designed to compete with the best beam facilities in the world. After six years in construction, the reactor and neutron beam facilities are now being commissioned, and we will commence scientific experiments later this year. The presentation will include an outline of the strengths of neutron scattering and a description of the OPAL research reactor, with particular emphasis on it's scientific infrastructure. It will also provide an overview of the opportunities for research in materials science and biology that will be possible at OPAL, and mechanisms for accessing the facilities. The discussion will emphasize how researchers from around the world can utilize these exciting new facilities.

  16. Sandia Vertical-Axis Wind-Turbine Research Presented at Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vertical-Axis Wind-Turbine Research Presented at Science of Making Torque from Wind ... Twitter Google + Vimeo GovDelivery SlideShare Sandia Vertical-Axis Wind-Turbine Research ...

  17. Third DOE BES Separations Research Workshop | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Third DOE BES Separations Research Workshop Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Reports and Activities Third DOE BES Separations Research Workshop Print Text Size: A A A FeedbackShare Page Third DOE/BES Separations Research Workshop Hilton DeSoto Hotel Savannah Georgia May 12-14, 1999 Organizing Committee Dr. Richard Gordon

  18. MIT Plasma Science & Fusion Center: research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Program Information Publications & News Meetings & Seminars Contact Information Physics Research Fusion Technology & Engineering Plasma Technology Waves & Beams Useful...

  19. MIT Plasma Science & Fusion Center: research, alcator, publications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Program Information Publications & News Meetings & Seminars Contact Information Physics Research High-Energy- Density Physics Waves & Beams Technology & Engineering...

  20. For Researchers | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers Human Subjects Protection Program (HSPP) HSPP Home About For Researchers ... Institutional Officials For Prospective Human Subjects Leads Annual Reports ...

  1. GE's BBQ Science Experiments Produce Results |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BBQ Science Experiments Reveal Winning Rack of Ribs Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) BBQ Science Experiments Reveal Winning Rack of Ribs Lynn DeRose 2015.03.16 This is the fourth in a five-part series of dispatches from GE's Science of Barbecue Experience at South by Southwest. Our state-of-the-art

  2. Rocket Science? No, It's Harder | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rocket Science? No, It's Harder Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Rocket Science? No, It's Harder "Sometimes our subsea engineers joke that it is more difficult than rocket science to put a machine on the ocean floor, under extreme pressures and in a highly corrosive environment", says Juan

  3. Science in St. Louis | Dr. Michael Fix | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Science in St. Louis | Dr. Michael Fix March 15, 2016 Science in St. Louis | Dr. Michael Fix Monster in the Hollow - The Story of Missouri's Ozark Dinosaurs Professor Fix has been a member of UMSL's Physics faculty since 1976 and is responsible for teaching all of the Geology classes and labs that are offered through the department. He is a graduate of Washington University's department of Earth and Planetary Sciences with a focus in paleontology and stratigraphy. He was chosen by the

  4. BBQ -- Is It Science or Art? | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BBQ - Is it Science or Art? Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) BBQ - Is it Science or Art? Lynn DeRose 2015.03.13 This is the first in a five-part series of dispatches from GE's Science of Barbecue Experience at South by Southwest. Our state-of-the-art Brilliant Super-Smoker is outfitted with sensors to

  5. About the Neutron and Nuclear Science Research (WNR) facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center (Target-1), and a proton reaction area (Target-2). ...

  6. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S. Allen, James M. McCollum, John R. Wilgus, Gary S. Sayler, and Chris D. Cox. Co-author Roy D. Dar was a DOE Science Undergraduate Laboratory Intern student working with...

  7. Rocket Science? No, It's Harder | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rocket Science? No, It's Harder Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on ...

  8. DOE Science Showcase - Rare Earth Metal Research from DOE Databases...

    Office of Scientific and Technical Information (OSTI)

    Energy - LaNi.sub.5 is-based metal hydride electrode in Ni-MH rechargeable cells Science.gov - H.R.4866 - Rare Earths Supply-Chain Technology and Resources Transformation Act ...

  9. Breakthrough: The Stories Behind the Science | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Impact > Breakthrough: The Stories Behind the Science Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in...

  10. Annular Core Research Reactor - Critical to Science-Based Weapons...

    National Nuclear Security Administration (NNSA)

    environments needed to simulate nuclear weapons effects on full-scale systems. This test capability is critical to science-based weapons design and certification. The ACRR is a ...

  11. NREL: Solar Research - Materials and Chemical Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials and Chemical Science and Technology The Materials and Chemical Science & Technology (MCST) directorate's capabilities span fundamental and applied R&D for renewable energy and energy efficiency. Key program areas include solar energy conversion for electricity and fuels, materials discovery and development for renewable energy technologies, hydrogen production and storage, and fuel cells. The MCST directorate-led by Associate Laboratory Director William Tumas-includes the

  12. Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR): Instrument Technology

    SciTech Connect (OSTI)

    Dunagan, Stephen; Johnson, Roy; Zavaleta, Jhony; Russell, P. B.; Schmid, Beat; Flynn, Connor J.; Redemann, Jens; Shinozuka, Yohei; Livingston, J.; Segal Rozenhaimer, Michal

    2013-08-06

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy, to improve knowledge of atmospheric constituents and their links to air-pollution/climate. Direct beam hyper-spectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements will tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. Technical challenges include compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage. Test results establishing the performance of the instrument against the full range of operational requirements are presented, along with calibration, engineering flight test, and scientific field campaign data and results.

  13. DOE Science Showcase - Featured Climate Change Research from...

    Office of Scientific and Technical Information (OSTI)

    Featured Climate Change Research from DOE Databases Search Results from DOE Databases View research documents, citations, accomplishments, patents, and projects related to climate ...

  14. DOE Science Showcase - Computing Research | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    Computing Research For the growing number of problems where experiments are impossible, ... Computational Research in DOE Databases Energy Citations Database DOE Data Explorer ...

  15. Patriotic Sands Form the Science of Summer | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patriotic Sands Form the Science of Summer Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Patriotic Sands Form the Science of Summer Adam Rasheed 2012.07.03 Happy 4th of July everyone! As we gear up to celebrate Independence Day with fireworks and barbecues in the sweltering heat, we wanted to figure out a fun way to

  16. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Science Plan

    SciTech Connect (OSTI)

    de Boer, G; Bland, G; Elston, J; Lawrence, D; Maslanik, J; Palo, S; Tschudi, M

    2015-12-01

    The use of unmanned aerial systems (UAS) is becoming increasingly popular for a variety of applications. One way in which these systems can provide revolutionary scientific information is through routine measurement of atmospheric conditions, particularly properties related to clouds, aerosols, and radiation. Improved understanding of these topics at high latitudes, in particular, has become very relevant because of observed decreases in ice and snow in polar regions.

  17. Jefferson Lab research into the pentaquark is ranked among the top science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stories of 2003 | Jefferson Lab research into the pentaquark is ranked among the top science stories of 2003 Jefferson Lab research into the pentaquark is ranked among the top science stories of 2003 December 24, 2003 Twice during the last month the discovery of the pentaquark has been named among the top science stories for 2003. Researchers working at the Department of Energy's Jefferson Lab, located in Newport News, Va., are among those to identify some of the most convincing evidence yet

  18. PNNL: Staff Search - Fundamental & Computational Sciences Directorate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Divisions Advanced Computing, Mathematics & Data Atmospheric Sciences & Global Change Biological Sciences Physical Sciences User Facilities Environmental Molecular Sciences ...

  19. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. Weitering, Nature Materials 7, 539 (2008). The research was sponsored by the National Human Genome Research Institute, National Institutes of Health Grant R01HG002647 (CZ), NSF...

  20. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    the Accelerator Stewardship program. HEP Research Subprograms Energy Frontier Energy Frontier ... Accelerator Stewardship coordinates with accelerator user communities and ...

  1. Data Management | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Data Management Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program Subsurface Biogeochemical

  2. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report January 1–March 31, 2012

    SciTech Connect (OSTI)

    Voyles, JW

    2012-04-13

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to the research community. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  3. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    SciTech Connect (OSTI)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K.

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  4. DOE Science Showcase - Cool roofs, cool research, at DOE | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information Cool roofs, cool research, at DOE Science Accelerator returns cool roof documents from 6 DOE Databases Executive Order on Sustainability Secretary Chu Announces Steps to Implement One Cool Roof Cool Roofs Lead to Cooler Cities Guidelines for Selecting Cool Roofs DOE Cool Roof Calculator Visit the Science Showcase homepage.

  5. Environmental Molecular Sciences Laboratory (EMSL) | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Environmental Molecular Sciences Laboratory (EMSL) Biological and Environmental Research (BER) BER Home About Research Facilities User Facilities Atmospheric Radiation Measurement Climate Research Facility (ARM) Environmental Molecular Sciences Laboratory (EMSL) Joint Genome Institute (JGI) Science Highlights Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and

  6. University Research National Labs | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    About » University Research & National Labs » University Research National Labs Alpha Listing High Energy Physics (HEP) HEP Home About Organization Chart .pdf file (106KB) Staff HEP Budget HEP Committees of Visitors Directions Jobs University Research & National Labs University Research National Labs Alpha Listing Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department

  7. DOE Science Showcase - "PECASE: Outstanding early career research

    Office of Scientific and Technical Information (OSTI)

    honored" | OSTI, US Dept of Energy Office of Scientific and Technical Information "PECASE: Outstanding early career research honored" Energy Department Scientists & Engineers Honored with Presidential Early Career Awards PECASE award ceremony DOE recently recognized the following scientists and engineers at the outset of their independent research careers: Dillon Fong and Elena V. Shevchenko of Argonne National Laboratory Find Dillon Fong's research in the Energy Citations

  8. MIT Plasma Science & Fusion Center: research>alcator>introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Francis Bitter Magnet Laboratoroy Useful Links The links...

  9. DOE Science Showcase - Carbon Capture research in DOE Databases...

    Office of Scientific and Technical Information (OSTI)

    NATCARB Interactive Maps ... Videos of experiments from ORNL's Gas Hydrate Research DOE Green Energy : Thinking Like a Whole Building: A Whole Foods Market New Construction Case ...

  10. DOE Science Showcase - Heat Pump Research | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    This heat pump research information has been made available to DOE's Office of Scientific and Technical Information for inclusion in OSTI's free web-based resources. Image Credit: ...

  11. MIT Plasma Science & Fusion Center: research>alcator>publications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & News Meetings & Seminars Contact Information Physics Research High-Energy- Density Physics Waves & Beams Technology & Engineering Useful Links APS Presentations New Orleans...

  12. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meet various research needs. The chemical or physical exfoliation of graphite is a straightforward method to produce graphene with minimal synthesis effort, since it takes...

  13. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jose M. Romo-Herrera CNMS User, Institute for Scientific and Technological Research of San Luis Potosi (IPICYT), Bobby G. Sumpter (CNMS Staff), David A. Cullen (Arizona State...

  14. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxidative stress, indicating that the fullerenes can be absorbed into living tissue. This led CNMS researchers to investigate the potential impact of buckyballs if they...

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Dimming and Brightening: an Update Beyond 2000 Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Wild, M., Institute for Atmospheric and Climate Science - ETH Zurich Truessel, B., Institute for Atmospheric and Climate Science - ETH Zurich Ohmura, A., Swiss Federal Institute of Technology Koenig-Langlo, G., Alfred Wegener Institute Dutton, E. G., NOAA/OAR/ESRL Tsvetkov, A. V., World Radiation Data Centre Area of Research: Radiation Processes Working

  16. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wikipedia to forecast diseases November 13, 2014 Los Alamos research published in Public Library of Science LOS ALAMOS, N.M., Nov. 13, 2014-Scientists can now monitor and forecast diseases around the globe more effectively by analyzing views of Wikipedia articles, according to a team from Los Alamos National Laboratory. "A global disease-forecasting system will improve the way we respond to epidemics," scientist Sara Del Valle said. "In the same way we check the weather each

  17. Atmospheric Emitted Radiance Interferometer (AERI) Archived Data at the University of Wisconsin Space Science and Engineering Center (SSEC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The AERI instrument is an advanced version of the high spectral resolution interferometer sounder (HIS) designed and fabricated at the University of Wisconsin (Revercomb et al. 1988) to measure upwelling infrared radiances from an aircraft. The AERI is a fully automated ground-based passive infrared interferometer that measures downwelling atmospheric radiance from 3.3 - 18.2 mm (550 - 3000 cm-1) at less than 10-minute temporal resolution with a spectral resolution of one wavenumber. It has been used in DOEÆs Atmospheric Radiation Measurement (ARM) program. Much of the data available here at the Cooperative Institute for Meteorological Satellite Studies (CIMSS), an institute within the University of Wisconsin’s Space Science and Engineering Center, may also be available in the ARM Archive. On this website, data and images from six different field experiments are available, along with AERIPLUS realtime data for the Madison, Wisconsin location. Realtime data includes temperature and water vapor time-height cross sections, SKEWT diagrams, convective stability indices, and displays from a rooftop Lidar instrument. The field experiments took place in Oaklahoma and Wisconsin with the AERI prototype.

