National Library of Energy BETA

Sample records for atmospheric sciences atreyee-dot-bhattacharya-at-pnnl-dot-gov

  1. Earth and Atmospheric Sciences | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth and Atmospheric Sciences Nuclear Forensics Climate & Environment Sensors and Measurements Chemical & Engineering Materials Computational Earth Science Systems Modeling...

  2. Oceanography and Atmospheric Sciences

    E-Print Network [OSTI]

    Kurapov, Alexander

    Oceanography and Atmospheric Sciences 1959­2009 WayneBurt. #12;Oceanography and Atmospheric in Oceanography (TENOC). Wayne Burt immediately responds with proposal to President Strand of Oregon State College to start a graduate Department of Oceanography. 1959 Oregon State Board of Higher Education approves

  3. Space Science : Atmosphere Greenhouse Effect

    E-Print Network [OSTI]

    Johnson, Robert E.

    Space Science : Atmosphere Greenhouse Effect Part-5a Solar + Earth Spectrum IR Absorbers Grey Atmosphere Greenhouse Effect #12;Radiation: Solar and Earth Surface B"(T) Planck Ideal Emission Integrate and it emits Note: heat balance Fvis( = Fout = Te 4 z #12;(simple Greenhouse cont.) 0 1 2 3 4 Ground Space Top

  4. Atmospheric science and power production

    SciTech Connect (OSTI)

    Randerson, D.

    1984-07-01

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  5. Land and Atmospheric Science GRAD STUDENT HANDBOOK

    E-Print Network [OSTI]

    Minnesota, University of

    Land and Atmospheric Science GRAD STUDENT HANDBOOK 20142015 WELCOME Welcome to the Graduate Program in Land and Atmospheric Science at the University of Minnesota. It is a sciencebased interdisciplinary program focused on the fundamentals of Earth system processes related

  6. Computational Science and Engineering Certification for Atmospheric Sciences Undergraduate Students

    E-Print Network [OSTI]

    Gilbert, Matthew

    Computational Science and Engineering Certification for Atmospheric Sciences Undergraduate Students The Computational Science and Engineering certificate program is designed to provide ATMS under- graduate students a certificate in "Computational Science and Engineering," students must complete the required courses listed

  7. Space Science: Atmospheres Evolution of planets

    E-Print Network [OSTI]

    Johnson, Robert E.

    ;Atmospheres / Evolution Heat Sources Compressional Energy Trapped Radioactive Material Tidal InteractionsSpace Science: Atmospheres Part- 7a Evolution of planets Out-Gassing/ Volcanoes Evolution Initial Species Solar abundance Solar wind composition? Carbonaceous chondrites? Variables Early sun

  8. ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2012)

    E-Print Network [OSTI]

    Gerber, Edwin

    2012-01-01

    ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2012) Published online in Wiley Online Library using National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP) concentrations and sea- surface temperatures (SSTs). These integrations enable the relative role of ozone

  9. ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2013)

    E-Print Network [OSTI]

    Lee, Sukyoung

    2013-01-01

    ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2013) Published online in Wiley Online Library Sciences, Seoul National University, Seoul, South Korea *Correspondence to: C. Yoo, Center for Atmosphere). A number of studies have shown that the MJO plays an important role in modulating the extratropical cir

  10. Natalie Marie Mahowald Department of Earth and Atmospheric Sciences

    E-Print Network [OSTI]

    Mahowald, Natalie

    in the Community Atmosphere Model: development of framework and impact on radiative forcing, Atmospheric Chemistry, Atmospheric Chemistry and 1 1 Natalie Marie Mahowald Department of Earth and Atmospheric Sciences Professor Director

  11. Atmospheric,OceanicandSpaceSciences Atmospheric, Oceanic & Space Sciences

    E-Print Network [OSTI]

    Eustice, Ryan

    Research Areas High Energy Density Physics/Laboratory Astrophysics Magnetospheric & Ionosphere/Thermosphere Physics Planetary Magnetospheres Solar & Heliospheric Physics Space Weather Aeronomy For Faculty involved,Recipient, Department of Energy Early Career Award Margaret Kivelson, Member, National Academy of Sciences; Member

  12. Atmospheric science encompasses meteorology and climatology, as well as fields such as atmospheric chemistry and remote sensing.Atmospheric

    E-Print Network [OSTI]

    chemistry and remote sensing.Atmospheric scientists apply physics, mathematics, and chemistry to understandAtmospheric science encompasses meteorology and climatology, as well as fields such as atmospheric the atmosphere and its interactions with land and sea. One of the goals of atmospheric science is to understand

  13. Ernest S. Colantonio College of Earth, Ocean, and Atmospheric Sciences

    E-Print Network [OSTI]

    Kurapov, Alexander

    ) and document imaging and workflow processing system (Nolij); developed data warehouse queries; identifiedErnest S. Colantonio College of Earth, Ocean, and Atmospheric Sciences Oregon State University State University, College of Earth, Ocean, and Atmospheric Sciences Faculty Research Assistant Conduct

  14. Atmospheric Radiation Measurement Program Science Plan

    SciTech Connect (OSTI)

    Ackerman, T

    2004-10-31

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years. Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at ARM's Tropical Western Pacific and the North Slope of Alaska sites. Over time, this new facility will extend ARM science to a much broader range of conditions for model testing.

  15. School of Earth and Atmospheric Sciences Georgia Institute of Technology

    E-Print Network [OSTI]

    Wang, Yuhang

    in atmospheric chemistry/air quality and climate and a growing reputation in oceanography, geophysicsSchool of Earth and Atmospheric Sciences Georgia Institute of Technology Strategic Plan March 1 opportunities. Vision The vision of the School of Earth and Atmospheric Sciences is: To lead in innovative

  16. Science DMZ National Oceanic and Atmospheric Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOAA Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU...

  17. ATM401, ATM601, CHEM601 Introduction to Atmospheric Sciences

    E-Print Network [OSTI]

    Moelders, Nicole

    as atmospheric chemistry. You should be able to read and analyze weather maps or climate diagrams, interpret as atmospheric chemistry. Fundamental goals are that you develop skills to think as an atmospheric scientistATM401, ATM601, CHEM601 Introduction to Atmospheric Sciences Fall 2013 Class time: TR 11:30am

  18. FUNDAMENTALS OF ATMOSPHERIC SCIENCE COURSE: ...................................................................................... EAS B9014

    E-Print Network [OSTI]

    Wolberg, George

    and Physics 20700 and 20800 Textbook (required): Atmospheric Science: An Introductory Survey (2nd editionFUNDAMENTALS OF ATMOSPHERIC SCIENCE COURSE% Students will write a term paper, linking a topic learned in class with either (a) their own research or (b

  19. MEET THE PEER COUNSELORS Marine and Atmospheric Science Program

    E-Print Network [OSTI]

    Miami, University of

    MEET THE PEER COUNSELORS Marine and Atmospheric Science Program Welcome all incoming at the University of Miami and the Rosenstiel School for Marine and Atmospheric Science (RSMAS). Incoming students as possible, both academically and socially. We are here as guides for incoming and prospective students who

  20. High Altitude Unmanned Air System for Atmospheric Science Missions

    E-Print Network [OSTI]

    Sóbester, András

    High Altitude Unmanned Air System for Atmospheric Science Missions A. S´obester , S. J. Johnston and processing atmospheric observations across a range of altitudes. We consider the aeronautical a specified block of airspace. I. The Need for Wide Altitude Range Atmospheric Observations The ability

  1. Content Development Policy: Earth, Atmospheric and Environmental Sciences 1 The University of Manchester Library

    E-Print Network [OSTI]

    Abrahams, I. David

    Content Development Policy: Earth, Atmospheric and Environmental Sciences 1 The University of Manchester Library Content Development Policy Earth, Atmospheric and Environmental Sciences Monday, 30 April.................................................................................................55 #12;2 Content Development Policy: Earth, Atmospheric and Environmental Sciences Introduction

  2. The faculty and students in the Atmospheric Sciences Department use physics, chemistry, and mathematics to better understand the atmosphere

    E-Print Network [OSTI]

    Doty, Sharon Lafferty

    The faculty and students in the Atmospheric Sciences Department use physics, chemistry chemistry Atmospheric fluid dynamics Biosphere interactions Climate variability Clouds & storms Radiative, and mathematics to better understand the atmosphere and improve the prediction of its future state, both over

  3. Atmospheric,OceanicandSpaceSciences IntroductIon

    E-Print Network [OSTI]

    Eustice, Ryan

    Atmospheric,OceanicandSpaceSciences #12;IntroductIon A Rich History in Science Driven Engineering, through research sponsored by NASA, NSF, DoD, DoE and other governmental agencies. This research has than individual components. The proud history of the disciplines has yielded a department honored

  4. CollegeofEarth,Ocean, andAtmosphericSciences

    E-Print Network [OSTI]

    Kurapov, Alexander

    CollegeofEarth,Ocean, andAtmosphericSciences New Undergraduate STUDENT HANDBOOK 2012-2013 Name Options: Applied Ecology and Resource Management (E-Campus only) 169 Aquatic Biology 501 Environmental Chemistry for Environmental Sciences 490 Environmental Conservation & Sustainability 577 Environmental

  5. Doctoral Programs Atmospheric, Oceanic & Space Sciences

    E-Print Network [OSTI]

    Eustice, Ryan

    Science Research Areas High Energy Density Physics/Laboratory Astrophysics Magnetospheric & Ionosphere/Thermosphere Physics Planetary Magnetospheres Solar & Heliospheric Physics Space Weather Aeronomy For Faculty involved,Recipient, Department of Energy Early Career Award Margaret Kivelson, Member, National Academy of Sciences; Member

  6. Introducing Research College of Oceanic & Atmospheric Sciences

    E-Print Network [OSTI]

    Barth, Jack

    WECOMA Coll ege of Oceanic & Atmospheric Scie nces OREGON STATE UNIVERSITY in the O cean currents introduced by man (e.g., pollutants). Knowledge of upper-ocean currents is important for navigation and for search and rescue. The ocean currents off Oregon vary seasonally and can also vary from year to year

  7. Introducing Research College of Oceanic & Atmospheric Sciences

    E-Print Network [OSTI]

    Pierce, Stephen

    .coas.oregonstate.edu WECOMA WECOMA Coll ege of Oceanic & Atmospheric Scie nces OREGON STATE UNIVERSITY in the O cean currents, to the south in summer and generally to the north in winter, create ocean currents. The strong summertime and the topography of the ocean floor influence the east-west cross-shelf currents. Understanding and being able

  8. ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. (2015)

    E-Print Network [OSTI]

    2015-01-01

    of the monsoon forecasting models, which many times do not represent the heat energy available to the atmosphere, have a great demand for accurate, long range forecast (LRF) of mon- soon rainfall, which has always. We studied the impacts of ocean mean temperature (OMT), representing the heat energy of the upper

  9. 2010 Atmospheric System Research (ASR) Science Team Meeting Summary

    SciTech Connect (OSTI)

    Dupont, DL

    2011-05-04

    This document contains the summaries of papers presented in poster format at the March 2010 Atmospheric System Research Science Team Meeting held in Bethesda, Maryland. More than 260 posters were presented during the Science Team Meeting. Posters were sorted into the following subject areas: aerosol-cloud-radiation interactions, aerosol properties, atmospheric state and surface, cloud properties, field campaigns, infrastructure and outreach, instruments, modeling, and radiation. To put these posters in context, the status of ASR at the time of the meeting is provided here.

  10. The Global Anthropogenic Lead Experiment Earth, Atmospheric and Planetary Sciences

    E-Print Network [OSTI]

    Einat, Aharonov

    The Global Anthropogenic Lead Experiment Ed Boyle Earth, Atmospheric and Planetary Sciences Reuer Rick Kayser Boyle Lab, arriving in Rio at the end of EN 367 #12;The Global Anthropogenic Lead Experiment · Lead is a volatile element and it is emitted by high temperature industrial activities (smelting

  11. DEPARTMENT OF EARTH, OCEAN AND ATMOSPHERIC SCIENCE STRATEGIC PLAN

    E-Print Network [OSTI]

    DEPARTMENT OF EARTH, OCEAN AND ATMOSPHERIC SCIENCE STRATEGIC PLAN Preamble The new Department. This strategic plan shows how the strength of EOAS will be enhanced by combining the proficiencies of its the University's strategic goals. The Department will continue with the University to offer the public beyond

  12. Earth & Atmospheric Sciences at the University of Alberta

    E-Print Network [OSTI]

    Machel, Hans

    FRONT Earth & Atmospheric Sciences at the University of Alberta of exploring and understanding our planet Dr. John A. Allan Dr. John A. Allan founded the Department of Geology at the University of Alberta in 1912, and subsequently helped establish both the Alberta Research Council and the Alberta Geological

  13. Science DMZ National Oceanic and Atmospheric Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurityPediatricNOAA Science Engagement Move your data

  14. Atmospheric and Geophysical Sciences Division Program Report, 1988--1989

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    In 1990, the Atmospheric and Geophysical Sciences Division begins its 17th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to decades and from local to global. Our modeling is now reaching out from its atmospheric focus to treat linkages with the oceans and the land. In this report, we describe the Division's goal and organizational structure. We also provide tables and appendices describing the Division's budget, personnel, models, and publications. 2 figs., 1 tab.

  15. Dear Alumni and Friends, The Department of Atmospheric Science at Colorado State University is

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    meteorology, atmospheric chemistry and air quality, radiation and remote sensing, climate and atmosphere Dear Alumni and Friends, The Department of Atmospheric Science at Colorado State University is proud to be recognized as one of the top atmospheric science programs in the United States. For 50 years

  16. Dynamics of Atmospheres and Oceans 45 (2008) 274319 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Kurapov, Alexander

    2008-01-01

    will be assessed. The atmospheric response is known to create small-scale wind stress curl and diver- gence and Atmospheric Sciences, Oregon State University, 104 COAS Admin. Building, Corvallis, OR 97331-5503, USA e of Atmospheric and Oceanic Sciences, UCLA, 7127 Math Sciences Building, 405 Hilgard Avenue, Los Angeles, CA 90095

  17. Atmospheric sciences division. Annual report, fiscal year 1981

    SciTech Connect (OSTI)

    Raynor, G.S. (ed.) [ed.

    1981-12-01

    The research activities of the Atmospheric Sciences Division of the Department of Energy and Environment for FY 1981 are presented. Facilities and major items of equipment are described. Research programs are summarized in three categories, modeling, field and laboratory experiments and data management and analysis. Each program is also described individually with title, principal investigator, sponsor and funding levels for FY 1981 and FY 1982. Future plans are summarized. Publications for FY 1981 are listed with abstracts. A list of personnel is included.

  18. Atmospheric Sciences Program summaries of research in FY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This document describes the activities and products of the Atmospheric Science Program of the Environmental Sciences Division, Office of Health and Environmental Research, Office of Energy Research, in FY 1993. Each description contains the project`s title; three-year funding history; the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date. Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states its goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used. This document has been indexed to aid the reader in locating research topics, participants, and research institutions in the text and the project descriptions. Comprehensive subject, principal investigator, and institution indexes are provided at the end of the text for this purpose. The comprehensive subject index includes keywords from the introduction and chapter texts in addition to those from the project descriptions.

  19. Collection Policy: SOIL, CROP AND ATMOSPHERIC SCIENCES Subject Scope | Priority Tables | Other policies . . .

    E-Print Network [OSTI]

    Angenent, Lars T.

    Collection Policy: SOIL, CROP AND ATMOSPHERIC SCIENCES Subject Scope | Priority Tables | Other. Research is tending away from classical agronomy to the science of soil, crop, air. More emphasis is on the environment, less on agriculture. 1.3 Graduate program The Field of Soil, Crop and Atmospheric Sciences offers

  20. B.Sc. Honors in Atmospheric Sciences 2014-2015 Name ____________________________

    E-Print Network [OSTI]

    Machel, Hans

    & Remote Sensing _______ EAS 270 The Atmosphere _______ EAS 294 or HGP 250 Natural Resources & Env. Mgmt the approval of the Atmospheric Sciences advisor. Note 4 Recommended Arts options include any EAS X9X or HGP

  1. Atmospheric and Geophysical Sciences Division: Program report, FY 1987

    SciTech Connect (OSTI)

    Not Available

    1988-05-01

    In 1988 the Atmospheric and Geophysical Sciences Division began its 15th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to years, and from kilometers to global, respectively. For this report, we have chosen to show a subset of results from several projects to illustrate the breadth, depth, and diversity of the modeling activities that are a major part of the Division's research, development, and application efforts. In addition, the recent reorganization of the Division, including the merger of another group with the Division, is described, and the budget, personnel, models, and publications are reviewed. 95 refs., 26 figs., 2 tabs.

  2. . Advances in Geosciences, Volume 10 : Atmospheric Science . : World Scientific, . p 40

    E-Print Network [OSTI]

    Li, Tim

    . Advances in Geosciences, Volume 10 : Atmospheric Science . : World Scientific, . p 40 http://site.ebrary.com/id/10361904?ppg=40 Copyright © World Scientific. . All rights reserved. May not be reproduced in any form. #12;. Advances in Geosciences, Volume 10 : Atmospheric Science . : World Scientific, . p 41 http

  3. Final Technical Report for earmark project "Atmospheric Science Program at the University of Louisville"

    SciTech Connect (OSTI)

    Dowling, Timothy Edward [University of Louisville

    2014-02-11

    We have completed a 3-year project to enhance the atmospheric science program at the University of Louisville, KY (est. 2008). The goals were to complete an undergraduate atmospheric science laboratory (Year 1) and to hire and support an assistant professor (Years 2 and 3). Both these goals were met on schedule, and slightly under budget.

  4. Atmospheric Radiation Measurement Program Science Plan Current Status and Future Directions of the ARM Science Program

    SciTech Connect (OSTI)

    TP Ackerman; AD Del Genio; RG Ellingson; RA Ferrare; SA Klein; GM McFarquhar; PJ Lamb; CN Long; J Verlinde

    2004-10-30

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: • Maintain the data record at the fixed ARM sites for at least the next five years. • Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. • Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. • Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. • Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. • Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. • Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at ARM’s Tropical Western Pacific and the North Slope of Alaska sites. Over time, this new facility will extend ARM science to a much broader range of conditions for model testing.

  5. ATMOS 5000: Intro to Atmospheric Science Fall Term 2013

    E-Print Network [OSTI]

    Lin, John Chun-Han

    allows: · Atmospheric boundary layer · Carbon cycle, CO2 · Ozone hole, stratospheric chemistry · Air on the atmospheric controls on the weather (beach volleyball versus a rainy day indoors, skiing on a sunny day

  6. MEA 213 Introduction to Atmospheric Sciences I FALL Semester

    E-Print Network [OSTI]

    Yuter, Sandra

    and define the major terms that apply to meteorology. Structure of the atmosphere: Explain the chemical composition and vertical structure of the atmosphere. Weather maps: Read, interpret and plot station moisture parameter such as dew point, specific humidity, and mixing ratio from measured atmospheric

  7. AFFILIATIONS: Mass and Baars--Department of Atmospheric Sciences, University of Washington, Seattle, Washington; Joslyn--

    E-Print Network [OSTI]

    Raftery, Adrian

    AFFILIATIONS: Mass and Baars--Department of Atmospheric Sciences, University of Washington, Seattle, Washington; Joslyn-- Department of Psychology, University of Washington, Seattle, Washington; Pyle, Tewson, Jones--Applied Physics Laboratory, University of Washington, Seattle, Washington; GneiTinG, raf

  8. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  9. CRIRES Science Verification Proposal Determining the atmospheric precipitable water vapour content

    E-Print Network [OSTI]

    Liske, Jochen

    CRIRES Science Verification Proposal Determining the atmospheric precipitable water vapour content the precipitable water vapour (PWV) content over Paranal by determining the equivalent widths of 7 carefully. Scientific Case: Atmospheric precipitable water vapour (PWV) is one of the crucial parameters in infrared (IR

  10. October 2004 / Vol. 54 No. 10 BioScience 895 Rising atmospheric carbon dioxide (CO2

    E-Print Network [OSTI]

    October 2004 / Vol. 54 No. 10 · BioScience 895 Articles Rising atmospheric carbon dioxide (CO2 reduce the concen- tration of atmospheric carbon dioxide. Understanding biological and edaphic processes of the 21st century (IPCC 2001a). Management of vegetation and soils for terrestrial carbon sequestration

  11. CSU's Atmospheric Science 50th Anniversary Fort Collins, CO, July 2012

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    Climate Change Science Thomas C. Peterson NOAA's National Climatic Data Center Asheville, North Carolina's National Climatic Data Center #12;CSU's Atmospheric Science 50th Anniversary Fort Collins, CO, July 2012 4 NOAA's National Climatic Data Center What it is not · Not the latest research ­ For that see the July

  12. ARESE (ARM Enhanced Shortwave Experiment) Science Plan [Atmospheric Radiation Program

    SciTech Connect (OSTI)

    Valero, F.P.J.; Schwartz, S.E.; Cess, R.D.; Ramanathan, V.; Collins, W.D.; Minnis, P.; Ackerman, T.P.; Vitko, J.; Tooman, T.P.

    1995-09-27

    Several recent studies have indicated that cloudy atmospheres may absorb significantly more solar radiation than currently predicted by models. The magnitude of this excess atmospheric absorption, is about 50% more than currently predicted and would have major impact on our understanding of atmospheric heating. Incorporation of this excess heating into existing general circulation models also appears to ameliorate some significant shortcomings of these models, most notably a tendency to overpredict the amount of radiant energy going into the oceans and to underpredict the tropopause temperature. However, some earlier studies do not show this excess absorption and an underlying physical mechanism that would give rise to such absorption has yet to be defined. Given the importance of this issue, the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program is sponsoring the ARM Enhanced Shortwave Experiment (ARESE) to study the absorption of solar radiation by clear and cloudy atmospheres. The experimental results will be compared with model calculations. Measurements will be conducted using three aircraft platforms (ARM-UAV Egrett, NASA ER-2, and an instrumented Twin Otter), as well as satellites and the ARM central and extended facilities in North Central Oklahoma. The project will occur over a four week period beginning in late September, 1995. Spectral broadband, partial bandpass, and narrow bandpass (10nm) solar radiative fluxes will be measured at different altitudes and at the surface with the objective to determine directly the magnitude and spectral characteristics of the absorption of shortwave radiation by the atmosphere (clear and cloudy). Narrow spectral channels selected to coincide with absorption by liquid water and ice will help in identifying the process of absorption of radiation. Additionally, information such as water vapor profiles, aerosol optical depths, cloud structure and ozone profiles, needed to use as input in radiative transfer calculations, will be acquired using the aircraft and surface facilities available to ARESE. This document outlines the scientific approach and measurement requirements of the project.

  13. Curriculum Vitae Program of Atmospheric and Oceanic Sciences

    E-Print Network [OSTI]

    Hutyra, Lucy R.

    Mechanics and Turbulence !Multi-Scale Numerical Modeling !Hydrometeorology and Micrometeorology !Land-Atmosphere Interaction EDUCATION & EMPLOYMENT 2005-2009: B.E., Department of Hydraulic Engineering, Tsinghua University, China 2009-2013: Ph.D., Department of Civil and Environmental Engineering (with a certificate from

  14. Cheng-Hsuan Lu Atmospheric Sciences and Research Center

    E-Print Network [OSTI]

    Alexandrova, Ivana

    and aerosols in Goddard Earth Observing System Model, Version 5 (GEOS-5) by introducing a double-moment cloud component of the Community Earth System Model (CESM) primarily at the National Center for Atmospheric global models (i.e., the Global Forecast System, GFS, and the Climate Forecast System, CFS). Our proposed

  15. Atmospheric Science Program. Summaries of research in FY 1994

    SciTech Connect (OSTI)

    1995-06-01

    This report provides descriptions for all projects funded by ESD under annual contracts in FY 1994. Each description contains the project`s title; three-year funding history (in thousands of dollars); the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date (for most projects older than one year). Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states it goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used.

