National Library of Energy BETA

Sample records for atmospheric sciences atreyee-dot-bhattacharya-at-pnnl-dot-gov

  1. Atmospheric science and power production

    SciTech Connect (OSTI)

    Randerson, D.

    1984-07-01

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  2. SULI Intern: Atmospheric Science | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Science Share Hear how Argonne intern Jane Pan helped scientists accurately represent atmospheric conditions in computer models and forecasts. Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel ---Electric drive technology ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Powertrain research --Building design ---Construction --Manufacturing -Energy sources --Renewable energy

  3. Atmospheric and Climate Science | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric and Climate Science Argonne research in aerosols, micro-meteorology, remote sensing, and atmospheric chemistry combined with our scalable, portable, high-performance climate and weather applications offer a unique look at the complexities of a dynamic planet. Changes in climate can affect biodiversity, the cost of food, our health, and even whole economies. Argonne is developing computational models and tools designed to shed light on complex biological processes and their economic,

  4. Atmospheric Science: Solving Challenges of Climate Change

    SciTech Connect (OSTI)

    Geffen, Charlette

    2015-08-05

    PNNL’s atmospheric science research provides data required to make decisions about challenges presented by climate change: Where to site power plants, how to manage water resources, how to prepare for severe weather events and more. Our expertise in fundamental observations and modeling is recognized among the national labs and the world.

  5. Atmospheric Radiation Measurement Program Science Plan

    SciTech Connect (OSTI)

    Ackerman, T

    2004-10-31

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years. Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at ARM's Tropical Western Pacific and the North Slope of Alaska sites. Over time, this new facility will extend ARM science to a much broader range of conditions for model testing.

  6. Science DMZ National Oceanic and Atmospheric Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOAA Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU...

  7. Science DMZ National Oceanic and Atmospheric Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOAA Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU Science DMZ @ Penn & VTTI Science DMZ @ NOAA Science DMZ @ NERSC Science DMZ @ ALS Multi-facility Workflow Case Study Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web

  8. PNNL: Atmospheric Sciences & Global Change Search for Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Science & Global Change Search for Staff Search for an ASGC staff member (Last, First) Search Search for staff member by Group View Alphabetical List of all ASGC Staff...

  9. 2010 Atmospheric System Research (ASR) Science Team Meeting Summary

    SciTech Connect (OSTI)

    Dupont, DL

    2011-05-04

    This document contains the summaries of papers presented in poster format at the March 2010 Atmospheric System Research Science Team Meeting held in Bethesda, Maryland. More than 260 posters were presented during the Science Team Meeting. Posters were sorted into the following subject areas: aerosol-cloud-radiation interactions, aerosol properties, atmospheric state and surface, cloud properties, field campaigns, infrastructure and outreach, instruments, modeling, and radiation. To put these posters in context, the status of ASR at the time of the meeting is provided here.

  10. Atmospheric Sciences Program summaries of research in FY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This document describes the activities and products of the Atmospheric Science Program of the Environmental Sciences Division, Office of Health and Environmental Research, Office of Energy Research, in FY 1993. Each description contains the project`s title; three-year funding history; the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date. Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states its goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used. This document has been indexed to aid the reader in locating research topics, participants, and research institutions in the text and the project descriptions. Comprehensive subject, principal investigator, and institution indexes are provided at the end of the text for this purpose. The comprehensive subject index includes keywords from the introduction and chapter texts in addition to those from the project descriptions.

  11. Atmospheric System Research (ASR) Program | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Atmospheric System Research (ASR) Program Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program

  12. Atmospheric Radiation Measurement Program Science Plan Current Status and Future Directions of the ARM Science Program

    SciTech Connect (OSTI)

    TP Ackerman; AD Del Genio; RG Ellingson; RA Ferrare; SA Klein; GM McFarquhar; PJ Lamb; CN Long; J Verlinde

    2004-10-30

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: • Maintain the data record at the fixed ARM sites for at least the next five years. • Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. • Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. • Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. • Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. • Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. • Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at ARM’s Tropical Western Pacific and the North Slope of Alaska sites. Over time, this new facility will extend ARM science to a much broader range of conditions for model testing.

  13. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of energy atmospheric radiation measurement program ARM ARM The ... of Science created the Atmospheric Radiation Measurement (ARM) Program within the ...

  14. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  15. ARESE (ARM Enhanced Shortwave Experiment) Science Plan [Atmospheric Radiation Program

    SciTech Connect (OSTI)

    Valero, F.P.J.; Schwartz, S.E.; Cess, R.D.; Ramanathan, V.; Collins, W.D.; Minnis, P.; Ackerman, T.P.; Vitko, J.; Tooman, T.P.

    1995-09-27

    Several recent studies have indicated that cloudy atmospheres may absorb significantly more solar radiation than currently predicted by models. The magnitude of this excess atmospheric absorption, is about 50% more than currently predicted and would have major impact on our understanding of atmospheric heating. Incorporation of this excess heating into existing general circulation models also appears to ameliorate some significant shortcomings of these models, most notably a tendency to overpredict the amount of radiant energy going into the oceans and to underpredict the tropopause temperature. However, some earlier studies do not show this excess absorption and an underlying physical mechanism that would give rise to such absorption has yet to be defined. Given the importance of this issue, the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program is sponsoring the ARM Enhanced Shortwave Experiment (ARESE) to study the absorption of solar radiation by clear and cloudy atmospheres. The experimental results will be compared with model calculations. Measurements will be conducted using three aircraft platforms (ARM-UAV Egrett, NASA ER-2, and an instrumented Twin Otter), as well as satellites and the ARM central and extended facilities in North Central Oklahoma. The project will occur over a four week period beginning in late September, 1995. Spectral broadband, partial bandpass, and narrow bandpass (10nm) solar radiative fluxes will be measured at different altitudes and at the surface with the objective to determine directly the magnitude and spectral characteristics of the absorption of shortwave radiation by the atmosphere (clear and cloudy). Narrow spectral channels selected to coincide with absorption by liquid water and ice will help in identifying the process of absorption of radiation. Additionally, information such as water vapor profiles, aerosol optical depths, cloud structure and ozone profiles, needed to use as input in radiative transfer calculations, will be acquired using the aircraft and surface facilities available to ARESE. This document outlines the scientific approach and measurement requirements of the project.

  16. Atmospheric Science Program. Summaries of research in FY 1994

    SciTech Connect (OSTI)

    1995-06-01

    This report provides descriptions for all projects funded by ESD under annual contracts in FY 1994. Each description contains the project`s title; three-year funding history (in thousands of dollars); the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date (for most projects older than one year). Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states it goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used.

  17. ARM - Publications: Science Team Meeting Documents: Atmospheric Modes of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drizzling Stratus at the ARM SGP Site Atmospheric Modes of Drizzling Stratus at the ARM SGP Site Kollias, Pavlos RSMAS/University of Miami Albrecht, Bruce University of Miami The representation of boundary layer clouds in GCMs remains a source of uncertainty in climate simulations. The cloud amount in the boundary layer is sensitive to the boundary layer scheme. Furthermore, little is known on the climatology of drizzling or precipitating boundary layer clouds, their seasonal variability and

  18. Proceedings of the third Atmospheric Radiation Measurement (ARM) science team meeting

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This document contains the summaries of papers presented at the 1993 Atmospheric Radiation Measurement (ARM) Science Team meeting held in Morman, Oklahoma. To put these papers in context, it is useful to consider the history and status of the ARM Program at the time of the meeting. Individual papers have been cataloged separately.

  19. Gulf Stream Locale R. J. Alliss and S. Raman Department of Marine, Earth and Atmospheric Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R. J. Alliss and S. Raman Department of Marine, Earth and Atmospheric Sciences North Carolina State University Raleigh, NC 27695-8208 Introduction Clouds have long been recognized as having a major impact on the radiation budget in the earth's climate system. One of the preferred areas for the production of clouds is off the east coast of the United States. The formation of clouds in this region, particularly during the winter months, is caused predominately by the presence of the Gulf Stream,

  20. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Science Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Science Plan G de Boer B Argrow G Bland J Elston D Lawrence J Maslanik S Palo M Tschudi December 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of

  1. Proceedings of the sixth Atmospheric Radiation Measurement (ARM) Science Team meeting

    SciTech Connect (OSTI)

    1997-06-01

    This document contains the summaries of papers presented at the 1996 Atmospheric Radiation Measurement (ARM) Science Team meeting held at San Antonio, Texas. The history and status of the ARM program at the time of the meeting helps to put these papers in context. The basic themes have not changed. First, from its beginning, the Program has attempted to respond to the most critical scientific issues facing the US Global Change Research Program. Second, the Program has been strongly coupled to other agency and international programs. More specifically, the Program reflects an unprecedented collaboration among agencies of the federal research community, among the US Department of Energy`s (DOE) national laboratories, and between DOE`s research program and related international programs, such as Global Energy and Water Experiment (GEWEX) and the Tropical Ocean Global Atmosphere (TOGA) program. Next, ARM has always attempted to make the most judicious use of its resources by collaborating and leveraging existing assets and has managed to maintain an aggressive schedule despite budgets that have been much smaller than planned. Finally, the Program has attracted some of the very best scientific talent in the climate research community and has, as a result, been productive scientifically.

  2. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science Office of Science * * * Office of Science Office of * * * * * Office of Science Office of Science * * * Office of Science * * * * 287 115...

  3. Climate Science for a Sustainable Energy Future Atmospheric Radiation Measurement Best Estimate (CSSEFARMBE)

    SciTech Connect (OSTI)

    Riihimaki, Laura D.; Gaustad, Krista L.; McFarlane, Sally A.

    2012-09-28

    The Climate Science for a Sustainable Energy Future (CSSEF) project is working to improve the representation of the hydrological cycle in global climate models, critical information necessary for decision-makers to respond appropriately to predictions of future climate. In order to accomplish this objective, CSSEF is building testbeds to implement uncertainty quantification (UQ) techniques to objectively calibrate and diagnose climate model parameterizations and predictions with respect to local, process-scale observations. In order to quantify the agreement between models and observations accurately, uncertainty estimates on these observations are needed. The DOE Atmospheric Radiation Measurement (ARM) program takes atmospheric and climate related measurements at three permanent locations worldwide. The ARM VAP called the ARM Best Estimate (ARMBE) [Xie et al., 2010] collects a subset of ARM observations, performs quality control checks, averages them to one hour temporal resolution, and puts them in a standard format for ease of use by climate modelers. ARMBE has been widely used by the climate modeling community as a summary product of many of the ARM observations. However, the ARMBE product does not include uncertainty estimates on the data values. Thus, to meet the objectives of the CSSEF project and enable better use of this data with UQ techniques, we created the CSSEFARMBE data set. Only a subset of the variables contained in ARMBE is included in CSSEFARMBE. Currently only surface meteorological observations are included, though this may be expanded to include other variables in the future. The CSSEFARMBE VAP is produced for all extended facilities at the ARM Southern Great Plains (SGP) site that contain surface meteorological equipment. This extension of the ARMBE data set to multiple facilities at SGP allows for better comparison between model grid boxes and the ARM point observations. In the future, CSSEFARMBE may also be created for other ARM sites. As each site has slightly different instrumentation, this will require additional development to understand the uncertainty characterization associated with instrumentation at those sites. The uncertainty assignment process is implemented into the ARM program’s new Integrated Software Development Environment (ISDE) so that many of the key steps can be used in the future to screen data based on ARM Data Quality Reports (DQRs), propagate uncertainties when transforming data from one time scale into another, and convert names and units into NetCDF Climate and Forecast (CF) standards. These processes are described in more detail in the following sections.

  4. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Energy for the Future How to Make a Star Discovery Science Photon Science HAPLS

  5. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Science Plan

    SciTech Connect (OSTI)

    de Boer, G; Bland, G; Elston, J; Lawrence, D; Maslanik, J; Palo, S; Tschudi, M

    2015-12-01

    The use of unmanned aerial systems (UAS) is becoming increasingly popular for a variety of applications. One way in which these systems can provide revolutionary scientific information is through routine measurement of atmospheric conditions, particularly properties related to clouds, aerosols, and radiation. Improved understanding of these topics at high latitudes, in particular, has become very relevant because of observed decreases in ice and snow in polar regions.

  6. ARM - Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govScience Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Science New C-band scanning ARM

  7. Atmospheric Emitted Radiance Interferometer (AERI) Archived Data at the University of Wisconsin Space Science and Engineering Center (SSEC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The AERI instrument is an advanced version of the high spectral resolution interferometer sounder (HIS) designed and fabricated at the University of Wisconsin (Revercomb et al. 1988) to measure upwelling infrared radiances from an aircraft. The AERI is a fully automated ground-based passive infrared interferometer that measures downwelling atmospheric radiance from 3.3 - 18.2 mm (550 - 3000 cm-1) at less than 10-minute temporal resolution with a spectral resolution of one wavenumber. It has been used in DOEĆs Atmospheric Radiation Measurement (ARM) program. Much of the data available here at the Cooperative Institute for Meteorological Satellite Studies (CIMSS), an institute within the University of Wisconsin’s Space Science and Engineering Center, may also be available in the ARM Archive. On this website, data and images from six different field experiments are available, along with AERIPLUS realtime data for the Madison, Wisconsin location. Realtime data includes temperature and water vapor time-height cross sections, SKEWT diagrams, convective stability indices, and displays from a rooftop Lidar instrument. The field experiments took place in Oaklahoma and Wisconsin with the AERI prototype.

  8. Atmospheric Emitted Radiance Interferometer (AERI) Archived Data at the University of Wisconsin Space Science and Engineering Center (SSEC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The AERI instrument is an advanced version of the high spectral resolution interferometer sounder (HIS) designed and fabricated at the University of Wisconsin (Revercomb et al. 1988) to measure upwelling infrared radiances from an aircraft. The AERI is a fully automated ground-based passive infrared interferometer that measures downwelling atmospheric radiance from 3.3 - 18.2 mm (550 - 3000 cm-1) at less than 10-minute temporal resolution with a spectral resolution of one wavenumber. It has been used in DOEÆs Atmospheric Radiation Measurement (ARM) program. Much of the data available here at the Cooperative Institute for Meteorological Satellite Studies (CIMSS), an institute within the University of Wisconsin’s Space Science and Engineering Center, may also be available in the ARM Archive. On this website, data and images from six different field experiments are available, along with AERIPLUS realtime data for the Madison, Wisconsin location. Realtime data includes temperature and water vapor time-height cross sections, SKEWT diagrams, convective stability indices, and displays from a rooftop Lidar instrument. The field experiments took place in Oaklahoma and Wisconsin with the AERI prototype.

  9. ARM - Key Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govScienceKey Science Questions Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional &...

  10. Atmospheric Radiation Measurement Radiative Atmospheric Divergence...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    campaign is sponsored by the Atmospheric Radiation Measurement (ARM) Program, the largest global change research program within the U.S. Department of Energy's Office of Science. ...

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cover image Proceedings of the Seventh Atmospheric Radiation Measurement (ARM) Science ... Ackerman, S.A. Atmospheric Radiation Measurement Science Applications of Atmospheric ...

  12. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 3. Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1986-02-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1985, this research has examined the transport and diffusion of atmospheric contaminants in areas of complex terrain, summarized the field studies and analyses of dry deposition and resuspension conducted in past years, and begun participation in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' The description of atmospheric research at PNL is organized in terms of the following study areas: Atmospheric Studies in Complex Terrain; Dispersion, Deposition, and Resuspension of Atmospheric Contaminants; and Processing of Emissions by Clouds and Precipitation (PRECP).

  13. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Sciences Laboratory (EMSL) Atmospheric Radiation Measurement Climate Research Facility ... Read More Data collected from the Atmospheric Radiation Measurement Climate Research ...

  14. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and researchers at work. News Releases Science Briefs Photos Picture of the Week Social Media Videos Fact Sheets Publications PHOTOS BY TOPIC Careers Community Visitors...

  15. science

    National Nuclear Security Administration (NNSA)

    through the Predictive Capability Framework (PCF). The PCF is a long-term integrated roadmap to guide the science, technology and engineering activities and Directed Stockpile...

  16. Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program

    SciTech Connect (OSTI)

    SA Edgerton; LR Roeder

    2008-09-30

    The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

  17. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1987-06-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1986, atmospheric research examined the transport and diffusion of atmospheric contaminants in areas of complex terrain and participated in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' In addition, during 1986, a special opportunity for measuring the transport and removal of radioactivity occurred after the Chernobyl reactor accident in April 1986. Separate abstracts were prepared for individual projects.

  18. ARM Science Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ER-ARM-0402 Atmospheric Radiation Measurement Program Science Plan Current Status and ... Executive Summary The Atmospheric Radiation Measurement (ARM) Program has matured ...

  19. Pacific Northwest Laboratory annual report for 1987 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1988-08-01

    Currently, the broad goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales in the air, in clouds, and on the surface. For several years, studies of transport and diffusion have been extended to mesoscale areas of complex terrain. Atmospheric cleansing research has expanded to a regional scale, multilaboratory investigation of precipitation scavenging processes involving the transformation and wet deposition of chemicals composing ''acid rain.'' In addition, the redistribution and long-range transport of transformed contaminants passing through clouds is recognized as a necessary extension of our research to even larger scales in the future. A few long-range tracer experiments conducted in recent years and the special opportunity for measuring the transport and removal of radioactivity following the Chernobyl reactor accident of April 1986 offer important initial data bases for studying atmospheric processes at these super-regional scales.

  20. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wikipedia to forecast diseases November 13, 2014 Los Alamos research published in Public Library of Science LOS ALAMOS, N.M., Nov. 13, 2014-Scientists can now monitor and forecast diseases around the globe more effectively by analyzing views of Wikipedia articles, according to a team from Los Alamos National Laboratory. "A global disease-forecasting system will improve the way we respond to epidemics," scientist Sara Del Valle said. "In the same way we check the weather each

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cover image Proceedings of the Seventh Atmospheric Radiation Measurement (ARM) Science ... Observations During the Atmospheric Radiation Measurement Program Water Vapor ...

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Atmospheric Sciences University of California, Los Angeles Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A new cloud detection scheme has been...

  3. Atmospheric Radiation Measurement (ARM) Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) Science and Infrastructure Steering Committee CHARTER June 2012 DISCLAIMER ...

  4. Atmospheric Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    competencies Atmospheric Chemistry Atmospheric Chemistry is the study of the composition of the atmosphere, the sources and fates of gases and particles in air, and changes induced...

  5. 2015 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Sciences Laboratory (EMSL) Atmospheric Radiation Measurement Climate Research Facility ... Read More Data collected from the Atmospheric Radiation Measurement Climate Research ...

  6. A Decade of Atmospheric Research in the Tropical Western Pacific...

    Office of Science (SC) Website

    The Atmospheric Radiation Measurement (ARM) Climate Research Facility has three user ... The Science The Department of Energy's Atmospheric Radiation Measurement (ARM) Climate ...

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (b), Institute of Atmospheric Physics - Consiglio Nazionale delle Ricerche, Rome, Italy (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The effect of ...

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence of Island Effects on Nauru Cole, H., and Miller, E., National Center for Atmospheric Research Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Nauru...

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Atmospheric Research (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Direct aerosol forcing can be affected dramatically by cloudiness....

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S.E., Brookhaven National Laboratory Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Aerosols exert a substantial influence on atmospheric radiation...

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Water Vapor on the Discrepancy Between Modeled and Observed Atmospheric Absorption Arking, A. Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting...

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D.A.(a) and Charlock, T.P.(b), Analytical Services & Materials Inc.(a), Atmospheric Sciences Competency, NASA Langley Research Center (b) Twelfth Atmospheric Radiation...