  18. Atmospheric Emitted Radiance Interferometer (AERI) Archived Data at the University of Wisconsin Space Science and Engineering Center (SSEC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The AERI instrument is an advanced version of the high spectral resolution interferometer sounder (HIS) designed and fabricated at the University of Wisconsin (Revercomb et al. 1988) to measure upwelling infrared radiances from an aircraft. The AERI is a fully automated ground-based passive infrared interferometer that measures downwelling atmospheric radiance from 3.3 - 18.2 mm (550 - 3000 cm-1) at less than 10-minute temporal resolution with a spectral resolution of one wavenumber. It has been used in DOEs Atmospheric Radiation Measurement (ARM) program. Much of the data available here at the Cooperative Institute for Meteorological Satellite Studies (CIMSS), an institute within the University of Wisconsins Space Science and Engineering Center, may also be available in the ARM Archive. On this website, data and images from six different field experiments are available, along with AERIPLUS realtime data for the Madison, Wisconsin location. Realtime data includes temperature and water vapor time-height cross sections, SKEWT diagrams, convective stability indices, and displays from a rooftop Lidar instrument. The field experiments took place in Oaklahoma and Wisconsin with the AERI prototype.

  19. DOE Office of Science Funded Basic Research at NREL that Impacts Photovoltaic Technologies

    SciTech Connect (OSTI)

    Deb, S. K.

    2005-01-01

    The DOE Office of Science, Basic Energy Sciences, supports a number of basic research projects in materials, chemicals, and biosciences at the National Renewable Energy Laboratory (NREL) that impact several renewable energy technologies, including photovoltaics (PV). The goal of the Material Sciences projects is to study the structural, optical, electrical, and defect properties of semiconductors and related materials using state-of-the-art experimental and theoretical techniques. Specific projects involving PV include: ordering in III-V semiconductors, isoelectronic co-doping, doping bottlenecks in semiconductors, solid-state theory, and computational science. The goal of the Chemical Sciences projects is to advance the fundamental understanding of the relevant science involving materials, photochemistry, photoelectrochemistry, nanoscale chemistry, and catalysis that support solar photochemical conversion technologies. Specific projects relating to PV include: dye-sensitized TiO2 solar cells, semiconductor nanostructures, and molecular semiconductors. This presentation will give an overview of some of the major accomplishments of these projects.

  20. Basic science and energy research sector profile: Background for the National Energy Strategy

    SciTech Connect (OSTI)

    March, F.; Ashton, W.B.; Kinzey, B.R.; McDonald, S.C.; Lee, V.E.

    1990-11-01

    This Profile report provides a general perspective on the role of basic science in the spectrum of research and development in the United States, and basic research's contributions to the goals of the National Energy Strategy (NES). It includes selected facts, figures, and analysis of strategic issues affecting the future of science in the United States. It is provided as background for people from government, the private sector, academia, and the public, who will be reviewing the NES in the coming months; and it is intended to serve as the basis for discussion of basic science issues within the context of the developing NES.

  1. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nanoscale system components that can be directly imaged. In this work Nature Genetics, 40(4), 466-470 (2008), in collaboration with a researcher at the University of...

  2. DOE Science Showcase - Research on the "Go" with OSTI mobile...

    Office of Scientific and Technical Information (OSTI)

    Research on the "Go" with OSTI mobile Now you can find full-text technical reports from the Department of Energy from your mobile device. The new mobile OSTI website http:...

  3. DOE Science Showcase - Oil Shale Research | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    Oil Shale Research Oil shale has been recognized as a potentially valuable U.S. energy resource for a century. Obstacles to its use have included the expense of current shale-oil ...

  4. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a whole new family of previously unknown electronic properties. Credit Published in Nano Letters, DOI: 10.1021nl203349b. Research at Oak Ridge National Laboratory's Center for...

  5. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNMS RESEARCH Synthesis and Directed Growth of Single-Crystal TCNQ-Cu Organic Nanowires K. Xiao, J. Tao, and Z. Liu (CNMS Postdocs); I. N. Ivanov, A.A. Puretzky, Z. Pan, and D.B....

  6. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Achievement: The material of choice for spintronics device today is FeMgOFe tunnel ... by modi?cation of the interface is an important topic in spintronics research. ...

  7. Environmental Sciences Division: Summaries of research in FY 1995

    SciTech Connect (OSTI)

    1996-09-01

    This report focuses on research in global change, as well as environmental remediation. Global change research investigates the following: distribution and balance of radiative heat energy; identification of the sources and sinks of greenhouse gases; and prediction of changes in the climate and concomitant ecological effects. Environmental remediation develops the basic understanding needed to remediate soils, sediments, and ground water that have undergone radioactive and chemical contamination.

  8. Research Areas | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Areas High Energy Density Laboratory Plasmas (HEDLP) Research Areas During open solicitations proposals are sought in the following subfields and cross-cutting areas of HEDLP: High Energy Density Hydrodynamics Specific areas of interest include, but are not limited to, turbulent mixing, probing properties of high energy density (HED) matter through hydrodynamics, solid-state hydrodynamics at high pressures, new hydrodynamic instabilities, and hydrodynamic scaling. Radiation-Dominated

  9. DOE Science Showcase - Featured Climate Change Research from DOE Databases

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy Office of Scientific and Technical Information Featured Climate Change Research from DOE Databases Search Results from DOE Databases View research documents, citations, accomplishments, patents, and projects related to climate change, one of the primary scientific challenges addressed through the Incite Program. Climate Change Information Bridge Energy Citations Database DOE R&D Accomplishments Database DOE Data Explorer Climate Modeling Information Bridge

  10. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy S ciences N etwork Enabling Virtual Science June 9, 2009 Steve C o/er steve@es.net Dept. H ead, E nergy S ciences N etwork Lawrence B erkeley N aDonal L ab The E nergy S ciences N etwork The D epartment o f E nergy's O ffice o f S cience i s o ne o f t he l argest s upporters o f basic r esearch i n t he p hysical s ciences i n t he U .S. * Directly s upports t he r esearch o f s ome 1 5,000 s cienDsts, p ostdocs a nd g raduate s tudents at D OE l aboratories, u niversiDes, o ther F

  11. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 September 30, 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998.

  12. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2009-10-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data then are sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by 1) individual data stream, site, and month for the current year and 2) site and fiscal year (FY) dating back to 1998.

  13. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - July 1 - September 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-09-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  14. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1–December 31, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2012-01-09

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  15. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 – March 31, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  16. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  17. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - January 1 - March 31, 2008

    SciTech Connect (OSTI)

    Sisterson, DL

    2008-04-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  18. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2009-03-17

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  19. Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report July 1–September 30, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2011-10-10

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  20. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report: October 1 - December 31, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2011-03-02

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  1. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2008-01-08

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2007

    SciTech Connect (OSTI)

    DL Sisterson

    2007-10-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  3. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2008

    SciTech Connect (OSTI)

    DL Sisterson

    2008-06-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  4. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 – June 30, 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-07-01

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998.

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report - October 1 - December 31, 2008

    SciTech Connect (OSTI)

    Sisterson, DL

    2009-01-15

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  6. Photosynthetic Antenna Research Center (PARC) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Photosynthetic Antenna Research Center (PARC) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Photosynthetic Antenna Research Center (PARC) Print Text Size: A A A FeedbackShare Page PARC Header Director Robert Blankenship Lead Institution Washington University in St. Louis Year Established 2009 Mission To understand the basic scientific principles that underpin

  7. FACE-IT. A Science Gateway for Food Security Research

    SciTech Connect (OSTI)

    Montella, Raffaele; Kelly, David; Xiong, Wei; Brizius, Alison; Elliott, Joshua; Madduri, Ravi; Maheshwari, Ketan; Porter, Cheryl; Vilter, Peter; Wilde, Michael; Zhang, Meng; Foster, Ian

    2015-07-14

    Progress in sustainability science is hindered by challenges in creating and managing complex data acquisition, processing, simulation, post-processing, and intercomparison pipelines. To address these challenges, we developed the Framework to Advance Climate, Economic, and Impact Investigations with Information Technology (FACE-IT) for crop and climate impact assessments. This integrated data processing and simulation framework enables data ingest from geospatial archives; data regridding, aggregation, and other processing prior to simulation; large-scale climate impact simulations with agricultural and other models, leveraging high-performance and cloud computing; and post-processing to produce aggregated yields and ensemble variables needed for statistics, for model intercomparison, and to connect biophysical models to global and regional economic models. FACE-IT leverages the capabilities of the Globus Galaxies platform to enable the capture of workflows and outputs in well-defined, reusable, and comparable forms. We describe FACE-IT and applications within the Agricultural Model Intercomparison and Improvement Project and the Center for Robust Decision-making on Climate and Energy Policy.

  8. Computing at the leading edge: Research in the energy sciences

    SciTech Connect (OSTI)

    Mirin, A.A.; Van Dyke, P.T.

    1994-02-01

    The purpose of this publication is to highlight selected scientific challenges that have been undertaken by the DOE Energy Research community. The high quality of the research reflected in these contributions underscores the growing importance both to the Grand Challenge scientific efforts sponsored by DOE and of the related supporting technologies that the National Energy Research Supercomputer Center (NERSC) and other facilities are able to provide. The continued improvement of the computing resources available to DOE scientists is prerequisite to ensuring their future progress in solving the Grand Challenges. Titles of articles included in this publication include: the numerical tokamak project; static and animated molecular views of a tumorigenic chemical bound to DNA; toward a high-performance climate systems model; modeling molecular processes in the environment; lattice Boltzmann models for flow in porous media; parallel algorithms for modeling superconductors; parallel computing at the Superconducting Super Collider Laboratory; the advanced combustion modeling environment; adaptive methodologies for computational fluid dynamics; lattice simulations of quantum chromodynamics; simulating high-intensity charged-particle beams for the design of high-power accelerators; electronic structure and phase stability of random alloys.

  9. TORCH Computational Reference Kernels - A Testbed for Computer Science Research

    SciTech Connect (OSTI)

    Kaiser, Alex; Williams, Samuel Webb; Madduri, Kamesh; Ibrahim, Khaled; Bailey, David H.; Demmel, James W.; Strohmaier, Erich

    2010-12-02

    For decades, computer scientists have sought guidance on how to evolve architectures, languages, and programming models in order to improve application performance, efficiency, and productivity. Unfortunately, without overarching advice about future directions in these areas, individual guidance is inferred from the existing software/hardware ecosystem, and each discipline often conducts their research independently assuming all other technologies remain fixed. In today's rapidly evolving world of on-chip parallelism, isolated and iterative improvements to performance may miss superior solutions in the same way gradient descent optimization techniques may get stuck in local minima. To combat this, we present TORCH: A Testbed for Optimization ResearCH. These computational reference kernels define the core problems of interest in scientific computing without mandating a specific language, algorithm, programming model, or implementation. To compliment the kernel (problem) definitions, we provide a set of algorithmically-expressed verification tests that can be used to verify a hardware/software co-designed solution produces an acceptable answer. Finally, to provide some illumination as to how researchers have implemented solutions to these problems in the past, we provide a set of reference implementations in C and MATLAB.