  16. David C. Noone Department of Atmospheric and Oceanic Sciences, and

    E-Print Network [OSTI]

    Kurapov, Alexander

    Research 1998 Visiting Research Scholar, British Antarctic Survey Honors and Awards (select) 2012 for Research in Environmental Sciences Campus Box 216, University of Colorado Boulder, CO 80309-0216 Phone: +1, polar and past climate, cycles of water and carbon, and stable isotopes. Biographical narrative: Dr

  17. NARSTO Support for Atmospheric Science Research and Data Collection

    E-Print Network [OSTI]

    is a public/private alliance with members from Canada, Mexico, and the United States #12;New NARSTO Program and Sigurd W. Christensen NARSTO Quality Systems Science Center Oak Ridge National Laboratory, Oak Ridge Oak Ridge, Tennessee May 17-18, 2006 ORNL research was sponsored by the U.S. Department of Energy

  18. ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. 12: 162167 (2011)

    E-Print Network [OSTI]

    Robock, Alan

    2011-01-01

    des Sciences du Climat et de l'Environnement, Gif-sur-Yvette, France *Correspondence to: Ben Kravitz making this idea attractive to policy makers. However, Robock et al. (2009) point out that strato constant to approximate the net effects of stratospheric aerosols on the planetary energy balance. Robock

  19. University of Hawaii Department of Atmospheric Sciences Dr. Pao-Shin Chu

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    University of Hawaii Department of Atmospheric Sciences Dr. Pao-Shin Chu Professor of Meteorology Hawaii State Climatologist chu@hawaii.edu Ph: (808) 956-2573 Fax: (808) 956-2877 2552 Correa Road, University of Hawai'i HIG Building, Room 318 Services Minor Request (Referral to another source) No Charge

  20. 2306 JOURNAL OF THE ATMOSPHERIC SCIENCES Chaotic Trajectories of Tidally Perturbed Inertial Oscillations

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    2306 JOURNAL OF THE ATMOSPHERIC SCIENCES Chaotic Trajectories of Tidally Perturbed Inertial ABSTRACT It is shown that tidal perturbations of a geopotential height in an inviscid, barot~opic atmos formulation of both ~he free, inertial, and the tidally forced problems permitted the application o~ the twi

  1. Atmospheric and Environmental Sciences Sponsor: U.S. Department of Energy

    E-Print Network [OSTI]

    Alexandrova, Ivana

    in a piecemeal fashion. However, a combined water and energy balance approach is now viable in analyzing, including the Global Energy and Water Exchanges (GEWEX) project of the World Climate Research ProgrammeAiguo Dai Atmospheric and Environmental Sciences Sponsor: U.S. Department of Energy Dates: August

  2. Earth MattErsNewsletter of UBC Earth, Ocean and atmospheric sciences Vol. 1 2014

    E-Print Network [OSTI]

    Earth MattErsNewsletter of UBC Earth, Ocean and atmospheric sciences Vol. 1 2014 8 News Transforming undergraduate education, reopening of the Pacific Museum of Earth, and more 18 New Faculty Three on their latest investigations #12;PhotobyKirstenHodge ii EarthMatters 2014 iii Contents iii From the Editor iv

  3. S. M. PENNY Department of Atmospheric Sciences, University of Washington, Seattle, Washington

    E-Print Network [OSTI]

    Battisti, David

    Reply S. M. PENNY Department of Atmospheric Sciences, University of Washington, Seattle, Washington received 4 November 2010, in final form 2 March 2011) ABSTRACT Penny et al. recently showed and the amplitude compares well with the midwinter suppression. 1. Introduction Penny et al. (2010, hereafter PRB10

  4. Atmospheric Science Program Cumulus Humilis Aerosol Processing Study (CHAPS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass and BiofuelsPhysicist47July 1999Science Program

  5. Science of Earth Systems Offered by the Department of Earth and Atmospheric Sciences

    E-Print Network [OSTI]

    Chen, Tsuhan

    in environmental management and policy, law or medicine, science journalism and K-12 science education. #12;Major, dwindling energy resources, inadequate water supplies, and political strife over strategic minerals a comprehensive understanding of the world as we know it. Students may chose to focus on one of a number

  6. Modeling Activities in the Department of Energy’s Atmospheric Sciences Program

    SciTech Connect (OSTI)

    Fast, Jerome D.; Ghan, Steven J.; Schwartz, Stephen E.

    2009-03-01

    The Department of Energy's Atmospheric Science Program (ASP) conducts research pertinent to radiative forcing of climate change by atmospheric aerosols. The program consists of approximately 40 highly interactive peer-reviewed research projects that examine aerosol properties and processes and the evolution of aerosols in the atmosphere. Principal components of the program are instrument development, laboratory experiments, field studies, theoretical investigations, and modeling. The objectives of the Program are to 1) improve the understanding of aerosol processes associated with light scattering and absorption properties and interactions with clouds that affect Earth's radiative balance and to 2) develop model-based representations of these processes that enable the effects of aerosols on Earth's climate system to be properly represented in global-scale numerical climate models. Although only a few of the research projects within ASP are explicitly identified as primarily modeling activities, modeling actually comprises a substantial component of a large fraction of ASP research projects. This document describes the modeling activities within the Program as a whole, the objectives and intended outcomes of these activities, and the linkages among the several modeling components and with global-scale modeling activities conducted under the support of the Department of Energy's Climate Sciences Program and other aerosol and climate research programs.

  7. Proceedings of the sixth Atmospheric Radiation Measurement (ARM) Science Team meeting

    SciTech Connect (OSTI)

    1997-06-01

    This document contains the summaries of papers presented at the 1996 Atmospheric Radiation Measurement (ARM) Science Team meeting held at San Antonio, Texas. The history and status of the ARM program at the time of the meeting helps to put these papers in context. The basic themes have not changed. First, from its beginning, the Program has attempted to respond to the most critical scientific issues facing the US Global Change Research Program. Second, the Program has been strongly coupled to other agency and international programs. More specifically, the Program reflects an unprecedented collaboration among agencies of the federal research community, among the US Department of Energy`s (DOE) national laboratories, and between DOE`s research program and related international programs, such as Global Energy and Water Experiment (GEWEX) and the Tropical Ocean Global Atmosphere (TOGA) program. Next, ARM has always attempted to make the most judicious use of its resources by collaborating and leveraging existing assets and has managed to maintain an aggressive schedule despite budgets that have been much smaller than planned. Finally, the Program has attracted some of the very best scientific talent in the climate research community and has, as a result, been productive scientifically.

  8. ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 24, NO. 2, 2007, 118 Probability Distribution Function of a Forced Passive

    E-Print Network [OSTI]

    Hu, Yongyun

    of a Forced Passive Tracer in the Lower Stratosphere HU Yongyun ( ) Department of Atmospheric Sciences, School The probability distribution function (PDF) of a passive tracer, forced by a "mean gradient", is stud- ied. First the PDFs of such an externally forced passive tracer. Then, we carry out numerical simulations

  9. Energy Transport by Nonlinear Internal Waves College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    Energy Transport by Nonlinear Internal Waves J. N. MOUM College of Oceanic and Atmospheric Sciences in the bottom bound- ary layer. In the nonlinear internal waves that were observed, the kinetic energy. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear

  10. Climate Science for a Sustainable Energy Future Atmospheric Radiation Measurement Best Estimate (CSSEFARMBE)

    SciTech Connect (OSTI)

    Riihimaki, Laura D.; Gaustad, Krista L.; McFarlane, Sally A.

    2012-09-28

    The Climate Science for a Sustainable Energy Future (CSSEF) project is working to improve the representation of the hydrological cycle in global climate models, critical information necessary for decision-makers to respond appropriately to predictions of future climate. In order to accomplish this objective, CSSEF is building testbeds to implement uncertainty quantification (UQ) techniques to objectively calibrate and diagnose climate model parameterizations and predictions with respect to local, process-scale observations. In order to quantify the agreement between models and observations accurately, uncertainty estimates on these observations are needed. The DOE Atmospheric Radiation Measurement (ARM) program takes atmospheric and climate related measurements at three permanent locations worldwide. The ARM VAP called the ARM Best Estimate (ARMBE) [Xie et al., 2010] collects a subset of ARM observations, performs quality control checks, averages them to one hour temporal resolution, and puts them in a standard format for ease of use by climate modelers. ARMBE has been widely used by the climate modeling community as a summary product of many of the ARM observations. However, the ARMBE product does not include uncertainty estimates on the data values. Thus, to meet the objectives of the CSSEF project and enable better use of this data with UQ techniques, we created the CSSEFARMBE data set. Only a subset of the variables contained in ARMBE is included in CSSEFARMBE. Currently only surface meteorological observations are included, though this may be expanded to include other variables in the future. The CSSEFARMBE VAP is produced for all extended facilities at the ARM Southern Great Plains (SGP) site that contain surface meteorological equipment. This extension of the ARMBE data set to multiple facilities at SGP allows for better comparison between model grid boxes and the ARM point observations. In the future, CSSEFARMBE may also be created for other ARM sites. As each site has slightly different instrumentation, this will require additional development to understand the uncertainty characterization associated with instrumentation at those sites. The uncertainty assignment process is implemented into the ARM program’s new Integrated Software Development Environment (ISDE) so that many of the key steps can be used in the future to screen data based on ARM Data Quality Reports (DQRs), propagate uncertainties when transforming data from one time scale into another, and convert names and units into NetCDF Climate and Forecast (CF) standards. These processes are described in more detail in the following sections.

  11. Biology | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Sciences Materials Science and Engineering Mathematics Physics Environment Safety and Health More Science Home | Science & Discovery | More Science | Biology SHARE...

  12. B.Sc. Specialization in Atmospheric Sciences 2014-2015 Name ____________________________

    E-Print Network [OSTI]

    Machel, Hans

    & Remote Sensing _______ EAS 270 The Atmosphere _______ EAS 294 or HGP 250 Natural Resources & Env. Mgmt Recommended Arts options include any EAS X9X or HGP courses. Note 5 Open option ­ chosen from any credit

  13. 01/14 Ver. 2.1 Atmospheric,OceanicandSpaceSciences

    E-Print Network [OSTI]

    Eustice, Ryan

    Transfer, Remote Sensing & Instrumentation Space Science Research Areas High Energy Density Physics/Laboratory Astrophysics Magnetospheric & Ionosphere/Thermosphere Physics Planetary Magnetospheres Solar & Heliospheric Jablonowski,Recipient, Department of Energy Early Career Award Margaret Kivelson, Member, National Academy

  14. 05/14 Ver. 2.1 Atmospheric,OceanicandSpaceSciences

    E-Print Network [OSTI]

    Eustice, Ryan

    Research Areas High Energy Density Physics/Laboratory Astrophysics Magnetospheric & Ionosphere/Thermosphere Physics Planetary Magnetospheres Solar & Heliospheric Physics Space Weather Aeronomy For Faculty involved,Recipient, Department of Energy Early Career Award Margaret Kivelson, Member, National Academy of Sciences; Member

  15. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Science Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES October 27th,EnvironmentalEqual7/31/2016Routine Atmospheric8

  16. Atmospheric Emitted Radiance Interferometer (AERI) Archived Data at the University of Wisconsin Space Science and Engineering Center (SSEC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The AERI instrument is an advanced version of the high spectral resolution interferometer sounder (HIS) designed and fabricated at the University of Wisconsin (Revercomb et al. 1988) to measure upwelling infrared radiances from an aircraft. The AERI is a fully automated ground-based passive infrared interferometer that measures downwelling atmospheric radiance from 3.3 - 18.2 mm (550 - 3000 cm-1) at less than 10-minute temporal resolution with a spectral resolution of one wavenumber. It has been used in DOEÆs Atmospheric Radiation Measurement (ARM) program. Much of the data available here at the Cooperative Institute for Meteorological Satellite Studies (CIMSS), an institute within the University of Wisconsin’s Space Science and Engineering Center, may also be available in the ARM Archive. On this website, data and images from six different field experiments are available, along with AERIPLUS realtime data for the Madison, Wisconsin location. Realtime data includes temperature and water vapor time-height cross sections, SKEWT diagrams, convective stability indices, and displays from a rooftop Lidar instrument. The field experiments took place in Oaklahoma and Wisconsin with the AERI prototype.

  17. ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2013, VOL. 6, NO. 1, 39-43 Effects of Clouds and Aerosols on Surface Radiation Budget Inferred from

    E-Print Network [OSTI]

    Dong, Xiquan

    of Atmospheric Physics, NUIST, Nanjing 210044, China 3 Global Change and Earth System Science (GCESS), Beijing Radiative Effects (AREs) are 12.7, ­37.6, and ­24.9 W m­2 , indicating that aerosols have LW warming impact have much stronger LW warming effect and SW cooling effect on the surface radiation budget than AREs

  18. Pacific Northwest Laboratory annual report for 1989 to the DOE (Department of Energy) Office of Energy Research - Part 3: Atmospheric Sciences

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This 1989 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment, safety, and health conducted during fiscal year 1989. The report again consists of five parts, each in a separate volume. This volume contains research in the atmospheric sciences. Currently, the broad goals of atmospheric research at PNL are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, continental, and global scales in the air, in clouds, and on the surface. The redistribution and long-range transport of transformed contaminants passing through clouds is recognized as a necessary extension of our research to even larger scales in the future. Eventually, large-scale experiments on cloud processing and redistribution of contaminants will be integrated into the national program on global change, investigating how energy pollutants affect aerosols and clouds and the transfer of radiant energy through them. As the significance of this effect becomes clear, its global impact on climate will be studied through experimental and modeling research. The description of ongoing atmospheric research at PNL is organized in terms of the following study areas: atmospheric studies in complex terrain, large-scale atmospheric transport and processing of emissions, and climate change. This report describes the progress in FY 1989 in each of these areas. A divider page summarizes the goals of each area and lists project titles that support research activities. 9 refs., 2 figs., 3 tabs.

  19. Comparative Biomedical Sciences is one of five graduate fields associated with the Biological & Biomedical Sciences (BBS) Graduate Program. As an umbrella program, the BBS fosters an atmosphere

    E-Print Network [OSTI]

    Walter, M.Todd

    Background Comparative Biomedical Sciences is one of five graduate fields associated with the Biological & Biomedical Sciences (BBS) Graduate Program. As an umbrella program, the BBS fosters fields are members of the BBS Graduate Program: Comparative Biomedical Sciences Immunology & Infectious

  20. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 3. Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1986-02-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1985, this research has examined the transport and diffusion of atmospheric contaminants in areas of complex terrain, summarized the field studies and analyses of dry deposition and resuspension conducted in past years, and begun participation in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' The description of atmospheric research at PNL is organized in terms of the following study areas: Atmospheric Studies in Complex Terrain; Dispersion, Deposition, and Resuspension of Atmospheric Contaminants; and Processing of Emissions by Clouds and Precipitation (PRECP).

  1. Chemical Engineering | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical and Engineering Materials Clean Energy Nuclear Sciences Computer Science Earth and Atmospheric Sciences Materials Science and Engineering Mathematics Physics Environment...

  2. Pacific Northwest Laboratory annual report for 1984 to the DOE Office of Energy Research. Part 3. Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1985-02-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to assess, describe, and predict the nature and fate of atmospheric contaminants and to study the impacts of contaminants on local, regional, and global climates. The contaminants being investigated are those resulting from the development and use of conventional resources (coal, gas, oil, and nuclear power) as well as alternative energy sources. The description of the research is organized into 3 sections: (1) Atmospheric Studies in Complex Terrain (ASCOT); (2) Boundary Layer Meteorology; and (3) Dispersion, Deposition, and Resuspension of Atmospheric Contaminants. Separate analytics have been done for each of the sections and are indexed and contained in the EDB. (MDF)

  3. Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program

    SciTech Connect (OSTI)

    SA Edgerton; LR Roeder

    2008-09-30

    The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

  4. ATMOSPHERIC SCIENCES Observations from

    E-Print Network [OSTI]

    Pierce, Stephen

    samples from the recovery cruise and Bob O'Malley for evaluation of the CTD sensors used on the deployment p. 8 b. Instrument Calibration p. 9 Ocean Temperature and Salinity Sensors p. 9 Met Sensors p. 10 Doppler Profiler Compass p. 10 ADCP/ADP Battery Capacity p. 11 Pressure Sensors p. 11 CTD Sensors p. 12 c

  5. Atmosphere Sciences Instrumentation Lab

    E-Print Network [OSTI]

    Delene, David J.

    Water Probe Robert Mitchell Challenge: · Power varies with Temperature, Pressure, Airspeed, and Others Balance Cycle · Down Points - Frost/Dew Temperature #12;Pressure Transducer David Keith · Pressure sensing · Funnel helps prevent evaporation inside instrument · Each tip creates a 100ms switch closure · Closure

  6. 13, 1479714822, 2013 Atmospheric waves

    E-Print Network [OSTI]

    Lovejoy, Shaun

    .5194/acpd-13-14797-2013 © Author(s) 2013. CC Attribution 3.0 License. Sciences ss Atmospheric Chemistry and Physics OpenAccess Atmospheric Chemistry and Physics OpenAccess Discussions Atmospheric Measurement s Discussions This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics

  7. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1987-06-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1986, atmospheric research examined the transport and diffusion of atmospheric contaminants in areas of complex terrain and participated in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' In addition, during 1986, a special opportunity for measuring the transport and removal of radioactivity occurred after the Chernobyl reactor accident in April 1986. Separate abstracts were prepared for individual projects.

  8. K. SHAFER SMITH AND ROSS TULLOCH Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York

    E-Print Network [OSTI]

    Smith, K. Shafer

    of Mathematical Sciences, New York University, New York, New York (Manuscript received 17 November 2008, in final the Corresponding author address: K. Shafer Smith, Courant Insti- tute of Mathematical Sciences, New York Universit

  9. The College of the Environment has seven degree-granting units, where disciplines span the land and sea, atmosphere and space, and connect both the natural and social sciences. In addition, the College

    E-Print Network [OSTI]

    Brown, Sally

    of Earth and Space Sciences furthers the understanding of Earth, the solar system, and their histories. The department's scope extends from the center of Earth to the rim of the solar system, and its activities cut and models to bear on pressing issues of sustainability in fisheries. Atmospheric Sciences Research

  10. Global warming and its implications for conservation. 3. How does it work? Part two: atmospheric science and the layer model

    E-Print Network [OSTI]

    Creel, Scott

    Global warming and its implications for conservation. 3. How does it work? Part two: atmospheric warms the surface of the planet as it moves toward an equilibrium of energy fluxes in and out. The layer

  11. Pacific Northwest Laboratory annual report for 1980 to the DOE Assistant Secretary for Environment. Part 3. Atmospheric sciences.

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1981-02-01

    Separate absracts were prepared for the 15 sections of this progress report which is a description of atmospheric research at PNL organized in terms of the following energy technologies: coal, gas and oil; fission and fusion; and oil shale. (KRM)

  12. Pacific Northwest Laboratory annual report for 1987 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1988-08-01

    Currently, the broad goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales in the air, in clouds, and on the surface. For several years, studies of transport and diffusion have been extended to mesoscale areas of complex terrain. Atmospheric cleansing research has expanded to a regional scale, multilaboratory investigation of precipitation scavenging processes involving the transformation and wet deposition of chemicals composing ''acid rain.'' In addition, the redistribution and long-range transport of transformed contaminants passing through clouds is recognized as a necessary extension of our research to even larger scales in the future. A few long-range tracer experiments conducted in recent years and the special opportunity for measuring the transport and removal of radioactivity following the Chernobyl reactor accident of April 1986 offer important initial data bases for studying atmospheric processes at these super-regional scales.

  13. Climate Sensitivity of the Community Climate System Model, Version 4 Atmospheric Sciences, University of Washington, Seattle, Washington

    E-Print Network [OSTI]

    Reif, Rafael

    Climate Sensitivity of the Community Climate System Model, Version 4 C. M. BITZ Atmospheric climate sensitivity of the Community Climate System Model, version 4 (CCSM4) is 3.208C for 18 horizontal). The transient climate sensitivity of CCSM4 at 18 resolution is 1.728C, which is about 0.28C higher than in CCSM3

  14. Internal variability of the tropical Pacific ocean Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

    E-Print Network [OSTI]

    Jochum, Markus

    Internal variability of the tropical Pacific ocean M. Jochum Earth, Atmospheric and Planetary model of the tropical Pacific ocean is analyzed to quantify the interannual variability caused by internal variability of ocean dynamics. It is found that along the Pacific cold tongue internal variability

  15. Atmospheric Environment ] (

    E-Print Network [OSTI]

    Raman, Sethu

    that the influence of the urban region on wind patterns and atmospheric stability could be studied. HeightAtmospheric Environment ] (

  16. M.S. Economic Geology, Oregon State University College of Earth, Ocean, and Atmospheric Sciences, Corvallis, OR Expected Spring, 2015

    E-Print Network [OSTI]

    Kurapov, Alexander

    EDUCATION M.S. Economic Geology, Oregon State University College of Earth, Ocean. Dilles Relevant Courses Interpretation of Geologic Maps Igneous Petrology Tectonic Geomorphology B.S. Geology, University of Idaho College of Science, Moscow, ID; GPA: 3

  17. Fourteenth ARM Science Team Meeting Proceedings, Albuquerque, New Mexico, March 22-26, 2004 Atmospheric Stratification and Radiative Transfer

    E-Print Network [OSTI]

    Lovejoy, Shaun

    Fourteenth ARM Science Team Meeting Proceedings, Albuquerque, New Mexico, March 22-26, 2004 1 Meeting Proceedings, Albuquerque, New Mexico, March 22-26, 2004 2 structures thus varies as xxx Hz = x wind data in the horizontal or balloon wind data in the vertical. The results from separate experiments

  18. Fiscal year 1998 summary report of the NOAA Atmospheric Sciences Modeling Division to the U.S. Environmental Protection Agency. Technical memo

    SciTech Connect (OSTI)

    Poole-Kober, E.M.; Viebrock, H.J.

    1999-06-01

    During Fiscal Year 1998, the Atmospheric Sciences Modeling Division provided meteorological and modeling assistance to the US Environmental Protection Agency. Among the significant research studies and results were the following: publication and distribution of Models-3/Community Mutliscale Air Quality system; estimation of the nitrogen deposition to Chesapeake Bay, continued evaluation and application of air quality models for mercury, dioxin, and heavy metals, continued conduct of deposition velocity field studies over various major categories of land-use; conduct of the Ozark Isoprene Experiment to investigate biogenic isoprene emissions; analysis and modeling of dust resuspension data; continued study of buoyant puff dispersion in the convective boundary layer; and development of a standard practice for an objective statistical procedure for comparing air quality model outputs with field data.

  19. Autumn 2012 Atmospheric Circulation

    E-Print Network [OSTI]

    Doty, Sharon Lafferty

    wind, and accumulated precipitation at a designated city. Forecasts are made over a two-week period Department 1 The UW Atmospheric Sciences spring forecast contest has been an annual tradition there will be a marine push or a convergence zone wrecking their forecast for maximum temperature and precipitation

  20. Science

    E-Print Network [OSTI]

    Department of Mathematics, Statistics, and Computer Science, University of Illinois. at Chicago, Chicago, IL, 60607, USA. 2 Department of Mathematics, Purdue ...

  1. Institute for Climate & Atmospheric Science Department of Earth & Atmospheric Sciences

    E-Print Network [OSTI]

    Azevedo, Ricardo

    platforms to study numerous trace gases including carbon dioxide. We operate a suite of remote sensing is elucidating the carbon cycle through the satellite data (e.g., AIRS, TES, GOSAT, and OCO2

  2. A Recognized Leader in Marine & Atmospheric

    E-Print Network [OSTI]

    Miami, University of

    D/Masters Applied Marine Physics Marine & Atmospheric Chemistry Marine Affairs & Policy (Masters Only) MarineA Recognized Leader in Marine & Atmospheric Studies Our graduate program has over 250 students University of MiaMi rosenstiel school of Marine & atMospheric science #12;Miami Ranks #5: fDi Magazine's Top

  3. Atmospheric Neutrinos

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2006-12-11

    This paper is a brief overview of the theory and experimental data of atmospheric neutrino production at the fiftieth anniversary of the experimental discovery of neutrinos.

  4. Climate Center Atmospheric Science Department

    E-Print Network [OSTI]

    Averages-1971-2000 Max Year - 1957 Min Year - 2002 Period of Record Average - 1949 - 2002 2003 Water Year 2nd Min Year - 1950 #12;Division 3 Mesa Verde NP 2003 Water Year (through October '02-December '02) 0 Center in Boulder #12;Division 1 Taylor Park 2003 Water Year (through October '02-December '02) 0 5 10 15

  5. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales

    E-Print Network [OSTI]

    Konhauser, Kurt

    Academy of Sciences, St. Petersburg, Russia g Zavaritskii Institute of Geology and Geochemistry, Urals Branch, Russian Academy of Sciences, Ekaterinburg, Russia h Department of Earth and Atmospheric Sciences

  6. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRDUniversitySchedules Print Current Science

  7. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| Stanford SynchrotronVideo-Contest Sign In AboutBiologicalScience

  8. Collection Policy: Crop and Soil Sciences Introduction

    E-Print Network [OSTI]

    Angenent, Lars T.