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cohn, S.A. (a), and Yoneyama, K. (b), National Center for Atmospheric Research (a), Japan Marine Science and Technology Center (b) Eleventh Atmospheric Radiation Measurement...

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wang, Z. and Sassen, K., University of Utah Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Radiation Measurements Program (ARM) is making ...

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ... Charlock, T.P. Surface Albedo at Atmospheric Radiation Measurement Southern Great Plains ...

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting ... Barnes, F.L. The Atmospheric Radiation Measurement (ARM) Education and Outreach Program: ...

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the Fourth Atmospheric Radiation Measurement (ARM) Science Team Meeting ... Modeling Objectives of the AtmosphericRadiation Measurement Program Bradley, M.M. ...

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the Sixth Atmospheric Radiation Measurement (ARM) Science Team Meeting ... Concept Verification Using Atmospheric RadiationMeasurement Southern Great Plains ...

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cover image Proceedings of the Twelfth Atmospheric Radiation Measurement (ARM) Science ... Dynamical Processes at Two Atmospheric Radiation Measurement (ARM) Sites in the Tropical ...

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the Third Atmospheric Radiation Measurement (ARM) Science Team Meeting ... History and Status of the Atmospheric Radiation Measurement Program - March 1993 P. Lunn, ...

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the Second Atmospheric Radiation Measurement (ARM) Science Team Meeting ... in Support of the Atmospheric Radiation Measurement Program Tropical Western ...

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the Second Atmospheric Radiation Measurement (ARM) Science Team Meeting ... in Support of the Atmospheric Radiation Measurement Program T. Ackerman, B. ...

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the Fourth Atmospheric Radiation Measurement (ARM) Science Team Meeting ... Session Papers Atmospheric Radiation Measurement Program--Unmanned Aerospace Vehicle: The ...

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the Third Atmospheric Radiation Measurement (ARM) Science Team Meeting ...Radiometer Method in the Atmospheric Radiation Measurement Program Bergstrom, R. Are ...

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the Fifth Atmospheric Radiation Measurement (ARM) Science Team Meeting ... Instrument Development for Atmospheric Radiation Measurement (ARM): Status of the ...

  6. ARM - Publications: Science Team Meeting Documents: Abstracts...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the Fifteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ... Anderson, J.G. Confronting Models with Atmospheric Radiation Measurement Data: A ...

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the Fifth Atmospheric Radiation Measurement (ARM) Science Team Meeting ... Bernstein, R.L. Satellite Data Sets for the Atmospheric Radiation Measurement (ARM) ...

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the Fifteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ... Optical Properties from the Atmospheric Radiation Measurement Two-Channel ...

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ... Dean, A.R. Intercomparison of Cloud Base Height at the Atmospheric RadiationMeasurement ...

  10. Biological Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear Science Share Your Research NERSC Citations Home Science at...

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences (a), NOAA Air Resources Lab (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Research Objective: To infer values of direct solar irradiance using...

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Research in Environmental Sciences CMDL (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Data collected during the SHEBA (Surface Heat...

  13. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    BER User Facilities Environmental Molecular Sciences Laboratory (EMSL) Atmospheric Radiation Measurement Climate Research Facility (ARM) Joint Genome Institute (JGI) FES User ...

  14. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    ... BER User Facilities Environmental Molecular Sciences Laboratory (EMSL) Atmospheric Radiation Measurement Climate Research Facility (ARM) Joint Genome Institute (JGI) FES User ...

  15. ARM - Selected Science Team Proposals - FY 1994

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Selected Science Team Proposals - FY 1994 Dr. Thomas

  16. ARM - Selected Science Team Proposals - FY 1998

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Selected Science Team Proposals - FY 1998 Dr. Shepard

  17. ARM - Selected Science Team Proposals - FY 2002

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Selected Science Team Proposals - FY 2002 The Office

  18. ARM - Selected Science Team Proposals - FY 2005

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Selected Science Team Proposals - FY 2005 The Office

  19. Atmospheric sciences transfer between research advances and energy-policy assessments (ASTRAEA). Final report, 1 April 1996--31 December 1997

    SciTech Connect (OSTI)

    Slinn, W.G.N.

    1997-12-10

    Consistent with the prime goal of the ASTRAEA project, as given in its peer-reviewed proposal, this final report is an informal report to DOE managers about a perceived DOE management problem, specifically, lack of vision in DOE`s Atmospheric Chemistry Program (ACP). After presenting a review of relevant, current literature, the author suggests a framework for conceiving new visions for ACP, namely, multidisciplinary research for energy policy, tackling tough (e.g., nonlinear) problems as a team, ahead of political curves. Two example visions for ACP are then described, called herein the CITIES Project (the Comprehensive Inventory of Trace Inhalants from Energy Sources Project) and the OCEAN Project (the Ocean-Circulation Energy-Aerosol Nonlinearities Project). Finally, the author suggests methods for DOE to provide ACP with needed vision.

  20. Radon Measurements of Atmospheric Mixing (RAMIX) 2006-2014 Final...

    Office of Scientific and Technical Information (OSTI)

    Publisher: DOE ARM Climate Research Facility, Pacific Northwest National Laboratory; Richland, Washington. Research Org: DOE Office of Science Atmospheric Radiation Measurement ...

  1. Pavlos Kollias Associate Professor Department of Atmospheric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pavlos Kollias Associate Professor Department of Atmospheric and Oceanic Sciences, McGill University Room 817, Burnside Hall, 805 Sherbrooke Street West, Montreal, Quebec, H3A 0B9...

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    26 September 1997 CART Case Study of a Cirrus Cloud Producing a Spectacular Optical Display Sassen, K., and Mace, G.G., Department of Meteorology, University of Utah; Arnott, W.P., and Hallett, J., Desert Research Institute; Liou, K.N., and Takano, Y., Dept. Atmospheric Sciences, University of California at Los Angeles; Poellot, M.R., Atmospheric Sciences Department, University of North Dakota Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting During the September 1997 Intensive

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Change of Atmospheric Boundary Layer Thermal Regime Induced by Aerosol as Measured by MTP-5 Koldaev, A.V.(a), Kadygrov, E.N.(a), Khaikine, M.N.(a), Kuznetsova, I.N.(b), and Golitsyn, G.S.(c), Central Aerological Observatory (a), Hydrometeorological Center (b), A.M.Obukhov Institute of Atmospheric Physics Russian Academy of Science (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Change in atmospheric boundary layer (ABL) radiation balance as caused by natural and

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Content from Two-Dimensional Imagery Baker, B., Lawson, P., Schmitt, C., and Mitchell, D., SPEC, Inc. Thirteenth Atmospheric Radiation Measurement (ARM) Science Team...

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement (ARM) Science Team Meeting The focus of this study is to estimate the confidence intervals of the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave...

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements in Support of ARM Varanasi, P., State University of New York at Stony Brook Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting The most recent...

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forecast System Morcrette, J.-J., European Centre for Medium-Range Weather Forecasts, United Kingdom Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The...

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Sites in the BSRN Database - Year 2002 Update Hodges, G.B., University of Colorado at Boulder CIRES and NOAA Thirteenth Atmospheric Radiation Measurement (ARM) Science Team...

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The International Intercomparison of 3-Dimensional Radiation Codes Cahalan, R.F., NASAGoddard Space Flight Center Twelfth Atmospheric Radiation Measurement (ARM) Science Team...

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algorithms for GRAMS Fisk, M., Moore, S., Sowle, D., and Terry, D., Mission Research Corporation Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Automated data...

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis for the Shortwave Spectrometer Fisk, M., Moore, S., Sowle, D., and Terry, D., Mission Research Corporation Ninth Atmospheric Radiation Measurement (ARM) Science Team...

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (a), University of Wisconsin (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Using collocated ERBE and split windowAVHRR on board NOAA-9, we...

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jet Propulsion Laboratory, California Institute of Technology (a), University of Arizona (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting This poster...

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    During the International H20 Project 2002 Using GPS Braun, J., Rocken, C., and Kuo, Y.H., UCARCOSMIC Fourteenth Atmospheric Radiation Measurement (ARM) Science Team...

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using a High Resolution Numerical Weather Model Braun, J., Ha, S.Y., Rocken, C., and Kuo, Y.H., UCARCOSMIC Fourteenth Atmospheric Radiation Measurement (ARM) Science Team...

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radar for UAV Applications Bambha, R., Carswell, J., and Swift, C., University of Massachusetts Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Assembly of the...

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pacific Northwest National Laboratory Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The continuous measurements of direct and diffuse solar radiation,...

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (a), NASA Langley Research Center (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The state of the land surface has a direct impact on the sensible and...

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tration-Environmental Technology Laboratory Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Surface Heat Budget of the Arctic Ocean (SHEBA) surface flux...

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Rogers, C.F., Desert Research Institute Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting A photoacoustic instrument has been developed and evaluated for...

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting There appears to be no universal relationship between large-scale organized convection and the magnitude of sea...

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting LES (large eddy simulation) models can explicitly resolve large turbulent eddies, which...

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H.-L.(b), University of Utah (a), EMCNCEPNOAA (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Using cloud radar observations of cirrus cloud...

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (e), Pacific Northwest National Laboratory (f), NASAGSFC (g) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Accurate measuremetns of upper tropospheric...

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Team Meeting The Atmospheric Radiation Measurement (ARM) Program has deployed dual-frequency microwave water radiometers (MWRs) at its Cloud and Radiation Testbed (CART)...

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting We conducted 160 dual-radiosonde soundings during the fall 2000 Water Vapor Intensive Operations Period...

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center(c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The probability of occurrence of the cloud top height for a given altitude and relation to the...

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flight Center Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting Static linearity tests performed in August 1997 on the high water vapor and nitrogen channels...

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Engineering Process Workflow Using ExtraView Hull, T.R., Pacific Northwest National Laboratory, ARM Engineering Group Fourteenth Atmospheric Radiation Measurement (ARM) Science...

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moisture Sources for Tropical Cirrus Boehm, M. T., Lee, S., and Verlinde, J., The Pennsylvania State University Eleventh Atmospheric Radiation Measurement (ARM) Science Team...

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Aerosols and Clouds with the Global Environmental Multiscale Air Quality (GEM-AQ) Model Iziomon, M.G. and Lohmann, U., Department of Physics and Atmospheric Science,...

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Absorption Spectrum of Water Vapor as Applicable to ARM Varanasi, P., State University of New York at Stony Brook Twelfth Atmospheric Radiation Measurement (ARM) Science...

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study of the Applicability to Radiative Transfer Eide, H.A. and Stamnes, K.H., Stevens Institute of Technology Twelfth Atmospheric Radiation Measurement (ARM) Science Team...

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minnis, P., and Young, D.F., NASA Langley Research Center Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting Current retrievals of cloud properties at night...

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ARM) Science Team Meeting Aeromet operates the High Altitude Research Platform (HARP), a Learjet 36A, that has been used for atmospheric sampling and characterization...

  16. ARM - Selected Science Team Proposals - FY 1991

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial...

  17. ARM - Selected Science Team Proposals - FY 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial...

  18. ARM - Selected Science Team Applications - FY 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial...

  19. ARM - Selected Science Team Proposals - FY 2003

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial...

  20. ARM - Selected Science Team Proposals - FY 1992

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial...

  1. ARM - Selected Science Team Proposals - FY 1995

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial...

  2. ARM - 2008 ARM Science Team Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Science Team Meeting March 10 - 14 | Norfolk, Virginia | Sheraton Norfolk Waterside Hotel Meeting Highlights Sheraton Hotel - Norfolk, VA The eighteenth Atmospheric Radiation...

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Penner, J.E., Zhang, S., and Chuang, C., University of Michigan Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The effects of absorbing aerosols can...

  4. ARM - Selected Science Team Proposals - FY 1997

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robert Cess, State University of New York: "Science Team Participation in the Atmospheric Radiation Measurements (ARM) Program" Dr. Catherine C. Chuang, Lawrence Livermore National ...

  5. ARM - Selected Science Team Proposals - FY 2000

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robert D. Cess, State University of New York, Stony Brook: "Science Team Participation in the Atmospheric Radiation Measurements (ARM) Program" Dr. Catherine C. Chuang, Lawrence ...

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Best Estimate Data Product Shippert, T.R., Pacific Northwest National Laboratory Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting The first ARM best estimate...

  7. ARM - RHUBC II Science Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Team Related Links RHUBC-II Home RHUBC Home ARM Field Campaigns Home ARM Data Discovery Browse Data Deployment Instruments Science Team RHUBC-II Wiki Site Tour News RHUBC-II Backgrounder (PDF, 300K) News & Press Images Experiment Planning RHUBC-II Proposal Abstract Science Plan (PDF, 267KB) Science Objectives Contacts Eli Mlawer, Principal Investigator Dave Turner, Principal Investigator RHUBC II Science Team Principal Investigators Eli Mlawer, Atmospheric & Environmental Research, Inc.

  8. Atmospheric Science Program (ASP) Data Archive

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The ASP data archive has now been moved to a new location in order to be maintained with ARM data. The new url is http://iop.archive.arm.gov/arm-iop/0special-data/ASP_Campaigns_past/. BNL continues to maintain an excellent list of ASP-publications at http://www.asp.bnl.gov/asp_pubs.html

  9. Atmospheric Science Program Cumulus Humilis Aerosol Processing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aerosols - within and around them. Aerosols - particularly those associated with human activity - are thought to be changing the brightness, the lifetime, the amount of...

  10. ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Pacific Northwest National Laboratory Pacific ...

  11. Applications of Nuclear Science | U.S. DOE Office of Science...

    Office of Science (SC) Website

    BER User Facilities Environmental Molecular Sciences Laboratory (EMSL) Atmospheric Radiation Measurement Climate Research Facility (ARM) Joint Genome Institute (JGI) FES User ...

  12. Science and Science Fiction

    ScienceCinema (OSTI)

    Scherrer, Robert [Vanderbilt University, Nashville, Tennessee, United States

    2009-09-01

    I will explore the similarities and differences between the process of writing science fiction and the process of 'producing' science, specifically theoretical physics. What are the ground rules for introducing unproven new ideas in science fiction, and how do they differ from the corresponding rules in physics? How predictive is science fiction? (For that matter, how predictive is theoretical physics?) I will also contrast the way in which information is presented in science fiction, as opposed to its presentation in scientific papers, and I will examine the relative importance of ideas (as opposed to the importance of the way in which these ideas are presented). Finally, I will discuss whether a background as a research scientist provides any advantage in writing science fiction.

  13. Science Briefs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Briefs /newsroom/_assets/images/newsroom-icon.jpg Science Briefs Read in detail about specific Los Alamos science achievements, and the honors our scientists are accruing. Science Briefs - 2016» Science Briefs - 2015» Science Briefs - 2014» Science Briefs - 2013» Science Briefs - 2012» Science Briefs - 2011» Shown are time lapse images of supercritical CO2 displacing water in a fracture etched into a shale micromodel. The white, blue and gray colors represent supercritical CO2,

  14. Science Briefs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Briefs newsroomassetsimageslegacy-icon-short.jpg Science Briefs Read in detail about specific Los Alamos science achievements, and the honors our scientists are...

  15. Terrestrial Ecosystem Science | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Terrestrial Ecosystem Science Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program Subsurface

  16. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Institute for Materials Science x

  17. Science Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Science Events Learn about our science by coming to Frontiers in Science lectures, catch Cafe Scientific events in your community, or come to sicence events at the Bradbury...

  18. SRNL Science and Innovation - National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tritium Stewardship Non-Proliferation Nuclear Materials Recovery Homeland Security Forensics/Law Enforcement Atmospheric Technologies SRNL Home Dopler Radar Science and Innovation National Security - Atmospheric Technologies The Atmospheric Technologies Group at the Savannah River National Laboratory provides expert meteorological and hydrological services and consultation in support of regulatory compliance, safety analysis, applied engineering, emergency preparedness and response, forest

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud-Radiation-Aerosol Experiment (1996) at IAPh, Russia Golitsyn, G.S., Anikine, P.P., and Sviridenkov, M.A., Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting In 1996, local measurements of the optical properties of the near-surface aerosol were carried out parallel with aureole measurements of the aerosol in the atmospheric column. The spectral radiation was measured by a complex of spectrometers. Global

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Solar Spectrum 360 to 1050 nm from Rotating Shadowband Spectroradiometer (RSS) Measurements at the Southern Great Plains Site Harrison, L.C., Berndt, J.L., Kiedron, P.W., Michalsky, J.J., Min, Q., and Schlemmer, J., Atmospheric Sciences Research Center, State University of New York, Albany Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Two years of Langley extrapolations made from the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement (ARM)

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Preview of the EOS Atmospheric Infrared Sounder Hagan, D.E., JPL-Caltech Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting This poster describes the instrument design, pre-launch calibration characteristics, science products and post-launch validation strategies for the Atmospheric Infrared Sounder (AIRS) that will fly onboard the NASA Earth Observing Satellite polar-orbiting Aqua spacecraft this April. AIRS is a high-resolution infrared spectrometer that, together with the

  2. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science /science-innovation/_assets/images/icon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Materials Physics and Applications» Materials Science and Technology» Institute for Materials Science» Materials Science Rob Dickerson uses a state-of-the-art transmission electron microscope at

  3. Chemistry, Life, and Earth Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADCLES Chemistry, Life, and Earth Sciences The CLES Directorate is home to world class capabilities in chemistry, bioscience, and earth and environmental sciences. Structural protein research Structural protein research A wide range of protein folding research Field Instrument Deployments and Operations (FIDO) Field Instrument Deployments and Operations (FIDO) Atmospheric science research Quantum Dots Quantum Dots Quantum dot research for energy and light Contact Us Associate Director Nan Sauer

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigation of Atmospheric Water Vapor and Its Radiative Effects at the ARM North Slope of Alaska CART Site Delamere, J.S., Clough, S.A., Mlawer, E.J., and Shephard, M.W., Atmospheric and Environmental Research, Inc. Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Water vapor significantly regulates radiative energy flow through the EarthÂ’s atmosphere. Since its inception the ARM program has worked to develop improved parameterizations of water vapor radiative

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Update on the TOGA-COARE Bulk Algorithm for Computing the Air-Sea Fluxes Fairall, C.W., and Hare, J.E., National Oceanic and Atmospheric Administration- Environmental Technology Laboratory Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Tropical Ocean Global Atmosphere-Coupled Ocean Atmosphere Response Experiment (TOGA-COARE) bulk algorithm version 2.5 was published in 1996. In this paper, we will provide an evaluation against a much larger data base. An improved fit

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Use of the ARM WSI to Estimate the Atmospheric Optical Depth at Night Musat, I.C. and Ellingson, R.G., University of Maryland Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The shortwave extinction by atmospheric constituents can be studied during the night, with the light of stars as a radiation source, using the ARM Whole Sky Imager (WSI). The digital images obtained with the WSI are processed to infer the star radiance at the TOA and the broadband atmospheric

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results of the Atmospheric Aerosol Condensation Activity Studies Isakov, A.A. and Golitsyn, G.S., A.M.Obukhov Institute of Atmospheric Physics Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Some new results are presented. of investigations of optical and microphysical characteristics of the atmospheric surface layer aerosol by means of spectropolarimeter The daily measurements were carried out in February - April 2000 at the Zvenigorod Scientific Station of the Institute

  8. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING WARNING Today is April 1 But that ...

  9. 2012 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    BER User Facilities Environmental Molecular Sciences Laboratory (EMSL) Atmospheric Radiation Measurement Climate Research Facility (ARM) Joint Genome Institute (JGI) FES User ...