  10. Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - September 30, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-10-08

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1 - September 30, 2008, for the fixed sites. The AMF has been deployed to China, but the data have not yet been released. The fourth quarter comprises a total of 2,208 hours. The average exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. HFE represents the AMF statistics for the Shouxian, China, deployment in 2008. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the

  11. ARM - RHUBC II Science Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Team Related Links RHUBC-II Home RHUBC Home ARM Field Campaigns Home ARM Data Discovery Browse Data Deployment Instruments Science Team RHUBC-II Wiki Site Tour News RHUBC-II Backgrounder (PDF, 300K) News & Press Images Experiment Planning RHUBC-II Proposal Abstract Science Plan (PDF, 267KB) Science Objectives Contacts Eli Mlawer, Principal Investigator Dave Turner, Principal Investigator RHUBC II Science Team Principal Investigators Eli Mlawer, Atmospheric & Environmental Research, Inc.

  12. Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.

    SciTech Connect (OSTI)

    Saffer, Shelley I.

    2014-12-01

    This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

  13. Letter to Science from Michael Wang, Center for Transportation Research, Argonne National Laboratory

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Letter to Science (Original version submitted to Science on Feb. 14 th , 2008; revised on March 14 th , 2008) Michael Wang Center for Transportation Research Argonne National Laboratory Zia Haq Office of Biomass Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy The article by Searchinger et al. in Sciencexpress ("Use of U.S. Croplands for Biofuels Increases Greenhouse Gases through Emissions from Land Use Change," February 7, 2008) provides a timely

  14. DOE Science Showcase - Computing Research | OSTI, US Dept of Energy Office

    Office of Scientific and Technical Information (OSTI)

    of Scientific and Technical Information Computing Research For the growing number of problems where experiments are impossible, dangerous, or inordinately costly, exascale computing will enable the solution of vastly more accurate predictive models and the analysis of massive quantities of data, producing advances in areas of science and technology that are essential to DOE and Office of Science missions and, in the hands of the private sector, drive U.S. competitiveness. Courtesy of

  15. Chapter 9: Enabling Capabilities for Science and Energy | A Comparison of Research Funding Modalities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Modalities High-Performance Computing Capabilities and Allocations User Facility Statistics Examples and Case Studies ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 A Comparison of Research Center Funding Modalities Chapter 9: Enabling Capabilities for Science and Energy A Comparison of Multi-disciplinary, Multi-scale Research Center Funding Modalities Three Department of Energy (DOE) research center modalities-the Energy Frontier

  16. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    Gutowski, William J.; Prusa, Joseph M.; Smolarkiewicz, Piotr K.

    2012-05-08

    validity of soundproof models, showing that they are more broadly applicable than some had previously thought. Substantial testing of EULAG included application and extension of the Jablonowski-Williamson baroclinic wave test - an archetype of planetary weather - and further analysis of multi-scale interactions arising from collapse of temperature fronts in both the baroclinic wave test and simulations of the Held-Suarez idealized climate. These analyses revealed properties of atmospheric gravity waves not seen in previous work and further demonstrated the ability of EULAG to simulate realistic behavior over several orders of magnitude of length scales. Additional collaborative work enhanced capability for modeling atmospheric flows with adaptive moving meshes and demonstrated the ability of EULAG to move into petascale computing. 3b. CAM-EULAG Advances We have developed CAM-EULAG in collaboration with former project postdoc, now University of Cape Town Assistant Professor, Babatunde Abiodun. Initial study documented good model performance in aqua-planet simulations. In particular, we showed that the grid adaptivity (stretching) implemented in CAM-EULAG allows higher resolution in selected regions without causing anomalous behavior such as spurious wave reflection. We then used the stretched-grid version to analyze simulated extreme precipitation events in West Africa, comparing the precipitation and event environment with observed behavior. The model simulates fairly well the spatial scale and the interannual and intraseasonal variability of the extreme events, although its extreme precipitation intensity is weaker than observed. In addition, both observations and the simulations show possible forcing of extreme events by African easterly waves. 3c. Other Contributions Through our collaborations, we have made contributions to a wide range of outcomes. For research focused on terrestrial behavior, these have included (1) upwind schemes for gas dynamics, (2) a nonlinear

  17. Defense, basic, and industrial research at the Los Alamos Neutron Science Center: Proceedings

    SciTech Connect (OSTI)

    Longshore, A.; Salgado, K.

    1995-10-01

    The Workshop on Defense, Basic, and Industrial Research at the Los Alamos Neutron Science Center gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss the use of neutrons in science-based stockpile stewardship, The workshop began with presentations by government officials, senior representatives from the three weapons laboratories, and scientific opinion leaders. Workshop participants then met in breakout sessions on the following topics: materials science and engineering; polymers, complex fluids, and biomaterials; fundamental neutron physics; applied nuclear physics; condensed matter physics and chemistry; and nuclear weapons research. They concluded that neutrons can play an essential role in science-based stockpile stewardship and that there is overlap and synergy between defense and other uses of neutrons in basic, applied, and industrial research from which defense and civilian research can benefit. This proceedings is a collection of talks and papers from the plenary, technical, and breakout session presentations. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Campaign Resource Allocation Using Statistical Decision Analysis Download a printable PDF Submitter: Hanlon, C., Pennsylvania State University Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Hanlon CJ, JB Stefik, AA Small, J Verlinde, and GS Young. 2013. "Statistical decision analysis for flight decision support: The SPartICus campaign." Journal of Geophysical Research - Atmospheres, , . ACCEPTED. In many atmospheric science field

  19. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Science Cutting edge, multidisciplinary national-security science. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets The thermal traits of a leaf, critical for photosynthesis, may be under strong evolutionary selection that occurs in response to environmental temperatures. Here a thermal leaf image details temperature variation, which greatly affects plant functions since temperature is closely linked to metabolic kinetics-the plant's

  20. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 2. Ecological sciences

    SciTech Connect (OSTI)

    Vaughan, B.E.

    1984-02-01

    The 1983 annual report highlights research in five areas funded by the Ecological Sciences Division of the Office of Energy Research. The five areas include: western semi-arid ecosystems; marine sciences; mobilization fate and effects of chemical wastes; radionuclide fate and effects; and statistical and quantitative research. The work was accomplished under 19 individual projects. Individual projects are indexed separately.

  1. The art of research: Opportunities for a science-based approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Silva, Austin Ray; Avina, Glory Emmanuel; Tsao, Jeffrey Y.

    2016-02-01

    Research, the manufacture of knowledge, is currently practiced largely as an “art,” not a “science.” Just as science (understanding) and technology (tools) have revolutionized the manufacture of other goods and services, it is natural, perhaps inevitable, that they will ultimately also be applied to the manufacture of knowledge. In this article, we present an emerging perspective on opportunities for such application, at three different levels of the research enterprise. At the cognitive science level of the individual researcher, opportunities include: overcoming idea fixation and sloppy thinking, and balancing divergent and convergent thinking. At the social network level of the researchmore » team, opportunities include: overcoming strong links and groupthink, and optimally distributing divergent and convergent thinking between individuals and teams. At the research ecosystem level of the research institution and the larger national and international community of researchers, opportunities include: overcoming GPA and performance fixation, overcoming narrow measures of research impact, and overcoming (or harnessing) existential/social stress.« less

  2. Researchers Study Oceans, Carbon at Sea; Lab Science Writer Joins Them

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers Study Oceans, Carbon at Sea; Lab Science Writer Joins Them Follow Berkeley scientists on a 10-day research voyage off the California coast as they test robotic floats in studies of the ocean's biological carbon pump, which could aid the understanding of climate change. Sarah Yang from Public Affairs is tagging along and will blog daily about the trip, including photos and a map tracking their location.

  3. DOE Science Showcase - Fuel Cells Research | OSTI, US Dept of Energy Office

    Office of Scientific and Technical Information (OSTI)

    of Scientific and Technical Information DOE Science Showcase - Fuel Cells Research Clean, Efficient, and Reliable Power for the 21st Century Fuel cells are an important enabling technology for the nation's energy portfolio and have the potential to revolutionize the way we power our nation, offering cleaner, more-efficient alternatives to the combustion of gasoline and other fossil fuels. Courtesy of DOE Fuel Cell Technologies Program Fuel Cells Research Results in DOE Databases DOE R&D

  4. Earth System Modeling (ESM) Program | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Earth System Modeling (ESM) Program Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program

  5. Research briefing on selected opportunities in atomic, molecular, and optical sciences

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This report discusses research on the following topics: The Laser-Atom Revolution; Controlling Dynamical Pathways; Nonclassical States of Light; Transient States of Atomic Systems; New Light Generation and Handling; Clusters; Atomic Physics at User Facilities; and Impacts of AMO Sciences on Modern Technologies.

  6. Research briefing on selected opportunities in atomic, molecular, and optical sciences

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    This report discusses research on the following topics: The Laser-Atom Revolution; Controlling Dynamical Pathways; Nonclassical States of Light; Transient States of Atomic Systems; New Light Generation and Handling; Clusters; Atomic Physics at User Facilities; and Impacts of AMO Sciences on Modern Technologies.

  7. Tour Brookhaven Lab's Future Hub for Energy Research: The Interdisciplinary Science Building

    ScienceCinema (OSTI)

    Gerry Stokes; Jim Misewich

    2013-07-19

    Construction is under way for the Interdisciplinary Science Building (ISB), a future world-class facility for energy research at Brookhaven Lab. Meet two scientists who will develop solutions at the ISB to tackle some of the nation's energy challenges, and tour the construction site.

  8. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science Office of Science β β * * * Office of Science α γ Office of * * * * * Office of Science Office of Science * α * * Office of Science α * * μ * * α 287 115 10.59 32 ms 283 113 10.12 100 ms 279 111 10.38 0.17 s 271 107 9.35 1.2 s 267 105 SF 1.8 h 275 109 10.35 12 ms 289 115 10.31 520 ms 285 113 9.74/9.48 4.5 s 281 111 SF 1 s 287 115 10.59 32 ms 283 113 10.12 100 ms 279 111 10.38 0.17 s 07 5 s 275 109 10.35 12 ms 285 1 9.74/ 4.5 281 111 SF 1 s 288 115 10.48 171 ms 284 113

  9. FY 1999 Laboratory Directed Research and Development annual report

    SciTech Connect (OSTI)

    PJ Hughes

    2000-06-13

    A short synopsis of each project is given covering the following main areas of research and development: Atmospheric sciences; Biotechnology; Chemical and instrumentation analysis; Computer and information science; Design and manufacture engineering; Ecological science; Electronics and sensors; Experimental technology; Health protection and dosimetry; Hydrologic and geologic science; Marine sciences; Materials science; Nuclear science and engineering; Process science and engineering; Sociotechnical systems analysis; Statistics and applied mathematics; and Thermal and energy systems.

  10. science

    National Nuclear Security Administration (NNSA)

    through the Predictive Capability Framework (PCF). The PCF is a long-term integrated roadmap to guide the science, technology and engineering activities and Directed Stockpile...

  11. Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee

    SciTech Connect (OSTI)

    2003-02-01

    This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide and the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigation of Atmospheric Water Vapor and Its Radiative Effects at the ARM North Slope of Alaska CART Site Delamere, J.S., Clough, S.A., Mlawer, E.J., and Shephard, M.W., Atmospheric and Environmental Research, Inc. Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Water vapor significantly regulates radiative energy flow through the Earth’s atmosphere. Since its inception the ARM program has worked to develop improved parameterizations of water vapor radiative

  13. William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) | U.S.

    Office of Science (SC) Website

    DOE Office of Science (SC) William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change

  14. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    SciTech Connect (OSTI)

    Gerber, Richard; Wasserman, Harvey

    2011-03-31

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a brief summary of those relevant to issues

  15. Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96

    SciTech Connect (OSTI)

    Chase, L.

    1997-03-01

    This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

  16. Pacific Northwest Laboratory annual report for 1984 to the DOE Office of Energy Research. Part 2. Ecological sciences

    SciTech Connect (OSTI)

    Novich, C.M.

    1985-02-01

    Research progress is reported in the following areas: (1) the terrestrial ecology of semi-arid sites; (2) marine sciences; (3) radionuclide fate and effects; (4) waste mobilization, fate and effects; and (5) theoretical research on environmental sampling. (ACR)

  17. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1981. [Leading abstract

    SciTech Connect (OSTI)

    Holland, L.M.; Stafford, C.G.