    Collection Policy: Crop and Soil Sciences ___________________________________________________________________________________ Introduction: This 2007 collection policy review for the Department of Crops and Soil Sciences comes several the Department of Atmospheric and Earth Sciences. Since then, Crops and Soil Sciences has reorganized into three

  9. Pergamon AtmosphericEnvironmentVol. 30, No. 12, pp. 2233-2256, 1996 Copyright 1996 El~vier ,ScienceLtd

    E-Print Network [OSTI]

    Denver, University of

    .S.A.; and ~Mobile Source Emissions Research Branch, Atmospheric Research and Exposure Assessment Laboratory, U2 ratios and other emissions characteristics. The Tuscarora Mountain Tunnel is flat, making (evaporative running losses, etc.). Measured CO/CO2 ratios agreed well with concurrent roadside infrared remote

  10. Department of Atmospheric Sciences, S.O.E.S.T., University of Hawai'i at Mnoa 2525 Correa Road, HIG 350; Honolulu, HI 96822 956-8775

    E-Print Network [OSTI]

    Wang, Yuqing

    350; Honolulu, HI 96822 956-8775 & Joint Institute for Marine and Atmospheric Research, S.O.E.S.T., University of Hawai'i at Mnoa 1000 Pope Road, MSB 312; Honolulu, HI 96822 956-8083 Mark A. Cane Lamont

  11. MM5 Aids Forecasters Over the past five years a group in the Atmospheric

    E-Print Network [OSTI]

    Doty, Sharon Lafferty

    Jaeglé's specialty is atmospheric chemistry. Her research deals with analysis and modelingMM5 Aids Forecasters Over the past five years a group in the Atmospheric Sciences department has around the region. (see Page 8) New Faculty Join Atmospheric Sciences In the past year, Atmospheric

  12. AOML Employee Memberships in Science Organizations

    E-Print Network [OSTI]

    American Society of Agronomy Xiaolan Huang, Member Crop Science Society of America Xiaolan HuangAOML Employee Memberships in Science Organizations Cooperative Institute for Climate and Ocean) Mark Powell, Fellow Cooperative Institute of Marine and Atmospheric Science Silvia Garzoli

  13. Phase Transitions of Aqueous Atmospheric Particles Scot T. Martin*

    E-Print Network [OSTI]

    Transformations of Polar Stratospheric Cloud Particles," in 1995-1996 at MIT in Atmospheric Chemistry. He was an Assistant Professor in Aquatic and Atmospheric Chemistry in the Department of Environmental Sciences and Engineers in the Atmospheric Chemistry Program). His laboratory research group is currently active in two

  14. Photo: RSMAS The Rosenstiel School of Marine and Atmospheric

    E-Print Network [OSTI]

    , marine geophysics, ocean acoustics, and marine and atmospheric chemistry. The school is also known as onePhoto: RSMAS The Rosenstiel School of Marine and Atmospheric Science (RSMAS) was founded in 1943 in Biscayne Bay near Miami. It is the only subtropical applied and basic marine and atmospheric research

  15. Chinese Science Bulletin 2009 SCIENCE IN CHINA PRESS

    E-Print Network [OSTI]

    Li, Tim

    Chinese Science Bulletin © 2009 SCIENCE IN CHINA PRESS Springer www.scichina.com | csb.scichina.com | www.springerlink.com Chinese Science Bulletin | March 2009 | vol. 54 | no. 5 | 880-884 Impacts,2,3 , ZHANG RenHe2 , LI Tim4 & WEN Min2 1 Institute of Atmospheric Physics, Chinese Academy of Sciences

  16. Earth's Earliest Atmospheres Kevin Zahnle* , Laura Schaefer and Bruce Fegley

    E-Print Network [OSTI]

    Earth's Earliest Atmospheres Kevin Zahnle* , Laura Schaefer and Bruce Fegley *Space Science, Dept of Earth & Planetary Sciences & McDonnell Center for the Space Sciences, Washington University, St Louis MO 63130 ABSTRACT Earth is the one known example of an inhabited planet and to current knowledge

  17. Climate Science Andreas Schmittner

    E-Print Network [OSTI]

    Schmittner, Andreas

    Climate Science Andreas Schmittner Associate Professor College of Earth, Ocean, and Atmospheric Sciences Oregon State University Climate Change: A Workshop for Oregon Educators, Aug. 11, 2015 #12;Outline Past Present Future #12;Past Paleoclimate · How can we reconstruct past climate? · How did climate

  18. Science Park Science Park

    E-Print Network [OSTI]

    Koolen, Marijn

    Science Park Science Park Science Park Science Park Science Park Kruislaan Kruislaan Science Park SURFsara NLeSC Polder Anna Hoeve Telecity Matrix Innovation Center AUC AMOLF ARCNL UvA Faculty of Science Equinix Universum CWI UvA Oerknal Meet & Eat Maslow Spar ACE Venture Lab IXA ILCA NS Amsterdam Science

  19. The mean molecular mass of Titan's atmosphere

    E-Print Network [OSTI]

    Withers, Paul

    , Mars, Mars #12;Science Questions · Mean molecular mass (µ) -> Chemical composition · How did Titan form? · Current reservoirs of volatiles · Ethane/methane puddles/ocean · Thermal structure of atmosphere #12, delicate, etc ­ T/p sensors are simple, cheap, reliable · Is it possible to know µ based on simple

  20. Space Science: Atmospheres Venus, Earth and Mars

    E-Print Network [OSTI]

    Johnson, Robert E.

    Probability of escape is high if collision probability is small; mean free path for a collision col 1 / nx col col = collision cross section nx = density at exobase Exobase altitude occurs when scale height ~ mean free path Hx ~ col Hx ~ 1 / nx col since nxH = Nx column density Nxcol ~ 1 Nx 1 / col #12

  1. Paul Roundy Atmospheric and Environmental Sciences

    E-Print Network [OSTI]

    Alexandrova, Ivana

    agricultural drought events in the United States Midwest Corn Belt Region (CBR) based on an index of anomalous to Onset and Breakdown of Agricultural Drought over the United States Corn Belt Region The proposed work: Research to Advance Understanding, Monitoring, and Prediction of Drought. The proposed work would fulfill

  2. Atmospheric Science Program (ASP) Data Archive

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The ASP data archive has now been moved to a new location in order to be maintained with ARM data. The new url is http://iop.archive.arm.gov/arm-iop/0special-data/ASP_Campaigns_past/. BNL continues to maintain an excellent list of ASP-publications at http://www.asp.bnl.gov/asp_pubs.html

  3. Atmospheric and Climate Science | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagneticInexpensive 2-Nek5000 |ER-ARM-0403 3

  4. Atmospheric Transport of Radionuclides

    SciTech Connect (OSTI)

    Crawford, T.V.

    2003-03-03

    The purpose of atmospheric transport and diffusion calculations is to provide estimates of concentration and surface deposition from routine and accidental releases of pollutants to the atmosphere. This paper discusses this topic.

  5. Atmospheric chemistry and global change

    E-Print Network [OSTI]

    Prather, MJ

    1999-01-01

    and particles. Thus Atmospheric Chemistry and Global Changethe future of atmospheric chemistry. BROWSINGS Tornadothe complexity of atmospheric chemistry well, but trips a

  6. Science Outreach Science Outreach

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    Science Outreach Science Outreach AT SFU'S FACULTY OF SCIENCE OUR PASSION IS SCIENCE EDUCATION At SFU's Faculty of Science our passion is science education #12;coming sooncoming soon The Trottier 2015. The Trottier Observatory will be an anchor for a science plaza located in front of Strand Hall

  7. Lesson Summary Students will use models of Earth's atmosphere

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    to Do Scientific Inquiry Physical Science Transfer of Energy Earth and Space Science Structure the greenhouse from the captured solar energy. Certain gases in Earth's atmosphere ­ especially water vapor by storing and releasing energy from the sun. Materials: Large pickle jars, smaller jelly jar, laboratory

  8. Briefing Document Institute of Space and Atmospheric Studies

    E-Print Network [OSTI]

    Saskatchewan, University of

    " : Anthropogenic and Solar Forcings "Space Environment" 2 Solar-Terrestrial Coupling Magnetosphere-12: Reports; "10 Year Outlook for Solar Terrestrial & Atmospheric Sciences" [~2008] Professors 1 Ted Llewellyn and Depts, Local Space Industry, UofS Admin #12;4 · Space Environment / Solar-Terrestrial Science Ionosphere

  9. Briefing Document Institute of Space and Atmospheric Studies

    E-Print Network [OSTI]

    Saskatchewan, University of

    " : Anthropogenic and Solar Forcings "Space Environment" 2 Solar-Terrestrial Coupling Geospace Knowledge "Space for Solar Terrestrial & Atmospheric Sciences Professors 1 Ted Llewellyn [E] Alan Manson [E] Doug Degenstein Environment / Solar-Terrestrial Science Ionosphere Thermosphere Magnetosphere · Solar variability and solar

  10. Combined Effects of Anthropogenic Emissions and Resultant Climatic Changes on Atmospheric OH

    E-Print Network [OSTI]

    issue in atmospheric chemistry and global climate studies. We have developed a coupled global atmospheric chemistry and climate model to better assess science and policy issues related to global change.5 indicate the potential for substantial future changes affecting both atmospheric chemistry and climate

  11. Revised for Journal of Atmospheric and Oceanic Technology Dec. 18, 2001 DO NOT QUOTE OR CIRCULATE

    E-Print Network [OSTI]

    Clarke, Antony

    of Hawaii, Honolulu, HI *Department of Atmospheric Sciences, University of Washington, Seattle, WA #12 studies of atmospheric pollution, atmospheric chemistry, aerosol radiative effects on climate, visibility etc. Hence in-situ measurements in minimally disturbed air are desirable for many applications

  12. Atmospheric Neutrino Fluxes

    E-Print Network [OSTI]

    Thomas K. Gaisser

    2005-02-18

    Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

  13. Research by BNL investigators was performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC02-DOE research on atmospheric aerosols

    E-Print Network [OSTI]

    Division, the Atmospheric Radiation Measurement (ARM) Program and the Atmospheric Chemistry Program (ACP of Energy under Contract No. DE-AC02- 98CH10886. BNL-62609 DOE research on atmospheric aerosols S are an programs dealing with atmospheric science, subsurface science, environmental radon, ocean margins

  14. A Community Atmosphere Model with Superparameterized Clouds

    SciTech Connect (OSTI)

    Randall, David; Branson, Mark; Wang, Minghuai; Ghan, Steven J.; Craig, Cheryl; Gettelman, A.; Edwards, Jim

    2013-06-18

    In 1999, National Center for Atmospheric Research (NCAR) scientists Wojciech Grabowski and Piotr Smolarkiewicz created a "multiscale" atmospheric model in which the physical processes associated with clouds were represented by running a simple high-resolution model within each grid column of a lowresolution global model. In idealized experiments, they found that the multiscale model produced promising simulations of organized tropical convection, which other models had struggled to produce. Inspired by their results, Colorado State University (CSU) scientists Marat Khairoutdinov and David Randall created a multiscale version of the Community Atmosphere Model (CAM). They removed the cloud parameterizations of the CAM, and replaced them with Khairoutdinov's high-resolution cloud model. They dubbed the embedded cloud model a "super-parameterization," and the modified CAM is now called the "SP-CAM." Over the next several years, many scientists, from many institutions, have explored the ability of the SP-CAM to simulate tropical weather systems, the day-night changes of precipitation, the Asian and African monsoons, and a number of other climate processes. Cristiana Stan of the Center for Ocean-Land-Atmosphere Interactions found that the SP-CAM gives improved results when coupled to an ocean model, and follow-on studies have explored the SP-CAM's utility when used as the atmospheric component of the Community Earth System Model. Much of this research has been performed under the auspices of the Center for Multiscale Modeling of Atmospheric Processes, a National Science Foundation (NSF) Science and Technology Center for which the lead institution is CSU.

  15. Earth Systems Science Earth Systems Science at UNH

    E-Print Network [OSTI]

    Pringle, James "Jamie"

    Earth Systems Science Earth Systems Science at UNH THE UNH Institute for the Study of Earth, Oceans, and Space (EOS) Earth Systems Research Center is dedicated to understanding the Earth as an integrative scientists and students study the Earth's ecosystems, atmosphere, water, and ice using field measurements

  16. SCIENCE CHINA Technological Sciences

    E-Print Network [OSTI]

    Liu, Yijun

    turbines, jet engines, nuclear power plants and space crafts, have placed severe demands on highSCIENCE CHINA Technological Sciences © Science China Press and Springer-Verlag Berlin Heidelberg

  17. Ensemble Atmospheric Dispersion Modeling

    SciTech Connect (OSTI)

    Addis, R.P.

    2002-06-24

    Prognostic atmospheric dispersion models are used to generate consequence assessments, which assist decision-makers in the event of a release from a nuclear facility. Differences in the forecast wind fields generated by various meteorological agencies, differences in the transport and diffusion models, as well as differences in the way these models treat the release source term, result in differences in the resulting plumes. Even dispersion models using the same wind fields may produce substantially different plumes. This talk will address how ensemble techniques may be used to enable atmospheric modelers to provide decision-makers with a more realistic understanding of how both the atmosphere and the models behave.

  18. Toxicity of atmospheric aerosols on marine phytoplankton

    E-Print Network [OSTI]

    2009-01-01

    address: Center for Atmospheric Chemistry Study, Departmenttween phytoplankton, atmospheric chemistry, and climate areno. 12 ? 4601– 4605 CHEMISTRY Atmospheric aerosol deposition

  19. Earth and Atmospheric Sciences, Department of Papers in the Earth and Atmospheric Sciences

    E-Print Network [OSTI]

    Outer Ridge: Results of the Deep Sea Drilling Project Leg 76 Robert E. Sheridan, University of Delaware of the Deep Sea Drilling Project Leg 76 ROBERT E. SHERIDAN Department of Geology, University of Delaware. ROTH Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112 THOMAS H

  20. What is Atmospheric Science? Atmospheric science is the study of short-term

    E-Print Network [OSTI]

    Saldin, Dilano

    dynamics, weather analysis and forecasting, cloud physics, air pollution meteorology, tropical and severe to forecasting to air pollution meteorology to forensic meteorology to basic and applied research. Some graduates, severe weather analysis, development of forecast tools, air pollution control). The Department of Defense

  1. Findiing Science with Science Page 1 Finding Science with Science

    E-Print Network [OSTI]

    Stock, Kristin

    Findiing Science with Science Page 1 Finding Science with Science: Evaluating the Use Stojanovicd , Femke Reitsmae , Lukasz Korczynskif and Boyan Brodaricg a Centre for Geospatial Science of Earth and Ocean Sciences, Cardiff University, Cardiff, UK; e Department of Geography, University

  2. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, Roland L. (Bloomfield, CO); Cannon, Theodore W. (Golden, CO)

    1988-01-01

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  3. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  4. Autumn 2014 Atmospheric Circulation

    E-Print Network [OSTI]

    Doty, Sharon Lafferty

    to perform atmospheric chemistry measurements in this remote region of ubiquitous oil and gas drilling 30 days they raised $12,000, enough to support Maria's travel to Utah and to cover the costs

  5. A simplified system of pressure surfaces for atmospheric analysis 

    E-Print Network [OSTI]

    Shay, Francis Schofield

    1959-01-01

    LIBRARY A g M COLLEGE OF TEXAS A SIMPLIFIED SYSTEM OF PRESSURE SURFACES FOR ATMOSPHERIC ANALYSIS A Thesis By FRANCIS S. SHAY + Captain USAF Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial... fulfillment of the requirements for the degree of MASTER OP SCIENCE May 1959 Major Subject: Meteorology A SIMPLIFIED SYSTEM OF PRESSURE SURFACES FOR ATMOSPHERIC ANALYSIS A Thesis By FRANCIS S. SHAY Captain USAF jpp roved j as to style and content...

  6. 12.085 Seminar in Environmental Science, Fall 2005

    E-Print Network [OSTI]

    Rothman, Daniel H.

    Required for all Earth, Atmospheric, and Planetary Sciences majors in the Environmental Science track, this course is an introduction to current research in the field. Stresses integration of central scientific concepts ...

  7. The middle Martian atmosphere

    SciTech Connect (OSTI)

    Jaquin, R.F.

    1989-01-01

    Profiles of scattered light above the planetary limb from 116 Viking Orbiter images are used to constrain the temporal and spatial behavior of aerosols suspended in the Martian atmosphere. The data cover a wide range of seasons, locations, and viewing geometry, providing information about the aerosol optical properties and vertical distribution. The typical atmospheric column contains one or more discrete, optically thin, ice-like haze layers between 30 and 90 km elevation whose composition is inferred to be water ice. Below the detached hazes, a continuous haze, interpreted to have a large dust component, extends from as much as 50 km to the surface. The haze distribution exhibits an annual variation that reflects a seasonally driven circulation in the middle atmosphere. The potential role of stationary gravity waves in modifying the middle atmosphere circulation is explored using a linear theory applied to a realistic Martian environment. Martian topography derived from radar observations is decomposed into Fourier harmonics and used to linearly superpose gravity waves arising from each component. The larger amplitude topography on Mars combined with the absence of extended regions of smooth topography like oceans generates larger wave amplitudes than on the Earth. The circulation of the middle atmosphere is examined using a two-dimensional, linearized, axisymmetric model successfully employed in the study of the terrestrial mesosphere. Illustrations of temperature and wind speeds are presented for the southern summer solstice and southern spring equinox.

  8. Observations of Exoplanet Atmospheres

    E-Print Network [OSTI]

    Crossfield, Ian J M

    2015-01-01

    Detailed characterization of an extrasolar planet's atmosphere provides the best hope for distinguishing the makeup of its outer layers, and the only hope for understanding the interplay between initial composition, chemistry, dynamics & circulation, and disequilibrium processes. In recent years, some areas have seen rapid progress while developments in others have come more slowly and/or have been hotly contested. This article gives an observer's perspective on the current understanding of extrasolar planet atmospheres prior to the considerable advances expected from the next generation of observing facilities. Atmospheric processes of both transiting and directly-imaged planets are discussed, including molecular and atomic abundances, cloud properties, thermal structure, and planetary energy budgets. In the future we can expect a continuing and accelerating stream of new discoveries, which will fuel the ongoing exoplanet revolution for many years to come.

  9. Science and Technology Roadmap Cooperative Research Program (CoRP)

    E-Print Network [OSTI]

    Kuligowski, Bob

    Science and Technology Roadmap Cooperative Research Program (CoRP) National Oceanic and Atmospheric.3.2 The Global Precipitation Climatology Project 5. SCIENCE AND TECHNOLOGY ROADMAP 6. PERFORMANCE TARGETS 6RP research capabilities are described along with a science roadmap for the next decade. This science

  10. BULLETIN OF MARINE SCIENCE, 75(2): 295320, 2004 295Bulletin of Marine Science

    E-Print Network [OSTI]

    Sealey, Kathleen Sullivan

    BULLETIN OF MARINE SCIENCE, 75(2): 295­320, 2004 295Bulletin of Marine Science © 2004 Rosenstiel School of Marine and Atmospheric Science of the University of Miami LARGE-SCALE ECOLOGICAL IMPACTS of nearshore marine habitats is explored through spatial and temporal comparisons of patch reef environ- ments

  11. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Laboratory for Atmospheric and Space Physics Activity Report 2013 University of Colorado at Boulder from the Naval Research Center and the Air Force Cambridge Research Laboratory (now the Phillips Laboratory), the University of Colorado formed a research group called the Upper Air Laboratory (UAL

  12. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Laboratory for Atmospheric and Space Physics Activity Report 2012 University of Colorado at Boulder from the Naval Research Center and the Air Force Cambridge Research Laboratory (now the Phillips Laboratory), the University of Colorado formed a research group called the Upper Air Laboratory (UAL

  13. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Laboratory for Atmospheric and Space Physics Activity Report 2008 University of Colorado at Boulder, Jet Propulsion Laboratory) LASP: A Brief History In 1946-47, a handful of American universities joined Laboratory (now the Phillips Laboratory), the University of Colorado formed a research group called the Upper

  14. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    1 Laboratory for Atmospheric and Space Physics Activity Report 2010 University of Colorado from the Na- val Research Center and the Air Force Cambridge Research Laboratory (now the Phillips Laboratory), the University of Colorado formed a research group called the Upper Air Laboratory (UAL

  15. ATMOSPHERIC CHEMISTRY AND PHYSICS

    E-Print Network [OSTI]

    Brandenburg, Axel

    of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com. Library of Congress Cataloging components of the atmosphere, nitrogen, oxygen, water, carbon dioxide, and the noble gases. In the late

  16. Earth Sciences Environmental Earth Sciences,

    E-Print Network [OSTI]

    Brierley, Andrew

    86 Earth Sciences­ Environmental Earth Sciences, Geology Degree options MGeol (Single Honours Degrees) Earth Sciences BSc (Single Honours Degrees) Environmental Earth Sciences Geology BSc (Joint. * The Geology and Environmental Earth Sciences degrees are accredited by the Geological Society of London

  17. Earth Sciences Environmental Earth Sciences,

    E-Print Network [OSTI]

    Brierley, Andrew

    94 Earth Sciences­ Environmental Earth Sciences, Geology Degree options MGeol (Single Honours Degrees) Earth Sciences BSc (Single Honours Degrees) Environmental Earth Sciences Geology BSc (Joint placement. * The Geology and Environmental Earth Sciences degrees are accredited by the Geological Society

  18. SCIENCE CHINA Technological Sciences

    E-Print Network [OSTI]

    Ahmad, Sajjad

    SCIENCE CHINA Technological Sciences © Science China Press and Springer-Verlag Berlin Heidelberg HU HongChang, TIAN FuQiang* & HU HePing Department of Hydraulic Engineering, State Key Laboratory as a key soil physical parameter and has been widely used to predict soil hydraulic and other related

  19. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    E-Print Network [OSTI]

    2008-01-01

    1960 through 2001, Carbon Dioxide Inf. Anal. Cent. , OakAtmospheric and oceanic carbon dioxide models, Science, 282,Data on Global Change, Carbon Dioxide Inf. Anal. Cent. , Oak

  20. Giant aeolian dune size determined by the average depth of the atmospheric boundary layer

    E-Print Network [OSTI]

    Tlemcen, Algeria. 3 Nicholas School of the Environment and Earth Sciences, Center for Nonlinear be related to statistically averaged quantities. The detailed modelling of the atmospheric processes is very

  1. Integrated Water, Atmosphere, Ecosystems, Education and Research Program

    E-Print Network [OSTI]

    Connors, Daniel A.

    I-WATER Integrated Water, Atmosphere, Ecosystems, Education and Research Program #12;I-WATER Funding ¤ I-WATER is funded by the National Science Foundation IGERT program ¤ IGERT is NSF's Integrative of the Provost, Office of the Vice President for Research #12;I-WATER: Organizing Concept Water management

  2. Monday, March 23, 2009 SPECIAL SESSION: VENUS ATMOSPHERE

    E-Print Network [OSTI]

    Rathbun, Julie A.

    by Balloon -- Science Objectives and Mission Architecture [#1238] High-altitude balloon missions to Venus [#1408] The solar wind interaction with Venus is eroding the Venus atmosphere in several different ways mission. The VIRTIS imaging spectrometer in the range of 0.25 to 5 m provide a powerful means to study

  3. Atmospheric Environment Center Joint Laboratory cole des Ponts

    E-Print Network [OSTI]

    Ghorbel, Amin

    ) doctoral school and is a member of the EFLUVE Environmental Science Observatory and of the "Urban Futures and accurate observations for wind, temperature, solar radiation, relative humidity, and atmospheric turbulence. Simu- lations are performed with the Code_Saturne com- putational fluid dynamics (CFD) model. Air

  4. Parameterization and Geometric Optimization of Balloon Launched Sensorcraft for Atmospheric

    E-Print Network [OSTI]

    Sóbester, András

    Atmospheric Science Through Robotic Aircraft SLS Selective Laser Sintering SLA Stereolithography FDM Fused Deposition Modeling P Power, Watts (W) t Time, seconds (s) M Mass, Kilograms (kg) COTS Commercial Off) The University of Southampton ASTRA project seeks to investigate new technologies for enabling low cost

  5. Mars at very low obliquity: Atmospheric collapse and the fate of M. A. Kreslavsky1

    E-Print Network [OSTI]

    Head III, James William

    : Kreslavsky, M. A., and J. W. Head (2005), Mars at very low obliquity: Atmospheric collapse and the fateMars at very low obliquity: Atmospheric collapse and the fate of volatiles M. A. Kreslavsky1 and J. W. Head Department of Geological Sciences, Brown University, Providence, Rhode Island, USA Received

  6. A Coupled AtmosphereOcean Radiative Transfer System Using the Analytic Four-Stream Approximation

    E-Print Network [OSTI]

    Liou, K. N.

    of the ocean. Shortwave radiation from the sun contributes most of the heat fluxes that penetrate the airA Coupled Atmosphere­Ocean Radiative Transfer System Using the Analytic Four-Stream Approximation WEI-LIANG LEE AND K. N. LIOU Department of Atmospheric and Oceanic Sciences, University of California

  7. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, O.A.; Stencel, J.R.