  10. 2011 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    BER User Facilities Environmental Molecular Sciences Laboratory (EMSL) Atmospheric Radiation Measurement Climate Research Facility (ARM) Joint Genome Institute (JGI) FES User ...

  11. 2014 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    BER User Facilities Environmental Molecular Sciences Laboratory (EMSL) Atmospheric Radiation Measurement Climate Research Facility (ARM) Joint Genome Institute (JGI) FES User ...

  12. 2016 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    BER User Facilities Environmental Molecular Sciences Laboratory (EMSL) Atmospheric Radiation Measurement Climate Research Facility (ARM) Joint Genome Institute (JGI) FES User ...

  13. 2015 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    BER User Facilities Environmental Molecular Sciences Laboratory (EMSL) Atmospheric Radiation Measurement Climate Research Facility (ARM) Joint Genome Institute (JGI) FES User ...

  14. About | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    climate science-the impact of clouds and aerosols-through support of the Atmospheric Radiation Measurement Climate Research Facility, which is used by hundreds of scientists ...

  15. 2013 | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    BER User Facilities Environmental Molecular Sciences Laboratory (EMSL) Atmospheric Radiation Measurement Climate Research Facility (ARM) Joint Genome Institute (JGI) FES User ...

  16. ARM Airborne Carbon Measurements VI (ACME VI) Science Plan (Program...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM Airborne Carbon Measurements VI (ACME VI) Science Plan From October 1 through September 30, 2016, the Atmospheric RadiationMeasurement (ARM) Aerial Facility will deploy ...

  17. Detection Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry for Measurement and Detection Science Chemistry for Measurement and Detection Science Project Description Chemistry used in measurement and detection science plays a crucial role in the Laboratory's Science of Signatures scientific thrust. Measurement and detection science areas that require chemistry include nuclear and radiological, materials, biological, energy, climate, and space. Los Alamos scientists integrate chemical-science capabilities to ensure that the Laboratory can

  18. Chemical Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Science /science-innovation/_assets/images/icon-science.jpg Chemical Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Actinide Chemistry» Modeling & Simulation» Synthetic and Mechanistic Chemistry» Chemistry for Measurement and Detection Science» Chemical Researcher Jeff Pietryga shows two vials of

  19. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal

  20. Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of...

  1. Accelerator Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Science Accelerator Science ReframAccelerator.jpg Particle accelerators are among the largest, most complex, and most important scientific instruments in the world....

  2. Computer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cite Seer Department of Energy provided open access science research citations in chemistry, physics, materials, engineering, and computer science IEEE Xplore Full text...

  3. Science Gateways

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Science Gateways A science gateway is a web-based interface to access HPC computers ... perform shared computations, and generally interact with NERSC resources over the web. ...

  4. Science Undergraduate Laboratory Internship Program | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory SULI FACT SHEET Featured Videos SULI Intern: Atmospheric Science SULI Intern: Plant Health Contact undergrad@anl.gov Science Undergraduate Laboratory Internship "My perspective on how the research environment was broadened. I am more aware of the possibilities I have after graduation." -Summer 2013 Intern The Science Undergraduate Laboratory Internship (SULI) program encourages undergraduate students to pursue science, technology, engineering, and mathematics (STEM)

  5. The Atmosphere as a Laboratory: Aerosols, Air Quality, and Climate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to 11:00am Science On Saturday MBG Auditorium The Atmosphere as a Laboratory: Aerosols, Air Quality, and Climate Peter DeCarlo, Assistant Professor of Environmental Engineering...

  6. Is sustainability science really a science?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is sustainability science really a science? Is sustainability science really a science? The team's work shows that although sustainability science has been growing explosively ...

  7. Material Science and Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Science and Nuclear Science Material Science and Nuclear Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. The Lab's four Science Pillars harness capabilities for solutions to threats- on national and global scales. Contact thumbnail of Business Development Business Development Richard P. Feynman Center for Innovation

  8. Statistical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Statistical Sciences Applying statistical reasoning and rigor to multidisciplinary scientific investigations Contact Us Group Leader Joanne Wendelberger Email Deputy Group Leader James R. Gattiker Email Group Administrator LeeAnn Martinez (505) 667-3308 Email Statistical Sciences Statistical Sciences provides statistical reasoning and rigor to multidisciplinary scientific investigations and development, application, and communication of cutting-edge statistical sciences research. Statistical

  9. Explosives Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives Science Explosives Science Current efforts in explosives science cover many areas critical to national security. One particular area is the need for countermeasures against explosive threats. v Comprehensive explosives process Los Alamos National Laboratory offers a comprehensive explosives process. This process leverages entire technical divisions dedicated to explosives science. Los Alamos scientists combine advanced expertise and capabilities with modern facilities. These assets

  10. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  11. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  12. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  13. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  14. Explore Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explore Explore Science Create your own science adventure by exploring our varied exhibits, and learn what inspired our scientists, engineers and technicians to discover new things. August 18, 2014 boys conducting experiment [Science is] a great game. It is inspiring and refreshing. The playing field is the universe itself. -I.I. Rabi Science is thinking in an organized way about things. You don't need a license or permission to practice science. Scientists are interested in just about anything

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Data Information Flow Macduff, M., Creel, K., and Eagan, R., Pacific Northwest National Laboratory Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Poster depicts flow of data from various ARM sites to its final destination

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A WWW-Staged Prototype ARM Database Utility Mace, G.G. and Hudach, D., University of Utah Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Counting from when...

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preferred Modes of Surface-Atmosphere Interaction in the Polar Regions Stramler, K.L.(a), Del Genio, A.D.(b), and Rossow, W.B.(b), Department of Earth and Environmental Sciences,...

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probability of Clear Line-of-Sight Determined from the VTLC and WSI Ma, Y. and Ellingson, R.G., University of Maryland Eleventh Atmospheric Radiation Measurement (ARM) Science Team...

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G.G.(b), and Arnott, W.P. (c), University of North Dakota (a), University of Utah (b), Desert Research Institute (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team...

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Eddy Simulations of Fair-Weather Cumulus Case at SGP Site Zhu, P. and Albrecht, B.A., University of Miami Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting...

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Variations in the Ratio of IR Window Radiance to Microwave Water Path Observed Under Cloudless Convection Platt, C.M.(a) and Austin, R.T.(b), Department of Atmospheric Science,...

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite Data Link on the ARM-UAV Payload McCoy, R.F, Tooman, T.T., and Bolton, W.B., Sandia National Laboratories Thirteenth Atmospheric Radiation Measurement (ARM) Science Team...

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrumentation for the AMR-UAV Payload McCoy, R.F., Tooman, T.T., and Bolton, W.B., Sandia National Laboratories Thirteenth Atmospheric Radiation Measurement (ARM) Science Team...

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ARM-UAV Grand Tour, SGP, NSA, TWP Tooman, T.T., Bolton, W.B.(a), and McCoy, R.F.(a), Sandia National Laboratories (a) Thirteenth Atmospheric Radiation Measurement (ARM) Science...

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Rotating Shadowband Spectroradiometer Data from SGP Harrison, L., Min, Q., and Michalsky, J. J., Atmospheric Sciences Research Inst., State University of New York at Albany Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting We show Rotating Shadowband Spectroradiometer (RSS) optical depth spectra from the Southern Great Plains (SGP) for a range of clear-sky cases, and discuss comparisons of the spectral direct/diffuse irradiance ratios with modeled results as a test

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AVHRR Satellite Imagery for the Tropical Western Pacific and North Slope of Alaska/Adjacent Arctic Ocean Sites Minnett, P.J., and Kumar, A., University of Miami, Rosenstiel School of Marine and Atmospheric Science, Division of Meteorology and Physical Oceanography; Ma, L.L., Scientific Information Systems Group, Brookhaven National Laboratory Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Satellite remote sensing data from the five-channel Advanced Very High Resolution

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ARM Blue/Green Period: 3-Channel Color Composites of GOES-8 Data Wagener, R., and Gregory, L., Brookhaven National Laboratory, ARM External Data Center Konidaris, N., Carnegie Mellon University; Minnett, P.J., University of Miami, Rosenstiel School of Marine and Atmospheric Sciences Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Despite the title and the general appearance of the resulting images, this is not an attempt to emulate art nor an expression of anybody's mood.

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GCM Parameterization of Bimodal Size Spectra for Mid-Latitude Cirrus Clouds Ivanova, D. (a), Mitchell, D.L. (a), Arnott, P.W. (a), and Poellot, M. (b), Desert Research Institute (a), Dept. of Atmospheric Science, Univ. of North Dakota (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting This is a new mid-latitude cirrus parameterization, based on our current analysis of 996 bimodal size distributions(SDs), obtained from 17 flights, representative for 17 case studies during

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectral Diffuse Irradiance in UV, VIS, and NIR During the 2001 Diffuse IOP Kiedron, P., Michalsky, J., Berndt, J., Min, Q., and Harrison, L., Atmospheric Sciences Research Center, SUNY Albany, New York Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Two rotating shadowband spectroradiometers (RSS) participated in the 2001 Diffuse IOP. The UV-RSS covered the 300-360 nm range and the VIS-NIR RSS covered 360-1050 nm. Both instruments were calibrated with NIST traceable

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization and Calibration of the Commercial RSS Slated for Permanent Deployment at SGP Kiedron, P., Berndt, J., Yager, E., Harrison, L., and Michalsky, J., Atmospheric Sciences Research Center, SUNY at Albany, New York Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM program purchased a rotating shadowband spectroradiometer (RSS) that was manufactured by Yankee Environmental Systems, Inc. At ASRC the instrument went through initial acceptance tests and after

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Intermodel Differences in Cloud Microphysics on Radiation: Diagnosis from Case 3 CRM Intercomparison Data Xu, K.-M., Atmospheric Sciences, NASA Langley Research Center Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Cloud microphysics parameterizations have been identified as one of the main differences among th e eight cloud-resolving models (CRMs) participating in the recent ARM/GCSS intercomparison study (Xu et al., 2002). How do these differences impact the

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lidar Remote Sensing of Cirrus Clouds at the Southern Great Plains Site: Comparisons of Extinction and Backscatter Coefficients Derived Using Raman and Backscatter Lidar Technique Comstock, J.M.(a), Fu, Q.(b), Turner, D.D.(c), and Ackerman, T.P.(a), Pacific Northwest National Laboratory (a), Department of Atmospheric Sciences, University of Washington (b), University of Wisconsin/Pacific Northwest National Laboratory(c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Hyperspectral Imaging Interferometer for Measurements of Surface Albedo Minnett, P.J.(a) and Sellar, R.G.(b), Rosenstiel School of Marine and Atmospheric Sciences, University of Miami (a), Florida Space Institute (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Uncertainties in the bidirectional reflection coefficient of the surface is a major component of the errors in the measurements of the surface radiation budget. A new instrument will be presented that

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Period Variations of UV-B Radiation From Results of Ozone Reconstruction from Dendrochronologic Data Zuev, V.V. and Bondarenko, S.L., Institute of Atmospheric Optics Russian Academy of Sciences Tomsk, Russia Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The thickness of stratospheric ozone layer modulates the level of UV-B radiation reaching the surface without cloudiness. The high level of UV-B radiation causes a stress of vegetation including trees. The

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Semianalytic Technique to Speed Up Successive Order of Scattering Model for Optically Thick Media Duan, M. and Min, Q., Atmospheric Sciences Research Center, State University of New York Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A semianalytic technique has been developed to speed up integration of radiative transfer over optically thick media for the successive order of scattering method. Based on characteristics of internal distribution of scattering intensity,

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Atmospheric Clear-sky Shortwave Radiation Models to Collocated Satellite and Surface Measurements in Canada Jing, X., and Cess, R.D., State University of New York at Stony Brook Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting Measurements of the top of the atmosphere (TOA) reflected shortwave radiation from the Earth Radiation Budget Satellite (ERBS) have been collocated with surface insolation measurements made at 24 Canadian stations located below 57 degrees

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Vapor Intensive Operating Periods: General Results, Status and Plans Revercomb, H.E., Tobin, D.C., Knuteson, R.O., and Feltz, W.F., University of Wisconsin-Madison; Turner, D.D., Pacific Northwest National Laboratory Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Accurate measurements of atmospheric water vapor are very important for climate research and monitoring. Unexpectedly large uncertainties of sonde water vapor observations implied by Atmospheric Radiation

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrieval of Cirrus Particle Sizes Using a Spit-Window Technique: A Sensitivity Study Fu, Q. (a) and Sun, W.B. (b), University of Washington (a), Dalhousie University (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The 8 - 12 um atmospheric window is an important spectral region for the remote sensing of the earth-atmosphere system. Since clouds are the major regulator of the global radiative energy budget, numerous methods have been developed to detect clouds and cloud

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Cloud Radiative Forcing and the Large-Scale Atmospheric Energy Transport Tian, B. (a) and Ramanathan, V. (b), Scripps Institution of Oceanography, UCSD Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Moist static energy is exported within the atmosphere column, from equatorial latitudes to the subtropics by the Hadley circulation and from the western Pacific warm pool to the eastern Pacific cold tongue by the Walker circulation. It is the net energy fluxes into the

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using ARM Measurements to Evaluate and Improve the Turbulent Boundary-Layer Parameterization in the CCM Zhang, M.H. (a) and Yu, R.C. (a), State University of New York(a) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Three-Dimensional advective tendencies at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) site, together with diurnal variation of the clear-sky boundary layer atmosphere temperature and moisture, are used to study the

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SIRTA: A French Observation Site for Atmospheric Remote Sensing Haeffelin, M., Chepfer, H., Delaval, A., Drobinski, P., Protat, A., and Sauvage, L., Institut Pierre Simon Laplace, Paris, France Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting An observation site for atmospheric remote sensing (SIRTA) was put together in Palaiseau, France (20 km south of Paris), in 1999. This site hosts a suite of passive and active remote sensing instruments such as a 532 and 1064-nm

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processing of ARM Millimeter Wave Cloud Radar Signals at Low Signal to Noise Conditions Kollias, P. and Albrecht B.A., University of Miami Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Radiation Measurement (ARM) program has supported the deployment of several Millimeter Wave Cloud Radars (MMCRs) operating at 35-GHz for an accurate detection of all the hydrometeors in the atmosphere. Despite their short wavelength that increases the Rayleigh backscattering

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrieval of Mean Cosine of Aerosol Phase Function from Extinction and Sky Brightness Measurements Zhuravleva, T.B.(a), Sviridenkov, M.A.(b), and Anikin, P.P.(b), Institute of Atmospheric Optics SB RAS, Tomsk, Russia (a), A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Asymmetry of the aerosol phase function together with optical thickness drive the magnitude of the aerosol radiative forcing. Two

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Impact of Cumulus Cloud Field Anisotropy on Broadband Shortwave Radiative Fluxes and Atmospheric Heating Rates Hinkelman, L.M.(a), Evans, K.F.(b), Clothiaux, E.E.(a), and Ackerman, T.P.(c), The Pennsylvania State University (a), University of Colorado (b), Pacific Northwest National Laboratory (c) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The effect of fair-weather cumulus cloud field anisotropy on domain average surface fluxes and atmospheric heating profiles

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of MODIS Cloud Mask Products (MOD35) with MMCR Data Zhang, Q. and Mace, G.G., University of Utah Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Moderate-Resolution Imaging Spectroradiometer (MODIS) provides global observations of Earth's land, oceans, and atmosphere. The MODIS cloud mask product provides significant information on the occurrence and horizontal distribution of clouds. In this research, we develop an algorithm to identify the atmospheric

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using the Global Positioning System to Improve the Characterization of Water Vapor in the Southern Great Plains Braun, J., VanHove, T., and Rocken, C., University Corporation for Atmospheric Research Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Southern Great Plains has become a unique region to test and develop Global Positioning System (GPS) applications for measuring water vapor in the atmosphere. Various networks of stations are available. The NOAA Forecast

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Full Spectrum Correlated-k for Shortwave Atmospheric Radiative Transfer Pawlak, D.T.(a,b), Clothiaux, E.E.(a), Modest, M.M.(c), and Cole, J.N.S.(a), Department of Meteorology, The Pennsylvania State University (a), Air Force Institute of Technology, Civilian Institutions Graduate Programs Division (b), Department of Mechanical Engineering, The Pennsylvania State University (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Fast and accurate atmospheric radiation heating

  8. Science Briefs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feed-image Digg: ALSBerkeleyLab Facebook Page: 208064938929 Flickr: advancedlightsource Twitter: AdvLightSource YouTube: AdvancedLightSource Home Science Highlights Science Briefs Science Briefs ALS Science Briefs are short (200 words maximum) descriptions of recently published ALS-related work. These "brief" highlights also include one image, a caption (50 words), and the publication citation. All ALS users and beamline scientists are invited to fill out the short submission form here

  9. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities /science-innovation/_assets/images/icon-science.jpg Science Facilities The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Center for Integrated Nanotechnologies» Dual Axis Radiographic Hydrodynamic Test Facility (DARHT)» Electron Microscopy Lab» Ion Beam Materials Lab» Isotope Production Facility» Los Alamos Neutron Science Center»

  10. Science Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programs /science-innovation/_assets/images/icon-science.jpg Science Programs The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Applied Energy Programs» Civilian Nuclear Programs» Laboratory Directed Research & Development» Office of Science»

  11. Big Science

    ScienceCinema (OSTI)

    Dr. Thomas Zacharia

    2010-01-08

    Big science seeks big solutions for the most urgent problems of our times. Video courtesy Cray, Inc.

  12. Huazhong Science Technology University Yongtai Science Technology...

    Open Energy Info (EERE)

    Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name: Huazhong Science & Technology University Yongtai Science & Technology Co...

  13. Climate & Earth Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human-Induced Climate Change Reduces Chance of Flooding in Okavango Delta Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear...

  14. Science DMZ for ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU...

  15. Climate and Environmental Sciences Division (CESD) | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Climate and Environmental Sciences Division (CESD) Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate

  16. Science DMZ Case Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU Science DMZ @ Penn & VTTI Science DMZ @ NOAA Science DMZ @ NERSC Science DMZ @ ALS Multi-facility Workflow Case Study...