    1982-10-01

    This report summarizes research and development activities of the Los Alamos Life Sciences Division's Biomedical and Environmental Research program for the calendar year 1981. Individual reports describing the current status of projects have been entered individually into the data base.

  18. Review of the Strategic Plan for International Collaboration on Fusion Science and Technology Research. Fusion Energy Sciences Advisory Committee (FESAC)

    SciTech Connect (OSTI)

    none,

    1998-01-23

    The United States Government has employed international collaborations in magnetic fusion energy research since the program was declassified in 1958. These collaborations have been successful not only in producing high quality scientific results that have contributed to the advancement of fusion science and technology, they have also allowed us to highly leverage our funding. Thus, in the 1980s, when the funding situation made it necessary to reduce the technical breadth of the U.S. domestic program, these highly leveraged collaborations became key strategic elements of the U.S. program, allowing us to maintain some degree of technical breadth. With the recent, nearly complete declassification of inertial confinement fusion, the use of some international collaboration is expected to be introduced in the related inertial fusion energy research activities as well. The United States has been a leader in establishing and fostering collaborations that have involved scientific and technological exchanges, joint planning, and joint work at fusion facilities in the U.S. and worldwide. These collaborative efforts have proven mutually beneficial to the United States and our partners. International collaborations are a tool that allows us to meet fusion program goals in the most effective way possible. Working with highly qualified people from other countries and other cultures provides the collaborators with an opportunity to see problems from new and different perspectives, allows solutions to arise from the diversity of the participants, and promotes both collaboration and friendly competition. In short, it provides an exciting and stimulating environment resulting in a synergistic effect that is good for science and good for the people of the world.

  19. Climate research in the former Soviet Union. FASAC: Foreign Applied Sciences Assessment Center technical assessment report

    SciTech Connect (OSTI)

    Ellingson, R.G.; Baer, F.; Ellsaesser, H.W.; Harshvardhan; Hoffert, M.I.; Randall, D.A.

    1993-09-01

    This report assesses the state of the art in several areas of climate research in the former Soviet Union. This assessment was performed by a group of six internationally recognized US experts in related fields. The areas chosen for review are: large-scale circulation processes in the atmosphere and oceans; atmospheric radiative processes; cloud formation processes; climate effects of natural atmospheric disturbances; and the carbon cycle, paleoclimates, and general circulation model validation. The study found an active research community in each of the above areas. Overall, the quality of climate research in the former Soviet Union is mixed, although the best Soviet work is as good as the best corresponding work in the West. The best Soviet efforts have principally been in theoretical studies or data analysis. However, an apparent lack of access to modern computing facilities has severely hampered the Soviet research. Most of the issues considered in the Soviet literature are known, and have been discussed in the Western literature, although some extraordinary research in paleoclimatology was noted. Little unusual and exceptionally creative material was found in the other areas during the study period (1985 through 1992). Scientists in the former Soviet Union have closely followed the Western literature and technology. Given their strengths in theoretical and analytical methods, as well as their possession of simplified versions of detailed computer models being used in the West, researchers in the former Soviet Union have the potential to make significant contributions if supercomputers, workstations, and software become available. However, given the current state of the economy in the former Soviet Union, it is not clear that the computer gap will be bridged in the foreseeable future.

  20. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-06-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.8 hours (0.95 2,184 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1,965.6 hours (0.90 2,184), and that for the Tropical Western Pacific (TWP) site is 1,856.4 hours (0.85 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.8 (0.95 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in

  1. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2005

    SciTech Connect (OSTI)

    Sisterson, DL

    2005-12-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,097.6 hours (0.95 × 2,208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1,987.2 hours (0.90 × 2,208), and that for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 × 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,097.6 hours (0.95 × 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent

  2. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-01-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, they calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The US Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 x 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is

  3. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2004

    SciTech Connect (OSTI)

    Sisterson, DL

    2004-12-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The annual OPSMAX time for the Southern Great Plains (SGP) site is 8,322 hours per year (0.95 × 8,760, the number hours in a year, not including leap year). The annual OPSMAX for the North Slope Alaska (NSA) site is 7,884 hours per year (0.90 × 8,760), and that for the Tropical Western Pacific (TWP) site is 7,446 hours per year (0.85 × 8,760). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the

  4. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2005

    SciTech Connect (OSTI)

    Sisterson, DL

    2005-03-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for this second quarter for the Southern Great Plains (SGP) site is 2052 hours (0.95 × 2,160 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1944 hours (0.90 × 2,160), and that for the Tropical Western Pacific (TWP) site is 1836 hours (0.85 × 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 90

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January-March 2006

    SciTech Connect (OSTI)

    Sisterson, DL

    2006-03-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter for the Southern Great Plains (SGP) site is 2,052 hours (0.95 × 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944 hours (0.90 × 2,160), and that for the Tropical Western Pacific (TWP) locale is 1,836 hours (0.85 × 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,052 hours (0.95 × 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2008

    SciTech Connect (OSTI)

    Sisterson, DL

    2008-09-30

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2008 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 x 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is

  7. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    SciTech Connect (OSTI)

    Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

    2011-01-20

    Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.

  8. Science Briefs - 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Briefs - 2013 Read in detail about specific Los Alamos science achievements, and the honors our scientists are accruing. Image from National Oceanic and Atmospheric Administration's Environmental Visualization Laboratory depicts sea surface temperatures around Greenland from October 2010. Effect of ocean temperature on southwestern U.S. climate analyzed Researchers concluded that only part of the recent temperature rise in the Southwest could be attributed to greenhouse gases. -

  9. Environmental Science and Research Foundation, Inc. annual technical report: Calendar year 1997

    SciTech Connect (OSTI)

    Reynolds, R.D.; Warren, R.W.

    1998-05-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation`s mission to DOE-ID provides support in several key areas. The Foundation conducts an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provides environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research on the Idaho National Environmental Research Park. This research benefits major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. Summaries are included of the individual research projects.

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Significant Decadal Brightening over the Continental United States Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Dutton, E. G., NOAA/OAR/ESRL Augustine, J., National Oceanic and Atmospheric Administration Wiscombe, W. J., Brookhaven National Laboratory Wild, M., Institute for Atmospheric and Climate Science - ETH Zurich McFarlane, S. A., U.S. Department of Energy Flynn, C. J., Pacific Northwest National Laboratory Area of Research: Radiation Processes

  11. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Splitting the Solar Spectrum: Sometimes Less Is Better Than More Submitter: Pawlak, D. T., Pennsylvania State University Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Cloud Modeling Journal Reference: Pawlak, DT, EJ Clothiaux, MF Modest, and JNS Cole. 2004. Full-Spectrum Correlated-k Distribution for Shortwave Atmospheric Radiative Transfer. Journal of the Atmospheric Sciences 61: 2588-2601. Of all the physical and dynamical calculations

  12. Fusion Materials Science and Technology Research Opportunities now and during the ITER Era

    SciTech Connect (OSTI)

    Zinkle, Steven J.; Blanchard, James; Callis, Richard W.; Kessel, Charles E.; Kurtz, Richard J.; Lee, Peter J.; Mccarthy, Kathryn; Morley, Neil; Najmabadi, Farrokh; Nygren, Richard; Tynan, George R.; Whyte, Dennis G.; Willms, Scott; Wirth, Brian D.

    2014-03-13

    Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: 1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the single-effects concept exploration stage, Technology Readiness Levels >3), 2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and 3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

  13. Fusion materials science and technology research opportunities now and during the ITER era

    SciTech Connect (OSTI)

    S.J. Zinkle; J.P. Planchard; R.W. Callis; C.E. Kessel; P.J. Lee; K.A. McCarty; Various Others

    2014-10-01

    Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: (1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the singleeffects concept exploration stage, technology readiness levels >3), (2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and (3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

  14. Chemistry and Materials Science progress report, first half FY 1992. Weapons-Supporting Research and Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This report contains sections on: Fundamentals of the physics and processing of metals; interfaces, adhesion, and bonding; energetic materials; plutonium research; synchrotron radiation-based materials science; atomistic approach to the interaction of surfaces with the environment: actinide studies; properties of carbon fibers; buried layer formation using ion implantation; active coherent control of chemical reaction dynamics; inorganic and organic aerogels; synthesis and characterization of melamine-formaldehyde aerogels; structural transformation and precursor phenomena in advanced materials; magnetic ultrathin films, surfaces, and overlayers; ductile-phase toughening of refractory-metal intermetallics; particle-solid interactions; electronic structure evolution of metal clusters; and nanoscale lithography induced chemically or physically by modified scanned probe microscopy.

  15. Collaborative Research. Fundamental Science of Low Temperature Plasma-Biological Material Interactions

    SciTech Connect (OSTI)

    Graves, David Barry; Oehrlein, Gottlieb

    2014-09-01

    Low temperature plasma (LTP) treatment of biological tissue is a promising path toward sterilization of bacteria due to its versatility and ability to operate under well-controlled and relatively mild conditions. The present collaborative research of an interdisciplinary team of investigators at University of Maryland, College Park (UMD), and University of California, Berkeley (UCB) focused on establishing our knowledge based with regard to low temperature plasma-induced chemical modifications in biomolecules that result in inactivation due to various plasma species, including ions, reactive radicals, and UV/VUV photons. The overall goals of the project were to identify and quantify the mechanisms by which low and atmospheric pressure plasma deactivates endotoxic biomolecules. Additionally, we wanted to understand the mechanism by which atmospheric pressure plasmas (APP) modify surfaces and how these modifications depend on the interaction of APP with the environment. Various low pressure plasma sources, a vacuum beam system and several atmospheric pressure plasma sources were used to accomplish this. In our work we elucidated for the first time the role of ions, VUV photons and radicals in biological deactivation of representative biomolecules, both in a UHV beam system and an inductively coupled, low pressure plasma system, and established the associated atomistic biomolecule changes. While we showed that both ions and VUV photons can be very efficient in deactivation of biomolecules, significant etching and/or deep modification (~200 nm) accompanied these biological effects. One of the most important findings in this work is the significant radical-induced deactivation and surface modification can occur with minimal etching. However, if radical fluxes and corresponding etch rates are relatively high, for example at atmospheric pressure, endotoxic biomolecule film inactivation may require near-complete removal of the film. These findings motivated further work at

  16. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM 2003 Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING! WARNING! Today is April 1 But that has NO bearing on this message Today is April 1 But that has NO bearing on this message ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Two Topics Two Topics * Status of ARM (quick overview) * Science plan - ARM in the next 5 years * Status of ARM (quick overview) * Science plan -

  17. Koel applies science of surface chemistry to fusion research at PPPL |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Koel applies science of surface chemistry to fusion research at PPPL By Catherine Zandonella March 26, 2012 Tweet Widget Google Plus One Share on Facebook To study the interactions of lithium under conditions similar to what might be found in a fusion reactor, lithium on a sample of TZM molybdenum, which is an alloy of molybdenum, titanium, zirconium and carbon known for its high strength and temperature properties, is heated inside an ultrahigh vacuum chamber

  18. Single-Column Modeling R. D. Cess Marine Sciences Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D. Cess Marine Sciences Research Center State University of New York Stony Brook, NY 11794-5000 Cloud-climate interactions are one of the greatest uncertainties in contemporary general circulation models (GCMs) (Cess et al. 1989, 1990), and the present study has focused on one aspect of this. Specifically, combined satellite and near-surface shortwave (SW) flux measurements have been used to test the impact of clouds on the SW radiation budget of two GCMs. Concentration is initially on SW rather

  19. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2006.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2007-03-14

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period October 1 through December 31, 2006, for the fixed and mobile sites. Although the AMF is currently up and running in Niamey, Niger, Africa, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The first quarter comprises a total of 2,208 hours. For all fixed sites, the actual data availability (and therefore actual hours of operation) exceeded the individual (and well as aggregate average of the fixed sites) operational goal for the first quarter of fiscal year (FY) 2007. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a Central Facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. NIM represents the AMF statistics for the current deployment in Niamey, Niger, Africa. PYE represents the AMF statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be

  20. Department of Energy's Biological and Environmental Research Strategic Data Roadmap for Earth System Science

    SciTech Connect (OSTI)

    Williams, Dean N.; Palanisamy, Giri; Shipman, Galen; Boden, Thomas A.; Voyles, Jimmy W.