    1987-10-02

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The moisture then passes through a combustion chamber where hydrogen gas in the form of H/sub 2/ or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  8. Improving primary science great science

    E-Print Network [OSTI]

    Rambaut, Andrew

    Improving primary science Developing great science subject leadershipGreat ideas for primary science leaders from schools that value science. #12;2 | Primary science Where science has a good profile, investigative science with access to high-quality expertise, children are likely to enjoy learning the subject

  9. Atmospheric Chemistry Theodore S. Dibble

    E-Print Network [OSTI]

    Dibble, Theodore

    SYLLABUS FOR Atmospheric Chemistry FCH 511 Fall 2014 Theodore S. Dibble Professor of Chemistry 421 in Required Text Seinfeld, J. H. and Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution nineteenth year at ESF, and my seventeenth year teaching FCH 511 (Atmospheric Chemistry). I have done a lot

  10. Lifetimes and eigenstates in atmospheric chemistry

    E-Print Network [OSTI]

    Prather, Michael J

    1994-01-01

    Perturbation dynamics in atmospheric chemistry. J. Geophys.isotopic variations in atmospheric chemistry. Geophys. Res.M. et al. 2001 Atmospheric chemistry and greenhouse gases (

  11. Atmospheric chemistry of an Antarctic volcanic plume

    E-Print Network [OSTI]

    2010-01-01

    L. , et al. (2010), Atmospheric chemistry results from theI. , et al. (2006), Atmospheric chemistry of a 33 – 34 hourvolcanic eruptions on atmospheric chemistry, Chem. Geol. ,

  12. Science and Science Fiction

    ScienceCinema (OSTI)

    Scherrer, Robert [Vanderbilt University, Nashville, Tennessee, United States

    2009-09-01

    I will explore the similarities and differences between the process of writing science fiction and the process of 'producing' science, specifically theoretical physics. What are the ground rules for introducing unproven new ideas in science fiction, and how do they differ from the corresponding rules in physics? How predictive is science fiction? (For that matter, how predictive is theoretical physics?) I will also contrast the way in which information is presented in science fiction, as opposed to its presentation in scientific papers, and I will examine the relative importance of ideas (as opposed to the importance of the way in which these ideas are presented). Finally, I will discuss whether a background as a research scientist provides any advantage in writing science fiction.

  13. Science Mathematics Engineering

    E-Print Network [OSTI]

    Hamlet, Richard

    Science Mathematics Engineering . ­ p.1 #12;Science Mathematics Engineering Science, Computer `Science', . ­ p.1 #12;Science Mathematics Engineering Science, Computer `Science', Mathematics, . ­ p.1 #12;Science Mathematics Engineering Science, Computer `Science', Mathematics, and Software Development

  14. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016Study (CHAPS)Archive CampaignListAtmospheric Heat

  15. ARM - Atmospheric Pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016Study (CHAPS)Archive CampaignListAtmospheric

  16. Atmospheric PSF Interpolation

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby a contractor ofvarDOE PAGES11 PPPL-Atmospheric PSF

  17. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    SciTech Connect (OSTI)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  18. Wine Science Wine Sciencee Science

    E-Print Network [OSTI]

    Wine Science Wine Sciencee Science Thomas Henick-Kling Professor of Enology Director of Viticulture & Enology Program #12;Wine Science Wine Science Growth of Washington Wine Industry #12;Wine Science Wine Science Wine Grapes utilized 2007 2008 2009 2010 WA 127,000 145,000 156,000 160,000 NY 24,000 26,000 30

  19. Faculty of Science General Science

    E-Print Network [OSTI]

    Faculty of Science General Science The General Science program gives you maximum flexibility to explore the sciences, plus the core requirements you need for on-going, specialized studies. www.uwindsor.ca/science Rigorous, Enriching Programs The BSc General Science program is a great way to explore your many interests

  20. 1 Biomedical Sciences BIOMEDICAL SCIENCES

    E-Print Network [OSTI]

    Vertes, Akos

    1 Biomedical Sciences BIOMEDICAL SCIENCES The interdisciplinary doctoral programs in the biomedical sciences are organized within the Institute for Biomedical Sciences. The first full year of study toward are admitted directly into the Institute for Biomedical Sciences through Columbian College of Arts and Sciences

  1. Joint Institute for Marine and Atmospheric Research (J/MAR) University of Hawaii, Honolulu, Hawaii 96822

    E-Print Network [OSTI]

    Joint Institute for Marine and Atmospheric Research (J/MAR) University of Hawaii, Honolulu, Hawaii 96822 Department of Oceanography, School of Ocean and Earth Science and Technology University of Hawaii, Honolulu. Hawaii 96822 Department of Oceanography, School of Ocean and Earth Science and Technology

  2. Computer Science Computer Science?

    E-Print Network [OSTI]

    Cafarella, Michael J.

    -M Programming, U-M Solar Car, Hybrid Racing, and the Mars Rover Team. Other groups that advance societal good. Michigan Hackers: Experimenting with technology gEECS: Girls in electrical engineering and computer science

  3. Is sustainability science really a science?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is sustainability science really a science? Is sustainability science really a science? The team's work shows that although sustainability science has been growing explosively...

  4. Materials Science & Engineering | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More Science Home | Science & Discovery | More Science | Materials Science and Engineering SHARE Materials Science and Engineering ORNL's core capability in applied materials...

  5. 1 Political Science POLITICAL SCIENCE

    E-Print Network [OSTI]

    Vertes, Akos

    1 Political Science POLITICAL SCIENCE With Capitol Hill nearby and the White House just blocks away, GW is the ideal place to study political science. Students in the program benefit from rigorous study and behavioral sciences discipline in the Columbian College of Arts and Sciences, the program examines politics

  6. Computer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cite Seer Department of Energy provided open access science research citations in chemistry, physics, materials, engineering, and computer science IEEE Xplore Full text...

  7. Statistical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LeeAnn Martinez (505) 667-3308 Email Find Expertise header Search our employee skills database Statistical Sciences Statistical Sciences provides statistical reasoning and...

  8. Representative Atmospheric Plume Development for Elevated Releases

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Prichard, Andrew W.

    2014-03-03

    An atmospheric explosion of a low-yield nuclear device will produce a large number of radioactive isotopes, some of which can be measured with airborne detection systems. However, properly equipped aircraft may not arrive in the region where an explosion occurred for a number of hours after the event. Atmospheric conditions will have caused the radioactive plume to move and diffuse before the aircraft arrives. The science behind predicting atmospheric plume movement has advanced enough that the location of the maximum concentrations in the plume can be determined reasonably accurately in real time, or near real time. Given the assumption that an aircraft can follow a plume, this study addresses the amount of atmospheric dilution expected to occur in a representative plume as a function of time past the release event. The approach models atmospheric transport of hypothetical releases from a single location for every day in a year using the publically available HYSPLIT code. The effective dilution factors for the point of maximum concentration in an elevated plume based on a release of a non-decaying, non-depositing tracer can vary by orders of magnitude depending on the day of the release, even for the same number of hours after the release event. However, the median of the dilution factors based on releases for 365 consecutive days at one site follows a power law relationship in time, as shown in Figure S-1. The relationship is good enough to provide a general rule of thumb for estimating typical future dilution factors in a plume starting at the same point. However, the coefficients of the power law function may vary for different release point locations. Radioactive decay causes the effective dilution factors to decrease more quickly with the time past the release event than the dilution factors based on a non-decaying tracer. An analytical expression for the dilution factors of isotopes with different half-lives can be developed given the power law expression for the non-decaying tracer. If the power-law equation for the median dilution factor, Df, based on a non-decaying tracer has the general form Df=a?×t?^(-b) for time t after the release event, then the equation has the form Df=e^(-?t)×a×t^(-b) for a radioactive isotope, where ? is the decay constant for the isotope.

  9. Aeras: A next generation global atmosphere model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not componentsmore »of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.« less

  10. DIVISION OF MARINE AND ATMOSPHERIC CHEMISTRY

    E-Print Network [OSTI]

    Shyu, Mei-Ling

    DIVISION OF MARINE AND ATMOSPHERIC CHEMISTRY The missions of the Division of Marine and Atmospheric Chemistry (MAC) are to carry out broadly based research on the chemistry of the atmosphere and marine and stratosphere. Atmospheric Chemistry Research activities in atmospheric chemistry and modeling are diverse

  11. Nuclear Sciences | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Sciences SHARE Nuclear Sciences In World War II's Manhattan Project, ORNL helped usher in the nuclear age. Today, laboratory scientists are leaders in using nuclear...

  12. Nuclear Sciences | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences SHARE Nuclear Sciences In World War II's Manhattan Project, ORNL helped usher in the nuclear age. Today, laboratory scientists are leaders in using nuclear technologies...

  13. Nuclear Science | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science SHARE Nuclear Science In World War II's Manhattan Project, ORNL helped usher in the nuclear age. Today, laboratory scientists are leaders in using nuclear technologies and...

  14. SCIENCE CHINA Technological Sciences

    E-Print Network [OSTI]

    Wang, Zhong L.

    University, Lanzhou 730000, China; 3 School of Material Science and Engineering, Georgia Institute on the piezoelectric semiconductor materials, such as ZnO, ZnS, CdS and GaN. With the usage of these piezoelectric.37 eV and large free-exciton binding energy of 60 meV at room temperature. Furthermore, splendid one

  15. ATMOSPHERIC CHEMISTRY - RESPONSE TO HUMAN INFLUENCE

    E-Print Network [OSTI]

    LOGAN, J; PRATHER, M; WOFSY, S; MCELROY, M

    1978-01-01

    Trans. II 70, 253. ATMOSPHERIC CHEMISTRY Clyne, M. A. A. &data for modelling atmospheric chemistry. NBS Technical NoteChem. 80, 2711. ATMOSPHERIC CHEMISTRY Sanadze, G. A. 1963 On

  16. IMPROVED QUASISTEADYSTATEAPPROXIMATION METHODS FOR ATMOSPHERIC CHEMISTRY INTEGRATION #

    E-Print Network [OSTI]

    Jay, Laurent O.

    IMPROVED QUASI­STEADY­STATE­APPROXIMATION METHODS FOR ATMOSPHERIC CHEMISTRY INTEGRATION # L. O. JAY QSSA are presented. Key words. atmospheric chemistry, sti# ordinary di#erential equations, quasi PII. S1064827595283033 1. Introduction. As our scientific understanding of atmospheric chemistry

  17. Global atmospheric chemistry: Integrating over fractional cloud cover

    E-Print Network [OSTI]

    Neu, Jessica L; Prather, Michael J; Penner, Joyce E

    2007-01-01

    trace gases and atmospheric chemistry, in Climate Change2007 Global atmospheric chemistry: Integrating over2007), Global atmospheric chemistry: Integrating over

  18. Infrared Observations of Exoplanet Atmospheres

    E-Print Network [OSTI]

    Crossfield, Ian James Mills

    2012-01-01

    However, atmospheres of cool planets can still be studiedvia outgassing as the planet cools (Rogers & Seager 2010).at low resolution) and the cool, low-mass planet GJ 1214b (

  19. Faculty of Science Computer Science

    E-Print Network [OSTI]

    Faculty of Science Computer Science Computer software engineering, network and system analysis.uwindsor.ca/computerscience The University of Windsor offers a variety of computer science programs to prepare students for a career in the technology industry or in research and academia. A computer science degree provides an in-depth understanding

  20. Earth Sciences Environmental Earth Sciences,

    E-Print Network [OSTI]

    Brierley, Andrew

    84 Earth Sciences­ Environmental Earth Sciences, Geology MGeol (Single Honours Degrees) Earth Sciences BSc (Single Honours Degrees) Environmental Earth Sciences Geology BSc (Joint Honours Degrees) and among the most research-intensive in Europe. Features * The Department of Earth and Environmental

  1. Faculty of Science Computer Science

    E-Print Network [OSTI]

    Faculty of Science Computer Science Software engineering, network and system analysis continue a variety of computer science programs to prepare students for a career in the technology industry or in research and academia. A computer science degree provides an in-depth understanding of the fundamentals

  2. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion...

  3. Laser Atmospheric Studies with VERITAS

    E-Print Network [OSTI]

    C. M. Hui; for the VERITAS collaboration

    2007-09-25

    As a calibrated laser pulse propagates through the atmosphere, the amount of Rayleigh-scattered light arriving at the VERITAS telescopes can be calculated precisely. This technique was originally developed for the absolute calibration of ultra-high-energy cosmic-ray fluorescence telescopes but is also applicable to imaging atmospheric Cherenkov telescopes (IACTs). In this paper, we present two nights of laser data taken with the laser at various distances away from the VERITAS telescopes and compare it to Rayleigh scattering simulations.

  4. Nighttime atmospheric stability changes and their effects on the temporal intensity of a mesoscale convective complex 

    E-Print Network [OSTI]

    Hovis, Jeffrey Scott

    1988-01-01

    NIGHTTIME ATMOSPHERIC STABILITY CHANGES AND THEIR EFFECTS ON THE TEMPORAL INTENSITY OF A MESOSCALE CONVECTIVE COMPLEX A Thesis JEFFREY SCOTT HOVIS Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1988 Major Subject: Meteorology NIGHTTIME ATMOSPHERIC STABILITY CHANGES AND THEIR EFFECTS ON THE TEMPORAL INTENSITY OF A MESOSCALE CONVECTIVE COMPLEX A Thesis JEFFREY SCOTT HOVIS Approved as to style...

  5. Science Education Programs | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Tutorials Kids' Corner NScD Careers Supporting Organizations Neutron Science Home | Science & Discovery | Neutron Science | Science and Education SHARE Inspiring...

  6. NERSC Science Gateways

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users Science Gateways Science Gateways About Science Gateways A science gateway is a web based interface to access HPC computers and storage systems. Gateways allow science...

  7. Light Scattering Problem and its Application in Atmospheric Science 

    E-Print Network [OSTI]

    Meng, Zhaokai

    2011-02-22

    of the single-scattering properties of individual dust-like aerosol particles. The second part of this thesis describes this database in detail. Its application to radiative transfer calculations in a spectral region from ultraviolet (UV) to far-infrared (far...

  8. ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. 13: 164168 (2012)

    E-Print Network [OSTI]

    Waugh, Darryn W.

    2012-01-01

    in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/asl.384 Antarctic ozone depletion and trends Accepted: 2 April 2012 Abstract Trends in summer tropopause Rossby wave breaking (RWB) are examined using: ozone hole; Rossby waves; trends 1. Introduction There have been numerous changes in Southern Hemi

  9. Rosenstiel School of Marine & Atmospheric Science 2006AnnualReport

    E-Print Network [OSTI]

    Miami, University of

    the documentary, An Inconvenient Truth, was responsible for this, or maybe ­ universally ­ people have recognized in temperature, but acidity, and global air circulation patterns that are shifting in new, surprising ways overfishing and warming. We are taking genomics to Little Salt Spring to learn more about the secrets

  10. ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. 12: 116122 (2011)

    E-Print Network [OSTI]

    Hourdin, Chez Frédéric

    2011-01-01

    Departamento de Geofisica y Meteorologia, Facultad de Ciencias Fisicas, Universidad Complutense, Madrid, Spain

  11. Professor Brian Toon Department of Atmospheric and Oceanic Sciences

    E-Print Network [OSTI]

    Robock, Alan

    weapons, such as currently possessed by India and Pakistan and 6 other nations, threaten more fatalities bombs, such as India and Pakistan, could produce climate change unprecedented in recorded human history, but the entire planet. Global climate change following a war between India and Pakistan, using less than 0

  12. Thomas H Zurbuchen, Department of Atmospheric, Oceanic and Space Sciences

    E-Print Network [OSTI]

    College of Engineering, University of Michigan thomasz@umich.edu Exploring Imaging Plasma Spectrometer! · Primary role: Heavy ion composition! · Measures E/q and Time of flight (TOF.84-10.14 hrs local time.! #12;MESSENGER Instruments! 12! #12;Why Plasma Physicists Care! 13! · Important test

  13. Lori Thompson Sentman EDUCATION: Ph.D. candidate, Atmospheric Science

    E-Print Network [OSTI]

    include model execution and management of the earth system model components and the mixed layer ocean model, development of improved earth system models and research on the interactions and feedbacks. Tasks include model execution and management of the earth system model components and the mixed layer

  14. Faculty Positions Department of Earth, Atmospheric, and Planetary Sciences

    E-Print Network [OSTI]

    Kihara, Daisuke

    of hazardous weather phenomena, such as tornadoes, mesoscale convective systems, and winter storms. Climate

  15. OREGON STATE UNIVERSITY College of Earth, Ocean, & Atmospheric Sciences

    E-Print Network [OSTI]

    Kurapov, Alexander

    and River Dominated Margins", Santiago de Compostela, Spain, June 19-24, 2005. · 2009 Coastal and Estuarine Research Federation Meeting, "Significance of River-Ocean Coherence for Fluxes and Fate of Terrestrial

  16. ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. 12: 5157 (2011)

    E-Print Network [OSTI]

    Guichard, Francoise

    2011-01-01

    in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/asl.288 The large-scale water cycle de Recherche en Geodesie, Institut Geographique National, ENSG ­ Cite Descartes, 6-8 Avenue Blaise of West Africa, such as the role of moisture trans- ported by the southwesterly low-level monsoon flow

  17. College of Earth, Ocean, and Atmospheric Sciences Oregon State University

    E-Print Network [OSTI]

    of Earth history, Stratigraphy and Sedimentology, geology field methods, and graduate courses in their area through significant contributions to the fields of Stratigraphy, Sedimentology, #12;and/or Earth Systems

  18. Xin-Zhong Liang Department of Atmosphere & Ocean Science

    E-Print Network [OSTI]

    Zeng, Ning

    are rela@vely small · HRM3: SWd is quite realis@c, while T2m (MM5I, HRM3) domain spectral nudging (ECP2, CRCM) NARCCAP IA correla

  19. University of Miami Rosenstiel School of Marine & Atmospheric Science

    E-Print Network [OSTI]

    Miami, University of

    the mating habits of white reef sharks; penetrate a wild bait ball in the open ocean; and view hammerheads/January2002University of Miami Virginia Key Campus OCEANS AND GLOBAL SECURITY On December 10th on Capital Hill focused on ocean issues. The events are intended to increase awareness and educate our

  20. MEET THE PEER COUNSELORS Marine and Atmospheric Science Program

    E-Print Network [OSTI]

    Miami, University of

    ! And this summer, I'm in Colorado working on an internship through NOAA programing a concentrated solar power tower

  1. AT 655: Objective Analysis in the Atmospheric Sciences Course Syllabus

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    will be spent in lecture reviewing these topics: - algebra (e.g. equations for lines, solving basic algebraic equations) - basic calculus (e.g. how to take a derivative and an integral) - basic matrix algebra (e site is available through the instructors webpage and is listed at the top of this syllabus. 7 Grading

  2. Journal of the Atmospheric Sciences EARLY ONLINE RELEASE

    E-Print Network [OSTI]

    Pauluis, Olivier M.

    circulation to a doubling of CO2 are examined in a6 global climate model, focusing on the circulation on both into changes in zonal mean and eddy statistics.11 It is found that, as a consequence of CO2 doubling, the dry to cite this EOR in a separate work, please use the following full citation: Wu, Y., and O. Pauluis, 2012

  3. HANNAH GOSNELL College of Earth, Ocean, and Atmospheric Sciences

    E-Print Network [OSTI]

    Kurapov, Alexander

    , Australia #12;20062011 Assistant Professor of Geography Department of Geosciences, Water Resources of Colorado, Boulder, CO Department of Geography "Water, Fish, Tribes, and Choice: A Geographic of Geography "Rangeland Reform '94 and the Politics of the Old West: An Analysis of Institutional

  4. ARM - Publications: Science Team Meeting Documents: ARM Site Atmospheric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols,Comparison ofTropicalState Best Estimates for AIRS

  5. ARM - Publications: Science Team Meeting Documents: Atmospheric Modes of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols,Comparison ofTropicalStateAnalysisof several GCMs

  6. PNNL: Atmospheric Sciences & Global Change Search for Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| Department ofStephen P rice Los A lamosTonyAir

  7. Atmospheric Science The Earth's atmosphere, a layered sphere of gas extending

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    observations and modeling. Measuring the radiative effects of aerosols from urban pollution and forest fires sandstorms and volcanoes · Sea spray from the oceans · Smoke from agricultural burning and forest fires

  8. ATMOSPHERIC DYNAMICS I (ATS 601, 3 credits) Professor: Thomas Birner, Assistant Professor, Department of Atmospheric Science

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    . This course will adhere to the CSU Academic Integrity Policy as found in the General Catalog (http://www.catalog Water Models (4-5 weeks): Single Layer, Multi-Layer Models Shallow Water Gravity Waves Shallow Water

  9. Chemistry of Atmospheric Brown Carbon Alexander Laskin,*,

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Chemistry of Atmospheric Brown Carbon Alexander Laskin,*, Julia Laskin,*, and Sergey A. Nizkorodov fraction of atmospheric aerosol and has profound effects on air quality, atmospheric chemistry, and climate of radiation through Earth's atmosphere. The cloud albedo effect, Special Issue: 2015 Chemistry in Climate

  10. Airships: A New Horizon for Science

    E-Print Network [OSTI]

    Miller, Sarah H; Hillenbrand, Lynne; Rhodes, Jason; Baird, Gil; Blake, Geoffrey; Booth, Jeff; Carlile, David E; Duren, Riley; Edworthy, Frederick G; Freeze, Brent; Friedl, Randall R; Goldsmith, Paul F; Hall, Jeffery L; Hoffman, Scott E; Hovarter, Scott E; Jensen-Clem, Rebecca M; Jones, Ross M; Kauffmann, Jens; Kiessling, Alina; King, Oliver G; Konidaris, Nick; Lachenmeier, Timothy L; Lord, Steven D; Neu, Jessica; Quetin, Gregory R; Ram, Alan; Sander, Stanley; Simard, Marc; Smith, Mike; Smith, Steve; Smoot, Sara; Susca, Sara; Swann, Abigail; Young, Eliot F; Zambrano, Thomas

    2014-01-01

    The "Airships: A New Horizon for Science" study at the Keck Institute for Space Studies investigated the potential of a variety of airships currently operable or under development to serve as observatories and science instrumentation platforms for a range of space, atmospheric, and Earth science. The participants represent a diverse cross-section of the aerospace sector, NASA, and academia. Over the last two decades, there has been wide interest in developing a high altitude, stratospheric lighter-than-air (LTA) airship that could maneuver and remain in a desired geographic position (i.e., "station-keeping") for weeks, months or even years. Our study found considerable scientific value in both low altitude ( 60 kft) airships across a wide spectrum of space, atmospheric, and Earth science programs. Over the course of the study period, we identified stratospheric tethered aerostats as a viable alternative to airships where station-keeping was valued over maneuverability. By opening up the sky and Earth's strato...

  11. Big Science

    ScienceCinema (OSTI)

    Dr. Thomas Zacharia

    2010-01-08

    Big science seeks big solutions for the most urgent problems of our times. Video courtesy Cray, Inc.

  12. Cumulant expansions for atmospheric flows

    E-Print Network [OSTI]

    Ait-Chaalal, Farid; Meyer, Bettina; Marston, J B

    2015-01-01

    The equations governing atmospheric flows are nonlinear, and consequently the hierarchy of cumulant equations is not closed. But because atmospheric flows are inhomogeneous and anisotropic, the nonlinearity may manifests itself only weakly through interactions of mean fields with disturbances such as thermals or eddies. In such situations, truncations of the hierarchy of cumulant equations hold promise as a closure strategy. We review how truncations at second order can be used to model and elucidate the dynamics of turbulent atmospheric flows. Two examples are considered. First, we study the growth of a dry convective boundary layer, which is heated from below, leading to turbulent upward energy transport and growth of the boundary layer. We demonstrate that a quasilinear truncation of the equations of motion, in which interactions of disturbances among each other are neglected but interactions with mean fields are taken into account, can successfully capture the growth of the convective boundary layer. Seco...

  13. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect (OSTI)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together researchers in these areas and to provide a focal point for the development of computational expertise at the Laboratory. These efforts will connect to and support the Department of Energy's long range plans to provide Leadership class computing to researchers throughout the Nation. Recruitment for six new positions at Stony Brook to strengthen its computational science programs is underway. We expect some of these to be held jointly with BNL.

  14. BULLETIN OF MARINE SCIENCE. 87(2):251274. 2011 doi:10.5343/bms.2010.1089

    E-Print Network [OSTI]

    BULLETIN OF MARINE SCIENCE. 87(2):251­274. 2011 doi:10.5343/bms.2010.1089 251Bulletin of Marine Science © 2011 Rosenstiel School of Marine and Atmospheric Science of the University of Miami Bridging the divide Between Fisheries and Marine Conservation sCienCe Anne K Salomon, Sarah K Gaichas, Olaf P Jensen

  15. Observations of atmospheric tides on Mars at the season and latitude of the Phoenix atmospheric entry

    E-Print Network [OSTI]

    Withers, Paul

    Observations of atmospheric tides on Mars at the season and latitude of the Phoenix atmospheric atmospheric entry of NASA's Phoenix Mars probe using Phoenix Atmospheric Structure Experiment (ASE) data atmospheric entry, Geophys. Res. Lett., 37, L24204, doi:10.1029/2010GL045382. 1. Introduction [2] Phoenix

  16. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Science, Computing, Applied Math science-innovationassetsimagesicon-science.jpg Information Science, Computing, Applied Math National security depends on science...