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSDL Community Development for Learners Utilizing ARM Data Andrew, K. (a), Klaus, C. (b), Mace, G.G. (c), McCollum, T. (d), and Gobble, T. (e), Eastern Illinois University (a), Argonne National Laboratory (b), University of Utah (c), Charleston Middle School (d), Carl Sanburg High School (e) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting As part of the NSF National Science Digital Library (NSDL) project in Science, Mathematics, Engineering, and Technology Education (SMETE)

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Science Team Meeting 1998 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-1998, March 1998 Tucson, Arizona For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Science Team Meeting 2000 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Tenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-2000, March 2000 San Antonio, Texas For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Science Team Meeting 2001 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-2001, March 2001 Atlanta, Georgia For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Science Team Meeting 2002 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-2002, April 2002 St. Petersburg, Florida For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * An extended abstract was not

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Science Team Meeting 2003 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-2003, April 2003 Broomsfield, Colorado For proper viewing, extended abstracts should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Science Team Meeting 2004 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-2004, March 2004 Albuquerque, New Mexico For proper viewing, extended abstracts should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. * Poster abstract only; an extended abstract has not been provided by the

  4. ARM - 2009 ARM Science Team Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meeting 2009 Meeting 2009 Meeting Home Proceedings Sorted by Author Proceedings Sorted by Title Pictures Award-Winning Posters Presentations Cover Competition Winners Meeting Archives ARM Science Team Meeting Proceedings Past Science Team Meetings 2009 ARM Science Team Meeting March 30 - April 3 | Louisville, Kentucky | Galt House, Louisville Meeting Highlights Galt House, Louisville, Kentucky Held March 30 - April 3 at the Galt House in Louisville, Kentucky, the nineteenth Atmospheric Radiation

  5. Community Atmosphere Model

    Energy Science and Technology Software Center (OSTI)

    2004-10-18

    The Community Atmosphere Model (CAM) is an atmospheric general circulation model that solves equations for atmospheric dynamics and physics. CAM is an outgrowth of the Community Climate Model at the National Center for Atmospheric Research (NCAR) and was developed as a joint collaborative effort between NCAR and several DOE laboratories, including LLNL. CAM contains several alternative approaches for advancing the atmospheric dynamics. One of these approaches uses a finite-volume method originally developed by personnel atmore » NASNGSFC, We have developed a scalable version of the finite-volume solver for massively parallel computing systems. FV-CAM is meant to be used in conjunction with the Community Atmosphere Model. It is not stand-alone.« less

  6. ARM - Measurement - Atmospheric pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pressure ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric pressure The pressure exerted by the atmosphere as a consequence of gravitational attraction exerted upon the "column" of air lying directly above the point in question. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream

  7. ARM - Atmospheric Pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListAtmospheric Pressure Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Atmospheric Pressure Humans are subjected to the pressure produced by the weight of the gases of the atmosphere above us. The force exerted on a unit area of surface by the weight of the air above the surface is named

  8. Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Science Along with its primary missions-global security, energy security, basic science, and national competitiveness-the NIF & Photon Science Directorate also pursues research and development projects to innovate and develop cutting-edge technologies in support of those missions. This effort strategically invests in new technologies and development of large-scale photon systems for various federal agencies and industry sponsors. NIF&PS researchers are developing world-class

  9. Fermilab | Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feature photo feature photo feature photo feature photo feature photo Science Navbar Toggle About Quick Info Science History Organization Photo and video gallery Diversity Education Safety Sustainability and environment Contact Newsroom Spotlight Press releases Fact sheets and brochures symmetry Interactions.org Photo and video archive Resources for ... Employees Researchers, Postdocs and Graduate Students Job Seekers Neighbors Industry K-12 Students, Teachers and Undergraduates Media Science

  10. Fire Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  11. Information Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Science and Technology (ASIS&T) American Society for Indexing (ASI) Digital Library Federation (DLF) National Archives and Records Administration (NARA) Special...

  12. SCIENCE Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program early science program Early at the Argonne Leadership Computing Facility CONTACT Argonne Leadership Computing Facility | www.alcf.anl.gov | (877) 737-8615...

  13. Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Scientists are advancing the fundamental science of materials within the context of global energy-related challenges. They are developing experimental and theoretical...

  14. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect (OSTI)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together researchers in these areas and to provide a focal point for the development of computational expertise at the Laboratory. These efforts will connect to and support the Department of Energy's long range plans to provide Leadership class computing to researchers throughout the Nation. Recruitment for six new positions at Stony Brook to strengthen its computational science programs is underway. We expect some of these to be held jointly with BNL.

  15. DIVERSITY. EDUCATION. SCIENCE. The ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sciences-Biology, Computer, Information Technology, Geology, Mathematics, Microbiology, and Physics. Social Sciences-Economics, Organizational Psychology, Political Science, ...

  16. Ensemble Atmospheric Dispersion Modeling

    SciTech Connect (OSTI)

    Addis, R.P.

    2002-06-24

    Prognostic atmospheric dispersion models are used to generate consequence assessments, which assist decision-makers in the event of a release from a nuclear facility. Differences in the forecast wind fields generated by various meteorological agencies, differences in the transport and diffusion models, as well as differences in the way these models treat the release source term, result in differences in the resulting plumes. Even dispersion models using the same wind fields may produce substantially different plumes. This talk will address how ensemble techniques may be used to enable atmospheric modelers to provide decision-makers with a more realistic understanding of how both the atmosphere and the models behave.

  17. NREL: Energy Sciences - Chemical and Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the U.S. Department of Energy (DOE) National Photovoltaic Program and DOE Basic Energy Sciences Program. Materials Science. The Materials Science Group's research...

  18. National Security Science Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science NSS Archive National Security Science Latest Issue:July 2015 past issues All Issues submit National Security Science Archive National Security Science magazine...

  19. PRECISION DETERMINATION OF ATMOSPHERIC EXTINCTION AT OPTICAL AND

    Office of Scientific and Technical Information (OSTI)

    NEAR-INFRARED WAVELENGTHS (Journal Article) | SciTech Connect PRECISION DETERMINATION OF ATMOSPHERIC EXTINCTION AT OPTICAL AND NEAR-INFRARED WAVELENGTHS Citation Details In-Document Search Title: PRECISION DETERMINATION OF ATMOSPHERIC EXTINCTION AT OPTICAL AND NEAR-INFRARED WAVELENGTHS The science goals for future ground-based all-sky surveys, such as the Dark Energy Survey, PanSTARRS, and the Large Synoptic Survey Telescope, require calibration of broadband photometry that is stable in time

  20. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, Roland L. (Bloomfield, CO); Cannon, Theodore W. (Golden, CO)

    1988-01-01

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  1. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  2. NREL: Energy Sciences - Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and processed under atmospheric conditions. This work includes developing inks for inkjet printing of metals (e.g., Ag, Cu, Ni), metal oxides (e.g., ZnO, SnO2, (Ba,Sr)TiO3),...

  3. ARM - Measurement - Atmospheric moisture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moisture ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric moisture The moisture content of the air as indicated by several measurements including relative humidity, specific humidity, dewpoint, vapor pressure, water vapor mixing ratio, and water vapor density; note that precipitable water is a separate type. Categories Atmospheric State Instruments The above measurement is considered

  4. ARM - Measurement - Atmospheric temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric temperature The temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar radiation. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list

  5. ARM - Measurement - Atmospheric turbulence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    turbulence ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric turbulence High frequency velocity fluctuations that lead to turbulent transport of momentum, heat, mositure, and passive scalars, and often expressed in terms of variances and covariances. Categories Atmospheric State, Surface Properties Instruments The above measurement is considered scientifically relevant for the following

  6. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListAtmospheric Heat Budget Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Atmospheric Heat Budget The average temperature of the earth has remained approximately constant at about 15 degrees Celsius during the past century. It is therefore in a state of radiative balance, emitting the same

  7. Office of Science User facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Office of Science User facilities Office of Science User facilities The Office of Science national scientific user facilities provide researchers with the most advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. In Fiscal Year 2013 over 30,000 researchers from academia, industry, and government laboratories, spanning all fifty

  8. Science Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & ANALYSIS www.sciencemag.org SCIENCE VOL 339 8 FEBRUARY 2013 635 Steven Chu, the fi rst Nobel-winning scien- tist to lead the sprawling U.S. Department of Energy (DOE), has rarely...

  9. Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum July 22, 2013 LOS ALAMOS, N.M., July 22, 2013-Los Alamos National Laboratory's Bradbury Science Museum is opening two new exhibits July 26 as part of the Laboratory's 70th Anniversary celebration. One is a nanotechnology exhibit featuring the Laboratory's Center for Integrated Nanotechnologies (CINT) and the other is an algae biofuel exhibit from the Laboratory and the New Mexico Consortium. An opening

  10. Isotope Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Production 35 years of experience in isotope production, processing, and applications. Llllll Committed to the safe and reliable production of radioisotopes, products, and services. Contact: Kevin John LANL Isotope Program Manager kjohn@lanl.gov 505-667-3602 Sponsored by the Department of Energy National Isotope Program http://www.nuclear.energy.gov/isotopes/nelsotopes2a.html Isotopes for Environmental Science Isotopes produced at Los Alamos National Laboratory are used as

  11. Energy Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Science Energy Science Print Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities-the synchrotrons of today and the next-generation light sources of tomorrow-are the scientific tools of choice for exploring the electronic and atomic structure

  12. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights Science Highlights Science highlights feature research conducted by staff and users at the ALS. If a Power Point summary slide or a PDF handout of the highlight is available, you will find it linked beneath the highlight listing and on the highlight's page. You may also print a version of a highlight by clicking the print icon associated with each highlight. Manganese Reduction-Oxidation Drives Plant Debris Decomposition Print Monday, 22 February 2016 00:00 ALS research has shown that

  13. Measurement Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins 2016 Joseph F. Keithley Award for Advances in Measurement Science October 15, 2015 Honors to Albert Migliori, developer of resonant ultrasound spectroscopy LOS ALAMOS, N.M., Oct. 15, 2015-Los Alamos National Laboratory physicist Albert Migliori, having led the development of a powerful tool for important measurements in condensed matter physics including superconductivity, is being given the Joseph F. Keithley Award For Advances in Measurement Science, the top instrumentation prize of the

  14. Nuclear Science

    Energy Savers [EERE]

    and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE)

  15. What Makes Science, Science? Research, Shared Effort ... & A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Makes Science, Science? Research, Shared Effort ... & A New Office of Science Website What Makes Science, Science? Research, Shared Effort ... & A New Office of Science Website ...

  16. Environmental Molecular Sciences Laboratory (EMSL) | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Environmental Molecular Sciences Laboratory (EMSL) Biological and Environmental Research (BER) BER Home About Research Facilities User Facilities Atmospheric Radiation Measurement Climate Research Facility (ARM) Environmental Molecular Sciences Laboratory (EMSL) Joint Genome Institute (JGI) Science Highlights Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and

  17. Airborne Instrumentation Needs for Climate and Atmospheric Research

    SciTech Connect (OSTI)

    McFarquhar, Greg; Schmid, Beat; Korolev, Alexei; Ogren, John A.; Russell, P. B.; Tomlinson, Jason M.; Turner, David D.; Wiscombe, Warren J.

    2011-10-06

    Observational data are of fundamental importance for advances in climate and atmospheric research. Advances in atmospheric science are being made not only through the use of ground-based and space-based observations, but also through the use of in-situ and remote sensing observations acquired on instrumented aircraft. In order for us to enhance our knowledge of atmospheric processes, it is imperative that efforts be made to improve our understanding of the operating characteristics of current instrumentation and of the caveats and uncertainties in data acquired by current probes, as well as to develop improved observing methodologies for acquisition of airborne data.

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mesoscale Modeling of Mixed-Phase Arctic Clouds and Radiation Observed at SHEBA and the ARM NSA Site Morrison, H.C.(a) and Pinto, J.O.(a,b), University of Colorado (a), National Center for Atmospheric Research (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Previous studies have shown that bulk microphysics schemes often poorly simulate Arctic cloudiness. These deficiencies led to substantial biases in the surface radiative fluxes. Simulated clouds and radiation using

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analytical Model of Aerosol Optical and Microphysical Properties with Account for Hygroscopic Growth Khvorostyanov, V.I., Central Aerological Observatory; Curry, J.A., University of Colorado Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting A microphysical model of aerosol size spectra that includes hygroscopic growth is presented. In the presence of atmospheric humidity, an aerosol size spectrum of the Junge-type transforms into a superposition of two equilibrium power law

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fluxes for an Evolving Tropical Cloud System Barker, H.W., Atmospheric Environment Service of Canada; Fu, Q., Dalhousie University Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Domain-averaged, broadband solar radiative budgets for an evolving tropical mesoscale convective cloud system are computed by two approximate one-dimensional (1-D) models, which make different assumptions about the structure of unresolved clouds. One model is the standard plane-parallel, homogeneous

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiance Using Remotely Sensed Cloud Properties From ARM's SGP Site Barker, H.W., Atmospheric Environment Service of Canada; Li, Z., Canada Centre for Remote Sensing; Clothiaux, E.E., and Ackerman, T.P., The Pennsylvania State University; Kato, S., National Aeronautics and Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Time series of profiles of cloud water content and droplet effective radii have been inferred from data obtained

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Radiative Properties of Uniform and Broken Stratus: An Observational and Modelling Study Utilizing the Independent Column Approximation for Solar Radiative Transfer Clothiaux, E.E., The Pennsylvania State University; Barker, H.W., Atmospheric Environment Service of Canada; Kato, S., Hampton University; Dong, X., Analytical Service and Materials, Inc. Ackerman, T.P., The Pennsylvania State University; Liljegren, J.C., Ames Laboratory Ninth Atmospheric Radiation Measurement (ARM) Science Team

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview of FIRE Arctic Clouds Experiment Curry, J.A., and Pinto, J.O., University of Colorado Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting An overview is given of the FIRE (First ISCCP Regional Experiment) Arctic Clouds Experiment that was conducted in the Arctic from April to July 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of Arctic clouds on the radiation exchange between the surface, atmosphere and space, and to

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initial Cloud Properties Derived from GMS Over the Tropical Western Pacific Doelling, D.R., Ho, S.-P., Smith, W.L., Jr., Analytical Services and Materials, Inc.; Minnis, P., National Aeronautics and Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Satellite data are needed to provide measurements of the earth-atmosphere shortwave (SW) albedo, outgoing longwave radiation (OLR), and cloud and surface radiative properties for the

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Use of Radar-Derived Cloud Structure in Three-Dimensional Solar Radiative Transfer Calculations Evans, F., and McFarlane, S., University of Colorado, Boulder; Wiscombe, W., National Aeronautics and Space Administration-Goddard Space Flight Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Radiation Measurement (ARM) Millimeter-Wave Cloud Radar (MMCR) can provide valuable information about the spatial structure of clouds, which is important for

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud and Radiative Properties Derived Over the ARM NSA Domain From AVHRR Data Heck, P.W., Nguyen, L., Smith, W. L., Jr., Ayers, J.K., Doelling, D.R., and Spangenberg, D.A., Analytical Services and Materials, Inc.; Minnis, P., and Young, D.F., National Aeronautics and Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Radiation Measurement (ARM) Program's polar sites on the North Slope of Alaska (NSA) measure time

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Observed and Retrieved Downwelling Surface Radiation Using ASTEX Data Lazarus, S.M., Krueger, S.K., and Frisch, A.S., University of Utah, National Oceanic and Atmospheric Administration-Environmental Technology Laboratory Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting We apply data obtained from the FIRE's (First International Satellite Cloud Climatology Project [ISCCP] Regional Experiment's) Atlantic Stratocumulus Transition Experiment (ASTEX). Estimates of the

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for Aerosol Effects on AERI Clear-Sky Radiance at the SGP Ma, Y., and Ellingson, R.G., University of Maryland Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Emitted Radiance Interferometer (AERI) Line-by-Line Radiative Transfer Model (LBLRTM) Quality Measurement Experiment (QME) 10-micron window residuals have been examined relative to the Multifilter Rotating Shadowband Radiometer (MFRSR) 0.87-micron optical depth for clear-sky periods during

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collocated Satellite, Surface and Sounding Data Emerges On-line from CAVE (CERES ARM Validation Experiment) at SGP Rose, F.G., Rutan, D.A., Smith, N.M., and Alberta, T.L., Analytical Services and Materials, Inc.; Charlock, T.P., National Aeronautics and Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Top-of-the-atmosphere (TOA) broadband observations from the Clouds and the Earth's Radiant Energy System (CERES) instrument on the

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Formation of Fair-Weather Cumuli Zhu, P. and Albrecht, B., University of Miami Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting This study includes two related parts. In the first part, The formation of fair-weather cumuli has been analyzed based on both a simple mixed layer model and the data collected from the Atmospheric Radiation Measurement (ARM) program at the Southern Great Plains (SGP) site. By analyzing the conditions for the formation of fair-weather cumuli, we

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long Term AERI Data Summaries or Spectral Radiance Data for Testing Climate Models Tobin, D., Revercomb, H., Knuteson, R.O., Best, F., Dedecker, R., Howell, H.B., Garcia, R., and Feltz, W., University of Wisconsin-Madison Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Atmospheric Emitted Radiance Interferometer (AERI) data collection has been on-going at the SGP, NSA, and TWP ARM sites for a number of years now. This poster presents long term trends and distributions of

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parameterization of the Longwave Radiative Effects of Mineral Aerosols Dufresne, J.L. (a,b), Gautier,C. (a), and Ricchiazzi,P. (a), ICESS, University California Santa Barbara (a), LMD/CNRS, Paris, France (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Observations and models have demonstrated the importance of radiative forcing by mineral aerosols on the Earth's energy budget. However, relatively little is known about how these aerosols affect atmospheric circulation

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Assessment of the Change in Temperature Structure Associated with Carbonaceous Aerosols Penner, J.E. (a), Zhang, S.Y. (a), and Chuang, C.C. (b), University of Michigan (a), Lawrence Livermore National Laboratory (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Carbonaceous aerosols from anthropogenic activities can act to both scatter and absorb solar radiation. The absorption of solar radiation acts to heat the atmospheric layer containing the aerosol. If sufficient

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application of a Non-local Turbulence Closure Scheme to a Single Column Model Ghan, S.J. (a) and Moeng, C.-H. (b), Pacific Northwest National Laboratory (a), National Center for Atmospheric Research (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting A non-local countergradient transport term is added to a turbulence kinetic energy scheme embedded in a single column model (SCM). The countergradient term is expressed in terms of a planetary boundary layer (PBL) velocity

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Flexible and Efficient Radiance Solver For Multi-Layered Media Hopsecger, J.M., Gabriel, P.M., and Stephens, G.L., Colorado State University Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The development of computationally efficient radiative transfer codes has been motivated in part by the requirement of performing the retrievals of atmospheric optical properties in near real-time. The method described in this poster calculates the global reflection and trans-

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parameterization of Hygroscopic Aerosols in a Climate GCM Lacis, A.A., Mishchenko, M.I., and Carlson, B.E., Goddard Institute for Space Studies Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Real and imaginary refractive indices are needed over the full range of solar and thermal wavelengths in order to compute the radiative forcing due to atmospheric aerosols. Laboratory measurements are available for dry ammonium sulfate [Toon and Pollack, 1976] over the spectral range

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arctic Stratus Cloud Properties and Radiaitve Forcing Derived From Ground-Based Data Collected at ARM NSA Site and SHEBA Ship Dong, X. and Mace, G.G., University of Utah Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting A record of single-layer and overcast low-level Arctic stratus cloud properties has been generated using data collected at the Atmospheric Radiation Measurement site near Barrow, Alaska from May to September 2000. The record includes liquid-phase and liquid

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combination of Temperature and Humidity Profiles from a Scanning 5-mm Radiometer and MWR-Scaled Radiosondes During the 1999 Winter NSA/AAO Radiometer Experiment Westwater, E.R.(a), Leuski, V.(a), and Racette, P.(b), CIRES, University of Colorado/NOAA-ETL (a), NASA/ Goddard Space Flight Center (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting A scanning 5-mm-wavelength radiometer was deployed during an Intensive Operating Periods (IOP) at the Atmospheric Radiation

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Final Analysis of the Comparison Between Theoretical and Observed Estimates of Broadband Absorptance During ARESE II O'Hirok, W. and Gautier, C., University of California, Santa Barbara Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM Enhanced Shortwave Experiment (ARESE) II was conducted in spring 2000 to address unresolved issues about the absorption of solar radiation in the atmosphere in the presence of clouds. In a preliminary study comparing 3-D radiative

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climatology of Stratus Clouds at the SGP: A Radiation Based Study Sengupta, M.(a), Ackerman, T.P.(a), and Clothiaux, E.E.(b), Pacific Northwest National Laboratory (a), The Pennsylvania State University (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Radiation Measurement (ARM) program is a source of continuous data that can be used for various short-term climatological studies. Using multiple datasets from ARM for the Southern Great Plains (SGP) Central