    2014-04-25

    Rapid advances in experimental, sensor, and computational technologies and techniques are driving exponential growth in the volume, acquisition rate, variety, and complexity of scientific data. This wealth of scientifically meaningful data has tremendous potential to lead to scientific discovery. However, to achieve scientific breakthroughs, these data must be exploitable—they must be analyzed effectively and efficiently and the results shared and communicated easily within the wider Department of Energy’s (DOE’s) Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) community. The explosion in data complexity and scale makes these tasks exceedingly difficult to achieve, particularly given that an increasing number of disciplines are working across techniques, integrating simulation and experimental or observational results (see Table 5 in Appendix 2). Consequently, we need new approaches to data management, analysis, and visualization that provide research teams with easy-to-use and scalable end-to-end solutions. These solutions must facilitate (and where feasible, automate and capture) every stage in the data lifecycle (shown in Figure 1), from collection to management, annotation, sharing, discovery, analysis, and visualization. In addition, the core functionalities are the same across climate science communities, but they require customization to adapt to specific needs and fit into research and analysis workflows. To this end, the mission of CESD’s Data and Informatics Program is to integrate all existing and future distributed CESD data holdings into a seamless and unified environment for the acceleration of Earth system science.

  1. Science Undergraduate Laboratory Internship Program | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory SULI FACT SHEET Featured Videos SULI Intern: Atmospheric Science SULI Intern: Plant Health Contact undergrad@anl.gov Science Undergraduate Laboratory Internship "My perspective on how the research environment was broadened. I am more aware of the possibilities I have after graduation." -Summer 2013 Intern The Science Undergraduate Laboratory Internship (SULI) program encourages undergraduate students to pursue science, technology, engineering, and mathematics (STEM)

  2. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2010.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2011-02-01

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 x 2208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1987.20 hours (0.90 x 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 x 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continued through this quarter, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The second ARM Mobile Facility (AMF2) began deployment this quarter to Steamboat Springs, Colorado. The experiment officially began November 15, but most of the instruments were up and running by November 1. Therefore, the OPSMAX time for the AMF2 was 1390.80 hours (.95 x 1464 hours) for November and December (61 days). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It

  3. Atmospheric Radiation Measurement program climate research facility operations quarterly report January 1 - March 31, 2009.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-04-23

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,052.00 hours (0.95 x 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944.00 hours (0.90 x 2,160), and for the Tropical Western Pacific (TWP) locale is 1,836.00 hours (0.85 x 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because not all of the metadata have been acquired that are used to generate this metric. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability

  4. Atmospheric Radiation Measurement program climate research facilities quarterly report April 1 - June 30, 2009.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-07-14

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter); for the North Slope Alaska (NSA) locale it is 1,965.60 hours (0.90 x 2,184); and for the Tropical Western Pacific (TWP) locale it is 1,856.40 hours (0.85 x 2,184). The ARM Mobile Facility (AMF) was officially operational May 1 in Graciosa Island, the Azores, Portugal, so the OPSMAX time this quarter is 1390.80 hours (0.95 x 1464). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data

  5. Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - Sep. 30, 2009.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-10-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 ? 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 ? 2,208) and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 ? 2,208). The ARM Mobile Facility (AMF) was officially operational May 1 in Graciosa Island, the Azores, Portugal, so the OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive result from downtime (scheduled or unplanned) of the individual instruments. Therefore, data

  6. Atmospheric Radiation Measurement program climate research facility operations quarterly report April 1 - June 30, 2007.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2007-07-26

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter of FY 2007 for the Southern Great Plains (SGP) site is 2,074.8 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.6 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.4 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.8 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in

  7. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2009.

    SciTech Connect (OSTI)

    D. L. Sisterson

    2010-01-12

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2010 for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208); for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208); and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 x 2,208). The ARM Mobile Facility (AMF) deployment in Graciosa Island, the Azores, Portugal, continues; its OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are the result of downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to

  8. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect (OSTI)

    2009-07-01

    Alternative fuels from renewable cellulosic biomass--plant stalks, trunks, stems, and leaves--are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced'. In the United States, the Energy Independence and Security Act (EISA) of 2007 is an important driver for the sustainable development of renewable biofuels. As part of EISA, the Renewable Fuel Standard mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feedstocks. Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain--the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 25 years. The DOE Genomic Science Program is advancing a new generation of research focused on achieving whole-systems understanding for biology. This program

  9. Environmental Science and Research Foundation annual technical report: Calendar year 1996

    SciTech Connect (OSTI)

    Morris, R.C.; Blew, R.D.

    1997-07-01

    This Annual Technical Report describes work conducted for the Department of Energy, Idaho Operations Office (DOE-ID), by the Environmental Science and Research Foundation (Foundation). The Foundation`s mission to DOE-ID provides support in several key areas. The authors conduct an environmental monitoring and surveillance program over an area covering much of the upper Snake River Plain, and provide environmental education and support services related to Idaho National Engineering and Environmental Laboratory (INEEL) natural resource issues. Also, the Foundation, with its University Affiliates, conducts ecological and radioecological research in the Idaho National Environmental Research Park. This research benefits major DOE-ID programs including Waste Management, Environmental Restoration, Spent Nuclear Fuels, and Land Management Issues. The major accomplishments of the Foundation and its University Affiliates during the calendar year 1996 are discussed.

  10. MEMORANDUM OF MUTUAL UNDERSTANDING FOR RESEARCH COOPERATION BETWEEN SCHOOL OF OCEAN & EARTH SCIENCES & TECHNOLOGY (SOEST), UNI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AGREEMENT FOR INTERNATIONAL RESEARCH COOPERATION USING THE EARTH SIMULATOR BETWEEN THE EARTH SIMULATOR CENTER OF JAPAN MARINE SCIENCE & TECHNOLOGY CENTER (ESC/JAMSTEC) AND NATIONAL ENERGY RESEARCH SCEINTIFIC COMPUTING (NERSC) CENTER AT LAWRENCE BERKELEY NATIONAL LABORATORY WHEREAS, the Earth Simulator Center of Japan Marine Science and Technology Center (hereinafter referred to as "ESC/JAMSTEC") and the National Energy Research Scientific Computing Center (hereinafter referred to

  11. U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect (OSTI)

    2010-07-01

    Alternative fuels from renewable cellulosic biomass - plant stalks, trunks, stems, and leaves - are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced.' Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain - the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 30 years. The DOE Genomic Science program is advancing a new generation of research focused on achieving whole-systems understanding of biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. For more information on the Genomic Science program, see p. 26. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel

  12. Science for Energy Technology: Strengthening the Link Between Basic Research and Industry

    SciTech Connect (OSTI)

    2010-04-01

    The nation faces two severe challenges that will determine our prosperity for decades to come: assuring clean, secure, and sustainable energy to power our world, and establishing a new foundation for enduring economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy is an unprecedented economic opportunity for creating jobs and exporting energy technology to the developing and developed world. But achieving the tremendous potential of clean energy technology is not easy. In contrast to traditional fossil fuel-based technologies, clean energy technologies are in their infancy, operating far below their potential, with many scientific and technological challenges to overcome. Industry is ultimately the agent for commercializing clean energy technology and for reestablishing the foundation for our economic and jobs growth. For industry to succeed in these challenges, it must overcome many roadblocks and continuously innovate new generations of renewable, sustainable, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity delivery and efficiency, solid state lighting, batteries and biofuels. The roadblocks to higher performing clean energy technology are not just challenges of engineering design but are also limited by scientific understanding.Innovation relies on contributions from basic research to bridge major gaps in our understanding of the phenomena that limit efficiency, performance, or lifetime of the materials or chemistries of these sustainable energy technologies. Thus, efforts aimed at understanding the scientific issues behind performance limitations can have a real and immediate impact on cost, reliability, and performance of technology, and ultimately a transformative impact on our economy. With its broad research base and unique scientific user facilities, the DOE Office of Basic Energy Sciences (BES) is ideally positioned to address these needs. BES has laid

  13. Joint Genome Institute (JGI) | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Genome Institute (JGI) Biological and Environmental Research (BER) BER Home About Research Facilities User Facilities Atmospheric Radiation Measurement Climate Research Facility (ARM) Environmental Molecular Sciences Laboratory (EMSL) Joint Genome Institute (JGI) Science Highlights Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy

  14. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 2: Environmental sciences

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This 1993 Annual Report from Pacific Northwest Laboratory (PNL) to the US DOE describes research in environment and health conducted during fiscal year (FY) 1993. The report is divided into four parts, each in a separate volume. This part, Volume 2, covers Environmental Sciences. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. There are sections on Subsurface Science, Terrestrial Science, Technology Transfer, Interactions with Educational Institutions, and Laboratory Directed Research and Development.

  15. Rising atmospheric CO{sub 2} and crops: Research methodology and direct effects

    SciTech Connect (OSTI)

    Rogers, H.; Acock, B.

    1993-12-31

    Carbon dioxide is the food of trees and grass. Our relentless pursuit of a better life has taken us down a traffic jammed road, past smoking factories and forests. This pursuit is forcing a rise in the atmospheric CO{sub 2} level, and no one know when and if flood stage will be reached. Some thinkers have suggested that this increase of CO{sub 2} in the atmosphere will cause warming. No matter whether this prediction is realized or not, more CO{sub 2} will directly affect plants. Data from controlled observations have usually, but not always, shown benefits. Our choices of scientific equipment for gathering CO{sub 2} response data are critical since we must see what is happening through the eye of the instrument. The signals derived from our sensors will ultimately determine the truth of our conclusions, conclusion which will profoundly influence our policy decisions. Experimental gear is selected on the basis of scale of interest and problem to be addressed. Our imaginations and our budgets interact to set bounds on our objectives and approaches. Techniques run the gamut from cellular microprobes through whole-plant controlled environment chambers to field-scale exposure systems. Trade-offs exist among the various CO{sub 2} exposure techniques, and many factors impinge on the choice of a method. All exposure chambers are derivatives of three primary types--batch, plug flow, and continuous stirred tank reactor. Systems for the generation of controlled test atmospheres of CO{sub 2} vary in two basic ways--size and degree of control. Among the newest is free-air CO{sub 2} enrichment which allows tens of square meters of cropland to be studied.

  16. Atmospheric Radiation Measurement Program Climate Research Facility Operation quarterly report July 1 - September 30, 2010.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2010-10-26

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 2208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1987.20 hours (0.90 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continues, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or datastream. Data availability reported here refers to the average of the individual, continuous datastreams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to

  17. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    Prusa, Joseph

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAGâ??s advanced dynamics core with the â??physicsâ? of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer- reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  18. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1–September 30, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2010-10-15

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  19. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1–June 30, 2010

    SciTech Connect (OSTI)

    Sisterson, DL

    2010-07-09

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  20. Office of Science User facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources » Office of Science User facilities Office of Science User facilities The Office of Science national scientific user facilities provide researchers with the most advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. In Fiscal Year 2013 over 30,000 researchers from academia, industry, and government laboratories, spanning all fifty

  1. Earth and Environmental Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reveal climate change drivers and ecosystem impacts Perfect geological greenhouse gas ... Advanced computational Earth sciences Atmospheric, climate and ecosystem science Geology ...

  2. Manned balloons a calibration tool for air and space based remote sensing measurements in atmospheric research

    SciTech Connect (OSTI)

    Euskirchen, J.; Nebendahl, P.

    1996-10-01

    Remote sensing is accepted as a necessity in science, defense, environmental modelling and politics all over the world. Nevertheless there is sometimes low confidence in measured values achieved by remote sensing and measuring techniques. One of the authors developed sensors in the field of optics (especially visible and IR) and in application development in the field of thermography. Therefore we think that, for example, in the complex field of vertical profiles of photochemistry in gases and aerosols punctual in situ measurements from manned balloons can rise the confidence in values covering large areas achieved by plane or satellite carried scanners. Those values are necessary for global modelling. 5 refs.