  17. STOKED ABOUT SCIENCE? Science Summer

    E-Print Network [OSTI]

    Machel, Hans

    ) · Sunscreen & Bug Spray · www.science.ualberta.ca/summercamps Proper footwear (no flip flops) #12;Half Day

  18. The Science of Science Dr. Katy Brner

    E-Print Network [OSTI]

    Menczer, Filippo

    1 The Science of Science Dr. Katy Börner Cyberinfrastructure for Network Science Center, Director Information Visualization Laboratory, Director School of Library and Information Science Indiana University February 20th, 2008 Computational Scientometrics: Studying Science by Scientific Means Börner, Katy, Chen

  19. 1 Geological Sciences GEOLOGICAL SCIENCES

    E-Print Network [OSTI]

    Vertes, Akos

    1 Geological Sciences GEOLOGICAL SCIENCES Geological sciences' faculty members are engaged in research on the geology and paleontology of the Appalachian and Rocky mountains, Asia and elsewhere. They collaborate with scientists from the U.S. Geological Survey and other international organizations. Research

  20. Geology and Geophysics College of Science code-BS

    E-Print Network [OSTI]

    Kihara, Daisuke

    Geology and Geophysics College of Science code-BS Code-GEOP 120 Credits "C-"or better required Professional Elective (3xxxx and above) (6) EAPS 49000 Geology Field Experience (summer) (3) Science ******************************************************************************************************************************** (effective Fall 2013) #12;Geology and Geophysics Fall 2015 Department of Earth, Atmospheric, and Planetary

  1. Geology and Geophysics College of Science code-BS

    E-Print Network [OSTI]

    Kihara, Daisuke

    Geology and Geophysics College of Science code-BS Code-GEOP 120 Credits "C-"or better required Professional Elective (3xxxx and above) (6) EAPS 49000 Geology Field Experience (summer) (3) Science ******************************************************************************************************************************** (effective Fall 2013) #12;Geology and Geophysics Fall 2014 Department of Earth, Atmospheric, and Planetary

  2. Pulsed atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

  3. Critical phenomena in atmospheric precipitation

    E-Print Network [OSTI]

    Loss, Daniel

    LETTERS Critical phenomena in atmospheric precipitation OLE PETERS1,2,3 * AND J. DAVID NEELIN3 1 convection and precipitation (the order parameter)--with correlated regions on scales of tens to hundreds the climatological mean by an order of magnitude or more. Moist convection and the accompanying precipitation have

  4. National Atmospheric Release Advisory Center (NARAC) Capabilities for Homeland Security

    SciTech Connect (OSTI)

    Sugiyama, G; Nasstrom, J; Baskett, R; Simpson, M

    2010-03-08

    The Department of Energy's National Atmospheric Release Advisory Center (NARAC) provides critical information during hazardous airborne releases as part of an integrated national preparedness and response strategy. Located at Lawrence Livermore National Laboratory, NARAC provides 24/7 tools and expert services to map the spread of hazardous material accidentally or intentionally released into the atmosphere. NARAC graphical products show affected areas and populations, potential casualties, and health effect or protective action guideline levels. LLNL experts produce quality-assured analyses based on field data to assist decision makers and responders. NARAC staff and collaborators conduct research and development into new science, tools, capabilities, and technologies in strategically important areas related to airborne transport and fate modeling and emergency response. This paper provides a brief overview of some of NARAC's activities, capabilities, and research and development.

  5. School of Mathematical and Physical Sciences

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    environmental challenges such as climate change, ozone depletion and atmospheric pollution. Meteorology of climate change on agriculture and water resources, or the effects of the built environment and pollution on the local climate of cities. This means that we are able to look beyond the underpinning science

  6. National Oceanic and Atmospheric Administration U.S. Department of Commerce

    E-Print Network [OSTI]

    science, for analyzing current and anticipated uses of ocean, coastal, and Great Lakes areas. Coastal) #12;4 Ocean Uses Assessments ­ Maps and analyzes current and likely future ocean uses by kindsNational Oceanic and Atmospheric Administration U.S. Department of Commerce NOAAStrategic

  7. A New Theory for the Atmospheric Energy Spectrum: Depth-Limited Temperature Anomalies at the Tropopause

    E-Print Network [OSTI]

    Smith, K. Shafer

    A New Theory for the Atmospheric Energy Spectrum: Depth-Limited Temperature Anomalies Sciences, New York University, 251 Mercer Street, New York, NY 10012 Communicated by Andrew J. Majda, June- bations generated at the planetary scale excite a direct cas- cade of energy with a slope of -3 at large

  8. Z .Dynamics of Atmospheres and Oceans 28 1998 93105 Fluid transport by dipolar vortices

    E-Print Network [OSTI]

    Flór, Jan-Bert

    Z .Dynamics of Atmospheres and Oceans 28 1998 93­105 Fluid transport by dipolar vortices I. Eames a forward, where C s1 for a Lamb's dipole. The results areM M applied to examine fluid transport by dipolar potential vorticity. q 1998 Elsevier Science B.V. All rights reserved. Keywords: Fluid transport; Dipoles

  9. is typical of atmospheric chemistry. Years of field, laboratory and modelling studies indi-

    E-Print Network [OSTI]

    Shoubridge, Eric

    that, in the atmosphere, particle nuclea- tion and growth might involve both gas and condensed happenswhenotheratmosphericcomponents, such as anthropogenic hydrocarbons and nitrogen oxides, are added to the mix, as these compounds­41 (2008). 2. Kiendler-Scharr, A. etal. Nature 461, 381­384 (2009). 3. Tunved, P. etal. Science 312, 261

  10. NOAA's Office of Oceanic and Atmospheric Research Roundtable: Earth System Modeling

    E-Print Network [OSTI]

    Summary NOAA's Office of Oceanic and Atmospheric Research Roundtable: Earth System Modeling in Environmental Sciences at the University of Colorado, centered on Earth System Modeling and OAR's role develop and/or can use accurate and timely predictions of the Earth system that come from modeling. The 18

  11. A Data System for Visualizing 4-D Atmospheric CO2 Models and Data

    E-Print Network [OSTI]

    Michalak, Anna M.

    A Data System for Visualizing 4-D Atmospheric CO2 Models and Data Tyler A. Erickson Michigan Tech CO2 Models and Data Abstract This paper describes a geospatial data system that produces KML.michalak@umich.edu John C. Lin Department of Earth and Environmental Sciences University of Waterloo 200 University Avenue

  12. Informal Symposium on Kinetics and Photochemical Processes in the Atmosphere (2011)

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    2011-01-01

    , Department of Earth System Science) Atmospheric Chemistry, Climate Change, and the IPCC: Uncertainties, 2011, 7:30AM ­ 6:30PM Student Center at the University of California at Irvine Sponsored by: Activated in the "Data" 4:45-5:00 Concluding remarks, announcement of the host for the 2012 meeting. 5:00-6:30 Dinner #12

  13. Crowdsourcing, Climate Change and Student Science: The Community Collaborative Rain, Hail and Snow Network

    E-Print Network [OSTI]

    Stephens, Graeme L.

    it one of the most innovative citizen science programs in the nation. Students of all ages at over 100Crowdsourcing, Climate Change and Student Science: The Community Collaborative Rain, Hail and Snow: Dr. Nolan Doesken Address: Department of Atmospheric Science 1371 Campus Delivery Colorado State

  14. [Faculty of Science Information and Computing Sciences

    E-Print Network [OSTI]

    Löh, Andres

    [Faculty of Science Information and Computing Sciences] Terminating combinator parsers in Agda and Computing Sciences Utrecht University June 12, 2008 #12;[Faculty of Science Information and Computing Information and Computing Sciences] 3 Totality #12;[Faculty of Science Information and Computing Sciences] 4

  15. Academy of Integrated Science College of Science

    E-Print Network [OSTI]

    Zallen, Richard

    FALL 2015 Academy of Integrated Science College of Science Virginia Tech Integrated Science SCIENCE CURRICULUM COMPILED BY NORA SULLIVAN PROGRAM ACADEMIC ADVISOR ACADEMY OF INTEGRATED SCIENCE COLLEGE OF SCIENCE VIRGINIA TECH NORA84@VT.EDU 540-231-2442 WWW.SCIENCE.VT.EDU/AIS/ISC #12

  16. Modified gaseous atmospheres for storage of beef, lamb and pork 

    E-Print Network [OSTI]

    Davis, George Theodore

    1979-01-01

    MODIFIED G'~. ' . . OUS ATMOSPHERI. S FOR STORAGE OI REEF, I. PMB AND PORK A Thesis by GEORGE THEODORE DAVIS I II Submitted to thc. graduate college of Texas AsM University in partial fulfillment of the rec, u. 'rement fox the degree... of MASTER OF SCIENCE December ' 1979 Major Subject: Animal "" ience MODIF1ED GASEOUS ATMOSPHERES FOR STORAGE OF BEEFi LAMB AND PORK A Thesis GEORGE THEODORE DAVIS III Approved as to style and content. by (Co Chairman of ommittee) (Member) (Member...

  17. Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Reports News and Awards Supporting Organizations Home | Science & Discovery | Nuclear Science Nuclear Science | Nuclear Science SHARE In World War II's Manhattan Project,...

  18. Information Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Science and Technology (ASIS&T) American Society for Indexing (ASI) Digital Library Federation (DLF) National Archives and Records Administration (NARA) Special...

  19. What Makes Science, Science? Research, Shared Effort ... & A...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Makes Science, Science? Research, Shared Effort ... & A New Office of Science Website What Makes Science, Science? Research, Shared Effort ... & A New Office of Science Website...

  20. NREL: Energy Sciences - Chemical and Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the U.S. Department of Energy (DOE) National Photovoltaic Program and DOE Basic Energy Sciences Program. Materials Science. The Materials Science Group's research...

  1. Equilibration of an atmosphere by geostrophic turbulence

    E-Print Network [OSTI]

    Jansen, Malte F. (Malte Friedrich)

    2013-01-01

    A major question for climate studies is to quantify the role of turbulent eddy fluxes in maintaining the observed atmospheric mean state. It has been argued that eddy fluxes keep the mid-latitude atmosphere in a state that ...

  2. Atmospheric Chemistry and Air Pollution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore »and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  3. Radar range measurements in the atmosphere.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2013-02-01

    The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  4. Atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM)

    1999-01-01

    Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

  5. Atmospheric evolution on Venus Bruce Fegley, Jr.

    E-Print Network [OSTI]

    1 Atmospheric evolution on Venus Bruce Fegley, Jr. Planetary Chemistry Laboratory Department by Hunten et al. (1983), of Magellan results by Bougher et al. (1997), and atmospheric chemistry on Venus and Ancient Environments Edited by Vivien Gornitz January 2004 #12;2 ATMOSPHERIC EVOLUTION ON VENUS Overview

  6. Atmospheric Lifetime of Fossil Fuel Carbon Dioxide

    E-Print Network [OSTI]

    Atmospheric Lifetime of Fossil Fuel Carbon Dioxide David Archer,1 Michael Eby,2 Victor Brovkin,3 released from combustion of fossil fuels equilibrates among the various carbon reservoirs of the atmosphere literature on the atmospheric lifetime of fossil fuel CO2 and its impact on climate, and we present initial

  7. Proof of the Atmospheric Greenhouse Effect

    E-Print Network [OSTI]

    Smith, Arthur P

    2008-01-01

    A recently advanced argument against the atmospheric greenhouse effect is refuted. A planet without an infrared absorbing atmosphere is mathematically constrained to have an average temperature less than or equal to the effective radiating temperature. Observed parameters for Earth prove that without infrared absorption by the atmosphere, the average temperature of Earth's surface would be at least 33 K lower than what is observed.

  8. Life sciences

    SciTech Connect (OSTI)

    Day, L. (ed.)

    1991-04-01

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs. (MHB)

  9. Atmospheric composition change - global and regional air quality

    E-Print Network [OSTI]

    2009-01-01

    in urban air. Atmospheric Chemistry and Physics 5, 2881–deep convective system. Atmospheric Chemistry and Physics 4,processes in atmospheric chemistry. Chemical Society Review

  10. Coupling of nitrous oxide and methane by global atmospheric chemistry

    E-Print Network [OSTI]

    Prather, MJ; Hsu, J

    2010-01-01

    supported by NSF’s Atmospheric Chemistry program (grant ATM-Methane by Global Atmospheric Chemistry Michael J. Prathergas, through atmospheric chemistry that en- hances the

  11. Formation mechanisms and quantification of organic nitrates in atmospheric aerosol

    E-Print Network [OSTI]

    Rollins, Andrew Waite

    2010-01-01

    and J. Viidanoja, Atmospheric chemistry of c 3 -c 6organic nitrates, Atmospheric Chemistry and Physics, 9 (4),organic aerosol yields, Atmospheric Chemistry and Physics

  12. 1997 Atmospheric Chemistry Colloquium for Emerging Senior Scientists

    SciTech Connect (OSTI)

    Paul H. Wine

    1998-11-23

    DOE's Atmospheric Chemistry Program is providing partial funding for the Atmospheric Chemistry Colloquium for Emerging Senior Scientists (ACCESS) and FY 1997 Gordon Research Conference in Atmospheric Chemistry

  13. Bachelor of Science & Bachelor of Science (Technology)

    E-Print Network [OSTI]

    Waikato, University of

    Bachelor of Science & Bachelor of Science (Technology) SpecialiSationS Environmental Microbiology environment. This specialisation can be attached to the Environmental Sciences major. Environmental Modelling Sciences major. Land and Freshwater Environments This specialisation is for students interested

  14. Science Learning+: Phase 1 projects Science Learning+

    E-Print Network [OSTI]

    Rambaut, Andrew

    Science Learning+: Phase 1 projects Science Learning+ Phase 1 projects 2 December 2014 #12..............................................................................................................4 Youth access and equity in informal science learning: developing a research and practice agenda..................................................................................................5 Enhancing informal learning through citizen science..............................................6

  15. Security Science & Technology | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Treaty Verification Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology Reactor Technology Nuclear Science Home | Science & Discovery |...

  16. College of Health Sciences Health Sciences Connection

    E-Print Network [OSTI]

    Barrash, Warren

    College of Health Sciences Health Sciences Connection 1 Dean's Message College of Health Sciences Health Sciences Connection February 2011 Volume IX (3) Since the last COHS newsletter, the faculty Dr. Tim Dunnagan, Dean #12;Health Sciences Connection 2 College News College of Health Sciences

  17. Web of Science Web of ScienceWeb of Science

    E-Print Network [OSTI]

    Wang, Yayu

    Web of Science 2015-3-25 #12;Web of ScienceWeb of Science 93 2 22 7 Web of Science #12; 3.com/WOS_GeneralSearch_input.do?product=WOS&search_ mode=GeneralSearch&SID=4CLD1VklEapSgBPAiM8&preferencesSaved= Web of Science Web of Science core; #12; IDS IDS IDS #12; 50 "" #12; #12; 1. 2. 3. #12;4. 5. #12;6. Web of ScienceSCI 2

  18. Computer Science UNDERGRADUATE

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    447 Computer Science UNDERGRADUATE PROGRAMS The Department of Computer Science provides undergraduate instruction leading to the bachelor's degree in computer science. This program in computer science is accredited by the Computer Science Accreditation Board (CSAB), a specialized accrediting body recognized

  19. Department of Materials Science &

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    Developing Leaders of Innovation Department of Materials Science & Engineering #12;At the University of Virginia, students in materials science, engineering physics and engineering science choose to tackle compelling issues in materials science and engineering or engineering science

  20. COMPUTER SCIENCE EECS Department

    E-Print Network [OSTI]

    COMPUTER SCIENCE EECS Department The Electrical Engineering and Computer Science (EECS) Department at WSU offers undergraduate degrees in electrical engineering, computer engineering and computer science. The EECS Department offers master of science degrees in computer science, electrical engineering

  1. Pulsed atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Design and Engineering of most components in the Pulsed Atmospheric Fluidized Bed System was completed prior to September 1992. The components remaining to be designed at that time were: Aerovalves for the Pulse Combustor; Gas and coal injectors for the Pulse Combustor; Lines for PC tailpipes; Air plenum and inlet silencer; Refractory lined hot gas duct connecting outlet hot cyclone to boiler; Structure and platforms, and ladders around PAFBC vessel access and major equipment. Design work is currently in progress on all of the above components. Items 1, 2, 3 and 4 are 50% completed, and items 5 6 are 75% complete.

  2. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 3: Atmospheric and climate research

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER) atmospheric sciences and carbon dioxide research programs provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. PNL has had a long history of technical leadership in the atmospheric sciences research programs within OHER. Within the Environmental Sciences Division of OHER, the Atmospheric Chemistry Program continues DOE`s long-term commitment to understanding the local, regional, and global effects of energy-related air pollutants. Research through direct measurement, numerical modeling, and analytical studies in the Atmospheric Chemistry Program emphasizes the long-range transport, chemical transformation, and removal of emitted pollutants, photochemically produced oxidant species, nitrogen-reservoir species, and aerosols. The atmospheric studies in Complex Terrain Program applies basic research on atmospheric boundary layer structure and evolution over inhomogeneous terrain to DOE`s site-specific and generic mission needs in site safety, air quality, and climate change. Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements, the Computer Hardware, Advanced Mathematics and Model Physics, and Quantitative Links program to form DOE`s contribution to the US Global Change Research Program. The description of ongoing atmospheric and climate research at PNL is organized in two broad research areas: atmospheric research; and climate research. This report describes the progress in fiscal year 1993 in each of these areas. Individual papers have been processed separately for inclusion in the appropriate data bases.

  3. Supporting Organizations | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Engineering Fusion & Materials for Nuclear Systems Nuclear Science Home | Science & Discovery | Nuclear Science | Supporting Organizations SHARE Supporting...

  4. Science & Technology Review March 2007

    SciTech Connect (OSTI)

    Radousky, H B

    2007-02-05

    This month's issue has the following articles: (1) Partnering to Enhance Americans Health--Commentary by Tomas Diaz de la Rubia; (2) Advancing the Frontiers in Cancer Research--Researchers at the University of California Davis Cancer Center and Lawrence Livermore are teaming up to fight cancer; (3) On the Leading Edge of Atmospheric Predictions--Continual research and development at the National Atmospheric Release Advisory Center help mitigate the consequences of toxic airborne hazards; (4) Climate and Agriculture: Change Begets Change--A Livermore researcher is using computer models to explore how a warmer climate may affect crop yields in California; (5) New Routes to High Temperatures and Pressures--With functionally graded density impactors composed of thin metal and polyethylene films, researchers can explore new areas of experimental physics; and (6) From Sound Waves to Stars: Teller's Contributions to Shock Physics--Edward Teller's interest in shock physics led to significant developments in both basic and applied science.

  5. Science Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & ANALYSIS www.sciencemag.org SCIENCE VOL 339 8 FEBRUARY 2013 635 Steven Chu, the fi rst Nobel-winning scien- tist to lead the sprawling U.S. Department of Energy (DOE), has rarely...

  6. Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum July 22, 2013 LOS ALAMOS, N.M., July 22, 2013-Los Alamos National Laboratory's Bradbury...

  7. Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets

    SciTech Connect (OSTI)

    Davis, K.J.; Richardson, S.J.; Miles, N.L.

    2007-03-07

    Inversions of atmospheric CO2 mixing ratio measurements to determine CO2 sources and sinks are typically limited to coarse spatial and temporal resolution. This limits our ability to evaluate efforts to upscale chamber- and stand-level CO2 flux measurements to regional scales, where coherent climate and ecosystem mechanisms govern the carbon cycle. As a step towards the goal of implementing atmospheric budget or inversion methodology on a regional scale, a network of five relatively inexpensive CO2 mixing ratio measurement systems was deployed on towers in northern Wisconsin. Four systems were distributed on a circle of roughly 150-km radius, surrounding one centrally located system at the WLEF tower near Park Falls, WI. All measurements were taken at a height of 76 m AGL. The systems used single-cell infrared CO2 analyzers (Licor, model LI-820) rather than the siginificantly more costly two-cell models, and were calibrated every two hours using four samples known to within ± 0.2 ppm CO2. Tests prior to deployment in which the systems sampled the same air indicate the precision of the systems to be better than ± 0.3 ppm and the accuracy, based on the difference between the daily mean of one system and a co-located NOAA-ESRL system, is consistently better than ± 0.3 ppm. We demonstrate the utility of the network in two ways. We interpret regional CO2 differences using a Lagrangian parcel approach. The difference in the CO2 mixing ratios across the network is at least 2?3 ppm, which is large compared to the accuracy and precision of the systems. Fluxes estimated assuming Lagrangian parcel transport are of the same sign and magnitude as eddy-covariance flux measurements at the centrally-located WLEF tower. These results indicate that the network will be useful in a full inversion model. Second, we present a case study involving a frontal passage through the region. The progression of a front across the network is evident; changes as large as four ppm in one minute are captured. Influence functions, derived using a Lagrangian Particle Dispersion model driven by the CSU Regional Atmospheric Modeling System and nudged to NCEP reanalysis meteorological fields, are used to determine source regions for the towers. The influence functions are combined with satellite vegetation observations to interpret the observed trends in CO2 concentration. Full inversions will combine these elements in a more formal analytic framework.

  8. Faculty of Science Environmental Science

    E-Print Network [OSTI]

    for career success. An Environmental Science degree is also appropriate background training for professions Resources A new and integrated set of state-of-the-art laboratory and field equipment has been designed

  9. Neutron Science | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL's long history of neutron science began in the 1940s with the pioneering neutron scattering studies of Ernest Wollan and Clifford Shull. Shull was co-recipient of...

  10. The Science of Team Science: Origins and Themes The Science of Team Science

    E-Print Network [OSTI]

    Finley Jr., Russell L.

    The Science of Team Science: Origins and Themes The Science of Team Science Overview of the Field, PhD Abstract: The science of team science encompasses an amalgam of conceptual and methodologic about the cost effectiveness of public- and private-sector investments in team-based science

  11. Statistics and Actuarial Science

    E-Print Network [OSTI]

    Chauve, Cedric

    SCIENCE SFU.CA/ SCIENCE Statistics and Actuarial Science #12;Further Information Student info, academic calendar, registration students.sfu.ca Science advising sfu.ca/science/undergrad/advising Statistics and Actuarial Science The Department of Statistics and Actuarial Science offers the degree

  12. Pulsed atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    The design of the Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) as described in the Quarterly Report for the period April--June, 1992 was reviewed and minor modifications were included. The most important change made was in the coal/limestone preparation and feed system. Instead of procuring pre-sized coal for testing of the PAFBC, it was decided that the installation of a milling system would permit greater flexibility in the testing with respect to size distributions and combustion characteristics in the pulse combustor and the fluid bed. Particle size separation for pulse combustor and fluid bed will be performed by an air classifier. The modified process flow diagram for the coal/limestone handling system is presented in Figure 1. The modified process flow diagrams of the fluidized bed/steam cycle and ash handling systems are presented in Figures 2 and 3, respectively.

  13. Mesoscale coupled ocean-atmosphere interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01

    mesoscale oceanic features are current coarse resolutionmesoscale r current variability associated with oceanic ringthe TIW- currents. These mesoscale oceanic and atmospheric

  14. Mesoscale Coupled Ocean-Atmosphere Interaction

    E-Print Network [OSTI]

    Seo, Hyodae

    2007-01-01

    mesoscale oceanic features are current coarse resolutionmesoscale r current variability associated with oceanic ringthe TIW- currents. These mesoscale oceanic and atmospheric

  15. Physics Potential of Future Atmospheric Neutrino Searches

    E-Print Network [OSTI]

    Thomas Schwetz

    2008-12-12

    The potential of future high statistics atmospheric neutrino experiments is considered, having in mind currently discussed huge detectors of various technologies (water Cerekov, magnetized iron, liquid Argon). I focus on the possibility to use atmospheric data to determine the octant of $\\theta_{23}$ and the neutrino mass hierarchy. The sensitivity to the $\\theta_{23}$-octant of atmospheric neutrinos is competitive (or even superior) to long-baseline experiments. I discuss the ideal properties of a fictitious atmospheric neutrino detector to determine the neutrino mass hierarchy.

  16. 4, 497545, 2011 atmosphere-wildland

    E-Print Network [OSTI]

    Mandel, Jan

    by the coupling of a mesoscale weather 498 #12;GMDD 4, 497­545, 2011 Coupled atmosphere-wildland model WRF-Fire 3

  17. Impacts of Atmospheric Anthropogenic Nitrogen on the

    E-Print Network [OSTI]

    Ward, Bess

    discharges from wastewater treatment, atmospheric deposition, and so forth, resulting in increasing), including oxidized and reduced inorganic and organic forms. The availability of Nr limits primary pro

  18. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth...