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of a Stochastic Cloud-Radiation Parameterization Lane, D.E., Rutgers University Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Stochastic radiative transfer modeling has recently been shown to be a promising approach to modeling the domain-averaged shortwave radiation fields that occur in scattered cloud conditions. A parameterization of the stochastic approach to modeling cloud-radiation interactions is being developed using archived data from the Atmospheric

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some Results of the Comparison of the Solar Almucantar Sky Brightness Observed Under the Cirri Conditions and the Calculated One Petrushin, A.G.(b), Shukurov, A.K.(a), Shukurov, K.A.(a), and Golitsyn, G.S.(a), A.M. Obukhov Institute of Atmospheric Physics, RAS (a), Institute of Experimental Meteorology, NPO "Typhoon" (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The selected measurements of the solar almucantar sky brightness were carried out at the

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of Simulated Clouds in the Community Atmospheric Model (CAM2): Over the Globe and at the ARM Site Zhang, M.H.(a) and Lin, W.Y.(a), Stony Brook University Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting We first compare seasonal climatology of the global distribution of ISCCP-type clouds in the NCAR CAM2 with observations from ISCCP. Model deficiencies in simulated clouds are highlighted. Model capability of simulating the observed response of different cloud

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Atmospheric Modeling System (RAMS) Simulations of March 2000 IOP Frontal Clouds Weaver, C.P.(a), Gordon, N.D.(b), Norris, J.R.(c), and Klein, S.A.(d), Rutgers University (a), Scripps Institution of Oceanography (b), Scripps Institution of Oceanography (c), NOAA GFDL (d) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting We use RAMS simulations to increase our understanding of the processes that determine midlatitude frontal cloud structure with a focus on the ARM

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Comparison Between MOD06 Cloud Products and the ARM SGP Zhang, Y.(a) and Mace, G.G.(b), University of Utah (a), University of Utah (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Clouds, especially cirrus clouds, are critical for us to better understand the characterization of radiative processes in the atmosphere which is widely recognized as a major source of uncertainty in the earth's climate. The MODIS instrument on board the flagship satellite, TERRA, of the

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Non-Exponential Effective Transmission Laws in the Complex 3D Cloudy Atmosphere (...and Why They're Good News for GCMs) Davis, A.B.(a), Marshak, A.(b), and Pfeilsticker, K.(c), Los Alamos National Laboratory (a), NASA - Goddard Space Flight Center (b), Heidelberg University (c) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting It is well-known that unresolved _spectral_ variability due to gases leads to non-exponential transmission laws resulting from the mixture of

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Inhomogeneity from MODIS Oreopoulos, L.(a) and Cahalan, R.F.(b), University of Maryland Baltimore County (a), NASA Goddard Space Flight Center (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The study presented in this poster analyzes two full months (January and July 2003) of MODIS Atmosphere Level-3 data from the Terra and Aqua satellites in order to characterize the horizontal inhomogeneity of cloud optical properties at global scales. We first examine the

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Radiosonde Humidity Measurements and Proposed Corrections Based On AWEX Radiosonde Intercomparisons Miloshevich, L.M.(a), Lesht, B.M.(b), and Voemel, H.(c), National Center for Atmospheric Research (a), Argonne National Laboratory (b), NOAA/CMDL (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM radiosonde relative humidity (RH) measurements are widely used in numerical modeling, remote sensor validation, and radiative transfer calculations, yet their accuracy as

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cirrus Optical Depths Derived from GOES-8 and Surface Measurements Min, Q.(a) and Minnis, P.(b), ASRC, SUNY at Albany (a), NASA Langley Research Center (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Passive radiometer measurements are used to validate satellite-derived cirrus optical depths over the Atmospheric Radiation Measurement Program Southern Great Plains site during March 2000. Optical depths derived from direct beam measurements by a multifilter rotating

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AERI Observations in the Arctic: Monthly-Average Radiance Spectra and Longwave Cloud Radiative Forcing Walden, V.P., Revercomb, H.E., Knuteson, R.O., Best, F.A., Ciganovich, N., Dedecker, R.G., Dirkx, T., Garcia, R.K., Herbsleb, R., Howell, H.B., McRae, D., Short, J., and Tobin, D., Cooperative Institute of Mesoscale Meteorological Studies/Space Science and Engineering Center/University of Wisconsin Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Atmospheric Emitted Radiance

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Pathlength Distributions Derived from a High Resolution Spectrometer (AWS) Min, Q.(a), Harrison, L.(a), Kiedron, P.(a), Berndt, J.(a), and Joseph, E.(b), Atmospheric Science Research Center, SUNY at Albany (a), Department of Physics and Astronomy, Howard University (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting A high resolution oxygen A-band and 820 nm water vapor band spectrometer has been developed and deployed in a field campaign at the ARM SGP site. The

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Research and Educational Uses of the NSDL/AVC Klaus, C.M.(a), Andrew, K.(b), Mace, G.G.(c), Bahrmann, C.P.(a), Galli, C.(c), McCollum, T.(a), and Gobble, T.(a), Argonne National Laboratory (a), Eastern Illinois University (b), University of Utah (c) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The NSF National Science Digital Library (NSDL) has its grand opening on Dec, 4th 2002. One of the 18 featured NSDL collections was the Atmospheric Visualization Collection

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Cloud Imager (ICI) Measurements of Cloud Statistics During the 2003 Cloudiness Intercomparison Campaign Gregory, L., Wagener, R., Ma, L.L., and Cialella, A., Brookhaven National Laboratory Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The process of creating ARM data-streams from external data sources is described from identification of scientific need as determined by the science working groups to implementation and documentation, which involves ARM's task

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meeting 1998 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-1998, March 1998 Tucson, Arizona For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meeting 1999 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-1999, March 1999 San Antonio, Texas For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Topography of Cloud Tops Pincus, R., Gunshor, M., Space Science and Engineering Center, University of Wisconsin-Madison; Marshak, A., and Wiscombe, W., National Aeronautics and Space Administration-Goddard Space Flight Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The geometric shape of cloud top affects the amount and distribution of radiation reflected by the cloud. The angular redistribution is more relevant to remote sensing applications, while changes in the

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Terra Validation Opportunities with ARM Data: A Summary of Overpasses and Ground-Based Validation Products Mace, G.G., Benson, S., Vernon, E.N., and Zhang, Y., Department of Meteorology, Univeristy of Utah Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The flagship spacecraft of the EOS program, Terra, was launched into polar orbit in December 1999. Terra has been generating science quality data since about February 2000. Instruments on Terra include the mid and high

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Availability and Status of MISR Geophysical Data Products Diner, D.J. and the MISR Science Team, Jet Propulsion Laboratory, California Institute of Technology Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard the Terra spacecraft has been collecting Earth imagery since February 2000. MISR contains nine cameras pointed at fixed along-track directions, and acquires images with view angles at the EarthÂ’s surface

  19. Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maintaining nuclear stability in times of transition focus of talk at Bradbury Science Museum January 9, 2014 First in series of evening lectures open to public LOS ALAMOS, N.M., Jan. 9, 2014-Los Alamos National Laboratory Senior Fellow Houston "Terry" Hawkins talks about the role that the nation's nuclear weapons stockpile plays in maintaining the nation's defense - and that of our allies - in a talk at 5:30 p.m., Jan. 15 at the Bradbury Science Museum. The talk is the first in a

  20. Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emerging threats to global security focus of March 12 talk at Bradbury Science Museum March 6, 2014 Terry Wallace to address Lab's role in helping the government meet national security challenges LOS ALAMOS, N.M., March 6, 2014-Terry Wallace, principal associate director for Global Security at Los Alamos National Laboratory, will talk about potential emerging threats in a lecture at 5:30 p.m., March 12 at the Bradbury Science Museum. The talk is the third in a series of evening lectures planned

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiative Transfer Modeling: A Summary of AER Codes Clough, S.A.(a), Shephard, M.W.(a), Mlawer, E.J.(a), Delamere, J.S.(a), Iacono, M.J.(a), Cady-Pereira, K.(a), Boukabara, S.(a), Revercomb, H.E.(b), Tobin, D.C.(b), Turner, D.D.(c), and Morcrette, J.J.(d), Atmospheric and Environmental Research, Inc. (a), University of Wisconsin-Madison (b), Pacific Northwest National Laboratory (c), ECMWF (d) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Radiative transfer

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Three-Dimensional Radiative Transfer in Cloudy Atmospheres: An Upcoming Edited Volume from Springer-Verlag Davis, A.B.(a), Marshak, A.(b), and LeBlanc, L.(c), Los Alamos National Laboratory (a), NASA – Goddard Space Flight Center (b), McGill University (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Anthony Davis and Alexander Marshak have spearheaded a book proposal to Springer-Verlag on 3D radiative transfer in cloud layers and cloudy atmospheres. The editors

  3. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Information Science, Computing, Applied Math science-innovationassetsimagesicon-science.jpg Information Science, Computing, Applied Math National security ...

  4. Single-Column Modeling C. J. Walcek Atmospheric Sciences Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a is a function of height in the troposphere and represents the relative humidity depression from 100% at which cloud amount falls off to 37% (e-1): 0.2+a3 a <0.75 a -...

  5. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RAPTOR telescope witnesses black hole birth science-innovationassetsimagesicon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and unique research...

  6. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid-scanning technology boosts airport security science-innovationassetsimagesicon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and unique research...

  7. National Security Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science National Security Science Latest Issue:July 2015 past issues All Issues submit National Security Science Showcasing Los Alamos National Laboratory's work on nuclear...

  8. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roadrunner firsts pave way for greener, faster supercomputing science-innovationassetsimagesicon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and ...

  9. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  10. Science and Our Future | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our Future March 3, 2013 Yesterday morning, it was my pleasure to give a welcome to the 2013 Virginia Middle School Science Bowl. As you know, we have hosted both the High School and Middle School regional science bowls at Jefferson Lab over a number of years. We also have a leading role with DOE to mount the national science bowls. Yesterday morning, the auditorium was already full at 8 a.m., five minutes ahead of my advertised start time. The atmosphere was lively with children of all ages -

  11. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, Otto A. (Langhorne, PA); Stencel, Joseph R. (Skillman, NJ)

    1990-01-01

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The mixture then passes through a combustion chamber where hydrogen gas in the form of H.sub.2 or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  12. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, O.A.; Stencel, J.R.

    1987-10-02

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The moisture then passes through a combustion chamber where hydrogen gas in the form of H/sub 2/ or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  13. Is sustainability science really a science?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is sustainability science really a science? Is sustainability science really a science? The team's work shows that although sustainability science has been growing explosively since the late 1980s, only in the last decade has the field matured into a cohesive area of science. November 22, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience,

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shortwave Spectrometer Quality Assessment Griffin, J., Pacific Northwest National Laboratory; Fisk, M., Sowle, D., and Terry, D., Mission Research Corporation Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting Initial plans and efforts for data quality assessment on the shortwave spectrometer recently installed at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site are described

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Latitude Cloud Microphysical Properties from FTIR Data Lubin, D., Scripps Institution of Oceanography Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM AERI instruments record downwelling radiance spectra with sufficient radiometric calibration to enable the retrieval of important cloud microphysical properties. This poster will describe how radiative transfer simulations that include cloud thermodynamic phase (liquid water, ice, mixed phase) can be utilized

  16. Energy Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Science Print Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities-the synchrotrons of today and the next-generation light sources of tomorrow-are the scientific tools of choice for exploring the electronic and atomic structure of matter. As

  17. Fire Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  18. Chemical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  19. Computational Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  20. Discovery Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Science Since the beginning of civilization, humans have marveled at the night sky and pondered the vast stretches of the universe. The invention of telescopes in the 17th century revealed the first details of the Moon and the planets in our solar system. Four hundred years later, space-based observatories such as NASA's Hubble and Kepler regularly capture amazing vistas of billions of galaxies millions of light years away. Despite these advances, astronomers have only been able to

  1. Information Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Information Sciences Uncovering actionable knowledge and generating insight into exascale datasets from heterogeneous sources in real time Leadership Group Leader Patrick M. Kelly Email Deputy Group Leader Amy Larson Email Contact Us Administrator Yvonne McKelvey Email Conceptual illustration of futuristic data stream processing. Developing methods and tools for understanding complex interactions and extracting actionable information from massive data streams. Basic and applied research

  2. Science DMZ Implemented at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @...

  3. ARM - Evolution of the Atmosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListEvolution of the Atmosphere Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Evolution of the Atmosphere The earth's atmosphere plays a crucial role in shaping the weather, climate, and life-supporting systems. However, the ocean and atmosphere are the earth's fluid outer layers and are

  4. ARM - Composition of the Atmosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListComposition of the Atmosphere Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Composition of the Atmosphere The atmosphere is 1000 kilometers above mean sea level. In fact, only about 1 percent of the total mass of the atmosphere is above an altitude of approximately 30 kilometers above

  5. Science Brief Submission Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Brief Submission Form Science Brief Submission Form Print Tuesday, 01 May 2007 00:00 Loading... < Prev

  6. Science and Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation /science-innovation/_assets/images/icon-science.jpg Science and Innovation Our strong interdisciplinary teaming and unique research facilities allow us to develop solutions to complex problems, and to support partners and collaborators, all with the goal of strengthening national security and making a safer world. Science & Engineering Capabilities» Science Programs» Science Facilities» Features» Capabilities Strategy: Science Pillars» Top Ten Innovations of 2013 Science and

  7. Life sciences and environmental sciences

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  8. Life sciences and environmental sciences

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER`s mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  9. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    SciTech Connect (OSTI)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  10. Science Cafe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cafés Science Cafe April 27, 2015-Special ALS Colloquium Print Wednesday, 22 April 2015 13:19 Special Event on Monday, April 27 @ 12 noon, USB 15-253 X-Ray Microscopy: The First 120 Years Janos Kirz, ALS Abstract Röntgen's great discovery became an instant public sensation. Fascination with the "new kind of rays" that could reveal the structure of opaque objects swept the world in 1896. Fifty years later it was widely recognized that the short wavelength of the radiation should open

  11. Science & Technology Review March 2007

    SciTech Connect (OSTI)

    Radousky, H B

    2007-02-05

    This month's issue has the following articles: (1) Partnering to Enhance Americans Health--Commentary by Tomas Diaz de la Rubia; (2) Advancing the Frontiers in Cancer Research--Researchers at the University of California Davis Cancer Center and Lawrence Livermore are teaming up to fight cancer; (3) On the Leading Edge of Atmospheric Predictions--Continual research and development at the National Atmospheric Release Advisory Center help mitigate the consequences of toxic airborne hazards; (4) Climate and Agriculture: Change Begets Change--A Livermore researcher is using computer models to explore how a warmer climate may affect crop yields in California; (5) New Routes to High Temperatures and Pressures--With functionally graded density impactors composed of thin metal and polyethylene films, researchers can explore new areas of experimental physics; and (6) From Sound Waves to Stars: Teller's Contributions to Shock Physics--Edward Teller's interest in shock physics led to significant developments in both basic and applied science.

  12. Bradbury Science Museum - Science on Wheels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bradbury Science Museum - Science on Wheels Our Mission: To stimulate interest in and enthusiasm for science, technology, engineering and mathematics and promote public understanding and appreciation of Los Alamos National Laboratory Our Vision: The public interested in and excited about science, technology, engineering and mathematics, and the work of Los Alamos National Laboratory Program Description During the school year, the Bradbury Science Museum Educators drive there van to schools

  13. Earth System Modeling (ESM) Program | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Earth System Modeling (ESM) Program Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program

  14. Integrated Assessment of Global Climate Change | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Integrated Assessment of Global Climate Change Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling

  15. Subsurface Biogeochemical Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Subsurface Biogeochemical Research Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program Subsurface

  16. Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science /science-innovation/_assets/images/icon-science.jpg Office of Science Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. Advanced Scientific Computing Research» Basic Energy Sciences» Biological and Environmental Research» Fusion Energy Sciences» High Energy Physics» Nuclear Physics» Fusion Energy Science Research LANL fusion materials researchers use Titan supercomputer to

  17. Capabilities: Science Pillars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pillars /science-innovation/_assets/images/icon-science.jpg Capabilities: Science Pillars The Lab's four Science Pillars harness our scientific capabilities for national security solutions. What are the Los Alamos National Laboratory's Science Pillars? The Laboratory has established the Science Pillars under four main themes to bring together the Laboratory's diverse array of scientific capabilities and expertise: Information, Science, and Technology Pillar Materials for the Future Pillar

  18. Atmospheric Radiation Measurement Climate Research Facility ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement Climate Research Facility Argonne scientists study ... for climate research to the Atmospheric Radiation Measurement (ARM) Climate Research ...

  19. Atmospheric Radiation Measurement Climate Research Facility ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement Climate Research Facility (ARM) Biological and ... BER Home About Research Facilities User Facilities Atmospheric Radiation Measurement ...

  20. ARM - Sources of Atmospheric Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources of Atmospheric Carbon Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Sources of Atmospheric Carbon Atmospheric carbon represented a steady state system, where influx equaled outflow, before the Industrial Revolution. Currently, it is no longer a steady state system because the

  1. NETL SOFC: Atmospheric Pressure Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Pressure Systems ATMOSPHERIC PRESSURE SYSTEMS (INDUSTRY TEAMS)-This key technology focuses on the design, scaleup, and integration of the SOFC technology, ultimately resulting in atmospheric-pressure modules suitable to serve as the building blocks for distributed-generation, commercial, and utility-scale power systems. Activities include fabrication, testing, post-test analysis of cells; integrating cells into stacks; and the development and validation testing of progressively

  2. ARM - Destination of Atmospheric Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Destination of Atmospheric Carbon Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Destination of Atmospheric Carbon Oceans: 92 gigatonnes [(Gt) 1 gigatonne = 1x1012 kilograms] are recycled annually from the atmosphere to the oceans. This carbon is used for biosynthesis or remains dissolved

  3. BioenergizeME Virtual Science Fair: Science & Technology Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Technology Sustainable Transportation Fuels BioenergizeME Virtual Science Fair: Science & Technology Sustainable Transportation Fuels BioenergizeME Virtual Science Fair: ...