  3. Pacific Northwest Laboratory annual report for 1988 to the DOE Office of Energy Research: Part 4, Physical sciences

    SciTech Connect (OSTI)

    Touburen, L.H.

    1989-03-01

    This document contains brief descriptions of various research programs in the physical science. Topics include Chernobyl Information Management, Supercritical Fluids, Laser Spectroscopy, DNA Adducts, Dosimetry, Biophysics, and Genetic Damage. (TEM)

  4. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Burns, Peter; MSA Staff

    2011-05-01

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  5. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Burns, Peter (Director, Materials Science of Actinides); MSA Staff

    2011-11-03

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  6. 2013 POLAR MARINE SCIENCE GORDON RESEARCH CONFERENCE AND GORDON RESEARCH SEMINAR (MARCH 10-15, 2013 - FOUR POINTS SHERATON, VENTURA CA)

    SciTech Connect (OSTI)

    Bowman, Jeff S.

    2012-12-15

    As dynamic and thermodynamic processes associated with warming trends are impacting sea ice cover, oceanographic processes and atmosphere-ocean interactions across polar regions at unprecedented rate, observations and models show fundamentally different regional ecosystem responses. The non-linear and multi-directional biogeochemical responses of polar systems to atmospheric and oceanographic forcings emphasize the need to consider and reconcile observations and models at global and regional scales. The 9th GRC on Polar Marine Science will discuss recent developments and challenges emerging from contemporary and paleo-climate observations and models, encompassing regional and global scales. The GRC addresses the structure, functionalities and controls of polar marine systems through topics such as sea ice biogeochemistry, atmosphere-ocean forcings and interactions, food web trophodynamics, carbon and elemental cycling and fluxes, and a spectrum of ecological processes and interactions.

  7. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Basic Energy Sciences Supporing research to understand, predict and ... The DOE Office of Science's Basic Energy Sciences program equips scientists with a ...

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Rotating Shadowband Spectroradiometer Data from SGP Harrison, L., Min, Q., and Michalsky, J. J., Atmospheric Sciences Research Inst., State University of New York at Albany Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting We show Rotating Shadowband Spectroradiometer (RSS) optical depth spectra from the Southern Great Plains (SGP) for a range of clear-sky cases, and discuss comparisons of the spectral direct/diffuse irradiance ratios with modeled results as a test

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectral Diffuse Irradiance in UV, VIS, and NIR During the 2001 Diffuse IOP Kiedron, P., Michalsky, J., Berndt, J., Min, Q., and Harrison, L., Atmospheric Sciences Research Center, SUNY Albany, New York Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Two rotating shadowband spectroradiometers (RSS) participated in the 2001 Diffuse IOP. The UV-RSS covered the 300-360 nm range and the VIS-NIR RSS covered 360-1050 nm. Both instruments were calibrated with NIST traceable

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization and Calibration of the Commercial RSS Slated for Permanent Deployment at SGP Kiedron, P., Berndt, J., Yager, E., Harrison, L., and Michalsky, J., Atmospheric Sciences Research Center, SUNY at Albany, New York Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM program purchased a rotating shadowband spectroradiometer (RSS) that was manufactured by Yankee Environmental Systems, Inc. At ASRC the instrument went through initial acceptance tests and after

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Intermodel Differences in Cloud Microphysics on Radiation: Diagnosis from Case 3 CRM Intercomparison Data Xu, K.-M., Atmospheric Sciences, NASA Langley Research Center Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Cloud microphysics parameterizations have been identified as one of the main differences among th e eight cloud-resolving models (CRMs) participating in the recent ARM/GCSS intercomparison study (Xu et al., 2002). How do these differences impact the

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Semianalytic Technique to Speed Up Successive Order of Scattering Model for Optically Thick Media Duan, M. and Min, Q., Atmospheric Sciences Research Center, State University of New York Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A semianalytic technique has been developed to speed up integration of radiative transfer over optically thick media for the successive order of scattering method. Based on characteristics of internal distribution of scattering intensity,

  13. Computer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cite Seer Department of Energy provided open access science research citations in chemistry, physics, materials, engineering, and computer science IEEE Xplore Full text...

  14. Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of...

  15. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    SciTech Connect (OSTI)

    Wendt, Amy; Callis, Richard; Efthimion, Philip; Foster, John; Keane, Christopher; Onsager, Terry; O'Shea, Patrick

    2015-09-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics, (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  16. Grand Research Questions in the Solid-Earth Sciences Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Linn, Anne M.

    2008-12-03

    Over the past three decades, Earth scientists have made great strides in understanding our planet’s workings and history. Yet this progress has served principally to lay bare more fundamental questions about the Earth. Expanding knowledge is generating new questions, while innovative technologies and new partnerships with other sciences provide new paths toward answers. A National Academies committee was established to frame some of the great intellectual challenges inherent in the study of the Earth and planets. The goal was to focus on science, not implementation issues, such as facilities or recommendations aimed at specific agencies. The committee canvassed the geological community and deliberated at length to arrive at 10 questions: 1. How did Earth and other planets form? 2. What happened during Earth’s “dark age” (the first 500 million years)? 3. How did life begin? 4. How does Earth’s interior work, and how does it affect the surface? 5. Why does Earth have plate tectonics and continents? 6. How are Earth processes controlled by material properties? 7. What causes climate to change—and how much can it change? 8. How has life shaped Earth—and how has Earth shaped life? 9. Can earthquakes, volcanic eruptions, and their consequences be predicted? 10. How do fluid flow and transport affect the human environment? Written for graduate students, colleagues in sister disciplines, and program managers funding Earth and planetary science research, the report describes where the field stands, how it got there, and where it might be headed. Our hope is that the report will spark new interest in and support for the field by showing how Earth science can contribute to a wide range of issues—including some not always associated with the solid Earth—from the formation of the solar system to climate change to the origin of life. Its reach goes beyond the United States; the report is being translated into Chinese and distributed in China.

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrieval of Ice Water Path Using Thermal Channels Mitchell, D.L. (a), d'Entremont, R.P. (b), Stackhouse, P.W., Jr. (c), and Heymsfield, A.J. (d), Desert Research Institute (a), Atmospheric and Environmental Research, Inc. (b), NASA Langley Research Center NCAR Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Global information of ice water path (IWP) in ice clouds is urgently needed for testing of global climate models (GCMs) and other applications, but satellite retrievals

  18. DOE's Office of Science Awards 95 Million Hours of Supercomputing Time to Advance Research in Science, Academia and Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON, D.C. - The U.S. Department of Energy's (DOE) Office of Science announced today that 45 projects were awarded a total of 95 million hours of computing time on some of the world's most...

  19. Lawrence Livermore National Laboratory interests and capabilities for research on the ecological effects of global climatic and atmospheric change

    SciTech Connect (OSTI)

    Amthor, J.S.; Houpis, J.L.; Kercher, J.R.; Ledebuhr, A.; Miller, N.L.; Penner, J.E.; Robison, W.L.; Taylor, K.E.

    1994-09-01

    The Lawrence Livermore National Laboratory (LLNL) has interests and capabilities in all three types of research that must be conducted in order to understand and predict effects of global atmospheric and climatic (i.e., environmental) changes on ecological systems and their functions (ecosystem function is perhaps most conveniently defined as mass and energy exchange and storage). These three types of research are: (1) manipulative experiments with plants and ecosystems; (2) monitoring of present ecosystem, landscape, and global exchanges and pools of energy, elements, and compounds that play important roles in ecosystem function or the physical climate system, and (3) mechanistic (i.e., hierarchic and explanatory) modeling of plant and ecosystem responses to global environmental change. Specific experimental programs, monitoring plans, and modeling activities related to evaluation of ecological effects of global environmental change that are of interest to, and that can be carried out by LLNL scientists are outlined. Several projects have the distinction of integrating modeling with empirical studies resulting in an Integrated Product (a model or set of models) that DOE or any federal policy maker could use to assess ecological effects. The authors note that any scheme for evaluating ecological effects of atmospheric and climatic change should take into account exceptional or sensitive species, in particular, rare, threatened, or endangered species.

  20. 1992 annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    In 1992 the Santa Fe Institute hosted more than 100 short- and long-term research visitors who conducted a total of 212 person-months of residential research in complex systems. To date this 1992 work has resulted in more than 50 SFI Working Papers and nearly 150 publications in the scientific literature. The Institute`s book series in the sciences of complexity continues to grow, now numbering more than 20 volumes. The fifth annual complex systems summer school brought nearly 60 graduate students and postdoctoral fellows to Santa Fe for an intensive introduction to the field. Research on complex systems-the focus of work at SFI-involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex adaptive behavior range upwards from DNA through cells and evolutionary systems to human societies. Research models exhibiting complex behavior include spin glasses, cellular automata, and genetic algorithms. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simple components; (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy); and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions.

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Clouds on the Atmospheric Absorption of SW - Comparing Theory and Observation at SGP Rose, F.G. (a), Charlock, T.P. (b), and Rutan, D.A. (a), Analytical Services & Materials Inc. (a), NASA Langley Research Center (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting This group, and also Li and Trishchenko, have earlier determined the cloud forcing to the atmospheric absorption of SW by combining surface data at SGP with CERES at TOA. Detailed analysis of our

  2. Advanced Resources for Catalysis Science; Recommendations for a National Catalysis Research Institute

    SciTech Connect (OSTI)

    Peden, Charles HF.; Ray, Douglas

    2005-10-05

    Catalysis is one of the most valuable contributors to our economy and historically an area where the United States has enjoyed, but is now losing, international leadership. While other countries are stepping up their work in this area, support for advanced catalysis research and development in the U.S. has diminished. Yet, more than ever, innovative and improved catalyst technologies are imperative for new energy production processes to ease our dependence on imported resources, for new energy-efficient and environmentally benign chemical production processes, and for new emission reduction technologies to minimize the environmental impact of an active and growing economy. Addressing growing concerns about the future direction of U.S. catalysis science, experts from the catalysis community met at a workshop to determine and recommend advanced resources needed to address the grand challenges for catalysis research and development. The workshop's primary conclusion: To recapture our position as the leader in catalysis innovation and practice, and promote crucial breakthroughs, the U.S. must establish one or more well-funded and well-equipped National Catalysis Research Institutes competitively selected, centered in the national laboratories and, by charter, networked to other national laboratories, universities, and industry. The Institute(s) will be the center of a national collaboratory that gives catalysis researchers access to the most advanced techniques available in the scientific enterprise. The importance of catalysis to our energy, economic, and environmental security cannot be overemphasized. Catalysis is a vital part of our core industrial infrastructure, as it is integral to chemical processing and petroleum refining, and is critical to proposed advances needed to secure a sustainable energy future. Advances in catalysis could reduce our need for foreign oil by making better use of domestic carbon resources, for example, allowing cost-effective and zero

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Surprisingly Large Contribution of Small Marine Clouds to Cloud Fraction and Reflectance Download a printable PDF Submitter: Oreopoulos, L., NASA Feingold, G., NOAA - Earth System Research Laboratory Koren, I., Weizmann Institute of Science Remer, L., NASA - GSFC, Laboratory for Atmospheres Area of Research: Clouds with Low Optical [Water] Depths (CLOWD) Working Group(s): Cloud Properties Journal Reference: Koren, I, L Oreopoulos, G Feingold, LA Remer, and O Altaratz. 2008. "How small

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCN and Vertical Velocity Influences Submitter: Hudson, J. G., Desert Research Institute Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Hudson JG and S Noble. 2013. "CCN and vertical velocity influences on droplet concentrations and supersaturations in clean and polluted stratus clouds." Journal of the Atmospheric Sciences, 71(1), 10.1175/JAS-D-13-086.1. Figure 1. Effective cloud supersaturation

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Atmospheric Sciences University of California, Los Angeles Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A new cloud detection scheme has been...

  6. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 1: Biomedical Sciences

    SciTech Connect (OSTI)

    Lumetta, C.C.; Park, J.F.

    1994-03-01

    This report summarizes FY 1993 progress in biological and general life sciences research programs conducted for the Department of Energy`s Office of Health and Environmental REsearch (OHER) at Pacific Northwest Laboratory (PNL). This research provides knowledge of fundamental principles necessary to identify, understand, and anticipate the long-term health consequences of exposure to energy-related radiation and chemicals. The Biological Research section contains reports of studies using laboratory animals, in vitro cell systems, and molecular biological systems. This research includes studies of the impact of radiation, radionuclides, and chemicals on biological responses at all levels of biological organization. The General Life Sciences Research section reports research conducted for the OHER human genome program.