  19. Atmospheric chemistry of an Antarctic volcanic plume

    E-Print Network [OSTI]

    2010-01-01

    ET AL. : EREBUS PLUME CHEMISTRY Horrocks, L. A. , C.et al. (2010), Atmospheric chemistry results from the ANTCI2007), Reactive halogen chemistry in volca- nic plumes, J.

  20. Science DMZ Implemented at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @...

  1. Information science is neither

    E-Print Network [OSTI]

    Furner, J

    2015-01-01

    of library and information sciences, 3rd ed. , edited byAmerican Society for Information Science and Technology 63,Annual Review of Information Science and Technology 41, no.

  2. Physics | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics ORNL Physics Environment Safety and Health More Science Home | Science & Discovery | More Science | Physics SHARE Physics Bottom view of the 25 million volt tandem...

  3. Science & Discovery | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Clean Energy National Security Neutron Science Nuclear Science Supercomputing and Computation More Science Hubs, Centers and Institutes US ITER Mars 'Curiosity'...

  4. ORISE: Forensic Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forensic Science Forensic Science The Oak Ridge Institute for Science and Education (ORISE) provides direct forensic analytical support, consulting and training services to United...

  5. Computational Science and Engineering

    E-Print Network [OSTI]

    Giger, Christine

    Computational Science and Engineering Research Profile The Computational Science and Engineering and Process Engineering Computational Science and Engineering Laboratory Prof. Dr. Petros Koumoutsakos petros

  6. Earth & Environmental Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth & Environmental Science Earth & Environmental Science1354608000000Earth & Environmental ScienceSome of these resources are LANL-only and will require Remote Access.No...

  7. BER Science Network Requirements

    E-Print Network [OSTI]

    Dart, Eli

    2011-01-01

    of Energy, Office of Science, Office of Advanced Scientificthe Directors of the Office of Science, Office of Advanced5 Simulation Data Key Remote Science Drivers Instruments and

  8. Neural Social Science

    E-Print Network [OSTI]

    Lakoff, George

    2013-01-01

    interpersonal warmth . ” Science, 322, 2008, 606–607 . Atcold? ” Psychological Science , 19, 2008, 838–842. Subjectsand physical cleansing. Science, 313, 1451–1452. Students

  9. Citizen science in archaeology

    E-Print Network [OSTI]

    Smith, ML

    2014-01-01

    Melinda A. Zeder Smith] CITIZEN SCIENCE IN ARCHAEOLOGY 2014and Application of Citizen Science. Biological ConservationHilchey 2011 A Review of Citizen Science and Community-Based

  10. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  11. [Faculty of Science Information and Computing Sciences

    E-Print Network [OSTI]

    Löh, Andres

    [Faculty of Science Information and Computing Sciences] 1 Types in Functional Programming Languages Andres L¨oh Department of Information and Computing Sciences Utrecht University UU General Math Colloquium ­ May 8, 2008 #12;[Faculty of Science Information and Computing Sciences] 2 Overview What

  12. History of Science 157 Sociology of Science

    E-Print Network [OSTI]

    Shapin, Steven

    1 History of Science 157 Sociology of Science Fall 2009 Steven Shapin Science Center 469 Tuesdays to thinking about science, its historical development, its relations to society and other forms of culture: Science Center 451 Office hours: Mondays 8:30 -> 10.15, or by arrangement #12;2 E-mail: shapin

  13. College of Health Sciences Health Sciences Connection

    E-Print Network [OSTI]

    Barrash, Warren

    College of Health Sciences Health Sciences Connection 1 Dean's Message College of Health Sciences Health Sciences Connection Back to School edition September 2010 Volume IX (1) Dr. Tim Dunnagan, Dean of the College of Health Sciences (COHS) at Boise State University (BSU). It is truly an honor to have

  14. Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition

    E-Print Network [OSTI]

    Zhuang, Qianlai

    Soil consumption of atmospheric methane plays an important secondary role in regulating the atmospheric CH4 budget, next to the dominant loss mechanism involving reaction with the hydroxyl radical (OH). Here we used a ...

  15. GEOL425: Data Analysis in the Earth & Environmental Sciences GEOL425 : Data Analysis in the Earth & Environmental Sciences -Fall 2009 1

    E-Print Network [OSTI]

    Becker, Thorsten W.

    in the atmospheric sciences, Academic Press, 2006. Boas, M, Mathematical Methods in the Physical Sciences, 2nd-tiered approach. The first tier serves as an introduction (and/or refresher) to the fundamental principles parametric and non-parametric statistical tests. · Applying a number of these tools to their own research

  16. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRDUniversitySchedules PrintNIF AboutScienceScience

  17. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurityPediatricNOAA ScienceScience Highlights Print

  18. Stellar Atmospheres, Ht 2007 Problem Set 1

    E-Print Network [OSTI]

    Korn, Andreas

    Stellar Atmospheres, Ht 2007 Problem Set 1 Due date: Monday, 24 September 2007 at 10.15 1. LTE of how temperature is defined. (b) Where in the solar atmosphere would you expect the strongest for the photosphere? (c) How does the relation between matter and radiation differ between LTE and NLTE? What must

  19. Results from the Phoenix Atmospheric Structure Experiment

    E-Print Network [OSTI]

    Withers, Paul

    Results from the Phoenix Atmospheric Structure Experiment Paul Withers1 and David Catling2 (1 and atmospheric structure reconstruction for Phoenix · Highlight selected aspects of Phoenix reconstruction reconstruction for Phoenix · Highlight selected aspects of Phoenix reconstruction that offer lessons for future

  20. Geochemistry of Surface-Atmosphere Interactions on

    E-Print Network [OSTI]

    Withers, Paul

    , T, and atmospheric composition ¥ ...Kinetics ¥ What are the major minerals? ¥ What is the oxidation of terrestrial alkaline igneous rocks #12;Oxidation State of the Surface ¥ 2CO + O2 = 2CO2 controls O2 ¥ Lack. ¥ S in lower atmosphere is kinetically controlled ¥ CaCO3 + SO2 = CaSO4 + CO removes SO2 , deposits CaSO4 ¥ Fe

  1. Science &Technology Facilities Council

    E-Print Network [OSTI]

    Science &Technology Facilities Council Science &Technology Facilities Council Science and Technology Facilities Council Annual Report and Accounts 2011-2012 Science and Technology Facilities Council Laboratory, Cheshire; UK Astronomy Technology Centre, Edinburgh; Chilbolton Observatory, Hampshire; Isaac

  2. Redirecting science

    SciTech Connect (OSTI)

    Aaserud, F.

    1990-01-01

    This book contains the following chapters. Science policy and fund-raising up to 1934; The Copenhagen spirit at work, late 1920's to mid-1930s; The refugee problem, 1933 to 1935; Experimental biology, late 1920s to 1935; and Consolidation of the transition, 1935 to 1940.

  3. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  4. Fusion Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology...

  5. Science &Technology Facilities Council

    E-Print Network [OSTI]

    Science &Technology Facilities Council Accelerator Science and Technology Centre Daresbury Science)1235 445808 www.stfc.ac.uk/astec Head office, Science and Technology Facilities Council, Polaris House, North Newton Group, La Palma: Joint Astronomy Centre, Hawaii. ASTeC Science Highlights 2009 - 2010 Science

  6. Studying atmosphere-dominated hot Jupiter Kepler phase curves: Evidence that inhomogeneous atmospheric reflection is common

    E-Print Network [OSTI]

    Shporer, Avi

    2015-01-01

    We identify 3 Kepler transiting planet systems, Kepler-7, Kepler-12, and Kepler-41, whose orbital phase-folded light curves are dominated by planetary atmospheric processes including thermal emission and reflected light, while the impact of non-atmospheric (i.e. gravitational) processes, including beaming (Doppler boosting) and tidal ellipsoidal distortion, is negligible. Therefore, those systems allow a direct view of their atmospheres without being hampered by the approximations used in the inclusion of both atmospheric and non-atmospheric processes when modeling the phase curve shape. Here we analyze Kepler-12b and Kepler-41b atmosphere based on their Kepler phase curve, while the analysis of Kepler-7b was presented elsewhere. The model we used efficiently computes reflection and thermal emission contributions to the phase curve, including inhomogeneous atmospheric reflection due to longitudinally varying cloud coverage. We confirm Kepler-12b and Kepler-41b show a westward phase shift between the brightest...

  7. Board on Chemical Sciences and Technology. Progress report, June 15, 1991--December 31, 1992

    SciTech Connect (OSTI)

    Raber, D.J.

    1992-12-31

    BCST is concerned with areas in chemical science and technology that can contribute to the solution of important national problems: Nuclear and radiochemistry, atmospheric and chemical sciences, chemical handling in laboratories, radwaste disposal, environment, computation chemistry, curriculum, etc. Review panel member addresses are included in an appendix.

  8. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurityPediatricNOAA Science

  9. Computer Science Department of Computer Science

    E-Print Network [OSTI]

    Heller, Barbara

    Computer Science Department of Computer Science Stuart Building 10 W. 31st St. Chicago, IL 60616: Bogdan Korel The study of computer science is the inquiry into the nature of computation and its use in solving problems in an information-based society. Computer science is an evolving discipline, but it has

  10. [Faculty of Science Information and Computing Sciences

    E-Print Network [OSTI]

    Löh, Andres

    [Faculty of Science Information and Computing Sciences] Indexed fixed points Andres Löh Dept. of Information and Computing Sciences, Utrecht University P.O. Box 80.089, 3508 TB Utrecht, The Netherlands Web pages: http://www.cs.uu.nl/wiki/Center GP meeting, 21 November 2008 #12;[Faculty of Science Information

  11. [Faculty of Science Information and Computing Sciences

    E-Print Network [OSTI]

    Löh, Andres

    [Faculty of Science Information and Computing Sciences] Types, Universes and Everything Andres L¨oh Dept. of Information and Computing Sciences, Utrecht University P.O. Box 80.089, 3508 TB Utrecht, The Netherlands Web pages: http://www.cs.uu.nl/wiki/Center May 26, 2010 #12;[Faculty of Science Information

  12. [Faculty of Science Information and Computing Sciences

    E-Print Network [OSTI]

    Löh, Andres

    [Faculty of Science Information and Computing Sciences] Generic diff Andres Löh joint work with Eelco Lempsink and Sean Leather Dept. of Information and Computing Sciences, Utrecht University IFIP WG 2.1 meeting #64, Weltenburg, April 2, 2009 #12;[Faculty of Science Information and Computing

  13. [Faculty of Science Information and Computing Sciences

    E-Print Network [OSTI]

    Löh, Andres

    [Faculty of Science Information and Computing Sciences] Generic programming with the multirec. of Information and Computing Sciences, Utrecht University P.O. Box 80.089, 3508 TB Utrecht, The Netherlands Web pages: http://www.cs.uu.nl/wiki/Center May 15, 2009 #12;[Faculty of Science Information and Computing

  14. [Faculty of Science Information and Computing Sciences

    E-Print Network [OSTI]

    Löh, Andres

    [Faculty of Science Information and Computing Sciences] Generic programming with fixed points Dept. of Information and Computing Sciences, Utrecht University P.O. Box 80.089, 3508 TB Utrecht, The Netherlands Web pages: http://www.cs.uu.nl/wiki/Center September 2, 2009 #12;[Faculty of Science Information

  15. NSF WORKSHOP ON SCIENCE JOURNALISM Science Journalism

    E-Print Network [OSTI]

    Holsinger, Kent

    NSF WORKSHOP ON SCIENCE JOURNALISM Science Journalism: From 'Little Story on the Prairie retaining factual accuracy -- the key to good sci- ence communication and science journalism. Science journalism aims to transmute scientific concepts and re- sults from jargon-based language often understand

  16. POLITICAL SCIENCE Political science is the study

    E-Print Network [OSTI]

    POLITICAL SCIENCE Political science is the study of governments, public policies, and political behavior. Political science uses both humanistic perspectives and scientific skills to examine the United States and all countries and regions of the world. Students enrolled in Political Science courses explore

  17. College of Health Sciences Health Sciences Connection

    E-Print Network [OSTI]

    Barrash, Warren

    College of Health Sciences Health Sciences Connection 1 Dean's Message College of Health Sciences Health Sciences Connection November 2010 Volume IX (2) Rationale The faculty, staff and students within the sweeping changes associated with health care reform. Health care reform represents the most significant

  18. Web of Science Welcome to the Web of Science................................................................................................ 2

    E-Print Network [OSTI]

    Huang, Su-Yun

    Web of Science #12; Welcome to the Web of Science................................................................................................ 2 Web of Science.................................................................................................................. 4 ISI Web of Knowledge

  19. Encyclopedia of Cognitive Science ENCYCLOPEDIA OF COGNITIVE SCIENCE

    E-Print Network [OSTI]

    Hilber, David

    the physical, biological, #12;Encyclopedia of Cognitive Science and behavioural sciences to place seriousEncyclopedia of Cognitive Science 173 ENCYCLOPEDIA OF COGNITIVE SCIENCE 2000 ©Macmillan Reference

  20. BioenergizeME Virtual Science Fair: Science & Technology Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Technology Sustainable Transportation Fuels BioenergizeME Virtual Science Fair: Science & Technology Sustainable Transportation Fuels BioenergizeME Virtual Science Fair:...

  1. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS...

  2. Transport impacts on atmosphere and climate: Aviation

    E-Print Network [OSTI]

    2010-01-01

    Environment 44 (2010) 4678–4734 Brunner, D. , Staehelin,Environment 44 (2010) 4678–4734 Vedantham, A. , Wuebbles,Environment 44 (2010) 4678–4734 global atmosphere’. In:

  3. Optical Intensity Interferometry through Atmospheric Turbulence

    E-Print Network [OSTI]

    Peng Kian Tan; Aik Hui Chan; Christian Kurtsiefer

    2015-12-29

    Conventional ground-based astronomical observations suffer from image distortion due to atmospheric turbulence. This can be minimized by choosing suitable geographic locations or adaptive optical techniques, and avoided altogether by using orbital platforms outside the atmosphere. One of the promises of optical intensity interferometry is its independence from atmospherically induced phase fluctuations. By performing narrowband spectral filtering on sunlight and conducting temporal intensity interferometry using actively quenched avalanche photon detectors (APDs), the Solar $g^{(2)}(\\tau)$ signature was directly measured. We observe an averaged photon bunching signal of $g^{(2)}(\\tau) = 1.693 \\pm 0.003$ from the Sun, consistently throughout the day despite fluctuating weather conditions, cloud cover and elevation angle. This demonstrates the robustness of the intensity interferometry technique against atmospheric turbulence and opto-mechanical instabilities, and the feasibility to implement measurement schemes with both large baselines and long integration times.

  4. HYPERsensarium : an archive of atmospheric conditions

    E-Print Network [OSTI]

    Shaw, Kelly E. (Kelly Evelyn)

    2013-01-01

    HYPERsensarium proposes a tangible interface of atmospheres for public experience through an archive of historical and projected weathers. While architecture's purpose has long been to act as the technical boundary between ...

  5. Uraninite and Fullerene in Atmospheric Particulates

    E-Print Network [OSTI]

    Utsunomiya, Satoshi

    incineration, uranium mining, and atmospheric testing of nuclearweapons-burning power plants typically contain very small amounts of uranium ( concentrations, the form of the uranium has been unknown. Using a variety of advanced electron microscopy

  6. Life sciences and environmental sciences

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER`s mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  7. Life sciences and environmental sciences

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  8. Institut National des Sciences Appliquees Dept. of Engineering Mathematics,

    E-Print Network [OSTI]

    to the area of combustion and fire science. keywords: wildfire, fire modeling, CFD, data assimilation, fire; the treatment of real observations from fire sensors is not addressed. A simplified model of premixed combustion- physics processes: the combustion, the flow dynamics at the flame scale and the atmospheric dynamics

  9. Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951...

    Energy Savers [EERE]

    Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963....

  10. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    2008-01-15

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  11. Air Activation Following an Atmospheric Explosion

    SciTech Connect (OSTI)

    Lowrey, Justin D.; McIntyre, Justin I.; Prichard, Andrew W.; Gesh, Christopher J.

    2013-03-13

    In addition to thermal radiation and fission products, nuclear explosions result in a very high flux of unfissioned neutrons. Within an atmospheric nuclear explosion, these neutrons can activate the various elemental components of natural air, potentially adding to the radioactive signature of the event as a whole. The goal of this work is to make an order-of-magnitude estimate of the total amount of air activation products that can result from an atmospheric nuclear explosion.

  12. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  13. Basalt-Atmosphere Interactions on Venus -

    E-Print Network [OSTI]

    Treiman, Allan H.

    Atmosphere? · CaAl2Si2O8 + SO3 CaSO4 + Al2SiO5 + SiO2 ­ Anhydrite + andalusite + quartz !!! · Does this reaction proceed? ­ Venus atmosphere est'd 0.2 - 0.3 ppt SO3. #12;Reaction Position · From this, very possible that SO3 is buffered! · But ... SO3 value is not known very well - who knows what is really going

  14. Behavioral Sciences | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Computational Engineering Computer Science Data Earth Sciences Energy Science Future Technology Knowledge Discovery Materials Mathematics National Security Systems...

  15. Research Areas | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cycle Science & Technology Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation & Validation...

  16. Lookup tables to compute high energy cosmic ray induced atmospheric ionization and changes in atmospheric chemistry

    E-Print Network [OSTI]

    Dimitra Atri; Adrian L. Melott; Brian C. Thomas

    2010-05-03

    A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have the capability of incorporating the effects of substantial cosmic ray flux above 10 GeV . An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), is used to study atmospheric chemistry changes. Using CORSIKA, we have created tables that can be used to compute high energy cosmic ray (10 GeV - 1 PeV) induced atmospheric ionization and also, with the use of the NGSFC code, can be used to simulate the resulting atmospheric chemistry changes. We discuss the tables, their uses, weaknesses, and strengths.

  17. Atmospheric Neutrinos in the MINOS Far Detector

    SciTech Connect (OSTI)

    Howcroft, Caius L.F.

    2004-12-01

    The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for {nu}{sub {mu}} and {bar {nu}}{sub {mu}} are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

  18. Science Briefs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRDUniversitySchedules PrintNIF &Science Briefs

  19. Science Cafe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRDUniversitySchedules PrintNIF &Science

  20. Science Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment Top LDRDUniversitySchedulesScience Highlights

  1. Energy Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES October 27th, 2010 Thanks forEnergy Science Print Our current

  2. Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES October 27th, 2010 Thanks forEnergy Science Print Our

  3. Explosives Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvan Racah Evan-5 Beamline 1-5ComputingExplosives Science

  4. Science Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurityPediatricNOAA MAY 2013 VOL 340 SCIENCE

  5. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat PumpsTechnologiesTechnologiesScienceStudents | Center

  6. Science Council

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| Stanford SynchrotronVideo-Contest Sign56Science Careers202-000

  7. Science Digests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| Stanford SynchrotronVideo-Contest Sign56ScienceOpens

  8. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| Stanford SynchrotronVideo-ContestHighlightsScience Goal25, 2008

  9. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| Stanford SynchrotronVideo-ContestHighlightsScience Goal25,

  10. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| Stanford SynchrotronVideo-ContestHighlightsScience Goal25,Chang

  11. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| Stanford SynchrotronVideo-ContestHighlightsScience

  12. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| Stanford SynchrotronVideo-ContestHighlightsScienceHasan Research

  13. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| Stanford SynchrotronVideo-ContestHighlightsScienceHasan

  14. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| Stanford SynchrotronVideo-ContestHighlightsScienceHasan6, 2009

  15. Innovation in Computer Sciences

    E-Print Network [OSTI]

    Ghosh, Joydeep

    power- up Innovation in Computer Sciences Department of Computer Sciences at The University of Texas at Austin #12;#12;Computer science is the enabling science of our age. It is the engine. In the Department of Computer Sciences at The University of Texas at Austin, one of the top ten departments

  16. Review: Who’s asking? Native Science, Western Science and Science Education

    E-Print Network [OSTI]

    Ferrara, Enzo

    2015-01-01

    Western Science and Science Education By Douglas L. MedinScience and Science Education. Cambridge, MA: MIT Press,previously the director of education at the American Indian

  17. The Computational Sciences. Research

    E-Print Network [OSTI]

    Christensen, Dan

    The Computational Sciences. Research activities range from the theoretical foundations. The teaching mission of the computational sciences includes almost every student in the University for computational hardware and software. The computational sciences are undergoing explosive growth worldwide

  18. Sandia Energy - Fire Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fire Science Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Safety Technologies Risk and Safety Assessment Fire Science Fire ScienceTara Camacho-Lopez2015-05-11T17:01:52+0...

  19. OPTICAL SCIENCE & ENGINEERINGOPTICAL SCIENCE & ENGINEERINGOPTICAL SCIENCE & ENGINEERINGOPTICAL SCIENCE & ENGINEERING University of New Mexico

    E-Print Network [OSTI]

    New Mexico, University of

    OPTICAL SCIENCE & ENGINEERINGOPTICAL SCIENCE & ENGINEERINGOPTICAL SCIENCE & ENGINEERINGOPTICAL as waveguiding mechanism in optical fibers. We have shown, both experimentally and numerically, that for a moderate amount of disorder in optical fibers

  20. BES Science Network Requirements

    E-Print Network [OSTI]

    Dart, Eli

    2011-01-01

    the Directors of the Office of Science, Office of AdvancedOffice of Basic Energy Sciences. This is LBNL report LBNL-BES Science Network Requirements Report of the Basic Energy

  1. Computer Science Induction to

    E-Print Network [OSTI]

    Berger, Ulrich

    Computer Science Induction to Postgraduate Research Studies Ulrich Berger Head of Postgraduate Research Supervision Regulations Progression Regulations Computer Science Induction to Postgraduate Research Studies Ulrich Berger Head of Postgraduate Research Department of Computer Science Swansea

  2. E-Science Day

    E-Print Network [OSTI]

    Abad, Raquel

    2012-01-01

    on December 6, 2011, E-Science Day was a day-long event,regional librarians in e-science, and to expose regionalthe initiation of e-science support projects within their

  3. Communicating Evolution as Science

    E-Print Network [OSTI]

    Thanukos, Anastasia

    2010-01-01

    thuringiensis toxins. Science. 1992;258(5087):1451–5. MillerRT, Ruse M. But is it science? Amherst, NY: Prometheusto the philosophy of science: theory and reality. Chicago:

  4. Introduction Health Sciences

    E-Print Network [OSTI]

    Banbara, Mutsunori

    32 Introduction Guide Entrance Life Career Inquiries Health Sciences Health Problems population, changing lifestyle habit, and the coming of globalization age. The role health sciences play, the former Department of Health Sciences of the Graduate School of Medicine, was reorganized

  5. Recapitalizing EMSL: Meeting Future Science and Technology Challenges

    SciTech Connect (OSTI)

    Felmy, Andrew R.

    2008-07-01

    EMSL, located in Richland, Washington, is a national scientific user facility operated for the U.S. Department of Energy (DOE) by the Pacific Northwest National Laboratory. The vision that directed the development of EMSL as a problem-solving environment for environmental molecular science has led to significant scientific progress in many areas ranging from subsurface science to atmospheric sciences, and from biochemistry to catalysis. Our scientific staff and users are recognized nationally and internationally for their significant contributions to solving challenging scientific problems. We have explored new scientific frontiers and organized a vibrant and diverse user community in support of our mission as a national scientific user facility that provides integrated experimental and computational resources in the environmental molecular sciences. Users from around the world - from academia to industry and national laboratories to international research organizations - use the resources of EMSL because of the quality of science that we enable.

  6. The coupling of winds, aerosols and chemistry in Titan's atmosphere

    E-Print Network [OSTI]

    Hourdin, Chez Frédéric

    REVIEW The coupling of winds, aerosols and chemistry in Titan's atmosphere BY SEBASTIEN LEBONNOIS 1'Ae´ronomie, IPSL, CNRS, BP3, 91371 Verrie`res le Buisson, France The atmosphere of Titan is a complex system, where the observed atmospheric structure of Titan's lower atmosphere (mainly in the stratosphere and troposphere

  7. Phase of atmospheric secondary organic material affects its reactivity

    E-Print Network [OSTI]

    of the reactivity of atmospheric SOM particles. atmospheric chemistry chemical aging organic aerosol collectionPhase of atmospheric secondary organic material affects its reactivity Mikinori Kuwata and Scot T of atmospheric organic particles among solid, semisolid, and liquid phases is of keen current scientific interest

  8. Simulation and Theory of Ions at Atmospherically Relevant

    E-Print Network [OSTI]

    Levin, Yan

    Simulation and Theory of Ions at Atmospherically Relevant Aqueous Liquid-Air Interfaces Douglas J in the atmosphere influences air quality and climate. Molecular dy- namics simulations are becoming increasingly in the atmosphere. Here we review simulation studies of atmospherically relevant aqueous liquid-air interfaces

  9. Sandia Energy - Computational Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science Home Energy Research Advanced Scientific Computing Research (ASCR) Computational Science Computational Sciencecwdd2015-03-26T13:35:2...