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links Between Mesoscale Dynamics and Cloud Water in High-Resolution March 2000 RAMS Simulations Weaver, C.P.(a), Gordon, N.D.(b), Norris, J.R.(b), and Klein, S.A.(d), Rutgers University (a), Scripps Institution of Oceanography (b), NOAA/GFDL (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Regional Atmospheric Modeling System (RAMS) is applied as a tool for improving our understanding of sub-GCM-grid-scale cloudiness. Specifically, we use high-resolution

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimation of Temperature Effect of Fires Near Moscow in Summer-Fall 2002 Mokhov, I.I. and Gorchakova, I.A., Obukhov Institute of Atmosphere Physics RAS, Russia Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Local effect of cooling ΔT due to peatbog and forest fires near Moscow in summer-fall 2002 is estimated. These estimates are based on coordinated measurements at the Zvenigorod Scientific Station (55°42'N, 36°46'E) of our Institute. Continuous measurements of

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sizes, Fractional Coverage, and Radar Doppler Moments Profiles of Fair-Weather Cumulus Clouds at the TWP ARM Site Kollias, P., Albrecht B.A., and Dow B.J., University of Miami Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Fair-weather cumuli are fundamental in regulating the vertical structure of water vapor and entropy in the lowest 2 km of the Earth's atmosphere over vast areas of the oceans. Using data from the mm-wavelength cloud radar, the micro-pulse lidar and

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Raman Lidar Profiling of Aerosols and Water Vapor Over the Southern Great Plains Ferrare, R.A.(a), Turner, D.D.(b), Clayton, M.B.(c), Brasseur, L.H.(c), Tooman, T.P.(d), Goldsmith, J.E.M.(d), Ogren, J.(e), and Andrews, E.(f), NASA Langley (a), Pacific Northwest National Laboratory (b), SAIC (c), Sandia National Laboratories (d), NOAA (e), CIRES/NOAA (f) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The automated Department of Energy (DOE) Atmospheric Radiation Measurement

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Remote Sensing of Cirrus Cloud Parameters Using AVHRR and MODIS Data Coupled With Radar and Lidar Measurements Ou, S.C.(a), Liou, K.N.(a), Takano, Y.(a), Mace, G.G.(b), Sassen, K.(b), and Heymsfield, A.(c), University of California at Los Angeles, California (a), University of Utah, Utah (b), National Center for Atmospheric Research, Colorado (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Satellite mapping of the optical depth in midlatitude and tropical regions has

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AERI and Raman Lidar Cirrus Cloud Optical Depth Retrieval to Validate Aircraft-Based Cirrus Measurements DeSlover, D.H.(a), Knuteson, R.O.(a), Turner, D.D.(b), Whiteman, D.N.(c), and Smith, W.L.(d), Univeristy of Wisconsin - Madison (a), Pacific Northwest National Laboratory (b), NASA Goddard Space Flight Center (c), NASA Langley Research Center (d) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Ground-based Atmospheric Emitted Radiance Interferometer (AERI) and Raman lidar

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrievals of Vertical Profiles of Cloud Ice Mass and Particle Characteristic Size from MMCR Data Matrosov, S.Y.(a), Heymsfield, A.J.(b), Shupe, M.D.(c), and Korolev, A.V.(d), CIRES, University of Colorado and NOAA ETL (a), NCAR (b), STC (c), Canadian Atmospheric Service (d) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting A remote sensing method is proposed for the retrievals of vertical profiles of ice cloud microphysical parameters from ground-based measurements of radar

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Angular Distribution of Intensity in a Flux of Radiation Scattered by a Cloud Dvoryashin, S.V., Shukurov, K.A., Shukurov, A.K., and Golitsyn, G.S., A.M.Obukhov Institute of Atmospheric Physics, RAS Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A study of the angular distribution of intensity in a flux of solar radiation scattered by a cloud was carried out in conditions of translucent clouds (the disk of the Sun is visible). Using the digital video camera KODAK DC200,

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical and Microphysical Characteristics of the Smoke Aerosol in the Moscow Region During the Summer-Autumn of 2002 Gorchakov, G.I.(a), Golitsyn, G.S.(a), Anikin, P.P.(a), Emilenko, A.S.(a), Isakov, A.A. (a), Kopeikin, V.M.(a), Rublev, A.N.(b), Sviridenkov, M.A.(a), and Shukurov, K.A.(a), A.M.Obukhov Institute of Atmospheric Physics, RAS (a), Russian Research Center "Kurchatov Institute" (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Observational results

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physical Retrievals of PWV and CLW from ARM MicroWave Radiometers Clough, S.A.(a), Clothiaux, E.E.(b), Cady-Pereira, K.(a), Boukabara,S.(a), Liljegren, J.C.(c), and Turner,D.D.(d), Atmospheric & Environmental Research, Inc. (a), Pennsylvania State University (b), Argonne National Laboratory (c), University of Wisconsin (d) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The retrieval of accurate values for column water vapor (PWV) and cloud liquid water (CLW) is

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clear Sky, Longwave, Radiative Transfer at the North Slope of Alaska CART Site: A Mini QME Delamere, J.S.(a), Clough, S.A.(a), Mlawer, E.J.(a), Shephard, M.W.(a), and Stamnes, K.H.(b), Atmospheric and Environmental Research, Inc. (a), Stevens Institute of Technology (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The AERI/LBLRTM and the Broadband Quality Measurement Experiments (QMEs) at the Southern Great Plains CART have extensively compared clear-sky longwave

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Water Vapor Continuum Model: MT_CKD_1.0 Mlawer, E.J.(a), Clough, S.A.(a), and Tobin, D.C.(b), Atmospheric and Environmental Research, Inc. (a) University of Wisconsin - Madison (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting For the first time since its inception, a new formulation for the CKD approach to the water vapor continuum has been generated. This new version is designated MT_CKD_1.0. The original CKD formulation, derived in 1980 based upon laboratory

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sub-Grid-Scale Isentropic Transports on McRAS Evaluations Using ARM-CART SCM Datasets Sud, Y.C., Walker, G.K., and Tao, W.-K., Climate and Radiation Branch, Laboratory for Atmospheres, NASA/Goddard Space Flight Center Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Influence of Sub-grid-Scale Isentropic Transports on McRAS: Evaluation using ARM-CART SCM Datasets. Y. C. Sud, G. K. Walker and W.-K. Tao In GCM-physics evaluations with the currently available ARM-CART SCM

  17. Hierardlicsl Diagnosis V. V. Zuev Institute of Atmospheric Optics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hierardlicsl Diagnosis V. V. Zuev Institute of Atmospheric Optics Siberian Branch of the Russian Academy of Sciences Tomsk, Russia Systematic observations of the earth's ozone layer over the last ten years indicate a steady decrease of ozone content in the stratospheric maximum and, on the contrary, a increase of ozone concentrations in the troposphere. This trend is illustrated clearly by the results of 20 years' observations of high-altitude ozone concentration distribution in the troposphere

  18. Evaluation of Routine Atmospheric Sounding Measurements Using Unmanned Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Routine Atmospheric Sounding Measurements Using Unmanned Systems but also to understand the different processes involved in a cloud's life cycle by providing measurements complimentary to those concurrently obtained by instruments stationed at the third ARM Mobile Facility (AMF3) at Oliktok Point. ERASMUS will supply data to address the following science questions: * How does temperature and humidity evolve during transitions between clear and cloudy skies? * How do aerosol properties vary with

  19. Interactive Uses of the NSDL: .Atmospheric Visualization Collection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Uses of the NSDL: Atmospheric Visualization Collection C. M. Klaus, E. N. Vernon, T. McCollum, T. R. Gobble, H. M. Anthony, and D. Johnson Argonne National Laboratory Argonne, Illinois K. Andrew Eastern Illinois University Charleston, Illinois G. G. Mace University of Utah Salt Lake City, Utah C. P. Bahrmann University of Oklahoma Norman, Oklahoma User Interfaces The National Science Digital Library (NSDL) has three user interfaces for accessing data images. 1. The Geophysical Focus

  20. Bradbury Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable energy is focus of New Science on Wheels programs offered by Bradbury Science Museum September 21, 2010 Los Alamos National Laboratory is taking science on the road to...

  1. Aeras: A next generation global atmosphere model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not componentsmore » of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.« less

  2. Aeras: A next generation global atmosphere model

    SciTech Connect (OSTI)

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not components of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.

  3. Polyport atmospheric gas sampler

    DOE Patents [OSTI]

    Guggenheim, S. Frederic (Teaneck, NJ)

    1995-01-01

    An atmospheric gas sampler with a multi-port valve which allows for multi, sequential sampling of air through a plurality of gas sampling tubes mounted in corresponding gas inlet ports. The gas sampler comprises a flow-through housing which defines a sampling chamber and includes a gas outlet port to accommodate a flow of gases through the housing. An apertured sample support plate defining the inlet ports extends across and encloses the sampling chamber and supports gas sampling tubes which depend into the sampling chamber and are secured across each of the inlet ports of the sample support plate in a flow-through relation to the flow of gases through the housing during sampling operations. A normally closed stopper means mounted on the sample support plate and operatively associated with each of the inlet ports blocks the flow of gases through the respective gas sampling tubes. A camming mechanism mounted on the sample support plate is adapted to rotate under and selectively lift open the stopper spring to accommodate a predetermined flow of gas through the respective gas sampling tubes when air is drawn from the housing through the outlet port.

  4. BES Science Network Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network Requirements Report of the Basic Energy Sciences Network Requirements Workshop Conducted June 4-5, 2007 BES Science Network Requirements Workshop Basic Energy Sciences Program Office, DOE Office of Science Energy Sciences Network Washington, DC - June 4 and 5, 2007 ESnet is funded by the US Dept. of Energy, Office of Science, Advanced Scientific Computing Research (ASCR) program. Dan Hitchcock is the ESnet Program Manager. ESnet is operated by Lawrence Berkeley National Laboratory, which

  5. Basic Energy Sciences Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Reports Basic Energy Sciences Reports The list below of Basic Energy Sciences workshop reports addresses the status of some important research areas that can help identify research directions for a decades-to-century energy strategy. Basic Energy Sciences (BES) Workshop Reports The Energy Challenges Report: New Science for a Secure and Sustainable Energy Future This Basic Energy Sciences Advisory Committee (BESAC) report summarizes a 2008 study by the Subcommittee on Facing

  6. Materials Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST Materials Science and Technology Providing world-leading, innovative, and agile materials science and technology solutions for national security missions. MST is metallurgy. The Materials Science and Technology Division provides scientific and technical leadership in materials science and technology for Los Alamos National Laboratory. READ MORE MST is engineered materials. The Materials Science and Technology Division provides scientific and technical leadership in materials science and

  7. Earth, Space Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth, Space Sciences /science-innovation/_assets/images/icon-science.jpg Earth, Space Sciences National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Climate, Ocean and Sea Ice Modeling (COSIM)» Earth and Environmental Sciences Division» Intelligence and Space Research» Earth Read caption + A team of scientists is working to understand

  8. Science & Engineering Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities /science-innovation/_assets/images/icon-science.jpg Science & Engineering Capabilities These capabilities are our science and engineering at work for the national security interest in areas from global climate to cyber security, from nonproliferation to new materials, from clean energy solutions to supercomputing. Accelerators, Electrodynamics» Energy» Materials Science» Bioscience: Bioenergy, Biosecurity, and Health» Engineering» National Security, Weapons Science»

  9. Science Serving Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Goal 8: Science Serving Sustainability LANL takes opportunities to engage the ... ENVIRONMENTAL SUSTAINABILITY GOALS at LANL Community involvement: Andy Erickson and Duncan ...

  10. Semiconductor Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    world ssls.sandia.gov Initiates decades-long investment into compound semiconductor science and technology, eventually establishing its Center for Compound Semiconductor Science...

  11. Science and Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Faces of Science The people behind our science Radical Supercomputing Extreme speeds, big data, powerful simulations 70 Years of Innovation Addressing the nation's most complex...

  12. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Sciences Fusion Energy Sciences Expanding the fundamental understanding of matter at very high temperatures and densities and to build the scientific foundation ...

  13. Sandia Energy - Computational Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science Home Energy Research Advanced Scientific Computing Research (ASCR) Computational Science Computational Sciencecwdd2015-03-26T13:35:2...

  14. Nuclear Science Series: Radiochemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiochemistry Nuclear Science Series: Radiochemistry These volumes are publicly ... working under the Committee on Nuclear Science within the National Academy of ...

  15. Stewardship Science Academic Alliances

    National Nuclear Security Administration (NNSA)

    0%2A en NNSA's holds Stewardship Science Academic Programs Annual Review Symposium http:nnsa.energy.govblognnsas-holds-stewardship-science-academic-programs-annual-review-symp...

  16. Science and Technology Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Technology Day Science and Technology Day February 24, 2015 Tuesday, Feb. 24 Berkeley Lab Building 50 Auditorium Attendance is open to anyone. Remote streaming is...

  17. Science Briefs - 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    newsroomassetsimagesnewsroom-icon.jpg Science Briefs - 2012 Read in detail about specific Los Alamos science achievements, and the honors our scientists are accruing. Los...

  18. Science Briefs - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    newsroomassetsimagesnewsroom-icon.jpg Science Briefs - 2014 Read in detail about specific Los Alamos science achievements, and the honors our scientists are accruing....

  19. ARM - TWP Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical...

  20. SRNL Science and Innovation - National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1/2014 SEARCH SRNL GO Tritium Stewardship Non-Proliferation Nuclear Materials Recovery Homeland Security Forensics/Law Enforcement Atmospheric Technologies SRNL Home Science and Innovation National Security - Nuclear Materials Recovery Deployable Capability for Characterization, Stabilization, and Packaging of any Radiological and Fissile Material Spent Nuclear Fuel Recovery / Repatriation of Highly Enriched Uranium Spent Nuclear Fuel Consultation on Fissile Materials Management SRNL is a key

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence of High Ice Supersaturation in Cirrus Clouds Using ARM Raman Lidar Measurements Comstock, J.M., Ackerman, T.P., and Turner, D.D., Pacific Northwest National Laboratory Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Water vapor amounts in the upper troposphere are crucial to understanding the radiative feedback of cirrus clouds on the EarthÂ’s climate. We use a unique, year-long dataset of water vapor mixing ratio inferred from ground-based Raman lidar

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implications of Enhanced Relative Humidity in Cold Tropical Cirrus Jensen, E.J., NASA Ames Research Center Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting In situ measurements of water vapor concentration and temperature in tropical cirrus during the CRYSTAL-FACE mission indicate that the equilibrium relative humidity within cirrus at T < 200 K is about 20-30% higher than ice saturation. This evidence comes from both persistent contrail sampling and cold anvil cirrus

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Factors Controlling the Formation and Evolution of Subtropical Cumulonimbus Anvils During CRYSTAL-FACE Fridlind, A.M., Ackerman, A.S., and Jensen, E.J., NASA Ames Research Center Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Cumulonimbus systems have been hypothesized to play an important role in global climate sensitivity and their impact on moisture levels in the tropical tropopause layer may also modulate stratospheric water vapor concentrations. But the properties

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Cloud Resolving Model Simulations using Size-Resolved and GCM Microphysics Parameterizations Ovtchinnikov, M. and Ghan, S., Pacific Northwest National Laboratory Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting We will show that CRM simulations using a size-resolved treatment of cloud microphysics are in remarkable agreement with CRM simulations using the bulk microphysics parameterization from the PNNL version of the NCAR CCM. This confirms the suspicion

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agents in ARM: Applying Artificial Intelligence to ARM Data Mining Kuchar, O.A. and Reyes-Spindola, J., Pacific Northwest National Laboratory Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting We present a vision of a prototype environment that utilizes a co-operative community of intelligent software agents (a computer program that behaves in a manner analogous to a human agent) for the creation of an integrative, computer-based data analysis architecture to mine massive

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Cloud Information from the MMCR of ARM Sites with that from the Aqua MODIS Cloud Mask Mace, G.G. and Zhang, Q., University of Utah Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting CloudSat is an experimental satellite which will use Cloud Profiling Radar (CPR) to measure the vertical structure of clouds from space. It will fly in orbital formation as part of a constellation of satellites including Aqua, CALIPSO, PARASOL and Aura. We develop an algorithm that

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sky Cover and Cloud Fraction Kassianov, E., Long, C., and Ovtchinnikov, M., Pacific Northwest National Laboratory Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Previously (Kassianov et al., 2002), we examined the relationship between hemispherical sky cover and nadir-view cloud fraction by using model simulations. These simulations of ground-based hemispherical measurements were based on four-dimensional cloud fields produced by a large eddy simulation model. In

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Cloud-Radiative Properties from Regional Very-High-Resolution Modeling and Satellite Retrievals Wang, D.-H. (a,b) and Minnis, P.(b), Hampton University (a), NASA Langley Research Center (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Data from a regional very-high-resolution modeling/assimilation and the GOES satellite-derived cloud-radiative properties including cloud fraction, temperature, height, thickness, phase, optical depth, effective particle

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activation Control: An Alternate Framework for Explaining Variation of Deep Convection Barr-Kumarakulasinghe, S.A., Brookhaven National Laboratory Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting An alternate conceptual framework with the ability to explain large scale variation in convection, but still have the ability to explain shorter time scale (weekly) variation of convection is presented. In contrast, the current quasi-equilibrium and statistical equilibrium control

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bidirectional Reflectances for Non-homogeneous Clouds: A Spectral Analysis and Scale Break Titov, G.A., Pacific Northwest National Laboratory Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting The realistic fractal model of stratocumulus clouds and 3D Monte Carlo technique are exploited to study energy spectra of bidirectional reflectances into different cones of angular width. Specifically, we focus on the effect of geometrical averaging caused by finite field-of-view (FOV) of

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparisons of Measurements of Cloud Lower Boundaries by the MPL, BLC, MMCR, BBSS and AERI Han, D., and Ellingson, R.G., University of Maryland Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting The cloud lower boundary is an important factor in radiative transfer under various cloud conditions. Several ground-based instruments at the ARM CART Central Facility, including the micro pulse lidar (MPL), the Belfort laser ceilometer (BLC), and the MilliMeter Cloud profiling Radar

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influence of Age-Dependent Optical and Thermal Snow Properties on the Modeled Surface Temperature and Albedo in the Arctic Curry, J.A., and Schramm, J.L., University of Colorado Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting A new multi-level snow model has been developed to simulate the time-varying snow thermal and optical characteristics in response to precipitation events and snow aging. The model is forced by observations from the Russian ice islands in the Arctic

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Laboratory Ice Cloud and Cirrus Crystal Size Spectra Obtained with the FSSP and Cloudscope Arnott, W.P., Schmitt, C.G., Lowenthal, D.H., Desert Research Institute; Poellot, M.R., University of North Dakota Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Laboratory cloud chamber measurements of ice cloud particle size spectra have been performed using three methods: a Forward Scattering Spectrometer Probe (FSSP), a video impactor or cloudscope, and inversion of

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Near Real-Time Geographic Representation of Solar Radiation Measurement Data for the Southern Great Plains Network Brady, E., Gray-Hann, P., Anderberg, M.H.L., Wilcox, S.M., and Renne, D.S., National Renewable Energy Laboratory Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The National Renewable Energy Laboratory (NREL) will implement a web site showing the geographic representation of solar radiation for the Southern Great Plains, updated six times daily for the previous

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application and Evaluation of Accelerated Radiative Transfer Schemes in General Circulation Models Gabriel, P., Stephens, G.L., and Partain, P.T., Colorado State University Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting This phase of the research focuses on the implementation of the adjoint perturbation and selection rules based methods that have been developed as a basis for use in general circulation models (GCMs). The implementation of the approach in a GCM will be

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements of the Asymmetry Parameter and Volume Extinction Coefficient in Arctic Clouds Gerber, H., Gerber Scientific; Garrett, T.J., University of Washington; Hobbs, P.V., University of Washington; Platnick, S., University of Maryland, Baltimore County Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Measurements were made with a cloud-integrating nephelometer mounted on the University of Washington's CV-580 aircraft during the Arctic Surface Heat Budget of the Arctic/First

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Diamond Dust Formation and its Radiative Effects Khvorostyanov, V.I. and Curry, J.A., University of Colorado Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Diamond dust consists of small ice crystals that are frequently observed in the lower troposphere during winter in the polar regions. Diamond dust has been hypothesized to influence surface radiation budget, formation of polar anticyclones and precipitation amount on the Antarctic Plateau Diamond. Diamond Dust is

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol and Radiation Measurement Capabilities of the Battelle G-1 Aircraft Laulainen, N., Morris, V., and Hubbe, J., Pacific Northwest National Laboratory Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Battelle G-1 aircraft has been used in three Aerosol Intensive Observation Periods (IOPs) at the Southern Great Plains (SGP) site. The purpose of this presentation is to give an overview of current and planned capabilities of the G-1 for aerosol and radiation measurements.