  7. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal

  8. Pacific Northwest Laboratory annual report for 1982 to the DOE Office of Energy Research. Part 2. Environmental sciences

    SciTech Connect (OSTI)

    Vaughan, B.E.

    1983-02-01

    The following research areas are highlighted: terrestrial and riverine ecology; marine sciences; radionuclide fate and effects; ecological effects of coal conversion; solid waste: mobilization fate and effects; and statistical and theoretical research. A listing of interagency services agreements provided at the end of this report. (PSB)

  9. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 2, Environmental sciences

    SciTech Connect (OSTI)

    Not Available

    1987-09-01

    This report summarizes progress in environmental sciences research conducted by Pacific Northwest Laboratory (PNL) for the Office of Health and Environmental Research in FY 1986. The program is focused on terrestrial, subsurface, and coastal marine systems, and this research forms the basis, in conjunction with remote sensing, for definition and quantification of processes leading to impacts at the global level. This report is organized into sections devoted to Detection and Management of Change in Terrestrial Systems, Biogeochemical Phenomena, Subsurface Microbiology and Transport, Marine Sciences, and Theoretical (Quantitative) Ecology. Separate abstracts have been prepared for individual projects.

  10. Fusion Materials Science and Technology Research Needs: Now and During the ITER era

    SciTech Connect (OSTI)

    Wirth, Brian D.; Kurtz, Richard J.; Snead, Lance L.

    2013-09-30

    The plasma facing components, first wall and blanket systems of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Indeed, the United States National Academy of Engineering has recently ranked the quest for fusion as one of the top grand challenges for engineering in the 21st Century. These challenges are even more pronounced by the lack of experimental testing facilities that replicate the extreme operating environment involving simultaneous high heat and particle fluxes, large time varying stresses, corrosive chemical environments, and large fluxes of 14-MeV peaked fusion neutrons. This paper will review, and attempt to prioritize, the materials research and development challenges facing fusion nuclear science and technology into the ITER era and beyond to DEMO. In particular, the presentation will highlight the materials degradation mechanisms we anticipate to occur in the fusion environment, the temperature- displacement goals for fusion materials and plasma facing components and the near and long-term materials challenges required for both ITER, a fusion nuclear science facility and longer term ultimately DEMO.

  11. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1–March 31, 2011

    SciTech Connect (OSTI)

    Sisterson, DL

    2011-04-11

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Data Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  12. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1–June 30, 2011

    SciTech Connect (OSTI)

    Voyles, JW

    2011-07-25

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  13. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1–December 31, 2009

    SciTech Connect (OSTI)

    DL Sisterson

    2010-01-15

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Data Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.

  14. Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Alex Zunger; Tumas, Bill; CID Staff

    2011-05-01

    'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

  15. Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Alex Zunger (former Director, Center for Inverse Design); Tumas, Bill (Director, Center for Inverse Design); CID Staff

    2011-11-02

    'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

  16. Science and Technology Research and Development in Support to ITER and the Broader Approach at CEA

    SciTech Connect (OSTI)

    Becoulet, A.; Hoang, G T; Abiteboul, J.; Achard, J.; Alarcon, T.; Klepper, C Christopher

    2013-01-01

    In parallel to the direct contribution to the procurement phase of ITER and Broader Approach, CEA has initiated research & development programmes, accompanied by experiments together with a significant modelling effort, aimed at ensuring robust operation, plasma performance, as well as mitigating the risks of the procurement phase. This overview reports the latest progress in both fusion science and technology including many areas, namely the mitigation of superconducting magnet quenches, disruption-generated runaway electrons, edge-localized modes (ELMs), the development of imaging surveillance, and heating and current drive systems for steady-state operation. The WEST (W Environment for Steady-state Tokamaks) project, turning Tore Supra into an actively cooled W-divertor platform open to the ITER partners and industries, is presented.

  17. NREL: Energy Sciences - Chemical and Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the U.S. Department of Energy (DOE) National Photovoltaic Program and DOE Basic Energy Sciences Program. Materials Science. The Materials Science Group's research...

  18. Science Education Lab | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Science Education Laboratory Overview Gallery: (Photo by Remote Control Glow Discharge) (Photo by DC Glow Discharges for Undergraduate Laboratories) (Photo by Atmospheric Plasma Laboratory) (Photo by 3D Printing Laboratory) (Photo by Remote Control Glow Discharge) (Photo by Plasma Speaker with 200 Hz input) (Photo by Dusty Plasma Laboratory) The Science Education Laboratory is a fusion (pun intended) of research between education and plasma science. This unique facility includes a teaching

  19. Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow

    Office of Energy Efficiency and Renewable Energy (EERE)

    The A2e initiative pursues an integrated research portfolio to coordinate and optimize advancements in four main research areas: plant performance and financial risk assessment, atmospheric science, wind plant aerodynamics, and next-generation wind plant technology. It offers an integrated systems approach to developing the next generation of System Management of the Atmospheric Resource by Turbines wind plant technologies necessary to increase wind deployment.

  20. Biological and Environmental Research: Climate and Environmental Sciences Division: U.S./European Workshop on Climate Change Challenges and Observations

    SciTech Connect (OSTI)

    Mather, James; McCord, Raymond; Sisterson, Doug; Voyles, Jimmy

    2012-11-08

    The workshop aimed to identify outstanding climate change science questions and the observational strategies for addressing them. The scientific focus was clouds, aerosols, and precipitation, and the required ground- and aerial-based observations. The workshop findings will be useful input for setting priorities within the Department of Energy (DOE) and the participating European centers. This joint workshop was envisioned as the first step in enhancing the collaboration among these climate research activities needed to better serve the science community.

  1. Support for the Core Research Activities and Studies of the Computer Science and Telecommunications Board (CSTB)

    SciTech Connect (OSTI)

    Jon Eisenberg, Director, CSTB

    2008-05-13

    The Computer Science and Telecommunications Board of the National Research Council considers technical and policy issues pertaining to computer science (CS), telecommunications, and information technology (IT). The functions of the board include: (1) monitoring and promoting the health of the CS, IT, and telecommunications fields, including attention as appropriate to issues of human resources and funding levels and program structures for research; (2) initiating studies involving CS, IT, and telecommunications as critical resources and sources of national economic strength; (3) responding to requests from the government, non-profit organizations, and private industry for expert advice on CS, IT, and telecommunications issues; and to requests from the government for expert advice on computer and telecommunications systems planning, utilization, and modernization; (4) fostering interaction among CS, IT, and telecommunications researchers and practitioners, and with other disciplines; and providing a base of expertise in the National Research Council in the areas of CS, IT, and telecommunications. This award has supported the overall operation of CSTB. Reports resulting from the Board's efforts have been widely disseminated in both electronic and print form, and all CSTB reports are available at its World Wide Web home page at cstb.org. The following reports, resulting from projects that were separately funded by a wide array of sponsors, were completed and released during the award period: 2007: * Summary of a Workshop on Software-Intensive Systems and Uncertainty at Scale * Social Security Administration Electronic Service Provision: A Strategic Assessment * Toward a Safer and More Secure Cyberspace * Software for Dependable Systems: Sufficient Evidence? * Engaging Privacy and Information Technology in a Digital Age * Improving Disaster Management: The Role of IT in Mitigation, Preparedness, Response, and Recovery 2006: * Renewing U.S. Telecommunications Research

  2. Organization by Gordon Research Conferences of the 2012 Plasma Processing Science Conference 22-27 July 2012

    SciTech Connect (OSTI)

    Chang, Jane

    2012-07-27

    The 2012 Gordon Research Conference on Plasma Processing Science will feature a comprehensive program that will highlight the most cutting edge scientific advances in plasma science and technology as well as explore the applications of this nonequilibrium medium in possible approaches relative to many grand societal challenges. Fundamental science sessions will focus on plasma kinetics and chemistry, plasma surface interactions, and recent trends in plasma generation and multi-phase plasmas. Application sessions will explore the impact of plasma technology in renewable energy, the production of fuels from renewable feedstocks and carbon dioxide neutral solar fuels (from carbon dioxide and water), and plasma-enabled medicine and sterilization.

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ensemble Single Column Modelling at the Tropical Western Pacific ARM Sites Hume, T. and Jakob, C., Bureau of Meteorology Research Centre Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Single Column Models (SCM) are widely used to assess and improve the parameterizations of moist processes and radiation within atmospheric general circulation models. SCM research within ARM has so far concentrated on the Southern Great Plains Site (SGP), where high quality observations are

  4. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research

    SciTech Connect (OSTI)

    Riley, R.G.; Zachara, J.M. )

    1992-04-01

    This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE's Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

  5. Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy

    SciTech Connect (OSTI)

    Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

    2011-10-01

    higher. In organized electricity markets, units that are committed for reliability reasons are paid their offer price even when prevailing market prices are lower. Often, these uplift charges are allocated to market participants that caused the inefficient dispatch in the first place. Thus, wind energy facilities are burdened with their share of costs proportional to their forecast errors. For Xcel Energy, wind energy uncertainty costs manifest depending on specific market structures. In the Public Service of Colorado (PSCo), inefficient commitment and dispatch caused by wind uncertainty increases fuel costs. Wind resources participating in the Midwest Independent System Operator (MISO) footprint make substantial payments in the real-time markets to true-up their day-ahead positions and are additionally burdened with deviation charges called a Revenue Sufficiency Guarantee (RSG) to cover out of market costs associated with operations. Southwest Public Service (SPS) wind plants cause both commitment inefficiencies and are charged Southwest Power Pool (SPP) imbalance payments due to wind uncertainty and variability. Wind energy forecasting helps mitigate these costs. Wind integration studies for the PSCo and Northern States Power (NSP) operating companies have projected increasing costs as more wind is installed on the system due to forecast error. It follows that reducing forecast error would reduce these costs. This is echoed by large scale studies in neighboring regions and states that have recommended adoption of state-of-the-art wind forecasting tools in day-ahead and real-time planning and operations. Further, Xcel Energy concluded reduction of the normalized mean absolute error by one percent would have reduced costs in 2008 by over $1 million annually in PSCo alone. The value of reducing forecast error prompted Xcel Energy to make substantial investments in wind energy forecasting research and development.

  6. Computational Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Advanced Materials Laboratory Center for Integrated Nanotechnologies Combustion Research Facility Computational Science Research Institute Joint BioEnergy Institute About EC News ...

  7. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  8. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  9. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  10. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  11. 1995 Federal Research and Development Program in Materials Science and Technology

    SciTech Connect (OSTI)

    1995-12-01

    The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly a century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The

  12. The National Academies of Sciences, Engineering, and Medicine Release Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions

    Broader source: Energy.gov [DOE]

    The National Academies of Sciences, Engineering, and Medicine releases the Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions report, which focuses on large (single- and twin-aisle) planes that transport more than 100 people. These aircraft account for more than 90% of greenhouse gas emissions from all commercial aircraft.

  13. Increased Atmospheric Carbon Dioxide Limits Soil Storage | U.S. DOE Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Science (SC) Increased Atmospheric Carbon Dioxide Limits Soil Storage Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington,

  14. The Fusion Science Research Plan for the Major U.S. Tokamaks. Advisory report

    SciTech Connect (OSTI)

    none,

    1996-05-31

    In summary, the community has developed a research plan for the major tokamak facilities that will produce impressive scientific benefits over the next two years. The plan is well aligned with the new mission and goals of the restructured fusion energy sciences program recommended by FEAC. Budget increases for all three facilities will allow their programs to move forward in FY 1997, increasing their rate of scientific progress. With a shutdown deadline now established, the TFTR will forego all but a few critical upgrades and maximize operation to achieve a set of high-priority scientific objectives with deuterium-tritium plasmas. The DIII-D and Alcator C-Mod facilities will still fall well short of full utilization. Increasing the run time in – vii – DIII-D is recommended to increase the scientific output using its existing capabilities, even if scheduled upgrades must be further delayed. An increase in the Alcator C-Mod budget is recommended, at the expense of equal and modest reductions (~1%) in the other two facilities if necessary, to develop its capabilities for the long-term and increase its near-term scientific output.