  10. BES Science Network Requirements

    E-Print Network [OSTI]

    Dart, Eli

    2011-01-01

    21 Neutron Scattering Science User Facilities atlight source facilities, neutron scattering facilities, andup to 40Gbps 7 Neutron Scattering Science User Facilities at

  11. Science and Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Faces of Science The people behind our science Radical Supercomputing Extreme speeds, big data, powerful simulations 70 Years of Innovation Addressing the nation's most complex...

  12. Information science is neither

    E-Print Network [OSTI]

    Furner, J

    2015-01-01

    Information science is neither Jonathan Furner University ofIt would appear that we neither use nor need the conceptabout information, neither is data science primarily about

  13. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Sciences Fusion Energy Sciences Expanding the fundamental understanding of matter at very high temperatures and densities and to build the scientific foundation...

  14. Security Science & Technology | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Science & Technology Border Security Comprehensive Vulnerability and Threat Analysis Consequence Management, Safeguards, and Non-Proliferation Tools Export...

  15. Fuel Cycle Science & Technology | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiochemical Separation & Processing Recycle & Waste Management Uranium Enrichment Used Nuclear Fuel Storage, Transportation, and Disposal Fusion Nuclear Science Isotope...

  16. Computational Science and Engineering Certification for Computer Science

    E-Print Network [OSTI]

    Gilbert, Matthew

    Computational Science and Engineering Certification for Computer Science The Computational Science credential only available to students currently enrolled in the Computer Science undergraduate degree program that are distinct from already-required coursework. To receive a certificate in "Computational Science

  17. 146 Earth Science 147 Earth Science

    E-Print Network [OSTI]

    Richards-Kortum, Rebecca

    146 Earth Science 147 Earth Science ESCI 101 The Earth or ESCI 102 Evolution of the Earth or ESCI 107 Oceans and Global Change or ESCI 108 Crises of the Earth ESCI 105 Introductory Lab for Earth Geophysics I ESCI 444 Exploration Geophysics II or ESCI 446 Solid Earth Geophysics Math and Other Sciences

  18. College of Science CLINICAL SCIENCE AREA MANUAL

    E-Print Network [OSTI]

    1 College of Science CLINICAL SCIENCE AREA MANUAL DEPARTMENT OF PSYCHOLOGY VIRIGINIA TECH AY2015 Training 24 B. Clinical Science Area Committee 25 C. Graduate Student Representatives 25 D. Advisor 26 E for Continuation on to the Preliminary Examination 49 F. Plan of Study: Doctoral Degree 51 G. The Preliminary

  19. Annual symposium on Frontiers in Science

    SciTech Connect (OSTI)

    Metzger, N.; Fulton, K.R.

    1998-12-31

    This final report summarizes activities conducted for the National Academy of Sciences' Annual Symposium on Frontiers of Science with support from the US Department of Energy for the period July 1, 1993 through May 31, 1998. During the report period, five Frontiers of Science symposia were held at the Arnold and Mabel Beckman Center of the National Academies of Sciences and Engineering. For each Symposium, an organizing committee appointed by the NAS President selected and planned the eight sessions for the Symposium and identified general participants for invitation by the NAS President. These Symposia accomplished their goal of bringing together outstanding younger (age 45 or less) scientists to hear presentations in disciplines outside their own and to discuss exciting advances and opportunities in their fields in a format that encourages, and allows adequate time for, informal one-on-one discussions among participants. Of the 458 younger scientists who participated, over a quarter (124) were women. Participant lists for all symposia (1993--1997) are attached. The scientific participants were leaders in basic research from academic, industrial, and federal laboratories in such disciplines as astronomy, astrophysics, atmospheric science, biochemistry, cell biology, chemistry, computer science, earth sciences, engineering, genetics, material sciences, mathematics, microbiology, neuroscience, physics, and physiology. For each symposia, the 24 speakers and discussants on the program were urged to focus their presentations on current cutting-edge research in their field for a scientifically sophisticated but non-specialist audience, and to provide a sense of the experimental data--what is actually measured and seen in the various fields. They were also asked to address questions such as: What are the major research problems and unique tools in their field? What are the current limitations on advances as well as the frontiers? Speakers were asked to provide a 2500- to 3000-word synopsis of their speech in advance, so that participants, particularly those in other fields, could familiarize themselves with the topic.

  20. Atmospheric Pressure Plasma Process And Applications

    SciTech Connect (OSTI)

    Peter C. Kong; Myrtle

    2006-09-01

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  1. Magnetized Atmospheres around Accreting Neutron Stars

    E-Print Network [OSTI]

    S. Zane; R. Turolla; A. Treves

    2000-02-01

    We present a detailed investigation of atmospheres around accreting neutron stars with high magnetic field ($B\\gtrsim 10^{12}$ G) and low luminosity ($L\\lesssim 10^{33}$ erg/s). We compute the atmospheric structure, intensity and emergent spectrum for a plane-parallel, pure hydrogen medium by solving the transfer equations for the normal modes coupled to the hydrostatic and energy balance equations. The hard tail found in previous investigations for accreting, non-magnetic neutron stars with comparable luminosity is suppressed and the X-ray spectrum, although still harder than a blackbody at the star effective temperature, is nearly planckian in shape. Spectra from accreting atmospheres, both with high and low fields, are found to exhibit a significant excess at optical wavelengths above the Rayleigh-Jeans tail of the X-ray continuum.

  2. Controlled atmosphere for fabrication of cermet electrodes

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA)

    1998-01-01

    A process for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750.degree. C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5-3000 ppm in order to obtain a desired composition in the resulting composite.

  3. Controlled atmosphere for fabrication of cermet electrodes

    DOE Patents [OSTI]

    Ray, S.P.; Woods, R.W.

    1998-08-11

    A process is disclosed for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750 C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5--3000 ppm in order to obtain a desired composition in the resulting composite. 2 figs.

  4. Science is in my blood. My great aunt, Ida Hyde, was a very eminent physiologist when there were almost no

    E-Print Network [OSTI]

    Bulyk, Martha L.

    , a freelance writer based in Colorado. Science in the Blood Arthur B. Pardee, Ph.D. Professor of Biological, then got my Ph.D. under Linus Pauling at the California Institute of Technology. He was a god-like figure'm a little disappointed at the way science is going now. It's not easy in the present atmosphere to be highly

  5. Introduction to Computational Science

    E-Print Network [OSTI]

    Introduction to Computational Science (and why you should learn it!) Lyle N. Long Distinguished Professor of Aerospace Engineering and Mathematics Director, Graduate Minor Program in Computational Science #12;Outline · A little about me · What is computational science · Why study computational science

  6. INSTITUTE FOR COASTAL SCIENCE

    E-Print Network [OSTI]

    Gopalakrishnan, K.

    plain, and barrier island systems Social Science and Coastal Policy: Examine politics and public policy

  7. Computer Science Degree options

    E-Print Network [OSTI]

    Brierley, Andrew

    -leading research in human-computer interaction, constraint programming, cloud computing and more. * Our teaching74 Computer Science Degree options BSc (Single Honours Degree) Computer Science BSc (Joint Honours Degrees) Computer Science and one of: Economics Philosophy* Management Management Science * The title

  8. Computer Science Degree options

    E-Print Network [OSTI]

    Brierley, Andrew

    , cloud computing and more. * Our teaching is research-led from first year to fifth. Facilities82 Computer Science Degree options BSc (Single Honours Degree) Computer Science BSc (Joint Honours Degrees) Computer Science and one of: Economics Logic and Philosophy of Science Management Management

  9. Science Serving Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buildings Greening Transportation Green Purchasing & Green Technology Pollution Prevention Science Serving Sustainability ENVIRONMENTAL SUSTAINABILITY GOALS at...

  10. Agricultural and Food Sciences

    E-Print Network [OSTI]

    Faculty of Agricultural and Food Sciences (FAFS) #12;86 Faculty of Agricultural and Food Sciences (FAFS) Undergraduate Catalogue 2014­15 Faculty of Agricultural and Food Sciences (FAFS) Officers in agriculture was initiated in 1956. #12;87Faculty of Agricultural and Food Sciences (FAFS) Undergraduate

  11. Graduate studies Ecosystem Science

    E-Print Network [OSTI]

    Graduate studies in Ecosystem Science and Management Ph.D. M.S. M.Agr. or Natural Resources Development MNRD Department of Ecosystem Science and Management College of Agriculture and Life Sciences. The thesisbased Master of Science and Ph.D. degrees are designed for research or academic careers

  12. Education research Primary Science

    E-Print Network [OSTI]

    Rambaut, Andrew

    Education research Primary Science Survey Report December 2011 #12;Primary Science Survey Report, Wellcome Trust 1 Background In May 2009 Key Stage 2 science SATs (Standard Assessment Tests) were abolished fiasco might occur, where the results were delayed and their quality questioned. The loss of science SATs

  13. Indiana University Cognitive Science

    E-Print Network [OSTI]

    Indiana University

    Indiana University Cognitive Science Exploring the Science of Learning Representations Simulations patterns in plant growth better? In the Cognitive Science Program at IU, we explore educational practices) representations help students understand principles of science and transfer that knowledge to related topics

  14. ENVIRONMENTAL AND RESOURCE SCIENCE/

    E-Print Network [OSTI]

    Fox, Michael

    ENVIRONMENTAL AND RESOURCE SCIENCE/ STUDIES BUILDING ENVIRONMENTAL CITIZENSHIP trentu.ca/ers #12 Science/Studies. WHY TRENT? · Study in the first environmental science program to be accredited's Environmental and Resource Science program was the first to be accredited by ECO Canada Accessible versions

  15. Health sciences at Manchester

    E-Print Network [OSTI]

    Higham, Nicholas J.

    Health sciences at Manchester a time of change and growth Institute of Health Sciences January 2010 #12;The Institute of Health Sciences exists to improve health and healthcare practice through high quality health sciences research in Manchester. It is a collaborative endeavour involving schools

  16. Department of ANIMAL SCIENCE

    E-Print Network [OSTI]

    of the Department of Animal science contributes to research-based knowledge on livestock, environment, bioenergy

  17. Quantifying chaos in the atmosphere Richard Washington

    E-Print Network [OSTI]

    Washington, Richard

    , Mansfield Road, Oxford OX1 3TB, UK Abstract: The atmosphere is known to be forced by a variety of energy sources, including radiation and heat fluxes emanating from the boundary layer associated with sea as the competing champions controlling process in the physical world. With or without Einstein, there can

  18. Characterizing Titan's Upper Atmosphere Using the Titan

    E-Print Network [OSTI]

    Johnson, Robert E.

    methane chemical losses. INMS Data T-GITM Bell et al. [2010b] #12;Constraints on Escape · Parameter Sweep-Thermosphere Model (GITM) · 3-D, non-hydrostatic, altitude-based atmospheric model ­ Compressible Navier (TVD) MUSCL Scheme. ­ Block-based Massively Parallel Framework ­ Updating with 4th order Runge

  19. Methane present in an extrasolar planet atmosphere

    E-Print Network [OSTI]

    Mark R. Swain; Gautam Vasisht; Giovanna Tinetti

    2008-02-07

    Molecules present in exoplanetary atmospheres are expected to strongly influence the atmospheric radiation balance, trace dynamical and chemical processes, and indicate the presence of disequilibrium effects. Since molecules have the potential to reveal the exoplanet atmospheric conditions and chemistry, searching for them is a high priority. The rotational-vibrational transition bands of water, carbon monoxide, and methane are anticipated to be the primary sources of non-continuum opacity in hot-Jovian planets. Since these bands overlap in wavelength, and the corresponding signatures from them are weak, decisive identification requires precision infrared spectroscopy. Here we report on a near-infrared transmission spectrum of the planet HD 189733b showing the presence of methane. Additionally, a resolved water-vapour band at 1.9 microns confirms the recent claim of water in this object. On thermochemical grounds, carbon-monoxide is expected to be abundant in the upper atmosphere of hot-Jovian exoplanets; thus the detection of methane rather than carbon-monoxide in such a hot planet could signal the presence of a horizontal chemical gradient away from the permanent dayside, or it may imply an ill-understood photochemical mechanisms that leads to an enhancement of methane.

  20. Connectivity To Atmospheric Release Advisory Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-02-26

    To establish DOE and NNSA connectivity to Atmospheric Release Advisory Capability (ARAC) for sites and facilities that have the potential for releasing hazardous materials sufficient to generate certain emergency declarations and to promote efficient use of resources for consequence assessment activities at DOE sites, facilities, operations, and activities in planning for and responding to emergency events. No cancellations.

  1. CHARACTERIZATION OF CLOUDS IN TITAN'S TROPICAL ATMOSPHERE

    SciTech Connect (OSTI)

    Griffith, Caitlin A.; Penteado, Paulo; Rodriguez, Sebastien; Baines, Kevin H.; Buratti, Bonnie; Sotin, Christophe; Clark, Roger; Nicholson, Phil; Jaumann, Ralf

    2009-09-10

    Images of Titan's clouds, possible over the past 10 years, indicate primarily discrete convective methane clouds near the south and north poles and an immense stratiform cloud, likely composed of ethane, around the north pole. Here we present spectral images from Cassini's Visual Mapping Infrared Spectrometer that reveal the increasing presence of clouds in Titan's tropical atmosphere. Radiative transfer analyses indicate similarities between summer polar and tropical methane clouds. Like their southern counterparts, tropical clouds consist of particles exceeding 5 {mu}m. They display discrete structures suggestive of convective cumuli. They prevail at a specific latitude band between 8 deg. - 20 deg. S, indicative of a circulation origin and the beginning of a circulation turnover. Yet, unlike the high latitude clouds that often reach 45 km altitude, these discrete tropical clouds, so far, remain capped to altitudes below 26 km. Such low convective clouds are consistent with the highly stable atmospheric conditions measured at the Huygens landing site. Their characteristics suggest that Titan's tropical atmosphere has a dry climate unlike the south polar atmosphere, and despite the numerous washes that carve the tropical landscape.

  2. Atmospheric Chemistry, Modeling, and Biogeochemistry of Mercury

    E-Print Network [OSTI]

    activities that release mercury to the atmosphere include coal burning, industrial processes, waste incine and climate projections; critically and quantitatively analyze environmental management and policy proposals mercury research. Global Budget of Mercury Prior to the onset of human industrial activities, the amount

  3. Azores Global Atmosphere Monitoring Complex 1. INTRODUCTION

    E-Print Network [OSTI]

    Honrath, Richard E.

    observations. Prior to the advent of satellite observations, they provided weather data critical to the accuracy of European weather forecasts. Today, they provide a unique base for studies of atmospheric Monitoring Complex (AGAMC) is a set of ground-based measurement stations for use in sampling the marine

  4. MIDDLE ATMOSPHERE DYNAMICS AT707 (3 credits)

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    .8 Static Stability Structure 9.9 Gravity Wave Generation in Unbalanced Jet­Front Systems 10. Equatorial, T. G., 2007: Transport in the Middle Atmosphere. J. Meteorol. Soc. Japan, 85B, 165­191. 1 #12. Vertically Propagating Waves 2.1 Extratropical (Planetary) Rossby Waves 2.2 Extratropical Gravity Waves 2

  5. Atmospheric aerosol light scattering and polarization peculiarities

    E-Print Network [OSTI]

    Patlashenko, Zh I

    2015-01-01

    This paper considers environmental problems of natural and anthropogenic atmospheric aerosol pollution and its global and regional monitoring. Efficient aerosol investigations may be achieved by spectropolarimetric measurements. Specifically second and fourth Stokes parameters spectral dependencies carry information on averaged refraction and absorption indexes and on particles size distribution functions characteristics.

  6. THE LOWER SOLAR ATMOSPHERE ROBERT J. RUTTEN

    E-Print Network [OSTI]

    Rutten, Rob

    over large fields, long times and many wave- lengths (heights) simultaneously -- Judge and Peter (1998THE LOWER SOLAR ATMOSPHERE ROBERT J. RUTTEN Sterrekundig Instituut, Postbus 80 000, NL­3508 TA, Utrecht, The Netherlands Abstract. This "rapporteur" report discusses the solar photosphere and low

  7. Modeling of Alpine Atmospheric Dynamics II

    E-Print Network [OSTI]

    Gohm, Alexander

    Modeling of Alpine Atmospheric Dynamics II 707.424, VU 2, SS2005 Unit 7: Model code structure: mesoscale convective system 17-18 April 2004: Sierra hydraulic jump case 21 January 2005: the "Universiade) Introduction (brief description of the phenomenon and a description of the model and of the measurements

  8. Dynamics of Jupiter's Atmosphere Andrew P. Ingersoll

    E-Print Network [OSTI]

    . Dowling University of Louisville Peter J. Gierasch Cornell University Glenn S. Orton Jet Propulsion no topography, i.e., no con- tinents or oceans; its atmosphere merges smoothly with the planet's fluid interior with falling ice and rain. On Jupiter, the separation mechanism is still to be determined. The winds of Jupiter

  9. JournalofGeophysicalResearch: Atmospheres RESEARCH ARTICLE

    E-Print Network [OSTI]

    Raible, Christoph C.

    MAR 2015 The influence of absorbed solar radiation by Saharan dust on hurricane genesis Sebastian, Bern, Switzerland Abstract To date, the radiative impact of dust and the Saharan air layer (SAL the atmosphere due to absorption of solar radiation but thus shifts convection to regions more conducive

  10. INTRODUCTION Atmospheric aerosol particles influence the Earth's

    E-Print Network [OSTI]

    Wunderle, Stefan

    , scattering, and absorbing solar electromagnetic radiation and by modifying cloud properties due to their roleINTRODUCTION Atmospheric aerosol particles influence the Earth's radiation budget by reflecting to maximum cover a region once in the daytime. In contrary, up-to-date geostationary instruments like

  11. Exploring the Deep... Ocean-Atmosphere

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    and the transfer of energy among these systems. Global energy balance The Sun is the primary source of energy), and biosphere (living organisms) that are driven by solar energy. The ocean and the atmosphere have the greatest on the others. To fully understand the dynamics of our climate, we must examine the global energy balance

  12. SUPPLEMENTARY Submitted to: Atmospheric Chemistry and Physics

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    S1 SUPPLEMENTARY Submitted to: Atmospheric Chemistry and Physics Title: Quantifying/fuels/emission control devices for coal-fired power plants by province. Table S4. The uncertainties of unabated emission Ratio of biomass burning Normal (Province dependent) Questionnaire: Wang and Zhang (2008) B 1 A

  13. Ames Laboratory Science Intern Awarded a National Science Foundation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Science Intern Awarded a National Science Foundation Graduate Research Fellowship Former Ames Laboratory Science Undergraduate Laboratory Internship (SULI) student...

  14. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. I. ATMOSPHERIC DYNAMICS VIA THE SHALLOW WATER SYSTEM

    SciTech Connect (OSTI)

    Heng, Kevin; Workman, Jared E-mail: jworkman@coloradomesa.edu

    2014-08-01

    Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.

  15. Atmospheric Properties from the 2006 Niamey Deployment and Climate Simulation with a Geodesic Grid Coupled Climate Model

    SciTech Connect (OSTI)

    Jensen, M; Johnson, K; Mather, J; Randall, D

    2008-03-01

    In 2008, the Atmospheric Radiation Measurement (ARM) Program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the metrics will deal with a decade-long control simulation using geodesic grid-coupled climate model. For ARM, the metrics will deal with observations associated with the 2006 deployment of the ARM Mobile Facility (AMF) to Niamey, Niger. Specifically, ARM has been asked to deliver data products for Niamey that describe cloud, aerosol, and dust properties.

  16. User Science Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corporation for Atmospheric Research. NERSC repo mp9 CCSM.png BER: Hurricane Formation and Evolution April 12, 2010 | Author(s): Michael Wehner and Prabhat (LBNL) |...

  17. Wind Energy and the Turbulent Nature of the Atmospheric Boundary Layer

    E-Print Network [OSTI]

    Wächter, Matthias; Hölling, Michael; Morales, Allan; Milan, Patrick; Mücke, Tanja; Peinke, Joachim; Reinke, Nico; Rinn, Philip

    2012-01-01

    The challenge of developing a sustainable and renewable energy supply within the next decades requires collaborative efforts as well as new concepts in the fields of science and engineering. Here we give an overview on the impact of small-scale properties of atmospheric turbulence on the wind energy conversion process. Special emphasis is given to the noisy and intermittent structure of turbulence and its outcome for wind energy conversion and utilization. Experimental, theoretical, analytical, and numerical concepts and methods are presented. In particular we report on new aspects resulting from the combination of basic research, especially in the field of turbulence and complex stochastic systems, with engineering applications.

  18. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007

    SciTech Connect (OSTI)

    LR Roeder

    2007-12-01

    This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: • Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. • Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. • Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. • Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. • Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. • Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.

  19. Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial Facility

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM data is collected both through permanent monitoring stations and field campaigns around the world. Airborne measurements required to answer science questions from researchers or to validate ground data are also collected. To find data from all categories of aerial operations, follow the links from the AAF information page at http://www.arm.gov/sites/aaf. Tables of information will provide start dates, duration, lead scientist, and the research site for each of the named campaigns. The title of a campaign leads, in turn, to a project description, contact information, and links to the data. Users will be requested to create a password, but the data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  20. Science DMZ at the University of Florida

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UF Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU...

  1. Science DMZ Implemented at CU Boulder

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CU Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU...

  2. Biohackers. The Politics of Open Science

    E-Print Network [OSTI]

    Delfanti, Alessandro

    2013-01-01

    Users and peers: from citizen science to P2P science’, JCOMsource, open access, citizen science and online cooperativeexample, in the case of citizen science projects. Science

  3. Bradbury Science Museum - Science on Wheels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To stimulate interest in and enthusiasm for science, technology, engineering and mathematics and promote public understanding and appreciation of Los Alamos National Laboratory...

  4. Climate & Environmental Sciences | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate & Environment SHARE Climate and Environmental Sciences Climate and environmental scientists at ORNL conduct research, develop technology and perform analyses to understand...

  5. Climate & Environmental Sciences | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate and Environment SHARE Climate and Environmental Sciences Climate and environmental scientists at ORNL conduct research, develop technology and perform analyses to...

  6. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research. Part 3, Atmospheric and climate research

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    Within the US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division Is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and Implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and quantitative links programs to form DOEs contribution to the US Global Change Research Program. Climate research in the ESD has the common goal of improving our understanding of the physical, chemical, biological, and social processes that influence the Earth system so that national and international policymaking relating to natural and human-induced changes in the Earth system can be given a firm scientific basis. This report describes the progress In FY 1991 in each of these areas.

  7. Fusion Energy Sciences Network Requirements

    E-Print Network [OSTI]

    Dart, Eli

    2014-01-01

    Division, and the Office of Fusion Energy Sciences. This isFusion Energy Sciences NetworkRequirements Office of Fusion Energy Sciences Energy

  8. ?? / Kagaku / ?? /Ky?ri: Science

    E-Print Network [OSTI]

    Tsukahara, T?go

    2012-01-01

    question when considering science and technology in Japanese?? /Kagaku / ?? /Ky?ri: Science Tsukahara T?go Translationto incorporate and develop science and technology from the

  9. Clean Energy | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sciences, advanced materials, neutron sciences, nuclear sciences, and high-performance computing, and brings multidisciplinary teams together to address key issues. That...

  10. BIOSIGNATURE GASES IN H?-DOMINATED ATMOSPHERES ON ROCKY EXOPLANETS

    E-Print Network [OSTI]

    Seager, Sara

    Super-Earth exoplanets are being discovered with increasing frequency and some will be able to retain stable H2-dominated atmospheres. We study biosignature gases on exoplanets with thin H2 atmospheres and habitable surface ...

  11. Effect of furnace atmosphere on E-glass foaming

    E-Print Network [OSTI]

    Kim, D. S.; Dutton, Bryan C.; Hrma, Pavel R.; Pilon, Laurent

    2006-01-01

    Fig. 6. Fig. 7. Fig. 8. and furnace temperature versus timein air-based atmospheres and furnace temperature versus time2 -based atmospheres and furnace temperature versus time for

  12. Author's Accepted Manuscript ORBIT-CENTERED ATMOSPHERIC DENSITY

    E-Print Network [OSTI]

    Wohlberg, Brendt

    solar and geomagnetic activities and different prediction windows. Compar- ison with previouslyAuthor's Accepted Manuscript ORBIT-CENTERED ATMOSPHERIC DENSITY PREDICTION USING ARTIFICIAL NEURAL Shoemaker, Riccardo Bevilacqua, ORBIT-CENTERED ATMOSPHERIC DENSITY PREDICTION USING ARTIFICIAL NEURAL

  13. Mesoscale coupled ocean-atmosphere feedbacks in boundary current systems

    E-Print Network [OSTI]

    Putrasahan, Dian Ariyani

    2012-01-01

    Isolating Mesoscale Coupled Ocean-Atmosphere in the KuroshioSST coupler . . . . Chapter 3 Mesoscale Ocean-Atmosphere4.2 Impact of Mesoscale SST on Precipitation Chapter 4 vi

  14. A Temperature and Abundance Retrieval Method for Exoplanet Atmospheres

    E-Print Network [OSTI]

    Madhusudhan, Nikku

    We present a new method to retrieve molecular abundances and temperature profiles from exoplanet atmosphere photometry and spectroscopy. We run millions of one-dimensional (1D) atmosphere models in order to cover the large ...