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol-Cloud-Radiation Interaction: A Comparison of GCM Results versus Surface Observations Liepert, B.G., Lamont-Doherty Earth Observatory of Columbia University; Lohmann, U., Dalhousie University, Halifax, Canada Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The change in cloud properties due to increased anthropogenic emissions of aerosols and their precursor gases is referred to as "indirect aerosol effect." Estimates with general circulation models (GCMs)

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Comparison of Surface- and Satellite-Derived Cloud Fractions for the ARM SGP Long, C. N., and Ackerman, T. P., The Pennsylvania State University; Minnis, P., and Smith, W. L., National Aeronautics Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Determinations of cloud fractions are essential for radiative energy balance studies. Only satellites afford the global coverage needed to extend these studies to global climate research.

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cirrus Cloud and Upper Tropospheric Turbulence Properties Derived from MMCR Doppler Moments Mace, G. G., University of Utah Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting We are developing an algorithm that uses the radar reflectivity, Doppler velocity and Doppler spectral width observed in cirrus cloud layers to derive the microphysical properties of the cloud and information regarding the mean vertical air motion and turbulence. This approach assumes that the cirrus

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micropulse Lidar Slant Sensing Retrieval of Aerosol Optical Properties Powell, D.M., and Reagan, J.A., University of Arizona; Spinhirne, J.D., National Aeronautics and Space Administration-Goddard Space Flight Center; Campbell, J.R., and Hlavka, D.L., Science Systems and Applications Inc.; Ferrare, R.A., National Aeronautics and Space Administration-Langley Research Center; Turner, D.D., Flynn, C.J., and Mendosa, A., Pacific Northwest National Laboratory Ninth Atmospheric Radiation Measurement

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CLARA-Project: Intensive Experimental Study of Clouds and Radiation in The Netherlands Russchenberg, H.W.J., Delft University of Technology; van Lammeren, A.C.A.P., and Feijt, A., Royal Netherlands Meteorological Institute; Apituley, A., National Institute of Public Health and the Environment; Khlystov, A., Netherlands Energy Research Centre; Herben, M., Eindhoven University of Technology Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting In 1996, three extensive measurement

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications of the Aerosonde at NSA Curry, J.A. and Holland, G.J., University of Colorado Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The first ARM Aerosonde flights at Barrow in April 1999 were not successful owing to the aircraft's inability to fly under severe icing conditions. However, we were sufficiently encouraged by these initial flights to pursue further developments to make feasible Aerosonde flights in the Arctic. NSF has funded a major project to establish

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pyrgeometer Calibrations at NREL Reda, I. and Stoffel, T., National Renewable Energy Laboratory Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM Program has acquired a new Pyrgeometer Blackbody Calibration System to improve the data quality of longwave measurements from the SIRS, GNDRAD, and SKYRAD instrument platforms. Results of the acceptance tests and subsequent indoor and outdoor pyrgeometer calibrations at NREL's Solar Radiation Research Laboratory are

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inferring Optical Depth of Broken Clouds above Green Vegetation: Part II: A New Spectrometer for the SGP Site and Preliminary Results Pavloski, C.F. (a), Clothiaux, E.E. (a), Barker, H.W. (b), and Marshak, A. (c), The Pennsylvania State University (a), Environment Canada (b), NASA-Goddard Space Flight Center (c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting A new instrument is presented that was designed specifically for retrieval of high temporal-resolution cloud optical

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Convective Triggering/Capping Inversions in the Southern Great Plains Cripe, D.G. (a) and Randall, D.A. (b), Colorado State University Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting An algorithm for determining Generalized Convective Available Potential Energy (GCAPE) has been developed at Colorado State University. This particular algorithm differs from other CAPE-determining algorithms in that convective clouds are allowed to originate at multiple levels, and the effects

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluating Stochastic Radiative Transfer Lane, D.E. (a), Somerville, R.C.J. (b), and Iacobellis, S.F. (b), CIRES, University of Colorado, Boulder (a), Scripps Institution of Oceanography, University of California, San Diego (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Stochastic modeling is a promising technique for representing shortwave radiative transfer through scattered, low-level clouds. A distinct advantage of this approach is that a stochastic model can

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parameterizing the Radiative Properties of Midlatitude Clouds Sassen, K. (a), Comstock, J.M. (b), and Wang, Z. (a), University of Utah (a), Pacific Northwest National Laboratory (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting A major goal of the ARM program is to obtain the requisite information needed to improve the treatment of the radiative effects of clouds in large-scale models that ultimately must be relied on to predict the impact of human-induced activities on

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping of Surface Reflectance over the Southern Great Plains Region from Multiple Satellites Trishchenko, A.P.(a), Li, Z. (a,b), and Park, W. (a), Canada Centre for Remote Sensing, Ottawa, Canada (a), Now at ESSIC, Department of Meteorology, College Park (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The ground-based ARM observations are limited to a handful of locations sparsely distributed in the South Great Plains (SGP). Mapping of surface narrow and broadband

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Parameterization for Three-Dimensional Inhomogeneous Cirrus Clouds: Application to Climate Models Gu, Y. and Liou, K.N., University of California, Los Angeles Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting A three-dimensional (3D) radiative transfer model has been developed to simulate the transfer of solar and thermal infrared radiation in inhomogeneous cirrus clouds. The model utilizes a diffusion approximation approach (four-term expansion in the intensity)

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Pathlength Distributions Inferred from the RSS at the ARM SGP Site Min, Q. and Harrison, L.C., ASRC, SUNY at Albany Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting A retrieval method of photon pathlength distribution using Rotating Shadowband Spectroradiometer (RSS) measurements in the oxygen A-band and water vapor band is presented. Given the resolution of the new generation RSS, we are able to retrieve both mean and variance of photon pathlength distributions.

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterizing the Quality of Microwave Radiometer Measurements and Retrievals Using Time Series Analyses Ivanova, K. (a), Clothiaux, E.E. (a), Shirer, H.N. (a), Ackerman, T.P. (b), Liljegren, J.C. (c), and Ausloos, M. (d), The Pennsylvania State University (a), Pacific Northwest National Laboratory (b), Argonne National Laboratiry (c), University of Liege, Liege, Belgium (d) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Time series of microwave radiometer brightness

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of ARM Cloud Property Observations with CRM Simulations Xu, K.-M. (a), Cederwall, R.T. (b), Xie, S.C. (b), and Yio, J.J. (b), NASA Langley Research Center (a), Lawrence Livermore National Laboratory (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The cloud property observations are compared with cloud-resolving model simulated cloud properties in this study, using the Summer 1997 Intensive Observation Period (IOP) data of the ARM program. Midlatitude

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Overview of Water Vapor IOP (WVIOP) 2000 and ARM/FIRE Water Vapor EXperiment (AFWEX) Tobin, D., Revercomb, H., and Turner, D.D., University of Wisconsin-Madison Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting WVIOP 2000 and AFWEX, two field experiments with focus on the accuracy of ARM water vapor measurements, have recently been conducted. WVIOP 2000, the third in a series of WVIOPs which have studied the accuracy of lower tropospheric water vapor measurements, ran from

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Comparison of Aerosol Optical Properties from the Cimel Sunphotometer and the Whole Sky Imager Ricchiazzi, P. and Gautier, C., University of California, Santa Barbara Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The Cimel sun photometer (CSPOT) is currently providing estimates of aerosol optical thickness, size distribution and phase function at the CART site. However, the accuracy of these retrievals -- particularly of the size distribution and phase function -- has

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mean 3D Radiative Transfer in Cloudy Columns: Further Empirical Evidence for Propagation Kernels with Power-Law Tails Davis, A.B. (a), Marshak, A. (b), and Barker, H.W. (c), Los Alamos National Laboratory (a), NASA Goddard Space Flight Center (b), Meteorological Service of Canada (c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting For reasons of computational efficiency, current radiation parameterizations in GCMs are uniformly based on analytical 2-stream solutions of the

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intraseasonal Variation Observed from Multi-Infrared Channel Inoue, T., Meteorological Research Institute Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Intraseasonal variations (MJO) of convective cloud, sea surface temperature (SST) and water vapor information are studied using three infrared channels (6.7, 11, 12 um). Split window(11 and 12 um) can classify optically thin ice cloud and optically thick cloud. Further SST and water vapor information can be retrieved from

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implementation and Assessment of the Cloud Overlap Scheme in the CSU Two-Stream Radiative Transfer Model\ Partain, P.T., Gabriel, P.M., and Stephens, G.L., Colorado State University Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Most radiative transfer models intended for use in a general circulation model (GCM) cannot include the effect of cloud heterogeneity without the use of a cloud overlap scheme. As observed by the ICRCCM III intercomparison, the radiative flux and

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of Pyrgeometer Dome Heating on Calculated Longwave Radiation Richardson, S.J., University of Oklahoma Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Measurements from the Eppley Precision Infrared Radiometer (PIR) can be corrected for dome heating when the dome temperature is known. Traditionally, a single temperature sensor is installed at the base of the PIR dome and is used for the correction. In the correction it is assumed that the entire dome is at the same

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Vapor Profiling During WVIOP#3 and AFWEX2000 Using Ground-Based Differential Absorption Lidar Boesenberg, J. (a), Linne, H. (a), Jansen, F. (a), Ertel, K. (a), Lammert, A. (a), and Wilkerson, T. (b), Max-Planck-Institut fuer Meteorologie, Hamburg (a), Utah State Univerity (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The differential absorption lidar (DIAL) system of the MPI participated in both the WVIOP#3 and AFWEX2000 experiments. It was operated on 11 days

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Spectral and Broadband Measurements of Surface Flux with Model Calculations on Clear Days at the ARM SGP Site Arking, A. (a), Liu, F. (a), Harrison, L. C. (b), Pilewskie, P. (c), and Chou, M.-D. (d), Johns Hopkins University (a), State University of New York, Albany (b), NASA Ames Research Center (c), NASA Goddard Space Flight Center (d) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Observations of spectral and broadband solar irradiance at the ARM/SGP site

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preliminary Analysis of Horizontal Inhomogeneity for ARESE II Clouds Marshak, A. (a), Wiscombe, W.J. (b), Davis, A.B. (c), and Pilewskie, P. (d), UMBC/JCET (a), NASA/GSFC (b), LANL (c), NASA/Ames (d) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM Enhanced Shortwave Experiment (ARESE) II was conducted at the SGP site from February 21 through April 15, 2000. The identical set of radiometers simultaneously measured the broadband and narrowband fluxes, as well as spectral

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Bulk Properties of Mid Latitude Cirrus Events: Sensitivity to Large Scale Controlling Factors Vernon, E.N. and Mace, G.G., Department of Meteorology, Unviversity of Utah Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The extensive cirrus record recored in the ARM data is being used to investigate the sensitivity of certain cirrus properties to the large scale meteorology. Using millimeter cloud radar (MMCR) data from the Southern Great Plains site, a statistical

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Assessment of Upper Tropospheric Humidity Measurements at the ARM SGP/CART Site Soden, B.J. (a), Turner, D.D. (b), and Goldsmith, J.E.M. (c), NOAA/GFDL (a), Pacific Northwest National Laboratory (b), Sandia National Laboratories (c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Upper tropospheric water vapor plays a key role in regulating the flow of radiation through clear skies and the formation and dissipation of clouds. Unfortunately, due to the difficulty of

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Enhancement of Cloud Albedo Shown by Satellite Measurements and Chemical Transport Modeling Schwartz, S.E. (a), Harshvardhan (b), and Benkovitz C.M.(a), Brookhaven National Laboratory (a), Purdue University (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The Twomey effect of enhanced cloud droplet concentration, optical depth, and albedo due to anthropogenic aerosols is thought to contribute substantially to radiative forcing of climate change over the

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactions of Cumulus Convection and the Boundary Layer Over the Southern Great Plains Krueger, S.K. (a), Luo, Y. (a), Lazarus, S.M. (a), and Xu, K.-M. (b), University of Utah (a), NASA Langley Research Center (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting We are using observations and cloud-resolving model (CRM) simulations to better understand the interaction between deep cumulus convection and the boundary layer over the southern Great Plains of the United States.

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Profiles of Microphysical Properties in Low-Level Stratiform Clouds: Retrieval and Application to Radiative Transfer Calculations Ovtchinnikov, M. (a) and Kogan, Y.L. (b), Pacific Northwest National Laboratory (a), The University of Oklahoma (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Vertical structure of low-level stratiform clouds unresolved by present global climate models may significantly affect the radiative transfer. In this poster, a common assumption of

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Climatology of Cloud & Radiative Properties Derived from GMS-5 Data Over the Tropical Western Pacific Nordeen, M.L.(a), Doelling, D.R.(a), Khaiyer, M.M.(a), Rapp, A.D.(a), and Minnis, P.(b), Analytical Services & Materials, Inc. (a), National Aeronautics and Space Administration-Langley Research Center (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Satellite derived cloud and radiative properties can provide continuous spatial and temporal coverage over the

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maintaining Radiometer Calibration Traceability to the World Radiometric Reference: Results of the NREL Pyrheliometer Comparisons in 2001 Stoffel, T.L. and Reda, I., National Renewable Energy Laboratory Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Accurate measurements of solar irradiance place many demands on the operators of commercially available radiometers. Maintaining careful instrument calibrations traceable to an international standard is the first step in

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Interface for Nighttime Aerosol Optical Depth Assessment with ARM WSI Musat, I.C.(a) and Ellingson, R.G.(b), University of Maryland at College Park (a), Florida State University (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Nighttime values of Aerosol Optical Depth (AOD) are determined from ARM WSI measurements of starlight. For these measurements, an interface for automatic analysis of clear sky nights and data display is being developed. This analysis

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On the Uncertainty of Inferring Absolute Cloud Fraction from Time Series of Narrow Field of View Observations Ma, Y.-T.(a) and Ellingson, R. G.(b), University of Maryland at College Park (a), Florida State University (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting One way to parameterize longwave 3-D cloud effects is to relate the various cloud properties to a statistical cloud field parameter called the Probability of Clear Line of Sight (PCLS) and then to a simple

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Intercomparison of MMCR and NCEP Global Model Cloud Fraction and Cloud Overlap at the ARM SGP, NSA, and TWP Sites Lazarus, S.M.(a) and Krueger, S.K.(b), Florida Institute of Technology (a), University of Utah (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting In conjunction with the National Center for Environmental Prediction (NCEP), the University of Utah has been archiving (daily) column data from the NCEP Medium Range Forecast (MRF) model for various sites over the

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessing Cloud Overlap Parameterizations of Global Climate Models Using ARM Data Stephens, G.L., Gabriel, P., and Wood, N.B., Colorado State University Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting We will report on our research that uses ARM MMCR data from three CART sites to evaluate various overlap parameterizations as commonly employed in climate models. This assessment is carried out in terms of: 1. The statistical properties of overlap derived from MMCR data

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Integrated Algorithm for Retrieving Low-Level Stratus Cloud Microphysical Properties Using Millimeter Radar and Microwave Radiometer Data Dong, X. and Mace, G.G., University of Utah Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Two methods have been developed for inferring the vertical profiles of cloud microphysics in liquid phase stratocumulus clouds. The first method uses cloud liquid water path derived from microwave radiometer observations and a profile of radar

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Towards Parameterization of Frontal Mesoscale Circulations and Cloudiness in GCMs Based on ARM Observations Norris, J.R.(a), Weaver, C.P.(b), Gordon, N.D.(c), and Klein, S.A.(d), Scripps Institution of Oceanography (a), Rutgers University (b), Scripps Institution of Oceanography (c), GFDL/NOAA (d) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Cloudiness associated with extratropical cyclones is currently poorly represented in GCMs due to incorrect and insufficient

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Cloud Scale Resolution on Radiative Properties of Oceanic Low-Level Clouds Kassianov, E.I.(a), Ackerman, T.P.(a), and Kollias P.(b), Pacific Northwest National Laboratory (a), University of Miami (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Millimeter radars have been commonly used to examine the spatial/temporal evolution of clouds. To asses the impact of the cloud scale resolution on the solar radiative transfer, two sets of radiative experiments were

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Methods for Broadband Outdoor Radiometer Calibration (BORCAL) Wilcox, S.M., Andreas, A.M., Reda, I., and Myers, D.R., National Renewable Energy Laboratory Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM Program deploys approximately 100 radiometers to measure broadband solar radiation at stations in the North Slope of Alaska (NSA), Southern Great Plains (SGP), and Tropical Western Pacific (TWP) Cloud and Radiation Testbed (CART) sites. Two calibration events

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using ARM Radar Data to Parameterize the Moments of Cirrus Cloud Properties in Terms of Cloud Layer Thickness and Temperature Vernon, E.N.(a) and Mace, G.G.(b), University of Utah (a), University of Utah (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Improving the reperesentation of cirrus clouds in large-scale models has been identified as a way to reduce the uncertainty associated with climate change simulations in these models. Representing cirrus clouds in

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Assessment of MWR Retrievals of Liquid Water Path Using Clear-sky Data Marchand, R.T. and Ackerman, T.P., Pacific Northwest National Laboratory Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM radiometers make measurements at two frequencies. These two measurements are used to infer two quantities, the total column vapor and liquid water. Both microwave emission frequencies respond to both the liquid and vapor, but one channel is more sensitive to vapor (23.8 GHz)

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Continued Evaluation of the Microwave Radiometer Profiler Liljegren, J.C., Argonne National Laboratory Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Final results are presented for the two-year evaluation of the microwave radiometer profiler at the Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites. Three aspects of the instrument system are examined: (1) reliability, (2) measurement accuracy, and (3) retrieval accuracy. Reliability of the instrument is

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status, Accomplishments and Recent Developments at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Liljegren, J.C.(a), Sisterson, D.L.(a), and Teske, J.J.(b), Argonne National Laboratory (a), Aeromet Corporation (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Over the past year the SGP CART has undergone considerable change and has been host to a wide range of field campaigns and guest instruments. Several new instruments have been deployed, new

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Influence of Clouds on the Arctic Surface Intrieri, J.M.(a) and Shupe, M.D.(b), NOAA/Environmental Technology Laboratory (a), STC/NOAA/Environmental Technology Laboratory (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting SHEBA observations of Arctic cloud and surface fluxes were used to determine surface cloud radiative forcing over an annual cycle. Cloud amount and phase had the largest influence on the magnitude of surface forcing in both winter and summer while

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statistical Analysis of the Coupling Between Subgrid Cloud Structure and Grid-Scale Dynamic-Hydrological Processes O'Hirok, W. and Gautier, C., University of California, Santa Barbara Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Sufficient knowledge of the spatial distribution of cloud properties within a GCM grid is central to parameterizing subgrid radiative processes. While methods are being developed to account for these processes they all must to a degree rely on

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Importance and Parameterization of Longwave Radiative Scattering by Mineral Aerosols Gautier, C., Dufresne, J.-L., and Ricchiazzi, P.J., University of California Santa Barbara Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The effect of scattering is not always included in longwave models of radiative forcing due to mineral aerosols. In this presentation, we quantify and highlight the importance of scattering in the longwave domain for a wide range of conditions commonly

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spatial Hetergeneity in Mid-Summer Fluxes of Carbon, Water and Energy in Agriculutural Plots Near the SGP Central Facility Fischer, M.L.(a), Billesbach, D.(b), Berry, J.(c), Riley, W.R.(a), and Torn, M.S.(a), Lawrence Berkeley National Laboratory (a), University of Nebraska (b), Carnegie Institution of Washington (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Patterns of land use and management are likely to dominate the spatial heterogeneity in cycles of energy,

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clear-Sky Model and Measurement Comparisons from the First Diffuse Irradiance IOP - Fall 2001 Powell, D.(a), Kato, S.(b), Haeffelin, M.(c), and Dubovik, O.(d), Pacific Northwest National Laboratory (a), Hampton University (b), Laboratoire de Meteorologie Dynamique (c), NASA/Goddard Space Flight Center (d) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting In the fall of 2001 the central facility of the ARM SGP site was the location of the first diffuse irradiance IOP.