  15. Investigation on a summer operation effect of a district energy system at Kitakyushu science research city

    SciTech Connect (OSTI)

    Gao, Weijun; Zhou, Nan; Nishida, Masaru; Sagara, Noriyasu; Ryu, Yuji; Ojima, Toshio

    2004-05-24

    In Kitakyushu Science and Research Park, a new district energy system has been introduced. In this study, we chose this system as a case study and have carried out an analysis on the efficiency of the power generation and heat release utilization of the fuel cell and gas engine in summer by using the recorded data. The results can be summarized as follows; (1) Although the power generation efficiencies of the gas engine and fuel cell are a little bit lower than the standard designated value, they are almost running at stable condition. (2) The collected heat energy is lower than the designated value. The heat release utilization, which is used for cooling and hot water, is fairly low. Considering the efficient use of energy, it is a key to have a good use of heat release when we introduce a district energy system. (3) The discarded heat energy of the system is very big in this investigation when evaluating the system as a whole. It is fundamental to the future of energy conservation to use primary energy more efficiently.

  16. Collaboration between the health-effects, life-sciences, and energy-biosciences research programs of the Department of Energy

    SciTech Connect (OSTI)

    1996-12-31

    At the request of Martha Krebs, director of the Department of Energy (DOE) Office of Energy Research (OER), the Board on Biology has examined opportunities for useful scientific interaction between the research programs of the Office of Health and Environmental Research (OHER) and the Office of Basic Energy Sciences (OBES) within OER. Dr. Krebs stated that she placed a high priority on the fullest possible use of DOE`s various resources and capabilities and that one way to realize that goal is to explore new opportunities for collaboration, both between programs in the office of Energy Research and throughout DOE. The board recognized that fulfilling its task would require discussion of the strengths and importance of DOE`s biological research activities and a consideration of the benefits and disadvantages of managing the OHER and OBES programs separately versus under one office. Some examples of areas for cooperative projects discussed by the board were plant genomic sciences, bioremediation, and materials. The board recommended the formation of an ad hoc joint advisory board for the biological sciences that would help with the integration of programs and help the DOE to identify the most productive subjects for research. The board suggested that opportunities exist for enhanced, productive scientific collaboration between these offices but at the risk of sacrificing some current strengths.

  17. DOE Office of Basic Sciences: An Overview of Basic Research Activities...

    Broader source: Energy.gov (indexed) [DOE]

    Chemical Transformations Nanoscience and Electron Microscopy Centers X-Ray and Neutron Scattering Facilities Scientific User Facilities Division Materials Sciences and...

  18. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid-scanning technology boosts airport security science-innovationassetsimagesicon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and unique research...

  19. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RAPTOR telescope witnesses black hole birth science-innovationassetsimagesicon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and unique research...

  20. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM QCRad Goes Global Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Radiation Processes Working Group(s): Radiative Processes Journal Reference: Long, CN, and Y Shi. 2008. "An automated quality assessment and control algorithm for surface radiation measurements." The Open Atmospheric Science Journal 2: 23-37, doi: 10.2174/1874282300802010023. Figure: QCRad downwelling (top) and upwelling (bottom) longwave (LW) comparison

  1. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimating Fractional Sky Cover from Spectral Measurements Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Min, Q., State University of New York, Albany Wang, T., State University of New York, Albany Duan, M., Institute of Atmospheric Physics/Chinese Academy of Science Area of Research: Cloud Distributions/Characterizations Working Group(s): Radiative Processes Journal Reference: Min Q, T Wang, CN Long, and M Duan. 2008. "Estimating fractional sky

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Increased Accuracy for Sky Imager Retrievals Download a printable PDF Submitter: Long, C. N., NOAA Global Monitoring Division/CIRES Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Properties Journal Reference: Long CN. 2010. "Correcting for circumsolar and near-horizon errors in sky cover retrievals from sky images." The Open Atmospheric Science Journal, 4, doi:10.2174/1874282301004010045. Long CN, JM Sabburg, J Calbo, and D Pages. 2006. "Retrieving

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multiyear Statistics of 2D Shortwave Radiative Effects at Three ARM Sites Download a printable PDF Submitter: Varnai, T., University of Maryland, Baltimore County/JCEST Area of Research: Radiation Processes Working Group(s): Cloud Life Cycle Journal Reference: Varnai T. 2010. "Multiyear statistics of 2D shortwave radiative effects at three ARM sites." Journal of the Atmospheric Sciences, 67, 3757-3762. Multiyear average influence of 2D radiative processes on total (surface and

  4. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative-Dynamical Feedbacks in Thin Stratiform Clouds Download a printable PDF Submitter: Petters, J. L., Pennsylvania State University Area of Research: Radiation Processes Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Petters JL, JY Harrington, and EE Clothiaux. 2012. "Radiative-dynamical feedbacks in low liquid water path stratiform clouds." Journal of the Atmospheric Sciences, 69(5), 10.1175/JAS-D-11-0169.1. Large-eddy simulation time series output

  5. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What Controls the Vertical Extent of Continental Shallow Cumulus? Download a printable PDF Submitter: Zhang, Y., Lawrence Livermore National Laboratory Area of Research: Cloud Processes Working Group(s): Cloud Life Cycle Journal Reference: Zhang Y and SA Klein. 2013. "Factors controlling the vertical extent of fair-weather shallow cumulus clouds over land: investigation of diurnal-cycle observations collected at the ARM Southern Great Plains site." Journal of the Atmospheric Sciences,

  6. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of Relative Humidity on Aerosols-Implications for Climate Submitter: Lacis, A. A., NASA - Goddard Institute for Space Studies Area of Research: Aerosol Properties Working Group(s): Aerosol Journal Reference: "Refractive Indices of Three Hygroscopic Aerosols and their Dependence on Relative Humidity," October 2001. Sponsored by the DOE Atmospheric Radiation Measurement (ARM) Program, science collaborators at the National Aeronautics and Space Administration (NASA) Goddard

  7. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite Inference of Thermals and Cloud Base Updraft Speeds Download a printable PDF Submitter: Zheng, Y., University of Maryland Area of Research: Vertical Velocity Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Zheng Y, D Rosenfeld, and Z Li. 2015. "Satellite inference of thermals and cloud base updraft speeds based on retrieved surface and cloud base temperatures." Journal of the Atmospheric Sciences, , . ONLINE. Validation of satellite-estimated

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Lidar View of Clouds in Southeastern China Download a printable PDF Submitter: Li, Z., University of Maryland Cribb, M. C., University of Maryland Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Liu J, Z Li, Y Zheng, and M Cribb. 2015. "Cloud-Base Distribution and Cirrus Properties Based on Micropulse Lidar Measurements at a Site in Southeastern China." Advances in Atmospheric Sciences, 32(7),

  9. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sticky Thermals: Evidence for a Dominant Balance Between Buoyancy and Drag in Cloud Updrafts Download a printable PDF Submitter: Romps, D., Lawrence Berkeley National Laboratory Area of Research: Vertical Velocity Working Group(s): Cloud Life Cycle Journal Reference: Romps DM and AB Charn. 2015. "Sticky thermals: Evidence for a dominant balance between buoyancy and drag in cloud updrafts." Journal of the Atmospheric Sciences, , doi:10.1175/JAS-D-15-0042.1. ONLINE. Hill's vortex (shown

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microphysical Piggybacking: Understanding the Coupling Between Cloud Dynamics and Microphysics PI Contact: Grabowski, W., NCAR Area of Research: Cloud-Aerosol-Precipitation Interactions Working Group(s): Cloud-Aerosol-Precipitation Interactions Journal Reference: Grabowski WW. 2014. "Extracting microphysical impacts in large-eddy simulations of shallow convection." Journal of the Atmospheric Sciences, 71(12), 10.1175/JAS-D-14-0231.1. Grabowski WW. 2015. "Untangling microphysical

  11. Pacific Northwest Laboratory annual report for 1989 to the DOE Office of Energy Research - Part 1: Biomedical Sciences

    SciTech Connect (OSTI)

    Park, J.F.

    1990-05-01

    This report summarizes progress on OHER human health, biological, general life sciences, and medical applications research programs conducted at PNL in FY 1989. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns statistical and epidemiological studies for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program, and the medical applications section summarizes commercial radioisotope production and distribution activities at DOE facilities. 6 refs., 50 figs., 35 tabs.

  12. Statistical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Statistical Sciences Applying statistical reasoning and rigor to multidisciplinary scientific investigations Contact Us Group Leader James Gattiker (Acting) Email Deputy Group Leader Geralyn Hemphill (Acting) Email Group Administrator LeeAnn Martinez (505) 667-3308 Email Statistical Sciences Statistical Sciences provides statistical reasoning and rigor to multidisciplinary scientific investigations and development, application, and communication of cutting-edge statistical sciences research.

  13. Energy Frontier Research Centers (EFRCs): A Response to Five Challenges for Science and the Imagination (2011 EFRC Summit, panel session)

    ScienceCinema (OSTI)

    Alivisatos, Paul (Director, LBNL); Crabtree, George (ANL); Dresselhaus, Mildred (MIT); Ratner, Mark (Northwestern University)

    2012-03-14

    A distinguished panel of speakers at the 2011 EFRC Summit looks at the EFRC Program and how it serves as a response to "Five Challenges for Science and the Imagination?, the culminating report that arose from a series of Basic Research Needs workshops. The panel members are Paul Alivisatos, the Director of Lawrence Berkeley National Laboratory, George Crabtree, Distinguished Fellow at Argonne National Laboratory, Mildred Dresselhause, Institute Professor at the Massachusetts Institute of Technology, and Mark Ratner, Professor at Northwestern University. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  14. Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009

    SciTech Connect (OSTI)

    2009-06-08

    Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a

  15. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect (OSTI)

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  16. Pacific Northwest Laboratory annual report for 1987 to the DOE office of energy research: Part 2, Environmental sciences

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    This report summarizes progress in environmental sciences research conducted by Pacific Northwest Laboratory (PNL) for the Office of Health and Environmental Research in FY 1987. Research is directed toward developing a fundamental understanding of processes controlling the long-term fate and biological effects of fugitive chemicals and other stressors resulting from energy development. The research, focused on terrestrial, subsurface, and coastal marine systems, forms the basis for defining and quantifying processes that affect humans and the environment at the regional and global levels. Research is multidisciplinary and multitiered, providing integrated system-level insights into critical environmental processes. Research initiatives in subsurface microbiology and transport, global change, radon, and molecular sciences are building on PNL technical strengths in biogeochemistry, hydrodynamics, molecular biology, and theoretical ecology. Unique PNL facilities are used to probe multiple phenomena complex relationships at increasing levels of complexity. Intermediate-scale experimental systems are used to examine arid land watershed dynamics, aerosol behavior and effects, and multidimensional subsurface transport. In addition, field laboratories (the National Environmental Research Park and Marine Research Laboratory) are used in conjunction with advanced measurement techniques to validate concepts and models, and to extrapolate the results to the system and global levels. Strong university liaisons now in existence are being markedly expanded so that PNL resources and the specialized technical capabilities in the university community can be more efficiently integrated.

  17. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  18. New and Improved Data Logging and Collection System for Atmospheric...

    Office of Scientific and Technical Information (OSTI)

    for Atmospheric Radiation Measurement Climate Research Facility, Tropical Western ... for Atmospheric Radiation Measurement Climate Research Facility, Tropical Western ...

  19. Science and BBQ: GE makes its mark, and bark, at SXSW | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and BBQ: GE makes its mark ... and bark! Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Science and BBQ: GE makes its mark ... and bark! Lynn DeRose 2015.03.20 This is the fifth in a five-part series of dispatches from GE's Science of Barbecue Experience at South by Southwest. Our state-of-the-art Brilliant

  20. The Science Behind Good BBQ: Know Your Compounds | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Behind Good BBQ: Know Your Compounds Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) The Science Behind Good BBQ: Know Your Compounds Lynn DeRose 2015.03.14 This is the second in a five-part series of dispatches from GE's Science of Barbecue Experience at South by Southwest. Our state-of-the-art Brilliant