  15. U. S. Department of Commerce National Oceanic and Atmospheric Administration

    E-Print Network [OSTI]

    U. S. Department of Commerce National Oceanic and Atmospheric Administration National Coastal Data Area Network) Project Description: The National Oceanic and Atmospheric Administration's (NOAA consists of four separate components, an administrative local area network (LAN) component; a public access

  16. EPS 22 The Fluid Earth: Oceans, Atmosphere, Climate & Environment

    E-Print Network [OSTI]

    Huybers, Peter

    . Students are requested not to use laptops or cell phones during class. Textbook: The Atmospheric Balance 02 Feb Atmospheric radiation. Demonstration: Invisibility at 1800 K. Spectra and Planck's Nobel

  17. Atmospheric rivers as Lagrangian coherent structures

    E-Print Network [OSTI]

    Garaboa, Daniel; Huhn, Florian; Perez-Muñuzuri, Vicente

    2015-01-01

    We show that filamentous Atmospheric Rivers (ARs) over the Northern Atlantic Ocean are closely linked to attracting Lagrangian Coherent Structures (LCSs) in the large scale wind field. LCSs represent lines of attraction in the evolving flow with a significant impact on all passive tracers. Using Finite-Time Lyapunov Exponents (FTLE), we extract LCSs from a two-dimensional flow derived from water vapor flux of atmospheric reanalysis data and compare them to the three-dimensional LCS obtained from the wind flow. We correlate the typical filamentous water vapor patterns of ARs with LCSs and find that LCSs bound the filaments on the back side. Passive advective transport of water vapor from tropical latitudes is potentially possible.

  18. Atmospheric Neutrino Oscillations for Earth Tomography

    E-Print Network [OSTI]

    Winter, Walter

    2015-01-01

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can robustly measure the lower mantle density of the earth with a precision at the level of 4-5 percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  19. Measuring Magnetic Fields in the Solar Atmosphere

    E-Print Network [OSTI]

    de Wijn, A G

    2012-01-01

    Since the discovery by Hale in the early 1900s that sunspots harbor strong magnetic field, magnetism has become increasingly important in our understanding of processes on the Sun and in the Heliosphere. Many current and planned instruments are capable of diagnosing magnetic field in the solar atmosphere. Photospheric magnetometry is now well-established. However, many challenges remain. For instance, the diagnosis of magnetic field in the chromosphere and corona is difficult, and interpretation of measurements is harder still. As a result only very few measurements have been made so far, yet it is clear that if we are to understand the outer solar atmosphere we must study the magnetic field. I will review the history of solar magnetic field measurements, describe and discuss the three types of magnetometry, and close with an outlook on the future.

  20. Performance of the STACEE Atmospheric Cherenkov Telescope

    E-Print Network [OSTI]

    STACEE Collaboration; D. A. Williams; D. Bhattacharya; L. M. Boone; M. C. Chantell; Z. Conner; C. E. Covault; M. Dragovan; P. Fortin; D. Gingrich; D. T. Gregorich; D. S. Hanna; G. Mohanty; R. Mukherjee; R. A. Ong; S. Oser; K. Ragan; R. A. Scalzo; D. R. Schuette; C. G. Theoret; T. O. Tumer; F. Vincent; J. A. Zweerink

    2000-10-17

    The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) is located at the National Solar Thermal Test Facility of Sandia National Laboratories in Albuquerque, New Mexico, USA. The field of solar tracking mirrors (heliostats) around a central receiver tower is used to direct Cherenkov light from atmospheric showers onto secondary mirrors on the tower, which in turn image the light onto cameras of photomultiplier tubes. The STACEE Collaboration has previously reported a detection of the Crab Nebula with approximately 7 standard deviation significance, using 32 heliostats (STACEE-32). This result demonstrates both the viability of the technique and the suitability of the site. We are in the process of completing an upgrade to 48 heliostats (STACEE-48) en route to an eventual configuration using 64 heliostats (STACEE-64) in early 2001. In this paper, we summarize the results obtained on the sensitivity of STACEE-32 and our expectations for STACEE-48 and STACEE-64.

  1. Improved detection of atmospheric turbulence with SLODAR

    E-Print Network [OSTI]

    Michael Goodwin; Charles Jenkins; Andrew Lambert

    2007-06-19

    We discuss several improvements in the detection of atmospheric turbulence using SLOpe Detection And Ranging (SLODAR). Frequently, SLODAR observations have shown strong ground-layer turbulence, which is beneficial to adaptive optics. We show that current methods which neglect atmospheric propagation effects can underestimate the strength of high altitude turbulence by up to ~ 30%. We show that mirror and dome seeing turbulence can be a significant fraction of measured ground-layer turbulence, some cases up to ~ 50%. We also demonstrate a novel technique to improve the nominal height resolution, by a factor of 3, called Generalized SLODAR. This can be applied when sampling high-altitude turbulence, where the nominal height resolution is the poorest, or for resolving details in the important ground-layer.

  2. Thermalisation of electrons in a stellar atmosphere

    E-Print Network [OSTI]

    L. Chevallier

    2006-01-23

    We are interested in electrons kinetics in a stellar atmosphere to validate or invalidate the usually accepted hypothesis of thermalisation of electrons. For this purpose, we calculate the velocity distribution function of electrons by solving the kinetic equation of these particles together with the equations of radiative transfer and statistical equilibrium. We note that this distribution can deviate strongly from a Maxwell-Boltzmann distribution if non-LTE effects are important. Some results and astrophysical consequences are examined.

  3. Atmospheric structure determined from satellite data 

    E-Print Network [OSTI]

    Knight, Keith Shelburne

    1978-01-01

    Subject: Meteorology ATM)SPHERIC STRUCTURE DETEiUIINED FRDM SATELLITE DATA A Thesis XEITH SHELBURNE KNIGHT Approved as to style and content. hyi (Chairman of Cor ' iee) C. (Head of Department) (Miemher) ABSTRACT Atmospheric Structure Determined... from Satellite Data. (August 1978) Keith Shelburne Knight, B. A. , University of California at Los Angeles Chairman of Advisory Conmittee: Dr. James R. Scoggins The capabilities of the Nimbus-6 satellite sounding data for use in synoptic analysis...

  4. Pulsed atmospheric fluidized bed combustor apparatus

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1993-10-26

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

  5. Extraction of Freshwater and Energy from Atmosphere

    E-Print Network [OSTI]

    Alexander Bolonkin

    2007-04-19

    Author offers and researches a new, cheap method for the extraction of freshwater from the Earth atmosphere. The suggected method is fundamentally dictinct from all existing methods that extract freshwater from air. All other industrial methods extract water from a saline water source (in most cases from seawater). This new method may be used at any point in the Earth except Polar Zones. It does not require long-distance freshwater transportation. If seawater is not utilized for increasing its productivity, this inexpensive new method is very environment-friendly. The author method has two working versions: (1) the first variant the warm (hot) atmospheric air is lifted by the inflatable tube in a high altitude and atmospheric steam is condenced into freswater: (2) in the second version, the warm air is pumped 20-30 meters under the sea-surface. In the first version, wind and solar heating of air are used for causing air flow. In version (2) wind and propeller are used for causing air movment. The first method does not need energy, the second needs a small amount. Moreover, in variant (1) the freshwater has a high pressure (>30 or more atm.) and can be used for production of energy such as electricity and in that way the freshwater cost is lower. For increasing the productivity the seawater is injected into air and solar air heater may be used. The solar air heater produces a huge amount of electricity as a very powerful electricity generation plant. The offered electricity installation in 100 - 200 times cheaper than any common electric plant of equivalent output. Key words: Extraction freshwater, method of getting freshwater, receiving energy from atmosphere, powerful renewal electric plant.

  6. Shipboard Atmospheric O2 Measurements in the Southern Ocean

    E-Print Network [OSTI]

    Stephens, Britton B.

    outgassing on the atmospheric gradients at this latitude and time of year. This CO2 outgassing is in contrast

  7. Extraction of Freshwater and Energy from Atmosphere

    E-Print Network [OSTI]

    Bolonkin, Alexander

    2007-01-01

    Author offers and researches a new, cheap method for the extraction of freshwater from the Earth atmosphere. The suggected method is fundamentally dictinct from all existing methods that extract freshwater from air. All other industrial methods extract water from a saline water source (in most cases from seawater). This new method may be used at any point in the Earth except Polar Zones. It does not require long-distance freshwater transportation. If seawater is not utilized for increasing its productivity, this inexpensive new method is very environment-friendly. The author method has two working versions: (1) the first variant the warm (hot) atmospheric air is lifted by the inflatable tube in a high altitude and atmospheric steam is condenced into freswater: (2) in the second version, the warm air is pumped 20-30 meters under the sea-surface. In the first version, wind and solar heating of air are used for causing air flow. In version (2) wind and propeller are used for causing air movment. The first method...

  8. Study of atmospheric pollution scavenging. [Annotated bibligraphy

    SciTech Connect (OSTI)

    Williams, A.L.

    1990-08-01

    Atmospheric scavenging research conducted by the Illinois State Water Survey under contract with the Department of Energy has been a significant factor in the historical development of the field of precipitation scavenging. Emphasis of the work during the 1980's became focused on the problem of acid rain problem with the Survey being chosen as the Central Analytical Laboratory for sample analysis of the National Atmospheric Deposition Program National Trends Network (NADP/NTN). The DOE research was responsible for laying the groundwork from the standpoint of sampling and chemical analysis that has now become routine features of NADP/NTN. A significant aspect of the research has been the participation by the Water Survey in the MAP3S precipitation sampling network which is totally supported by DOE, is the longest continuous precipitation sampling network in existence, and maintains an event sampling protocol. The following review consists of a short description of each of the papers appearing in the Study of Atmospheric Scavenging progress reports starting with the Eighteenth Progress Report in 1980 to the Twenty- Third Progress Report in 1989. In addition a listing of the significant publications and interviews associated with the program are given in the bibliography.

  9. Large area atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM); Henins, Ivars (Los Alamos, NM); Babayan, Steve E. (Huntington Beach, CA); Hicks, Robert F. (Los Angeles, CA)

    2001-01-01

    Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.

  10. Rapid Fluctuations in the Lower Solar Atmosphere

    E-Print Network [OSTI]

    Lawrence, J K; Christian, D J; Jess, D B; Mathioudakis, M

    2011-01-01

    The Rapid Oscillations in the Solar Atmosphere (ROSA) instrument reveals solar atmospheric fluctuations at high frequencies. Spectra of variations of the G-band intensity (IG) and CaII K-line intensity (IK) show correlated fluctuations above white noise to frequencies beyond 300 mHz and 50 mHz, respectively. The noise-corrected G-band spectrum for f = 28 - 326 mHz shows a power law with exponent -1.21 \\pm, 0.02, consistent with the presence of turbulent motions. G-band spectral power in the 25 - 100 mHz ("UHF") range is concentrated at the locations of magnetic bright points in the intergranular lanes and is highly intermittent in time. The intermittence of the UHF G-band fluctuations, shown by a positive kurtosis {\\kappa}, also suggests turbulence. Combining values of IG, IK, UHF power, and {\\kappa}, reveals two distinct states of the solar atmosphere. State 1, including almost all the data, is characterized by low IG, IK, and UHF power and {\\kappa} \\approx 6. State 2, including only a very small fraction of...

  11. Atmospheric and combustion chemistry of dimethyl ether

    SciTech Connect (OSTI)

    Nielsen, O.J.; Egsgaard, H.; Larsen, E.; Sehested, J.; Wallington, T.J.

    1997-12-31

    It has been demonstrated that dimethyl ether (DME) is an ideal diesel fuel alternative. DME, CH{sub 3}OCH{sub 3}, combines good fuel properties with low exhaust emissions and low combustion noise. Large scale production of this fuel can take place using a single step catalytic process converting CH{sub 4} to DME. The fate of DME in the atmosphere has previously been studied. The atmospheric degradation is initiated by the reaction with hydroxyl radicals, which is also a common feature of combustion processes. Spectrokinetic investigations and product analysis were used to demonstrate that the intermediate oxy radical, CH{sub 3}OCH{sub 2}O, exhibits a novel reaction pathway of hydrogen atom ejection. The application of tandem mass spectrometry to chemi-ions based on supersonic molecular beam sampling has recently been demonstrated. The highly reactive ionic intermediates are sampled directly from the flame and identified by collision activation mass spectrometry and ion-molecule reactions. The mass spectrum reflects the distribution of the intermediates in the flame. The atmospheric degradation of DME as well as the unique fuel properties of a oxygen containing compound will be discussed.

  12. External Science Review Report of the External Science

    E-Print Network [OSTI]

    Power, Mary Eleanor

    1 External Science Review Report of the External Science Review Committee The Nature Conservancy and Design: Lee Meinicke Jonathan Adams Design and Layout: Naomi Nickerson #12;3 External Science Review............................................................................................................................... 10 The Challenge of Changing Conservation and Changing Science

  13. Science & Technology RoadmapScience & Technology Roadmap 03/24/20063:03 PMSOCD Science & Technology Roadmap

    E-Print Network [OSTI]

    Kuligowski, Bob

    Science & Technology RoadmapScience & Technology Roadmap #12;03/24/20063:03 PMSOCD Science & Technology Roadmap 2 TABLE OF CONTENTS EXECUTIVE SUMMARY ..........................................................................................................................................19 4 ROADMAPS AND LINKAGES

  14. Atmospheric Chemistry of Venus-like Exoplanets Laura Schaefer

    E-Print Network [OSTI]

    - 1 - Atmospheric Chemistry of Venus-like Exoplanets by Laura Schaefer and Bruce Fegley, Jr thermodynamic calculations to model atmospheric chemistry on terrestrial exoplanets that are hot enough for chemical equilibria between the atmosphere and lithosphere, as on Venus. The results of our calculations

  15. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry

    E-Print Network [OSTI]

    Kaufman, Alan Jay

    LETTERS Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry James changes in pre-2.45-Gyr-ago atmospheric pathways for non-mass-dependent chemistry and in the ultraviolet J. Kaufman1 The evolution of the Earth's atmosphere is marked by a transition from an early

  16. Renewed growth of atmospheric methane R. G. Prinn,1

    E-Print Network [OSTI]

    use these data, along with an inverse method applied to a simple model of atmospheric chemistry this observation further using a simple model of atmospheric transport and chemistry to attempt to quantifyRenewed growth of atmospheric methane M. Rigby,1 R. G. Prinn,1 P. J. Fraser,2 P. G. Simmonds,3 R. L

  17. Usage Policies Notebook for Thermco Atmospheric Diffusion Furnace system

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Usage Policies Notebook for Thermco Atmospheric Diffusion Furnace system Revision date September 2014 #12;2 Emergency Plan for Diffusion Furnaces Standard Operating Procedures for Emergencies Contact;4 Usage Policies for Thermco Atmospheric Diffusion Furnace Standard policies for usage The Atmospheric

  18. RESULTS FROM THE PHOENIX ATMOSPHERIC STRUCTURE PAUL WITHERS*,a

    E-Print Network [OSTI]

    Withers, Paul

    RESULTS FROM THE PHOENIX ATMOSPHERIC STRUCTURE EXPERIMENT PAUL WITHERS*,a AND DAVID C. CATLINGb through the atmosphere of Mars, Phoenix recorded acceleration and angular velocity data using the Experimental Data Records (EDRs) of the Phoenix Atmospheric Structure Experiment (ASE), are available from

  19. Resources for Teaching Web Science to Computer Science UndergraduatesResources for Teaching Web Science to Computer Science UndergraduatesResources for Teaching Web Science to Computer Science UndergraduatesResources for Teaching Web Science to Computer S

    E-Print Network [OSTI]

    Nelson, Michael L.

    Resources for Teaching Web Science to Computer Science UndergraduatesResources for Teaching Web Science to Computer Science UndergraduatesResources for Teaching Web Science to Computer Science UndergraduatesResources for Teaching Web Science to Computer Science Undergraduates Frank McCown Box 10764

  20. Rank 1995-96 1996-97 1997-98 1998-99 1999-00 2000-01 2001-02 2002-03 2003-04 1 Biological Sciences Biological Sciences Biological Sciences Biological Sciences Biological Sciences Biological Sciences Biological Sciences Biological Sciences Biological Scien

    E-Print Network [OSTI]

    Ullrich, Paul

    Engineering Sociology 3 Sociology 3 Animal Science Animal Science Biochemistry Animal Science Biochem Biological Sciences Biological Sciences Biological Sciences 2 Biochemistry Biochemistry Biochemistry Economics 4 Political Science 2 Political Science 2 Human Development Biochemistry Biochemistry Political

  1. Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry

    E-Print Network [OSTI]

    Prather, Michael J; Holmes, Christopher D; Hsu, Juno

    2012-01-01

    and time scales in atmospheric chemistry, Philos. Trans. R.PRATHER ET AL. : ATMOSPHERIC CHEMISTRY AND GREENHOUSE GASESet al. (2001), Atmospheric chemistry and greenhouse gases,

  2. Environmental Chamber Study of Atmospheric Chemistry and Secondary Organic Aerosol Formation Using Cavity Enhanced Absorption Spectroscopy

    E-Print Network [OSTI]

    Liu, Yingdi

    2011-01-01

    modelling: a review. Atmospheric Chemistry and Physics,emerging issues. Atmospheric Chemistry and Physics, 2009. 9:aqueous phase. Atmospheric Chemistry and Physics, 2009. 9:

  3. A comparison of the chemical sinks of atmospheric organics in the gas and aqueous phase

    E-Print Network [OSTI]

    Epstein, S. A; Nizkorodov, S. A

    2012-01-01

    cal data for atmospheric chemistry: Volume II – gas phaseAttribution 3.0 License. Atmospheric Chemistry and Physics AJ. and Pandis, S. : Atmospheric Chemistry and Physics, John

  4. Time scales in atmospheric chemistry: Theory, GWPs for CH 4 and CO, and runaway growth

    E-Print Network [OSTI]

    Prather, Michael J

    1996-01-01

    Program and NSF's Atmospheric Chemistry Program for supporteigenstates in atmospheric chemistry, (2) Exponential decaytracer gases and atmospheric chemistry, in steady-state

  5. Chemistry of atmospheric aerosol particles and their resulting warm cloud-nucleation properties

    E-Print Network [OSTI]

    Moore, Meagan Julia Kerry

    2011-01-01

    for CCN activation, Atmospheric Chemistry and Physics, 10,and precipitation, Atmospheric Chemistry and Physics, 9,dust particles. Atmospheric Chemistry and Physics, 2009, 9,

  6. Atmospheric chemistry results from the ANTCI 2005 Antarctic plateau airborne study

    E-Print Network [OSTI]

    2010-01-01

    2010 for Full Article Atmospheric chemistry results from theL. , et al. (2010), Atmospheric chemistry results from the2010), Plume chemistry and atmospheric impact of emissions

  7. Time scales in atmospheric chemistry: Theory, GWPs for CH4 and CO, and runaway growth

    E-Print Network [OSTI]

    Prather, MJ; Prather, MJ

    1996-01-01

    Program and NSF's Atmospheric Chemistry Program for supporteigenstates in atmospheric chemistry, (2) Exponential decaytracer gases and atmospheric chemistry, in steady-state

  8. Real time in situ detection of organic nitrates in atmospheric aerosols

    E-Print Network [OSTI]

    Rollins, Andrew W.

    2011-01-01

    +NO 3 reaction. Atmospheric Chemistry and Physics 2009, 9,radicals (NO 3 ). Atmospheric Chemistry and Physics 2008, 8,aerosol yields. Atmospheric Chemistry and Physics 2009, 9,

  9. Chemistry of atmospheric aerosol particles and their resulting warm cloud-nucleation properties

    E-Print Network [OSTI]

    Moore, Meagan Julia Kerry

    2011-01-01

    CCN activation, Atmospheric Chemistry and Physics, 10, 5241-precipitation, Atmospheric Chemistry and Physics, 9, 3223-particles. Atmospheric Chemistry and Physics, 2009, 9, A. P.

  10. College of Science Bachelor of Science, Psychology

    E-Print Network [OSTI]

    Zallen, Richard

    College of Science Bachelor of Science, Psychology Major Checksheet for Students Graduating Education (CLE) courses and the foreign language requirement, psychology majors are required to take 28 OF PSYCHOLOGY (6 hrs.): PSYC 2004-rntroductory Psychology (Prereq. for all other courses) PSYC 2094-Principles

  11. Faculty of Science Health and Biomedical Sciences

    E-Print Network [OSTI]

    Faculty of Science Health and Biomedical Sciences Health care is currently Canada's second-largest service industry and one of the world's fastest-growing employment sectors. Our Health and Biomedical other health or biomedical programs, providing rigorous training that keeps alternate career paths open

  12. COMPUTATIONAL SCIENCE, ENGINEERING & MATHEMATICS

    E-Print Network [OSTI]

    Knopf, Dan

    and engineering; · mathematical modeling; · numerical analysis; · applied mathematics. COMPUTATIONAL ENGINEERINGCOMPUTATIONAL SCIENCE, ENGINEERING & MATHEMATICS: PATH TO DEGREE Fall 2014 Todd Arbogast Chair and Sciences (ICES) and Department of Mathematics The University of Texas at Austin COMPUTATIONAL ENGINEERING

  13. Nuclear Science and Engineering

    E-Print Network [OSTI]

    Bahler, Dennis R.

    Nuclear Science and Engineering Education Sourcebook 2014 American Nuclear Society US Department of Energy #12;Nuclear Science & Engineering Education Sourcebook 2014 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear

  14. Physical Sciences 2007 Science & Technology Highlights

    SciTech Connect (OSTI)

    Hazi, A U

    2008-04-07

    The Physical Sciences Directorate applies frontier physics and technology to grand challenges in national security. Our highly integrated and multidisciplinary research program involves collaborations throughout Lawrence Livermore National Laboratory, the National Nuclear Security Administration, the Department of Energy, and with academic and industrial partners. The Directorate has a budget of approximately $150 million, and a staff of approximately 350 employees. Our scientists provide expertise in condensed matter and high-pressure physics, plasma physics, high-energy-density science, fusion energy science and technology, nuclear and particle physics, accelerator physics, radiation detection, optical science, biotechnology, and astrophysics. This document highlights the outstanding research and development activities in the Physical Sciences Directorate that made news in 2007. It also summarizes the awards and recognition received by members of the Directorate in 2007.

  15. MASTER OF SCIENCE IN COMPUTER SCIENCE Mission Statement

    E-Print Network [OSTI]

    O'Laughlin, Jay

    MASTER OF SCIENCE IN COMPUTER SCIENCE Mission Statement The mission of the Department of Computer Learning Outcomes The Computer Science Department offers a Master of Science program in Computer Science with two specializations: Computer Science (CS) and Software Engineering (SE). Upon successful completion

  16. S. Ramaseshan Science Writing Fellowships/Internships Current Science

    E-Print Network [OSTI]

    Giri, Ranjit K.

    S. Ramaseshan Science Writing Fellowships/Internships at Current Science The Current Science Association invites applications for Science Writing Fellowships, instituted in memory of Professor Sivaraj Ramaseshan for his contributions to the journal Current Science and science writing internships for working

  17. Science and the Public A Review of Science

    E-Print Network [OSTI]

    Rambaut, Andrew

    Science and the Public A Review of Science Communication and Public Attitudes to Science in Britain Office of Science and Technology #12;Foreword The Office of Science and Technology and the Wellcome Trust have jointly sponsored this research to help science communicators think about the information needs

  18. Science: The Endless Frontier ---the US National Science Foundation

    E-Print Network [OSTI]

    Leung, Naichung Conan

    Science: The Endless Frontier --- the US National Science Foundation Professor Tony CHAN Mathematics and Physical Sciences US National Science Foundation Abstract: The US National Science Foundation sciences in the US. NSF is also one of three federal funding agencies targeted to receive substantial

  19. International Journal of Computer Science

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    International Journal of Computer Science & Information Security © IJCSIS PUBLICATION 2010 IJCSIS Journal of Computer Science and Information Security (IJCSIS) provides a major venue for rapid publication of high quality computer science research, including multimedia, information science, security, mobile

  20. COMPUTER SCIENCE: MISCONCEPTIONS, CAREER PATHS

    E-Print Network [OSTI]

    Hristidis, Vagelis

    COMPUTER SCIENCE: MISCONCEPTIONS, CAREER PATHS AND RESEARCH CHALLENGES School of Computing Undergraduate Student) #12;Computer Science Misconceptions Intro to Computer Science - Florida International University 2 Some preconceived ideas & stereotypes about Computer Science (CS) are quite common