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrieval of Ice Water Path, Ice Particle Size, and Shape Mitchell, D.L., Arnott, W.P., and Ivanova, D.C., Desert Research Institute Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Ground based retrievals of ice water path, particle size and shape are needed for testing and generating improvements in cloud resolving models and GCMs, a long-standing goal of the ARM program. The lidar/radiometer (LIRAD) method developed by Martin Platt has recently been generalized for using

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Parameterization of Droplet Nucleation Penner, J.E. and Chen, Y., University of Michigan Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Several parameterizations for the formation of droplets on aerosol particles with specified size and aerosol composition are now available. However, the current parameterizations do not account for the full range of aerosol species, nor do they account for the influence of nitric acid vapor on formation of drops. Here, we present a new

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lidar Multiple Scattering Determinations of Particle Size in Cirrus Clouds Eloranta, E.W. and Kuehn, R.E., University of Wisconsin-Madison Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Multiple scattering measurements with the University of Wisconsin High Spectral Resolution Lidar have been used to remotely measure the particle size in cirrus clouds. This poster will present measurements and describe an extention to lidar multiple scattering theory. Equations to calculate

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A High Spectral Resolution Lidar for the Arctic - A Progress Report Eloranta, E.W., Razenkov, I., Kuehn, R., Holz, R., Hedrick, J., and Garcia, J., University of Wisconsin-Madison Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The University of Wisconsin is constructing a High Spectral Resolution Lidar for deployment in the Arctic. It is designed to operate as an internet appliance and require minimal attention from an onsite attendent. It will provide continuous well

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acceptance Testing and Characterization of the VIS-RSS Slated for Permanent Deployment at the SGP Site Kiedron, P., Berndt, J., Yager, E., Schlemmer, J., Harrison, L., and Michalsky, J.J., SUNY at Albany Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The RSS (Rotating Shadowband Spectroradiometer) that was built by YES, Inc. and purchased by ARM in 2001 was evaluated at ASRC. The acceptance tests found several problems that required modification and redesigns by YES,

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing the Impact of Clouds on the Radiation Budgets of 18 General Circulation Models Jakob, C., May, P.T., and Keenan, T.D., BMRC Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARMs newest site at Darwin in Northern Australia has been collecting data since April 2002. This poster will present a view of the 2002/2003 Australian summer monsoon through the use of data collected by both the ARM and existing Bureau of Meteorology instrumentation. Time series of cloud,

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radar Estimations of Ice Cloud Optical Properties Matrosov, S.Y.(a), Shupe, M.D.(b), Heymsfiled, A.J.(c), and Zuidema, P.(d), CIRES University of Colorado and NOAA (a), STC and NOAA (b), NCAR (c), NOAA (d) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Clouds in radiation and climate models are usually described using different parameterizations between their microphysical and optical properties. Visible extinction profiles and optical thicknesses (i.e., the vertical

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Overlap from a Cloud Resolving Model Oreopoulos, L.(a) and Khairoutdinov, M.F.(b), JCET-UMBC (a), Colorado State University (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The overlap properties of ~850 snapshots of convective cloud fields generated by a Cloud Resolving Model are studied and compared with previously published results based on cloud radar observations. Total cloud fraction is overestimated by the random overlap assumption and underestimated by

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A High-Altitude Cloud Climatology From Satellite Data Hobbs, R. and Rusk, D.J., Aeromet, Inc. Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Tenuous, high-altitude cirrus clouds have, in recent years, been found to be very widespread in the tropics. These clouds, which are often nearly invisible from the ground and from satellite, impact the work of many groups, including the ARM community. Aeromet has long been concerned about the impact of these clouds on airborne

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space-Borne Remote Sensing of High-latitude Surface Radiative Properties Berque, J., Lubin, D., and Somerville, R.C.J., Scripps Institution of Oceanography, University of California, San Diego Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Several studies have demonstrated the far-reaching influences of the Antarctic climate. Here we present a method to monitor the surface radiative properties from space. These properties play a key role in the surface energy budget in

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initial Activities of the ARM NSA Site Scientist Team Richardson, S., Bahrmann, C.P., Verlinde, J., Harrington, J.H., Clothiaux, E.E., Avramov, A.E., and Greenberg, S.D., The Pennsylvania State University Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting In August 2002 the transition of the ARM NSA Site Scientist Team to Pennsylvania State University was complete. This poster provides an overview of the new SST and describes research, operations, and educational aspects of

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Remote Sensing Research at Montana State University Shaw, J.A., Repasky, K., and Carlsten, J.A., Montana State University Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting We describe a new, growing research program at Montana State University in Bozeman, Montana in development and application of optical remote sensors, including lidars and radiometers. The remote sensor program builds on well-established expertise in laser development. Current activities include:

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Radiative Forcing of the Arctic Surface: The Influence of Cloud Properties, Surface Albedo, and Solar Zenith Angle Shupe, M.D. and Intrieri, J.M., NOAA - Environmental Technology Laboratory Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting An annual cycle of cloud and radiation measurements made as part of the Surface Heat Budget of the Arctic program are utilized to determine which properties of Arctic clouds control the surface radiation balance. Surface cloud

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Comparison of Aerosol Scattering Parameters Obtained by Ground-Based Remote Sensing and In-Situ Profile Flights Ricchiazzi, P.J.and Gautier, C., University of California, Santa Barbara Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The objective of this study is to determine how well remote sensing retrievals of aerosol scattering parameters correspond to information obtained from in-situ flight profiles. Two remote sensing retrievals techniques will be used. The first

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Observed and Modelled Liquid Water Path for Stratus and Stratocumulus Clouds at the SGP Sengupta,M.(a), Ackerman,T.P.(a), and Clothiaux,E.E.(b), Pacific Northwest National Laboratory (a), The Pennsylvania State University (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Accurate representation of observations in models is a integral part of improving model accuracy. With the availability of long-term data sets from ARM it is possible to statistical

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impacts of Cirrus Contamination on Satellite Retrieved Microphysical Properties of Water Clouds Chang, F.-L. and Li, Z., University of Maryland Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Due to their ubiquitous presence, cirrus clouds can modify both solar reflected and terrestrial emitted radiances. Detecting the presence of cirrus clouds from satellite imagery data faces two major challenges. Firstly, they often reside in high altitude and overlap with a boundary

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using XML in the Data Quality Reporter System Stampf, D.(a), Bahrmann, C.P.(b), and Choudhari, C.(a), Brookhaven National Laboratory (a), Penn State University (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting In much the same way that ARM uses NETCDF formatted files to permit the interchange of data among researchers, the Data Quality Reporter System (DQ Reporter) uses the standardized XML (eXtensible Markup Language) to permit the interchange of meta-data among

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Assessment of Aerosol Retrievals from RSS, MFRSR, and CIMEL Data Using EOF Analysis Gianelli, S.M.(a,b), Lacis, A.A.(b), and Carlson, B.E.(b), Columbia University (a), GISS (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ability to accurately retrieve aerosol size distribrutions using the multi-filter rotating shadowband radiometer (MFRSR) is limited due to the small number of spectral bands (six) and the inability to retrieve a unique value for the effective

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Successive Order of Scattering Model for Vector (Polarized) Radiative Transfer Min, Q. and Duan, M., State University of New York at Albany Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A full vector radiative transfer model for vertically inhomogeneous plane-parallel media has been developed by using the successive order of scattering approach. In this model, a fast analytical expansion of Fourier decomposition is implemented and an exponent-linear assumption is used

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Surface Aerosol and Ozone Budgets at ARM Continental and Polar Sites Iziomon, M.G. and Lohmann, U., Dalhousie University, Canada Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Although tropospheric aerosols and ozone are of significant importance to climate change and contribute substantially to the radiative forcing of the Earth's climate, the understanding of their climatic influence are compounded by their variable concentrations. Long-term measurements

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM In The Classroom: Developing an Operational Forecasting Site for the NSA Harrington, J. Y.(a) and Olsson, P. Q.(b), The Pennsylvania State University (a), The University of Alaska Anchorage (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting During the fall 2002 semester, the Department of Meteorology's Computer Applications in Meteorology course took on the project of developing an operational forecasting site for the ARM North Slope of Alaska and the Alaska Region.

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test of In-Cloud Water Vapor Parameterizations Using SHEBA/FIRE-ACE Observations Fu, Q. and Hollars, S., University of Washington Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Cloud schemes in numerical models require specification of saturated water vapor pressure. The in-cloud water vapor is often assumed to be saturated with respect to liquid water and ice, respectively, for pure water and ice clouds. There is an ambiguity, however, in defining the water vapor

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Approach for Obtaining Advection Profiles: Application to the SHEBA Column Morrison, H.(a) and Pinto, J.O.(b), University of Colorado (a), NCAR/University of Colorado (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Time-averaged vertically-integrated 3-D advections are inferred from heat and moisture budgets obtained from observations at SHEBA for April, May, June and July. Advection was a source of heat and moisture in the column budgets during the time period,

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrieving Cloud Height Using Infrared Thermometer Measurements Sengupta, M., and Long, C.N., Pacific Northwest National Laboratory Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Satellite measurements using passive sensors are more accurate in measuring cloud tops than cloud bases especially in thick clouds. On the other hand, a combination of active sensors at the surface can measure both cloud tops and bases accurately. The expense of deploying and maintaining active

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Comparison of the Characteristics of Cirrus from Doppler Radar Measurements at the ARM Sites and the CRYSTAL Field Experiment Laribee-Dowd, K. (a), Mace, G. G. (a), and Marchand, R.T. (b), University of Utah (a) Pacific Northwest National Laboratory (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting By studying the statistics of Doppler velocities in cirrus clouds, the characteristics of cirrus formed through recent injection of ice into the uppertroposphere by deep

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Properties of Cirrus over the Western Tropical Pacific as a Function of Their Assocaition with Deep Convective Outflows Deng, M.(a), Mace, G.G.(a), and Soden, B.J.(b), University of Utah (a), Geophysical Fluid Dynamics Laboratory (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The microphysical and radiative properties of upper tropospheric clouds in the tropics are known to have a substantial influence on climate. Observations from long term cloud radar

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Retrievals of Temperature and Water Vapor Profiles using a Twelve-Channel Microwave Radiometer Liljegren, J.C., Argonne National Laboratory Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Improvements in the accuracy and vertical resolution of the temperature and water vapor profiles currently available from the twelve-channel microwave radiometer can be achieved through improved spectroscopy and improved retrievals. We demonstrate how a 5% reduction in the width

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Pyrheliometer Comparisons - 2002 Reda, I. and Stoffel, T.L., National Renewable Energy Laboratory Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting All broadband shortwave radiometers used by the ARM Program are calibrated with absolute cavity radiometers traceable to the World Radiometric Reference (WRR). The WRR was developed and is maintained by the World Radiation Center under the auspices of the World Meteorological Organization. Each fall, the National Renewable

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parameterization of Cloud-Radiation Interactions as Relevant to Climate Models: A New Dimension Stephens, G.L.(a), Wood, N.B.(a), Barker, H.W.(b), and Gabriel,P.(a), Colorado State University (a), Meteorological Service of Canada (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The parameterization of cloud-radiation interactions involve a number of levels of approximation. The focus of past programs like ICRCCM and I3RC have been directed largely towards assessing

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Cloud Microphysics Retrievals for the Broadband Radiative Heating Project Haynes, J.M., Stephens, G.L., and Leesman, K.J., Colorado State University Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A new cloud microphysics retrieval is applied to cirrus observed by the Millimeter-Wavelength Cloud Radar over the ARM Southern Great Plains site. The retrieval has been developed in an optimal estimation framework which allows accurate characterization of the uncertainty of

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SGP Instrument Systems Performance and Data Quality Reporting for 2002 Cook, D.R., Ritsche, M.T., Holdridge, D.J., and Wesely, M.L., Argonne National Laboratory Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting This poster graphically presents statistics on the performance of several selected SGP instrument systems and the results of automated qc versus quality reporting via Data Quality Reports (DQRs). Trends in and reporting of the data quality will be discussed. In the

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A High Spectral Resolution Lidar for Long-Term Arctic Deployment Eloranta, E. W., Razenkov, I. A., Garcia, J. P., and Hedrick, J. P., University of Wisconsin-Madison Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A new High Spectral Resolution Lidar (HSRL) has been constructed for long-term operation in the Arctic. Vertical profiles of optical depth, scattering cross section, and depolarization will be observed. Unlike conventional lidar measurements, HSRL measurements

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inferring Cloud Properties from Narrow-Field-of-View Spectral Radiometers Marshak, A.(a), Knyazikhin, Y.(b), Evans, K.(c), and Wiscombe, W.(a), NASA/GSFC (a), Boston University (b), UMBC/JCET (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The most common approach for retrieving cloud optical depth from ground-based observations uses downwelling fluxes measured by pyranometers and Multi-Filter Rotating Shadowband Radiometers (MFRSR). The key element in both retrieval

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heterochromatic Extinction During Nighttime at the SGP Musat, I.C.(a) and Ellingson, R.G.(b), University of Maryland (a), Florida State University (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Whole Sky Imager (WSI) at the Central Facility, working as star photometer, is used to produce estimates of all-sky extinction and total optical depth and their variations over short periods of time (hours). These are heterochromatic values which depend on the star color.

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Self-Consistent Hierarchy of Cirrus Cloud Property Retrieval Algorithms Mace, G.G. and Zhang, Y., University of Utah Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The problem of deriving cloud properties from remotely sensed data remains fundamentally important to many problems relevant to ARM. We have been working to derive a suite of cloud property retrieval algorithms that increase logically in complexity. Using an extensive set of aircraft data to constrain the

  3. Fundamental Science Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fundamental Science Applications Fundamental Science Applications Supporing research to understand, predict and ultimately control matter and energy at the electronic, atomic, and molecular levels. Contact thumbnail of Business Development Executive Don Hickmott Business Development Executive Richard P. Feynman Center for Innovation (505) 667-8753 Email Fundamental Science Applications The DOE Basic Energy Science (BES) program supports research to understand, predict and ultimately control

  4. Solar Energy Science Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Projects Curriculum: Solar Power -(thermodynamics, lightelectromagnetic, radiation, energy transformation, conductionconvection, seasons, trigonometry) Grade Level: ...

  5. Science and Suds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Suds Science and Suds WHEN: Jul 18, 2015 12:00 PM - 4:00 PM WHERE: Los Alamos ScienceFest Beer Garden Ashley Pond, Downtown Los Alamos, NM CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Science and Suds - Social Event Event Description Conversations with real scientists at the Los Alamos ScienceFest Beer Garden SCIENCE & SUDS Stop by the museum's tent in the beer garden at Ashley Pond during Los Alamos ScienceFest to visit with a scientist

  6. Home | ScienceCinema

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    ScienceCinema Home About ScienceCinema FAQ Site Map Contact Us DOE Home » ScienceCinema Navigation ScienceCinema Home About ScienceCinema FAQ Site Map Contact Us OSTI Home DOE Home ScienceCinema Database Searchable Videos Showcasing DOE Research Search DOE ScienceCinema for Multimedia Find + Fielded Search Audio Search × Fielded Search Title: Description/Abstract: Bibliographic Data: Author/Speaker: Name Name ORCID Media Type: All Audio Video Subject: Identifier Numbers: Media Source: All DOE

  7. Manhattan Project: Science

    Office of Scientific and Technical Information (OSTI)

    Science In the Laboratory Particle Accelerators and Other Technologies The Atom and Atomic Structure Nuclear Physics Bomb Design and Components Radioactivity Science and technology of the Manhattan Project Science PLEASE NOTE: The Science pages are not yet available. Links to the pages listed below and to the left will be activated as content is developed. Select topics relating to the science and technology of the Manhattan Project have been grouped into the categories listed to the left. A

  8. Committee on Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science SHERWOOD BOEHLERT, CHAIRMAN Ralph M. Hall, Texas, Ranking Democrat www.house.gov/science October 9, 2001 Press Contacts: Heidi Mohlman Tringe (Heidi.Tringe@mail.house.gov) Jeff Donald (Jeffrey.Donald@mail.house.gov) (202)225-4275 BOEHLERT, GRUCCI TO URGE SWIFT CONFIRMATION OF SCIENCE ADVISOR WASHINGTON, DC -- Today, House Science Committee Chairman Sherwood Boehlert (R-NY23) and Committee member Felix J. Grucci (R-NY1) will call for the swift confirmation of Presidential Science Advisor

  9. BER Science Network Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BER Science Network Requirements Report of the Biological and Environmental Research Network Requirements Workshop Conducted July 26 and 27, 2007 BER Science Network Requirements Workshop Biological and Environmental Research Program Office, DOE Office of Science Energy Sciences Network Bethesda, MD - July 26 and 27, 2007 ESnet is funded by the US Dept. of Energy, Office of Science, Advanced Scientific Computing Research (ASCR) program. Dan Hitchcock is the ESnet Program Manager. ESnet is

  10. National Security, Weapons Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security, Weapons Science /science-innovation/_assets/images/icon-science.jpg National Security, Weapons Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. CoMuEx» Explosives Center» Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) The Dual-Axis Radiographic Hydrodynamic Test Facility at LANL is part of the

  11. Science Requirements Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Requirements Reviews Network Requirements Reviews Requirements Review Reports Case Studies News & Publications ESnet News Publications and Presentations Galleries ESnet Awards and Honors Blog ESnet Live Home » Science Engagement » Science Requirements Reviews Science Engagement Move your data Programs & Workshops Science Requirements Reviews Network Requirements Reviews Requirements Review Reports Case Studies Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1

  12. Terrain-Responsive Atmospheric Code

    Energy Science and Technology Software Center (OSTI)

    1991-11-20

    The Terrain-Responsive Atmospheric Code (TRAC) is a real-time emergency response modeling capability designed to advise Emergency Managers of the path, timing, and projected impacts from an atmospheric release. TRAC evaluates the effects of both radiological and non-radiological hazardous substances, gases and particulates. Using available surface and upper air meteorological information, TRAC realistically treats complex sources and atmospheric conditions, such as those found in mountainous terrain. TRAC calculates atmospheric concentration, deposition, and dose for more thanmore »25,000 receptor locations within 80 km of the release point. Human-engineered output products support critical decisions on the type, location, and timing of protective actions for workers and the public during an emergency.« less

  13. Bradbury Science Museum - Science on Wheels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To stimulate interest in and enthusiasm for science, technology, engineering and mathematics and promote public understanding and appreciation of Los Alamos National Laboratory...

  14. Atmospheric Crude Oil Distillation Operable Capacity

    Gasoline and Diesel Fuel Update (EIA)

    (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum

  15. Working with SRNL - Our Facilities - Atmospheric Technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The SRNL Atmospheric Technologies Center has extensive capabilities for world-wide meteorological forecasts and real-time atmospheric transport modeling and assessment. ...

  16. National Oceanic and Atmospheric Administration (NOAA) | Open...

    Open Energy Info (EERE)

    National Oceanic and Atmospheric Administration (NOAA) Jump to: navigation, search Logo: National Oceanic and Atmospheric Administration (NOAA) Name: National Oceanic and...

  17. Correcting radar range measurements for atmospheric propagation...

    Office of Scientific and Technical Information (OSTI)

    Correcting radar range measurements for atmospheric propagation effects. Citation Details In-Document Search Title: Correcting radar range measurements for atmospheric propagation...

  18. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion...

  19. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-001 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... DOESC-ARM-16-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  20. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...